WorldWideScience

Sample records for uptake kinetics interactions

  1. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  2. Modeling uptake kinetics of cadmium by field-grown lettuce

    International Nuclear Information System (INIS)

    Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick

    2008-01-01

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions

  3. Uptake kinetics of arsenic by lettuce cultivars under hydroponics ...

    African Journals Online (AJOL)

    Arsenic (As) uptake ability based on kinetic parameters by two lettuce cultivars; Sijibaiye (SJBY) and Texuanyanlingsun (TXYLS) was investigated in nutrient solution containing eight levels of arsenic (As). Depletion of As from solution was monitored over a period of 24 h at regular time to estimate As uptake kinetics of the ...

  4. Kinetic parameters of silicon uptake by rice cultivars

    Directory of Open Access Journals (Sweden)

    Priscila Oliveira Martins

    2012-02-01

    Full Text Available Silicon is considered an important chemical element for rice, because it can improve tolerance to biotic and abiotic stress. However, in many situations no positive effect of silicon was observed, probably due to genetic factors. The objective of this research was to monitor Si uptake kinetics and identify responses of rice cultivars in terms of Si uptake capacity and use. The experiment was carried out in a greenhouse of the São Paulo State University (UNESP, Brazil. The experiment was arranged in a completely randomized, factorial design with three replications. that consisted of two rice cultivars and two Si levels. Kinetic parameters (Vmax, Km, and Cmin, root morphology variables, dry matter yield, Si accumulation and levels in shoots and roots, uptake efficiency, utilization efficiency, and root/shoot ratio were evaluated. Higher Si concentrations in the nutrient solution did not increase rice dry matter. The development of the low-affinity silicon uptake system of the rice cultivar 'Caiapó' was better than of 'Maravilha'.

  5. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Interactive Influence of N and P on their uptake by four different ...

    African Journals Online (AJOL)

    The uptake kinetics of nitrogen (N) and phosphorus (P) by hydrophytes can be influenced by the interaction between N and P. In this study, Pistia stratiotes (a floating plant), Eichhornia crassipes (a floating plant), Vallisneria spiralis (a submerged plant), and Cyperus papyrus (an emergent plant) were selected to measure ...

  7. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    Science.gov (United States)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  8. Kinetic Uptake Studies of Powdered Materials in Solution

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mohamed

    2015-06-01

    Full Text Available Challenges exist for the study of time dependent sorption processes for heterogeneous systems, especially in the case of dispersed nanomaterials in solvents or solutions because they are not well suited to conventional batch kinetic experiments. In this study, a comparison of batch versus a one-pot setup in two variable configurations was evaluated for the study of uptake kinetics in heterogeneous (solid/solution systems: (i conventional batch method; (ii one-pot system with dispersed adsorbent in solution with a semi-permeable barrier (filter paper or dialysis tubing for in situ sampling; and (iii one-pot system with an adsorbent confined in a semi-permeable barrier (dialysis tubing or filter paper barrier with ex situ sampling. The sorbent systems evaluated herein include several cyclodextrin-based polyurethane materials with two types of phenolic dyes: p-nitrophenol and phenolphthalein. The one-pot kinetics method with in situ (Method ii or ex situ (Method iii sampling described herein offers significant advantages for the study of heterogeneous sorption kinetics of highly dispersed sorbent materials with particles sizes across a range of dimensions from the micron to nanometer scale. The method described herein will contribute positively to the development of advanced studies for heterogeneous sorption processes where an assessment of the relative uptake properties is required at different experimental conditions. The results of this study will be advantageous for the study of nanomaterials with significant benefits over batch kinetic studies for a wide range of heterogeneous sorption processes.

