WorldWideScience

Sample records for uranium iv mixed

  1. Mixed-ligand complexes of zirconium (IV) and uranium with salicylaldehyde and some heterocyclic azopyrazolones

    International Nuclear Information System (INIS)

    Amrallahi, A.H.

    1994-01-01

    Mixed-ligand complexes of Zr(IV) and U(IV) with salicylaldehyde (SA) and some heterocyclic azopyrazolenes have been studied spectrophotometrically. All formed chelates have ratio 1:1:1. The stoichiometry and stability of the binary mixed chelates been evaluated. Elemental analysis, molar conductance and IR spectra have been used for identification of solid mixed complexes. (author)

  2. Determination of the O/M ratios of polynary uranium oxides by Ce(IV)-Fe(II) back titration after dissolution in mixed sulphuric and phosphoric acids

    International Nuclear Information System (INIS)

    Fujino, T.; Sato, N.; Yamada, K.

    1996-01-01

    Uranium (IV) in polynary uranium oxides is determined after the solid has been dissolved in a warm mixed solution of sulphuric and phosphoric acids containing excess Ce(IV). The latter is titrated with a Fe(II) standard solution using ferroin as indicator. This method is especially effective for (mixed) uranium oxides which are difficult to dissolve in hot Ce(IV) sulphuric acid. The standard deviation of the determined x value in polynary oxides is estimated to be below ± 0.004 for samples of 10-30 mg. (orig.)

  3. Determination of the O/M ratios of polynary uranium oxides by Ce(IV)-Fe(II) back titration after dissolution in mixed sulphuric and phosphoric acids.

    Science.gov (United States)

    Fujino, T; Sato, N; Yamada, K

    1996-01-01

    Uranium (IV) in polynary uranium oxides is determined after the solid has been dissolved in a warm mixed solution of sulphuric and phosphoric acids containing excess Ce(IV). The latter is titrated with a Fe(II) standard solution using ferroin as indicator. This method is especially effective for (mixed) uranium oxides which are difficult to dissolve in hot Ce(IV) sulphuric acid. The standard deviation of the determined x value in polynary oxides is estimated to be below +/- 0.004 for samples of 10-30 mg.

  4. Uranium (IV) carboxylates - I

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K C; Patnaik, A K [Sambalpur Univ. (India). Dept. of Chemistry

    1975-11-01

    A few uranium(IV) carboxylates with monochloro and trichloro acetic acid, glycine, malic, citric, adipic, o-toluic, anthranilic and salicylic acids have been prepared by photolytic methods. The I.R. spectra of these compounds are recorded and basing on the spectral data, structure of the compounds have been suggested.

  5. Mixed complexes of uranium(IV) and thorium(IV) with N,N'-ethylenebis(salicylideneimine) and N,N'-propylenebis(salicylideneimine)

    Energy Technology Data Exchange (ETDEWEB)

    Doretti, L; Madalosso, F; Sitran, S; Faleschini, S [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1976-01-01

    Recently some uranium tetrachloride adducts with N-(hydroxyphenyl)-salicylaldimine and N-(methoxyphenyl)salicylaldimine have been prepared (Doretti et al., J. Inorg. Nucl. Chem., (in press)): the study has now extended to the complexes of Uranium(IV) and Thorium(IV) with N,N'-Ethylenebis(salicylideneimine), H/sub 2/salen, and N,N'-Propylenebis(salicylideneimine), H/sub 2/salpropen, with the aim to prepare fully substituted complexes, mixed complexes containing both chloride and Schiff base groups and adducts of tetrachlorides with free Schiff bases. This paper reports the preparation and properties of the compounds MCl/sub 4/(H/sub 2/salen), MCl/sub 4/(H/sub 2/salpropen), M(salen)Cl/sub 2/, M(salen)/sub 2/ and M(salpropen)/sub 2/, where M = U or Th. These compounds have been characterized by elemental analyses and their IR spectra are reported and discussed.

  6. A mixed-valent uranium phosphonate framework containing U{sup IV}, U{sup V}, and U{sup VI}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lanhua; Zheng, Tao; Wang, Yaxing; Diwu, Juan; Chai, Zhifang; Wang, Shuao [School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou (China); Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Suzhou (China); Bao, Songsong; Zheng, Limin [State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University (China); Zhang, Linjuan; Wang, Jianqiang [Shanghai Institute of Applied Physics and, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai (China); Liu, Hsin-Kuan [Department of Chemistry, National Central University, Jhongli (China); Albrecht-Schmitt, Thomas E. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL (United States)

    2016-08-16

    It is shown that U{sup V}O{sub 2}{sup +} ions can reside at U{sup VI}O{sub 2}{sup 2+} lattice sites during mild reduction and crystallization process under solvothermal conditions, yielding a complicated and rare mixed-valent uranium phosphonate compound that simultaneously contains U{sup IV}, U{sup V}, and U{sup VI}. The presence of uranium with three oxidation states was confirmed by various characterization techniques, including X-ray crystallography, X-ray photoelectron, electron paramagnetic resonance, FTIR, UV/Vis-NIR absorption, and synchrotron radiation X-ray absorption spectroscopy, and magnetism measurements. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Spectroscopy and chemistry of uranium IV

    International Nuclear Information System (INIS)

    Folcher, G.; Rigny, P.

    1980-06-01

    Different fundamental research papers on uranium IV are presented, some were never edited. Molecular spectroscopy was used for identification and structural study of uranium IV in aqueous or organic solutions. The fields studied are: coordination, stereochemistry, electronic structure and chemical properties. For interpretation of results some studies were made with solid compounds or with thorium compounds or thorium complexes. Knowledge of actinides chemistry is improved, uranium and thorium being models for 5 f ions, extractive chemistry is better understood and new applications are possible [fr

  8. Analytical method of uranium (IV) and uranium (VI) in uranium ores and uranium-bearing rocks

    International Nuclear Information System (INIS)

    Shen Zhuqin; Zheng Yongfeng; Li Qingzhen; Zhong Miaolan; Gu Dingxiang

    1995-11-01

    The best conditions for keeping the original valences of uranium during the dissolution and separation procedure of geological samples (especially those micro uranium-bearing rock) were studied. With the exist of high concentration protectants, the sample was decomposed with concentration HF at 40 +- 5 degree C. The U(VI) was dissolved completely and formed stable complex UO 2 F 2 , the U(IV) was precipitated rapidly and carried by carrier. Quantitative separation was carried out immediately with suction. The decomposition of sample and separation of solid/liquid phases was completed within two minutes. After separation, the U(IV) and U(VI) were determined quantitatively with laser fluorescence or voltametry respectively according to the uranium content. The limit of detection for this method is 0.7 μg/g, RSD is 10.5%, the determinate range of uranium is 2 x 10 -6 ∼10 -1 g/g. The uranium contents and their valence state ratio were measured for more than one hundred samples of sand stone and granite, the accuracy and precision of these results are satisfactory for uranium geological research. (12 tabs.; 11 refs.)

  9. Synthesis, sintering and dissolution of thorium and uranium (IV) mixed oxide solid solutions: influence of the method of precursor preparation; Synthese, frittage et caracterisation de solutions solides d'oxydes mixtes de thorium et d'uranium (IV): influence de la methode de preparation du precurseur

    Energy Technology Data Exchange (ETDEWEB)

    Hingant, N

    2008-12-15

    Mixed actinide dioxides are currently considered as potential fuels for the third and fourth generations of nuclear reactors. In this context, thorium-uranium (IV) dioxide solid solutions were studied as model compounds to underline the influence of the method of preparation on their physico-chemical properties. Two methods of synthesis, both based on the initial precipitation of oxalate precursors have been developed. The first consisted in the direct precipitation ('open' system) while the second involved hydrothermal conditions ('closed' system). The second method led to a significant improvement in the crystallization of the samples especially in the field of the increase of the grain size. In these conditions, the formation of a complete solid solution Th{sub 1-x}U{sub x}(C{sub 2}O{sub 4}){sub 2}.2H{sub 2}O was prepared between both end-members. Its crystal structure was also resolved. Whatever the initial method considered, these compounds led to the final dioxides after heating above 400 C. The various steps associated to this transformation, involving the dehydration of precursors then the decomposition of oxalate groups have been clarified. Moreover, the use of wet chemistry methods allowed to reduce the sintering temperature of the final thorium-uranium (IV) dioxide solid solutions. Whatever the method of preparation considered, dense samples (95% to 97% of the calculated value) were obtained after only 3 hours of heating at 1500 C. Additionally, the use of hydrothermal conditions significantly increased the grain size, leading to the reduction of the occurrence of the grain boundaries and of the global residual porosity. The significant improvement in the homogeneity of cations distribution in the samples was also highlighted. Finally, the chemical durability of thorium-uranium (IV) dioxide solid solutions was evaluated through the development of leaching tests in nitric acid. The optimized homogeneity especially in terms of the

  10. Synthesis and reactivity of triscyclopentadienyl uranium (III) and (IV) complexes

    International Nuclear Information System (INIS)

    Berthet, J.C.

    1992-01-01

    The reactions of (RC 5 H 4 ) 3 U with R=trimethylsilylcyclopentadienyl or tertiobutylcyclopentadienyl are studied for the synthesis of new uranium organometallic compounds. Reactions with sodium hydride are first described uranium (III) anionic hydrides obtained are oxidized for synthesis of stable uranium (IV) organometallic hydrides. Stability of these compounds is discussed. Reactivity of these uranium (III) and (IV) hydrides are studied. Formation of new binuclear compounds with strong U-O and U-N bonds is examined and crystal structure are presented. Monocyclooctatetraenylic uranium complexes are also investigated

  11. Thiocyanato species of uranium(IV)

    International Nuclear Information System (INIS)

    Loyson, P.L.R.

    1974-12-01

    The aim of this thesis was to study the system U +4 /ClO 4 - /NCS - /HMPA/ - Solvent. This was done by means of various physical chemical methods. Spectrophotometric and conductometric evidence indicated that the following are the important species, which exist in acetone solution: (U(ClO 4 ) 3 .3acetone) + , (U(NCS) 3 .5acetone) + , (U 2 (NCS) 9 .6acetone) - , (U(NCS) 3 .2HMPA.3acetone) + , (U(NCS) 5 .2HMPA) - , (U(ClO 4 ) 3 .3HMPA) + , (U(NCS).5HMPA) +3 , (U(NCS) 2 .4HMPA) +2 and (U(NCS) 3 .3HMPA) + . The replacement of the large ClO 4 - ion by the much smaller NCS - anion results in a change in coordination of the U +4 , from six to eight. The formation of the species (U(NCS) 5 .2HMPA) - wasalso suggested by infrared studies and solubility determinations. The effect of a polar solvent on U(NCS) 4 .4HMPA was also studied, which indicated that, on solvation in methyl cyanide, U(NCS) 4 .4HMPA loses bound HMPA molecules. The ultimate goal of this project, i.e. the determination of the successive stability constants of the uranium(IV)thiocyanato complexes in acetone, was not reached, however, due to limitations of the computer program used. A qualitative treatment revealed that the stability of (U(NCS) 3 .5acetone) + , in acetone, is of the same order of magnitude as that of Co(NCS) 3 - ; similarly the species (U 2 (NCS) 9 .6acetone) - seems to be as stable as C0(NCS) 4 =. It was also indicated that excess U +4 cannot remove all bound NCS - from Co +2 . Finally the thiocyanato complexes of U +4 , relative to those of CO +2 , seem to be more stable in methyl cyanide, a N-donor solvent, than in acetone, an O-donor solvent

  12. Preparation of UO_2 Fine Particle by Hydrolysis of Uranium(IV) Alkoxide

    OpenAIRE

    Satoh, Isamu; Takahashi, Mitsuyuki; Miura, Shigeyuki

    1997-01-01

    Fine particles of uranium(IV) dioxides were obtained by hydrolysis of uranium(IV) ethoxide which was synthesized by reacting uranium tetrachloride with sodium ethoxide. The monodispersed submicrometer particles were confirmed by SEM observation.

  13. Study of electrolytic reduction of uranium VI to uranium IV in nitrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, B.F. de; Almeida, S.G. de; Forbicini, S; Matsuda, H T; Araujo, J.A. de [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    Experimental parameters are optimized in order to obtain uranium (IV) nitrate solutions at maximum yield, using hydrazine as stabilizer. Uranium (VI) electrolytic reduction was chosen because: there is no increase in the volume of radioactive effluents; there are no secondary reactions; there is no need for further separations; all reagents used are not inflammable. The method is, therefore, efficient and of low cost.

  14. Determination of uranium (IV) by flow voltammetry

    International Nuclear Information System (INIS)

    Ding Anqing

    1987-01-01

    According to the quantitative reaction of U(IV) and Fe(III) in H 2 SO 4 as well as the relation between current and concentration of substance detected, U(IV) has been determined indirectly by measurement of the electrolysis current of residual Fe(III). The columniform electrode used is made of glass carbon particles. At the range of U(IV) from a few micrograms to 40 μg, the linear relation is excellent. The relative standard deviation is within ±4%. The interference of Fe(II), Ti(IV) and U(VI) is negligible but of Ti(III) is serious. This method has been successfully applied in the determination of actual samples (both out line and on line). Main advantages of this procedure are rapid, simple, small amount of sample (only at microgram level) and easy to realize automation, able to use for on line or process analysis

  15. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  16. Electrochemical behaviour of uranium (IV) in DMF at vitreous carbon

    International Nuclear Information System (INIS)

    Afonso, M.L.; Gomes, A.; Carvalho, A.; Alves, L.C.; Wastin, F.; Goncalves, A.P.

    2009-01-01

    The electrochemical behaviour of UCl 4 (0.01 mol L -1 up to 0.05 mol L -1 ) in 0.1 mol L -1 TBAPF 6 /DMF solution at vitreous carbon was studied, at room temperature, by cyclic voltammetry and potentiostatic techniques. The electrolytic solutions were analyzed by UV spectroscopy (UV), and the electrodeposited films were characterized by Rutherford Backscattering Spectroscopy (RBS) and X-ray diffraction (XRD). The cyclic voltammetric results, at low UCl 4 concentrations (0.01 mol L -1 ), point that the reduction of U(IV) to U(0) occurs in two steps involving mainly U(IV) and U(III) species. The first electron transfer reaction is quasi-reversible and the second irreversible. The diffusion coefficient of U(IV) in DMF and the charge rate constant were determined to be 4.78 x 10 -7 cm 2 s -1 and 1.93 x 10 -3 cm s -1 (at 0.02 V s -1 ), respectively. RBS data obtained from samples prepared at constant potential (-3.10 V) during 3 h at room temperature, indicated the presence of uranium particles deposited all over the vitreous carbon surface with aggregates in some places, confirming that the second reduction step corresponds to uranium electrodeposition. No crystallographic ordering could be seen by XRD, pointing to an amorphous character of the uranium films.

  17. Stability with temperature of mixed uranium plutonium monocarbides

    International Nuclear Information System (INIS)

    Riglet-Martial, Ch.; Dumas, J.C.; Piron, J.P.; Gueneau, Ch.

    2008-01-01

    Full text: Among the different advanced fuel materials of concern for Generation IV systems, the mixed carbide of uranium and plutonium fuel is considered as one of the key materials for Gas Fast Reactors (GFR) systems. For purposes of optimising its fabrication process as well as its performances in various operating conditions, the losses of gaseous plutonium specially at elevated temperatures have to be controlled and minimized. The paper is therefore concerned with a parametric analysis of the stability with temperature of mixed carbides of uranium and plutonium. Previous published experimental studies have shown that mixed (U ,Pu) carbides undergo a highly incongruent sublimation at high temperatures: the vapour phase in equilibrium with the solid is mainly composed of gaseous plutonium (P Pu /P total > 99 % ) while the contribution of gaseous U and C remains very low. The composition of the system U 1-z Pu z C 1+x ' (z =Pu/(U+Pu) and x C/(U+Pu)), the temperature (T) and the expansion volume (V) of the gas are the main parameters in the loss of gaseous Pu. The calculations are carried out using the SAGE (Solgasmix Advanced Gibbs Energy) software, by assuming ideal solid solutions between UC and PuC, as well as between U 2 C 3 and Pu 2 C 3 . The validity of the model is previously tested using published equilibrium vapour pressure data. This work gives rise to a large description of the variations of Pu losses from mixed uranium plutonium carbides and leads to some basic recommendations in connection with the use of this advanced fuel materials

  18. Sorption of Uranium(VI and Thorium(IV by Jordanian Bentonite

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2013-01-01

    Full Text Available Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature, and column techniques at 25.0∘C and . The highest rate of metal ions uptake was observed after 18 h of shaking, and the uptake has increased with increasing pH and reached a maximum at . Bentonite has shown high metal ion uptake capacity toward uranium(VI than thorium(IV. Sorption data were evaluated according to the pseudo- second-order reaction kinetic. Sorption isotherms were studied at temperatures 25.0∘C, 35.0∘C, and 45.0∘C. The Langmuir, Freundlich, and Dubinin-Radushkevich (D-R sorption models equations were applied and the proper constants were derived. It was found that the sorption process is enthalpy driven for uranium(VI and thorium(IV. Recovery of uranium(VI and thorium(IV ions after sorption was carried out by treatment of the loaded bentonite with different concentrations of HNO3 1.0 M, 0.5 M, 0.1 M, and 0.01 M. The best percent recovery for uranium(VI and thorium(IV was obtained when 1.0 M HNO3 was used.

  19. Synthesis and characterization of thorium(IV) and uranium(IV) complexes with Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Radoske, Thomas; Maerz, Juliane; Kaden, Peter; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    We report herein the synthesis and characterization of several imine complexes of tetravalent thorium (Th(IV)) and uranium (U(IV)). The ligands investigated in this study are a Schiff base type, including the well-known salen ligand (H{sub 2}Le, Fig. 1). The complexation in solution was investigated by NMR measurements indicating paramagnetic effects of unpaired f-electrons of U(IV) on the ligand molecule. We also determined the solid-state molecular structures of the synthesized complexes by single crystal X-ray diffraction. The synthesized complexes show an eight-fold coordination geometry around the actinide center surrounded by two tetradentate ligands with 2N- and 2O-donor atoms.

  20. The kinetics of the cerium(IV)-uranium(IV) reaction at low sulfate concentrations

    International Nuclear Information System (INIS)

    Michaille, P.; Kikindai, T.

    1977-01-01

    The rate of oxidation of uranium(IV) by cerium(IV) was measured with a stopped-flow spectrophotometer at sulfuric acid concentrations of 2 x 10 -6 to 0.5 M. At a constant hydrogen ion concentration of 0.5 M, the maximum rate constant was observed for 2 x 10 -3 M sulfuric acid; at that concentration, two sulfate ions were involved in the activated complex. The dependence of the rate constant on the hydrogen ion concentration showed that the reaction paths involving one or two sulfate ions also involved one hydroxyl ion, whereas one hydrogen ion was involved in the five sulfate dependent path. Spectrophotometric measurements supported the existence of a hydrolyzed monosulfatocomplex of cerium(IV). (author)

  1. Coordination phenomena of cationic uranium(iv) complexes

    International Nuclear Information System (INIS)

    Rohwer, H.E.

    1974-12-01

    The coordination properties of the cationic uranium(IV) complexes UCl 3 + , UCl 2 2+ , UCl 3+ , and U 4+ were studied in a non-aqueous medium in the presence of perchlorate as counterion which, however, proved to coordinate to a much greater extent than expected. The strong neutral ligand, HMPA, could successively displace some of the perchlorates. An electrostatic model for the U(CIO 4 ) 4 -HMPA-acetone system compared favourably with the actual results. This emphasized the high ionic content in the bonding with actenoid cations, even with such a high charge as +4 . These conclusions are in agreement with studies 75 in which nitrate acts as counter ion. Correspondingly the uranium (IV) chemistry is characterized by the absence of typical 3d-organometallic chemistry, for example, strong bonding with CO, P(Phi) 3 etc, which strongly depends on covalent bonding. This stresses the fact that the d and f orbitals are not readily available for strong bond formation with the actenoids. 76

  2. Lithium alkyl anions of uranium(IV) and uranium(V)

    International Nuclear Information System (INIS)

    Sigurdson, E.R.; Wilkinson, G.

    1977-01-01

    Organouranium compounds with six or eight uranium-to-carbon sigma-bonds have been synthesized for the first time. The interaction of uranium tetrachloride with lithium alkyls in diethyl ether leads to the isolation of unstable lithium alkyluranate(IV) compounds of stoicheiometry Li 2 UR 6 .8Et 2 0 (R = Me, CH 2 SiMe 3 . Ph, and o-Me 2 NCH 2 C 6 H 4 ). These lithium salts can also be obtained with other donor solvents, such as tetrahydrofuran or NNN'N'-tetramethylethylenediamine. From uranium pentaethoxide similar lithium salts of stoicheiometry Li 3 UR 8 .3 dioxan (R = Me, CH 2 CMe 3 , and CH 2 SiMe 3 ) can be obtained. The interaction of uranium(VI) hexaisopropoxide with lithium, magnesium, or aluminium alkyls does not give compounds containing U-C bonds, but green oils, e.g. U(OPrsup(i)) 6 (MgMe 2 ) 3 , that appear to be adducts in which the oxygen atom of the isopropoxide group bound to uranium is acting as a donor. I.r. and n.m.r. spectroscopy and analytical data for the new compounds are presented. (author)

  3. Synthesis and studies of some organometallic compounds of uranium IV

    International Nuclear Information System (INIS)

    Marquet-Ellis, Hubert; Folcher, Gerard.

    1975-06-01

    The organometallic compounds of uranium IV have been well known for a long-time but some difficulties in the synthese subsist. The procedures and the apparatus allowing to obtain these compounds with good yields are described. The cyclopenta dienyl compounds U(C 5 H 5 ) 3 Cl, U(C 5 H 5 ) 4 are prepared by reaction of UCl 4 with Na(C 5 H 5 ) in tetrahydrofurane. The cyclooctatetraene compound U(C 8 H 8 ) 2 ''Uranocene'' is obtained by reaction of K 2 (C 8 H 8 ) on UCl 4 in tetrahydrofurane. The NMR spectrum of the solution during the reaction shows the appearance of the product. These compounds have been identified by chemical analysis and X rays. The visible spectra of U(C 5 H 5 ) 2 Cl and U(C 8 H 8 ) 2 in gaseous phase have been obtained [fr

  4. Contribution to the study of mechanisms of oxidation of uranium (IV) in solution

    International Nuclear Information System (INIS)

    Michaille, Patrick

    1977-01-01

    In the first part, the author reports a bibliographical study which aims at briefly describing the main parameters which govern redox kinetics between metallic ions in solution: acidity, complexing reaction by anions, solvent effects. The author also highlights existing contradictions and shortcomings in the interpretation of experimental results as well as in current theories, and highlights characteristics proper to uranium (IV). The author then describes results obtained for kinetics of Ce(IV)-U(IV) systems: effects of acidity, of sulphate, search for other anionic and cationic catalysts, influence of fluoride, inhibition by DMSO). Some of these results (influence of fluoride and DMSO) are compared with those obtained with the Ce(IV)-Fe(II) system. A more detailed study of the solvent role has been performed for the U(IV)-Fe(III) system in a mixed water-ethylene glycol medium and in pure glycol. The next part addresses the modifications of flow stopped spectrophotometry to solve problems of corrosion and bad temperature regulation. The author presents analog (kinetics) and digital (complexing equilibrium) calculation methods, and the development of colour indicators of temperature [fr

  5. Direct complexonometric determination of thorium (IV), uranium (IV), neptunium (IV), plutonium (IV) by titration of diethylenetriaminepentaacetic acid with xylenol orange as indicator

    International Nuclear Information System (INIS)

    Rykov, A.G.; Piskunov, E.M.; Timofeev, G.A.

    1975-01-01

    The purpose of the present work was to develop a method of determining Th(IV), U(IV), Np(N) and Pu(IV) in acid solutions by titration with diethylenetriamine pentacetic acid, the indicator being xylenol orange. It has been established that Th, U, Np and Pu can be determined to within 0.5-1.5%. Th and U in quantities of tens of milligrams can be determined with greater accuracy, attaining hundredths of one per cent. During titration the determination is not hindered by singly- and doubly-charged metal ions, trivalent lanthanides and actinides, except plutonium. The proposed method can be used to determine U(IV) in the presence of considerable quantities of U(VI) and Np(IV) in the presence of Np(V). Total concentrations of uranium or neptunium are determined by reducing uranium (VI) or neptunium (V) by a standard method (for example, using metallic lead, cadmium or zinc amalgam) to the tetravalent state and applying the method described in the paper. (E.P.)

  6. Uranium leaching using mixed organic acids produced by Aspergillus niger

    International Nuclear Information System (INIS)

    Yong-dong Wang; Guang-yue Li; De-xin Ding; Zhi-xiang Zhou; Qin-wen Deng; Nan Hu; Yan Tan

    2013-01-01

    Both of culture temperature and pH value had impacts on the degree of uranium extraction through changing types and concentrations of mixed organic acids produced by Aspergillus niger, and significant interactions existed between them though pH value played a leading role. And with the change of pH value of mixed organic acids, the types and contents of mixed organic acids changed and impacted on the degree of uranium extraction, especially oxalic acid, citric acid and malic acid. The mean degree of uranium extraction rose to peak when the culture temperature was 25 deg C (76.14 %) and pH value of mixed organic acids was 2.3 (82.40 %) respectively. And the highest one was 83.09 %. The optimal culture temperature (25 deg C) of A. niger for uranium leaching was different from the most appropriate growing temperature (37 deg C). (author)

  7. Synthetic Strategies for the Synthesis of Ternary Uranium(IV) and Thorium(IV) Fluorides.

    Science.gov (United States)

    Klepov, Vladislav V; Felder, Justin B; Zur Loye, Hans-Conrad

    2018-04-10

    A series of new U(IV) and Th(IV) fluorides, Na 7 U 6 F 31 (1), NaUF 5 (2), NaU 2 F 9 (3), KTh 2 F 9 (4), NaTh 2 F 9 (5), (H 3 O)Th 3 F 13 (6), and (H 3 O)U 3 F 13 (7), was obtained using hydrothermal and low-temperature flux methods. Mild hydrothermal reactions with uranyl acetate as a precursor yielded 1, 7, and the monoclinic polymorph of NaU 2 F 9 , whereas direct reactions between UF 4 and NaF led to the formation of 2 and orthorhombic NaU 2 F 9 (3). This highlights an unexpected difference in reaction products when different starting uranium sources are used. All seven compounds were characterized by single-crystal X-ray diffraction, and their structures are compared on the basis of cation topology, revealing a close topological resemblance between fluorides on the basis of the layers observed in NaUF 5 (H 2 O). Phase-pure samples of 1, 2, and both polymorphs of NaU 2 F 9 were obtained, and their spectroscopic and magnetic properties were measured. The UV-vis data are dominated by the presence of U 4+ cations and agree well with the electronic transitions. Effective magnetic moments of the studied compounds were found to range from 3.08 to 3.59 μ B .

  8. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  9. Real-Time Speciation of Uranium During Active Bioremediation and U(IV) Reoxidation

    International Nuclear Information System (INIS)

    Komlos, J.; Mishra, B.; Lanzirotti, A.; Myneni, S.; Jaffe, P.

    2008-01-01

    The biological reduction of uranium from soluble U(VI) to insoluble U(IV) has shown potential to prevent uranium migration in groundwater. To gain insight into the extent of uranium reduction that can occur during biostimulation and to what degree U(IV) reoxidation will occur under field relevant conditions after biostimulation is terminated, X-ray absorption near edge structure (XANES) spectroscopy was used to monitor: (1) uranium speciation in situ in a flowing column while active reduction was occurring; and (2) in situ postbiostimulation uranium stability and speciation when exposed to incoming oxic water. Results show that after 70 days of bioreduction in a high (30 mM) bicarbonate solution, the majority (>90%) of the uranium in the column was immobilized as U(IV). After acetate addition was terminated and oxic water entered the column, in situ real-time XANES analysis showed that U(IV) reoxidation to U(VI) (and subsequent remobilization) occurred rapidly (on the order of minutes) within the reach of the oxygen front and the spatial and temporal XANES spectra captured during reoxidation allowed for real-time uranium reoxidation rates to be calculated.

  10. Study of aqueous complexes of uranium (IV) in an acid medium by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Kiener, C.; Folcher, G.; Rigny, P.; Virlet, J.

    1976-01-01

    The hydration of tetravalent uranium in acid solutions has been studied by proton magnetic resonance. Longitudinal and transversal relaxation rates of water are reported as a function of temperature, acidity, and added ions. The relaxation rates observed in perchloric solutions at high temperature are governed by the exchange process of water molecules between the inner coordination sphere of uranium(IV) and the bulk water. The bound proton's lifetime lies between 10 ms and 1 s. At pH > 0, the exchange rate depends upon acidity according to a simple expression. At high concentrations of diamagnetic ions the exchange rate depends linearly upon water activity. At low temperature, the proton relaxation rates are dominated by an outer sphere effect and the electronic relaxation time of uranium(IV) is found to be about 10 -13 s. No signal is observed from protons of the water molecules in the first sphere, firmly bound to uranium(IV), which undergo rapid relaxation. The chemical shift of the proton absorption signal in hydrochloric solutions arise from tightly bound water molecules in paramagnetic interaction with uranium(IV) in a second sphere, and in fast exchange with the bulk water. Above a chlorine concentration of 6 M, the monochloro complex of uranium(IV) contributes to the chemical shift. (author)

  11. Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Li, W.C.; Victor, D.M.; Chakrabarti, C.L.

    1980-01-01

    The effect of pH and uranium concentration on the interactions of uranium(VI) and uranium(IV) with organic ligands was studied by employing dialysis and ultrafiltration techniques. The interactions of U(VI) and U(IV) with organic ligands in nitrate or chloride aqueous solution have been found to be pH-dependent. The stability constants of uranium-organic complexes decrease in the order: fulvic acid>humic acid>tannic acid for U(VI) and humic acid>tannic acid>fulvic acid for U(IV). Scatchard plots for the uranium-organic acid systems indicate two types of binding sites with a difference in stability constants of about 10 2 . Ultrafiltration of uranium-humic acid complexes indicates that U(VI) and U(IV) ions are concentrated in larger molecular size fractions (>5.1 nm) at pH less than or equal to 3 and in smaller molecular size fractions (in the range 5.1 to 3.1 nm and 2.4 to 1.9 nm) at pH greater than or equal to 5. 7 figures, 4 tables

  12. Study on the electrolytic reduction of Uranium-VI to Uranium-IV in a nitrate system

    International Nuclear Information System (INIS)

    Araujo, B.F. de; Almeida, S.G. de; Forbicini, S.; Matsuda, H.T.; Araujo, J.A. de.

    1981-05-01

    The determination of the best conditions to prepare hydrazine stabilized uranium (IV) nitrate solutions for utilization in Purex flowsheets is dealt with. Electrolytic reduction of U(VI) has been selected as the basic method, using an open electrolytic cell with titanum and platinum electrodes. The hydrazine concentration, the current density, acidity, U(VI) concentration and reduction time were the parameters studied and U(IV)/U(VI) ratio was used to evaluate the degree of reduction. From the results it could be concluded that the technique is reliable. The U(IV) solutions remains constant for at least two weeks and can be used in the chemical processing of irradiated uranium fuels. (Author) [pt

  13. Extraction and Separation of Uranium (VI) and Thorium (IV) Using Tri-n-dodecylamine Impregnated Resins

    International Nuclear Information System (INIS)

    Metwally, E.; Saleh, A.Sh.; El-Naggar, H.A.

    2005-01-01

    Extraction of U(VI) and Th(IV) from chloride and nitrate solutions with tri-n- dodecylamine impregnated on Amberlite XAD4, was investigated. The distribution of U(VI) and Th(IV) was studied at different concentrations of acid, salting-out agent, extractant, aqueous metal ion and other parameters. Absorption spectral studies have been investigated for uranium species in both aqueous HCl solution and the resin phase. From these studies, it is suggested that the tetrachloro complex of U(VI) is formed in the extraction of uranium (VI) from hydrochloric acid solutions by TDA impregnated resin. Stripping of the extracted U(VI) and Th(IV) was assayed with HCl and HNO 3 . Finally, the separation of uranium from thorium and fission products in HCl media was achieved

  14. Plutonium oxides and uranium and plutonium mixed oxides. Carbon determination

    International Nuclear Information System (INIS)

    Anon.

    Determination of carbon in plutonium oxides and uranium plutonium mixed oxides, suitable for a carbon content between 20 to 3000 ppm. The sample is roasted in oxygen at 1200 0 C, the carbon dioxide produced by combustion is neutralized by barium hydroxide generated automatically by coulometry [fr

  15. Preparation, spectrometric analysis and determination of the electrochemical transport characteristics of uranium (IV) in aqueous systems

    International Nuclear Information System (INIS)

    Schwarzer, W.G.

    1985-01-01

    A process for the quantitative development of uranium-(IV) solutions in nitric and perchloric acid media was developed. After appropriate concentration setting of the solutions, the conductivity of the uranium (IV) in the dependence on concentration were analysed. The conversion of the measuring results on the standard system water was done by means of a conductivity theory; this allows a comparison with the conductivity data of other ions. The conductivity calculated, at an ion strength I tending to zero, provided the suitable data for the ion mobility and the transference number. (orig./PW) [de

  16. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    Science.gov (United States)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  17. Adaptable coordination of U(IV) in the 2D-(4,4) uranium oxalate network: From 8 to 10 coordinations in the uranium (IV) oxalate hydrates

    International Nuclear Information System (INIS)

    Duvieubourg-Garela, L.; Vigier, N.; Abraham, F.; Grandjean, S.

    2008-01-01

    Crystals of uranium (IV) oxalate hydrates, U(C 2 O 4 ) 2 .6H 2 O (1) and U(C 2 O 4 ) 2 .2H 2 O (2), were obtained by hydrothermal methods using two different U(IV) precursors, U 3 O 8 oxide and nitric U(IV) solution in presence of hydrazine to avoid oxidation of U(IV) into uranyl ion. Growth of crystals of solvated monohydrated uranium (IV) oxalate, U(C 2 O 4 ) 2 .H 2 O.(dma) (3), dma=dimethylamine, was achieved by slow diffusion of U(IV) into a gel containing oxalate ions. The three structures are built on a bi-dimensional complex polymer of U(IV) atoms connected through bis-bidentate oxalate ions forming [U(C 2 O 4 )] 4 pseudo-squares. The flexibility of this supramolecular arrangement allows modifications of the coordination number of the U(IV) atom which, starting from 8 in 1 increases to 9 in 3 and, finally increases, to 10 in 2. The coordination polyhedron changes from a distorted cube, formed by eight oxygen atoms of four oxalate ions, in 1, to a mono-capped square anti-prism in 3 and, finally, to a di-capped square anti-prism in 2, resulting from rotation of the oxalate ions and addition of one and two water oxygen atoms in the coordination of U(IV). In 1, the space between the ∞ 2 [U(C 2 O 4 ) 2 ] planar layers is occupied by non-coordinated water molecules; in 2, the space between the staggered ∞ 2 [U(C 2 O 4 ) 2 .2H 2 O] layers is empty, finally in 3, the solvate molecules occupy the interlayer space between corrugated ∞ 2 [U(C 2 O 4 ) 2 .H 2 O] sheets. The thermal decomposition of U(C 2 O 4 ) 2 .6H 2 O under air and argon atmospheres gives U 3 O 8 and UO 2 , respectively. - Graphical abstract: The adaptable environment of U(IV) in U(IV) oxalates: from eight cubic coordination in U(C 2 O 4 ) 2 .6H 2 O (a) completed by water oxygens to nine in [U(C 2 O 4 ) 2 .H 2 O](C 2 NH 5 ) (b) and ten coordination in U(C 2 O 4 ) 2 .2H 2 O (c)

  18. Synthesis and characterization of chiral thorium(IV) and uranium(IV) benzamidinate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, Sebastian; Maerz, Juliane; Kaden, Peter; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    Two chiral benzamidinate complexes of tetravalent actinides (Th(IV) and U(IV)) were synthesized using a salt metathesis reaction of the corresponding actinide(IV) tetrachlorides and the potassium salt of the chiral benzamidine (S,S)-N,N-Bis-(1-phenylethyl)-benzamidine ((S)-HPEBA). The structure of the complexes was determined with single crystal X-ray diffraction. These are the first examples of chiral amidinate complexes of actinides.

  19. Mixing of Al into uranium silicides reactor fuels

    International Nuclear Information System (INIS)

    Ding, F.R.; Birtcher, R.C.; Kestel, B.J.; Baldo, P.M.

    1996-11-01

    SEM observations have shown that irradiation induced interaction of the aluminum cladding with uranium silicide reactor fuels strongly affects both fission gas and fuel swelling behaviors during fuel burn-up. The authors have used ion beam mixing, by 1.5 MeV Kr, to study this phenomena. RBS and the 27 Al(p, γ) 28 Si resonance nuclear reaction were used to measure radiation induced mixing of Al into U 3 Si and U 3 Si 2 after irradiation at 300 C. Initially U mixes into the Al layer and Al mixes into the U 3 Si. At a low dose, the Al layer is converted into UAl 4 type compound while near the interface the phase U(Al .93 Si .07 ) 3 grows. Under irradiation, Al diffuses out of the UAl 4 surface layer, and the lower density ternary, which is stable under irradiation, is the final product. Al mixing into U 3 Si 2 is slower than in U 3 Si, but after high dose irradiation the Al concentration extends much farther into the bulk. In both systems Al mixing and diffusion is controlled by phase formation and growth. The Al mixing rates into the two alloys are similar to that of Al into pure uranium where similar aluminide phases are formed

  20. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone

    International Nuclear Information System (INIS)

    Carroll, J.; Moore, W.S.

    1993-01-01

    The Ganges-Brahmaputra river system supplies more dissolved uranium to the ocean than any other system in the world (Sarin et al., 1990; Sackett et al., 1973). However, there have been no investigations to determine whether riverine supplies of uranium are altered by geochemical reactions in the river-ocean mixing zone. In this study, uranium and salinity data were collected in the Ganges-Brahmaputra mixing zone during a period of low river discharge. The uranium distribution with salinity shows that in waters <12 ppt salinity, uranium activities are significantly lower than predicted from conservative mixing of river and seawater. This suggests that uranium is being removed within the mixing zone. The behavior of uranium in the Ganges-Brahmaputra is in sharp contrast to its behavior in the Amazon mixing zone where McKee et al. (1978) found uranium activities significantly higher than predicted from conservative mixing. The contrasting behaviors for uranium in these systems are due to the different locations where mixing between river and seawater occurs. For the Amazon, mixing takes place on the continental shelf whereas for the Ganges-Brahmaputra, mixing occurs within shoreline sedimentary environments. The physiochemical processes controlling uranium removal to sediment deposits in the Amazon are partly known. The authors discuss mechanisms which may be removing uranium to suspended and mangrove sediments in the Ganges-Brahmaputra

  1. Investigation of the binding of tiron to uranium(IV) and uranium(VI) found in soil

    International Nuclear Information System (INIS)

    Birnbaum, E.R.; Iams, H.D.; del Rio Garcia, M.; Ford, D.K.; Smith, P.H.; Strietelmeier, B.; Brainard, J.

    1993-01-01

    The authors are investigating the utility of a chelate-reductant system to extract uranium from 2 million yards of contaminated soil at the Fernald uranium reprocessing plant near Cincinnati, Ohio. It has been found that reduction of the uranyl contaminants using Tiron as the ligand. Of concern is whether the increased mobilization is simply a result of the higher affinity of Tiron to U(IV), or whether reduction of amorphous iron oxides contained in the soil is exposing greater amounts of uranyl ions to the ligand. It is important to establish if the latter mechanism is occurring, since a removal process which does not damage the soil is desired. Potentiometric and spectrophotometric studies of Tiron binding to soluble uranyl and U(V) salts will be presented as models to help understand the soil studies. Extraction behavior of UO 2 (OH) 2 will also be presented

  2. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Bone, Sharon E.; Dynes, James; Cliff, John B.; Barger, John

    2017-01-09

    Uranium is an important fuel source and a global environmental contaminant. It accumulates in the tetravalent state, U(IV), in anoxic sediments, including ore deposits, marine basins, and contaminated aquifers. However, very little is known about the speciation of U(IV) in low temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO2) in anoxic sediments; yet studies now show that UO2 is not often dominant in these environments. However, a model of U(IV) speciation under environmentally relevant conditions has not yet been developed. Here we show that complexes of U(IV) adsorb on organic carbon and organic carbon-coated clays in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that the U(IV) product depended on the reduction pathway, our results demonstrate that UO2 formation can be inhibited simply by decreasing the U:solid ratio. Thus, it is the number and type of surface ligands that controls U(IV) speciation subsequent to U(VI) reduction. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider retention of U(IV) ions within the local sediment environment.

  3. Solubility Determination of Uranium (IV) Oxalates U(C2O4)2.6H2O and M2U2(C2O4)5.nH2O (M = mono-charged cation)

    International Nuclear Information System (INIS)

    Costenoble, Sylvain; Grandjean, Stephane; Arab-Chapelet, Benedicte; Abraham, Francis

    2008-01-01

    The solubility of uranium (IV) oxalate compounds was studied in order to have a precise insight of the behaviour of An(IV)-An(III) (An(IV) = U, Np or Pu and An(III) = Pu or Am) mixed oxalate in the context of oxalic co-conversion for actinide co-management. Concepts of thermodynamics of aqueous-solid solution are reviewed by introducing LIPPMANN theory and THORSTENSON and PLUMMER 'stoichiometric saturation' model in a way to understand and model the system of interest. Different analytical techniques have been developed in order to titrate uranium and/or other actinides at trace levels in solution. This thorough investigation is the basis of further experiments on the solubility of mixed U(IV)- An(III) oxalate solid solutions as a function of the nature of the trivalent actinide and the An(III)/U(IV) ratio. (authors)

  4. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors

    International Nuclear Information System (INIS)

    Gonçalves, Letícia C.; Maiorino, José R.

    2017-01-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste

  5. Magnetic-superexchange interactions of uranium(IV) chloride-addition complexes with amides, 2

    International Nuclear Information System (INIS)

    Miyake, Chie; Hinatsu, Yukio; Imoto, Shosuke

    1983-01-01

    The magnetic susceptibilities of five cyclic amide (lactam)-addition complexes of uranium(IV) chloride were measured between room temperature and 2 K. Magnetic-exchange interaction was found only for N-methyl-substituted amide complexes, and a dimer structure was assumed for them on the basis of their chemical properties. Treating interdimer interaction with a molecular-field approximation, the magnetic susceptibilities were calculated to be in good agreement with the experimental results in the temperature region of the maxima in chi sub(A). The transmission of antiparallel spin coupling via the π orbitals of the bridging amide ligands is proposed to explain the strong intradimer superexchange interaction for the uranium(IV) chloride-amide complexes with the magnetic-susceptibility maximum. (author)

  6. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    International Nuclear Information System (INIS)

    Coates, John D.

    2005-01-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1

  7. Separation of uranium(V I) from binary solution mixtures with thorium(IV), zirconium(IV) and cerium(III) by foaming

    International Nuclear Information System (INIS)

    Shakir, K.; Aziz, M.; Benyamin, K.

    1992-01-01

    Foam separation has been investigated for the removal of uranium(V I), thorium(IV), zirconium(IV) and cerium(III) from dilute aqueous solutions at pH values ranging from about I to about II. Sodium laurel sulphate (Na L S) and acetyl trimethyl ammonium bromide (CTAB), being a strong anionic and a strong cationic surfactants, were used as collectors. The results indicate that Na L S can efficiently remove thorium(IV), zirconium(IV) and cerium(III) but not uranium(V I). CTAB, on the other hand, can successfully float only uranium(V I) and zirconium(IV). These differences in flotation properties of the different cations could be used to establish methods for the separation of uranium(V I) from binary mixtures with thorium(IV), zirconium(IV) or cerium(III). The results are discussed in terms of the hydrolytic behaviour of the tested cations and properties of used collectors.2 fig., 1 tab

  8. Reactivity of uranium(IV) bridged chalcogenido complexes UIV–E–UIV (E = S, Se) with elemental sulfur and selenium: synthesis of polychalcogenido-bridged uranium complexes

    OpenAIRE

    Franke, Sebastian M.; Heinemann, Frank W.; Meyer, Karsten

    2014-01-01

    We report the syntheses, electronic properties, and molecular structures of a series of polychalcogenido-bridged dinuclear uranium species. These complexes are supported by the sterically encumbering but highly flexible, single N-anchored tris(aryloxide) chelator (AdArO)3N3−. Reaction of an appropriate uranium precursor, either the U(III) starting material, [((AdArO)3N)U(DME)], or the dinuclear mono-chalcogenido-bridged uranium(IV/IV) compounds [{((AdArO)3N)U(DME)}2(μ-E)] (E = S, Se), with el...

  9. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  10. Soiled-based uranium disequilibrium and mixed uranium-thorium series radionuclide reference materials

    International Nuclear Information System (INIS)

    Donivan, S.; Chessmore, R.