  9. Determination of kinetic parameters for 123-I thyroid uptake in healthy Japanese

    Science.gov (United States)

    Kusuhara, Hiroyuki; Maeda, Kazuya

    2017-09-01

    The purpose of this study was to compare the kinetic parameters for iodide thyroid accumulation in Japanese today with previously reported values. We determined the thyroid uptake of 123-I at 24 hours after the oral administration in healthy male Japanese without any diet restriction. The mean value was 16.1±5.4%, which was similar or rather lower than those previously reported in Japan (1958-1972). Kinetic model analysis was conducted to obtain the clearance for thyroid uptake from the blood circulation. The thyroid uptake clearance of 123-I was 0.540±0.073 ml/min, which was almost similar to those reported previously. There is no obvious difference in the thyroid uptake for 24 hours, and kinetic parameters in healthy Japanese for these 50 years. The fraction of distributed to the thyroid gland is lower than the ICRP reference man, and such difference must be taken into consideration to estimate the radiation exposure upon Fukushima accident in Japan.

  10. Muscular Oxygen Uptake Kinetics in Aged Adults.

    Science.gov (United States)

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.

    Science.gov (United States)

    Blechinger, Julia; Bauer, Alexander T; Torrano, Adriano A; Gorzelanny, Christian; Bräuchle, Christoph; Schneider, Stefan W

    2013-12-09

    In this study, it is shown that the cytotoxic response of cells as well as the uptake kinetics of nanoparticles (NPs) is cell type dependent. We use silica NPs with a diameter of 310 nm labeled with perylene dye and 304 nm unlabeled particles to evaluate cell type-dependent uptake and cytotoxicity on human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). Besides their size, the particles are characterized concerning homogeneity of the labeling and their zeta potential. The cellular uptake of the labeled NPs is quantified by imaging the cells via confocal microscopy in a time-dependent manner, with subsequent image analysis via a custom-made and freely available digital method, Particle_in_Cell-3D. We find that within the first 4 h of interaction, the uptake of silica NPs into the cytoplasm is up to 10 times more efficient in HUVEC than in HeLa cells. Interestingly, after 10 or 24 h of interaction, the number of intracellular particles for HeLa cells by far surpasses the one for HUVEC. Inhibitor studies show that these endothelial cells internalize 310 nm SiO₂ NPs via the clathrin-dependent pathway. Remarkably, the differences in the amount of taken up NPs are not directly reflected by the metabolic activity and membrane integrity of the individual cell types. Interaction with NPs leads to a concentration-dependent decrease in mitochondrial activity and an increase in membrane leakage for HUVEC, whereas HeLa cells show only a reduced mitochondrial activity and no membrane leakage. In addition, silica NPs lead to HUVEC cell death while HeLa cells survive. These findings indicate that HUVEC are more sensitive than HeLa cells upon silica NP exposure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Uptake kinetics of relatively insoluble particles by tracheobronchial lymph nodes

    International Nuclear Information System (INIS)

    Thomas, R.G.

    1976-01-01

    Tracheobronchial lymph nodes accumulate a portion of material deposited in the deep lung following inhalation of relatively insoluble particles. Experiments involving a variety of compounds, inhaled singly or repeatedly, indicate that the kinetics of lymph node uptake are fairly independent of particle characteristics and mammalian species. The buildup per unit weight of nodal tissue compared with that of lung tissue, with time, can be represented by a linear logarithmic function. However, since the scatter in experimental points may be large at any given time after inhalation exposure, a number of different kinetic descriptions of uptake can be derived. The logarithmic pattern of accumulation can be approximated over an extended time range (several years) by use of a combination of first-order kinetics of loss from the lung and of buildup in lymph nodes, but it is recognized that the processes are much more complicated than this treatment would indicate. Clearance (loss) from the lymph nodes is not well defined, but this aspect is discussed in light of the kinetic models presented

  13. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    International Nuclear Information System (INIS)

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of 14 C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for (≤1 hr)

  14. Uptake and elimination kinetics of heavy metals by earthworm ...

    African Journals Online (AJOL)

    Earthworm inoculation of petroleum hydrocarbon contaminated soil is thought to catalyze the bioremediation. Most bioremediation studies focus on the petroleum hydrocarbon content and not on the heavy metals. Here, the uptake kinetics of heavy metals by earthworm in used engine oil contaminated soil was investigated.

  15. Spatiotemporal variation of nitrate uptake kinetics within the maize (Zea mays L.) root system is associated with greater nitrate uptake and interactions with architectural phenes.

    Science.gov (United States)

    York, Larry M; Silberbush, Moshe; Lynch, Jonathan P

    2016-06-01

    Increasing maize nitrogen acquisition efficiency is a major goal for the 21st century. Nitrate uptake kinetics (NUK) are defined by I max and K m, which denote the maximum uptake rate and the affinity of transporters, respectively. Because NUK have been studied predominantly at the molecular and whole-root system levels, little is known about the functional importance of NUK variation within root systems. A novel method was created to measure NUK of root segments that demonstrated variation in NUK among root classes (seminal, lateral, crown, and brace). I max varied among root class, plant age, and nitrate deprivation combinations, but was most affected by plant age, which increased I max, and nitrate deprivation time, which decreased I max K m was greatest for crown roots. The functional-structural simulation SimRoot was used for sensitivity analysis of plant growth to root segment I max and K m, as well as to test interactions of I max with root system architectural phenes. Simulated plant growth was more sensitive to I max than K m, and reached an asymptote near the maximum I max observed in the empirical studies. Increasing the I max of lateral roots had the largest effect on shoot growth. Additive effects of I max and architectural phenes on nitrate uptake were observed. Empirically, only lateral root tips aged 20 d operated at the maximum I max, and simulations demonstrated that increasing all seminal and lateral classes to this maximum rate could increase plant growth by as much as 26%. Therefore, optimizing I max for all maize root classes merits attention as a promising breeding goal. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on-kinetics

    DEFF Research Database (Denmark)

    Jones, Andrew M; Krustrup, Peter; Wilkerson, Daryl P

    2012-01-01

    Key points Following the start of low-intensity exercise in healthy humans, it has been established that the kinetics of muscle O(2) delivery is faster than, and does not limit, the kinetics of muscle O(2) uptake. Direct data are lacking, however, on the question of whether O(2) delivery might...... limit O(2) uptake kinetics during high-intensity exercise. In this study, we made frequent measurements of muscle blood flow, arterial-to-venous O(2) difference (a- difference) and O(2) uptake following the onset of multiple transitions of both low-intensity and high-intensity knee-extension exercise...... in the same subjects. We show that although blood flow kinetics is slower for high-intensity compared with low-intensity exercise, this does not result in slower O(2) uptake kinetics. These results indicate that muscle O(2) delivery does not limit O(2) uptake during knee-extension exercise in healthy humans....

  17. Exertional oxygen uptake kinetics: a stamen of stamina?

    Science.gov (United States)

    Whipp, Brian J; Rossiter, H B; Ward, S A

    2002-04-01

    The fundamental pulmonary O(2) uptake (.VO(2)) response to moderate, constant-load exercise can be characterized as (d.VO(2)/dt)(tau)+Delta.VO(2) (t)=Delta.VO(2SS) where Delta.VO(2SS) is the steady-state response, and tau is the time constant, with the .VO(2) kinetics reflecting intramuscular O(2) uptake (.QO(2)) kinetics, to within 10%. The role of phosphocreatine (PCr) turnover in .QO(2) control can be explored using (31)P-MR spectroscopy, simultaneously with .VO(2). Although tau.VO(2) and tauPCr vary widely among subjects (approx. 20-65 s), they are not significantly different from each other, either at the on- or off-transient. A caveat to interpreting the "well-fit" exponential is that numerous units of similar Delta.VO(2SS) but with a wide tau distribution can also yield a .VO(2) response with an apparent single tau. This tau is, significantly, inversely correlated with lactate threshold and .VO(2max)(but is poorly predictive; a frail stamen, therefore), consistent with tau not characterizing a compartment with uniform kinetics. At higher intensities, the fundamental kinetics become supplemented with a slowly-developing phase, setting .VO(2)on a trajectory towards maximum .VO(2). This slow component is also demonstrable in Delta[PCr]: the decreased efficiency thereby reflecting a predominantly high phosphate-cost of force production rather than a high O(2)-cost of phosphate production. We also propose that the O(2)-deficit for the slow-component is more likely to reflect shifting Delta.VO(2SS) rather than a single one with a single tau.