    1988-12-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology has assigned the Technical Measurements Center (TMC), located at the DOE Grand Junction Colorado, Projects Office and operated by UNC Geotech (UNC), the task of supporting ongoing remedial action programs by providing both technical guidance and assistance in making the various measurements required in all phases of remedial action work. Pursuant to this task, the Technical Measurements Center prepared two sets of radionuclide reference materials for use by remedial action contractors and cognizant federal and state agencies. A total of six reference materials, two sets comprising three reference materials each, were prepared with varying concentrations of radionuclides using mill tailings materials, ores, and a river-bottom soil diluent. One set (disequilibrium set) contains varying amounts of uranium with nominal amounts of radium-226. The other set (mixed-nuclide set) contains varying amounts of uranium-238 and thorium-232 decay series nuclides. 14 refs., 10 tabs

  11. The Amster concept: a configuration generating its own uranium with a mixed thorium and uranium support

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.; Delpech, M.

    2001-01-01

    AMSTER is a continuously reloaded, graphite-moderated molten salt critical reactor, using a 238 U or 232 Th fuel support, slightly enriched with 235 U if necessary. Using this concept, one can define a large number of configurations according to the products loaded and recycled. The choice of thorium fuel support leads to two configurations requiring no additional 235 U as fissile material: a configuration with one moderating zone, incinerating Transuranium elements (TRU); a configuration with 2 moderating zones self-consuming TRU and regenerating the fissile uranium ( 233 U). In this configuration, it is even possible to burn 238 U (from depleted uranium) by adding it to the thorium support. These configurations use a minimum amount of fuel (100 kg of 232 Th or 100 kg of a 232 Th- 238 U mix per TWh) and produce very little TRU (a few tens of grams per TWh). (author)

  12. Grain growth kinetics in uranium-plutonium mixed oxides

    International Nuclear Information System (INIS)

    Sari, C.

    1986-01-01

    Grain growth rates were investigated in uranium-plutonium mixed oxide specimens with oxygen-to-metal ratios 1.97 and 2.0. The specimens in the form of cylindrical pellets were heated in a temperature gradient similar to that existing in a fast reactor. The results are in agreement with the cubic rate law. The mean grain size D(μm) after annealing for time t (min) is represented by D 3 -D 0 3 =1.11x10 12 . exp(-445870/RT).t and D 3 -D 0 3 =2.55x10 9 .exp(-319240/RT).t for specimens with overall oxygen-to-metal ratios 1.97 and 2.0, respectively (activation energies expressed in J/mol). An example for the influence of the oxygen-to-metal ratio on the grain growth in mixed oxide fuel during operation in a fast reactor is also given. (orig.)

  13. A mononuclear uranium(IV) single-molecule magnet with an azobenzene radical ligand

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Maria A.; Coutinho, Joana T.; Santos, Isabel C.; Marcalo, Joaquim; Almeida, Manuel; Pereira, Laura C.J. [C" 2TN, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela (Portugal); Baldovi, Jose J.; Gaita-Arino, Alejandro; Coronado, Eugenio [Instituto de Ciencia Molecular, Universitat de Valencia, Paterna (Spain)

    2015-12-01

    A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe_2NPh)_3-tacn}U{sup IV}(η{sup 2}-N{sub 2}Ph{sub 2{sup .}})] (2), was obtained by one-electron reduction of azobenzene by the trivalent uranium compound [U{sup III}{(SiMe_2NPh)_3-tacn}] (1). Compound 2 was characterized by single-crystal X-ray diffraction and {sup 1}H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single-molecule magnet behaviour for the first time in a mononuclear U{sup IV} compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single-ion Hamiltonian. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  15. Energies and electric dipole transitions for low-lying levels of protactinium IV and uranium V

    Energy Technology Data Exchange (ETDEWEB)

    Uerer, Gueldem; Oezdemir, Leyla [Sakarya Univ. (Turkey). Physics Dept.

    2012-01-15

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z = 91) and uranium V (Z = 92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature. (orig.)

  16. Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes

    International Nuclear Information System (INIS)

    Xuegang Wang; Zhongkui Zhou

    2017-01-01

    We evaluated uranium bioleaching from low-grade, granite-type uranium ore using mixed acidophilic microbes from uranium mine leachate. A 4854-ton plant-scale heap bioleaching process achieved sustained leaching with a uranium leaching efficiency of 88.3% using a pH of 1.0-2.0 and an Fe"3"+ dosage of 3.0-5.5 g/L. Acid consumption amounted to 25.8 g H_2SO_4 kg"-"1 ore. Uranium bioleaching follows a diffusion-controlled kinetic model with a correlation coefficient of 0.9136. Almost all uranium was dissolved in aqueous solution, except those encapsulated in quartz particles. Therefore, heap bioleaching by mixed acidophilic microbes enables efficient, economical, large-scale recovery of uranium from low-grade ores. (author)

  17. Facile reductive silylation of UO{sub 2}{sup 2+} to uranium(IV) chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, John J.; Bart, Suzanne C. [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Zeller, Matthias [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Department of Chemistry, Youngstown State University, Youngstown, OH (United States)

    2017-01-19

    General reductive silylation of the UO{sub 2}{sup 2+} cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO{sub 2}X{sub 2}(L){sub 2} (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R{sub 3}Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R{sub 3}SiO){sub 2}UX{sub 2}(L){sub 2} in high yields. Support is included for the key step in the process, reduction of U{sup VI} to U{sup V}. This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl{sub 4} or two equivalents of Me{sub 2}SiCl{sub 2} results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The utilization of uranium industry technology and relevant chemistry to leach uranium from mixed-waste solids

    International Nuclear Information System (INIS)

    Mattus, A.J.; Farr, L.L.

    1991-01-01

    Methods for the chemical extraction of uranium from a number of refractory uranium-containing minerals found in nature have been in place and employed by the uranium mining and milling industry for nearly half a century. These same methods, in conjunction with the principles of relevant uranium chemistry, have been employed at the Oak Ridge National Laboratory (ORNL) to chemically leach depleted uranium from mixed-waste sludge and soil. The removal of uranium from what is now classified as mixed waste may result in the reclassification of the waste as hazardous, which may then be delisted. The delisted waste might eventually be disposed of in commercial landfill sites. This paper generally discusses the application of chemical extractive methods to remove depleted uranium from a biodenitrification sludge and a storm sewer soil sediment from the Y-12 weapons plant in Oak Ridge. Some select data obtained from scoping leach tests on these materials are presented along with associated limitations and observations which might be useful to others performing such test work. 6 refs., 2 tabs

  19. The utilization of uranium industry technology and relevant chemistry to leach uranium from mixed-waste solids

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, A.J.; Farr, L.L.

    1991-01-01

    Methods for the chemical extraction of uranium from a number of refractory uranium-containing minerals found in nature have been in place and employed by the uranium mining and milling industry for nearly half a century. These same methods, in conjunction with the principles of relevant uranium chemistry, have been employed at the Oak Ridge National Laboratory (ORNL) to chemically leach depleted uranium from mixed-waste sludge and soil. The removal of uranium from what is now classified as mixed waste may result in the reclassification of the waste as hazardous, which may then be delisted. The delisted waste might eventually be disposed of in commercial landfill sites. This paper generally discusses the application of chemical extractive methods to remove depleted uranium from a biodenitrification sludge and a storm sewer soil sediment from the Y-12 weapons plant in Oak Ridge. Some select data obtained from scoping leach tests on these materials are presented along with associated limitations and observations which might be useful to others performing such test work. 6 refs., 2 tabs.

  20. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  1. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  2. Preparation of uranium-plutonium mixed nitride pellets with high purity

    International Nuclear Information System (INIS)

    Arai, Yasuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1992-01-01

    Uranium-plutonium mixed nitride pellets have been prepared in the gloveboxes with high purity Ar gas atmosphere. Carbothermic reduction of the oxides in N 2 -H 2 mixed gas stream was adopted for synthesizing mixed nitride. Sintering was carried out in various conditions and the effect on the pellet characteristics was investigated. (author)

  3. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  4. Synthesis and insertion chemistry of mixed tether uranium metallocene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Siladke, Nathan A.; LeDuc, Jennifer; Ziller, Joseph W.; Evans, William J. [Department of Chemistry, University of California, Irvine, CA (United States)

    2012-11-12

    The synthesis of mixed tethered alkyl uranium metallocenes has been investigated by examining the reactivity of the bis(tethered alkyl) metallocene [(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}CH{sub 2}-κC){sub 2}U] (1) with substrates that react with only one of the U-C linkages. The effect of these mixed tether coordination environments on the reactivity of the remaining U-C bond has been studied by using CO insertion chemistry. One equivalent of azidoadamantane (AdN{sub 3}) reacts with 1 to yield the mixed tethered alkyl triazenido complex [(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}CH{sub 2}-κC)U(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}-CH{sub 2}NNN-Ad-κ{sup 2}N{sup 1,3})]. Similarly, a single equivalent of CS{sub 2} reacts with 1 to form the mixed tethered alkyl dithiocarboxylate complex [(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}CH{sub 2}-κC)U(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}- CH{sub 2}C(S){sub 2}-κ{sup 2}S,S{sup '})], a reaction that constitutes the first example of CS{sub 2} insertion into a U{sup 4+}-C bond. Complex 1 reacts with one equivalent of pyridine N-oxide by C-H bond activation of the pyridine ring to form a mixed tethered alkyl cyclometalated pyridine N-oxide complex [(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}CH{sub 2}-κC)(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 3})U(C{sub 6}H{sub 4}NO-κ{sup 2} C,O)]. The remaining (η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}CH{sub 2}-κC){sup 2-} ligand in each of these mixed tethered species show reactivity towards CO and tethered enolate ligands form by insertion. Subsequent rearrangement have been identified in [(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 3})U(C{sub 5}H{sub 4}NO-κ{sup 2}C,O)(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}C(=CH{sub 2})O- κO)] and [(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}CH{sub 2}NNN-Ad-κ{sup 2}N{sup 1,3})U(η{sup 5}-C{sub 5}Me{sub 4}SiMe{sub 2}C(=CH{sub 2})O-κO)]. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Kinetic study of the reduction of Ferric-1, 10-Orthophenanthroline with Uranium (IV) DTPA

    International Nuclear Information System (INIS)

    Perveen, Rashida; Naqvi, Iftikhar Imam

    2006-01-01

    The reduction of ferric 1, 10-orthophenanthroline by Uranium (IV) complex of Diethylenetriaminepentaacetic acid was investigated in aqueous hydrochloride acid at 30C, ionic strength 0.01 mole dm-3 and pH 3.5. The mechanism and rate law for the formation of [Fe (opt) 3] was established by isolation method at constant and varying pH values. Spectroscopic method was employed for this investigation. The rate constant and order of reaction with respect to each of the reactant the [U (IV) DTPA] and [Fe(opt3)] was established by plotting a graph 1n (A-At) vs. time. The reaction was observed to be following first order with respect each of following reactants. Overall reaction order was found to be two, having the value of the rate constant 571.59 m min. at pH 3.5. Thermodynamic parameters for the reaction were determined to be E=26.47 kj mol, G=35.11 kj mol, H=24.86 mol and S= 50.17 mol. With the help of Arrhenius equation activation energy for the reaction was calculated. Change in enthalpy and entropy for the reaction (S, H) were determined from the slope and intercept of Eyring plot. Hydrogen ion dependence of the reaction was determined by varying the pH and the rate law was determined. (author)

  6. U(IV) chalcogenolates synthesized via oxidation of uranium metal by dichalcogenides.

    Science.gov (United States)

    Gaunt, Andrew J; Scott, Brian L; Neu, Mary P

    2006-09-04

    Treatment of uranium metal with dichalcogenides in the presence of a catalytic amount of iodine in pyridine affords molecular U(IV) chalcogenolates that do not require stabilizing ancillary ligands. Oxidation of U(0) by PhEEPh yields monomeric seven-coordinate U(EPh)4(py)3 (E = S(1), Se(2)). The dimeric eight-coordinate complexes [U(EPh)2(mu2-EPh)2(CH3CN)2]2 (E = S(3), Se(4)) are obtained by crystallization from solutions of 1 and 2 dissolved in acetonitrile. Oxidation of U(0) by pySSpy and crystallization from thf yields nine-coordinate U(Spy)4(thf) (5). Incorporation of elemental selenium into the oxidation of U(0) by PhSeSePh results in the isolation of [U(py)2(SePh)(mu3-Se)(mu2-SePh)]4.4py (6), a tetrameric cluster in which each U(IV) ion is eight-coordinate and the U4Se4 core forms a distorted cube. The compounds were analyzed spectroscopically and the single-crystal X-ray structures of 1 and 3-6 were determined. The isolation of 1-6 represents six new examples of actinide chalcogenolates and allows insight into the nature of "hard" actinide ion-"soft" chalcogen donor interactions.

  7. Gravimetric determination of uranium(VI) and thorium(IV) with substituted pyrazolones

    International Nuclear Information System (INIS)

    Arora, H.C.; Rao, G.N.

    1981-01-01

    4-Acylpyrazolones like 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), 1-phenyl-3-methyl-4-p-nitrobenzoyl-5-pyrazolone (PMNP) and 1-phenyl-3-methyl-4-(3,5 dinitrobenzoyl)-5-pyrazolone (PMDP) have been synthesized and developed as gravimetric reagents for the determination of U(VI) and Th(IV). Uranium(VI) is almost quantitatively precipitated with PMBP, PMNP, and PMDP at pH 2.20, 1.85 and 1.70 respectively. The pH values for the complete precipitation of thorium(IV) with PMBP, PMNP and PMDP are 2.90, 2.75 and 2.50 respectively. PMBP has proved to be an efficient ligand for gravimetric determination of U(VI) by direct weighing method after drying at 100 +- 10 deg C. The percentage relative error varies from 0.4 to 1.6 in the determination of U(VI) by this method. The effect of a number of interfering ions on the precipitation of U(VI) by PMBP has been reported. (author)

  8. Determination of the oxygen-metal-ratio of uranium-americium mixed oxides

    International Nuclear Information System (INIS)

    Bartscher, W.

    1982-01-01

    During the dissolution of uranium-americium mixed oxides in phosphoric acid under nitrogen tetravalent uranium is oxidized by tetravalent americium. The obtained hexavalent uranium is determined by constant potential coulometry. The coulombs measured are equivalent to the oxygen in excess of the minimum composition of UO 2 x AmO 1 . 5 . The total uranium content of the sample is determined in a subsequent coulometric titration. The oxygen-metal ratio of the sample can be calculated for a given uranium-americium ratio. An excess of uranium dioxide is necessary in order to suppress the oxidation of water by tetravalent americium. The standard deviation of the method is 0.0017 O/M units. (orig.) [de

  9. Research on calculation of mixing fraction for natural uranium equivalent fuel

    International Nuclear Information System (INIS)

    Huang Shien; Wang Lianjie; Wei Yanqin; Li Qing; Zheng Jiye

    2013-01-01

    Based on the first-order perturbation theory and reasonable approximations, the calculation method of recycled uranium (RU) and depleted uranium (DU) mixing fraction for natural uranium equivalent (NUE) fuel was studied, so the equivalence between NUE fuel and natural uranium (NU) fuel was assured. The adopted calculation method accurately takes the variation of micro cross sections alone with fuel depletion into account. A computer code named ALPHA was programmed to execute the calculation procedure. Then the ALPHA code and the WIMS-AECL code compose a processing system, which is applicable to the mixing fraction calculation for heavy water reactor NUE fuel. The validation shows that the processing system can accurately calculate the mixing fraction for NUE fuel. (authors)

  10. Kinetics and mechanism of the oxidation of uranium (IV) by hypochlorous acid in aqueous acidic perchlorate media

    International Nuclear Information System (INIS)

    Silverman, R.A.; Gordon, G.

    1976-01-01

    The oxidation of uranium(IV) by hypochlorous acid has been studied in aqueous sodium perchlorate--perchloric acid solutions. The reaction U 4 + + 2HOCl = UO 2 2 + + Cl 2 (aq) + 2H + proceeds appropriate to the rate law --d[U(IV)]/dt = k 0 . [U 4+ ][HOCl][H + ] -1 . At 25 0 and 3 M ionic strength, k 0 is 1.08 +- 0.07 sec -1 . Over the 1--25 0 temperature range, ΔH 2+ is 18.4 +- 0.1 kcal mole -1 , and ΔS 2+ is 3.1 +- 0.4 eu. The inverse hydrogen ion dependence of the rate law is explained by a rapid preequilibrium, in which a proton is lost from one of the reactants. A uranyl-like activated complex, [H 2 UO 2 Cl 3+ ] 2+ , is suggested, with one proton likely to be residing on each oxygen atom. Evidence is presented that the mechanism involves a two-electron transfer, with the intermediate chloride ion rapidly reacting with hypochlorous acid to form chlorine. The uranium(IV)-hypochlorous acid reaction plays an important role in the oxidation of uranium(IV) by aqueous chlorine solutions. The magnitude of this role was seriously underestimated by previous investigators

  11. Multiscale structural characterizations of mixed U(iv)-An(iii) oxalates (An(iii) = Pu or Am) combining XAS and XRD measurements.

    Science.gov (United States)

    Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F

    2016-04-28

    Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.

  12. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  13. Reaction of uranium (IV) with xenon difluoride by chemiluminescence, spectrophotometric, and spectrofluorimetric methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamykin, A.V.; Kazakov, V.P.

    1988-07-01

    A study is made of the kinetics of the chemiluminescent reaction of oxidation of uranium (IV) by xenon difluoride in 1M HClO/sub 4/ U/sup 4 +/ + XeF/sub 2/ ..-->.. UO/sub 2//sup 2 +/ = h/eta/. The optical density D and the intensity of the photoluminescence of the solution I/sub PL/ were measured in parallel with recording of the luminescence intensity I/sub CL/. I/sub CL/ attains a maximum value some time after the beginning of the reaction, after which it decays exponentially. On the kinetic curves of the time dependence of D and I/sub PL/ an induction period is observed, the extent of which depends on concentrations of reagents and temperature of the solution. The maximum of I/sub CL/ coincides with the end of the induction period if the measurements are carried out under identical conditions. The rate of the reaction after the induction period is described by a first order equation in U/sup (IV)/. The rate constants of the reaction, obtained by chemiluminescence, spectrophotometric, and spectrofluorimetric methods, have close values 2.0 +- 0.4, 1.8 +- 0.3, and 2.1 +- 0.3 sec/sup /minus/1/ x 10/sup 2/, respectively. On the basis of the results obtained, we conclude that the stages of formation of UO/sub 2//sup 2 +/ and of chemiluminescence coincide, i.e., formation of the excited state (UD/sub 2//sup 2 +/) and of chemiluminescence coincide, i.e., formation of the excited state (UD/sub 2//sup 2 +/)* takes place during the reaction. It is proposed and experimentally verified that the reaction passes through an intermediate stage of formation of uranyl ion UO/sub 2//sup +/.

  14. Stripping of Uranium (IV) from D2EHPA + TBP system with ammonium oxalate and its recovery as uranium peroxide

    International Nuclear Information System (INIS)

    Singh, D.K.; Singh, H.

    2014-01-01

    Uranium is an important fissile material for the generation of electricity by nuclear reactors. To obtain uranium as a final product meeting the stringent nuclear specifications, many process steps are involved starting from ore processing to the precipitation of yellow cake. Solvent extraction is one of the process industrially adopted worldwide to achieve such purity of uranium from leach liquor and usually uses amine or organophosphorus types of extractant depending upon the composition of feed material. In solvent extraction technique, stripping is a prominent hydrometallurgical operation which brings the metal values of interest in aqueous solution for further treatment. In the case of uranium, stripping is dependent on its oxidation state. For hexavalent state generally carbonate solutions are used, where as in the case of tetravalent form salt solution such as ammonium oxalate is effective. Use of ammonium oxalate as stripping agent for tetravalent uranium from pyrophosphoric acid has been reported in patent however the details are not disclosed. In the present investigation an effort has been made to investigate the stripping behaviour of uranium from a synthetically loaded synergistic solvent mixture of uranium in tetravalent state

  15. Solubility Determination of Uranium (IV) Oxalates U(C{sub 2}O{sub 4}){sub 2}.6H{sub 2}O and M{sub 2}U{sub 2}(C{sub 2}O{sub 4}){sub 5}.nH{sub 2}O (M = mono-charged cation)

    Energy Technology Data Exchange (ETDEWEB)

    Costenoble, Sylvain; Grandjean, Stephane; Arab-Chapelet, Benedicte [CEA, Nuclear Energy Division, Radiochemistry and Process Department, Actinide Chemistry Laboratory, CEA Marcoule, bat 399, BP17171, 30207 Bagnols sur Ceze cedex (France); Abraham, Francis [UCCS - Solid Chemistry Unit, UMR CNRS 8181, ENSCL-USTL, B.P. 108, 59652 Villeneuve d' Ascq cedex (France)

    2008-07-01

    The solubility of uranium (IV) oxalate compounds was studied in order to have a precise insight of the behaviour of An(IV)-An(III) (An(IV) = U, Np or Pu and An(III) = Pu or Am) mixed oxalate in the context of oxalic co-conversion for actinide co-management. Concepts of thermodynamics of aqueous-solid solution are reviewed by introducing LIPPMANN theory and THORSTENSON and PLUMMER 'stoichiometric saturation' model in a way to understand and model the system of interest. Different analytical techniques have been developed in order to titrate uranium and/or other actinides at trace levels in solution. This thorough investigation is the basis of further experiments on the solubility of mixed U(IV)- An(III) oxalate solid solutions as a function of the nature of the trivalent actinide and the An(III)/U(IV) ratio. (authors)

  16. Seven-co-ordination in chlorohexakis(trimethylphosphine oxide)- uranium(IV) trichloride: crystal and molecular structure

    Energy Technology Data Exchange (ETDEWEB)

    Bombieri, G; Forsellini, E [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Brown, D; Whittaker, B

    1976-01-01

    The structure of the title compound has been determined by single-crystal X-ray diffraction methods from diffractometer data and refined to a final R of 0.023. The compound crystallises in space group R3c with asub(hex) = 18.447(3), csub(hex) = 19.348(3) A, Z = 6. The uranium atom is co-ordinated to one chlorine (U-Cl 2.813 A) and six oxygen atoms (mean U-O 2.26 A); the co-ordination polyhedron can be described as a distorted monocapped trigonal antiprism or as a distorted monocapped octahedron. The anionic chlorines are more than 6.22 A from the uranium atoms. The results are discussed in relation to spectral data for this and related uranium(IV) complexes.

  17. Seven-co-ordination in chlorohexakis(trimethylphosphine oxide)- uranium(IV) trichloride: crystal and molecular structure

    International Nuclear Information System (INIS)

    Bombieri, G.; Forsellini, E.; Brown, D.; Whittaker, B.

    1976-01-01

    The structure of the title compound has been determined by single-crystal X-ray diffraction methods from diffractometer data and refined to a final R of 0.023. The compound crystallises in space group R3c with asub(hex) = 18.447(3), csub(hex) = 19.348(3) A, Z = 6. The uranium atom is co-ordinated to one chlorine (U-Cl 2.813 A) and six oxygen atoms (mean U-O 2.26 A); the co-ordination polyhedron can be described as a distorted monocapped trigonal antiprism or as a distorted monocapped octahedron. The anionic chlorines are more than 6.22 A from the uranium atoms. The results are discussed in relation to spectral data for this and related uranium(IV) complexes. (author)

  18. Hexacoordinated mixed-ligand complexes of vanadium(IV) and copper(II)

    International Nuclear Information System (INIS)

    Islam, M.S.; Motahera Begum; Roy, H.N.; Haroon, S.A.Q.M.

    1996-01-01

    The literature reports simple complexes of metal ions with Schiff bases derived from amino acids. But their mixed-ligand complexes are very rare. Keeping this fact in mind, some new mixed ligand complexes of V IV and Cu II with tridentate Schiff bases derived from glycine, salicylaldehyde and amino bases, e.g. quinoline (Q), isoquinoline (IQ), 2-picoline (2-pic), 4-picoline (4-pic) and pyridine (Py) were prepared and studied. 6 refs., 1 tab

  19. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries

    International Nuclear Information System (INIS)

    Sarin, M.M.; Church, T.M.

    1994-01-01

    Unequivocal evidence is presented for the removal of uranium in two major estuarine systems of the north-eastern United States: the Delaware and Chesapeake Bays. In both the estuaries, during all seasons but mostly in summer, dissolved uranium shows distinctly non-conservative behaviour at salinities ≤ 5. At salinities above 5, there are no deviations from the ideal dilution line. In these two estuaries as much as 22% of dissolved uranium is removed at low salinities, around salinity 2. This pronounced removal of uranium observed at low salinities has been investigated in terms of other chemical properties measured in the Delaware Estuary. In the zone of uranium removal, dissolved oxygen is significantly depleted and pH goes through a minimum down to 6.8. In the same low salinity regime, total alkalinity shows negative deviation from the linear dilution line and phosphate is removed. Humic acids, dissolved iron and manganese are also rapidly removed during estuarine mixing in this low salinity region. Thus, it appears that removal of uranium is most likely related to those properties of alkalinity and acid-base system of the upper estuary that may destabilize the uranium-carbonate complex. Under these conditions, uranium may associate strongly with phosphates or humic substances and be removed onto particulate phases and deposited within upper estuarine sediments. (author)

  20. Studies of the effects of organic materials on the sorption of uranium(IV) and thorium(IV) on London clay and Caithness flagstones

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1991-08-01

    The effects of the presence of cellulosic degradation products on the sorption of uranium (IV) and thorium(IV) on London clay and Caithness flagstones have been studied using the batch sorption method. Experimental conditions were chosen to simulate both those expected close to a cementitious repository (pH ∼11) and at the edge of the zone of migration of the alkaline plume (pH ∼ 8). Work was carried out (i) under baseline conditions, in the absence of organic materials; (ii) with 2 x 10 -3 M gluconate, acting as a well-characterised degradation product simulant; (iii) with authentic degradation products. The results show that the presence of authentic degradation products has a small effect on sorption and the presence of gluconate at a high concentration has a marked impact. (author)

  1. Studies of the effects of organic materials on the sorption of uranium(IV) and thorium(IV) on London clay and Caithness flagstones

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1991-08-01

    The effects of the presence of cellulosic degradation products on the sorption of uranium (IV) and thorium(IV) on London clay and Caithness flagstones have been studied using the batch sorption method. Experimental conditions were chosen to simulate both those expected close to a cementitious repository (pH {approx}11) and at the edge of the zone of migration of the alkaline plume (pH {approx} 8). Work was carried out (i) under baseline conditions, in the absence of organic materials; (ii) with 2 x 10{sup -3}M gluconate, acting as a well-characterised degradation product simulant; (iii) with authentic degradation products. The results show that the presence of authentic degradation products has a small effect on sorption and the presence of gluconate at a high concentration has a marked impact. (author).

  2. Solvent extraction of hafnium(IV) by dinonylnaphthalene sulfonic acid from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Hala, J.; Piperkovova, H.

    1979-01-01

    The extraction of hafnium(IV) by heptane and toluene solutions of dinonylnaphthalene sulfonic acid (HD) from mixed aqueous-organic solutions has been studied. Alcohols, ketones, carboxylic acids, cyclic ethers, dimethylsulfoxide and dimethylformamide were used as the organic component of the mixed phase. Methanol, ethanol, formic acid and dioxane increased the extractability of Hf(IV) whereas other solvents showed only an antagonistic effect. The results were discussed from the point of view of the changes in micellar structure of HD, and compared with the uptake of Hf(IV) by resinous cation exchangers. The solubilization by HD of alcohols, carboxylic acids and dimethylsulfoxide was demonstrated by using the corresponding 14 C and 35 S labelled compounds. (author)

  3. Catechol functionalized aminopropyl silica gel: synthesis, characterization and preconcentrative separation of uranium(VI) from thorium(IV)

    International Nuclear Information System (INIS)

    Metilda, P.; Mary Gladis, J.; Prasada Rao, T.P.

    2005-01-01

    A novel solid phase extractant is prepared by chemically immobilizing catechol with diazotized aminopropyl silica gel. The resulting catechol functionalized silica gel (CASG) was characterized by FTIR, and microanalysis and was used for selective enrichment of uranium(VI) from other inorganic ions. The optimum pH range for maximum sorption of uranium(VI) and thorium(IV) was found to be in the range 3.5-6.0. The above actinides were eluted with 10 cm 3 of 1.0 mol dm -3 HCl and determined by using an Arsenazo III spectrophotometric procedure. The calibration graph was rectilinear over the uranium(VI) concentration in the range 2-100 μg dm -3 with a relative standard deviation of 2.15% (for 25 μg of uranium(VI) present in 1.0 dm 3 of sample). The validation of the developed preconcentration procedure was carried out by analyzing marine sediment (MESS-3, NRC, Canada) and soil (IAEA soil-7, Austria) reference materials. The developed preconcentration method enables a simple instruments like a spectrophotometer gave comparable values of uranium(VI) to that of standard inductively coupled plasma-mass spectrometric values during the analysis of real soil and sediment samples. (orig.)

  4. Catechol functionalized aminopropyl silica gel: synthesis, characterization and preconcentrative separation of uranium(VI) from thorium(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Metilda, P.; Mary Gladis, J.; Prasada Rao, T.P. [Regional Research Lab. (CSIR), Trivandrum (India)

    2005-07-01

    A novel solid phase extractant is prepared by chemically immobilizing catechol with diazotized aminopropyl silica gel. The resulting catechol functionalized silica gel (CASG) was characterized by FTIR, and microanalysis and was used for selective enrichment of uranium(VI) from other inorganic ions. The optimum pH range for maximum sorption of uranium(VI) and thorium(IV) was found to be in the range 3.5-6.0. The above actinides were eluted with 10 cm{sup 3} of 1.0 mol dm{sup -3} HCl and determined by using an Arsenazo III spectrophotometric procedure. The calibration graph was rectilinear over the uranium(VI) concentration in the range 2-100 {mu}g dm{sup -3} with a relative standard deviation of 2.15% (for 25 {mu}g of uranium(VI) present in 1.0 dm{sup 3} of sample). The validation of the developed preconcentration procedure was carried out by analyzing marine sediment (MESS-3, NRC, Canada) and soil (IAEA soil-7, Austria) reference materials. The developed preconcentration method enables a simple instruments like a spectrophotometer gave comparable values of uranium(VI) to that of standard inductively coupled plasma-mass spectrometric values during the analysis of real soil and sediment samples. (orig.)

  5. Bent and linear Uranium(IV) metallocenes with terminal and bridging cyanide ligands

    International Nuclear Information System (INIS)

    Maynadie, J.; Berthet, J.C.; Thuery, P.; Ephritikhine, M.

    2007-01-01

    Treatment of Cp 2 * UI 2 with KCN in thf led to the formation of Cp 2 * U(CN) 2 (2), which further reacted with NR 4 CN to give [Cp 2 * U(CN) 3 ][ NR 4 ] (R = Et, 3; R = n Bu, 3') and [Cp 2 * U(CN) 5 ][NR 4 ] 3 (R = Et, 4; R n Bu, 4'). While the tri-cyanide 3' adopts the familiar bent sandwich configuration, the penta-cyanide 4 is, after the [Cp 2 * U(NCMe) 5 ] 2+ cation, the second example of a linear metallocene resulting from complete saturation of the equatorial girdle. Compound 3' was also obtained by oxidation of the trivalent compound [Cp 2 * U(CN) 3 ][N n Bu 4 ] 2 ; the rapid and reversible electron transfer between the U(III) and U(IV) complexes was revealed by 1 H NMR spectroscopy. The NMR spectra also revealed that 4 is partially dissociated in thf into 3, providing the first example of an equilibrating couple of bent and linear metallocenes [K = 4.24(4) * 10 -5 at 25 C, ΔH = 199(6) kJ mol -1 , and ΔS = 586(20) J mol -1 K -1 ]. The trinuclear compound [Cp 2 * UCl 2 (μ-CN)] 2 Mg(thf) 4 (1) and the 2D polymeric complex [Cp 2 * U(dmf) 3 -(μ-NC) 2 (AgI) 2 ] n (5), which were obtained during initial attempts on the synthesis of 2-4 and uranium- (V) derivatives, exhibit a bent and linear sandwich structure, respectively. (authors)

  6. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    Science.gov (United States)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  7. Cyclopentadienyl complexes of uranium(IV) chlorides. Crystal structures of trichloro(eta5-cyclopentadienyl)bis(triphenylphosphine oxide)uranium(IV) tetrahydrofuran solvate and of trichloro(eta5-cyclopentadienyl)bis(hexamethylphosphoramide)uranium(IV)

    International Nuclear Information System (INIS)

    Bagnall, K.W.; De Paoli, G.

    1984-01-01

    The crystal and molecular structures of [U(cp)Cl 3 (PPh 3 O) 2 ].thf (thf = tetrahydrofuran) (1) and [U(cp)Cl 3 (P(NMe 2 ) 3 O) 2 ] (cp = eta 5 -cyclopentadienyl) (2) have been determined from three-dimensional X-ray diffraction data. The results are presented. In both compounds the uranium atom is octahedrally co-ordinated with the two neutral ligands [PPh 3 O and P(NMe 2 ) 3 O] in cis positions; the chlorine atoms are in the mer arrangement and the cyclopentadienyl group is trans to one neutral ligand. The appearance of cis octahedral geometry in complexes of the type [U(cp)Cl 3 L 2 ] is discussed in terms of the operation of a possible trans effect. (author)

  8. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  9. Uranium and plutonium distribution in unirradiated mixed oxide fuel from industrial fabrication

    International Nuclear Information System (INIS)

    Hanus, D.; Kleykamp, H.

    1982-01-01

    Different process variants developed in the last few years by the firm ALKEM to manufacture FBR and LWR mixed oxide fuel are given. The uranium and plutonium distribution is determined on the pellets manufactured with the help of the electron beam microprobe. The stepwise improvement of the uranium-plutonium homogeneity in the short-term developed granulate variants and in the long-term developed new processes are illustrated starting with early standard processes for FBR fuel. An almost uniform uranium-plutonium distribution could be achieved for the long-term developed new processes (OKOM, AuPuC). The uranium-plutonium homogeneity are quantified in the pellets manufactured according to the considered process variants with a newly defined quality number. (orig.)

  10. Reduction of uranium(IV) and its mixtures with an olefin or an alkyne in tetrahydrofuran solutions by solvated electrons

    International Nuclear Information System (INIS)

    Koulkes-Pujo, A.M.; Le Marechal, J.F.; Le Motais, B.; Folcher, G.

    1985-01-01

    The reduction of UCl 4 and its mixtures with different olefins (stilbene, St, diphenylethylene, DPE, acenaphtylene, Ac or with diphenylacetylene (DPA) was studied by pulse radiolysis of tetrahydrofuran (THF) solutions. U(III) was formed by U(IV) reaction either with the solvated electrons created by THF radiolysis or with the transitory anions St - and DPA - . In the latter case, the reaction proceeds via a first step leading to [St-U(IV)] - or [DPA-U(IV)] - . In the case of DPE - the first species, [DPE-U(IV)] - , does not lead to U(III) but is destroyed by THF(H) + giving DPE(H). and U(IV). Ac - does not react with U(IV). A mechanistic scheme of this electron attachment is discussed as well as its implication in catalytic hydrogenation of olefins in LiAlH 4 -UCl 4 solutions. It is concluded that the catalytic effect observed is rather the result of a hydride transfer from a uranium transient compound to the alkenes. 22 references, 8 figures, 1 table

  11. Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers

    International Nuclear Information System (INIS)

    Qian Li; Jing Sun; Dexin Ding; Qingliang Wang; Wenge Shi; Eming Hu; Xiaoyu Jiang; University of South China, Hengyang; Xingxing Wang

    2017-01-01

    In order to develop and apply mixed iron- and sulfur-oxidizers in uranium bioleaching, the characteristics of a mixed iron- and sulfur-oxidizing consortium (Consortium ISO) were comparatively investigated versus an iron-oxidizing consortium (Consortium IO). The results showed, the Consortium ISO exerted stronger oxidative ability and acid-producing ability than Consortium IO did. The synergy of sulfur-oxidizers and iron-oxidizers could change the structure and properties of the passivation substance, and work positively for eliminating the accumulation of passivation substance. In the bioleaching process, the uranium bioleaching experiments showed the recovery percentage of uranium reached 99.5% with Consortium ISO, 6.3% more than that of Consortium IO. (author)

  12. A comparative study on determination of composition of uranium thorium mixed oxides by tube and radioisotope excited EDXRF

    International Nuclear Information System (INIS)

    Dhara, Sangita; Sanjay Kumar, S.; Misra, N.L.; Aggarwal, S.K.; Singh, Ajit Kumar; Lodha, G.S.

    2009-01-01

    Energy Dispersive X-ray Fluorescence (EDXRF) methods for determination of uranium and thorium in their mixed oxide matrices using tube and radioisotope excitation sources have been developed. The methodology involves preparation of mixed oxide calibration/sample mixtures of uranium and thorium oxides, mixing of fixed amount of internal standard Yttrium in form of Yttrium oxide, pelletizing these mixtures after thorough mixing and recording their EDXRF spectra using Rh target as well as 109 Cd radioisotope source. The samples were analysed for uranium and thorium on the basis of calibration plots

  13. Multisensor system for determination of iron(II), iron(III), uranium(VI) and uranium(IV) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.; Tverdokhlebov, S.V.; Mack, B.; Abraham, A.; Arnold, T.; Baraniak, L.; Nitsche, H.

    1999-01-01

    Development and analytical evaluation of a multisensor system based on the principles of 'electronic tongue' for the determination of low contents of uranium(VI), uranium(IV), iron(II) and iron(III) in complex aqueous media have been carried out. A set of 29 different chemical sensors on the basis of all- solid-state crystalline and vitreous materials with enhanced electronic conductivity and redox and ionic cross-sensitivity have been incorporated into the sensor array. Multidimensional data have been processed by pattern recognition methods such as artificial neural networks and partial least squares. It has been demonstrated that Fe(II) and Fe(III) contents in the range from 10 -7 to 10 -4 mol L -1 of total iron concentration can be determined with the average precision of about 25 %. U(VI) and U(IV) contents can been determined with the average precision of 10-40% depending on the concentration. The developed multisensor system can be applied in future for the analysis of mining and borehole waters as well other contaminated natural media, including on-site measurements. (author)

  14. Reactivity of the uranium (U(IV)/U(VI)) and the plutonium (Pu(III)/Pu(IV)) in nitric aqueous solution under ultrasound

    International Nuclear Information System (INIS)

    Venault, L.

    1998-01-01

    To minimize the volumes of solid waste and industrial effluents generated at the end of cycle, particularly in the spent nuclear fuel reprocessing industry, research is currently under way on so-called innovative processes, designed to induce chemical reactions without adding reagent to the media. Among these processes, the use of ultrasound can prove advantageous, and the purpose of this study is to assess accurately the potential for its application. In the present context, this work shows that the transmission of an ultrasonic wave in aqueous nitric acid solution leads to: the accumulation of nitrous acid in solution, until a steady-sate concentration is reached; the removal of nitrogen monoxide and nitrogen dioxide in the gas stream. The initial kinetics of the formation of HNO 2 in solution was quantified as a function of the nitric acid concentration and the ultrasound intensity. It was also shown than an excess of nitrous acid in nitric solution decomposes under the effect of ultrasound. It is also possible to accumulate hydrogen peroxide in solution during the ultrasonic irradiation of aqueous nitric acid solutions in the presence of a chemical species N 2 H 5 + , NH 2 SO 3 H...) which reacts rapidly with HNO 2 , preventing the reduction of H 2 O 2 by HNO 2 . The mechanisms of HNO 2 formation and decomposition, and the mechanism of H 2 O 2 formation during the ultrasonic irradiation of aqueous nitric acid solutions, are presented. Control of H 2 O 2 or HNO 2 in a nitric acid medium under the effect of an ultrasonic wave can be exploited to control redox reactions of uranium and plutonium ions, particularly with respect to the oxidation of U and Pu (U(IV)→ U(IV) or Pu(III) → Pu(IV)) and the reduction of Pu (Pu(IV)→ Pu(III). The redox behavior of uranium and plutonium ions in aqueous nitric solution subject to an ultrasonic flux is interpreted in term of effects induced on the reaction medium, and reveals the potential for using ultrasound to cause

  15. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  16. Studies on the absorption of uranium and plutonium on macroporous anion-exchange resins from mixed solvent media

    International Nuclear Information System (INIS)

    Chetty, K.V.; Mapara, P.M.; Godbole, A.G.; Swarup, Rajendra

    1995-01-01

    The ion-exchange studies on uranium and plutonium using macroporous anion-exchange resins from an aqueous-organic solvent mixed media were carried out to develop a method for their separation. Out of the several water miscible organic solvents tried, methanol and acetone were found to be best suited. Distribution data for U(VI) and Pu(IV) for three macroporous resins Tulsion A-27(MP) (strong base), Amberlyst A-26(MP) (strong base) and Amberlite XE-270(MP) (weak base) as a function of (i) nitric acid concentration (ii) organic solvent concentration were obtained. Based on the data separation factors for Pu/U were calculated. Column experiments using Tulsion A-27(MP) from a synthetic feed (HNO 3 - methanol and HNO 3 - acetone) containing Pu and U in different ratios were carried out. Plutonium was recovered from the bulk of the actual solution generated during the dissolution of plutonium bearing fuels. The method has the advantage of loading plutonium from as low as 1M nitric acid in presence of methanol or acetone and could be used satisfactorily for its recovery from solutions containing plutonium and uranium. (author). 11 refs., 4 figs., 16 tabs

  17. Solvent extraction of uranium(VI) and thorium(IV) from nitrate media by carboxylic acid amides

    International Nuclear Information System (INIS)

    Preston, J.S.; Preez, A.C. du

    1995-01-01

    A series of nineteen N-alkyl carboxylic acid amides (R.CO.NHR') has been prepared, in which the alkyl groups R and R' have been varied in order to introduce different degrees of steric complexity into the compounds. A smaller number of N,N-dialkyl amides (R.CO.NR 2 ') and non-substituted amides (R.CO.NH 2 ) has also been prepared for comparison purposes. These amides were characterized by measurement of their boiling points, melting points, refractive indices and densities. The solvent extraction of uranium(VI) and thorium(IV) from sodium nitrate media by solutions of the amides in toluene was studied. Increasing steric bulk of the alkyl groups R and R' was found to cause a marked decrease in the extraction of thorium, with a much smaller effect on the extraction of uranium, thus considerably enhancing the separation between these metals. Vapour pressure osmometry studies indicate that the N-alkyl amides are self-associated in toluene solution, with aggregation numbers up to about 2.5 for 0.6 M solutions at 35 degree C. In contrast, the N,N-dialkyl amides behave as monomers under these conditions. The distribution ratios for the extraction of uranium and thorium show second- and third-order dependences, respectively, on the extractant concentration for both the N-alkyl and N,N-dialkyl amides. 15 refs., 8 figs., 8 tabs

  18. Determination of 230Th (Ionium) in uranium ores and wastes from uranium reprocessing. IV. Calculation of ionium separation yield

    International Nuclear Information System (INIS)

    Galiano Sedano, J. A.; Acena Barrenechea, M. L.

    1974-01-01

    For determining ionium ( 2 30Th) in minerals and uranium processing wastes by precipitation with fluorhidric acid, using lanthanum as carrier, and selective extraction with tenoytrifluoroacetone (TTA) followed by radiometric determination of the isolated nuclide, it is necessary the use of a tracer since the chemical yield of the separation ranges between wide limits. In this paper, the use of the beta-emitter 2 34Th as the most convenient tracer is discussed. Equations are derived for correcting for counting errors introduced by other thorium isotopes which are present either in the sample or in the tracer, as well as for calculating the chemical yield of the separation. These equations have been experimentally checked by ionium determinations carried out with different types of samples. (Author) 18 refs

  19. Determination of plutonium and uranium in mixed nuclear fuel by means of potentiostatic and amperostatic coulometry

    International Nuclear Information System (INIS)

    Kuperman, A.Ya.; Moiseev, I.V.; Galkina, V.N.; Yakushina, G.S.; Nikitskaya, V.N.

    1977-01-01

    Product solution occurs in HClO 4 + HNO 3 mixing. In prepared plutonium (6) and uranium (6) perchloric acid solution Cl and Cr (6), Mn (7,6,3) foreign oxidizers are selectively reduced with formic and malonic acids. Potentiostatic variant of method is based on successive reduction of Pu(6) to Pu(3) and U(6) to U(4) in 4.5M HCl, containing 5x10 -4 M bismuth (3). In using amperostatic variant of method plutonium and uranium are determined separately. In sulfur-phosphoric acid media plutonium (6) is titrated to Pu(4) with continuously generated iron (2) ions. Uranium (6) in phosphoric acid media is initially reduced to U(4) with Fe(2), and then after Fe(2) excess reduction with nitric acid it is titrated to uranium (6) with continuously electrogenerated manganese (3) ions or vanadium (5). To obtain equivalent point in plutonium (6) and uranium (4) titration amperometric method is used. Coefficient of variation is 0.2-0.3 % rel

  20. White paper on possible inclusion of mixed plutonium-uranium oxides in DOE-STD-3013-96

    International Nuclear Information System (INIS)

    Haschke, J.M.; Venetz, T.; Szempruch, R.; McClard, J.W.