  18. OXYGEN UPTAKE KINETICS IN SPORT, EXERCISE AND MEDICINE

    Directory of Open Access Journals (Sweden)

    David C. Poole

    2005-03-01

    Full Text Available The objective of the book is to discuss the principal determinants of oxygen uptake dynamics which is essential to developing exercise performance and improving quality of life for patients, especially those with cardio-respiratory diseases. A broad review of the current knowledge about this relatively less studied field is provided by this book. Incidentally, it updates the reader about how a person can use his/her aerobic energy system more effectively in order to fatigue gradually and be able to endure more physical activity. It also discusses the effects of exercise training in speeding up oxygen uptake kinetics, and the effects of ageing and a selection of conditions in slowing oxygen dynamics and declining exercise capacity.

  19. [Kinetics of uptake of phosphates and nitrates by marine multicellular algae Gelidium latifolium (Grev.) Born. et Thur].

    Science.gov (United States)

    Silkin, V A; Chubchikova, I N

    2007-01-01

    We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.

  20. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    International Nuclear Information System (INIS)

    Dang Fei; Zhong Huan; Wang Wenxiong

    2009-01-01

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg -1 day -1 . The efflux rate constant was 0.091 day -1 following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 μg Cu L -1 for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  1. Land use/land cover and scale influences on in-stream nitrogen uptake kinetics

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; McNamara, Rebecca

    2012-06-01

    Land use/land cover change often leads to increased nutrient loading to streams; however, its influence on stream ecosystem nutrient transport remains poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development gradients. We performed 17 nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen uptake kinetics and retention dynamics across stream sizes (first to fourth order) and along a watershed development gradient. We observed that stream nitrogen (N) uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect. This fertilization affect was evident as increased ash-free dry mass, chlorophylla, and ambient and maximum uptake rates in developed as compared to undeveloped streams. Ash-free dry mass, chlorophylla, and the number of structures in a subwatershed were significantly correlated to nutrient spiraling and kinetic parameters, while ambient and average annual N concentrations were not. Additionally, increased maximum uptake capacities in developed streams contributed to low in-stream nutrient concentrations during the growing season, and helped maintain watershed export at low levels during base flow. Our results indicate that land use/land cover change can enhance in-stream uptake of limiting nutrients and highlight the need for improved understanding of the watershed dynamics that control nutrient export across scales and development intensities for mitigation and protection of aquatic ecosystems.

  2. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    Science.gov (United States)

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  3. Thallium and potassium uptake kinetics and competition differ between durum wheat and canola.

    Science.gov (United States)

    Renkema, Heidi; Koopmans, Amy; Hale, Beverley; Berkelaar, Edward

    2015-02-01

    Thallium (Tl) is very toxic to mammals but little is known about its accumulation by plants, and it would be useful if prediction of Tl accumulation could be done using potassium (K) accumulation models. The objectives of this study were to compare the uptake kinetics of Tl(+) and K(+), and to determine how readily K(+) can inhibit Tl(+) uptake. Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were grown hydroponically and exposed to 0-75 μM Tl or 0-250 μM K for up to 150 min (kinetics experiment), or to 0.1 or 10 μM Tl with Tl to K ratios of 1:1 to 1:10,000 for up to 300 min (competition experiment). The rate of uptake of Tl(+) by canola was about three to five times faster than by wheat, while the rate of Tl(+) uptake in wheat was the same as the rate of K(+) uptake by either species. Uptake of Tl(+) was more readily suppressed by K(+) in wheat than in canola. When exposed to 0.1 uM Tl for 300 min with 100 or 1,000 uM K(+), Tl(+) uptake by wheat was reduced by 20 % and 50 %, respectively, while Tl(+) uptake by canola was not reduced. Our results suggest that predicting Tl accumulation using a K accumulation model with a correction factor may be possible for canola, but would be much more difficult for wheat, since uptake of Tl(+) is very sensitive to levels of K(.)

  4. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?

    Directory of Open Access Journals (Sweden)

    McKee Karen L

    2010-02-01

    Full Text Available Abstract Background Cattail (Typha domingensis has been spreading in phosphorus (P enriched areas of the oligotrophic Florida Everglades at the expense of sawgrass (Cladium mariscus spp. jamaicense. Abundant evidence in the literature explains how the opportunistic features of Typha might lead to a complete dominance in P-enriched areas. Less clear is how Typha can grow and acquire P at extremely low P levels, which prevail in the unimpacted areas of the Everglades. Results Apparent P uptake kinetics were measured for intact plants of Cladium and Typha acclimated to low and high P at two levels of oxygen in hydroponic culture. The saturated rate of P uptake was higher in Typha than in Cladium and higher in low-P acclimated plants than in high-P acclimated plants. The affinity for P uptake was two-fold higher in Typha than in Cladium, and two- to three-fold higher for low-P acclimated plants compared to high-P acclimated plants. As Cladium had a greater proportion of its biomass allocated to roots, the overall uptake capacity of the two species at high P did not differ. At low P availability, Typha increased biomass allocation to roots more than Cladium. Both species also adjusted their P uptake kinetics, but Typha more so than Cladium. The adjustment of the P uptake system and increased biomass allocation to roots resulted in a five-fold higher uptake per plant for Cladium and a ten-fold higher uptake for Typha. Conclusions Both Cladium and Typha adjust P uptake kinetics in relation to plant demand when P availability is high. When P concentrations are low, however, Typha adjusts P uptake kinetics and also increases allocation to roots more so than Cladium, thereby improving both efficiency and capacity of P uptake. Cladium has less need to adjust P uptake kinetics because it is already efficient at acquiring P from peat soils (e.g., through secretion of phosphatases, symbiosis with arbuscular mycorrhizal fungi, nutrient conservation growth

  5. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei; Zhong Huan [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2009-09-14

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg{sup -1} day{sup -1}. The efflux rate constant was 0.091 day{sup -1} following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 {mu}g Cu L{sup -1} for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  6. In-stream nutrient uptake kinetics along stream size and development gradients in a rapidly developing mountain resort watershed

    Science.gov (United States)

    Covino, T.; McGlynn, B.; McNamarra, R.; Gardner, K.

    2012-04-01

    Land use / land cover (LULC) change including mountain resort development often lead to increased nutrient loading to streams, however the potential influence on stream ecosystem nutrient uptake kinetics and transport remain poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development intensities. We performed seventeen nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen (N) uptake kinetics and retention dynamics across stream sizes (1st to 4th order) and along a mountain resort development gradient. We observed that stream N uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect, however, none of the streams exhibited saturation with respect to N. Additionally, we observed that elevated loading led to increased biomass and retentive capacities in developed streams that helped maintain export at low levels during baseflow. Our results indicate that LULC can enhance in-stream uptake of limiting nutrients and highlight the value of characterizing uptake kinetic curves from ambient to saturation.

  7. Gymnasium-based unsupervised exercise maintains benefits in oxygen uptake kinetics obtained following supervised training in type 2 diabetes.

    Science.gov (United States)

    Macananey, Oscar; O'Shea, Donal; Warmington, Stuart A; Green, Simon; Egaña, Mikel

    2012-08-01

    Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (V(T)), 80% V(T), and mid-point between V(T) and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.