    1997-11-01

    This report assesses stabilization issues concerning mixed plutonium-uranium oxides containing 50 mass % Pu. Possible consequences of uranium substitution on thermal stabilization, specific surface areas, moisture readsorption behavior, loss-on-ignition analysis, and criticality safety of the oxide are examined and discussed

  1. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  2. Technical data summary: Uranium(IV) production using a large scale electrochemical cell

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1984-05-01

    This Technical Data Summary outlines an electrochemical process to produce U(IV), in the form of uranous nitrate, from U(VI), as uranyl nitrate. U(IV) with hydrazine could then be used as an alternative plutonium reductant to substantially reduce the waste volume from the Purex solvent extraction process. This TDS is divided into three parts. The first part (Chapters I to IV) generally describes the electrochemical production of U(IV). The second part (Chapters V to VII) describes a pilot scale U(IV) production facility that was constructed and operated at an engineering semiworks area of SRP, referred to as TNX. The lst part (Chapter VIII) describes a preliminary design for a full-scale facility that would meet the projected need for U(IV) as a reductant in SRP's separations processes. The preliminary design was described in a Basic Data Summary for the U(IV) production facility, and a Venture Guidance Appraisal (VGA) was prepared from the Basic Data Summary. The VGA for the U(IV) process showed that because of the large capital investment required, this approach to waste reduction was not economically competitive with another alternative that required only modifying the ongoing Purex process at no additional capital cost. However, implementing he U(IV) process as part of an overall canyon renovation, presently scheduled for the 1990's, may be economically attractive. The purpose of this TDS is therefore to bring together the information and experience obtained thus far in the U(IV) program so that a useful body of information will be available to support any future development of this process

  3. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  4. Thermal expansion studies on uranium-neodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Venkata Krishnan, R.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Uranium-Neodymium mixed oxides solid solutions (U 1-y Nd y ) O 2 (y=0.2-0.95) were prepared by combustion synthesis using citric acid as fuel. Structural characterization and computation of lattice parameter was carried out from room temperature X-ray diffraction measurements. Single-phase fluorite structure was observed up to y=0.80. For solid solutions with y>0.80 additional Nd 2 O 3 lines were visible

  5. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  6. Peroxo complexes of molybdenum(VI), tungsten(VI), uranium(VI), zirconium(IV) and thorium(IV) ions containing tridentate Schiff bases derived from salicylaldehyde and amino acids

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Khan, A.R.

    1997-01-01

    The synthesis of peroxo complexes of molybdenum(VI), tungsten(VI), uranium(VI), zirconium(IV), thorium(IV) and their possible oxygen transfer reactions is presented. An attempt has also been made to study the size of the metal ions and the electronic effect derived from the tridentate Schiff bases on the v 1 (O-O) mode of the complexes in their IR spectra

  7. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  8. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  9. Crystal and molecular structure of tetrathiocyanato tetrakis (triphenylphosphine oxide)uranium(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Bombieri, G; De Paoli, G; Forsellini, E [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Brown, D

    1979-01-01

    The crystal structure of the title compound has been determined from three dimensional X-ray diffraction data. The space group and lattice parameters are given. The asymmetric unit comprises two independent U(NCS)/sub 4/(tppo)/sub 4/ molecules in each of which the coordination polyhedron around the uranium atom is close to square antiprismatic.

  10. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  11. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  12. A new optical sensor for spectrophotometric determination of uranium (VI) and thorium (IV) in acidic medium

    Energy Technology Data Exchange (ETDEWEB)

    Elhefnawy, O.A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Nuclear Safeguards and Physical Protection Dept.

    2017-07-01

    A spectrophotometric method was developed for U(VI) and Th(IV) determination in acidic medium by using proposed optical sensor. This sensor is base on the complexation reaction of the ionophore midodrine hydrochloride (L) with U(VI)/Th(IV) in plasticized (o-NPOE) high molecular weight (PVC). Several parameters such as effect of acidic medium, response time and sensor compositions were studied. The determination of the complexes stoichiometry was also studied using Job's method. The complexes stoichiometry were measured at the absorbance spectra 302 nm and the results were found to be 1:1 for both complexes U(VI)-L and Th(IV)-L. The complexation reaction was extremely rapid at room temperature; it takes 5, 10 min to complete the complexation reaction in U(VI) and Th(IV), respectively. Under the optimum conditions the calibration curves of U(VI)/Th(IV) determination, have good linearity at different acidic medium nitric, sulfuric, and phosphoric acids with low detection and quantification limits. The accuracy and precision studies proved that the proposed optical sensor is valid and qualified for U(VI)/Th(IV) spectrophotometric determination in different acidic medium. The selectivity of the proposed optical sensor was studied. The proposed optical sensor was applied successfully for U(VI)/Th(IV) determination in research and development (R and D) nuclear waste samples with satisfactory results. A comparative study of the proposed optical sensor with other previous spectrophotometric sensors for U(VI)/Th(IV) determination, proved the high efficiency of the proposed optical sensor, that it presents wide linear range and low detection limit. The proposed optical sensor could be applied for a quantitative determination of U(VI)/Th(IV) in acidic waste samples.

  13. A new optical sensor for spectrophotometric determination of uranium (VI) and thorium (IV) in acidic medium

    International Nuclear Information System (INIS)

    Elhefnawy, O.A.

    2017-01-01

    A spectrophotometric method was developed for U(VI) and Th(IV) determination in acidic medium by using proposed optical sensor. This sensor is base on the complexation reaction of the ionophore midodrine hydrochloride (L) with U(VI)/Th(IV) in plasticized (o-NPOE) high molecular weight (PVC). Several parameters such as effect of acidic medium, response time and sensor compositions were studied. The determination of the complexes stoichiometry was also studied using Job's method. The complexes stoichiometry were measured at the absorbance spectra 302 nm and the results were found to be 1:1 for both complexes U(VI)-L and Th(IV)-L. The complexation reaction was extremely rapid at room temperature; it takes 5, 10 min to complete the complexation reaction in U(VI) and Th(IV), respectively. Under the optimum conditions the calibration curves of U(VI)/Th(IV) determination, have good linearity at different acidic medium nitric, sulfuric, and phosphoric acids with low detection and quantification limits. The accuracy and precision studies proved that the proposed optical sensor is valid and qualified for U(VI)/Th(IV) spectrophotometric determination in different acidic medium. The selectivity of the proposed optical sensor was studied. The proposed optical sensor was applied successfully for U(VI)/Th(IV) determination in research and development (R and D) nuclear waste samples with satisfactory results. A comparative study of the proposed optical sensor with other previous spectrophotometric sensors for U(VI)/Th(IV) determination, proved the high efficiency of the proposed optical sensor, that it presents wide linear range and low detection limit. The proposed optical sensor could be applied for a quantitative determination of U(VI)/Th(IV) in acidic waste samples.

  14. Validation of the Monte Carlo criticality program KENO IV and the Hansen-Roach sixteen-energy-group-cross sections for high-assay uranium systems

    International Nuclear Information System (INIS)

    Handley, G.R.; Masters, L.C.; Stachowiak, R.V.

    1981-01-01

    Validation of the Monte Carlo criticality code, KENO IV, and the Hansen-Roach sixteen-energy-group cross sections was accomplished by calculating the effective neutron multiplication constant, k/sub eff/, of 29 experimentally critical assemblies which had uranium enrichments of 92.6% or higher in the uranium-235 isotope. The experiments were chosen so that a large variety of geometries and of neutron energy spectra were covered. Problems, calculating the k/sub eff/ of systems with high-uranium-concentration uranyl nitrate solution that were minimally reflected or unreflected, resulted in the separate examination of five cases

  15. Analysis of refabricated fuel: determination of carbon in uranium plutonium mixed carbide

    International Nuclear Information System (INIS)

    Huwyler, S.

    1977-09-01

    In developing uranium plutonium mixed carbide which represents an advanced fuel for breeder reactors carbon analysis is an important means of determining the stoichiometry. Methods of carbon determination are briefly reviewed. The carbon determination using a LECO WR-12 Carbon Determinator is treated in detail and experience of three years operation communicated. Problems arising from operating the LECO-apparatus in a glove box are discussed. It is pointed out that carbon determination with the LECO-apparatus is a very fast method with good precision and well suited for the routine analysis of mixed carbide fuel. The accuracy of the method is checked by means of a standard. (Auth.)

  16. Spectrophotometric Microdetermination of Thorium(IV and Uranium(VI with Chrome Azurol-S in Presence of Cationic Surfactant

    Directory of Open Access Journals (Sweden)

    A. B. Upase

    2011-01-01

    Full Text Available Cationic surfactant, cetyldimethylethylammonium bromide (CDMEAB, sensitize the color reactions of Th(IV and U(VI with chrome azurol-S(CRAS. Formation of water soluble deeply colored ternary complexes of metal ions show large bathochromic shift. Same stoichiometric composition of ternary complexes with 1:2:4 molar ratio (M-CRAS-CDMEAB have been observed for both the metal ions and are responsible for enhancement in molar absorptivities and sensitivities at shifted wavelength. The ternary complexes of thorium(IV and uranium(VI exhibit absorption maxima at 640 and 620 nm with molar absorptivities 85500 and 69600 L.mol-1.cm-2 respectively. Beer’s law were obeyed in concentration range 0.12-0.185 ppm for Th(IV and 0.13-0.162 ppm for U(VI in presence of CDMEAB. Conditional formation constants and various analytical parameters have been evaluated and compared the results of binary and ternary complexes. Enhancement in the molar absorptivities in presence of CDMEAB clearly indicated the usefulness of these colored reactions for microdetermination.

  17. The oxidation of uranium(IV) ions by nitrous acid in 30% tri-butyl phosphate

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Marchenko, V.I.; Savilova, O.A.; Dvoeglazov, K.N.; Taylor, R.J.

    2004-01-01

    The kinetics of the oxidation of U(IV) ions by nitrous acid in a 30% TBP solution have been determined. The rate equation was found to be: - d[U(IV)] / dt = k 2a [U(IV)][HNO 2 ][HNO 3 ][H 2 O] / [HNO 3 ] 2 + β 3 [HNO 3 ][H 2 O] + β 4 [H 2 O] 2 , where, k 2a = 0.405 ± 0.055 M -1 min -1 at 55 C (β 3 ∼ 0.08; β 4 ∼ 0.007) and the activation energy was E = 112 ± 17 kJ mol -1 . The reaction mechanism appeared to involve interaction with the 1 st hydrolysis product of U(IV)-UOH 3+ . The data is compared with a previous study of the nitric acid oxidation of U(IV) in 30% TBP. This reaction is autocatalytic due to the formation of nitrous acid during the reaction. The kinetics of the decomposition of HNO 2 in 30% TBP (in the absence of U(IV)) have also been reported. (orig.)

  18. Synthesis, structure, spectroscopy and redox energetics of a series of uranium(4) mixed-ligand metallocene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, R.K.; Scott, B.L.; Morris, D.E.; Kiplinger, J.L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2010-06-15

    A series of uranium(IV) mixed-ligand amide-halide/pseudo-halide complexes (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}](X) (X = F (1), Cl (2), Br (3), I (4), N{sub 3} (5), NCO (6)), (C{sub 5}Me{sub 5}){sub 2}U(NPh{sub 2})(X) (X = Cl (7), N{sub 3} (8)), and (C{sub 5}Me{sub 5}){sub 2}U[N(Ph)(SiMe{sub 3})](X) (X Cl (9), N{sub 3} (10)) have been prepared by one electron oxidation of the corresponding uranium(III) amide precursors using either copper halides, silver iso-cyanate, or triphenylphosphine gold(I)azide. Agostic U---H-C interactions and {eta}{sub 3}-(N,C,C') coordination are observed for these complexes in both the solid-state and solution. There is a linear correlation between the chemical shift values of the C{sub 5}Me{sub 5} ligand protons in the {sup 1}H NMR spectra and the U(IV)/U(III) reduction potentials of the (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}](X) complexes, suggesting that there is a common origin, that is overall {sigma}-/{pi}-donation from the ancillary (X) ligand to the metal, contributing to both observables. Optical spectroscopy of the series of complexes 1-6 is dominated by the (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}] core, with small variations derived from the identity of the halide/pseudo-halide. The considerable {pi}-donating ability of the fluoride ligand is reflected in both the electrochemistry and UV-visible-NIR spectroscopic behavior of the fluoride complex (C{sub 5}Me{sub 5}){sub 2}U[N(SiMe{sub 3}){sub 2}](F) (1). The syntheses of the new trivalent uranium amide complex, (C{sub 5}Me{sub 5}){sub 2}U[N(Ph)(SiMe{sub 3})](THF), and the two new weakly-coordinating electrolytes, [Pr{sub 4}N][B{l_brace}3,5-(CF{sub 3}){sub 2}C{sub 6}H{sub 3{r_brace}4}] and [Pr{sub 4}N][B(C{sub 6}F{sub 5}){sub 4}], are also reported. (authors)

  19. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  20. Complexes of uranium (IV) and thorium (IV) with α-picolinic acid, nicotinic acid, anthranilic acid and N-phenylanthranilic acid

    International Nuclear Information System (INIS)

    Singh, M.; Singh, R.

    1979-01-01

    Stable U(IV) and Th(IV) complexes with the title ligands have been synthesised from U(OAc) 4 , and Th(OAc) 4 . Magnetic susceptibilities, IR and reflectance spectra of U(IV) and IR spectra of Th(IV) complexes have been studied which indicate eight coordination for U(IV) in these chelates. (auth.)

  1. Determination of uranium (IV) in cloride solutions of enrichment columns by spectrometry with flow injection

    International Nuclear Information System (INIS)

    Bastos, M.B.R.

    1988-01-01

    The utilization of Flow Injection Analysis for the U (IV) spectrophotometric determination in chloride solutions is described. The method has been shown reproducible in the range of concentrations and conditions employed with a standard deviation of about 0,3. (C.G.C.) [pt

  2. High-temperature vaporization of thorium-uranium mixed monocarbide (Th1-y, Uy)C

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Yamawaki, Michio

    1989-01-01

    Vaporization thermodynamics of thorium-uranium mixed monocarbide phase (Th 1-y , U y )C was studied by mass spectrometric Knudsen effusion method for the compositions of (Th 0.9 , U 0.1 )C 0.855 , (Th 0.8 , U 0.2 )C 0.973 and (Th 0.6 , U 0.4 )C 0.973 . The partial vapor pressures of Th(g) and U(g) and activities of Th and U of these mixed monocarbides were determined at temperatures ranging from about 2000 to 2200 K. Further, the partial pressures of Th(g) and U(g) and activities of Th and U of the stoichiometric mixed monocarbides (Th 1-y , U y )C 1.00 were evaluated by compensating for the effect of carbon content. The Gibbs energies of formation of stoichiometric (Th 1-y , U y )C 1.00 were also evaluated. (orig.)

  3. Reactivity of the uranium (U(IV)/U(VI)) and the plutonium (Pu(III)/Pu(IV)) in nitric aqueous solution under ultrasound; De l'influence des ultrasons sur la reactivite de l'uranium (U(IV)/U(VI)) et du plutonium (PU(III)/PU(IV)) en solution aqueuse nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Venault, L

    1998-07-01

    To minimize the volumes of solid waste and industrial effluents generated at the end of cycle, particularly in the spent nuclear fuel reprocessing industry, research is currently under way on so-called innovative processes, designed to induce chemical reactions without adding reagent to the media. Among these processes, the use of ultrasound can prove advantageous, and the purpose of this study is to assess accurately the potential for its application. In the present context, this work shows that the transmission of an ultrasonic wave in aqueous nitric acid solution leads to: the accumulation of nitrous acid in solution, until a steady-sate concentration is reached; the removal of nitrogen monoxide and nitrogen dioxide in the gas stream. The initial kinetics of the formation of HNO{sub 2} in solution was quantified as a function of the nitric acid concentration and the ultrasound intensity. It was also shown than an excess of nitrous acid in nitric solution decomposes under the effect of ultrasound. It is also possible to accumulate hydrogen peroxide in solution during the ultrasonic irradiation of aqueous nitric acid solutions in the presence of a chemical species (N{sub 2}H{sub 5}{sup +}, NH{sub 2}SO{sub 3}H...) which reacts rapidly with HNO{sub 2}, preventing the reduction of H{sub 2}O{sub 2} by HNO{sub 2}. The mechanisms of HNO{sub 2} formation and decomposition, and the mechanism of H{sub 2}O{sub 2} formation during the ultrasonic irradiation of aqueous nitric acid solutions, are presented. Control of H{sub 2}O{sub 2} or HNO{sub 2} in a nitric acid medium under the effect of an ultrasonic wave can be exploited to control redox reactions of uranium and plutonium ions, particularly with respect to the oxidation of U and Pu (U(IV){yields} U(IV) or Pu(III) {yields} Pu(IV)) and the reduction of Pu (Pu(IV){yields} Pu(III). The redox behavior of uranium and plutonium ions in aqueous nitric solution subject to an ultrasonic flux is interpreted in term of effects

  4. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  5. A new potentiometric determination of hydrazine in the presence of uranium(IV)

    International Nuclear Information System (INIS)

    Singh, N.S.; Mohan, S.V.

    1996-01-01

    The present method describes the determination of hydrazine by making use of potentiometric titration technique. The underlying principle is back titration of unreacted excess cerium remaining after the complete oxidation of hydrazine. Standardized ferrous ammonium sulfate was used for titration. This method was applied to 'real samples' generated from a nuclear reprocessing plant wherein control of hydrazine is of paramount importance. The interference of U(IV), Cr(III), U(VI), nitrite, and chloride was studied and of all these ions the way to eliminate the interference of U(IV) was only attempted. The relative standard deviations (RSD) for synthetic as well as 'real samples' were determined. The method gives RSD of less than 1% in the range of 1 mg to 20 mg of hydrazine. The error in the range 3 mg to 17 mg was found to be less than 1%. (author). 5 refs., 3 tabs

  6. Electrochemical and spectroscopic studies of uranium(IV), -(V), and -(VI) in carbonate-bicarbonate buffers

    International Nuclear Information System (INIS)

    Wester, D.W.; Sullivan, J.C.

    1980-01-01

    Recently a need for more detailed knowledge of the chemistry of actinide ions in basic media has arisen in connection with deducing their chemistry in the environment. In this work the results of polarographic, cyclic voltammetric, and spectroscopic studies of U(IV), -(V), and -(VI) in carbonate and bicarbonate media are reported. Polarographic studies were in excellent agreement with those reported previously. Cyclic voltammetric scans confirmed the irreversible reduction to U(V) in both solutions, but disproportionation of the U(V) was observed only in the bicarbonate solutions. The oxidation of U(V) in carbonate was followed spectroscopically for the first time. Reduction in bicarbonate produced U(IV), the spectrum of which is now reported and the oxidation of which was also followed spectroscopically for the first time

  7. Persistent U(IV) and U(VI) following in-situ recovery (ISR) mining of a sandstone uranium deposit, Wyoming, USA

    Science.gov (United States)

    Gallegos, Tanya J.; Campbell, Kate M.; Zielinski, Robert A.; Reimus, P.W.; J.T. Clay,; N. Janot,; J. J. Bargar,; Benzel, William M.

    2015-01-01

    Drill-core samples from a sandstone-hosted uranium (U) deposit in Wyoming were characterized to determine the abundance and distribution of uranium following in-situ recovery (ISR) mining with oxygen- and carbon dioxide-enriched water. Concentrations of uranium, collected from ten depth intervals, ranged from 5 to 1920 ppm. A composite sample contained 750 ppm uranium with an average oxidation state of 54% U(VI) and 46% U(IV). Scanning electron microscopy (SEM) indicated rare high uranium (∼1000 ppm U) in spatial association with P/Ca and Si/O attributed to relict uranium minerals, possibly coffinite, uraninite, and autunite, trapped within low permeability layers bypassed during ISR mining. Fission track analysis revealed lower but still elevated concentrations of U in the clay/silica matrix and organic matter (several 10 s ppm) and yet higher concentrations associated with Fe-rich/S-poor sites, likely iron oxides, on altered chlorite or euhedral pyrite surfaces (but not on framboidal pyrite). Organic C (mining, the likely sequestration of uranium within labile iron oxides following mining and sensitivity to changes in redox conditions requires careful attention during groundwater restoration.

  8. Advances on reverse strike co-precipitation method of uranium-plutonium mixed solutions

    International Nuclear Information System (INIS)

    Menghini, Jorge E.; Marchi, Daniel E.; Orosco, Edgardo H.; Greco, Luis

    2000-01-01

    The reverse strike coprecipitation of uranium-plutonium mixed solutions, is an alternative way to obtain MOX fuel pellets. Previous tests, carried out in the Alpha Laboratory, included a stabilization step for transforming 100 % of plutonium into Pu +4 . Therefore, the plutonium precipitated as Pu(OH) 4 . In this second step, the stabilization process was suppressed. In this way, besides Pu(OH) 4 , a part of the precipitated is composed of a mixed salt: AD(U,Pu). Then, a homogeneous solid solution is formed in the early steps of the process. The powders showed higher tap density, better performance during the pressing and lower sinterability than the powders obtained in previous tests. The advantageous and disadvantageous effects of the stabilization step are analyzed in this paper. (author)

  9. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  10. Physicochemical characterization of Capstone depleted uranium aerosols IV: in vitro solubility analysis.

    Science.gov (United States)

    Guilmette, Raymond A; Cheng, Yung Sung

    2009-03-01

    As part of the Capstone Depleted Uranium (DU) Aerosol Study, the solubility of selected aerosol samples was measured using an accepted in vitro dissolution test system. This static system was employed along with a SUF (synthetic ultrafiltrate) solvent, which is designed to mimic the physiological chemistry of extracellular fluid. Using sequentially obtained solvent samples, the dissolution behavior over a 46-d test period was evaluated by fitting the measurement data to two- or three-component negative exponential functions. These functions were then compared with Type M and S absorption taken from the International Commission on Radiological Protection Publication 66 Human Respiratory Tract Model. The results indicated that there was a substantial variability in solubility of the aerosols, which in part depended on the type of armor being impacted by the DU penetrator and the particle size fraction being tested. Although some trends were suggested, the variability noted leads to uncertainties in predicting the solubility of other DU-based aerosols. Nevertheless, these data provide a useful experimental basis for modeling the intake-dose relationships for inhaled DU aerosols arising from penetrator impact on armored vehicles.

  11. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na3.13Mg1.43U6F30 and Na2.50Mn1.75U6F30: Structures, optical and magnetic properties

    Science.gov (United States)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad

    2016-04-01

    Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.

  12. Chloride pyrometallurgy of uranium ore. 2. Selective extraction of uranium using the mixed gas of chlorine and oxygen in the presence of activated carbon

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Komoto, Shigetoshi; Otomura, Keiichiro; Takenaka, Toshihide; Sato, Nobuaki; Fujino, Takeo.

    1996-01-01

    Selective extraction of uranium from a phosphate ore was studied by using the mixed gas of Cl 2 and O 2 . On heating the ore and carbon mixture in Cl 2 , the volatilized chloride of uranium is accompanied by iron, aluminum, phosphorus and silicon chlorides. The addition of O 2 gas effectively lowered the volatilization ratios of aluminum, phosphorus and silicon. The ratio decreased with increasing oxygen flow rate up to 50 ml/min at 1,223 K (Cl 2 : 100 ml/min, O 2 +N 2 : 400 ml/min). The volatilization ratio of uranium was almost unchanged at 90% up to 50 ml/min O 2 (carbon amount: 15 wt%). The effect of the other parameters, i.e. Cl 2 flow rate, carbon amount, reaction temperature and time was examined. (author)

  13. Groundwater contamination from an inactive uranium mill tailings pile. 2. Application of a dynamic mixing model

    International Nuclear Information System (INIS)

    Narashimhan, T.N.; White, A.F.; Tokunaga, T.

    1986-01-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series the authors presented field data as well as an interpretation based on a static mixing models. As an upper bound, the authors estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work they present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNamic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency

  14. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  15. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  16. Mixed core management: Use of 93% and 72% enriched uranium in the BR2 reactor

    International Nuclear Information System (INIS)

    Ponsard, B.

    2000-01-01

    The BR2 reactor, put into operation in 1963 and refurbished from July 1995 till April 1997, is a 100 MW high-flux Materials Testing Reactor, using 93% 235 U enriched uranium as standard fuel, light water as coolant and beryllium as moderator. The present operating regime consists of five irradiation cycles per year at an operating power between 50 and 70 MW; each cycle is characterized by 21 days operation. In the framework of a 'qualification programme', six 72% 235 U fuel elements fabricated with uranium recovered from the reprocessing of BR2 spent fuel at UKAEA-Dounreay have been successfully irradiated in the period 1994-1995 reaching a maximum mean burnup of 48% without the release of fission products. Since 1998, this type of fuel element is irradiated routinely together with standard 93% 235 U fuel elements in order to optimize the utilization of the available HEU inventory. The purpose of this paper is to present the strategy developed in order to optimize the mixed core management of the BR2 reactor. (author)

  17. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    Science.gov (United States)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  18. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  19. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  20. Chemical states of fission products in irradiated uranium-plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    1999-01-01

    The chemical states of fission products (FPs) in irradiated uranium-plutonium mixed oxide (MOX) fuel for the light water reactor (LWR) were estimated by thermodynamic equilibrium calculations on system of fuel and FPs by using ChemSage program. A stoichiometric MOX containing 6.1 wt. percent PuO 2 was taken as a loading fuel. The variation of chemical states of FPs was calculated as a function of oxygen potential. Some pieces of information obtained by the calculation were compared with the results of the post-irradiation examination (PIE) of UO 2 fuel. It was confirmed that the multicomponent and multiphase thermodynamic equilibrium calculation between fuel and FPs system was an effective tool for understanding the behavior of FPs in fuel. (author)

  1. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    International Nuclear Information System (INIS)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10 -5 %, of chlorine- 1x10 -4 % in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10 -4 - nx10 -3 mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine [ru

  2. Methods for analysis of uranium-plutonium mixed fuel and transplutonium elements at RIAR (Preprint no. IT-25)

    International Nuclear Information System (INIS)

    Timofeev, G.A.

    1991-02-01

    Different methods for analysis of the uranium-plutonium mixed nuclear fuel and transplutonium elements are briefly discussed in this paper: coulometry, radiometric techniques, emission spectrography, mass-spectrometry, chromatography, spectrophotometry. The main analytical characteristics of the methods developed are given. (author). 30 refs., 2 tabs

  3. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S. [Department of Chemistry, University of North Texas, Denton, Texas 76203-5017 (United States); Nelin, Connie J. [Consulting and Services, 6008 Maury' s Trail, Austin, Texas 78730 (United States); Ilton, Eugene S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2013-12-28

    A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.

  4. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    Science.gov (United States)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    2013-12-01

    A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.

  5. A Preliminary Study for Development of Amidoxime-functionalized Silica Adsorbents for Uranium(IV) Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minseok; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    4 billion tons of uranium, which can supply the electricity for tens of thousands of years, is contained in seawater. Therefore, development of techniques for uranium sequestering from the ocean has been regarded as a great challenging for making nuclear energy to be more economical and sustainable. Despite the inexhaustible uranium resource, it is still hard to produce uranium economically from seawater due to its extremely low level of concentration (3.0 μg/L) and stable complex chemical formation, UO{sub 2}(CO3)34-. Various methods for uranium extraction from seawater have been suggested such as precipitation, solvent extraction, ion exchange, adsorption and etc. The most preferred method for extracting uranium is adsorption due to ease of separation from the liquid phase, environment friendliness and cost-effectiveness. Organic or inorganic solids functionalized with amidoxime (AO, -R-C(NH2)=NOH) groups, which has high affinity to uranium species, is the one of candidate material for uranium adsorbents. For long-term nuclear power generation, developing uranium extraction technologies from seawater has been a crucial issue. AO-based adsorbent has been considered as the most effective methods for uranium extraction from seawater, and collaboration with nanotechnology has been tried to enhance the traditional adsorbents, recently. Despite the attempts, most AO-based adsorbents were suffered from complexation of uranyl ions with carbonate ions and under the effect of pH. To achieve more efficient uranium uptake, bi-functionalized mesoporous silica with AO group and acidic groups was chosen as a model for this study.

  6. Stability constants of mixed ligand complexes of dioxouranium(II) and thorium(IV) with complexones and isomeric alanines

    International Nuclear Information System (INIS)

    Singh, R.K.; Saxena, M.C.

    1992-01-01

    The present work reports on the stability sequence between UO 2 II and Th IV ions for their mixed ligands complexes with the two isomeric alanines, α-alanine (α-ala) and β-alanine (β-ala) containing a complexone as primary ligand. The complexones used are iminodiacetate (IMDA), nitrilotricetate (NTA), 2-hydroxyethylenediaminetriacetate (HEDTA), ethylenediaminetetraacetate (EDTA), 1,2-diaminocyclohexanetraacetate (CDTA) and diethylenetriminepentaacetate (DTPA). (author). 9 refs., 1 tab

  7. Synthesis and structure determination of a stable organometallic uranium(V) imine complex and its isolobal anionic U(IV)-ate complex

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.; Botoshanskii, M.; Eisen, M.S. [Schulich Faculty of Chemistry, and Institute of Catalysis Science and Technology, Technion Israel Institute of Technology, Haifa (Israel); Bannenberg, Th.; Tamm, M. [Institut fur Anorganische und Analytische Chemie, Technische Universitat Braunschweig (Germany)

    2010-06-15

    The reaction of one equivalent of Cp*{sub 2}UCl{sub 2} with 2-(trimethylsilyl-imino)-1,3-di-tert-butyl-imidazoline in boiling toluene afforded a one electron oxidation of the uranium metal and the opening of the N-heterocyclic ring, resulting in the formation of an organometallic uranium(V) imine complex. This complex crystallized with one molecule of toluene in the unit cell, and its solid-state structure was determined by X-ray diffraction analysis. When the same reaction was performed in perdeuterated toluene, a myriad of organometallic complexes were obtained, however, when equimolar amounts of water were used in toluene, the same complex was obtained, and its solid state characterization shows two independent molecules in the unit cell with an additional water molecule. For comparison of the geometric parameters, the corresponding isolobal anionic uranium(IV) complex [Cp*{sub 2}UCl{sub 3}]{sup -} was synthesized by the reaction of Cp*{sub 2}UCl{sub 2} with 1,3-di-tert-butyl-imidazolium chloride, and the resulting U(IV)-ate complex was characterized by X-ray diffraction analysis. (authors)

  8. Heat capacity measurements and XPS studies on uranium-lanthanum mixed oxides

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Mittal, V.K.; Babu, R.; Senapati, Abhiram; Bera, Santanu; Nagarajan, K.

    2011-01-01

    Research highlights: → Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. → Enthalpy increment measurements were carried out on the above solid solution using high temperature drop calorimetry in the temperature range 800-1800 K. → Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). → The anomalous increase in the heat capacity is attributed to certain thermal excitation process namely Frenkel pair defect of oxygen. → From the XPS investigation, it is observed that the O/M ratio at the surface is higher than that to the bulk. → In uranium rich mixed oxide samples, the surface O/M is greater than 2 whereas that in La rich mixed oxides, it is less than 2, though the bulk O/M in all the samples are less than 2. - Abstract: Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. Enthalpy increment measurements were carried out on the above solid solutions using high temperature drop calorimetry in the temperature range 800-1800 K. Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). Oxygen to metal ratios of (U 1-y La y )O 2±x were estimated from the ratios of different chemical states of U present in the sample. Anomalous increase in the heat capacity is observed for (U 1-y La y )O 2±x (y = 0.4, 0.6 and 0.8) with onset temperatures in the range of 1000-1200 K. The anomalous increase in the heat capacity is attributed to certain thermal excitation process, namely, Frenkel pair defect of oxygen. The heat capacity value of (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) at 298 K are 65.3, 64.1, 57.7, 51.9 J K -1 mol -1 , respectively. From the XPS investigations

  9. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  10. Reactions of uranium (III) and (IV) compounds with ketones, nitriles and acid chlorides. Towards a use of uranium complexes in organic synthesis

    International Nuclear Information System (INIS)

    Adam, Raymond

    1993-01-01

    In this research thesis, the author shows that various organic molecules can be interestingly transformed into uranium complexes with degrees of oxidation of +3 or +4. In a first part, the author describes reactions of carbonyl compounds with the UCl 4 -Na(Hg) reducing system. Then, he addresses reductions of ketones, nitriles and acid chlorides by a uranium (III) complex: Cp 3 U(THF). The third part reports a detailed study of the reduction of ketones by U(BH 4 ) 4 [fr

  11. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  12. Analysis of the Δ(X) - L intervalley mixing in group-IV heterostructures

    Science.gov (United States)

    Kiselev, A. A.; Kim, K. W.; Yablonovitch, E.

    2005-06-01

    We provide a treatment of the problem of Δ(X) - L intervalley mixing in differently oriented SiGe heterostructures in the transparent effective mass method. Mixing potentials can be calculated, considering changes in the constituent Concentrations of individual heterolayers from some "virtual crystal level" as a bunch of microscopic single-ion perturbations. Strong mixing between lowest localized Δ and L states can be achieved in (113) structures, making them favorable for the electrically controlled gigantic intervalley g factor modulation. We provide estimates for the mixing potential and further consider limitations related to the strength of the in-plane localization and quality of the interface.

  13. Off gas processing device for degreasing furnace for uranium/plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ueda, Masaya; Akasaka, Takayuki; Noura, Takeshi.

    1996-01-01

    A low melting ingredient capturing-cooling trap connected to a degreasing sintering furnace by way of sealed pipelines, a burning/decomposing device for decomposing high melting ingredient gases discharged from the cooling trap by burning them and a gas sucking means for forming the flow of off gases are contained in a glovebox, the inside pressure of which is kept negative. Since the degreasing sintering furnace for uranium/plutonium mixed oxide fuels is disposed outside of the glovebox, operation can be performed safely without greatly increasing the scale of the device, and the back flow of gases is prevented easily by keeping the pressure in the inside of the glovebox negative. Further, a heater is disposed at the midway of the sealed pipelines from the degreasing sintering furnace to the cooling trap, the temperature is kept high to prevent deposition of low melting ingredients to prevent clogging of the sealed pipelines. Further, a portion of the pipelines is made extensible in the axial direction to eliminate thermal stresses caused by temperature change thereby enabling to extend the life of the sealed pipelines. (N.H.)

  14. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  15. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fisher, S.E.

    1999-01-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option

  16. Present status of uranium-plutonium mixed carbide fuel development for LMFBRs

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi

    1984-01-01

    The feature of carbide fuel is that it has the doubling time as short as about 13 years, that is, close to one half as compared with oxide fuel. The development of the carbide fuel in the past 10 years has been started in amazement. Especially in the program of new fuel development in USA started in 1974, He and Na bond fuel attained the burnup of 16 a/o without causing the breaking of cladding tubes. In 1984, the irradiation of the assembly composed of 91 fuel pins in the FFTF is expected. On the other hand in Japan, the fuel research laboratory was constructed in 1974 in the Oarai Laboratory, Japan Atomic Energy Research Institute, to carry out the studies on carbide fuel. In the autumn of 1982, two carbide fuel pins with different chemical composition have been successfully made. Accordingly, the recent status of the development is explained. The uranium-plutonium mixed carbide fuel is suitable to liquid metal-cooled fast breeder reactors because of large heat conductivity and the high density of nuclear fission substances. The thermal and nuclear characteristics of carbide fuel, the features of the reactor core using carbide fuel, the chemical and mechanical interaction of fuel and cladding tubes, the selection of bond materials, the manufacturing techniques for the fuel, the development of the analysis code for fuel behavior, and the research and development of carbide fuel in Japan are described. (Kako, I.)

  17. Irradiated uranium reprocessing, Final report - I-IV, Part I; Prerada ozracenog urana, Zavrsni izvestaj- I-VI, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This volume of the final report describes the construction and functioning of the cell for dissolving the irradiated uranium. Annexes of this report describe the parts of the cell as follows: description of the metal frame, grid and stainless steel plate; container for irradiated uranium; small opening of the cell; vessel for dissolving; device for opening the cover; device for sampling of the radioactive solution, inner and outer parts; pneumatic taps.

  18. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  19. Contribution to the characterization of the ideality deviation of concentrated solutions of electrolytes: application to the case plutonium and uranium (IV) nitrates

    International Nuclear Information System (INIS)

    Charrin, N.

    1999-01-01

    The purpose of this work is to establish a base of binary data referring to the plutonium and uranium nitrates (IV) activity coefficients, which will permit to take account the medium effects in the process of liquid-liquid extraction set in action during the reprocessing of irradiated combustibles in a more scrupulous way. The first chapter sticks to establish the problematic of acquisition of actinides binary data at an oxidation state (IV) linked to two characteristics of this type of electrolyte its radioactive properties and its chemical properties. Its chemical properties bring us to define the fictitious binary data and to use an approach based on the thermodynamic concept of simple solutions, on the measurements of water activity of ternary or quaternary mixtures of the actinide, in nitric acid medium and on the binary data of nitric acid. The second chapter intended to propose reliable binary data concerning nitric acid. The validation of acquisition of fictitious binary data method suggested is undertaken. The electrolyte test is the thorium nitrate (IV). The very encouraging results has determined the carrying out of this work of research in that way. The third chapter is based on the experimental acquisition of uranium and plutonium nitrates (IV) binary data. It emphasises the importance given to the preparation of the studied mixtures which characteristics, very high actinide concentrations and low acidities, make them atypical solutions and without any referenced equivalents. The last chapter describes the exploitation which was made of the established binary data. The characteristic parameters of Pu(NO 3 ) 4 and U(NO 3 ) 4 of Pitzer model and of the specific interaction theory has been appraised. Then the application of' the concept of simple solutions to the calculation of the density or quaternary mixtures like Pu(NO 3 ) 4 / UO 2 (NO 3 ) 2 /HNO 3 / H 2 O was proposed. (author)

  20. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K.

    2001-01-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO 2 -UO 2 ) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign

  1. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    International Nuclear Information System (INIS)

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-01-01

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within ±1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the ±2% to ±10% range, or ±20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the 252 Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms

  2. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  3. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  4. Dissolution of thorium/uranium mixed oxide in nitric acid-hydrofluoric acid solution

    International Nuclear Information System (INIS)

    Filgueiras, S.A.C.

    1984-01-01

    The dissolution process of thorium oxide and mixed uranium-thorium oxide is studied, as a step of the head-end of the fuel reprocessing. An extensive bibliography was analysed, concerning the main aspects of the system, specially the most important process variables. Proposed mechanisms and models for the thorium oxide dissolution are presented. The laboratory tests were performed in two phases: at first, powdered thoria was used as the material to be dissolved. The objective was to know how changes in he concentrations of the dissolvent solution components HNO 3 , HF and Al(NO 3 ) 3 affect the dissolution rate. The tests were planned according to the fractional factorial method. Thes results showed that it is advantageous to work with powdered material, since the reaction occurs rapidly. And, if the Thorex solution (HNO 3 13M, HF 0.05M and Al(NO 3 ) 3 0.10M) is a suitable dissolvent, it was verified that it is possible to reduce the concentration of either nitric or fluoridric acid, without reducing the reaction rate to an undesirable value. It was also observed significant interaction between the components of the dissolvent solution. In the second phase of the tests, (Th, 5%U)O 2 sintered pellets were used. The main goals were to know the pellets dissolution behaviour and to compare the results for different pellets among themselves. It was observed that the metallurgical history of the material strongly influences its dissolution, specially the density and the microstructure. It was also studied how the (Th,U)O 2 mass/Thorex solution volume ratio affects the time needed to obtain an 1 M Th/liter solution. The activation energy for the reaction was obtained. (Author) [pt

  5. Expanding the family of uranium(III) alkyls. Synthesis and characterization of mixed-ligand derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Ellen M.; Kiernicki, John J.; Fanwick, Phillip E.; Bart, Suzanne C. [Department of Chemistry, Purdue University, West Lafayette, IN (United States)

    2016-06-15

    The generation of uranium(III) alkyls supported by hydrotris(pyrazolyl)borate (Tp) and pentamethylcyclopentadienyl (Cp*) ligands is reported. Mixed ancillary ligand frameworks were synthesized by treating TpUI{sub 2}(THF){sub 3} (1) and Cp*UI{sub 2}(THF){sub 3} with potassium hydrotris(pyrazolyl)borate salts. Addition of one equivalent of potassium hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) generated TpTp*UI (2), while treatment of Cp*UI{sub 2}(THF){sub 3} with either KTp or KTp* resulted in the respective formation of Cp*TpUI(THF) (3) or Cp*Tp*UI(THF) (4). Alkylation of 2 with KCH{sub 2}Ph or NaCH{sub 2}SiMe{sub 3} furnished TpTp*UCH{sub 2}Ph (2-CH{sub 2}Ph) or TpTp*UCH{sub 2}SiMe{sub 3} (2-CH{sub 2}SiMe{sub 3}). Similarly, treatment of 3 with NaCH{sub 2}SiMe{sub 3} formed Cp*TpUCH{sub 2}SiMe{sub 3} (3-CH{sub 2}SiMe{sub 3}), whereas treatment of 4 with KCH{sub 2}Ph generated Cp*Tp*UCH{sub 2}Ph (4-CH{sub 2}Ph). All compounds were characterized by multinuclear NMR, IR, and electronic absorption spectroscopy. Compounds 2-CH{sub 2}Ph, 3, and 3-CH{sub 2}SiMe{sub 3} were structurally characterized using X-ray crystallography as well. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Processing Pa-Lua Uranium ore by Mixing and Curing with Sulfuric Acid on a Scale of 500 kg/Batch to Recover Yellowcake

    International Nuclear Information System (INIS)

    Le Quang Thai; Cao Hung Thai; Le Thi Kim Dung; Phung Vu Phong; Tran Van Son

    2007-01-01

    Uranium ore in Pa-Lua area is sandstone with different levels of weathering. This kind of ore contains calcium and clay that may cause clogs during heap leaching. In this study, a technique of mixing and curing with strong acids is used and followed by washing to recover uranium. This study also focuses on study of ore processing issues such as crushing, regenerating particles in fine ores, mixing, curing and washing. The leach solution is treated by ion-exchange and precipitation of products by NH 4 OH. The experiment results show that regenerating a portion of fine ores, mixing and curing help washing residues in the column more effectively. Flow rate of the input solution can be controllable and stable. Columns do not clog even when washing takes place in the ore column of 5 meters high. Efficiency of uranium recovery can reach to 85-90%. Products of technical uranium are obtained with high quality. (author)

  7. Sorption behaviour of uranium and thorium on hydrous tin oxide from aqueous and mixed-solvent HNO3 media

    International Nuclear Information System (INIS)

    Misak, N.Z.; Salama, H.N.; El-Naggar, I.M.

    1983-01-01

    In aqueous nitric acid, uranyl and thorium ions seem to be sorbed on hydrous tin oxide mainly by a cation exchange mechanism. In 10 - 3 M aqueous solutions, the hydrous oxide prefers thorium to uranium at the relative low pH values, while the reverse is true at the higher pH values. The exchange of uranium is particle diffusion controlled while that of thorium is chemically controlled, and the isotherms point to the presence of different-energy sites in the hydrous oxide. Except for the solutions containing 80% of methanol, ethanol, or acetone, cation exchange is probably still the main mechanism of sorption of uranium. Anionic sorption of thorium seems to occur in all the mixed-solvent solutions and is perhaps the main mechanism in 80% ethanol. The equilibrium distribution coefficient K sub (d) increases almost in all cases with organic solvent content, probably due to dehydration of sorbed ions and to increasing superposition on anionic sorption. Unlike the aqueous medium, large U/Th separation factors are achieved in many of the mixed-solvent solutions and separation schemes are suggested. (Authors)

  8. Energy from the west: energy resource development systems report. Volume IV: uranium. Final report, 1975-1978

    International Nuclear Information System (INIS)

    White, I.L.; Chartock, M.A.; Leonard, R.L.; Ballard, S.C.; Gilliland, M.

    1979-01-01

    This report describes the technologies likely to be used for development of uranium resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, outputs, residuals, energy requirements, economic costs, and resource specific state and federal laws and regulations

  9. The spectrographic analysis of plutonium oxide or mixed plutonium oxide/uranium oxide fuel pellets by the dried residue technique

    International Nuclear Information System (INIS)

    Jarbo, G.J.; Faught, P.; Hildebrandt, B.

    1980-05-01

    An emission spectrographic method for the quantitative determination of metallic impurities in plutonium oxide and mixed plutonium oxide/uranium oxide is described. The fuel is dissolved in nitric acid and the plutonium and/or uranium extracted with tributyl phosphate. A small aliquot of the aqueous residue is dried on a 'mini' pyrolitic graphite plate and excited by high voltage AC spark in an oxygen atmosphere. Spectra are recorded in a region which has been specially selected to record simultaneously lines of boron and cadmium in the 2nd order and all the other elements of interest in the 1st order. Indium is used as an internal standard. The excitation of very small quantities of the uraniumm/plutonium free residue by high voltage spark, together with three separate levels of containment reduce the hazards to personnel and the environment to a minimum with limited effect on sensitivity and accuracy of the results. (auth)

  10. Physical characteristics and solubility of long-lived airborne particulates in uranium producing and manufacturing facilities Phase IV - Part III

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, D.C.

    1995-08-01

    The rates of dissolution in simulated lung fluid of uranium, thorium-230, radium-226 and lead-210 from six aerosol samples associated with mining operations at Cluff Lake, Saskatchewan were determined. Parallel studies were carried out for uranium aerosol samples collected directly on open-face filters at the Port Hope refinery and from four aerosol samples generated in the laboratory from yellowcake dusts obtained from the Blind River mill in Ontario. Bulk dusts were collected from surfaces in workplace locations. These dusts were resuspended in the laboratory and collected on glass fibre substrates using cascade impactor sampling methods. Two particle size fractions, less than 7 microns and 7-10 microns were collected. In all, 18 samples were subjected to parallel extractions by simulated lung fluid under continuous flow, at 37 deg C at pH 7.4, over a period of 66 days. For each extraction, 10 lung fluid fractions were collected at predetermined intervals and analyzed for uranium to estimate uranium dissolution rates as a function of time. For the Cluff Lake ore dust samples, analyses and dissolution rates estimates for thorium-230, radium-226 and lead-210 were also performed. The samples taken from Cluff Lake were found to be relatively insoluble. Uranium dissolution rates of about 20% were measured over 66 days. No measurable Th-228 dissolution was found during the experiments. Ra-226 and Pb-210 were most soluble as a fine particulate (less than 7 μm), with complete dissolution for some samples. Aerosol samples from Blind River and Port Hope were more readily soluble (complete dissolution over 66 days). The Blind River aerosols dissolved more slowly than the Port Hope aerosols. In both cases, the majority of the dissolution occurred within the first week. There was no effect of particle size on dissolution rate. (author). 12 refs., 6 tabs., 1 fig

  11. Inverse break-through investigation on uranium isotope separation in the system Fe(III) water-glycerine solution-U(IV) cathionic resin

    International Nuclear Information System (INIS)

    Murgulescu, Sanda; Calusaru, A.

    1977-01-01

    When a solution containing ferric ions passes on cationic resin in U(IV) form, the substitution of uranium by iron is preceded by oxydation of U(IV) to U(VI). During the contact of U(VI) in solution with U(IV) in resin, an exchange reaction occurs, in which 235 U is slightly concentrated in solution and 238 U in resin phase. Since increase of temperature accelerates the exchange reaction, the apparent thermodynamic values of the exchange reaction were calculated, by taking into account the variation of the apparent equilibrium constant as a function of the reciprocal value of the temperature. The corresponding thermodynamic values in both pure aqueous and water-glycerine solution are: ΔH 0 =6.45 cal.mol -1 and ΔS 0 =21.6x10 -3 cal. 0 K -1 . The use of glycerine containing solutions offers the important advantage to increase the stability versus hydrolysis of the ferric ions even at higher temperature

  12. The hydrolysis of thorium dicarbide and of mixed uranium-thorium dicarbides

    International Nuclear Information System (INIS)

    Del Litto, B.

    1966-09-01

    The hydrolysis of thorium dicarbide leads to the formation of a complex mixture of gaseous and condensed carbon hydrides. The temperature, between 25 and 100 deg. C, has no influence on the nature and composition of the gas phase. The reaction kinetics, however, are strongly temperature dependent. In a hydrochloric medium, an enrichment in hydrogen of the gas mixture is observed. On the other hand a decrease in hydrogen and an increase in acetylene content take place in an oxidizing medium. The general results can be satisfactorily interpreted through a reaction mechanism involving C-C radical groups. In the same way, the hydrolysis of uranium-thorium-carbon ternary alloys leads to the formation of gaseous and condensed carbon hydrides. The variation of the composition of the gas phase versus uranium content in the alloy suggests an hypothesis about the carbon-carbon distance in the alloy crystal lattice. The variation of methane content, on the other hand, has lead us to discuss the nature of the various phases present in uranium-carbon alloys and carbon-rich uranium-thorium-carbon alloys. We have reached the conclusion that these alloys include a proportion of monocarbide which is dependent upon the ratio. Th/(Th + U). We put forward a diagram of the system uranium-carbon with features proper to explain some phenomena which have been observed in the uranium-thorium-carbon ternary diagram. (author) [fr

  13. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    Science.gov (United States)

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  14. Haematological malignancies in childhood in Croatia: Investigating the theories of depleted uranium, chemical plant damage and 'population mixing'

    International Nuclear Information System (INIS)

    Labar, B.; Rudan, I.; Ivankovic, D.; Biloglav, Z.; Mrsic, M.; Strnad, M.; Fucic, A.; Znaor, A.; Bradic, T.; Campbell, H.

    2004-01-01

    Some of potential causes proposed to explain the reported increase of haematological malignancies in childhood during or after the war period in several countries include depleted uranium, chemical pollution and population mixing theory. The aim of this study was to define the population of Croatian children aged 0-14 years who were potentially exposed to each of those risks during the war and to investigate any possible association between the exposure and the incidence of haematological malignancies. The authors analyzed the data reported by the Cancer Registry of Croatia during the pre-war period (1986-1990), war period (1991-1995) and post-war period (1996-1999). In the group of 10 counties potentially exposed to depleted uranium and two counties where chemical war damage occurred, no significant difference in incidence of the studied haematological malignancies was noted in comparison to pre-war period. The incidence of lymphatic leukaemia significantly increased in four counties where population mixing had occurred during the war period, supporting the 'mixing theory'. In those counties, the incidence of Hodgkin's lymphoma decreased during and after the war. In Croatia as a whole, decreases in incidence of myeloid leukaemias during war and non-Hodgkin lymphoma after the war were noted

  15. Thermal conductivity of beginning-of-life uranium-plutonium mixed oxide fuel for fast reactor (Interim report)

    International Nuclear Information System (INIS)

    Inoue, Masaki; Mizuno, Tomoyasu; Asaga, Takeo

    1997-11-01

    Thermal conductivity of uranium-plutonium mixed oxide fuel for fast reactor at beginning-of-life was correlated based on the recent results in order to apply to the fuel design and the fuel performance analysis. A number of experimental results of unirradiated fuel specimens were corrected from open literatures and PNC internal reports and examined for the database. In this work two porosity correction factors were needed for high density fuel and low density fuel (around the current Monju specification). The universal porosity correction factor was not determined in this work. In the next step, theoretical and analytical considerations should be taken into account. (J.P.N.)

  16. Selective oxidation of propene on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony

    International Nuclear Information System (INIS)

    Pendleton, P.; Taylor, D.

    1976-01-01

    Propene + 18 0 2 reactions have been studied in a static reaction system on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony. The [ 16 0] acrolein content of the total acrolein formed and the proportion of 16 0 in the oxygen of the carbon dioxide by-product have been determined. The results indicate that for each catalyst the lattice is the only direct source of the oxygen in the aldehyde, and that lattice and/or gas phase oxygen is used in carbon dioxide formation. Oxygen anion mobility appears to be greater in the molybdate catalyst than in the other two. (author)

  17. Fabrication of uranium-plutonium mixed nitride fuel pins (88F-5A) for first irradiation test at JMTR

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Iwai, Takashi; Arai, Yasuo; Sasayama, Tatsuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko; Handa, Muneo

    1990-07-01

    A couple of uranium-plutonium mixed nitride fuel pins was fabricated for the first irradiation tests at JMTR for the purpose of understanding the irradiation behavior and establishing the feasibility of nitride fuels as advanced FBR fuels. The one of the pins was fitted with thermocouples in order to observe the central fuel temperature. In this report, the fabrication procedure of the pins such as pin design, fuel pellet fabrication and characterizations, welding of fuel pins, and inspection of pins are described, together with the outline of the new TIG welder installed recently. (author)

  18. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  19. Sorption of Uranium(VI) and Thorium(IV) ions from aqueous solutions by nano particle of ion exchanger SnO2

    International Nuclear Information System (INIS)

    Nilchi, A.; Rasouli Garmarodi, S.; Shariati Dehaghan, T.

    2012-01-01

    Due to the extensive use of nuclear energy and its replacement for fossil fuels in recent decades, the radioactive waste production has increased enormously. The vast majority of the radioactive wastes products, are in the liquid form and consequently their treatment is of great importance. In this paper, tin oxide with nano-structure has been synthesized as an absorbent by the homogenous sedimentation method in the presence of urea, so as to adsorb uranium(VI) and thorium(IV) ions. The results obtained from the XRD, Scanning Electron Microscopy and nitrogen adsorption/ desorption analyses on the tin oxide sample showed the cassiterite structure with an average particle size of 30 nanometer and a specific surface area of 27.5 m 2 /g. The distribution coefficients of uranium and thorium were studied by means of batch method. The effects of different variables such as pH and time of contact between the exchanger and solution were investigated and the optimum conditions for sorption of these ions were determined.

  20. Comparison of physical chemical properties of powders and respirable aerosols of industrial mixed uranium and plutonium oxide fuels

    International Nuclear Information System (INIS)

    Eidson, A.F.

    1982-01-01

    Studies were performed to characterize physical and chemical properties which may be important in determining the metabolism of accidentally released, inhaled aerosols of industrial mixed uranium and plutonium oxide fuels and to compare the properties of bulk powders and the respirable fraction they include. X-ray diffraction measurements showed that analysis of mixed-oxide powders from four process steps served to characterize their respirable fractions. IR spectroscopy was useful as a method to detect organic binders that were not observed by X-ray diffraction methods. Both X-ray diffraction and IR spectroscopy methods can be used in combination to identify the sources of a complex aerosol that might be released from more than one fabrication step. Isotopic distributions in powders and aerosols showed that information important for radiation dose to tissue calculations or Pu lung burden estimates can be obtained by analysis of powders. (U.K.)

  1. Criticality analysis for mixed thorium-uranium fuel in the Angra-2 PWR reactor using KENO-VI

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowski, Caio C.; Gonçalves, Isadora C.; Oliveira, Claudio L.; Vellozo, Sergio O.; Baptista, Camila O., E-mail: wichrowski@ime.eb.br, E-mail: isadora.goncalves@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The increasing energy demand associated to the current sustainability challenges have given the thorium nuclear fuel cycle renewed interest in the scientific community. Studies have focused on energy production in different reactor designs through the fission of uranium 233, the product of thorium fertilization by neutrons. In order to make it possible for near future applications a strategy based on the adaptation of current nuclear reactors for the use of thorium fuels is being considered. In this work, bearing in mind these limitations, a code was used to evaluate the effect on criticality (k{sub inf}) of the mixing of thorium and uranium in different proportions in the fuel of a PWR, the German designed Angra-2 Brazilian reactor in order to scrutinise its behaviour and determine the feasibility of an adapted ThO{sub 2}-UO{sub 2} mixed fuel cycle using current PWR technology. The analysis is performed using the KENO-VI module in the SCALE 6.1 nuclear safety analysis simulation code and the information is taken from the Angra-2 FSAR (Final Security Analysis Report). (author)

  2. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K

    2001-06-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO{sub 2}-UO{sub 2}) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign.

  3. Sorption of uranium on rocks in anaerobic groundwater

    International Nuclear Information System (INIS)

    Hakanen, M.

    1992-12-01

    Spent nuclear fuel contains substantial amounts of long lived isotopes of actinoide elements, the most abundant of which is the oxide from uranium in the fuel matrix. The behaviour of uranium, also present in small concentrations in natural rocks and waters, is redox sensitive. The concentration controlling mechanisms in groundwaters of uranium are not well-known. In this work a series of laboratory experiments was made to study the redox and sorption behaviour of uranium under anaerobic conditions. The experiments indicated that a part of uranium(VI) was reduced to uranium(IV). The sorbed uranium was of mixed oxidation states. The redox potential of water was not an appropriate indicator of the U(IV)/U(VI) ratio. Spiking of the water with the U(IV) was followed by very strong sorption. The derived lower limit (conservative) and the realistic mass distribution ratios (R d ) for U(IV) are 0.7 m 3 /kg and 3.5 m 3 /kg. (orig.)

  4. Example of uranium(IV) insertion within a macrocyclic crown ether with coexistence of the metal in two oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Bombieri, G; De Paoli, G [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Immirzi, A

    1978-01-01

    Reaction of UCl/sub 4/ with 18-crown-6 in tetrahydrofuran yields (UCl/sub 4/)/sub 3/ (18-crown-6)/sub 2/ which on recrystallization in nitromethane, gives a partially oxidized and hydrolyzed product whose structure has been investigated by X-ray diffraction. The compound crystallizes in the orthorhombic system. The cell contains eight UCl/sub 3//sup +/ cations each inserted within a crown molecule and four (UO/sub 2/Cl/sub 3/(OH)(H/sub 2/O))/sup 2 -/anions having a pentagonal bipyramidal structure. Four solvated nitromethane molecules are also present. The compound represents one of the very few examples in which uranium exists in two oxidation states, and the first example in which its insertion within a crown macrocycle has been proved by an X-ray diffraction study.

  5. Irradiation behaviour of mixed uranium-plutonium carbides, nitrides and carbonitrides; Comportement a l'irradiation de carbures, nitrures et carbonitrures mixtes d'uranium et de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mikailoff, H; Mustelier, J P; Bloch, J; Leclere, J; Hayet, L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    In the framework of the research program of fast reactor fuels two irradiation experiments have been carried out on mixed uranium-plutonium carbides, nitrides and carbo-nitrides. In the first experiment carried out with thermal neutrons, the fuel consisted of sintered pellets sheathed in a stainless steel can with a small gap filled with helium. There were three mixed mono-carbide samples and the maximum linear power was 715 W/cm. After a burn-up slightly lower than 20000 MW day/tonne, a swelling of the fuel which had ruptured the cans was observed. In the second experiment carried out in the BR2 reactor with epithermal neutrons, the samples consisted of sintered pellets sodium bonded in a stainless steel tube. There were three samples containing different fuels and the linear power varies between 1130 and 1820 W/cm. Post-irradiation examination after a maximal burn-up of 1550 MW day/tonne showed that the behaviour of the three fuel elements was satisfactory. (authors) [French] Dans le cadre du programme d'etude des conibustiles pour reacteurs rapides, on a realise deux experiences d'irradiation de carbures, nitrures et carbonitrures mixtes d'uranium et de plutonium. Dans la premiere experience, faite en neutrons thermiques, le combustible etait constitue de,pastilles frittees gainees dans un tube d'acier inoxydable avec un faible jeu rempli d'helium. Il y avait trois echantillons de monocarbures mixtes, et la puissance lineaire maximale etait de 715 W/cm. Apres un taux de combustion legerement inferieur a 20 000 MWj/t, on a observe un gonflement des combustible qui a provoque, la rupture des gaines. Pans la seconde experience, realisee dans le reacteur BR2 en neutrons epithermiques, les echantillons etaient constitues de pastilles frittees gainees dans un tube d'acier avec un joint sodium. Il y avait trois echantillons contenant des combustibles differents, et la puissance lineaire variait de 1130 a 1820 W/cm. Les examens apres irradiation a un taux maximal de

  6. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    Science.gov (United States)

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total

  7. Impact of uranium-233/thorium cycle on advanced accountability concepts and fabrication facilities. Addendum 2 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Crandall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to cover the possible fabrication of uranium-233/thorium fuels. Revisions to Phase II of the DYMAC plan which would be necessitated by such a process are specified. These revisions include shielding requirements, measurement systems, licensing conditions, and safeguards considerations. The impact of the uranium/thorium cycle on a large-scale fuel fabrication facility was also reviewed; it was concluded that the essentially higher radioactivity of uranium/thorium feeds would lead to increased difficulties which tend to preclude early commercial application of the process. An amended schedule for Phase II is included

  8. Irradiated uranium reprocessing, Final report I-VI, IV Deo IV - Separation of uranium, plutonium and fission products from the irradiated fuel of the reactor in Vinca; Prerada ozracenog urana. Zavrsni izvestaj - I-VI, IV Deo - Odvajanje urana, plutonijuma i fisionih produkata iz isluzenog goriva reaktora u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This study describes the technology for separation of uranium, plutonium and fission products from the radioactive water solution which is obtained by dissolving the spent uranium fuel from the reactor in Vinca. The procedure should be completed in a hot cell, with the maximum permitted activity of 10 Ci.

  9. Multinuclear NMR spectroscopy of the tetrahedral uranium(IV) complex U(BH3CH3)4

    International Nuclear Information System (INIS)

    Gamp, E.; Shinomoto, R.; Edelstein, N.; McGarvey, B.R.

    1987-01-01

    The temperature dependence of the 1 H, 11 B, and 13 C NMR spectra of T/sub d/ U(BH 3 CH 3 ) 4 in solution is reported. The paramagnetic shifts are interpreted as originating purely from spin delocalization mechanisms with no contribution from the metal-orbital dipolar interaction. It is shown that the temperature dependence of both 1 H shifts (bridging and terminal protons) is identical with that calculated from a polarization theory which assumes the shift is proportional to the average value of electron spin in the inner 5f orbitals. The proportionality constant is -5.64 MHz for the bridging protons and -0.59 MHz for the terminal protons. The temperature dependences of 11 B and 13 shifts are found to depart significantly from that predicted by the polarization theory with the largest deviations shown by the 11 B shifts. It is shown how those deviations can be accounted for by postulating a second spin delocalization through direct covalency involving molecular orbitals formed from the uranium 5f orbitals and ligand s and p orbitals. 29 references, 4 figures, 3 tables

  10. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    Science.gov (United States)

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  11. Determination of free acid in highly concentrated organic and aqueous solutions of plutonium (IV) and uranium (VI) nitrate

    International Nuclear Information System (INIS)

    Wagner, J.F.; Lacour, J.L.

    1989-01-01

    Free acidity is an important parameter in the nuclear reprocessing control. The accuracy on the determination of free acidity is not really required in the nuclear reprocessing control itself but is necessary for certain types of analysis such as spectrophotometry (Pu (VI), Am (III),...), density determinations. A new titripotentiometric method for free acidity determination in concentrated U(VI) and Pu(IV) solutions is presented. This method is based on the complexing properties of dipicolinic acid (pyridine 2.6 dicarboxylic acid) and medium effect with H 2 O/DMSO mixture. This method can be used either in organic or aqueous phases with ratio /H + I/ metal ≥ 5.10 -2 and a relative standard deviation of 1%

  12. A contribution to the study of the mixed uranium-plutonium mono-carbides containing small quantities of zirconium

    International Nuclear Information System (INIS)

    Bocker, S.

    1970-03-01

    We have studied a mixed monocarbide, type (U,Pu)C, containing small additions of zirconium for the application as a fast neutron reactor fuel. A preliminary study was conducted on the (U,Zr)C monocarbide (Report CEA-R-3765(1). It was found that small additions of zirconium to the uranium-plutonium monocarbide improve a number of properties such as atmospheric corrosion, the hardness, and particularly the compatibility with 316 stainless steel. However, properties such as the coefficient of expansion and the melting point are only slightly changed. The relative percentage of Pu/U+Pu in the monocarbide was fixed at 20 per cent. Two processes of fabrication were employed: casting in an arc furnace, sintering, carried out after having the hydrides of the metals carburized. The metallurgical results indicate, that the above mentioned fuel might be of interest for fast neutron reactor application. (author) [fr

  13. Theoretical studies on the stopping power of deuterium-tritium mixed with uranium plasmas for α particles

    International Nuclear Information System (INIS)

    Wang, Zhigang; Fu, Zhen-Guo; Zhang, Ping

    2014-01-01

    The stopping power of a compressed and highly ionized deuterium-tritium (DT) and uranium (U) plasma for α particles at very high temperatures (T = 5 keV) is examined theoretically with the dimensional continuation method. We show that with increasing density of U, both the magnitude and width of the resonance peak in the stopping power (as a function of the α particle energy), increases because of the ions, while the penetration distance of the α particles decreases. A simple relation of decreasing penetration distance as a function of plasma density is observed, which may be useful for inertial confinement fusion experiments. Moreover, by comparing the results with the case of a DT plasma mixed with beryllium, we find that the effect of a higher Z plasma is stronger, with regard to energy loss as well as the penetration distance of α particles, than that of a lower Z plasma

  14. Post-irradiation examinations of uranium-plutonium mixed nitride fuel irradiated in JMTR (89F-3A capsule)

    International Nuclear Information System (INIS)

    Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Arai, Yasuo; Kimura, Yasuhiko; Nagashima, Hisao; Sekita, Noriaki

    2000-03-01

    Two helium-bonded fuel pins filled with uranium-plutonium mixed nitride pellets were encapsulated in 89F-3A and irradiated in JMTR up to 5.5% FIMA at a maximum linear power of 73 kW/m. The capsule cooled for ∼5 months was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in the irradiated fuel pins. Very low fission gas release rate of about 2 ∼ 3% was observed, while the diametric increase of fuel pin was limited to ∼0.4% at the position of maximum reading. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellet. (author)

  15. Determination of uranium and plutonium by sequential potentiometric titration

    International Nuclear Information System (INIS)

    Kato, Yoshiharu; Takahashi, Masao

    1976-01-01

    The determination of uranium and plutonium in mixed oxide fuels has been developed by sequential potentiometric titration. A weighed sample of uranium and plutonium oxides is dissolved in a mixture of nitric and hydrofluoric acids and the solution is fumed with sulfuric acid. After the reduction of uranium and plutonium to uranium(IV) and plutonium(III) by chromium(II) sulfate, 5 ml of buffer solution (KCl-HCl, pH 1.0) is added to the solution. Then the solution is diluted to 30 ml with water and the pH of the solution is adjusted to 1.0 -- 1.5 with 1 M sodium hydroxide. The solution is stirred until the oxidation of the excess of chromium(II) by air is completed. After the removal of dissolved oxygen by bubbling nitrogen through the solution for 10 minutes, uranium (IV) is titrated with 0.1 N cerium(IV) sulfate. Then, plutonium is titrated by 0.02 N cerium(IV) sulfate. When a mixture of uranium and plutonium is titrated with 0.1 N potassium dichromate potentiometrically, the potential change at the end point of plutonium is very small and the end point of uranium is also unclear when 0.1 N potassium permanganate is used as a titrant. In the present method, nitrate, fluoride and copper(II) interfere with the determination of plutonium and uranium. Iron interferes quantitatively with the determination of plutonium but not of uranium. Results obtained in applying the proposed method to 50 mg of mixtures of plutonium and uranium ((7.5 -- 50))% Pu were accurate to within 0.15 mg of each element. (auth.)

  16. Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995

    International Nuclear Information System (INIS)

    1996-07-01

    A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil

  17. (NH4)[V1-xIIIVxIV(AsO4)F1-xOx]: A new mixed valence vanadium(III,IV) fluoro-arsenate with ferromagnetic interactions and electronic conductivity

    International Nuclear Information System (INIS)

    Berrocal, Teresa; Mesa, Jose L.; Pizarro, Jose L.; Bazan, Begona; Ruiz de Larramendi, Idoia; Arriortua, Maria I.; Rojo, Teofilo

    2009-01-01

    A new mixed valence vanadium(III,IV) fluoro-arsenate compound, with formula (NH 4 )[V 1-x III V x IV (AsO 4 )F 1-x O x ] and KTP structure-type, has been synthesized by mild hydrothermal techniques. The crystal structure has been solved from single crystal X-ray diffraction data in the Pna2 1 orthorhombic space group. The unit-cell parameters are a=13.196(2) A, b=6.628(1) A and c=10.7379(7) A with Z=8. The final R factors were R1=0.0438 and wR2=0.0943 [all data]. The crystal structure consists of a three-dimensional framework formed by (V III,IV O 4 F 2 ) octahedra and (AsO 4 ) 3- tetrahedra arsenate oxoanions. The vanadium(III,IV) cations, from the (V III,IV O 4 F 2 ) octahedra, are linked through the fluorine atoms giving rise to zigzag chains. The ammonium cations are located in the cavities of the structure compensating the anionic charge of the [V 1-x III V x IV (AsO 4 )F 1-x O x ] - inorganic skeleton. The thermal stability limit of the phase is 345 deg. C, around to this temperature the ammonium cation and fluoride anion are lost. The IR spectrum shows the characteristic bands of the (NH 4 ) + and (AsO 4 ) 3- ions. Magnetic measurements indicate the existence of weak ferromagnetic interactions. Electronic conductivity, via a hopping mechanism, occurs with an activation energy of 0.66 eV. - Graphical abstract: Polyhedral view of the crystal structure of (NH 4 )[V III 1-x V IV x (AsO 4 )F 1-x O x

  18. Hydrothermal preparation of nickel(II)/uranium(IV) fluorides with one-, two-, and three-dimensional topologies.

    Science.gov (United States)

    Bean, Amanda C; Sullens, Tyler A; Runde, Wolfgang; Albrecht-Schmitt, Thomas E

    2003-04-21

    A modified compositional diagram for the reactions of Ni(C(2)H(3)O(2))(2).4H(2)O with UO(2)(C(2)H(3)O(2))(2).2H(2)O and HF in aqueous media under mild hydrothermal conditions (200 degrees C) has been completed to yield three Ni(II)/U(IV) fluorides, Ni(H(2)O)(4)UF(6).1.5H(2)O (1), Ni(2)(H(2)O)(6)U(3)F(16).3H(2)O (2), and Ni(H(2)O)(2)UF(6)(H(2)O) (3). The structure of 1 consists of one-dimensional columns constructed from two parallel chains of edge-sharing dodecahedral [UF(8)] units. The sides of the columns are terminated by octahedral Ni(II) units that occur as cis-[Ni(H(2)O)(4)F(2)] polyhedra. In contrast, the crystal structure of 2 reveals a two-dimensional Ni(II)/U(IV) architecture built from edge-sharing tricapped trigonal prismatic [UF(9)] units. The top and bottom of the sheets are capped by fac-[Ni(H(2)O)(3)F(3)] octahedra. The structure of 3 is formed from [UF(8)(H(2)O)] tricapped trigonal prisms that edge share with one another to form one-dimensional chains. These chains are then joined together into a three-dimensional network by corner sharing with trans-[Ni(H(2)O)(2)F(4)] octahedra. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 14.3383(8) A, b = 15.6867(8) A, c = 8.0282(4) A, Z = 8; 2, hexagonal, space group P6(3)/mmc, a = 7.9863(5) A, c = 16.566(1) A, Z = 2; 3, monoclinic, space group C2/c, a = 12.059(1) A, b = 6.8895(6) A, c = 7.9351(7) A, beta = 92.833(2) degrees, Z = 4.

  19. Stabilization of mixed carbides of uranium-plutonium by zirconium. Part 1.: uranium carbide with small additions of zirconium; Etude de la stabilisation des carbures mixtes d'uranium et de plutonium par addition de zirconium. 1. partie: etude des carbures d'uranium avec de faibles additions de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bocker, S [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    Cast carbide samples, being of a high density and purity, are preferable for research purposes, to samples produced by powder metallurgy methods. Samples of uranium carbide with small additions of zirconium (1 to 5 per cent) were cast, as rods, in an arc furnace. A single phase carbide with interesting qualities was produced. As cast, a dendrite structure is observed, which does not disappear, after a treatment at 1900 deg. C during 110 hours. In comparison with uranium monocarbide the compatibility with stainless steel is much improved. The specific heat (between room temperature and 2500 deg. C) is similar to the specific heat of uranium monocarbide. A study of these mixed carbides, but having a part of the uranium replaced by plutonium is under way. (author) [French] Les echantillons de monocarbures obtenus par coulee sont tres interessants pour les recherches experimentales a cause de leur grande purete, de leur densite tres elevee et de la facilite d'obtention des lingots de forme et dimensions variees. On a prepare et coule dans un four a arc des echantillons de carbures d'uranium avec de faibles additions de zirconium (1 a 5 at. pour cent). On obtient ainsi des carbures monophases presentant de meilleures proprietes que le monocarbure d'uranium. A l'etat brut de coulee on observe une structure dendritique qui n'est pas detruite par un traitement thermique de 110 heures a 1900 deg. C. La compatibilite avec l'acier inoxydable 316 (a 925 deg. C pendant 500 heures) est nettement amelioree par rapport a UC. La chaleur specifique (entre la temperature ordinaire et 2500 deg. C) et la densite sont tres peu differentes de celles du monocarbure d'uranium. Une etude concernant les composes U-Pu-Zr-C est actuellement en cours. (auteur)

  20. Monte Carlo analyses of TRX slightly enriched uranium-H2O critical experiments with ENDF/B-IV and related data sets (AWBA Development Program)

    International Nuclear Information System (INIS)

    Hardy, J. Jr.

    1977-12-01

    Four H 2 O-moderated, slightly-enriched-uranium critical experiments were analyzed by Monte Carlo methods with ENDF/B-IV data. These were simple metal-rod lattices comprising Cross Section Evaluation Working Group thermal reactor benchmarks TRX-1 through TRX-4. Generally good agreement with experiment was obtained for calculated integral parameters: the epi-thermal/thermal ratio of U238 capture (rho 28 ) and of U235 fission (delta 25 ), the ratio of U238 capture to U235 fission (CR*), and the ratio of U238 fission to U235 fission (delta 28 ). Full-core Monte Carlo calculations for two lattices showed good agreement with cell Monte Carlo-plus-multigroup P/sub l/ leakage corrections. Newly measured parameters for the low energy resonances of U238 significantly improved rho 28 . In comparison with other CSEWG analyses, the strong correlation between K/sub eff/ and rho 28 suggests that U238 resonance capture is the major problem encountered in analyzing these lattices

  1. Uranium enrichment reduction in the Prototype Gen-IV sodium-cooled fast reactor (PGSFR) with PBO reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  2. URANIUM LEACHING AND RECOVERY PROCESS

    Science.gov (United States)

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  3. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    Anselin, F.

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [fr

  4. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO 2 calibration algorithms to yield the mass of 235 U present via differences between the expected count rate for the PuO 2 and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 (uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) and CRM 146 (uranium Isotopic Standard for Gamma Spectrometry Measurements) and a selected set of LLNL PuO 2 -bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO 2 calibration algorithm that includes the effect of PuO 2 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of 235 U present in an unknown of mixed U-Pu oxide.

  5. Fabrication of uranium-americium mixed oxide fuels: thermodynamical modeling and materials properties

    International Nuclear Information System (INIS)

    Prieur, D.

    2011-01-01

    Fuel irradiation in pressurized water reactors lead to the formation of fission products and minor actinides (Np, Am, Cm) which can be transmuted in fast neutrons reactors. In this context, the aim of this work was to study the fabrication conditions of the U 1-y Am y O 2+x fuels which exhibit particular thermodynamical properties requiring an accurate monitoring of the oxygen potential during the sintering step. For this reason, a thermodynamical model was developed to assess the optimum sintering conditions for these materials. From these calculations, U 1-y Am y O 2+x (y=0.10; 0.15; 0.20; 0.30) were sintered in two range of atmosphere. In hyper-stoichiometric conditions at low temperature, porous and multiphasic compounds are obtained whereas in reducing conditions at high temperature materials are dense and monophasic. XAFS analyses were performed in order to obtain additional experimental data for the thermodynamical modeling refinement. These characterizations also showed the reduction of Am(+IV) to Am(+III) and the partial oxidation of U(+IV) to U(+V) due to a charge compensation mechanism occurring during the sintering. Finally, taking into account the high - activity of Am, self-irradiation effects were studied for two types of microstructures and two Am contents (10 and 15%). For each composition, a lattice parameter increase was observed without structural change coupled with a macroscopic swelling of the pellet diameter up to 1.2% for the dense compounds and 0.6% for the tailored porosity materials. (author) [fr

  6. Separation of thorium and uranium by liquid-liquid extraction from mixed aqueous nitric acidic-methanolic solutions

    International Nuclear Information System (INIS)

    Schmid, E.R.; Kenndler, E.

    1976-01-01

    A method is described for the separation of Th and U from each other and from other elements, usually occuring in minerals, by liquid-liquid extraction with Aliquat Nitrate (tricaprylmethyl ammoniumnitrate, 6 vol%) in benzene from a mixed solution of 2.5 M HNO 3 and methanol (1:1 volume ratio). Permissible upper concentration ratios of interfering elements, such as Li, Na, K, Mg, Ca, Al, Cu, Co(II), Fe(III), Mn(II), Ti(IV), La(III), U(VI), Cl - , ClO 4 - , SO 4 2- , PO 4 3- , have been determined. Following the separation, Th has been determined by spectrophotometry using Thorin, and U by fluorometry. Results for yield under varying conditions, together with elemental concentrations in the ppm range for U and Th in minerals, are given. (B.T.)

  7. A metallogenetic model of supergene extraction, releasing and enrichment in the mixed zone for granite-type uranium deposits in south China

    International Nuclear Information System (INIS)

    Li Minglian.

    1986-01-01

    The major geological features and their related geological events provide a base for the modelling of granite-type uranium deposits in South China. This paper presents a metallogenetic model to suggest the process of ore fluid circulation. There are two streams of ore fluids moving in the fracture zone: one comes from meteoric water and extracts uranium from wall rocks, flowing from top to bottom which is named uranium-loading fluid; another derives from the depth of the crust flowing from bottom to top and contains reducing matters as H 2 S etc. called uranium-releasing fluid. These two streams of solutions of different genesis, composition and character encountered and mixed at certain depth to precipitate the uranium. During the process the longitudinal circulation of underground thermal water in fracture zone results in the Bernoulli latitudinal circulation of ore fluids, which caused the ore fluids to ceaselessly flow into the minerogenetic location, where mineralization can be formed continuously in a certain period

  8. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  9. Impact of receipt of coprocessed uranium/plutonium on advanced accountability concepts and fabrication facilities. Addendum 1 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Randall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to assess the effect of coprocessed UO 2 --PuO 2 feed on the observations made in the original Phase I effort and on the proposed Phase II program. The retention of plutonium mixed with uranium throughout the process was also considered. This addendum reports that coprocessed feed would have minimal effect on the DYMAC program, except in the areas of material specifications, starting material delivery schedule, and labor requirements. Each of these areas is addressed, as are the impact of coprocessed feed at a large fuel fabrication facility and the changes needed in the dirty scrap recovery process to maintain the lower plutonium levels which may be required by future nonproliferation philosophy. An amended schedule for Phase II is included

  10. Post irradiation examinations of uranium-plutonium mixed carbide fuels irradiated at low linear power rate

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Sasayama, Tatsuo; Iwai, Takashi; Aizawa, Sakuei; Ohwada, Isao; Aizawa, Masao; Ohmichi, Toshihiko; Handa, Muneo

    1988-11-01

    Two pins containing uranium-plutonium carbide fuels which are different in stoichiometry, i.e. (U,Pu)C 1.0 and (U,Pu)C 1.1 , were constructed into a capsule, ICF-37H, and were irradiated in JRR-2 up to 1.0 at % burnup at the linear heat rate of 420 W/cm. After being cooled for about one year, the irradiated capsule was transferred to the Reactor Fuel Examination Facility where the non-destructive examinations of the fuel pins in the β-γ cells and the destructive ones in two α-γ inert gas atmosphere cells were carried out. The release rates of fission gas were low enough, 0.44 % from (U,Pu)C 1.0 fuel pin and 0.09% from (U,Pu)C 1.1 fuel pin, which is reasonable because of the low central temperature of fuel pellets, about 1000 deg C and is estimated that the release is mainly governed by recoil and knock-out mechanisms. Volume swelling of the fuels was observed to be in the range of 1.3 ∼ 1.6 % for carbide fuels below 1000 deg C. Respective open porosities of (U,Pu)C 1.0 and (U,Pu)C 1.1 fuel were 1.3 % and 0.45 %, being in accordance with the release behavior of fission gas. Metallographic observation of the radial sections of pellets showed the increase of pore size and crystal grain size in the center and middle region of (U,Pu)C 1.0 pellets. The chemical interaction between fuel pellets and claddings in the carbide fuels is the penetration of carbon in the fuels to stainless steel tubes. The depth of corrosion layer in inner sides of cladding tubes ranged 10 ∼ 15 μm in the (U,Pu)C 1.0 fuel and 15 #approx #25 μm in the (U,Pu)C 1.1 fuel, which is correlative with the carbon potential of fuels posibly affecting the amount of carbon penetration. (author)

  11. In situ studies of uranium-plutonium mixed oxides. Influence of composition on phase equilibria and thermodynamic properties

    International Nuclear Information System (INIS)

    Strach, Michal

    2015-01-01

    Due to their physical and chemical properties, mixed uranium-plutonium oxides are considered for fuel in 4. generation nuclear reactors. In this frame, complementary experimental studies are necessary to develop a better understanding of the phenomena that take place during fabrication and operation in the reactor. The focus of this work was to study the U-Pu-O phase diagram in a wide range of compositions and temperatures to ameliorate our knowledge of the phase equilibria in this system. Most of experiments were done using in situ X-ray diffraction at elevated temperatures. The control of the oxygen partial pressure during the treatments made it possible to change the oxygen stoichiometry of the sample, which gave us an opportunity to study rapidly different compositions and the processes involved. The experimental approach was coupled with thermodynamic modeling using the CALPHAD method, to precisely plan the experiments and interpret the obtained results. This approach enabled us to enhance the knowledge of phase equilibria in the U-Pu-O system. (author) [fr

  12. Synthesis and structural characterisation of mixed An(IV)-An(III) actinide oxalates used as precursors for dedicated fuel or target

    International Nuclear Information System (INIS)

    Tamain, Christelle; Grandjean, Stephane; Arab Chapelet, Benedicte; Abraham, Francis

    2010-01-01

    Oxalic co-conversion process plays an important role by producing mixed-actinide compounds used as starting materials as they are particularly suitable precursors of actinide oxide solid solutions. In these oxalate compounds, a mixed crystallographic site which accommodates both elements in spite of their different oxidation states has been established. The charge compensation is ensured by monovalent cations present in the acidic solution. This communication reviews the various mixed-actinide oxalates obtained by crystallization from acidic solution. First, crystallographic structures determined by X-ray diffraction from single crystals are described. Then completing data obtained by powder X-ray diffraction are presented on various systems. The different supramolecular arrangements underline the complexity of An(IV)-An(III)/Ln(III) oxalate system and the need to pursue studies on single crystals. (authors)

  13. Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

    1994-01-01

    Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment

  14. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}: Structures, optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Jeongho; Smith, Mark D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Tapp, Joshua; Möller, Angela [Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2016-04-15

    Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The

  15. The development of the production process for the thorium/uranium dicarbide fuel kernels for the first charge of the Dragon Reactor

    International Nuclear Information System (INIS)

    Burnett, R.C.; Hankart, L.J.; Horsley, G.W.

    1965-05-01

    The development of methods of producing spheroidal sintered porous kernels of hyperstoichiometric thorium/uranium dicarbide solid solution from thorium/uranium monocarbide/carbon and thoria/urania/carbon powder mixes is described. The work has involved study of (i) Methods of preparing green kernels from UC/Th/C powder mixes using the rotary sieve technique. (ii) Methods of producing green kernels from UO2/Th02/C powder mixes using the planetary mill technique. (iii) The conversion by appropriate heat treatment of green kernels produced by both routes to sintered porous kernels of thorium/uranium carbide. (iv) The efficiency of the processes. (author)

  16. Development of metal fuel and study of construction materials (I-IV), Part V, Vol. II, Project of the device for irradiation of metal uranium in the reactor; 2. Construction of the loop for uranium radiation creep testing

    International Nuclear Information System (INIS)

    Mihajlovic, A.; Pavlovic, A.

    1965-11-01

    This volume includes the design description for construction of the loop for testing uranium radiation creep. It covers the following: construction of the loop head, protection closure; system for pressure regulation and uranium temperature regulation; system for recording samples dilatation and temperature. Testing of components and the loop on the whole is described as well as the safety reports

  17. State policies and requirements for management of uranium mining and milling in New Mexico. Volume IV. The supply of electric power and natural gas fuel as possible constraints on uranium production

    International Nuclear Information System (INIS)

    Page, G.B.

    1980-04-01

    The report contained in this volume considers the availability of electric power to supply uranium mines and mills. The report, submited to Sandia Laboratories by the New Mexico Department of Energy and Minerals (EMD), is reproduced without modification. The state concludes that the supply of power, including natural gas-fueled production, will not constrain uranium production

  18. Dry recovery test of plutonium-uranium mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Kawamata, Kazuhiko; Kashima, Sadamitsu

    1981-01-01

    The oxidation conditions for pulverizing directly Pu-U mixed oxide pellets without mechanical crushing were examined to simplify the process and to reduce radiation exposure during the dry recovery of highly enriched Pu pellets. The specimens used were the Pusub(0.3) Usub(0.7) Osub(2-x) pellets with different density, which were sintered at 1650 deg C for 2 hours under an atmosphere of 5 % H 2 - N 2 . The oxidation experiment was carried out under several conditions. The oxidation products were examined by weight gain, X-ray diffraction, appearance pictures, SEM photographs and so on. From these studies, it can be concluded that the oxidation in NO 2 diluted with air was very powerful, but if only the coarse spalling of Pusub(0.3) Usub(0.7) O 2 sintered pellets is required, it is sufficient to oxidize them in air for 1 hr in a temperature range from 400 to 600 deg C. (Asami, T.)

  19. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    Western world requirements for uranium based on increasing energy consumption and a changing energy mix, will warrant the development of Australia's resources. By 1985 Australian mines could be producing 9500 tonnes of uranium oxide yearly and by 1995 the export value from uranium could reach that from wool. In terms of benefit to the community the economic rewards are considerable but, in terms of providing energy to the world, Australias uranium is vital

  20. χ{sup (3)} measurements of axial ligand modified high valent tin(IV) porphyrins using degenarete four wave mixing at 532nm

    Energy Technology Data Exchange (ETDEWEB)

    Narendran, N. K. Siji, E-mail: sijinarendran@gmail.com; Chandrasekharan, K. [Laser and nonlinear optics laboratory, Department of Physics, National Institute of Technology Calicut, Calicut-673601, Kerala (India); Soman, Rahul; Arunkumar, Chellaiah [Bioinorganic materials laboratory, Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala (India); Sudheesh, P. [Department of Physics, VTM NSS College, Dhanuvachapuram, Thiruvananthapuram (India)

    2014-10-15

    Porphyrins and metalloporphyrins are unique class of molecules for Nonlinear Optical applications because of their unique structure of altering the central metal atom, large extended π-system, high thermal stability, tunable shape, symmetry and synthetic versatility Here, we report χ{sup (3)} Measurements of a simple phenyl porphyrins and its highvalent tin(IV) porphyrins with Bromination characterized by UV-Visible spectroscopic method. In this study, we employed the Degenerate Four Wave Mixing technique using forward Boxcar geometry with an Nd:YAG nano second pulsed laser as source and it was found that the tin(IV) porphyrin with Bromination exhibits good χ{sup (3)} value and figure of merit.

  1. cis-dioxovanadium(V) and mixed-valence divanadium(IV, V) complexes containing β-diketonate and heterocyclic nitrogen-base ligands

    International Nuclear Information System (INIS)

    Taguchi, Hiroshi; Isobe, Kiyoshi; Nakamura, Yukio; Kawaguchi, Shinichi

    1978-01-01

    Diamagnetic dioxovanadium(V) complexes, VO 2 (β-dik)(phen or bpy), were prepared by the direct reactions of VO(β-dik) 2 with 1,10-phenanthroline and 2,2'-bipyridine in dichloromethane under aerobic conditions as well as by two other methods. These compounds were concluded to have a cis configuration on the basis of the IR and Raman data. These complexes are solvolyzed to afford the di-μ-methoxo- or di-μ-hydroxo-divanadium(V) species, and are reduced by hydrogen bromide to the oxovanadium(IV) species in dichloromethane. In methanol instead of dichloromethane, VO(acac) 2 reacted with 2,2'-bipyridine to produce a novel mixed-valence divanadium(IV, V) complex, V 2 O 3 (acac) 3 (bpy), which was revealed by the magnetic, spectral, and polarographic data to be a trans adduct of VO(acac) 2 with VO 2 (acac)(bpy) via an oxide ligand. (auth.)

  2. Titrimetric determination of uranium

    International Nuclear Information System (INIS)

    Florence, T.M.

    1989-01-01

    Titrimetric methods are almost invariably used for the high precision assay of uranium compounds, because gravimetric methods are nonselective, and not as reliable. Although precipitation titrations have been used, for example with cupferron and ferrocyanide, and chelate titrations with EDTA and oxine give reasonable results, in practice only redox titrations find routine use. With all redox titration methods for uranium a precision of 01 to 02 percent can be achieved, and precisions as high as 0.003 percent have been claimed for the more refined techniques. There are two types of redox titrations for uranium in common use. The first involves the direct titration of uranium (VI) to uranium (IV) with a standard solution of a strong reductant, such as chromous chloride or titanous chloride, and the second requires a preliminary reduction of uranium to the (IV) or (III) state, followed by titration back to the (VI) state with a standard oxidant. Both types of redox titrations are discussed. 4 figs

  3. Studies on the complexes of uranium(IV), thorium(IV) and lanthanum(III) acetates with p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid

    International Nuclear Information System (INIS)

    Singh, Mangal; Singh, Ajaib

    1979-01-01

    Complexes of acetates of U(IV), Th(IV) and La(III) with the ligands p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid have been prepared. Colour and chemical analytical data are recorded. They are characterised on the basis of IR and reflectance spectra and magnetic susceptibility data. (M.G.B.)