  8. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    Science.gov (United States)

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Continuous ammonium enrichment of a woodland stream: uptake kinetics, leaf decomposition, and nitrification

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; Schulze, M S; Stark, R W; Barmeier, J C

    1983-01-01

    In order to test for nitrogen limitation and examine ammonium uptake by stream sediments, ammonium hydroxide was added continuously at concentrations averaging 100 /sup +/gl/sup -1/ for 70 days to a second-order reach of Walker Branch, an undisturbed woodland stream in Tennessee. Ammonium uptake during the first 4 h of addition corresponded to adsorption kinetics rather than to first-order uptake or to Michaelis-Menten kinetics. However, the calculated adsorption partition coefficient was two to four orders of magnitude greater than values reported for physical adsorption of ammonium, suggesting that the uptake was largely biotic. Mass balance indicated that the uptake of ammonium from the water could be accounted for by increased nitrogen content in benthic organic detritus. Nitrification, inferred from longitudinal gradients in NO/sub 3/, began soon after enrichment and increased dramatically near the end of the experiment. Both ammonium and nitrate concentrations dropped quickly to near background levels when input ceased, indicating little desorption or nitrification of excess nitrogen stored in the reach. There was no evidence of nitrogen limitation as measured by weight loss, oxygen consumption, phosphorus content, and macroinvertebrate density of red oak leaf packs, or by chlorophyll content and aufwuchs biomass on plexiglass slides. A continuous phosphorus enrichment 1 year earlier had demonstrated phosphorus limitation in Walker Branch. 38 references, 6 figures, 3 tables.

  10. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Nahmani, Johanne, E-mail: nahmani@univ-metz.f [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, CNRS UMR 7146, Universite Paul Verlaine - Metz, Rue du General Delestraint, 57070 Metz (France); Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom); Hodson, Mark E. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom); Devin, Simon [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, CNRS UMR 7146, Universite Paul Verlaine - Metz, Rue du General Delestraint, 57070 Metz (France); Vijver, Martina G. [Leiden University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden (Netherlands)

    2009-10-15

    It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7, 14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another. - Earthworm metal uptake and elimination constants derived from a one-compartment model show little systematic variation with soil properties.

  11. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent 99mTc-Duramycin

    International Nuclear Information System (INIS)

    Audi, Said; Li Zhixin; Capacete, Joseph; Liu Yu; Fang, Wei; Shu, Laura G.; Zhao Ming

    2012-01-01

    Introduction: 99m Tc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99m Tc-Duramycin and the target tissue. Methods: High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague–Dawley rats. Target binding and biodistribution of 99m Tc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99m Tc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99m Tc-Duramycin in normal and ischemic myocardial tissue. Results: 99m Tc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99m Tc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99m Tc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. Conclusion: 99m Tc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99m Tc-Duramycin as a novel PE-binding agent.

  12. A unified approach to model uptake kinetics of trace elements in complex aqueous – solid solution systems

    International Nuclear Information System (INIS)

    Thien, Bruno M.J.; Kulik, Dmitrii A.; Curti, Enzo

    2014-01-01

    Highlights: • There are several models able to describe trace element partitioning in growing minerals. • To describe complex systems, those models must be embedded in a geochemical code. • We merged two models into a unified one suitable for implementation in a geochemical code. • This unified model was tested against coprecipitation experimental data. • We explored how our model reacts to solution depletion effects. - Abstract: Thermodynamics alone is usually not sufficient to predict growth-rate dependencies of trace element partitioning into host mineral solid solutions. In this contribution, two uptake kinetic models were analyzed that are promising in terms of mechanistic understanding and potential for implementation in geochemical modelling codes. The growth Surface Entrapment Model (Watson, 2004) and the Surface Reaction Kinetic Model (DePaolo, 2011) were shown to be complementary, and under certain assumptions merged into a single analytical expression. This Unified Uptake Kinetics Model was implemented in GEMS3K and GEM-Selektor codes ( (http://gems.web.psi.ch)), a Gibbs energy minimization package for geochemical modelling. This implementation extends the applicability of the unified uptake kinetics model to accounting for non-trivial factors influencing the trace element partitioning into solid solutions, such as the changes in aqueous solution composition and speciation, or the depletion effects in closed geochemical systems

  13. Stoichiometry and kinetics of single and mixed substrate uptake in Aspergillus niger.

    Science.gov (United States)

    Lameiras, Francisca; Ras, Cor; Ten Pierick, Angela; Heijnen, Joseph J; van Gulik, Walter M