  4. Separation of uranium isotopes by accelerated isotope exchange reactions

    International Nuclear Information System (INIS)

    Seko, M.; Miyake, T.; Inada, K.; Ochi, K.; Sakamoto, T.

    1977-01-01

    A novel catalyst for isotope exchange reaction between uranium(IV) and uranium(VI) compounds enables acceleration of the reaction rate as much as 3000 times to make industrial separation of uranium isotopes economically possible

  5. Research of natural resources saving by design studies of Pressurized Light Water Reactors and High Conversion PWR cores with mixed oxide fuels composed of thorium/uranium/plutonium

    International Nuclear Information System (INIS)

    Vallet, V.

    2012-01-01

    Within the framework of innovative neutronic conception of Pressurized Light Water Reactors (PWR) of 3. generation, saving of natural resources is of paramount importance for sustainable nuclear energy production. This study consists in the one hand to design high Conversion Reactors exploiting mixed oxide fuels composed of thorium/uranium/plutonium, and in the other hand, to elaborate multi-recycling strategies of both plutonium and 233 U, in order to maximize natural resources economy. This study has two main objectives: first the design of High Conversion PWR (HCPWR) with mixed oxide fuels composed of thorium/uranium/plutonium, and secondly the setting up of multi-recycling strategies of both plutonium and 233 U, to better natural resources economy. The approach took place in four stages. Two ways of introducing thorium into PWR have been identified: the first is with low moderator to fuel volume ratios (MR) and ThPuO 2 fuel, and the second is with standard or high MR and ThUO 2 fuel. The first way led to the design of under-moderated HCPWR following the criteria of high 233 U production and low plutonium consumption. This second step came up with two specific concepts, from which multi-recycling strategies have been elaborated. The exclusive production and recycling of 233 U inside HCPWR limits the annual economy of natural uranium to approximately 30%. It was brought to light that the strong need in plutonium in the HCPWR dedicated to 233 U production is the limiting factor. That is why it was eventually proposed to study how the production of 233 U within PWR (with standard MR), from 2020. It was shown that the anticipated production of 233 U in dedicated PWR relaxes the constraint on plutonium inventories and favours the transition toward a symbiotic reactor fleet composed of both PWR and HCPWR loaded with thorium fuel. This strategy is more adapted and leads to an annual economy of natural uranium of about 65%. (author) [fr

  6. Final Project Report, DE-SC0001280, Characterizing the Combined Roles of Iron and Transverse Mixing on Uranium Bioremediation in Groundwater using Microfluidic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Finneran, Kevin [Clemson Univ., SC (United States); Werth, Charles [Univ. of Texas, Austin, TX (United States); Strathmann, Timothy [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-01-10

    In situ bioremediation of U(VI) involves amending groundwater with an appropriate electron donor and limiting nutrients to promote biological reduction to the less soluble and mobile U(IV) oxidation state. Groundwater flow is laminar; mixing is controlled by hydrodynamic dispersion. Recent studies indicate that transverse dispersion along plume margins can limit mixing of the amended electron donor and accepter (such as U(VI) in remediation applications). As a result, microbial growth, and subsequently contaminant reaction, may be limited to these transverse mixing zones during bioremediation. The primary objective of this work was to characterize the combined effects of hydrology, geochemistry, and biology on the (bio)remediation of U(VI). Our underlying hypothesis was that U(VI) reaction in groundwater is controlled by transverse mixing with an electron donor along plume margins, and that iron bioavailability in these zones affects U(VI) reduction kinetics and U(IV) re-oxidation. Our specific objectives were to a) quantify reaction kinetics mediated by biological versus geochemical reactions leading to U(VI) reduction and U(IV) re-oxidation, b) understand the influence of bioavailable iron on U(VI) reduction and U(IV) re-oxidation along the transverse mixing zones, c) determine how transverse mixing limitations and the presence of biomass in pores affects these reactions, and d) identify how microbial populations that develop along transverse mixing zones are influenced by the presence of iron and the concentration of electron donor. In the completed work, transverse mixing zones along plume margins were re-created in microfluidic pore networks, referred to as micromodels. We conducted a series of experiments that allowed us to distinguish among the hydraulic, biological, and geochemical mechanisms that contribute to U(VI) reduction, U(IV) re-oxidation, and U(VI) abiotic reaction with the limiting biological nutrient HP042-. This systematic approach may lead to a

  7. Clinical validation of three short forms of the Dutch Wechsler Memory Scale-Fourth Edition (WMS-IV-NL) in a mixed clinical sample.

    Science.gov (United States)

    Bouman, Zita; Hendriks, Marc P H; Van Der Veld, William M; Aldenkamp, Albert P; Kessels, Roy P C

    2016-06-01

    The reliability and validity of three short forms of the Dutch version of the Wechsler Memory Scale-Fourth Edition (WMS-IV-NL) were evaluated in a mixed clinical sample of 235 patients. The short forms were based on the WMS-IV Flexible Approach, that is, a 3-subtest combination (Older Adult Battery for Adults) and two 2-subtest combinations (Logical Memory and Visual Reproduction and Logical Memory and Designs), which can be used to estimate the Immediate, Delayed, Auditory and Visual Memory Indices. All short forms showed good reliability coefficients. As expected, for adults (16-69 years old) the 3-subtest short form was consistently more accurate (predictive accuracy ranged from 73% to 100%) than both 2-subtest short forms (range = 61%-80%). Furthermore, for older adults (65-90 years old), the predictive accuracy of the 2-subtest short form ranged from 75% to 100%. These results suggest that caution is warranted when using the WMS-IV-NL Flexible Approach short forms to estimate all four indices. © The Author(s) 2015.

  8. Extraction of uranium and lead from mixed waste debris using a variety of metal/ligand complexes

    International Nuclear Information System (INIS)

    Needham, D.A.; Duran, B.L.; Ehler, D.S.; Sauer, N.N.

    1997-01-01

    To ensure the safety of our Nation's nuclear stockpile, Los Alamos National Laboratory is in the process of constructing the DARHT (Dual Axis Radiographic Hydrodynamic Test) facility. DARHT will examine the effects of aging and the stability of our stockpile. Contained testing will be phased in to reduce the impact of these tests, which contain depleted uranium, on our environment. The main focus of this research is to develop a treatment scheme for the recovery of depleted uranium and lead from shot debris that will result from these tests. The goals of this research are to optimize the conditions on a bench scale using a commercially available water soluble polymer to bind the lead and a variety of metal/ligand complexes such as 4,5-dihydroxy-1,3-benzene-disulfonic acid, dithionite, sodium carbonate/bicarbonate, and sodium hypochlorite to bind the uranium. Studies were conducted on a mixture of debris, such as wood, cable, paper towels, and tubing that contained both uranium and lead ranging in concentration from 10-1000's of ppm of contaminants. Experiments were done varying combinations and successions of extractant solutions as well as a number of sequential extractions. Studies show that a mixture of sodium hypochlorite and carbonate removed 90+% of both uranium and lead. We then focused on a separation scheme for the lead and uranium

  9. Are symptoms of spirit possessed patients covered by the DSM-IV or DSM-5 criteria for possession trance disorder? A mixed-method explorative study in Uganda.

    Science.gov (United States)

    van Duijl, Marjolein; Kleijn, Wim; de Jong, Joop

    2013-09-01

    As in many cultures, spirit possession is a common idiom of distress in Uganda. The DSM-IV contains experimental research criteria for dissociative and possession trance disorder (DTD and PTD), which are under review for the DSM-5. In the current proposed categories of the DSM-5, PTD is subsumed under dissociative identity disorder (DID) and DTD under dissociative disorders not elsewhere classified. Evaluation of these criteria is currently urgently required. This study explores the match between local symptoms of spirit possession in Uganda and experimental research criteria for PTD in the DSM-IV and proposed criteria for DID in the DSM-5. A mixed-method approach was used combining qualitative and quantitative research methods. Local symptoms were explored of 119 spirit possessed patients, using illness narratives and a cultural dissociative symptoms' checklist. Possible meaningful clusters of symptoms were inventoried through multiple correspondence analysis. Finally, local symptoms were compared with experimental criteria for PTD in the DSM-IV and proposed criteria for DID in the DSM-5. Illness narratives revealed different phases of spirit possession, with passive-influence experiences preceding the actual possession states. Multiple correspondence analysis of symptoms revealed two dimensions: 'passive' and 'active' symptoms. Local symptoms, such as changes in consciousness, shaking movements, and talking in a voice attributed to spirits, match with DSM-IV-PTD and DSM-5-DID criteria. Passive-influence experiences, such as feeling influenced or held by powers from outside, strange dreams, and hearing voices, deserve to be more explicitly described in the proposed criteria for DID in the DSM-5. The suggested incorporation of PTD in DID in the DSM-5 and the envisioned separation of DTD and PTD in two distinctive categories have disputable aspects.

  10. Research on uranium resource models. Part IV. Logic: a computer graphics program to construct integrated logic circuits for genetic-geologic models. Progress report

    International Nuclear Information System (INIS)

    Scott, W.A.; Turner, R.M.; McCammon, R.B.

    1981-01-01

    Integrated logic circuits were described as a means of formally representing genetic-geologic models for estimating undiscovered uranium resources. The logic circuits are logical combinations of selected geologic characteristics judged to be associated with particular types of uranium deposits. Each combination takes on a value which corresponds to the combined presence, absence, or don't know states of the selected characteristic within a specified geographic cell. Within each cell, the output of the logic circuit is taken as a measure of the favorability of occurrence of an undiscovered deposit of the type being considered. In this way, geological, geochemical, and geophysical data are incorporated explicitly into potential uranium resource estimates. The present report describes how integrated logic circuits are constructed by use of a computer graphics program. A user's guide is also included

  11. Genetic and mechanistic evaluation for the mixed-field agglutination in B3 blood type with IVS3+5G>A ABO gene mutation.

    Directory of Open Access Journals (Sweden)

    Ding-Ping Chen

    Full Text Available BACKGROUND: The ABO blood type B(3 is the most common B subtype in the Chinese population with a frequency of 1/900. Although IVS3+5G>A (rs55852701 mutation of B gene has been shown to associate with the development of B(3 blood type, genetic and mechanistic evaluation for the unique mixed-field agglutination phenotype has not yet been completely addressed. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we analyzed 16 cases of confirmed B(3 individuals and found that IVS3+5G>A attributes to all cases of B(3. RT-PCR analyses revealed the presence of at least 7 types of aberrant B(3 splicing transcripts with most of the transcripts causing early termination and producing non-functional protein during translation. The splicing transcript without exon 3 that was predicted to generate functional B(3 glycosyltransferase lacking 19 amino acids at the N-terminal segment constituted only 0.9% of the splicing transcripts. Expression of the B(3 cDNA with exon 3 deletion in the K562 erythroleukemia cells revealed that the B(3 glycosyltransferase had only 40% of B(1 activity in converting H antigen to B antigen. Notably, the typical mixed-field agglutination of B(3-RBCs can be mimicked by adding anti-B antibody to the K562-B(3 cells. CONCLUSIONS/SIGNIFICANCE: This study thereby demonstrates that both aberrant splicing of B transcripts and the reduced B(3 glycosyltransferase activity contribute to weak B expression and the mixed-field agglutination of B(3, adding to the complexity for the regulatory mechanisms of ABO gene expression.

  12. Chemical effects of nuclear transformations in mixed potassium hexahalogenometallates(IV), K2MXnY6-n Pt. 2

    International Nuclear Information System (INIS)

    Mueller, H.; Hagenlocher, I.

    1990-01-01

    Damage initiated by halogen recoil atoms in mixed hexabromochlorometallates has been evaluated with the help of the Impact-induced Multiple Ligand Abstraction (IMULA) model. The essential reactions within the scope of the model are primary retention for recoil atoms with energies below some threshold of displacement energy; halide-halide substitution reactions; reactions in which two or more halide ligands are displaced with subsequent reoccupation of the vacancies by adjacent halides; formation of interstitials which form free halide during the dissolution of the irradiated substances. It was found that for all recoil atoms and both potassium hexabromochlorometallates the contributions of the different reaction channels are very similar. These results do not differ essentially from results so far obtained in mixed crystal systems. (author) 12 refs.; 15 tabs

  13. A kinetic study of cation release from a mixed mineral assemblage: implications for determination of uranium uptake

    International Nuclear Information System (INIS)

    Fenton, B.R.; Waite, T.D.

    1996-01-01

    The uptake of U(VI) as UO 2+ 2 on a natural complex mineral assemblage has been studied using batch selective chemical extraction techniques and secondary ion mass spectroscopy (SIMS). Sediments used in the study consisted of a quartz/mica schist collected from the locale of the Koongarra Uranium ore body, Alligator Rivers Uranium Province, Northern Territory, Australia. The bulk sediment was gravity separated into four size fractions, with attention focused on the nominally <25 μm and 250-1000 μm fractions of the bulk sample, in order to assess the effects of particle size on uranium uptake. Investigation of the kinetics of elemental release in the presence of selective extractants show that uranium is bound largely within the iron and aluminium oxyhydroxides of the assemblage, with a highly mobile fraction of this associated with aluminol sites. SIMS analysis of the natural substrate confirms that significant quantities of aluminium are present in surface layers. The effect of particle size on the uptake of uranium indicates very little change with respect to particle size. This finding may be attributed to the presence of highly porous surface coatings. (orig.)

  14. Validation of SCALE 4.0 -- CSAS25 module and the 27-group ENDF/B-IV cross-section library for low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.

    1993-02-01

    A version of KENO V.a and the 27-group library in SCALE-4.0 were validated for use in evaluating the nuclear criticality safety of low-enriched uranium systems. A total of 59 critical systems were analyzed. A statistical analysis of the results was performed, and subcritical acceptanced criteria are established.

  15. Validation of SCALE 4. 0 -- CSAS25 module and the 27-group ENDF/B-IV cross-section library for low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.

    1993-02-01

    A version of KENO V.a and the 27-group library in SCALE-4.0 were validated for use in evaluating the nuclear criticality safety of low-enriched uranium systems. A total of 59 critical systems were analyzed. A statistical analysis of the results was performed, and subcritical acceptanced criteria are established.

  16. Recovery of uranium values

    International Nuclear Information System (INIS)

    Rowden, G.A.

    1982-01-01

    A process is provided for the recovery of uranium from an organic extractant phase containing an amine. The extractant phase is contacted in a number of mixing stages with an acidic aqueous stripping phase containing sulphate ions, and the phases are passed together through a series of mixing stages while maintaining a dispersion of droplets of one phase in the other. Uranium is precipitated from the final stage by raising the pH. An apparatus having several mixing chambers is described

  17. Impact of mixed low-molecular-weight organic acids on uranium accumulation and distribution in a variant of mustard (Brassica juncea var. tumida)

    International Nuclear Information System (INIS)

    Fangfang Qi; Dingna Wang; Lijian Ma; Yongdong Jin; Liang Du; Dong Zhang; Chuanqin Xia; Sichuan University, Chengdu

    2014-01-01

    The impact of a mixture of low-molecular-weight organic acids (LMWOAs) composed of CA/MA/OA/LA with a molar ratio of 2.5:2.31:1.15:0.044 on uranium (U) accumulation and distribution in mustard (Brassica juncea var. tumida) was studied in this paper in order to understand the mechanism of rhizosphere-exudation assisted phytoremediation by hydroponic and pot culture experiments. The impact of the mixture of LWMOAs (Mix) on U accumulation showed that in hydroponic conditions Mix could enhance U translocation from root-to-shoot in mustard, but inhibit U uptake in root. In pot experiments, Mix enhanced both root and shoot U accumulation in mustard. The time-dependent kinetics of U uptake in mustard on Mix treatment showed that U content in plant shoots and roots increased with time increasing, and the steady state conditions were obtained at the 8th and 5th day with the U content of 1,528 and 2,300 mg/kg, respectively. Transmission electron microscope and energy dispersive X-ray spectrometry analysis for mustard roots showed that U was mainly observed on cell membrane of mustard roots on Mix treatment. This study would provide new insights for the mixture of LWMOAs-assisted phytoremediation of U-contaminated soil. (author)

  18. Studies relating to construction materials to be used in different options for head end treatment in reprocessing of mixed carbide fuel of plutonium and uranium

    International Nuclear Information System (INIS)

    Rajan, S.K.; Palamalai, A.; Ravi, T.N.; Sampath, M.; Raman, V.R.; Balasubramanian, G.R.

    1993-01-01

    Mixed carbide of uranium and plutonium has been chosen as the fuel for the first core of Fast Breeder Test Reactor, installed in the Indira Gandhi Centre for Atomic Research. Reprocessing of this fuel is one of the vital steps to prove the viability of the fuel cycle. The head end treatment process introduces constraints in the reprocessing of carbide fuel when compared to the commonly used mixed oxide fuel. Three head end processes, namely direct oxidation, pyrohydrolysis and direct dissolution in nitric acid with oxidation of organic acids were considered for study for exercising the choice. The paper briefly describes the three processes. In each process probable material of construction and related problems are discussed. (author). 3 refs, 5 figs, 7 tabs

  19. The possibility of the mixed valence state in the uranium intermetallic compounds: UCoGa5, U2Ru2Sn and U2RuGa8

    International Nuclear Information System (INIS)

    Troc, Robert

    2007-01-01

    The mixed valence (MV) phenomenon has been observed so far in a large number of various compounds but containing only lanthanides. These properties are usually associated with the mixing of the localised f-state and the band states. The usual valence state for magnetic uranium intermetallics is the trivalent state 5f 3 or hybridised 5f 2 6d 1 , both are nearly degenerate in energy and can compete for a stability of the compound. In some cases a gain in an energy minimum may be achieved by very fast fluctuating between these two states with a time of 10 -14 s, which does not allow to yield the ordered state even if the exchange interactions (favourite the U-U distances) would be able for that. The latter cases seem to concern the described here intermetallics: one ternary compound based on Co, UCoGa 5 , and the two uranium ternary compounds based on Ru, namely U 2 Ru 2 Sn and U 2 RuGa 8 which all crystallize in a tetragonal unit cell. All these compounds show a maximum in their temperature dependences of the magnetic susceptibility measured along and perpendicular to the c-axis. Such a behaviour, which is reminiscent of a number of Ce (Sm, Eu) and Yb compounds for which χ(T) has in the past been considered by Sales and Wohlleben (SW) by applying their ICF model or by Lawrance et al. following their scaling procedure. It turned out that these phenomenological models can also be applied to the considered here two Ru-based uranium ternaries from which some reliable energy parameters could be found. In order to further support the mixing valence scenario for the first such cases in uranium compounds presented here, the transport and thermodynamic properties are also discussed. However, some of the most important results confirming the MV state, e.g., in U 2 RuGa 8 , has recently been achieved from the inelastic neutron scattering performed in the Rutherford Appleton Laboratory on the ISIS facility. From these measurements a characteristic gap of 60 meV has been

  20. Analytical application of poly [dibenzo-18-crown-6] for chromatographic separation of thorium(IV) from uranium(VI) and other elements in glycine medium

    International Nuclear Information System (INIS)

    Kadam, R.B.; Mali, G.G.; Mohite, B.S.

    2013-01-01

    A selective and effective chromatographic separation method for thorium(IV) has been developed by using poly [dibenzo-18-crown-6] as stationary phase. The separations are carried out from glycine medium. The sorption of thorium(IV) was quantitative from 1 x 10 -2 to 1 x 10 -4 M glycine. The elution of thorium(IV) was quantitative with 2.0-8.0 M HCl, 4.0-7.0 HBr, 1.0-2.0 M HClO 4 and 5.0 M H 2 SO 4 . The capacity of poly [dibenzo-18-crown-6] for thorium(IV) was found to be 0.215 ± 0.01 mmol/g of crown polymer. The effect of concentration of glycine, metal ion, foreign ion and eluents has been studied. Thorium(IV) was separated from a number of cations in ternary as well as in multicomponent mixtures. The applicability of the proposed method was checked for the determination of thorium(IV) in real as well as geological sample. The method is simple, rapid, and selective with good reproducibility (approximately ±2 %). (author)

  1. Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).

    Science.gov (United States)

    Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias

    2015-08-25

    Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.

  2. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  3. Soil Characterization by Large Scale Sampling of Soil Mixed with Buried Construction Debris at a Former Uranium Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Nardi, A.J.; Lamantia, L.

    2009-01-01

    Recent soil excavation activities on a site identified the presence of buried uranium contaminated building construction debris. The site previously was the location of a low enriched uranium fuel fabrication facility. This resulted in the collection of excavated materials from the two locations where contaminated subsurface debris was identified. The excavated material was temporarily stored in two piles on the site until a determination could be made as to the appropriate disposition of the material. Characterization of the excavated material was undertaken in a manner that involved the collection of large scale samples of the excavated material in 1 cubic meter Super Sacks. Twenty bags were filled with excavated material that consisted of the mixture of both the construction debris and the associated soil. In order to obtain information on the level of activity associated with the construction debris, ten additional bags were filled with construction debris that had been separated, to the extent possible, from the associated soil. Radiological surveys were conducted of the resulting bags of collected materials and the soil associated with the waste mixture. The 30 large samples, collected as bags, were counted using an In-Situ Object Counting System (ISOCS) unit to determine the average concentration of U-235 present in each bag. The soil fraction was sampled by the collection of 40 samples of soil for analysis in an on-site laboratory. A fraction of these samples were also sent to an off-site laboratory for additional analysis. This project provided the necessary soil characterization information to allow consideration of alternate options for disposition of the material. The identified contaminant was verified to be low enriched uranium. Concentrations of uranium in the waste were found to be lower than the calculated site specific derived concentration guideline levels (DCGLs) but higher than the NRC's screening values. The methods and results are presented

  4. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

  5. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    International Nuclear Information System (INIS)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H 2 S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H 2 S

  6. Retention and reduction of uranium on pyrite surface

    International Nuclear Information System (INIS)

    Eglizaud, N.

    2006-12-01

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS 2 ). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH ≥ 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10 -9 mol g -1 , an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. ≥ -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 ± 0.8) x 10 -7 mol L -1 of uranium(VI). Modelling of uranium sorption at high surface coverage (≥ 4 x 10 -9 mol g -1 ) by the Langmuir model yields an adsorption constant of 8 x 10 7 L mol -1 . Finally, a great excess of uranium(VI) above the saturation concentration allows the observation of

  7. Uranium determination by spectrophotometry, in chloride solutions, using titanium (III) as reducer; Determinacao de uranio por espectrofotometria, em solucoes cloridricas, utilizando titanio (III) como redutor

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, E T.R.; Bastos, M B.R.

    1986-08-01

    A simple method for determining uranium in uranium (VI) solutions with the presence of uranium (IV), iron (II), and titanium (IV) in chloridic solution is described. The method comprises in uranium (VI) reduction with titanium (III), acidity adjustment and uranium (IV) spectrophotometry in hydrochloric acid 2 M. (C.G.C.).

  8. Preparation of uranium-based oxide catalysts; Preparation de catalyseurs oxydes a base d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bressat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    We have studied the thermal decomposition of uranyl and uranium IV oxalates as a mean of producing uranium dioxide. We have isolated the main intermediate phases of the decompositions and have indexed the lines of their X-ray diffraction patterns. The oxides produced by the decomposition are ill-defined and unstable: they strongly absorb atmospheric oxygen with modification of the composition and, in certain cases, of the structure (pyrophoric oxide). With a view to obtaining stable oxides, we have prepared mixed uranium-thorium oxalates. In order to prepare an oxalate having a homogeneous composition, it is necessary to adopt a well-defined preparation method: the addition of solutions of thorium and uranium IV nitrates to a continually saturated oxalic acid solution. The mixed oxide obtained from the thermal decomposition of an oxalate U{sub x}Th{sub 1-x}(C{sub 2}O{sub 4}){sub 2}, 2 H{sub 2}O at 500 C for 24 hours in a current of oxygen leads to a cubic structure which is well-defined both in the bulk and superficially when x is less than 0.35. Above this atomic concentration of uranium, some uranium moves out of the lattice in the form of UO{sub 3} or U{sub 3}O{sub 8} according to the temperature. The mixed oxide is not stoichiometric,(U{sub x}Th{sub 1-x}O{sub 2+y}) and the average degree of oxidation of the uranium varies with the temperature and partial oxygen pressure. The oxides thus formed have a high surface area. By dissolving the mixed oxalates in a concentrated solution of ammonium oxalate, it is possible to deposit the catalyst on a support, but the differences in the solubilities of the thorium and uranium IV oxalates in the ammonium oxalate make it impossible to prepare double salts formed either of thorium and uranium and of ammonium. (author) [French] Nous avons etudie la decomposition thermique des oxalates d'uranyle et d'uranium IV en vue d'aboutir au dioxide d'uranium. Nous avons pu isoler les principales phases intermediaires des decompositions

  9. Spectrophotometric studies on the formation of adducts involved in synergistic extraction of uranium (IV) by mixtures of HTTA and neutral donors

    International Nuclear Information System (INIS)

    Patil, S.K.; Ramakrishna, V.V.; Ramanujam, A.

    1979-01-01

    Adduct formation between U(TTA) 4 and several neutral donor (S) was investigated by utilizing the changes in the absorption spectra of U(IV) resulting from the addition of neutral donors to a solution of U(TTA) 4 . All the donors used in the present work from 1:1 adducts with U(TTA) 4 . From the spectral changes, the equilibrium constants βsub(AB) for the adduct formation reaction viz U(TTA) 4 S reversible U(TTA) 4 .S were calculated for a few neutral donors. The log βsub(AB) values obtained in benzene medium, are :TOPO (6.23), TBPO (6.13), TPPO (4.72), DBBP(4.04) TBP(3.04), TIOTP(1.27) and MIBK(-0.10) and a value of 3.98 for TOPO in chloroform medium. The adduct formation was found to result in increasing the coordination number of U(IV) from 8 in U(TTA) 4 to 9 in the adducts it forms with the neutral donors. Similar absorption spectral studies with U(DBM) 4 revealed that it forms much weaker adducts than the corresponding ones with U(TTA) 4 . The absorption spectra of the organic extracts of U(IV) from perchloric acid with mixtures of HTTA and a neutral donor were identical with the spectra of the adduct between U(TTA) 4 and the neutral donor. This suggested that the adduct species viz U(TTA) 4 .S is involved in the synergistic extraction of U(IV). The extraction constants relating to the synergistic extraction of U(IV), from aqueous perchloric acid into benzene solutions of HTTA and some of the neutral donors, were derived. (author)

  10. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  11. Scaling properties for the first RE-like mixed valence examples in uranium compounds: U2Ru2Sn and U2RuGa8

    International Nuclear Information System (INIS)

    Troc, Robert

    2006-01-01

    The present study was motivated by the scaling characterization of the first example of mixed valence (MV) RE-like behaviour found recently among intermetallic ternary uranium compounds. The χ(T) function for both title compounds has been fitted to the interconfigurational fluctuation (ICF) model of Sales and Wohlleben in order to determine the characteristic fluctuation temperatures T sf and interconfigurational excitation energies E ex . A good scaling, with similar values of T sf like from those derived from the ICF model, has been achieved for both these ternaries by plotting Tχ(T)/C against the reduced T/T sf . Moreover, this scaling follows almost exactly those found earlier in a number of MV- RE compounds

  12. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 2: A survey of the accuracy of the Studsvik of America CMS codes

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-02-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. Thus, before performing any kind of calculation with MOx fuels, it is necessary to be able to establish the reliability and the accuracy of these Core Management System (CMS) codes. This report presents a quantitative analysis of the models used in the package. A qualitative presentation is realized in a coming report

  13. Field measurements of mixed exposure of operators to radioactive aerosol, gas and quartz in confinement of mining equipment cabs during open-pit mining of high-grade uranium ores

    International Nuclear Information System (INIS)

    Yoshida, K.; Atiemo, M.A.; Markham, J.W.

    1982-07-01

    A series of field measurements of miners mixed exposure to radon and daughters, uranium ore dust and respirable quartz, was conducted in an open-pit mine in Northern Saskatchewan during 1980-81. Control of radon gas levels in the mining equipment cabs is required. Dust may be reduced by minimizing the resuspension of dust from contaminated surfaces within the cabs

  14. Uranium control in phosphogypsum

    International Nuclear Information System (INIS)

    Hurst, F.J.; Arnold, W.D.

    1980-01-01

    In wet-process phosphoric acid plants, both previous and recent test results show that uranium dissolution from phosphate rock is significantly higher when the rock is acidulated under oxidizing conditions than under reducing conditions. Excess sulfate and excess fluoride further enhance the distribution of uranium to the cake. Apparently the U(IV) present in the crystal lattice of the apatite plus that formed by reduction of U(IV) by FE(II) during acidulation is trapped or carried into the crystal lattice of the calcium sulfate crystals as they form and grow. The amount of uranium that distributes to hemihydrate filter cake is up to seven times higher than the amount that distributes to the dihydrate cake. About 60% of the uranium in hemihydrate cakes can be readily leached after hydration of the cake, but the residual uranium (20 to 30%) is very difficult to remove economically. Much additional research is needed to develop methods for minimizing uranium losses to calcium filter cakes

  15. Uranium in phosphate rocks and future nuclear power fleets

    International Nuclear Information System (INIS)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G.

    2014-01-01

    According to almost all forward-looking studies, the world’s energy consumption will increase in the future decades, mostly because of the growing world population and the long-term development of emerging countries. The effort to contain global warming makes it hard to exclude nuclear energy from the global energy mix. Current light water reactors (LWR) burn fissile uranium (a natural, finite resource), whereas some future Generation IV reactors, as Sodium fast reactors (SFR), starting with an initial fissile load, will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in LWR. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. This paper discusses the correspondence between the resources and the nuclear power demand as estimated by various international organisations. Uranium is currently produced from conventional sources. The estimated quantities of uranium evolve over time in relation to their rate of extraction and the discovery of new deposits. Contrary to conventional resources, unconventional resources – because they are hardly used – also exist. These resources are more uncertain both in terms of their quantities and the feasibility of recovering them. Recovering uranium from seawater would guarantee a virtually infinite resource of nuclear fuel, but its technical and economic feasibility has yet to be demonstrated, and huge advances need to be achieved in this direction. According to different publications on phosphate reserves, the potential amount of uranium recoverable from phosphates can be estimated at around 4 MtU. Furthermore, the production of uranium as a by-product of phosphate is determined by the world production of

  16. Simultaneous precipitation of carbonato complexes of uranium and plutonium with cationic surfactants

    International Nuclear Information System (INIS)

    Heckmann, K.; Strnad, J.; Huber, K.

    1992-01-01

    The proposed method allows to separate Uranium, Thorium and Cerium from carbonate solutions and the further processing of these metals to mixed oxides. The separation can be divided into three steps: 1. Precipitation of the metals with a 10-fold surplus of carbonate and a 5-fold surplus of a cationic surfactant. 2. Thermal decomposition of the precipitates in air at 600 C. 3. Reduction of U(VI) to U(IV) with CO at 500 C. Mixed oxides in any ratio are formed in this way. This is possible due to the coprecipitation of both metals. Comparing the standard potentials it is clear that Ce(IV) is more easily reduced that Pu(IV). Therefore, the chance on the formation of U/Pu mixed oxides by this method is quite good. (orig.) [de

  17. Cyclopentadienyl uranium, neptunium and plutonium chemistry

    International Nuclear Information System (INIS)

    Plews, M.J.

    1985-01-01

    The thesis presents the preparation and characterisation of a number of mono, bis and tris(cyclopentadienyl) complexes of uranium(IV), neptunium(IV) and plutonium(IV). The work of previous studies on mono(cyclopentadienyl) thorium and uranium complexes has been extended, and a range of isostructural neptunium species isolated. Their mode of formation and stability in tetrahydrofuran and acetonitrile solutions was investigated. (author)

  18. EPR of uranium ions

    International Nuclear Information System (INIS)

    Ursu, I.; Lupei, V.

    1984-02-01

    A review of the electron paramagnetic resonance data on the uranium ions is given. After a general account of the electronic structure of the uranium free atoms and ions, the influence of the external fields (magnetic field, crystal fields) is discussed. The main information obtained from EPR studies on the uranium ions in crystals are emphasized: identification of the valence and of the ground electronic state, determination of the structure of the centers, crystal field effects, role of the intermediate coupling and of the J-mixing, role of the covalency, determination of the nuclear spin, maqnetic dipole moment and electric quadrupole moment of the odd isotopes of uranium. These data emphasize the fact that the actinide group has its own identity and this is accutely manifested at the beginning of the 5fsup(n) series encompassed by the uranium ions. (authors)

  19. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  20. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1982-01-01

    A process for the preparation of a sintered, high density, large crystal grain size uranium dioxide pellet is described which involves: (i) reacting a uranyl nitrate of formula UO 2 (NO 3 ) 2 .6H 2 O with a sulphur source, at a temperature of from about 300 deg. C to provide a sulphur-containing uranium trioxide; (ii) reacting the thus-obtained modified uranium trioxide with ammonium nitrate to form an insoluble sulphur-containing ammonium uranate; (iii) neutralizing the thus-formed slurry with ammonium hydroxide to precipitate out as an insoluble ammonium uranate the remaining dissolved uranium; (iv) recovering the thus-formed precipitates in a dry state; (v) reducing the dry precipitate to UO 2 , and forming it into 'green' pellets; and (vi) sintering the pellets in a hydrogen atmosphere at an elevated temperature

  1. Preparation of uranium-based oxide catalysts; Preparation de catalyseurs oxydes a base d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bressat, R. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    We have studied the thermal decomposition of uranyl and uranium IV oxalates as a mean of producing uranium dioxide. We have isolated the main intermediate phases of the decompositions and have indexed the lines of their X-ray diffraction patterns. The oxides produced by the decomposition are ill-defined and unstable: they strongly absorb atmospheric oxygen with modification of the composition and, in certain cases, of the structure (pyrophoric oxide). With a view to obtaining stable oxides, we have prepared mixed uranium-thorium oxalates. In order to prepare an oxalate having a homogeneous composition, it is necessary to adopt a well-defined preparation method: the addition of solutions of thorium and uranium IV nitrates to a continually saturated oxalic acid solution. The mixed oxide obtained from the thermal decomposition of an oxalate U{sub x}Th{sub 1-x}(C{sub 2}O{sub 4}){sub 2}, 2 H{sub 2}O at 500 C for 24 hours in a current of oxygen leads to a cubic structure which is well-defined both in the bulk and superficially when x is less than 0.35. Above this atomic concentration of uranium, some uranium moves out of the lattice in the form of UO{sub 3} or U{sub 3}O{sub 8} according to the temperature. The mixed oxide is not stoichiometric,(U{sub x}Th{sub 1-x}O{sub 2+y}) and the average degree of oxidation of the uranium varies with the temperature and partial oxygen pressure. The oxides thus formed have a high surface area. By dissolving the mixed oxalates in a concentrated solution of ammonium oxalate, it is possible to deposit the catalyst on a support, but the differences in the solubilities of the thorium and uranium IV oxalates in the ammonium oxalate make it impossible to prepare double salts formed either of thorium and uranium and of ammonium. (author) [French] Nous avons etudie la decomposition thermique des oxalates d'uranyle et d'uranium IV en vue d'aboutir au dioxide d'uranium. Nous avons pu isoler les principales phases

  2. Recovery of uranium from uranium bearing black shale

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Singh, Ajay K.

    2016-01-01

    Black shale is the unconventional resource of uranium. Recovery of uranium from black shale has been carried out by the following steps: i) size reduction, ii) leaching of uranium in the aqueous medium, iii) fluoride ion removal, iv) solvent extraction of uranium from the aqueous leach solution, v) scrubbing of the loaded solvent after extraction to remove impurities as much as possible and vi) stripping of uranium from the loaded organic into the aqueous phase. Leaching of black shale has been carried out in hydrochloric acid. Free acidity of the leach solution has been determined by potentiometric titration method. Removal of fluoride ions has been done using sodium chloride. Solvent extraction has been carried out by both tributyl phosphate and alamine-336 as extractants. Scrubbing has been tried with oxalic acid and sulphuric acid. Stripping with sodium carbonate solution has been carried out. Overall recovery of uranium is 95%. (author)

  3. Retention and reduction of uranium on pyrite surface; Retention et reduction de l'uranium a la surface de la pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N

    2006-12-15

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS{sub 2}). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH {>=} 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10{sup -9} mol g{sup -1}, an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. {>=} -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 {+-} 0.8) x 10{sup -7} mol L{sup -1} of uranium(VI). Modelling of uranium sorption at high surface coverage ({>=} 4 x 10{sup -9} mol g{sup -1}) by the Langmuir model yields an adsorption constant of 8 x 10{sup 7} L mol{sup -1}. Finally, a great excess of uranium(VI) above the

  4. Boiling water reactors with Uranium-Plutonium mixed oxide fuel. Report 1: Accuracy of the nuclide concentrations calculated by CASMO-4

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. These CMS (Core Management System) programs have been extensively compared with both measurements and reference codes. Nevertheless some data are proprietary in particular the comparison of the calculated nuclide concentrations versus experiments (because of the cost of this kind of experimental study). This is why this report describes such a comparative investigation carried out with a General Electric 7x7 BWR bundle. Unfortunately, since some core history parameters were unknown, a lot of hypotheses have been adopted. This invokes sometimes a significant discrepancy in the results without being able to determine the origin of the differences between calculations and experiments. Yet one can assess that, except for four nuclides - Plutonium-238, Curium-243, Curium-244 and Cesium-135 - for which the approximate power history (history effect) can be invoked, the accuracy of the calculated nuclide concentrations is rather good if one takes the numerous approximations into account

  5. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  6. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  7. A contribution to the study of the mixed uranium-plutonium mono-carbides containing small quantities of zirconium; Contribution a l'etude du monocarbure d'uranium et de plutonium avec de faibles additions de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bocker, S. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1970-03-01

    We have studied a mixed monocarbide, type (U,Pu)C, containing small additions of zirconium for the application as a fast neutron reactor fuel. A preliminary study was conducted on the (U,Zr)C monocarbide (Report CEA-R-3765(1). It was found that small additions of zirconium to the uranium-plutonium monocarbide improve a number of properties such as atmospheric corrosion, the hardness, and particularly the compatibility with 316 stainless steel. However, properties such as the coefficient of expansion and the melting point are only slightly changed. The relative percentage of Pu/U+Pu in the monocarbide was fixed at 20 per cent. Two processes of fabrication were employed: casting in an arc furnace, sintering, carried out after having the hydrides of the metals carburized. The metallurgical results indicate, that the above mentioned fuel might be of interest for fast neutron reactor application. (author) [French] On a etudie un combustible de type carbure (U,Pu)C pour les reacteurs a neutrons rapides. Les recherches preliminaires ont porte sur le carbure (UZr)C (rapport CEA-R-3765(1)). L'addition de faibles quantites de zirconium (3 at. pour cent) au monocarbure (U,Pu)C, ameliore certaines proprietes, commee la tenue a la corrosion atmospherique, la durete et surtout la compatibilite avec l'acier inoxydable X-18 M, Par contre le coefficient de dilatation et la densite sont peu changes. Le rapport Pu/Pu+U etait fixe a 20 pour cent. Deux procedes de fabrication ont ete etudies: l'un par fusion a l'arc, l'autre par frittage a partir de metaux hydrures. Au vu des resultats metallurgiques obtenus le carbure (U,Pu,Zr)C semble presenter un interet certain. (auteur)

  8. A contribution to the study of the mixed uranium-plutonium mono-carbides containing small quantities of zirconium; Contribution a l'etude du monocarbure d'uranium et de plutonium avec de faibles additions de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bocker, S [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1970-03-01

    We have studied a mixed monocarbide, type (U,Pu)C, containing small additions of zirconium for the application as a fast neutron reactor fuel. A preliminary study was conducted on the (U,Zr)C monocarbide (Report CEA-R-3765(1). It was found that small additions of zirconium to the uranium-plutonium monocarbide improve a number of properties such as atmospheric corrosion, the hardness, and particularly the compatibility with 316 stainless steel. However, properties such as the coefficient of expansion and the melting point are only slightly changed. The relative percentage of Pu/U+Pu in the monocarbide was fixed at 20 per cent. Two processes of fabrication were employed: casting in an arc furnace, sintering, carried out after having the hydrides of the metals carburized. The metallurgical results indicate, that the above mentioned fuel might be of interest for fast neutron reactor application. (author) [French] On a etudie un combustible de type carbure (U,Pu)C pour les reacteurs a neutrons rapides. Les recherches preliminaires ont porte sur le carbure (UZr)C (rapport CEA-R-3765(1)). L'addition de faibles quantites de zirconium (3 at. pour cent) au monocarbure (U,Pu)C, ameliore certaines proprietes, commee la tenue a la corrosion atmospherique, la durete et surtout la compatibilite avec l'acier inoxydable X-18 M, Par contre le coefficient de dilatation et la densite sont peu changes. Le rapport Pu/Pu+U etait fixe a 20 pour cent. Deux procedes de fabrication ont ete etudies: l'un par fusion a l'arc, l'autre par frittage a partir de metaux hydrures. Au vu des resultats metallurgiques obtenus le carbure (U,Pu,Zr)C semble presenter un interet certain. (auteur)

  9. About the structure and stability of complex carbonates of thorium (IV), cerium (IV), zirconium (IV), hafnium (IV)

    International Nuclear Information System (INIS)

    Dervin, Jacqueline

    1972-01-01

    This research thesis addressed the study of complex carbonates of cations of metals belonging to the IV A column, i.e. thorium (IV), zirconium (IV), hafnium (IV), and also cerium (IV) and uranium (VI), and more particularly focused on ionic compounds formed in solution, and also on the influence of concentration and nature of cations on stability and nature of the formed solid. The author first presents methods used in this study, discusses their precision and scope of validity. She reports the study of the formation of different complex ions which have been highlighted in solution, and the determination of their formation constants. She reports the preparation and study of the stability domain of solid complexes. The next part reports the use of thermogravimetric analysis, IR spectrometry, and crystallography for the structural study of these compounds

  10. Yellowcake: the international uranium cartel

    International Nuclear Information System (INIS)

    Taylor, J.H.; Yokell, M.D.

    1979-01-01

    The dramatic events that occurred in the uranium market between 1972 and 1976, and their repercussions is discussed. In particular, the book concentrates on the international uranium cartel's attempt to fix yellowcake prices. The background of the yellowcake industry is discussed in Part I of the book, and the demand for uranium and the nuclear fuel cycle isdiscussed, along with a brief anecdotal history of the uranium industry. Part II describes the political conflicts in Australia which led to the public exposure of the uranium cartel and the situation in the world uranium market that led to the cartel's formation. The legal repercussions of the cartel's exposure are discussed in Part III, and in Part IV, the authors reflect on the ramifications of the events described in the book and some of the issues they raise

  11. Determination of rare earth elements, hafnium and cadmium in sintered pellets of mixed thorium and uranium oxides by neutron activation

    International Nuclear Information System (INIS)

    Cardoso, S.N.M.

    1987-01-01

    This work shows the development of a method for determination of the rare-earth elements (Eu, Sm, Dy and Gd), Hf and Cd contents in sinterized U and Th mixed oxides by neutron activation analysis. The sample is dissolved in nitric/fluoridric (0,1% HF) medium, to dryness and redissolved in 6N HCl solution. The Hf is extracted into organic phase (0,5 M TTA/benzene), irradiated and analysed through 181 Hf isotope energy peak. The aqueous phase is treated with NH 4 OH for the precipitation of hidroxides. Then, these are dissolved in 6N HNO 3 solution. The extraction of U and Th is made in two steps, one with TBP/CCl 4 and another with 0,5 M TTA/C 6 H 6 . Then the rare-earth elements and Cd are irradiated and determined by gamma spectrometry. (author) [pt

  12. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination.

    Science.gov (United States)

    Prakash, Om; Gihring, Thomas M; Dalton, Dava D; Chin, Kuk-Jeong; Green, Stefan J; Akob, Denise M; Wanger, Greg; Kostka, Joel E

    2010-03-01

    An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with

  13. In vitro and in vivo measurements of the dissolution parameters of uranium and plutonium mixed oxides in biological environment

    International Nuclear Information System (INIS)

    Matton, S.

    1999-01-01

    During the mixed-oxide fuel fabrication process, inhalation is potentially the main route of internal contamination. The International Commission on Radiological Protection recommends experimental measurement of parameters such as size and dissolution rate for specific industrial compounds. First, we validated the use of PERALS (Photon Electron Rejecting Alpha Liquid Scintillation) for alpha measurement in biological samples which, in some cases, could improve detection limit. We characterised physical chemical properties in terms of size, specific area and activity of 3 different powders: MOX made according to either the MIMAS process, which showed heterogeneous chemical composition, or the SOLGEL, which showed homogeneous chemical composition and industrial PuO 2 . Their dissolution parameters, f r and s s , as defined in the simplest model proposed by ICRP 66 were measured in vivo, after inhalation in the rat, and in vitro. The statistical variation of these values were expressed as standard deviation. Moreover, in vitro studies demonstrated variation of the s s value depending on the duration of the incubation. We also developed methods to characterise interactions between UO 2 particles and phosphate ions which could be involved in the actinide toxicity. (author) [fr

  14. Uranium resource assessments

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  15. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  16. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    Science.gov (United States)

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  17. Determination of {sup 2}30Th (Ionium) in uranium ores and wastes from uranium reprocessing. IV. Calculation of ionium separation yield; Determinacion de {sup 2}39Th (Ionio) en minerales y residuos del procesado de Uranio. IV: Determinacion del rendimiento en la separacion del {sup 2}30 Th

    Energy Technology Data Exchange (ETDEWEB)

    Galiano Sedano, J A; Acena Barrenechea, M L

    1974-07-01

    For determining ionium ({sup 2}30Th) in minerals and uranium processing wastes by precipitation with fluorhidric acid, using lanthanum as carrier, and selective extraction with tenoytrifluoroacetone (TTA) followed by radiometric determination of the isolated nuclide, it is necessary the use of a tracer since the chemical yield of the separation ranges between wide limits. In this paper, the use of the beta-emitter {sup 2}34Th as the most convenient tracer is discussed. Equations are derived for correcting for counting errors introduced by other thorium isotopes which are present either in the sample or in the tracer, as well as for calculating the chemical yield of the separation. These equations have been experimentally checked by ionium determinations carried out with different types of samples. (Author) 18 refs.