    2018-02-01

    In its natural environment, the filamentous fungus Aspergillus niger grows on decaying fruits and plant material, thereby enzymatically degrading the lignocellulosic constituents (lignin, cellulose, hemicellulose, and pectin) into a mixture of mono- and oligosaccharides. To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose, and galacturonic acid) and a mixture of these. Growth on these substrates was characterized in terms of biomass yields, oxygen/biomass ratios, and specific conversion rates. Interestingly, in combination, some of the carbon sources were consumed simultaneously and some sequentially. With a previously developed protocol, a sequential chemostat cultivation experiment was performed on a feed mixture of the six substrates. We found that the uptake of glucose, xylose, and mannose could be described with a Michaelis-Menten-type kinetics; however, these carbon sources seem to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid, and rhamnose appeared to be repressed by the presence of other substrates.

  14. Kinetics of zinc uptake and exchange by primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Pattison, S.E.; Cousins, R.J.

    1986-01-01

    The kinetics of 65 Zn 2+ uptake and exchange by hepatocytes in primary culture have been examined in detail to provide a basis for analyzing hormonal regulation of hepatic zinc metabolism. 65 Zn 2+ uptake was found to be a biphasic process. The slow phase represents an exchange between Zn 2+ in the medium and preexisting, intracellular zinc pools. This exchange rate was saturable with a medium zinc concentration of 9.5 microM eliciting one-half the maximum exchange rate and a maximum exchange rate of 9.9 pmol Zn 2+ . min-1 . mg protein-1 in the presence of bovine serum albumin. In the absence of albumin, a secondary, nonsaturable uptake rate was observed. The slow phase was relatively selective, and of the divalent transition metal ions tested, only Cd 2+ and Mn 2+ caused inhibition. The rate of exchange suggests total hepatocyte zinc has a turnover rate of approximately 30 h. The fast phase of 65 Zn 2+ reflects net Zn 2+ accumulation into a labile pool. The initial rates for this process were too fast to be measured accurately, but steady-state measurements allowed determination of the labile pool size. The pool dimensions saturated in the presence [Kapp = 28.6 microM; pool capacity = 0.44 nmol Zn 2+ /mg protein] and absence [Kapp = 11.8 microM; pool capacity = 0.34 nmol Zn 2+ /mg protein] of bovine serum albumin. Kinetics and equilibria of Zn 2+ uptake into the labile pool suggest that the latter acts as a source of Zn 2+ for the slow-exchange phase. Dexamethasone stimulated slow Zn 2+ exchange and also increased the labile pool size. The data suggest physiological factors alter hepatic zinc metabolism by influencing both intracellular Zn 2+ pools

  15. O2 uptake kinetics during exercise at peak O2 uptake.

    Science.gov (United States)

    Scheuermann, Barry W; Barstow, Thomas J

    2003-11-01

    Compared with moderate- and heavy-intensity exercise, the adjustment of O2 uptake (VO2) to exercise intensities that elicit peak VO2 has received relatively little attention. This study examined the VO2 response of 21 young, healthy subjects (25 +/- 6 yr; mean +/- SD) during cycle ergometer exercise to step transitions in work rate (WR) corresponding to 90, 100, and 110% of the peak WR achieved during a preliminary ramp protocol (15-30 W/min). Gas exchange was measured breath by breath and interpolated to 1-s values. VO2 kinetics were determined by use of a two- or three-component exponential model to isolate the time constant (tau2) as representative of VO2 kinetics and the amplitude (Amp) of the primary fast component independent of the appearance of any VO2 slow component. No difference in VO2 kinetics was observed between WRs (tau90 = 24.7 +/- 9.0; tau100 = 22.8 +/- 6.7; tau110 = 21.5 +/- 9.2 s, where subscripts denote percent of peak WR; P > 0.05); nor in a subgroup of eight subjects was tau2 different from the value for moderate-intensity (exercise (tau2 = 25 +/- 12 s, P > 0.05). As expected, the Amp increased with increasing WRs (Amp90 = 2,089 +/- 548; Amp100 = 2,165 +/- 517; Amp110 = 2,225 +/- 559 ml/min; Amp90 vs. Amp110, P exercise, the gain of the Vo2 response (as deltaVO2/DeltaWR) is reduced for exercise transitions in the severe-intensity domain, but the approach to this gain is well described by a common time constant that is invariant across work intensities. The lower deltaVO2/deltaWR may be due to an insufficient adjustment of the cardiovascular and/or pulmonary systems that determine O2 delivery to the exercising muscles or due to recruitment of motor units with lower oxidative capacity, after the onset of exercise in the severe-intensity domain.