  18. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  19. A family of uranium-carboxylic acid hybrid materials: synthesis, structure and mixed-dye selective adsorption

    International Nuclear Information System (INIS)

    Xue Gao; Jian Song; Yong Heng Xing; Feng Ying Bai; Li Xian Sun; Zhan Shi

    2016-01-01

    Four uranyl complexes (UO_2)_2(pht)_2(Hpac)_2(H_2O)_2 (pht = phthalic acid and Hpac = nicotinic acid) (1), (UO_2)(pac)_2(H_2O)_2 (2), [(UO_2)(CMA)_3][H_2N(CH_3)_2] (CMA = cinnamic acid) (3) and (UO_2)_2(C_2O_4)(μ_2- OH)_2(H_2O)_2H_2O (4) were synthesized by the reaction of UO_2(CH_3COO)_2.2H_2O as the metal source with phthalic acid, nicotinic acid, cinnamic acid or oxalic acid as the ligand. They were characterized by elemental analysis, IR, UV-vis, XRD, single crystal X-ray diffraction and thermal gravimetric analysis. The structural analysis showed that complexes 1, 2 and 3 were discrete structures, and by hydrogen bonding interactions, the adjacent molecular units are connected to form a three-dimensional (3D) supramolecular network structure for complex 1 and one-dimensional (1D) chains for complexes 2 and 3. Meanwhile, in the structure of complex 4, a tetrameric SBU (UO_2)_4(μ_2-OH)_4(H_2O)_4 is linked to a 2D layer through a bridging oxalic acid ligand, and furthermore extends the 2D layer into a 3D supramolecular architecture by hydrogen bonding interactions. In order to extend their functional properties, their photoluminescence, surface photovoltage and mixed-dye selective adsorption properties have been studied for the first time. Through experiments, we found that the adsorption performance of complex 3 was better than others, and the amount of adsorbed RhB was 4.22 mg.g"-"1. (authors)

  20. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors; Comparação de ciclos abertos de urânio e óxidos mistos de tório-urânio utilizando reatores avançados

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Letícia C.; Maiorino, José R., E-mail: goncalves.leticiac@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste.

  1. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  2. Automated uranium titration system

    International Nuclear Information System (INIS)

    Takahashi, M.; Kato, Y.

    1983-01-01

    An automated titration system based on the Davies-Gray method has been developed for accurate determination of uranium. The system consists of a potentiometric titrator with precise burettes, a sample changer, an electronic balance and a desk-top computer with a printer. Fifty-five titration vessels are loaded in the sample changer. The first three contain the standard solution for standardizing potassium dichromate titrant, and the next two and the last two contain the control samples for data quality assurance. The other forty-eight measurements are carried out for sixteen unknown samples. Sample solution containing about 100 mg uranium is taken in a titration vessel. At the pretreatment position, uranium (VI) is reduced to uranium (IV) by iron (II). After the valency adjustment, the vessel is transferred to the titration position. The rate of titrant addition is automatically controlled to be slower near the end-point. The last figure (0.01 mL) of the equivalent titrant volume for uranium is calculated from the potential change. The results obtained with this system on 100 mg uranium gave a precision of 0.2% (RSD,n=3) and an accuracy of better than 0.1%. Fifty-five titrations are accomplished in 10 hours. (author)

  3. Are symptoms of spirit possessed patients covered by the DSM-IV or DSM-5 criteria for possession trance disorder? A mixed-method explorative study in Uganda

    NARCIS (Netherlands)

    van Duijl, M.; Kleyn, W.; de Jong, J.

    2013-01-01

    Introduction and aims As in many cultures, spirit possession is a common idiom of distress in Uganda. The DSM-IV contains experimental research criteria for dissociative and possession trance disorder (DTD and PTD), which are under review for the DSM-5. In the current proposed categories of the

  4. Uranium complex recycling method of purifying uranium liquors

    International Nuclear Information System (INIS)

    Elikan, L.; Lyon, W.L.; Sundar, P.S.

    1976-01-01

    Uranium is separated from contaminating cations in an aqueous liquor containing uranyl ions. The liquor is mixed with sufficient recycled uranium complex to raise the weight ratio of uranium to said cations preferably to at least about three. The liquor is then extracted with at least enough non-interfering, water-immiscible, organic solvent to theoretically extract about all of the uranium in the liquor. The organic solvent contains a reagent which reacts with the uranyl ions to form a complex soluble in the solvent. If the aqueous liquor is acidic, the organic solvent is then scrubbed with water. The organic solvent is stripped with a solution containing at least enough ammonium carbonate to precipitate the uranium complex. A portion of the uranium complex is recycled and the remainder can be collected and calcined to produce U 3 O 8 or UO 2

  5. The hydrolysis of thorium dicarbide and of mixed uranium-thorium dicarbides; L'hydrolyse du dicarbure de thorium et des dicarbures mixtes d'uranium et de thorium

    Energy Technology Data Exchange (ETDEWEB)

    Del Litto, B [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-09-01

    The hydrolysis of thorium dicarbide leads to the formation of a complex mixture of gaseous and condensed carbon hydrides. The temperature, between 25 and 100 deg. C, has no influence on the nature and composition of the gas phase. The reaction kinetics, however, are strongly temperature dependent. In a hydrochloric medium, an enrichment in hydrogen of the gas mixture is observed. On the other hand a decrease in hydrogen and an increase in acetylene content take place in an oxidizing medium. The general results can be satisfactorily interpreted through a reaction mechanism involving C-C radical groups. In the same way, the hydrolysis of uranium-thorium-carbon ternary alloys leads to the formation of gaseous and condensed carbon hydrides. The variation of the composition of the gas phase versus uranium content in the alloy suggests an hypothesis about the carbon-carbon distance in the alloy crystal lattice. The variation of methane content, on the other hand, has lead us to discuss the nature of the various phases present in uranium-carbon alloys and carbon-rich uranium-thorium-carbon alloys. We have reached the conclusion that these alloys include a proportion of monocarbide which is dependent upon the ratio. Th/(Th + U). We put forward a diagram of the system uranium-carbon with features proper to explain some phenomena which have been observed in the uranium-thorium-carbon ternary diagram. (author) [French] L'hydrolyse du dicarbure de thorium conduit a la formation d'un melange complexe d'hydrures de carbone gazeux et condenses. La temperature entre 25 et 100 deg. C n'a pas d'influence sur la nature ef la composition de la phase gazeuse. Par contre la cinetique en depend fortement. En milieu chlorhydrique, on observe un enrichissement en hydrogene du melange gazeux. Au contraire, en milieu oxydant il se produit une diminution du taux d'hydrogene et une augmentation tres nette du taux d'acetylene. L'ensemble des resultats obtenus peut etre interprete d'une maniere

  6. Uranium recovery from mine water

    International Nuclear Information System (INIS)

    Sarkar, K.M.

    1984-01-01

    In many plant trials it has been proven that very small amounts (10 to 20 ppm) of uranium dissolved in mine water can be effectively recovered by the use of ion exchange resins and this uranium recovery has many advantages. In this paper an economic analysis at different levels of uranium contamination and at different market prices of uranium are described. For this study an operating mine-mill complex with a sulphuric acid leach circuit, followed by solvent extraction (SX) process, is considered, where contaminated mine water is available in excess of process requirements. It is further assumed that the sulphuric acid eluant containing uranium would be mixed with the mill pregnant liquor stream that proceeds to the SX plant for final uranium recovery

  7. U uranium. Suppl. Vol. D3

    International Nuclear Information System (INIS)

    Haug, H.O.

    1982-01-01

    This volume of the uranium series of the Gmelin handbook deals with the anion exchange of uranium. Compounds of the valence states of III, IV, V and VI of uranium in halide, nitrate, sulfate, phosphate, and carbonate media as well as in media containing organic complexing agents are treated. The literature cited covers the period from about 1947 to the end of 1980. (RB) [de

  8. Gen IV. Technical and economical aspects

    International Nuclear Information System (INIS)

    Kaluzny, Y.; Legee, F.

    2010-01-01

    In this presentation author deals with development of nuclear reactor type of Generation IV. He concluded that: - Nuclear energy is competitive with regards to the other generation sources; Its competitiveness also increases with CO 2 cost. Considering the nuclear cost breakdown of LWR reactors, it turns out that the uranium is currently not in the range of a threshold for FBR deployment; - The global balance of uranium supply and demand and also innovation required to fulfil GEN IV objectives would probably imply the emergence of fast reactor competitiveness after the turn of the mid-century; - We shall need fast reactors in the coming decade.

  9. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  10. Uranium geochemistry of Orca Basin

    International Nuclear Information System (INIS)

    Weber, F.F. Jr.; Sackett, W.M.

    1981-01-01

    Orca Basin, an anoxic, brine-filled depression at a depth of 2200 m in the Northwestern Gulf of Mexico continental slope, has been studied with respect to its uranium geochemistry. Uranium concentration profiles for four cores from within the basin were determined by delayed-neutron counting. Uranium concentrations ranged from 2.1 to 4.1 ppm on a salt-free and carbonate-corrected basis. The highest uranium concentrations were associated with the lowest percentage and delta 13 C organic carbon values. For comparison, cores from the brine-filled Suakin and Atlantis II Deeps, both in the Red Sea, were also analyzed. Uranium concentrations ranged from 1.2 to 2.6 ppm in the Suakin Deep and from 8.0 to 11.0 ppm in the Atlantis II Deep. No significant correlation was found between uranium concentrations and organic carbon concentrations and delta 13 C values for these cores. Although anoxic conditions are necessary for significant uranium uptake by non-carbonate marine sediments, other factors such as dilution by rapidly depositing materials and uranium supply via mixing and diffusion across density gradients may be as important in determining uranium concentrations in hypersaline basin sediments. (author)

  11. Thermodynamical, kinetic and structural properties of simple and mixed complexes of zirconium (IV) with the hydroxyl and carbonate ions. Study by potentiometry, Raman spectroscopy and NMR spectroscopy

    International Nuclear Information System (INIS)

    Veyland, A.

    1999-01-01

    Most of zirconium production is used by the nuclear industry for the cladding of nuclear fuels and for the storage of radioactive wastes. The aim of this work is the qualitative and quantitative study of the complexes made by zirconium with the hydroxyl and carbonate ions in order to evaluate the long-term pollution risks linked with the corrosion of confinement containers. The zirconium(IV)/hydroxyl system is studied by proto-metry and follows a protocol which reduces the local over-concentrations of reagent and the precipitation of zirconium hydroxide. In potassium nitrate environment and in a pH range of 1.5 to 3.5, three soluble species are evidenced: Zr(OH) 3 + , Zr 2 (OH) 7 + and Zr(OH) 4 . Their apparent constant of formation and the solubility product of zirconium hydroxide are determined with 4 ionic forces. Using these results, the corresponding thermodynamic constants are calculated by applying the theory of specific interactions. The formation of zirconium (IV) hydroxo-carbonate complexes is evidenced by proto-metry and 17 O and 13 C NMR. The number of carbonates fixed by zirconium varies from 0 to 4. The dialysis indicates that the degree of poly-condensation of species is an inverse function of the number of complex carbonates. The Raman polarized spectra and the 13 C NMR results demonstrate for all complexes the bidentate character of the complexation mode of the carbonates. The dynamical study made by 13 C NMR of the exchange between complexed carbonates of the tetra-carbonate-zirconate ion and free carbonates in solution allows to determine the kinetic constants and the corresponding velocity law. An associative mechanism is proposed, in agreement with the results obtained by mass spectroscopy with electro-spray ionization. These new thermodynamical and kinetic data allow to model the speciation of zirconium in natural waters. (J.S.)

  12. IVS Organization

    Science.gov (United States)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  13. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  14. Titrimetric determination of uranium in tributyl phosphate

    International Nuclear Information System (INIS)

    Sobkowska, A.

    1978-01-01

    The titrimetric method involving the reduction of U(VI) to uranium(IV) by iron(II) in phosphoric acid, selective oxidation of the excess of iron(II) and potentiometric titration with dichromate was directly used for the determination of uranium in tributyl phosphate mixtures. The procedure was applied to solutions containing more than 2 mg of uranium in the sample but the highest precision and accuracy were obtained in the range from 20 to 200 mg of uranium. Dibutyl phosphate and monobutyl phosphate as well as the other radiolysis products of TBP had no influence on the results of determinations. (author)

  15. The uranium International trade

    International Nuclear Information System (INIS)

    Gonzalez U, L.A.

    1993-01-01

    The aim of this thesis is the understanding of how the present dynamic of uranium International trade is developed, the variables which fall into, the factors that are affecting and conditioning it, in order to clarify which are going to be the outlook in the future of this important resource in front of the present ecological situation and the energetic panorama of XXI Century. For this purpose, as starting point, the uranium is considered as a strategic material which importance take root in its energetic potential as alternate energy source, and for this reason in Chapter I, the general problem of raw materials, its classification and present situation in the global market is presented. In Chapter II, by means of a historical review, is explain what uranium is, how it was discovered, and how since the end of the past Century and during the last three decades of present, uranium pass of practically unknown element, to the position of a strategic raw material, which by degrees, generate an International market, owing to its utilization as a basic resource in the generation of energy. Chapter III, introduce us in the roll played by uranium, since its warlike applications until its utilization in nuclear reactors for the generation of electricity. Also is explain the reason for this change in the perception at global level. Finally, in Chapter IV we enter upon specifically in the present conditions of the International market of this mineral throughout the trends of supply and demand, the main producers, users, price dynamics, and the correlation among these economical variables and other factors of political, social and ecological nature. All of these with the purpose to found out, if there exist, a meaning of the puzzle that seems to be the uranium International trade

  16. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  17. Uranium market

    International Nuclear Information System (INIS)

    Rubini, L.A.; Asem, M.A.D.

    1990-01-01

    The historical development of the uranium market is present in two periods: The initial period 1947-1970 and from 1970 onwards, with the establishment of a commercial market. The world uranium requirements are derived from the corresponding forecast of nuclear generating capacity, with, particular emphasis to the brazilian requirements. The forecast of uranium production until the year 2000 is presented considering existing inventories and the already committed demand. The balance between production and requirements is analysed. Finally the types of contracts currently being used and the development of uranium prices in the world market are considered. (author)

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  19. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  20. Preparation and Spectral Properties of Mixed-Ligand Complexes of VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II with Dimethylglyoxime and N-acetylglycine

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2010-01-01

    Full Text Available A number of mixed-ligand complexes of the general formula [M(D(G] where D=dimethylglyoximato monoanion, G=N-acetylglycinato and M=VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II were prepared. Each complex was characterized by elemental analysis, determination of metal, infrared spectra, electronic spectra, (1H and 13C NMR spectra, conductivity and magnetic moments. All these complexes were not soluble in some of the organic solvent but highly soluble in dimethylformamide. The conductivity data showed the non-electrolytic nature of the complexes. The electronic spectra exhibited absorption bands in the visible region caused by the d-d electronic transition such as VO(IV, Ni(II and Pd(II. The IR and (1H, 13C NMR spectra which have indicate that the dimethylglyoxime was coordinated with the metal ions through the N and O atoms of the oxime group and N-acetylglycine was coordinated with metal ions through the N atom and terminal carboxyl oxygen atom.

  1. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A K; Kumari, V; Chaturvedi, G K [Agra Coll. (India)

    1978-12-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35/sup +/-1/sup 0/ and 45/sup +/-1/sup 0/ and also the thermodynamic functions viz. ..delta..F, ..delta..H and ..delta..S (..mu..=0.1M KNO/sub 3/) (auth.).

  2. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    International Nuclear Information System (INIS)

    Jain, A.K.; Kumari, V.; Chaturvedi, G.K.

    1978-01-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35 + -1 0 and 45 + -1 0 and also the thermodynamic functions viz. ΔF, ΔH and ΔS (μ=0.1M KNO 3 ) (auth.)

  3. Determination of thermodynamic properties and stability limit from fluorite phase of uranium and lanthanide mixed oxides, using galvanic cells with solid electrolytes

    International Nuclear Information System (INIS)

    Santiago, T.N.

    1980-10-01

    A method for thermodynamic properties determination for oxygen solubility in oxide systems at temperature interval 973 ≤ T [K] ≤ 1773 is described. A galvanic cell using as solid electrolytes zircon dioxide doped with 15% of calcium oxide is presented. This method was used for determining the phase change, temperature dependent, of uranium-lanthanides-oxygen Ln U O 4 stoichiometric system. (C.G.C.)

  4. Sorption behaviour of uranium and thorium on hydrons tin oxide from aqueous and mixed-solvent H2SO4 media

    International Nuclear Information System (INIS)

    Misak, N.Z.; Salema, H.N.; El-Naggar, J.M.

    1983-01-01

    At pH values > about 2 in 10 -3 -10 -2 M aqueous sulphate solutions, uranium seems to be sorbed by hydrous tin oxide mainly as cations, while thorium is sorced as cations and as the neutral complex. At pH values of about 1.1-1.4, both uranium and thorium seem to be mainly sorbed as the neutral complexes. while at lower pH values, sorption of anionic commplexes comes into play. The sorption of uranium generally increased progressively on addition of increasing amounts of methanol, ethanol or acetone. The sorption of thorium decreases a little at 0.01 N H 2 SO 4 and increases a little at 0.5 N H 2 SO 4 on adding the organic solvents. At 0.1 N H 2 SO 4 , the addition of 20percent of the organic solvents brings the sorption of thorium to almost negligible values, which seems to offer an attractive means for U/Th separation. (author)

  5. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  6. Uranium mining

    International Nuclear Information System (INIS)

    Lange, G.

    1975-01-01

    The winning of uranium ore is the first stage of the fuel cycle. The whole complex of questions to be considered when evaluating the profitability of an ore mine is shortly outlined, and the possible mining techniques are described. Some data on uranium mining in the western world are also given. (RB) [de

  7. Potentiometric determination of hexavalent uranium in uranium silicide samples

    International Nuclear Information System (INIS)

    Arlegui, Oscar

    1999-01-01

    The Chilean Nuclear Energy Commission's Department of Nuclear Materials has among its projects the production of fuels elements for nuclear reactors, and, therefore, the Chemical Analysis Laboratory must have a rapid and reliable method for uranium analysis, to control the uranium concentration during each stage of the production process. For this reason the Chilean Nuclear Energy Commission's Chemical Analysis Laboratory has validated a potentiometric method, which is a modification of the Davies and Gray method proposed by A.R. Eberle. This method uses the Potentiometric Titration Technique and is based on the direct and rapid reduction of uranium (VI) to Uranium (IV), in a concentrated phosphoric acid medium, with excess iron (II) used as a reducing agent. In this medium the excess iron (II) selectively oxidizes to iron (III) with nitric acid, using molybdenum (IV) as a catalyzer, the nitrous acid that is produced is eliminated by adding amidosulfuric acid. The solution is diluted with 1M sulfuric acid and the uranium (IV) obtained is titrated potentiometrically with potassium dichromate in the presence of vanadilic sulfate to obtain a better defined final titration point. The samples were softened with hydrochloric acid and nitric acid and later 50 ml were estimated in a 20% sulfuric acid medium. The analytical method was validated by comparing it with Certified Reference Material (C.R.M.) from the New Brunswick Laboratory (NBL), Metallic Uranium, CRM 112-A. The F Test and the T Test show that the value calculated is less than the tabulated value so the result is traceable to the reference material. The quantification limit, sensitivity, precision and accuracy were quantified for the method

  8. Separation of uranium from (Th,U)O2 solid solutions

    International Nuclear Information System (INIS)

    Chiotti, P.; Jha, M.C.

    1976-01-01

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets. 7 claims

  9. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  10. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  11. Comparison of silver(II), cobalt(III), and cerium(IV) as electron transfer mediators in the MEO mixed waste treatment process

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.M.; McKee, S.D.

    1997-01-01

    Mediated electrochemical oxidation (MEO) has been developed as a method to treat mixed hazardous waste. The technology has for the most part been targeted toward wastes generated by the nuclear industry, consisting of a hazardous or non-hazardous organic material contaminated by a radioactive substance. The MEO process consists of the electrochemical generation of a powerful oxidizing agent, which serves as an electron transfer mediator to bring about the oxidation of the organic component. Numerous studies on a variety of organic substrates have demonstrated complete oxidation to carbon dioxide can be realized under the proper reaction conditions, with water serving as the source of oxygen. The radioactive component, usually an actinide element or heavy metal isotope, can then be recovered from the resulting organic free aqueous solution by standard methods such as ion exchange or solvent extraction. In addition to the variety of organic compounds tested, investigators have also looked at a number of process parameters including choice of mediator, temperature, concentration of mediator, current density, anode material, acid concentration, and cell separator material. From these studies it would appear that for a given organic substrate, the two most important process parameters are choice of mediator and temperature. The purpose of this work is to evaluate these two parameters for a given organic material, holding all other parameters constant. The organic material chosen for this study is the industry standard sulfonated styrene-divinyl benzene based cation exchange resin. This material is ubiquitous throughout the nuclear complex as a process residue, and is very resistant to chemical attack making it an ideal substrate to evaluate MEO capability. A high acid concentration is necessary to solubilize the mediator in its higher oxidation state, 6 M nitric acid was chosen since it is compatible with existing subsequent actinide element recovery processes

  12. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  13. Long-term performance of elemental iron and hydroxyapatite for uranium retention in permeable reactive barriers used for groundwater remediation

    International Nuclear Information System (INIS)

    Biermann, V.

    2007-01-01

    mineral phases could be identified in spent Fe 0 column material. But image analysis (ESEM / EDX) indicates formation of a mixed U(IV)/U(VI) oxide. While HAP long-term performance depends mainly on sorption capacity, maintaining hydraulic conductivity is crucial for Fe 0 . In both cases water compositon has a great influence as well. (orig.)

  14. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Ross, Kyle W. (Los Alamos National Laboratory, Los Alamos, NM); Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  15. Activation of chalcogens and chalcogenides at reactive uranium centers

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Michael Sebastian

    2015-07-23

    The high reactivity of many trivalent uranium complexes was investigated in the Meyer group, however, these studies were not limited to small-molecule activation, but were extended to other relatively inert reagents like the heavier elemental chalcogens sulfur, selenium, and tellurium. The tripodal N-anchored chelate ({sup Ad,Me}ArO){sub 3}N{sup 3-} (trianion of tris(3-Adamantyl-2-hydroxy-5-methylbenzyl)amine) was found to be a very suitable candidate for this task and the respective uranium(III) complex [(({sup Ad,Me}ArO){sub 3}N)U{sup III}(DME)] is able to activate elemental sulfur and selenium to form the dinuclear, chalcogenido-bridged complexes [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-E)] (E = S, Se). Starting from this previously accomplished work, research in this thesis aimed at furthering reactivity studies of trivalent [(({sup Ad,Me}ArO){sub 3}N)U{sup III}(DME)], but also its chalcogenido-bridged uranium(IV) products, and the spectroscopic characterization of all newly synthesized compounds. Furthermore, the development of the new phenol HOAr* (Ar* = 2,6-(CHPh{sub 2}){sub 2}-4-Me-C{sub 6}H{sub 2}, 2,6-bis(diphenylmethyl)-4-methylphenyl) and its establishment as a ligand to be used for uranium coordination chemistry was another goal of this thesis. The activation of CO{sub 2} by uranium(III) complex [(({sup Ad,Me}ArO){sub 3}N)U{sup III}(DME)] to yield the dinuclear, carbonate-bridged uranium(IV/IV) complex [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-κ{sup 1}:κ{sup 2}-CO{sub 3})] and CO was reported in 2010 by Meyer and co-workers. These previous results led to the pursuit of the isolation of mixed chalcogenocarbonate complexes from the reaction of the bridging chalcogenidos [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-E)] (E = S, Se) with either CO{sub 2} or its heterocumulene analogs COS or CS{sub 2}. The chalcogeno-carbonates [{(("A"d","M"eArO)_3N)U"I"V(DME)}{sub 2}(μ-κ{sup 1}:κ{sup 2}-CO{sub 2}E)] und [{(("A"d","M"eArO)_3N)U"I"V-(DME)}{sub 2}(

  16. Oxidation of naturally reduced uranium in aquifer sediments by dissolved oxygen and its potential significance to uranium plume persistence

    Science.gov (United States)

    Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.

    2015-12-01

    The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table

  17. Asteroids IV

    Science.gov (United States)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  18. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  19. Uranium toxicology

    International Nuclear Information System (INIS)

    Ferreyra, Mariana D.; Suarez Mendez, Sebastian

    1997-01-01

    In this paper are presented the methods and procedures optimized by the Nuclear Regulatory Authority (ARN) for the determination of: natural uranium mass, activity of enriched uranium in samples of: urine, mucus, filters, filter heads, rinsing waters and Pu in urine, adopted and in some cases adapted, by the Environmental Monitoring and Internal Dosimetry Laboratory. The analyzed material corresponded to biological and environmental samples belonging to the staff professionally exposed that work in plants of the nuclear fuel cycle. For a better comprehension of the activities of this laboratory, it is included a brief description of the uranium radiochemical toxicity and the limits internationally fixed to preserve the workers health

  20. Computation Results from a Parametric Study to Determine Bounding Critical Systems of Homogeneously Water-Moderated Mixed Plutonium--Uranium Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.

    2001-01-11

    This report provides computational results of an extensive study to examine the following: (1) infinite media neutron-multiplication factors; (2) material bucklings; (3) bounding infinite media critical concentrations; (4) bounding finite critical dimensions of water-reflected and homogeneously water-moderated one-dimensional systems (i.e., spheres, cylinders of infinite length, and slabs that are infinite in two dimensions) that were comprised of various proportions and densities of plutonium oxides and uranium oxides, each having various isotopic compositions; and (5) sensitivity coefficients of delta k-eff with respect to critical geometry delta dimensions were determined for each of the three geometries that were studied. The study was undertaken to support the development of a standard that is sponsored by the International Standards Organization (ISO) under Technical Committee 85, Nuclear Energy (TC 85)--Subcommittee 5, Nuclear Fuel Technology (SC 5)--Working Group 8, Standardization of Calculations, Procedures and Practices Related to Criticality Safety (WG 8). The designation and title of the ISO TC 85/SC 5/WG 8 standard working draft is WD 14941, ''Nuclear energy--Fissile materials--Nuclear criticality control and safety of plutonium-uranium oxide fuel mixtures outside of reactors.'' Various ISO member participants performed similar computational studies using their indigenous computational codes to provide comparative results for analysis in the development of the standard.

  1. Synthesis, Magnetism, and X-ray Molecular Structure of the Mixed-Valence Vanadium(IV/V)-Oxygen Cluster [VO(4) subset(V(18)O(45))](9-).

    Science.gov (United States)

    Suber, Lorenza; Bonamico, Mario; Fares, Vincenzo

    1997-05-07

    Within the transition metal oxide systems, vanadium presents a unique chemistry due to its capacity to form a great number of mixed-valence oxo clusters which often have the peculiarity to incorporate species that function, for size, shape, and charge, as templates. Prismatic, lustrous dark brown crystals of [(n-C(4)H(9))NH(3)](9)[V(19)O(49)].7H(2)O are obtained by reacting (n-C(4)H(9)NH(3))VO(3), VOSO(4), and (n-C(4)H(9))NH(2) in H(2)O. The X-ray crystal structure shows an ellipsoidal metal-oxo cluster formed by 15 VO(5) and 3 VO(4) polyhedra surrounding an almost regular VO(4) tetrahedron located on the 3-fold axis of a trigonal cell of dimensions a = 19.113(5) Å and c = 13.743(5) Å with space group P&thremacr; and Z = 2. Exponentially weighted bond valence sum calculations, manganometric titration of the V(IV) centers, and magnetic measurements are consistent with the presence of three localized and three delocalized electrons. Variable-temperature solid-state susceptibility studies indicate antiferromagnetic coupling between V(IV) centers. Cyclic voltammetry in acetonitrile shows a irreversible reduction at -1.24 V and a reversible oxidation at +0.17 V (vs Ag/AgCl). The title compound converts quantitatively to the metal oxide K(2)V(3)O(8) with an extended layered structure as soon as a potassium salt is added to a neutral aqueous solution of the polyoxoanion.

  2. A spectroscopic study of uranium(VI) interaction with magnetite

    International Nuclear Information System (INIS)

    El Aamrani, S.; Gimenez, J.; Rovira, M.; Seco, F.; Grive, M.; Bruno, J.; Duro, L.; Pablo, J. de

    2007-01-01

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO 2 and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI)

  3. Uranium tailings reference materials

    International Nuclear Information System (INIS)

    Smith, C.W.; Steger, H.F.; Bowman, W.S.

    1984-01-01

    Samples of uranium tailings from Bancroft and Elliot Lake, Ontario, and from Beaverlodge and Rabbit Lake, Saskatchewan, have been prepared as compositional reference materials at the request of the National Uranium Tailings Research Program. The four samples, UTS-1 to UTS-4, were ground to minus 104 μm, each mixed in one lot and bottled in 200-g units for UTS-1 to UTS-3 and in 100-g units for UTS-4. The materials were tested for homogeneity with respect to uranium by neutron activation analysis and to iron by an acid-decomposition atomic absorption procedure. In a free choice analytical program, 18 laboratories contributed results for one or more of total iron, titanium, aluminum, calcium, barium, uranium, thorium, total sulphur, and sulphate for all four samples, and for nickel and arsenic in UTS-4 only. Based on a statistical analysis of the data, recommended values were assigned to all elements/constituents, except for sulphate in UTS-3 and nickel in UTS-4. The radioactivity of thorium-230, radium-226, lead-210, and polonium-210 in UTS-1 to UTS-4 and of thorium-232, radium-228, and thorium-228 in UTS-1 and UTS-2 was determined in a radioanalytical program composed of eight laboratories. Recommended values for the radioactivities and associated parameters were calculated by a statistical treatment of the results

  4. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  5. Rossing uranium

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    In this article the geology of the deposits of the Rossing uranium mine in Namibia is discussed. The planning of the open-pit mining, the blasting, drilling, handling and the equipment used for these processes are described

  6. Uranium, depleted uranium, biological effects

    International Nuclear Information System (INIS)

    2001-01-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  7. Uranium loans

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    When NUEXCO was organized in 1968, its founders conceived of a business based on uranium loans. The concept was relatively straightforward; those who found themselves with excess supplies of uranium would deposit those excesses in NUEXCO's open-quotes bank,close quotes and those who found themselves temporarily short of uranium could borrow from the bank. The borrower would pay interest based on the quantity of uranium borrowed and the duration of the loan, and the bank would collect the interest, deduct its service fee for arranging the loan, and pay the balance to those whose deposits were borrowed. In fact, the original plan was to call the firm Nuclear Bank Corporation, until it was discovered that using the word open-quotes Bankclose quotes in the name would subject the firm to various US banking regulations. Thus, Nuclear Bank Corporation became Nuclear Exchange Corporation, which was later shortened to NUEXCO. Neither the nuclear fuel market nor NUEXCO's business developed quite as its founders had anticipated. From almost the very beginning, the brokerage of uranium purchases and sales became a more significant activity for NUEXCO than arranging uranium loans. Nevertheless, loan transactions have played an important role in the international nuclear fuel market, requiring the development of special knowledge and commercial techniques

  8. Unprecedented reduction of the uranyl ion [UO2]2+ into a polyoxo uranium(IV) cluster: synthesis and crystal structure of the first f-element oxide with a M6(micro3-O)8 core.

    Science.gov (United States)

    Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel

    2005-07-21

    The smooth comproportionation reaction of the U(VI) and U(III) complexes UO2(OTf)2 and U(OTf)3, afforded the hexanuclear U(IV) oxide cluster [U6(micro3-O)8(micro2-OTf)8(py)8], a rare example of a metal oxide with a M6(micro3-O)8 core.

  9. Method to manufacture a nuclear fuel from uranium-plutonium monocarbide or uranium-plutonium mononitride

    International Nuclear Information System (INIS)

    Krauth, A.; Mueller, N.

    1977-01-01

    Pure uranium carbide or nitride is converted with plutonium oxide and carbon (all in powder form) to uranium-plutonium monocarbide or mononitride by cold pressing and sintering at about 1600 0 C. Pure uranium carbide or uranium nitride powder is firstly prepared without extensive safety measures. The pure uranium carbide or nitride powder can also be inactivated by using chemical substances (e.g. stearic acid) and be handled in air. The sinterable uranium carbide or nitride powder (or also granulate) is then introduced into the plutonium line and mixed with a nonstoichiometrically adjusted, prereacted mixture of plutonium oxide and carbon, pressed to pellets and reaction sintered. The surface of the uranium-plutonium carbide (higher metal content) can be nitrated towards the end of the sinter process in a stream of nitrogen. The protective layer stabilizes the carbide against the water and oxygen content in air. (IHOE) [de

  10. Analytical procedure for the titrimetric determination of uranium in concentrates

    International Nuclear Information System (INIS)

    Florence, T.M.; Pakalns, P.

    1989-01-01

    In 1964 Davis and gray published a titrimetric method for uranium which does not require column reductors, electronic instruments or inert atmospheres, and is sufficiently selective to enable uranium to be determined without prior separation. The method involves reduction of uranium (VI) to (IV) by ferrous sulphate in concentrated phosphoric acid medium. The excess ion (II) is then selectively oxidised by nitric acid using molybdenum catalyst. After addition of sulphuric acid and dilution with water, the uranium (IV) is titrated with standard potassium dichromate, using barium diphenylamine sulphonate indicator. This method has been found to be simple, precise and reliable, and applicable to a wide range of uranium-containing materials. The method given here for determining uranium in concentrates is essentially that of Davies and Gray. Its applications, apparatus, reagents, procedures and accuracy and precision are discussed. 10 refs

  11. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium; Preparation et etude des nitrures et carbonitrures d'uranium et de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Anselin, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [French] On decrit en detail une methode simple de preparation des nitrures d'uranium et de plutonium par action directe de l'azote sous pression, a temperature moyenne (vers 400 C), sur les metaux massifs partiellement hydrures. On montre que la miscibilite est complete entre les phases UN et PuN. L'evolution des parametres reticulaires des echantillons en fonction de la temperature et en presence d'oxyde a ete utilisee pour detecter et estimer la solubilite de l'oxygene dans les diverses phases. On a etudie le frittage de ces nitrures en fonction des conditions de preparation, avec ou sans additif de

  12. Exploration and uranium mining in Niger

    International Nuclear Information System (INIS)

    Moussa, M.

    2014-01-01

    features are important in trapping the mineralisation which is often of roll front type, either reduced consisting in pitchblende and coffinite (Akouta, Arlit, Afasto, Madaouela) or oxidized (Imouraren). The main exploration companies of Uranium in the basin of Tim Mersoï (Northern Iullemenden) are: • AREVA-Niger for the uranium-bearing prospecting permits of Imouraren, Afouday, Agebout; • Cominak for the uranium-bearing prospecting permit Western Afasto; • NorthWestern Mineral Ventures Inc for the uranium-bearing prospecting permits Irhazer and Ingal; • North Atlantic Resources Ltd. for the uranium-bearing prospecting permit Abélajouad; • CNUC for the uranium-bearing permit of Tiguida • Goviex for uranium permit of Madaouéla; • International Uranium Ltd for the uranium-bearing prospecting permits of Agelal I, II, III, IV and Aserka I, II, III, IV; • Total Uranium Corporation for the licences of Chock Negouran I, II, III and IV; • Trend Field Holding SA for the uranium-bearing prospecting permits Tagaza II and IV. (author)

  13. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  14. Evaluation of an automatic uranium titration system

    International Nuclear Information System (INIS)

    Lewis, K.

    1980-01-01

    The titration system utilizes the constant current coulometric titration of Goldbeck and Lerner. U(VI) is reduced to U(IV) by Fe(II). V(V) is generated to titrate the U(IV), and the titration is followed potentiometrically. The evaluation shows that the recovery of uranium is 100% at the 40-mg level. The accuracy is generally +-0.10% or better. The smallest sample weight at which reliable results were obtained was 40 mg of uranium. Time for one analysis is 15 minutes. Advantages and disadvantages of the automated titrator are listed

  15. A fresnoite-structure-related mixed valent titanium(III/IV) chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl: A flux crystal growth route to Ti(III) containing oxides

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, Dileka; Smith, Mark D.; Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu

    2017-06-15

    Single crystals of mixed valent barium titanium(III/IV) chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were grown in a high temperature molten chloride flux involving an in situ reduction step. The fresnoite structure related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} crystallizes in the tetragonal space group P4/mbm with lattice parameters of a=8.6717(2) Å, c=18.6492(5) Å. The title compound exhibits a 3D structure consisting of 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} groups and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} groups that are linked via barium atoms. The in situ reduction of Ti(IV) to Ti(III) is achieved via the addition of metallic Mg to the flux to function as the reducing agent. The temperature dependence of the magnetic susceptibility shows simple paramagnetism above 100 K. There is a discontinuity in the susceptibility data below 100 K, which might be due to a structural change that takes place resulting in charge ordering. - Graphical abstract: The fresnoite structure related novel reduced barium titanium chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were synthesized via flux method. An in situ reduction of Ti(IV) to Ti(III) achieved using Mg metal. The 3D structure consists 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connected via barium atoms. Compound shows simple paramagnetism above 100 K. - Highlights: • The fresnoite related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} were grown via molten flux method. • The in situ reduction of Ti(IV) to Ti(III) is achieved using metallic Mg. • 2D layers of Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connect via Ba atoms. • The magnetic susceptibility shows simple paramagnetism above 100 K.

  16. Uranium mining

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The economic and environmental sustainability of uranium mining has been analysed by Monash University researcher Dr Gavin Mudd in a paper that challenges the perception that uranium mining is an 'infinite quality source' that provides solutions to the world's demand for energy. Dr Mudd says information on the uranium industry touted by politicians and mining companies is not necessarily inaccurate, but it does not tell the whole story, being often just an average snapshot of the costs of uranium mining today without reflecting the escalating costs associated with the process in years to come. 'From a sustainability perspective, it is critical to evaluate accurately the true lifecycle costs of all forms of electricity production, especially with respect to greenhouse emissions, ' he says. 'For nuclear power, a significant proportion of greenhouse emissions are derived from the fuel supply, including uranium mining, milling, enrichment and fuel manufacture.' Dr Mudd found that financial and environmental costs escalate dramatically as the uranium ore is used. The deeper the mining process required to extract the ore, the higher the cost for mining companies, the greater the impact on the environment and the more resources needed to obtain the product. I t is clear that there is a strong sensitivity of energy and water consumption and greenhouse emissions to ore grade, and that ore grades are likely to continue to decline gradually in the medium to long term. These issues are critical to the current debate over nuclear power and greenhouse emissions, especially with respect to ascribing sustainability to such activities as uranium mining and milling. For example, mining at Roxby Downs is responsible for the emission of over one million tonnes of greenhouse gases per year and this could increase to four million tonnes if the mine is expanded.'

  17. Uranium metalla-allenes with carbene imido R{sub 2}C=U{sup IV}=NR' units (R=Ph{sub 2}PNSiMe{sub 3}; R'=CPh{sub 3}): alkali-metal-mediated push-pull effects with an amido auxiliary

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Erli; Tuna, Floriana; Kaltsoyannis, Nikolas; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Lewis, William [School of Chemistry, The University of Nottingham (United Kingdom)

    2016-08-08

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM{sup TMS})(NCPh{sub 3})(NHCPh{sub 3})(M)] (BIPM{sup TMS}=C(PPh{sub 2}NSiMe{sub 3}){sub 2}; M=Li or K) that can be described as R{sub 2}C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R{sub 2}C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR{sub 2} interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U{sup IV}=N units. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Studies on new complexes of dioxo uranium(VI) and thorium(IV) with some schiff bases derived from trimethoprime salicyldehyde and o-vanillin (Paper No. AL-50)

    International Nuclear Information System (INIS)

    Pujar, M.A.; Pirgonde, B.R.

    1990-02-01

    Dioxouranium(VI) and thorium(IV) form 1:1(Metal:Ligands) complexes with some schiff bases. The complexes have been characterized through elemental analyses, electronic and IR spectral, conductance and magnetic susceptibility measurements. They are considered dimeric or polymeric hexa or octa-coordinated arrangement around metal ion moiety. Force constants and U-O bond lengths have been calculated. (author). 1 tab

  19. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  20. Towards new developments in uranium chemistry. Scientific report presented to obtain and Accreditation to Supervise Research

    International Nuclear Information System (INIS)

    Berthet, Jean-Claude

    2003-01-01

    After a presentation of his academic curriculum, the author proposes an overview of some of his main research activities and works which notably addressed the reactivity of uranium III complexes (synthesis and reactivity of uranium hydride complexes, synthesis of poly-metallic complexes), amide complexes (synthesis of uranium IV amide precursors, reactivity of cationic complexes, synthesis of uranium IV complexes), uranium triflate (or trifluoromethanesulfonate) complexes, the synthesis of U(Cot)X_2(L)_n complexes and of their derivatives, the complexing of lanthanide iodides and triflates

  1. Plutonium separation by reduction stripping. Application to processing of mixed oxide (U,Pu)O2 fuel fabrication wastes

    International Nuclear Information System (INIS)

    Arnal, Thierry; Cousinou, Gerard; Ganivet, Michel.

    1978-11-01

    A procedure is described for separating plutonium from a uranium VI and plutonium IV mixture contained in an organic phase (tributyl phosphate diluted in dodecane). This separation is obtained by extracting the plutonium III using two organic reducers: hydrazine and paraminophenol. Paraminophenol has excellent reducing qualities, similar to those of ferrous sulphamate, but has the added advantage of not contaminating extracted plutonium. This procedure is currently used in processing production wastes from mixed oxide (U,Pu)O 2 fuels; the installation using this procedure is described in detail in this paper. Operating results show the remarkable efficiency of this procedure: the separated plutonium and uranium mass flows have been increased to 185 and 350 g.h -1 respectively; the uranium contains less than 0.1 ppm of plutonium on completion of the purification cycle [fr

  2. Soil treatment to remove uranium and related mixed radioactive heavy metal contaminants. Ninth quarterly technical and financial progress report, January 1, 1995--March 31, 1995

    International Nuclear Information System (INIS)

    1995-05-01

    The objective of this project is to design and develop a physico-chemical treatment process for the removal of uranium and heavy metals from contaminated soil to achieve target contamination levels below 35 pCi/g of soil and a target for non-radioactive heavy metals below concentration levels permissible for release of the soil. The work will involve bench-scale and pilot-scale tests, using chelation-flotation, chemical leaching and ultrasonic leaching techniques, in conjunction with cross-flow microfiltration and filter-press operations. The effectiveness of an integrated process to treat leachates generated from soil processing will be demonstrated. Process flow-sheets suitable for in-situ and ex-situ applications will be developed and preliminary costs will be provided for the soil and leachate treatment technologies. In accordance with 10CFR 600.31 (d)(i), an extension of the project period including final report submission to 31 July 1995 was made in anticipation of potential delays in receiving Fernald soil samples at Chalk River Laboratories for the planned pilot-scale verification tests. Ex-situ pilot-scale soil decontamination and leachate treatment tests using Chalk River Chemical Pit soil are nearing completion. Soil decontamination tests using Fernald Incinerator Area soil originally scheduled for February 1995 was postponed to May 1995 as result of unexpected delays in the preparation of two drums of soils (∼416 kg) by FERMCO and paperwork required to arrange for export/import licenses

  3. Uranium update

    International Nuclear Information System (INIS)

    Steane, R.

    1997-01-01

    This paper is about the current uranium mining situation, especially that in Saskatchewan. Canada has a unique advantage with the Saskatchewan uranium deposits. Making the most of this opportunity is important to Canada. The following is reviewed: project development and the time and capital it takes to bring a new project into production; the supply and demand situation to show where the future production fits into the world market; and our foreign competition and how we have to be careful not to lose our opportunity. (author)

  4. Study of the catalytic activity of mixed non-stoichiometric uranium-thorium oxides in carbon monoxide oxidation; Etude de l'activite catalytique des oxydes mixtes d'uranium et de thorium non stoechiometriques dans l'oxydation du monoxyde de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Brau, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-06-01

    The aim of this work has been to study the catalytic properties of non-stoichiometric uranium-thorium oxides having the general formula U{sub x}Th{sub 1-x}O{sub 2+y}, for the oxidation of carbon monoxide. The preparation of pure, homogeneous, isotropic solids having good structural stability and a surface area as high as possible calls for a strict control of the conditions of preparation of these oxides right from the preparation of 'mother salts': the mixed oxalates U{sub x}Th{sub 1-x}(C{sub 2}O{sub 4}){sub 2}, 2H{sub 2}O. A study has been made of their physico-chemical properties (overall and surface chemical constitution, texture, structure, electrical conductivity), as well as of their adsorption properties with respect to gaseous species occurring in the catalytic reaction. This analysis has made it possible to put forward a reaction mechanism based on successive oxidations and reductions of the active surface by the reactants. A study of the reactions kinetics has confirmed the existence of this oxidation-reduction mechanism which only occurs for oxides having a uranium content of above 0.0014. The carbon dioxide produced by the reaction acts as an inhibitor by blocking the sites on which carbon monoxide can be adsorbed. These non-stoichiometric mixed oxides are a particularly clear example of catalysis by oxygen exchange between the solid and the gas phase. (author) [French] Ce travail a pour but l'etude des proprietes catalytiques des oxydes mixtes d'uranium et de thorium non stoechiometriques de formule generale U{sub x}Th{sub 1-x}O{sub 2+y} dans l'oxydation du monoxyde de carbone. L'obtention de solides purs, homogenes, isotropes, de bonne stabilite structurale et d'aire specifique aussi elevee que possible, exige de controler rigoureusement les conditions de preparation de ces oxydes des l'elaboration de leurs 'ascendants': les oxalates mixtes U{sub x}Th{sub 1-x}(C{sub 2}O{sub 4}){sub 2}, 2H{sub 2}O. Leurs proprietes physico-chimiques (composition

  5. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  6. Microbial uptake of uranium, cesium, and radium

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; McWhirter, D.A.

    1980-01-01

    The ability of diverse microbial species to concentrate uranium, cesium, and radium was examined. Saccharomyces cerevisiae, Pseudomonas aeruginosa, and a mixed culture of denitrifying bacteria accumulated uranium to 10 to 15% of the dry cell weight. Only a fraction of the cells in a given population had visible uranium deposits in electron micrographs. While metabolism was not required for uranium uptake, mechanistic differences in the metal uptake process were indicated. Uranium accumulated slowly (hours) on the surface of S. cerevisiae and was subject to environmental factors (i.e., temperature, pH, interfering cations and anions). In contrast, P. aeruginosa and the mixed culture of denitrifying bacteria accumulated uranium rapidly (minutes) as dense, apparently random, intracellular deposits. This very rapid accumulation has prevented us from determining whether the uptake rate during the transient between the initial and equilibrium distribution of uranium is affected by environmental conditions. However, the final equilibrium distributions are not affected by those conditions which affect uptake by S. cerevisiae. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several microbial species tested. The potential utility of microorganisms for the removal and concentration of these metals from nuclear processing wastes and several bioreactor designs for contacting microorganisms with contaminated waste streams will be discussed.

  7. Study on the radiotoxicology of enriched uranium

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Guolin; Wang Chongdao; Cao Genfa

    1987-12-01

    A study on the retentive peculiarity of soluble enriched uranium UO 2 F 2 were observed after iv once or consecutive ip qd x 3d to Wistar male rats. The dynamic retention of radioactivity in the body showed that the enriched uranium UO 2 F 2 was chiefly localized in kidney, and then in skeleton and liver. The radioactivity of the enriched uranium UO 2 F 2 in skeleton rose steadily while the concentratoin in kidney and liver droped. When enriched uranium UO 2 F 2 was accumulated in organism, it caused chromosome aberrations on bone marrow cells. Results indicated that the chromosome aberration rates were elevated when the dose of the enriched uranium UO 2 F 2 was increased, at the same time, the cell division was depressed. Accumulation of insoluble enriched uranium U 3 O 8 in gastrointestinal tract was well described by a two exponential expression. Values of retention estimate for fast component, T 1 = 0.34 d, and for relatively long term component, T 2 = 4.05 d. The deposition of UO 2 F 2 in the intact skin was only 0.16 to 0.18% of the total contaminated UO 2 F 2 . Penetration of the enriched uranium UO 2 F 2 was dominantly increased in abraded skin. This value is about 25 to 32 times as compaired with that in intact skin. Retention of the enriched uranium UO 2 F 2 through abraded skins was dominantly localized in kidney and skeleton

  8. Pitavastatin 4 mg Provides Significantly Greater Reduction in Remnant Lipoprotein Cholesterol Compared With Pravastatin 40 mg: Results from the Short-term Phase IV PREVAIL US Trial in Patients With Primary Hyperlipidemia or Mixed Dyslipidemia.

    Science.gov (United States)

    Miller, P Elliott; Martin, Seth S; Joshi, Parag H; Jones, Steven R; Massaro, Joseph M; D'Agostino, Ralph B; Sponseller, Craig A; Toth, Peter P

    2016-03-01

    Remnants are partially hydrolyzed, triglyceride-rich lipoproteins that are implicated in atherosclerosis. We assessed the adequacy of pitavastatin 4 mg and pravastatin 40 mg in reducing atherogenic lipid parameters beyond LDL-C, in particular remnant lipoprotein cholesterol (RLP-C). From the Phase IV, multicenter, randomized, double-blind PREVAIL US (A Study of Pitavastatin 4 mg Vs. Pravastatin 40 mg in Patients With Primary Hyperlipidemia or Mixed Dyslipidemia) trial, we examined lipoprotein cholesterol subfractions using Vertical Auto Profile testing and apolipoproteins B and A-I at baseline and 12 weeks. Participants with primary hyperlipidemia or mixed dyslipidemia had LDL-C levels of 130 to 220 mg/dL and triglyceride levels ≤ 400 mg/dL. In this post hoc analysis, changes in lipid parameters were compared by using ANCOVA. Lipoprotein subfraction data were available in 312 patients (pitavastatin, n = 157; pravastatin, n = 155). Pitavastatin promoted a greater reduction in RLP-C than pravastatin (-13.6 [8.7] vs -9.3 [9.5] mg/dL). Furthermore, the pitavastatin group reported greater reductions in both components of RLP-C (both, P < 0.001): intermediate-density lipoprotein cholesterol (-9.5 [6.3] vs -6.4 [6.6] mg/dL) and very low-density lipoprotein cholesterol subfraction 3 (-4.1 [3.5] vs -2.9 [3.8] mg/dL). There were also greater reductions in the major ratios of risk (apolipoprotein B/apolipoprotein A-I and total cholesterol/HDL-C) (both, P < 0.001). There were no significant changes in HDL-C, its subfractions, or natural log lipoprotein(a)-cholesterol. The mean age was 58.8 ± 8.9 years in the pitavastatin group and 57.0 ± 10.2 years in the pravastatin group. Compared with pravastatin 40 mg daily, pitavastatin 4 mg provided superior reductions in atherogenic lipid parameters beyond LDL-C, including RLP-C. Future studies are needed investigate the clinical implications of lowering directly measured RLP-C as the principal target. ClinicalTrials.gov identifier

  9. Method of precipitating uranium from an aqueous solution and/or sediment

    Science.gov (United States)

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  10. Uranium mining

    International Nuclear Information System (INIS)

    Cheeseman, E.W.

    1980-01-01

    The international uranium market appears to be currently over-supplied with a resultant softening in prices. Buyers on the international market are unhappy about some of the restrictions placed on sales by the government, and Canadian sales may suffer as a result. About 64 percent of Canada's shipments come from five operating Ontario mines, with the balance from Saskatchewan. Several other properties will be producing within the next few years. In spite of the adverse effects of the Three Mile Island incident and the default by the T.V.A. of their contract, some 3 600 tonnes of new uranium sales were completed during the year. The price for uranium had stabilized at US $42 - $44 by mid 1979, but by early 1980 had softened somewhat. The year 1979 saw the completion of major environmental hearings in Ontario and Newfoundland and the start of the B.C. inquiry. Two more hearings are scheduled for Saskatchewan in 1980. The Elliot Lake uranium mining expansion hearings are reviewed, as are other recent hearings. In the production of uranium for nuclear fuel cycle, environmental matters are of major concern to the industry, the public and to governments. Research is being conducted to determine the most effective method for removing radium from tailings area effluents. Very stringent criteria are being drawn up by the regulatory agencies that must be met by the industry in order to obtain an operating licence from the AECB. These criteria cover seepages from the tailings basin and through the tailings retention dam, seismic stability, and both short and long term management of the tailings waste management area. (auth)

  11. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  12. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  13. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  14. Biosolubilization of uranyl ions in uranium ores by hydrophyte plants

    International Nuclear Information System (INIS)

    Cecal, Alexandru; Calmoi, Rodica; Melniciuc-Puica, Nicoleta

    2006-01-01

    This paper investigated the bioleaching of uranyl ions from uranium ores, in aqueous medium by hydrophyte plants: Lemna minor, Azolla caroliniana and Elodea canadensis under different experimental conditions. The oxidation of U(IV) to U(VI) species was done by the atomic oxygen generated in the photosynthesis process by the aquatic plants in the solution above uranium ores. Under identical experimental conditions, the capacity of bioleaching of uranium ores decreases according to the following series: Lemna minor > Elodea canadensis > Azolla caroliniana. The results of IR spectra suggest the possible use of Lemna minor and Elodea canadensis as a biological decontaminant of uranium containing wastewaters. (author)

  15. Thin-layer chromatography of 49 metal ions on stannic antimonate in aqueous and mixed solvent systems containing dimethylsulfoxide: quantitative separation of uranium from numerous metal ions

    International Nuclear Information System (INIS)

    Qureshi, M.; Varshney, K.G.; Rajput, R.P.S.

    1976-01-01

    Thin-layer chromatography of 40 metal ions in 31 aqueous and mixed solvent systems has been performed on stannic antimonate ion-exchange material. Dimethylsulfoxide has been utilized to resolve such binary mixtures as La 3+ and Ce 3+ from Pr 3+ , Nd 3+ , and Sm 3+ ; VO 2+ from Ti 4+ , Nb 5+ , and Ta 5+ ; Ga 3+ from In 3+ , Tl + , and Y 3+ ; Fe 3+ from VO 2+ ; and Mg 2+ from Al 3+ . Quantitative separation of 200 to 800 μg U from its binary mixtures and from the synthetic mixtures containing Mg 2+ , Bi 3+ , Fe 3+ , Th 4+ , Ce 4+ , Cr 3+ , Zr 4+ , Hf 4+ , Ti 4+ Mn 2+ , Cu 2+ , Ce 3+ , In 3+ , Y 3+ , Ca 2+ , Co 2+ , Tl + , Nb 5+ , and Ag + has been obtained

  16. The measurement test of uranium in a uranium-contaminated waste by passive gamma-rays measurement method

    CERN Document Server

    Sukegawa, Y; Ohki, K; Suzuki, S; Yoshida, M

    2002-01-01

    This report is completed about the measurement test and the proofreading of passive gamma - rays measurement method for Non - destructive assay of uranium in a uranium-contaminated waste. The following are the results of the test. 1) The estimation of the amount of uranium by ionization survey meter is difficult for low intensity of gamma-rays emitted from uranium under about 50g. 2) The estimation of the amount of uranium in the waste by NaI detector is possible in case of only uranium, but the estimation from mixed spectrums with transmission source (60-cobalt) is difficult to confirm target peaks. 3) If daughter nuclides of uranium and thorium chain of uranium ore exist, measurement by NaI detector is affected by gamma-rays from the daughter nuclides seriously-As a result, the estimation of the amount of uranium is difficult. 4) The measurement of uranium in a uranium-contaminated waste by germanium detector is possible to estimate of uranium and other nuclides. 5) As to estimation of the amount of uranium...

  17. Uranium - what role

    International Nuclear Information System (INIS)

    Grey, T.; Gaul, J.; Crooks, P.; Robotham, R.

    1980-01-01

    Opposing viewpoints on the future role of uranium are presented. Topics covered include the Australian Government's uranium policy, the status of nuclear power around the world, Australia's role as a uranium exporter and problems facing the nuclear industry

  18. Brazilian uranium exploration program

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1981-01-01

    General information on Brazilian Uranium Exploration Program, are presented. The mineralization processes of uranium depoits are described and the economic power of Brazil uranium reserves is evaluated. (M.C.K.) [pt

  19. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  20. Uranium production

    International Nuclear Information System (INIS)

    Spriggs, M.

    1980-01-01

    The balance between uranium supply and demand is examined. Should new resources become necessary, some unconventional sources which could be considered include low-grade extensions to conventional deposits, certain types of intrusive rock, tuffs, and lake and sea-bed sediments. In addition there are large but very low grade deposits in carbonaceous shales, granites, and seawater. The possibility of recovery is discussed. Programmes of research into the feasibility of extraction of uranium from seawater, as a by-product from phosphoric acid production, and from copper leach solutions, are briefly discussed. Other possible sources are coal, old mine dumps and tailings, the latter being successfully exploited commercially in South Africa. The greatest constraints on increased development of U from lower grade sources are economics and environmental impact. It is concluded that apart from U as a by-product from phosphate, other sources are unlikely to contribute much to world requirements in the foreseeable future. (U.K.)

  1. Determination of uranium by an amperometric method

    International Nuclear Information System (INIS)

    John, Mary; Venkataramana, P.; Vaidyanathan, S.; Natarajan, P.R.

    1981-01-01

    An amperometric method has been standardised for the determination of uranium. Uranium is reduced to its quadrivalent state in concentrated phosphoric acid medium with ferrous iron. The excess iron is destroyed with nitric acid in presence of Mo(VI). The medium is diluted and U(IV) is titrated with standard potassium dichromate to an amperometric end point using a pair of identical plantinum wires as electrodes. The reagent volumes and uranium quantities have been scaled down to 30 ml. and 2-5 mg of uranium in the present work with a view to minimising the problems associated with recovery of plutonium. The results are quantitative with an R.S.D. of 0.2% in the present version of weight based titrations. (author)

  2. Complexation of the An(IV) by NTA; Complexation des An(IV) par le NTA

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L. [Paris-11 Univ., 91 - Orsay (France)]|[CEA Valrho, Lab. de Chimie des Actinides (LCA), 30 - Marcoule (France)

    2006-07-01

    In the framework of the Nuclear and Environmental Toxicology program, developed in France, it has been decided to take again the studies concerning the actinides decorporation. A similar study of the neptunium complexation by the citrate ions has been carried out on the complexation of Np(IV) with the nitrilotriacetic acid (NTA). The NTA can be considered as a model molecule of the de-corporating molecules (amino-carboxy- ligand). The results of the spectrophotometric measurements being encouraging, the behaviour of several actinides at the same oxidation state (+IV) (Th(IV), U(IV), Np(IV), and Pu(IV)) has been determined. The experimental results are presented. In order to determine the structure of the complexes of stoichiometry 1:2 An(IV)-(NTA){sub 2} in solution, quantic chemistry calculations and EXAFS measurements have been carried out in parallel. These studies confirm the presence of An(IV)-nitrogen bonds whose length decreases from thorium to plutonium and indicate the presence of a water molecule bound to the thorium and the uranium (coordination number 8 for Np/Pu, 9 for Th/U). The evolution of the complexation constants determined in this study in terms of 1/r (r ionic radius of the cation taking into account its coordination number 8 or 9) confirms the change of the coordination number between Th/U and Np/Pu. (O.M.)

  3. Uranium Immobilization in Wetland Soils

    Science.gov (United States)

    Jaffe, Peter R.; Koster van Groos, Paul G.; Li, Dien; Chang, Hyun-Shik; Seaman, John C.; Kaplan, Daniel I.; Peacock, Aaron D.; Scheckel, Kirk

    2014-05-01

    In wetlands, which are a major feature at the groundwater-surface water interface, plants deliver oxygen to the subsurface to keep root tissue aerobic. Some of this oxygen leaches into the rhizosphere where it will oxidize iron that typically precipitates on or near roots. Furthermore, plans provide carbon via root exudates and turnover, which in the presence of the iron oxides drives the activity of heterotrophic iron reducers in wetland soils. Oxidized iron is an important electron acceptor for many microbially-driven transformations, which can affect the fate and transport of several pollutants. It has been shown that heterotrophic iron reducing organisms, such as Geobacter sp., can reduce water soluble U(VI) to insoluble U(IV). The goal of this study was to determine if and how iron cycling in the wetland rhizosphere affects uranium dynamics. For this purpose, we operated a series of small-scale wetland mesocosms in a greenhouse to simulate the discharge of uranium-contaminated groundwater to surface waters. The mesocosms were operated with two different Fe(II) loading rates, two plant types, and unplanted controls. The mesocosms contained zones of root exclusion to differentiate between the direct presence and absence of roots in the planted mesocosms. The mesocosms were operated for several month to get fully established, after which a U(VI) solution was fed for 80 days. The mesocosms were then sacrificed and analyzed for solid-associated chemical species, microbiological characterization, micro-X-ray florescence (µ-XRF) mapping of Fe and U on the root surface, and U speciation via X-ray Absorption Near Edge Structure (XANES). Results showed that bacterial numbers including Geobacter sp., Fe(III), as well as total uranium, were highest on roots, followed by sediments near roots, and lowest in zones without much root influence. Results from the µ-XRF mapping on root surfaces indicated a strong spatial correlation between Fe and U. This correlation was

  4. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    Science.gov (United States)

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  5. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  6. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  7. European mixed forests

    DEFF Research Database (Denmark)

    Bravo-Oviedo, Andres; Pretzsch, Hans; Ammer, Christian

    2014-01-01

    Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material...... and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any...... density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields...

  8. Contribution to the study of liquid-liquid extraction dynamics in the case of fast transfers. Extractions of uranium, plutonium and neptunium in a laboratory centrifugal extractor

    International Nuclear Information System (INIS)

    Bergeonneau, Philippe

    1978-01-01

    The liquid-liquid extraction (also named solvent-based extraction) is a very important technique for the reprocessing of irradiated nuclear fuels. This research thesis is based on the use of a laboratory centrifugal extractor which allows interesting conditions to be achieved: fast transfer due to an intense solution mixing, very short duration of contact between solutions. Thus, after a report of a bibliographical study on chemical mechanisms of extraction, on the composition of extracted species, on extraction kinetics, and on centrifugal extractors, this thesis reports the design, fabrication and use of a centrifugal extractor: presentation of fundamental principles, description and characteristics (materials, hydrodynamic operation test and problems, prototype). It reports studies of fast transfer kinetics: mathematical processing, result interpretation, results and discussions of extraction kinetics for nitric acid, uranium VI and IV, plutonium IV, neptunium IV, and comparison of the different extraction kinetics

  9. Uranium and thorium phosphate based matrices; syntheses, characterizations and lixiviation

    International Nuclear Information System (INIS)

    Dacheux, N.

    1995-03-01

    In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO 2 )(PO 4 ) 2 , U 2 O(PO 4 ) 2 , UC1PO 4 ,H 2 O, and Th 4 (PO 4 ) 4 , U 2 O 3 P 2 O 7 and Th 3 (PO 4 ) 4 . Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO 2 )(PO 4 ) 2 has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U 4+ and UO 2 2+ ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UC1PO 4 , 4H 2 O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO 2 )(PO 4 ) 2 and Th 4 (PO 4 ) 4 P 2 O 7 , solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with 230 U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectrofluorometry. Average concentration of uranium in the liquid phase is around 10 -4 M to 10 -6 M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses used at the present time. (author). 47 figs., 23 tabs., 6 appendixes

  10. Uranium and thorium based phosphate matrix: synthesis, characterizations and lixiviation

    International Nuclear Information System (INIS)

    Dacheux, N.

    1995-03-01

    In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO 2 )(PO 4 ) 2 , U 2 O(PO 4 ) 2 , UCIPO 4 , 4H 2 O, and Th 4 (PO 4 ) 4 P 2 O 7 . Experimental evidenced are advanced for non existent compounds such as: U 3 (PO 4 ) 4 , U 2 O 3 P 2 O 7 and Th 3 (PO 4 ) 4 . Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO 2 )(PO 4 ) 2 has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U 4+ and UO 2 2+ ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UCIPO 4 , 4H 2 O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO 2 )(PO 4 ) 2 and Th 4 (PO 4 ) 4 P 2 O 7 , solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with 230 U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectro-fluorimetry. Average concentration of uranium in the liquid phase is around 10 -4 M to 10 -6 M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses used at the present time. (author)

  11. Granite-related hypothermal uranium mineralization in South China

    International Nuclear Information System (INIS)

    Liu, X.; Wu, J.; Pan, J.; Zhu, M.

    2014-01-01

    As one of the important geological types, granite-related uranium deposits account for about 29% of the total discovered natural uranium resources in China. Most of the granite-related uranium deposits located in Taoshan - Zhuguang uranium metallogenic belt, South China. In addition to the typical pitchblende vein-type uranium mineralization of epithermal metallogenic system, a new type of granite-related uranium mineralization with characteristics of hypothermal matallogenic system was discovered in South China by current studies. However, hypothermal is contact thermal to epithermal mineralization, and not the conventional intrusive high temperature mineralization. Hypothermal uranium mineralization is presented by disseminated uraninite or pitchblende stockwork in fissures in granites normally with extensive alkaline alteration. The high temperature mineral assemblage of uraninite associate with scheelite and tourmaline was identified in hypothermal uranium mineralization. Fluid inclusion studies on this type mineralization indicated the middle to high temperature (>250℃) mineralization with the mixing evidence of ore forming solution derived from deep level, and the boiling and mixing of ore forming solution are regarded as the dominant mineralization mechanism for the precipitating of uranium. In contrast to the mineralization ages of 67 Ma to 87 Ma for typical pitchblende vein mineralization of epithermal metallogenic system, the mineralization age is older than 100 Ma for hypothermal uranium mineralization in granite. In the Shituling deposit, Xiazhuang uranium ore field, uraninite and pitchblende micro veins with extensive potassic alteration, chloritization and sericitization are hosted in fissures of Indo-Chinese epoch granites with the uranium mineralization age of 130 Ma to 138 Ma with a mineralization temperature of 290℃ to 330℃ indicated. Other examples sharing the similar characters of hypothermal uranium mineralization have been recognized in

  12. Uranium speciation and stability after reductive immobilization in aquifer sediments

    Science.gov (United States)

    Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-11-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.

  13. Depleted uranium hexafluoride: Waste or resource?

    International Nuclear Information System (INIS)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S.; Bradley, C.; Murray, A.

    1995-07-01

    The US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF 6 ). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO 2 for use as mixed oxide duel, (2) conversion to UO 2 to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U 3 O 8 as an option for long-term storage is discussed

  14. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  15. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  16. Preparation and properties of N-Phenylbutyrohydroxamic acid and N-p-Chlorophenylbutyrohydroxamic acid and their uses as extracting agents for Chromium (VI), Molybdenum (VI), Titanium (IV) and Uranium (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Abu Elnour, Sawsan Hassan [Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1993-05-01

    Two lignads, N-phenylbutyrohydroxamic acid (1), N-p-chlorophenylbutyryl chloride with {beta} phenyl-hydroylamine and N-p-chlorophenylhydroxylamine, respectively. The acids prepared were identified and characterised through their reactions with Vanadiun (V) and iron (III), their melting points, infra-red spectra and nitrogen content. The extractive properties of these acids towards the metals Cr (VI), Mo (VI), Ti (IV) and U (VI) were examined at different PH values. The percentage of maximum extraction with the two acids was found to be as follows : for Cr (VI) at PH 1, (100%) for both acids, Mo (VI) at PH 2 (33.34%) with acid (I) and (16.67%) with acid (II) and U (VI) at PH 6 (72%) with acid (I) and (76%) with acid (II). The metal: Ligand complexes ratios were determined by using the continuous variation method, the ratio of the two ligands with four metals was found to be 1:2. Finally the suitability of the two acids for spectrophotometric determination of four metals was examined.(Author) 90 refs. , 24 tabs. , 24 figs

  17. Preparation and properties of N-Phenylbutyrohydroxamic acid and N-p-Chlorophenylbutyrohydroxamic acid and their uses as extracting agents for Chromium (VI), Molybdenum (VI), Titanium (IV) and Uranium (VI)

    International Nuclear Information System (INIS)

    Abu Elnour, Sawsan Hassan

    1993-05-01

    Two lignads, N-phenylbutyrohydroxamic acid (1), N-p-chlorophenylbutyryl chloride with β phenyl-hydroylamine and N-p-chlorophenylhydroxylamine, respectively. The acids prepared were identified and characterised through their reactions with Vanadiun (V) and iron (III), their melting points, infra-red spectra and nitrogen content. The extractive properties of these acids towards the metals Cr (VI), Mo (VI), Ti (IV) and U (VI) were examined at different PH values. The percentage of maximum extraction with the two acids was found to be as follows : for Cr (VI) at PH 1, (100%) for both acids, Mo (VI) at PH 2 (33.34%) with acid (I) and (16.67%) with acid (II) and U (VI) at PH 6 (72%) with acid (I) and (76%) with acid (II). The metal: Ligand complexes ratios were determined by using the continuous variation method, the ratio of the two ligands with four metals was found to be 1:2. Finally the suitability of the two acids for spectrophotometric determination of four metals was examined.(Author)

  18. On line spectrophotometry with optical fibers. Application to uranium-plutonium separation in a spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    Boisde, G.; Mus, G.; Tachon, M.

    1985-06-01

    Optimization of mixer-settler operation for uranium-plutonium separation in the Purex process can be obtained by remote spectrophotometry with optical fibers. Data acquisition on uranium VI, uranium IV and plutonium III is examined in function of acidity and nitrate content of the solution. Principles for on line multicomponent monitoring and mathematical modelization of the measurements are described [fr

  19. Extraction behavior of uranium(VI) with polyurethane foam

    International Nuclear Information System (INIS)

    Tingchia Huang; Donghwang Chen; Muchang Shieh; Chingtsven Huang

    1992-01-01

    The extraction of uranium(VI) from aqueous solution with polyether-based polyurethane (PU) foam was studied. The effects of the kinds and concentrations of nitrate salts, uranium(VI) concentration, temperature, nitric acid concentration, pH, the content of poly(ethylene oxide) in the polyurethane foam, and the ratio of PU foam weight and solution volume on the extraction of uranium(VI) were investigated. The interferences of fluoride and carbonate ions on the extraction of uranium(VI) were also examined, and methods to overcome both interferences were suggested. It was found that no uranium was extracted in the absence of a nitrate salting-out agent, and the extraction behaviors of uranium(IV) with polyurethane foam could be explained in terms of an etherlike solvent extraction mechanism. In addition, the percentage extraction of a multiple stage was also estimated theoretically

  20. Uranium uptake of Vetiveria zizanioides (L.) Nash

    International Nuclear Information System (INIS)

    Luu Viet Hung; Maslov, O.D.; Trinh Thi Thu My; Phung Khac Nam Ho; Dang Duc Nhan

    2010-01-01

    Uranium uptake of vetiver grass (Vetiveria zizanioides (L.) Nash) from Eutric Fluvisols (AK), Albic Acrisols (BG), Dystric Fluvisols (HP) and Ferralic Acrisols (TC) in northern Vietnam is assessed. The soils were mixed with aqueous solution of uranyl nitrate to make soils contaminated with uranium at 0, 50, 100, 250 mg/kg before planting the grass. The efficiency of uranium uptake by the grass was assessed based on the soil-to-plant transfer factor (TF U , kg·kg -1 ). It was found that the TF U values are dependent upon the soils properties. CEC facilitates the uptake and the increased soil pH could reduce the uptake and translocation of uranium in the plant. Organic matter content, as well as iron and potassium, inhibits the uranium uptake of the grass. It was revealed that the lower fertile soil, the higher uranium uptake. The translocation of uranium in root for all the soil types studied is almost higher than that in its shoot. It seems that vetiver grass could potentially be used for the purpose of phytoremediation of soils contaminated with uranium

  1. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    International Nuclear Information System (INIS)

    Phillips, E.J.P.; Landa, E.R.; Lovley, D.R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranium-contaminated soils. Bicarbonate (100 mM) extracted 20-94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism, Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils. (author)

  2. IV treatment at home

    Science.gov (United States)

    ... Other IV treatments you may receive after you leave the hospital include: Treatment for hormone deficiencies Medicines for severe nausea that cancer chemotherapy or pregnancy may cause Patient-controlled analgesia (PCA) for pain (this is IV ...

  3. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  4. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  5. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  6. Spectrochemical method of uranium determination in sea water

    International Nuclear Information System (INIS)

    Koval'chuk, L.I.; Koryukova, V.P.; Andrianov, A.M.

    1979-01-01

    A spectrochemical method of uranium determination in sea water is reported. The method involves the use of hydrated titanium oxide as a concentrator and a substrate for the analysis. The uranium-containing concentrate mixed with carbon powder (1:1) is burned in the alternating current ark (i=15 A) and the spectra are recorded by a diffraction spectrometer. The analytical line of uranium is 2865.14 A. The variation coefficient is 12%

  7. Accountability methods for plutonium and uranium: the NRC manuals

    Energy Technology Data Exchange (ETDEWEB)

    Gutmacher, R.G.; Stephens, F.B.

    1977-09-28

    Four manuals containing methods for the accountability of plutonium nitrate solutions, plutonium dioxide, uranium dioxide and mixed uranium-plutonium oxide have been prepared by us and issued by the U.S. Nuclear Regulatory Commission. A similar manual on methods for the accountability of uranium and plutonium in reprocessing plant dissolver solutions is now in preparation. In the present paper, we discuss the contents of the previously issued manuals and give a preview of the manual now being prepared.

  8. Accountability methods for plutonium and uranium: the NRC manuals

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Stephens, F.B.

    1977-01-01

    Four manuals containing methods for the accountability of plutonium nitrate solutions, plutonium dioxide, uranium dioxide and mixed uranium-plutonium oxide have been prepared by us and issued by the U.S. Nuclear Regulatory Commission. A similar manual on methods for the accountability of uranium and plutonium in reprocessing plant dissolver solutions is now in preparation. In the present paper, we discuss the contents of the previously issued manuals and give a preview of the manual now being prepared

  9. Geochemical behavior of uranium mill tailings leachate in the subsurface

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1993-01-01

    Leachate generated from surface disposal of acidic uranium mill tailings at Maybell, CO has impacted groundwater quality within the underlying mineralized Browns Park Formation. The extent of groundwater contamination, however, is located directly beneath the tailings impoundment. The milling process consisted of sulfuric acid extraction of uranium from the feed ore by a complex chemical leaching and precipitation process. Tailings leachate at the site contains elevated concentrations of Al, As, Cd, Mo, Ni, NO 3 , Se, U, and other solutes. From column leach tests, the concentrations of contaminants within tailings pore fluid are SO 4 >NH 4 >NO 3 >U>Se>Ni>As>Cd at pH 4.0. The carbonate buffering capacity of the tailings subsoil has decreased because of calcite dissolution in the presence of acidic leachate. Groundwater quality data, mineralogical and microbiological studies, and geochemical modeling suggest that As, NO 3 , Se, U and other solutes are being removed from solution through precipitation, adsorption, and denitrification processes under reducing conditions. Presence of hydrogen sulfide, liquid and gaseous hydrocarbons, dissolved organic, and abundant pyrite within the Browns Park Formations have maintained reducing conditions subjacent to the tailings impoundment. Groundwater is in close equilibrium with coffinite and uraninite, the primary U(IV) minerals extracted from the Browns Parks Formation. Denitrifying bacteria identified in this study catalyze redox reactions involving NO 3 . Subsequently, contaminant distributions of NO 3 decrease 1000 times beneath the tailings impoundment. Applying geochemical and biochemical processes occurring at Maybell provides an excellent model for in situ aquifer restoration programs considered at other uranium tailings and heavy-metal-mixed waste contaminated sites. (author) 4 figs., 4 tabs., 27 refs

  10. Study on the identification of organic and common anions in the pyrohydrolysis distillate of mixed uranium-plutonium carbide for the interference free determination of chlorine and fluorine by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Jeyakumar, Subbiah; Mishra, Vivekchandra Guruprasad; Das, Mrinal Kanti; Raut, Vaibhavi Vishwajeet; Sawant, Ramesh Mahadeo [Bhabha Atomic Research Centre, Mumbai (India). Radioanalytical Chemistry Div.; Ramakumar, Karanam Lakshminarayana [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry and Isotope Group

    2014-07-01

    Identification of various soluble organic acids formed during the pyrohydrolysis of uranium-plutonium mixed carbide [(U,Pu)C] was carried out using ion chromatography. This has significant importance as the soluble organic acids can cause severe interferences during the ion chromatography separation and determination of Cl{sup -} and F{sup -} in the pyrohydrolysis distillate of (U,Pu)C. Determination of Cl and F is important in the chemical quality control of nuclear materials as these two elements can cause corrosion and hence, their concentrations in all nuclear materials are restricted to certain specified values. Since the pyrohydrolysis distillates contain both inorganic and organic acid anions, for the sake of separating and identifying organic acid anions from the common inorganic anions, three independent isocratic elutions using varying concentrations of NaOH eluent were employed for the separation of weakly, moderately and strongly retained anions. It was observed that pyrohydrolysis of (U,Pu)C also produced soluble organic acids as in the case of nitric acid dissolution of UC. The present investigation revealed the presence of formic, acetic, propionic, butyric, oxalic acid anions in the pyrohydrolysis distillate of (U,Pu)C in trace or ultra-trace concentrations. The presence of each organic acid identified in the chromatogram was confirmed with spike addition as well as by separating them by capillary electrophoresis method. The presence of lower aliphatic acids viz. formic and acetic acids was reconfirmed by carrying out an independent separation with tetraborate eluent. It is suggested that nitric acid being formed during pyrohydrolysis could be responsible for the formation of organic acids. Based on the findings, an ion chromatography separation method has been proposed for the interference-free determination of chloride and fluoride in pyrohydrolysis distillate of (U,Pu)C. (orig.)

  11. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  12. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  13. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  14. Development of metal fuel and study of construction materials (I-IV), Part V, Vol. II, Project of the device for irradiation of metal uranium in the reactor; 2. Construction of the loop for uranium radiation creep testing; Razvoj metalnog goriva i ispitivanje konstrukcionih materijala (I-VI deo); V deo, Album II, Projekat uredjaja za ozracivanje metalnog urana u reaktoru; 2. Izrada petlje za ispitivanje radijacionog puzanja urana

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A; Pavlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This volume includes the design description for construction of the loop for testing uranium radiation creep. It covers the following: construction of the loop head, protection closure; system for pressure regulation and uranium temperature regulation; system for recording samples dilatation and temperature. Testing of components and the loop on the whole is described as well as the safety reports.

  15. Coordination and solvent extraction behaviour of oxozirconium(IV), thorium(IV) and dioxouranium(VI)

    International Nuclear Information System (INIS)

    Dash, K.C.

    1989-01-01

    The systematic liquid-liquid extraction behaviour of oxozirconium (IV), thorium(IV) and dioxouranium(VI) have been investigated using a number of synthesised and commercial chelating extractants. The synergism or antagonism for these processes in presence of neutral donor ligands have also been identified and the conditions for separation and isolation of pure individual metal ions have been established. The coordination behaviour of oxozirconium(IV), thorium(IV) and dioxouranium(VI) with a large number of mono- and polydentate ligands have been studied. With oxozirconium(IV), invariably always a cyclic, tetranuclear species is obtained, derived from the tetrameric structure of the parent ZrOCl 2 .8H 2 O which is actually (Zr 4 (OH) 8 (H 2 O) 16 )Cl 8 .12H 2 O. No simple, monomeric oxozirconium(IV) complex was obtained. Uranium(VI) and thorium(IV) form a wide variety of complexes of higher coordination numbers and several bi- and trinuclear complexes were also characterised where the two adjacent metal centres are joined to each other by a double hydroxo-bridge. (author). 69 refs., 3 figs., 4 tabs

  16. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  17. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  18. Australian uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    Warner, R K

    1976-04-01

    Various aspects of the Australian uranium industry are discussed including the prospecting, exploration and mining of uranium ores, world supply and demand, the price of uranium and the nuclear fuel cycle. The market for uranium and the future development of the industry are described.

  19. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  20. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  1. Recovering uranium from phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, M [Compagnie de Produits Chimiques et Electrometallurgiques Pechiney-Ugine Kuhlmann, 75 - Paris (France)

    1981-06-01

    Processes for the recovery of the uranium contained in phosphates have today become competitive with traditional methods of working uranium sources. These new possibilities will make it possible to meet more rapidly any increases in the demand for uranium: it takes ten years to start working a new uranium deposit, but only two years to build a recovery plant.

  2. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  3. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  4. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  5. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  6. Adsorption study for uranium in Rocky Flats groundwater

    International Nuclear Information System (INIS)

    Laul, J.C.; Rupert, M.C.; Harris, M.J.; Duran, A.

    1995-01-01

    Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite)

  7. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  8. Electrochemistry of uranium in sodium chloroaluminate melts

    International Nuclear Information System (INIS)

    D'olieslager, W.; Meuris, F.; Heerman, L.

    1990-01-01

    The electrochemical behaviour of uranium was studied in basic, NaCl-saturated NaAlCl 4 melts at 175 deg C. Solutions of UO 3 exhibit two oxidation/reduction waves (cyclic voltammetry). Analysis of the peak currents (cyclic voltammetry), the limiting currents (pulse polarography) and the non-linear log i-t curves (anodic controlled potential coulometry) leads to the conclusion that uranium(IV) in the basic chloroaluminate melt exists as two different species in slow equilibrium with one another, of which only one species can be oxidized to U(VI). (author) 16 refs.; 7 figs.; 3 tabs

  9. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  10. Uranium - the world picture

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1976-01-01

    The world resources of uranium and the future demand for uranium are discussed. The amount of uranium available depends on the price which users are prepared to pay for its recovery. As the price is increased, there is an incentive to recover uranium from lower grade or more difficult deposits. In view of this, attention is drawn to the development of the uranium industry in Australias

  11. Uranium contamination of drinking water in Kazakhstan and Uzbekistan

    International Nuclear Information System (INIS)

    Kawabata, Y.; Aparin, V.; Shiraishi, K.; Ko, S.; Yamamoto, M.; Nagaia, M.; Katayama, Y.

    2006-01-01

    Uranium is a naturally occurring radioactive metal, and is widely distributed in the Earth's crust. But it is concentrated in certain rock formations. Most of the uranium for nuclear weapon produced in the Soviet Union during the Cold War came from Central Asia. Uranium has negative effects on the human body, both as a carcinogen and as a kidney toxin. WHO (2004) prescribed that uranium concentrations in drinking water should be less than 15 mcg/l for only chemical aspects of uranium addressed. We determined high uranium concentrations in drinking water in the central region of Uzbekistan (Y. KAWABATA et al. 2004). In this area, some discharge water from farmland has higher uranium concentration. Irrigation systems Kyzyl-orda in Republic of Kazakhstan and in Karakalpakstan in the Republic of Uzbekistan have drains deeper than 5 m, in order to protect against salinization. Water in these drains can mix with ground water. In this area, ground water is used for drinking water. We investigated uranium concentrations in water in Kazakhstan and Uzbekistan. In the half of drinking water sampling points, uranium concentrations exceeded the WHO (2004) guideline level for drinking water. Uranium is a suspected carcinogen that can also have a toxic effect on kidney. However, WHO addresses only the chemical aspects of uranium by giving uranium concentrations in drinking water. The effect of uranium exposure from drinking water on people in these areas is significant. The uranium concentration in the Aral Sea was higher than that in sea water. Aral Sea is accumulating uranium. (author)

  12. redox reactions of uranium in the presence of potassium 2-phospho-17-tungstate

    International Nuclear Information System (INIS)

    Maslov, L.P.; Rykov, A.G.; Sirotinkina, L.V.

    1986-01-01

    The redox reactions of uranium in the presence of potassium 2-phospho-17-tungstate (17W2P) - K 10 P 2 W 17 O 61 - were studied by the methods of spectrophotometry and potentiometry. It was established that in the presence of 17W2P the UO /SUP 2/2/ + ion is reduced by iron(II) to uranium(IV) as a result of the binding of U(IV) into a strong complex with composition (U(p 2 W 17 O 61 ) 2 ) 16- . The peculiarities of the coordination of uranium(IV) by voluminous 17W2P ligands are the cause of the different nature of its interaction with various types of oxidizing agents. It was established that under the action of oxidizing agents (K 2 Cr 2 O 7 , KMnO 4 ), the reduced form of which is a complex with 17W2P, there is a conversion of the complex of uranium(IV) to the corresponding complex of uranium(V), evidently with conservation of a structure analogous to that for uranium(IV). It was also shown that uranium(IV) in complex with 17W2P is practically not oxidized in the cold by persulfate ions which react according to a radical mechanism, whereas weaker oxidizing agents, for example, H 2 O 2 , oxidize it to the UO /SUP 2/2/ + ion. Hypotheses are advanced on the possible mechanisms of the occurrence of the corresponding reactions

  13. Uranium nucleophilic carbene complexes

    International Nuclear Information System (INIS)

    Tourneux, Jean-Christophe

    2012-01-01

    The only stable f-metal carbene complexes (excluding NHC) metals f present R 2 C 2- groups having one or two phosphorus atoms in the central carbon in alpha position. The objective of this work was to develop the chemistry of carbenes for uranium (metal 5f) with the di-anion C{Ph 2 P(=S)} 2 2- (SCS 2- ) to extend the organometallic chemistry of this element in its various oxidation states (+3-+6), and to reveal the influence of the 5f orbitals on the nature and reactivity of the double bond C=U. We first isolated the reactants M(SCHS) (M = Li and K) and demonstrated the role of the cation M + on the evolution of the di-anion M 2 SCS (M = Li, K, Tl) which is transformed into LiSCHS in THF or into product of intramolecular cyclization K 2 [C(PhPS) 2 (C 6 H 4 )]. We have developed the necessary conditions mono-, bis- and tris-carbene directly from the di-anion SCS 2- and UCl 4 , as the precursor used in uranium chemistry. The protonolysis reactions of amides compounds (U-NEt 2 ) by the neutral ligand SCH 2 S were also studied. The compounds [Li(THF)] 2 [U(SCS)Cl 3 ] and [U(SCS)Cl 2 (THF) 2 ] were then used to prepare a variety of cyclopentadienyl and mono-cyclo-octa-tetra-enyliques uranium(IV) carbene compounds of the DFT analysis of compounds [M(SCS)Cl 2 (py) 2 ] and [M(Cp) 2 (SCS)] (M = U, Zr) reveals the strong polarization of the M=C double bond, provides information on the nature of the σ and π interactions in this binding, and shows the important role of f orbitals. The influence of ancillary ligands on the M=C bond is revealed by examining the effects of replacing Cl - ligands and pyridine by C 5 H 5 - groups. Mulliken and NBO analyzes show that U=C bond, unlike the Zr=C bond, is not affected by the change in environment of the metal center. While the oxidation tests of carbene complexes of U(IV) were disappointing, the first carbene complex of uranium (VI), [UO 2 (SCS)(THF) 2 ], was isolated with the uranyl ion UO 2 2+ . The reactions of compounds UO 2 X 2

  14. Structural characterization of M(IV)1-xLn(III)xO2-x/2 (M = Ce, Th) mixed-oxides prepared from oxalate precursors. Multi-parametric study of dissolution and microstructural evolution

    International Nuclear Information System (INIS)

    Horlait, D.

    2011-01-01

    In the framework of Gen IV program development, several physico-chemical properties of some foreseen fuels, including the chemical durability, have to be evaluated. In this aim, a study was undertaken on M(IV) 1-x Ln(III) x O 2 (M=Ce,Th) model compounds prepared from oxalate precursors. The fluorite-type structure of CeO 2 and ThO 2 remains stable up to x ≅ 0.4, the substitution of M(IV) by Ln(III) occurring simultaneously to the formation of oxygen vacancies. For higher x values, a cubic superstructure is formed as a result of oxygen vacancies ordering. The normalized dissolution rates of such solids were found to be strongly enhanced by the Ln(III) fraction. On the contrary, the nature of the M(IV) and Ln(III) elements did not modify significantly the normalized dissolution rates. The effect of temperature and acid concentration suggested the existence of surface-controlling dissolution reactions. Simultaneously, the microstructural evolution of both powdered and sintered samples revealed some important changes in the reactive surface during dissolution tests. ESEM images allowed observing the existence of preferential dissolution sites located at grains boundaries and around crystalline defects, leading to the formation of corrosion pits. In addition, the formation of gelatinous phases, acting as diffusion barriers (thus slowing down the dissolution process) was also evidenced. (author) [fr

  15. Natural uranium

    International Nuclear Information System (INIS)

    Ammerich, Marc; Frot, Patricia; Gambini, Denis-Jean; Gauron, Christine; Moureaux, Patrick; Herbelet, Gilbert; Lahaye, Thierry; Pihet, Pascal; Rannou, Alain

    2014-08-01

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with natural uranium

  16. Determination of uranium in liquid samples

    International Nuclear Information System (INIS)

    Macefat, Martina R.; Grahek, Zeljko; Ivsic, Astrid G.

    2008-01-01

    Full text: Uranium is a natural occurring radionuclide and the first member of natural radioactive chains which makes its determination in natural materials interesting from geochemical and radioecological aspect. It can be quantitatively determined as element and/or its radioisotopes by different spectrometric methods (ICP-MS, spectrophotometry, alpha spectrometry). It is necessary to develop inexpensive, rapid and sensitive methods for the routine analysis. Therefore, in this paper, development of a new method for the isolation of uranium from liquid samples and subsequent determination by spectrophotometry and ICP-MS will be described. It is possible to isolate uranium from drinking and seawater using extraction chromatography or mixed solvent ion exchange. Uranium can be strongly bound on the TRU extraction chromatographic resin from nitric acid (chemical recovery is 100%) and can be separated from other interfering elements, while separation from thorium, which can be also strongly bound on this resin, is possible with hydrochloric acid. It is also possible to separate uranium from thorium on the anion exchanger Amberlite CG-400 (NO 3 - form) because uranium is much more weakly bound on this exchanger from alcoholic solutions of nitric acid. After the separation uranium is determined by ICP-MS and by spectrophotometric method with arsenazo III (λ max =652 nm). Developed method enables selection of the optimal mode of isolation for the given purposes. (author)

  17. Valence-associated uranium isotope fractionation of uranium enriched phosphate in a shallow aquifer, Lee County, Florida

    International Nuclear Information System (INIS)

    Weinberg, J.M.; Levine, B.R.; Cowart, J.B.

    1993-01-01

    The source of anomalously high concentrations of uranium, characterized by U-234/U-238 activity ratios significantly less than unity, in shallow groundwaters of Lee County, Florida, was investigated. Uranium in cores samples was separated into U(IV) and U(VI) oxidation state fractions, and uranium analyses were conducted by alpha spectrometry. Uranium mobility was also studied in selected leaching experiments. Results indicate that mobilization of unusually soluble uranium, present in uranium enriched phosphate of the Pliocene age Tamiami Formation at determined concentrations of up to 729 ppm, is the source for high uranium concentrations in groundwater. In leaching experiments, approximately one-third of the uranium present in the uranium enriched phosphate was mobilized into the aqueous phase. Results of previous investigations suggest that U-234, produced in rock by U-238 decay, is selectively oxidized to U(VI). The uranium enriched phosphate studied in this investigation is characterized by selective reduction of U-234, with a pattern of increasing isotopic fractionation with core depth. As a consequence, U-234/U-238 activity ratios greater than 1.0 in the U(IV) fraction, and less than 1.0 in the U(VI) fraction have developed in the rock phase. In leaching experiments, the U(VI) fraction from the rock was preferentially mobilized into the aqueous phase, suggesting that U-234/U-238 activity ratios of leaching groundwaters are strongly influenced by the isotopic characteristics of the U(VI) fraction of rock. It is suggested that preferential leaching of U(VI), present in selectivity reduced uranium enriched phosphate, is the source for low activity ratio groundwaters in Lee County

  18. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  19. Uranium band types in carbonaceous sediments with different diagenesis levels

    International Nuclear Information System (INIS)

    Borstel, D. von.

    1984-01-01

    Uraniferous peats, lignites and coals were studied by chemical and geological methods in order to determine the influence of carbonaceous substances with different diagenesis levels on uranium enrichment in sediments. It was found that the main factor of deposit genesis is not the chemical bending of uranium to the organic substance but rather the reduction from mobile U(VI) to immobile U(IV) in the course of diagenesis to epigenesis. (orig./PW) [de

  20. Uranium redox transition pathways in acetate-amended sediments

    Science.gov (United States)

    Bargar, John R.; Williams, Kenneth H.; Campbell, Kate M.; Long, Philip E.; Stubbs, Joanne E.; Suvorova, Elenal I.; Lezama-Pacheco, Juan S.; Alessi, Daniel S.; Stylo, Malgorzata; Webb, Samuel M.; Davis, James A.; Giammar, Daniel E.; Blue, Lisa Y.; Bernier-Latmani, Rizlan

    2013-01-01

    Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth’s geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic–abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.

  1. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  2. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  3. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  4. Determining uranium speciation in contaminated soils by molecular spectroscopic methods: Examples from the Uranium in Soils Integrated Demonstration

    International Nuclear Information System (INIS)

    Allen, P.G.; Berg, J.M.; Chisholm-Brause, C.J.; Conradson, S.D.; Donohoe, R.J.; Morris, D.E.; Musgrave, J.A.; Tait, C.D.

    1994-01-01

    The US Department of Energy's former uranium production facility located at Fernald, OH (18 mi NW of Cincinnati) is the host site for an Integrated Demonstration for remediation of uranium-contaminated soils. A wide variety of source terms for uranium contamination have been identified reflecting the diversity of operations at the facility. Most of the uranium contamination is contained in the top ∼1/2 m of soil, but uranium has been found in perched waters indicating substantial migration. In support of the development of remediation technologies and risk assessment, we are conducting uranium speciation studies on untreated and treated soils using molecular spectroscopies. Untreated soils from five discrete sites have been analyzed. We have found that ∼80--90% of the uranium exists as hexavalent UO 2 2+ species even though many source terms consisted of tetravalent uranium species such as UO 2 . Much of the uranium exists as microcrystalline precipitates (secondary minerals). There is also clear evidence for variations in uranium species from the microscopic to the macroscopic scale. However, similarities in speciation at sites having different source terms suggest that soil and groundwater chemistry may be as important as source term in defining the uranium speciation in these soils. Characterization of treated soils has focused on materials from two sites that have undergone leaching using conventional extractants (e.g., carbonate, citrate) or novel chelators such as Tiron. Redox reagents have also been used to facilitate the leaching process. Three different classes of treated soils have been identified based on the speciation of uranium remaining in the soils. In general, the effective treatments decrease the total uranium while increasing the ratio of U(IV) to U(VI) species

  5. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  6. Uranium: a basic evaluation

    International Nuclear Information System (INIS)

    Crull, A.W.

    1978-01-01

    All energy sources and technologies, including uranium and the nuclear industry, are needed to provide power. Public misunderstanding of the nature of uranium and how it works as a fuel may jeopardize nuclear energy as a major option. Basic chemical facts about uranium ore and uranium fuel technology are presented. Some of the major policy decisions that must be made include the enrichment, stockpiling, and pricing of uranium. Investigations and lawsuits pertaining to uranium markets are reviewed, and the point is made that oil companies will probably have to divest their non-oil energy activities. Recommendations for nuclear policies that have been made by the General Accounting Office are discussed briefly

  7. Uranium health physics

    International Nuclear Information System (INIS)

    1980-01-01

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  8. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    Gass, C.B.

    1983-01-01

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  9. Synthesis of new triphosphonic esters for uranium extraction in phosphoric medium

    International Nuclear Information System (INIS)

    Sturtz, Georges; Pensec, Thierry

    1981-01-01

    Triphosphonic acids obtained by nucleophilic addition of dialkyl phosphites on ethylenic diphosphonates are partially hydrolysed into incompletely esterified triphosphonic acids. Their extracting properties for uranium-IV in phosphonic medium are tested [fr

  10. Studies on the determination of uranium by potentiometry

    International Nuclear Information System (INIS)

    Venkataramana, P.; John, Mary; Nair, P.R.; Kasar, U.M.; Natarajan, P.R.

    1981-01-01

    A potentiometric method for the determination of uranium standardised earlier has been in use for the chemical quality control of plutonium fuels. The method involves the reduction of U(VI) in phosphoric acid medium and titration of U(IV) against Cr(VI). An extension of the range of the quantity of uranium determined by the same method is reported here. The precisions have been evaluated at 13 concentration levels. 20 titrations were carried out at each concentration. the precision at 20 μg level was found to be 3.8% while it was better than 0.03% at concentrations ranging from 20 mg upto 200 mg. At 100 mg and 200 mg of uranium the total volume of the reagent solutions was 50 ml while in other cases it was 25 ml. The effects of a few impurities on the uranium determination were also studied for the 2-5 mg range of uranium. (author)

  11. Determination of uranium by a gravimetric-volumetric titration method

    International Nuclear Information System (INIS)

    Krtil, J.

    1998-01-01

    A volumetric-gravimetric modification of a method for the determination of uranium based on the reduction of uranium to U (IV) in a phosphoric acid medium and titration with a standard potassium dichromate solution is described. More than 99% of the stoichiometric amount of the titrating solution is weighed and the remainder is added volumetrically by using the Mettler DL 40 RC Memotitrator. Computer interconnected with analytical balances collects continually the data on the analyzed samples and evaluates the results of determination. The method allows to determine uranium in samples of uranium metal, alloys, oxides, and ammonium diuranate by using aliquot portions containing 30 - 100 mg of uranium with the error of determination, expressed as the relative standard deviation, of 0.02 - 0.05%. (author)

  12. Recovery of uranium from crude uranium tetrafluoride

    International Nuclear Information System (INIS)

    Ghosh, S.K.; Bellary, M.P.; Keni, V.S.

    1994-01-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author)

  13. Recovery of uranium from crude uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Bellary, M P; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author). 4 refs., 1 fig., 3 tabs.

  14. Generation IV national program

    International Nuclear Information System (INIS)

    Preville, M.; Sadhankar, R.; Brady, D.

    2007-01-01

    This paper outlines the Generation IV National Program. This program involves evolutionary and innovative design with significantly higher efficiencies (∼50% compared to present ∼30%) - sustainable, economical, safe, reliable and proliferation resistant - for future energy security. The Generation IV Forum (GIF) effectively leverages the resources of the participants to meet these goals. Ten countries signed the GIF Charter in 2001

  15. Determination of traces of uranium in sea water after separation by froth flotation

    International Nuclear Information System (INIS)

    Sekine, K.

    1975-01-01

    Uranium in sea water is separated by froth flotation of the uranium (VI)-Arsenazo III-Zephiramine ion-adduct and then determined by neutron activation or spectrophotometric method using the uranium(IV)-Arsenazo III complex. Results of the analysis of Pacific coastal samples by the two methods are in good agreement; an average value of 3.0μg U/per liter was obtained. (author)

  16. Understanding Uranium Behavior in a Reduced Aquifer

    Science.gov (United States)

    Janot, N.; Lezama-Pacheco, J. S.; Williams, K. H.; Bernier-Latmani, R.; Long, P. E.; Davis, J. A.; Fox, P. M.; Yang, L.; Giammar, D.; Cerrato, J. M.; Bargar, J.

    2012-12-01

    Uranium contamination of groundwater is a concern at several US Department of Energy sites, such Old Rifle, CO. Uranium transport in the environment is mainly controlled by its oxidation state, since oxidized U(VI) is relatively mobile, whereas U(IV) is relatively insoluble. Bio-remediation of contaminated aquifers aims at immobilizing uranium in a reduced form. Previous laboratory and field studies have shown that adding electron donor (lactate, acetate, ethanol) to groundwater stimulates the activity of metal- and sulfate-reducing bacteria, which promotes U(VI) reduction in contaminated aquifers. However, obtaining information on chemical and physical forms of U, Fe and S species for sediments biostimulated in the field, as well as kinetic parameters such as U(VI) reduction rate, is challenging due to the low concentration of uranium in the aquifers (typically bio-remediation experiment at the Old Rifle site, CO, from early iron-reducing conditions to the transition to sulfate-reducing conditions. Several in-well chromatographic columns packed with sediment were deployed and were sampled at different days after the start of bio-reduction. X-ray absorption spectroscopy and X-ray microscopy were used to obtain information on Fe, S and U speciation and distribution. Chemical extractions of the reduced sediments have also been performed, to determine the rate of Fe(II) and U(IV) accumulation.

  17. Sorption of uranium by clinoptilolite modified by a some metals hydroxides

    International Nuclear Information System (INIS)

    Plotnikov, V.I.; Medvedeva, Z.V.; Zhabykbaev, G.T.

    2005-01-01

    In the present report the sorption character of uranium (IV) in the static conditions on the thin layer sorbents with application of the clinoptilolite of the Chankan deposit of the Republic of Kazakhstan is shown. A wide circle of metal hydroxides - in both the individual form and in the their mixture - is used. It is shown that the most sorptive capacity against the uranium (IV) has the modified clinoptilolite of MnO 2

  18. Uranium production

    International Nuclear Information System (INIS)

    Jones, J.Q.

    1981-01-01

    The domestic uranium industry is in a state of stagflation. Costs continue to rise while the market for the product remains stagnant. During the last 12 months, curtailments and closures of mines and mills have eliminated over 5000 jobs in the industry, plus many more in those industries that furnish supplies and services. By January 1982, operations at four mills and the mines that furnish them ore will have been terminated. Other closures may follow, depending on cost trends, duration of current contracts, the degree to which mills have been amortized, the feasibility of placing mines on standby, the grade of the ore, and many other factors. Open-pit mines can be placed on standby without much difficulty, other than the possible cost of restoration before all the ore has been removed. There are a few small, dry, underground mines that could be mothballed; however, the major underground producers are wet sandstone mines that in most cases could not be reopened after a prolonged shutdown; mills can be mothballed for several years. Figure 8 shows the location of all the production centers in operation, as well as those that have operated or are on standby. Table 1 lists the same production centers plus those that have been deferred, showing nominal capacity of conventional mills in tons of ore per calendar day, and the industry production rate for those mills as of October 1, 1981

  19. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  20. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-01-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit

  1. Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites

    Science.gov (United States)

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...

  2. Studying uranium migration in natural environment: experimental approach and geochemical modeling; Etude de la migration de l'uranium en milieu naturel: approche experimentale et modelisation geochimique

    Energy Technology Data Exchange (ETDEWEB)

    Phrommavanh, V.

    2008-10-15

    The present study deals with characterizing uranium migration in a limited zone of Le Bouchet site, a former uranium ore treatment facility, which is dismantled and the rehabilitation of which is under process. Some wastes are packed in a rehabilitated disposal nearby, called the Itteville site. In the framework of the monitoring of the deposit environment (air, water, sediment) set by prefectorial decrees, a piezometer (PZPK) located downstream to the latter, has shown total dissolved uranium peaks each winter since the 1990's. PZPK collects both the interstitial water of a calcareous peat formation, between the surface and 3 m, and an alluvial aquifer near 6 m of depth. Firstly, a hydrogeochemical characterization of the site has evidenced the uranium source term, which is present in the peat soil near 0.8 m, hence excluding any leaching from the waste disposal. Actually, a few microparticles of uranium oxide and mixed uranium-thorium oxide have been detected, but they do not represent the major part of the source term. Secondly, water chemistry of the peat soil water and PZPK has been monitored every two months from 2004 to 2007 in order to understand the reasons of the seasonal fluctuations of [U]tot.diss.. Completed with geochemical modeling and a bacterial identification by 16S rDNA sequence analysis, water chemistry data showed an important sulfate-reducing bacterial activity in summertime, leading to reducing conditions and therefore, a total dissolved uranium content limited by the low solubility of uraninite U{sup IV}O{sub 2}(s). In wintertime, the latter bacterial activity being minimal and the effective pluviometry more important, conditions are more oxidant, which favors U(VI), more soluble, notably as the Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complex, evidenced by TRLFS. Finally, bacterial activity has been reproduced in laboratory in order to better characterize its impact on uranium solubility in the peat soil. Various parameters were tested

  3. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Known uranium deposits and the companies involved in uranium mining and exploration in Australia are listed. The status of the development of the deposits is outlined and reasons for delays to mining are given

  4. Uranium Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — An integral part of Y‑12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium...

  5. Uranium in Niger

    International Nuclear Information System (INIS)

    Gabelmann, E.

    1978-03-01

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities [fr

  6. Price of military uranium

    International Nuclear Information System (INIS)

    Klimenko, A.V.

    1998-01-01

    The theoretical results about optimum strategy of use of military uranium confirmed by systems approach accounts are received. The numerical value of the system approach price of the highly enriched military uranium also is given

  7. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  8. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  9. Industrial realities: Uranium

    International Nuclear Information System (INIS)

    Thiron, H.

    1990-01-01

    In this special issue are examined ores and metals in France and in the world for 1988. The chapter on uranium gives statistical data on the uranium market: Demand, production, prices and reserves [fr

  10. Brazilian uranium deposits

    International Nuclear Information System (INIS)

    Santos, L.C.S. dos.

    1985-01-01

    Estimatives of uranium reserves carried out in Figueira, Itataia, Lagoa Real and Espinharas, in Brazil are presented. The samples testing allowed to know geological structures, and the characteristics of uranium mineralization. (M.C.F.) [pt

  11. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The mining of uranium in Australia is criticised in relation to it's environmental impact, economics and effects on mine workers and Aborigines. A brief report is given on each of the operating and proposed uranium mines in Australia

  12. Chemical aspects of rubidium uranium sulphate for its use as a chemical standard for uranium

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.; Khandekar, R.R.; Krishnan, K.; Jayadevan, N.C.; Sood, D.D.

    1989-01-01

    Rb 2 U(SO 4 ) 3 , a double sulphate of rubidium and uranium(IV) has been prepared and investigated for its use as a chemical standard for uranium. The compound can be easily prepared and crystallised in a pure form. The results of physico-chemical characterisation on preparation of 5-10 g. lots are described in this report. These studies suggest that the compound is anhydrous, stoichiometric, stable to atmospheric effects and easily soluble in acids and thus satisfies most of the criteria for a primary standard. (author). 13 refs., 4 figs., 6 tabs

  13. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  14. Bicarbonate leaching of uranium

    International Nuclear Information System (INIS)

    Mason, C.

    1998-01-01

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented

  15. Bicarbonate leaching of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.

    1998-12-31

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

  16. Uranium in fossil bones

    International Nuclear Information System (INIS)

    Koul, S.L.

    1978-01-01

    An attempt has been made to determine the uranium content and thus the age of certain fossil bones Haritalyangarh (Himachal Pradesh), India. The results indicate that bones rich in apatite are also rich in uranium, and that the radioactivity is due to radionuclides in the uranium series. The larger animals apparently have a higher concentration of uranium than the small. The dating of a fossil jaw (elephant) places it in the Pleistocene. (Auth.)

  17. Study on the uranium-cerium extraction and his application to the treatment of irradiated uranium

    International Nuclear Information System (INIS)

    Lobao, Afonso dos Santos Tome

    1979-01-01

    It was made a study on the behavior of uranium and cerium(IV) extraction, using the latter element as a plutonium simulator in a flowsheet of the treatment of irradiated uranium. Cerium(IV) was used under the same conditions as a plutonium in the Purex process because the admitted similar properties. An experimental work was initiated to determine the equilibrium curves of uranium, under the following conditions: concentration of 1 to 20 g U/1 and acidity varying from 1 to 5M in HNO 3 . Other parameters studied were the volumetric ratio of the phases and the influence of the concentration of TBP (tri-n-butyl phosphate). To guarantee the cerium(IV) extraction, the diluent (varsol) was previously treated with 10% potassium dichromate in perchloric acid, potassium permanganate in 1M sulphuric acid and concentrated sulphuric acid at 70 deg to eliminate reducing compounds. The results obtained for cerium extraction, allowed a better understanding of its behavior in solution. The results permitted to conclude that the decontamination for cerium are very high in the first Purex extraction cycle. The easy as cerium(IV) is reduced to the trivalent state contributes a great deal to its decontamination. (author)

  18. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  19. Law of substitution for mixed arrays

    International Nuclear Information System (INIS)

    Koudelka, A.J.

    1987-01-01

    The nuclear safety justification of a mixed array of dissimilar fissile units of metal units and dilute solution units, according to Clayton, has been a persistent and nagging problem. Dissimilar uranium metal or dissimilar uranium solution units in a mixed array can also create a modeling nightmare for the nuclear criticality safety engineer. Now, a calculational method known as the Law of Substitution has been developed to ensure that the k/sub eff/ of an array of uranium metal and uranium solution units will satisfy any k/sub eff/ limit set by the nuclear safety engineer. The nuclear criticality safety engineer can utilize the Law of Substitution to safely mix or substitute different uranium metal units, different uranium solution units, and more importantly, uranium metal and dilute UO 2 solution units in an array. The Law of Substitution is as follows: (1) calculate the k/sub eff/ of each unit type in its own infinite planar array. (2) Determine the edge-to-edge spacing of the infinite planar array of each type of unit to satisfy a desired k/sub eff/. (3) Select the largest edge-to-edge spacing from among the similar units in their infinite planar arrays and use that spacing for the finite or infinite planar array of mixed units

  20. Irradiated uranium reprocessing, Final report - I-IV, Part III

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    This third part of the final report include the following: Annex 5 - device for opening the cover; Annex 6 - inner part of the device for sampling of the radioactive solution; Annex 7 - outer part of the device for sampling of the radioactive solution; Annex 8 - pneumatic taps [sr

  1. Chemistry of uranium in evaporation pond sediment in the San Joaquin Valley, California, USA, using x-ray fluorescence and XANES techniques

    International Nuclear Information System (INIS)

    Duff, M.C.; Amrhein, C.; Bertsch, P.M.; Hunter, D.B.

    1997-01-01

    Evaporation ponds in the San Joaquin Valley (SJV), CA, used for the disposal of irrigation drainage waters, contain elevated levels of uranium. The ponds are filled periodically and support algae which upon evaporation become incorporated in the sediments as layers of decaying organic matter. This rich source of organic matter promotes reducing conditions in the sediments. Our research was conducted to characterize oxidation/reduction reactions that affect soluble and sediment U(IV)/U(VI) concentrations in the SJV ponds. Studies were done to (1) determine soluble U(Vl)/U(IV) in waters in contact with a pond sediment subjected to changes in redox status, (2) observe U solid oxidation state as a reducing pond sediment underwent (in vitro) oxidation, and (3) determine U solid oxidation state with respect to depth in pond surface sediment layers. Low pressure ion-exchange chromatography with an eluent of 0.125 M H 2 C 2 O 4 /0.25 M HNO 3 was used for the separation of U(IV) and U(VI) oxidation states in the drainage waters. Soluble U(VI) and U(IV) coexisted in sediment suspensions exposed to changes in redox potential (Eh) (-260 mV to +330 mV), and U(VI) was highly soluble in the oxidized, surface pond sediments. X-ray near edge absorption spectroscopy (XANES) showed that the U solid phases were 25% U(IV) and 75% U(VI) and probably a mixed solid [U 3 O 8(s) ] in highly reducing pond sediments. Sediment U(IV) increased slightly with depth in the surface pond sediment layers suggesting a gradual reduction of U(VI) to U(IV) with time. Under oxidized conditions, this mixed oxidation-state solid was highly soluble. 59 refs., 6 figs., 1 tab

  2. Retrospective study on prognostic importance of serum procalcitonin and amino - terminal pro - brain natriuretic peptide levels as compared to Acute Physiology and Chronic Health Evaluation IV Score on Intensive Care Unit admission, in a mixed Intensive Care Unit population

    Directory of Open Access Journals (Sweden)

    Chitra Mehta

    2016-01-01

    Full Text Available Background: Timely decision making in Intensive Care Unit (ICU is very essential to improve the outcome of critically sick patients. Conventional scores like Acute Physiology and Chronic Health Evaluation (APACHE IV are quite cumbersome with calculations and take minimum 24 hours. Procalcitonin has shown to have prognostic value in ICU/Emergency department (ED in disease states like pneumonia, sepsis etc. NTproBNP has demonstrated excellent diagnostic and prognostic importance in cardiac diseases. It has also been found elevated in non-cardiac diseases. We chose to study the prognostic utility of these markers on ICU admission. Settings and Design: Retrospective observational study. Materials and Methods: A Retrospective analysis of 100 eligible patients was done who had undergone PCT and NTproBNP measurements on ICU admission. Their correlations with all cause mortality, length of hospital stay, need for ventilator support, need for vasopressors were performed. Results: Among 100 randomly selected ICU patients, 28 were non-survivors. NTproBNP values on admission significantly correlated with all cause mortality (P = 0.036, AUC = 0.643 and morbidity (P = 0.000, AUC = 0.763, comparable to that of APACHE-IV score. PCT values on admission did not show significant association with mortality, but correlated well with morbidity and prolonged hospital length of stay (AUC = 0.616, P = 0.045. Conclusion: The current study demonstrated a good predictive value of NTproBNP, in terms of mortality and morbidity comparable to that of APACHE-IV score. Procalcitonin, however, was found to have doubtful prognostic importance. These findings need to be confirmed in a prospective larger study.

  3. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  4. Uranium energy dependence

    International Nuclear Information System (INIS)

    Erkes, P.

    1981-06-01

    Uranium supply and demand as projected by the Uranium Institute is discussed. It is concluded that for the industrialized countries, maximum energy independence is a necessity. Hence it is necessary to achieve assurance of supply for uranium used in thermal power reactors in current programs and eventually to move towards breeders

  5. Australian uranium today

    International Nuclear Information System (INIS)

    Fisk, B.

    1978-01-01

    The subject is covered in sections, entitled: Australia's resources; Northern Territory uranium in perspective; the government's decision [on August 25, 1977, that there should be further development of uranium under strictly controlled conditions]; Government legislation; outlook [for the Australian uranium mining industry]. (U.K.)

  6. Uranium resources, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  7. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  8. Distribution of uranium in marine sediments

    International Nuclear Information System (INIS)

    Ordonez R, E.; Ramirez T, J.J.; Lopez M, J.; Aspiazu, J.; Ruiz F, A.C.; Valero C, N.

    2008-01-01

    The marine sediments obtained by means of a sampling nucleus in the Gulf of Tehuantepec, Mexico, they have been object of crystallographic and morphological characterization. The PIXE analysis of some samples in study is shown. The normal methodology to carry out the alpha spectroscopy indicates that the sample should be dissolved, but due to the nature of the marine sediments, it thinks about the necessity to make a fractional separation of the sample components. In each stratum of the profile it separates the organic part and the mineral to recover the uranium. It was observed that in the organic phase, the uranium is in two oxidation states (IV and Vl), being necessary the radiochemical separation with a liquid/liquid column chromatographic that uses the di-2-ethyl hexyl phosphoric acid as stationary phase. The uranium compounds extracts are electrodeposited in fine layers on stainless steel disks to carry out the analysis by alpha spectroscopy. The spectroscopic analysis of the uranium indicates us that for each stratum one has a difference marked in the quotient of activities of 234 U/ 238 U that depends on the nature of the studied fraction. These results give us a clear idea about how it is presented the effect of the uranium migration and other radioelements in the biosphere, with what we can determine which are the conditions in that these have their maximum mobility and to know their diffusion patterns in the different media studied. (Author)

  9. Spectroscopic characterization of uranium in evaporation basin sediments

    Science.gov (United States)

    Duff, M. C.; Morris, D. E.; Hunter, D. B.; Bertsch, P. M.

    2000-05-01

    Evaporation ponds in the San Joaquin Valley (SJV), CA, used for the containment of irrigation drainage waters contain elevated levels of uranium (U) resulting from the extensive leaching by carbonate-rich irrigation waters of the local agricultural soils that contain low levels of naturally-occurring U. The SJV ponds are subjected to changes in redox chemistry with cycles of drying and flooding. Our past studies have shown that U in the SJV Pond 14 surface sediments is present as mostly the oxidized and soluble form, U(VI). However, we were uncertain whether the U in the soil was only present as a U oxide of mixed stoichiometry, such as U 3O 8(s) (pitchblende) or other species. Here we present characterization information, which includes wet chemical and in situ spectroscopic techniques (X-ray absorption near-edge structure (XANES) and low temperature time-resolved luminescence spectroscopies) for samples from two SJV Pond sediments. Surface sediments from SJV Pond 16 were characterized for average oxidation state of U with XANES spectroscopy. The fraction of U(VI) to U(IV) in the Pond 16 sediments decreased with depth with U(IV) being the dominant oxidation state in the 5 cm to 15 cm depth. Two luminescent U(VI) species were identified in the surface sediments from Pond 14; a U(VI)-tricarbonate phase and another phase likely comprised of U(VI)-hydroxide or hydroxycarbonate. The luminescent U(VI) population in the Pond 16 sediments is dominated by species with comparable spectral characteristics to the U(VI)-hydroxide or hydroxycarbonate species found in the Pond 14 sediments. The luminescence spectroscopic results were complemented by wet chemical U leaching methods, which involved the use of carbonate and sulfuric acid solutions and oxidizing solutions of peroxide, hypochlorite and Mn(IV). Leaching was shown to decrease the total U concentration in the sediments in all cases. However, results from luminescence studies of the residual fraction in the leached

  10. Microbial transformation of uranium in wastes

    International Nuclear Information System (INIS)

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.; Cline, J.E.

    1989-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from the disposal of uranium processing wastes is a major national concern. Although much is known about the physico- chemical aspects of U, we have little information on the effects of aerobic and anaerobic microbial activities on the mobilization or immobilization of U and other toxic metals in mixed wastes. In order to understand the mechanisms of microbial transformations of uranium, we examined a contaminated pond sediment and a sludge sample from the uranium processing facility at Y-12 Plant, Oak Ridge, TN. The uranium concentration in the sediment and sludge samples was 923 and 3080 ug/g dry wt, respectively. In addition to U, the sediment and sludge samples contained high levels of toxic metals such as Cd, Cr, Cu, Hg, Pb, Ni, and Zn. The association of uranium with the various mineral fractions of the sediment and sludge was determined by selective chemical extraction techniques. Uranium was associated to varying degrees with the exchangeable carbonate, iron oxide, organic, and inert fractions in both samples. Initial results in samples amended with carbon and nitrogen indicate immobilization of U due to enhanced indigenous microbial activity under anaerobic conditions. 23 refs., 4 figs., 5 tabs

  11. Anaerobic bacterial systems result in the removal of soluble uranium

    International Nuclear Information System (INIS)

    Thomson, B.M.; Barton, L.L.; Steenhoudt, K.; Tucker, M.D.

    1994-01-01

    Sulfate-reducing bacteria, nitrate-reducing bacteria and bacteria present in sewage sludge were examined for their ability to reduce the level of soluble U(VI) in enriched media. Cultures of Desulfovibrio desulfuricans, D. gigas, and D. vulgaris were grown in sulfate-containing media while Pseudomonas putida and P. denitrificans were cultivated in nitrate media. The amount of U(VI) removed from solution was dependent on metabolism because greater levels of uranium were removed when U(VI) was added to a growing culture than when added to a culture in stationary phase. The presence of vanadate, arsenate, selenate or molybdate at 0.1 and 0.01 M levels in sulfate-reducing cultures, nitrate-respiring cultures or in sludge cultures did not have an effect on the amount of uranium removed. In all cultures the amount of uranium in solution was markedly reduced after 10 to 20 days and reduced uranium, as U(IV), was detected in several cultures. Present in the cultures of D. desulfuricans were crystals of uranium. Examination of these cultures by electron microscopy indicates that the uranium (IV) is deposited outside of the cell and these needle-like crystals are associated with cellular material. X-ray probe analysis with the electron microscope gave an image that was in close agreement with U(IV). With D. desulfuricans in a continuous stirred tank reactor, kinetic parameters have been calculated for uranium reduction. Over a period of 20 to 60 hours, the amount of soluble uranium removed from the bioreactor was proportional to residence time over a period of 20 to 60 hours

  12. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  13. Improved fluorimetric measurement of uranium uptake and distribution in spring wheat (Triticum aestivum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Borcia, Catalin [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Physics; Popa, Karin; Cecal, Alexandru [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Chemistry; Murariu, Manuela [' ' Petru Poni' ' Institute of Macromolecular Chemistry, Iasi (Romania)

    2016-08-01

    Uranium uptake and (radio)toxicity was tested on spring wheat (Triticum aestivum L.) in a laboratory study using differently concentrated uranium nitrate solutions. Within these experiments, two analytical assays of uranium were comparatively tested: a fast and improved fluorimetric assay and the classical colorimetric (U(IV)-arsenazo(III) complexation) one. During the germination, the wheat seeds and plantlets supported well the uranium solutions of treatment within the entire concentration range (1 x 10{sup -4} -5 x 10{sup -3} M). Uranium proved to be non (radio)toxic to wheat as compared with other natural and anthropogenic radiocations, probably because its uptake by spring wheat during the germination is low. Indeed, only a small fraction of uranium administered was located within the roots, whereas the uranium content of the stems was negligible. A high correlation between the results obtained by two analytical methods was found. However, the fluorimetric assay proved to be more reliable and fast, and accurate.

  14. The combined measurement of uranium by alpha spectrometry and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Harvan, D.

    2009-01-01

    The aim of thesis was to found the dependence between radiometric method - alpha spectrometry and surface sensitive method - Secondary Ion Mass Spectrometry (SIMS). Uranium or naturally occurring uranium isotopes were studied. Samples (high polished stainless steel discs) with uranium isotopes were prepared by electrodeposition. Samples were measured by alpha spectrometry after electrodeposition and treatment. It gives surface activities. Weights, as well as surface's weights of uranium isotopes were calculated from their activities, After alpha spectrometry samples were analyzed by TOF-SIMS IV instrument in International Laser Centre in Bratislava. By the SIMS analysis intensities of uranium-238 were obtained. The interpretation of SIMS intensities vs. surface activity, or surface's weights of uranium isotopes indicates the possibility to use SIMS in quantitative analysis of surface contamination by uranium isotopes, especially 238 U. (author)

  15. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, James E., E-mail: jbarefield@lanl.gov [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berg, John M. [Manufacturing Engineering and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples.

  16. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2016.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  17. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2014.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  18. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2015.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  19. SAGE IV Pathfinder

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing a unique, new occultation technique involving imaging, the SAGE IV concept will meet or exceed the quality of previous SAGE measurements at a small...

  20. U(IV) fluorescence spectroscopy. A new speciation tool

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Susanne; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    We combined absorption and fluorescence spectroscopy to study the speciation of U(IV) in solution in concentrations down to 10{sup -6} M uranium. With our time-resolved laser-induced fluorescence setup we could determine the fluorescence decay time of U(IV) in perchloric as well as in chloric acid with 2.6 ± 0.3 ns at room temperature and 148.4 ± 6.5 ns at liquid nitrogen temperature. For the U(IV) sulfate system, we observed a bathochromic shift and a peak shape modification in the fluorescence spectra with increasing sulfate concentration in solution. Thus, the potential of U(IV) fluorescence for speciation analysis could be proven.

  1. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  2. PROCESS OF RECOVERING URANIUM

    Science.gov (United States)

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  3. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

  4. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  5. Uranium speciation in plants

    International Nuclear Information System (INIS)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A.; Nitsche, H.

    2003-01-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  6. Uranium and thorium based phosphate matrix: synthesis, characterizations and lixiviation; Matrices a base de phosphate d'uranium et de thorium: syntheses, caracterisations et lixiviation

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N

    1995-03-01

    In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO{sub 2})(PO{sub 4}){sub 2}, U{sub 2}O(PO{sub 4}){sub 2}, UCIPO{sub 4}, 4H{sub 2}O, and Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}. Experimental evidenced are advanced for non existent compounds such as: U{sub 3}(PO{sub 4}){sub 4}, U{sub 2}O{sub 3}P{sub 2}O{sub 7} and Th{sub 3} (PO{sub 4}){sub 4}. Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO{sub 2})(PO{sub 4}){sub 2} has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U{sup 4+} and UO{sub 2}{sup 2+} ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UCIPO{sub 4}, 4H{sub 2}O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO{sub 2})(PO{sub 4}){sub 2} and Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with {sup 230}U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectro-fluorimetry. Average concentration of uranium in the liquid phase is around 10{sup -4} M to 10{sup -6} M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses

  7. Uranium and thorium based phosphate matrix: synthesis, characterizations and lixiviation; Matrices a base de phosphate d'uranium et de thorium: syntheses, caracterisations et lixiviation

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N

    1995-03-01

    In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO{sub 2})(PO{sub 4}){sub 2}, U{sub 2}O(PO{sub 4}){sub 2}, UCIPO{sub 4}, 4H{sub 2}O, and Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}. Experimental evidenced are advanced for non existent compounds such as: U{sub 3}(PO{sub 4}){sub 4}, U{sub 2}O{sub 3}P{sub 2}O{sub 7} and Th{sub 3} (PO{sub 4}){sub 4}. Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO{sub 2})(PO{sub 4}){sub 2} has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U{sup 4+} and UO{sub 2}{sup 2+} ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UCIPO{sub 4}, 4H{sub 2}O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO{sub 2})(PO{sub 4}){sub 2} and Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with {sup 230}U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectro-fluorimetry. Average concentration of uranium in the liquid phase is around 10{sup -4} M to 10{sup -6} M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses

  8. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  9. Determination of plutonium and uranium in the same aliquot by potentiometric titration

    International Nuclear Information System (INIS)

    Karekar, C.V.; Chander, Keshav; Nair, G.M.; Natarajan, P.R.

    1986-01-01

    A potentiometric titration method was developed for the determination of plutonium and uranium in the same aliquot in nitric acid medium. Plutonium was first determined by oxidation to Pu(VI) by fuming with HClO 4 . Pu(VI) was reduced to Pu(IV) with known excess of Fe(II). Uranium in the same solution was determined by reduction to U(IV) with Fe(II) in H 3 PO 4 medium. For the quantity of plutonium and uranium in the range of 3-5 mg per aliquot a precision of +-0.2% and +-0.4%, respectively, was obtained. (author)

  10. Studying uranium migration in natural environment: experimental approach and geochemical modeling

    International Nuclear Information System (INIS)

    Phrommavanh, V.

    2008-10-01

    The present study deals with characterizing uranium migration in a limited zone of Le Bouchet site, a former uranium ore treatment facility, which is dismantled and the rehabilitation of which is under process. Some wastes are packed in a rehabilitated disposal nearby, called the Itteville site. In the framework of the monitoring of the deposit environment (air, water, sediment) set by prefectorial decrees, a piezometer (PZPK) located downstream to the latter, has shown total dissolved uranium peaks each winter since the 1990's. PZPK collects both the interstitial water of a calcareous peat formation, between the surface and 3 m, and an alluvial aquifer near 6 m of depth. Firstly, a hydrogeochemical characterization of the site has evidenced the uranium source term, which is present in the peat soil near 0.8 m, hence excluding any leaching from the waste disposal. Actually, a few microparticles of uranium oxide and mixed uranium-thorium oxide have been detected, but they do not represent the major part of the source term. Secondly, water chemistry of the peat soil water and PZPK has been monitored every two months from 2004 to 2007 in order to understand the reasons of the seasonal fluctuations of [U]tot.diss.. Completed with geochemical modeling and a bacterial identification by 16S rDNA sequence analysis, water chemistry data showed an important sulfate-reducing bacterial activity in summertime, leading to reducing conditions and therefore, a total dissolved uranium content limited by the low solubility of uraninite U IV O 2 (s). In wintertime, the latter bacterial activity being minimal and the effective pluviometry more important, conditions are more oxidant, which favors U(VI), more soluble, notably as the Ca 2 UO 2 (CO 3 ) 3 (aq) complex, evidenced by TRLFS. Finally, bacterial activity has been reproduced in laboratory in order to better characterize its impact on uranium solubility in the peat soil. Various parameters were tested (C sources, temperature

  11. Precision determination of uranium in uranium oxide by constant-current coulometry

    International Nuclear Information System (INIS)

    Xu Laili; Wang Chunhuan.

    1990-01-01

    A method of constant-current coulometric titration for determination of uranium in uranium oxide is described. This method involves preliminary reduction of U (VI) in H 2 SO 4 -H 3 PO 4 medium by Cr (II) as a reductant, followed by air oxidation of excess of Cr (II), addition of solid K 2 Cr 2 O 7 in quantity slightly more than that of the required for quantitative oxidation of U (IV) and final titration of excess of K 2 Cr 2 O 7 with the electrogenerated Fe (II). The endpoint is determined amperometrically. The effect of various factors on the sample treatment and reduction-oxidation processes has been examined. The precision of the method as indicated by the standard deviation of an individual observation is less than 0.01% for l gram uranium oxide

  12. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  13. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    International Nuclear Information System (INIS)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn; Arnold, Thuro; Scheinost, Andreas C.

    2017-01-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  14. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  15. Are Polyatomic Interferences, Cross Contamination, Mixing-Effect, etc., Obstacles for the Use of Laser Ablation-ICP-MS Coupling as an Operational Technique for Uranium Isotope Ratio Particle Analysis?

    International Nuclear Information System (INIS)

    Donard, A.; Pointurier, F.; Pecheyran, C.

    2015-01-01

    Analysis of ''environmental samples'', which consists in dust collected with cotton clothes wiped by inspectors on surfaces inside declared nuclear facilities, is a key tool for safeguards. Although two methods (fission tracks-TIMS and SIMS) are already used routinely to determine the isotopic composition of uranium particles, the laser ablationinductively coupled plasma mass spectrometry (LA-ICP-MS) coupling has been proven to be an interesting option thanks to its rapidity, high sensitivity and high signal/noise ratio. At CEA and UPPA, feasibility of particle analysis using a nanosecond LA device and a quadrupole ICP-MS has been demonstrated. However, despite the obvious potential of LA-ICP-MS for particle analysis, the effect of many phenomena which may bias isotope ratio measurements or lead to false detections must be investigated. Actually, environmental samples contain many types of non-uranium particles (organic debris, iron oxides, etc.) that can form molecular interferences and induce the risk of isotopic measurement bias, especially for minor isotopes (234U, 236U). The influence of these polyatomic interferences on the measurements will be discussed. Moreover, different uranium isotopic compositions can be found in the same sample. Therefore, risks of memory effect and of particle-toparticle cross-contamination by the deposition of ablation debris around the crater have also been investigated. This study has been conducted by using a femtosecond laser ablation device coupled to a high sensitivity sector field ICP-MS. Particles were fixed onto the discs with collodion and were located thanks to their fission tracks so that micrometric particles can be analyzed separately. All uranium isotope ratios were measured. Results are compared with the ones obtained with the fission tracks-TIMS technique on other deposition discs from the same sample. Performance of the method in terms of accuracy, precision, and detection limits are estimated

  16. Indirect determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame

    International Nuclear Information System (INIS)

    Alder, J.F.; Das, B.C.

    1977-01-01

    An indirect method has been developed for the determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame. Use is made of the reduction of copper(II) by uranium(IV) followed by complex formation of the copper(I) ions so produced with neocuproine (2,9-dimethyl-1,10-phenanthroline) and finally the determination of copper in this complex by atomic-absorption spectrophotometry. The results show that the method can be recommended, provided that care is taken to ensure the complete reduction of uranium(VI) to uranium(IV). The sensitivity of the method is 4.9 μg of uranium and the upper limit 500 μg without dilution. (author)

  17. Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2002-01-01

    The redox flow battery using uranium as the negative and the positive active materials in polar aprotic solvents was proposed. In order to establish the guiding principle for the uranium compounds as the active materials, the investigation of uranium β-diketonate complexes was conducted on (i) the solubility of active materials, (ii) the electrode reaction of U(VI) and U(IV) β-diketonate complexes and (iii) the estimation of the open circuit voltage of the battery. The solubilities of higher than 0.8 mol dm -3 of U(VI) complexes and higher than 0.4 mol dm -3 of a U(IV) complex were obtained in the solvents. The electrode reactions of U(pta) 4 , UO 2 (dpm) 2 , UO 2 (fod) 2 and UO 2 (pta) 2 were first studied and the redox potentials of uranium β-diketonates were thermodynamically discussed. The open circuit voltage is estimated more than 1 V by using Hacac or Hdpm. The larger open circuit voltage is expected when a ligand with the larger basicity is used

  18. Depleted uranium hexafluoride: Waste or resource?

    Energy Technology Data Exchange (ETDEWEB)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

    1995-07-01

    the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

  19. RL-1: a certified uranium reference ore

    International Nuclear Information System (INIS)

    Steger, H.F.; Bowman, W.S.

    1985-06-01

    A 145-kg sample of a uranium ore from Rabbit Lake, Saskatchewan, has been prepared as a compositional reference material. RL-1 was ground to minus 74 μm and mixed in one lot. Approximately one half of this ore was bottled in 100-g units, the remainder being stored in bulk. The homogeneity of RL-1 with respect to uranium and nickel was confirmed by neutron activation and X-ray fluorescence analytical techniques. In a 'free choice' analytical program, 13 laboratories contributed results for one or more of uranium, nickel and arsenic in one bottle of RL-1. Based on a statistical analysis of the data, the following recommended values were assigned: U, 0.201%; Ni, 185 μg/g; and As, 19.6 μg/g

  20. Experience with thermal recycle of plutonium and uranium

    International Nuclear Information System (INIS)

    Beer, O.; Schlosser, G.; Spielvogel, F.

    1985-01-01

    The Federal Republic of Germany (FRG) decided to close the fuel cycle by erecting the reprocessing plant WA350 at Wackersdorf. As long as the plutonium supply from reprocessing plants exceeds the plutonium demand of fast breeder reactors, recycling of plutonium in LWR's is a convenient solution by which a significant advanced uranium utilization is achieved. The demonstration of plutonium recycling performed to date in the FRG in BWR's and PWR's shows that thermal plutonium recycling on an industrial scale is feasible and that the usual levels of reliability and safety can be achieved in reactor operation. The recycling of reprocessed uranium is presently demonstrated in the FRG, too. As regards fuel cycle economy thermal recycling allows savings in natural uranium and separative work. Already under present cost conditions the fuel cycle costs for mixed oxide or enriched reprocessed uranium fuel assemblies are equal or even lower than for usual uranium fuel assemblies