  16. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  17. Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: Isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Renuka Gonte

    2016-09-01

    Full Text Available Hypercrosslinked styrene-maleic acid copolymer beads were used for the removal of metal ions from mimicked industrial effluents. The polymer was characterized by SEM which revealed the presence of a porous network. Carboxyl acid groups of the polymer were identified as active sites for metal uptake. Highly porous surface enhanced metal ion uptake was achieved through a physicochemical process. Equilibrium sorption of metal ions was best described by the Freundlich and Temkin model with R2 > 0.99. Adsorption followed pseudo first and pseudo second order reaction kinetics. Intraparticle diffusion model suggested a three step equilibrium. Desorption was a fast process with ∼90% in 60 min.

  18. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics

    Science.gov (United States)

    Stegemann, J.

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  19. Sphagnum mosses--masters of efficient N-uptake while avoiding intoxication.

    Science.gov (United States)

    Fritz, Christian; Lamers, Leon P M; Riaz, Muhammad; van den Berg, Leon J L; Elzenga, Theo J T M

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form ((15)N-ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5-6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.

  20. Sphagnum Mosses - Masters of Efficient N-Uptake while Avoiding Intoxication

    Science.gov (United States)

    Fritz, Christian; Lamers, Leon P. M.; Riaz, Muhammad; van den Berg, Leon J. L.; Elzenga, Theo J. T. M.

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form (15N - ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5–6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands

  1. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells

    Directory of Open Access Journals (Sweden)

    Camille C. Hanot

    2015-12-01

    Full Text Available Superparamagnetic iron-oxide nanoparticles (SPIONs show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells. We evaluated the effect of particle diameter (50 and 100 nm and polyethylene glycol (PEG chain length (2k, 5k and 20k Da on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and sulforhodamine B (SRB assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS. Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications.

  2. Kinetic analysis of zinc uptake and serosal transfer by vascularly perfused rat intestine

    International Nuclear Information System (INIS)

    Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.

    1987-01-01

    Transport kinetics were examined for uptake of 65 Zn from the lumen and for transport of mucosal 65 Zn subsequent to uptake in the isolated, vascularly perfused intestines of rats fed either a zinc-deficient or zinc-adequate diet. Zinc depletion influenced the intestinal transport of zinc by 1) stimulating a saturable uptake mechanisms, 2) reducing secretion of mucosal 65 Zn into the lumen, and 3) increasing the rate of 65 Zn turnover in a rapidly absorbed mucosal zinc compartment. Uptake of 65 Zn involved both saturable and nonsaturable processes. The saturable process was stimulated by zinc depletion with the apparent maximal transport rate for the saturable mechanism increasing from 60 to 180 nmol Zn x g -1 x 30 min -1 . Most of the 65 Zn taken up was not involved in the short-term secretion or absorption, and mucosal 65 Zn retention was independent of dietary zinc status. Absorption of mucosal 65 Zn was nonsaturable, involved a rapid exchanging zinc compartment, and was stimulated by zinc depletion. The half-life for 65 Zn in this mucosal zinc compartment was ∼ 24 min in the zinc-adequate group and 13 min in the zinc-depleted group

  3. Endocytosis of the major yolk proteins of the silkmoth, Hyalophora cecropia: Uptake kinetics and interactions

    International Nuclear Information System (INIS)

    Kulakosky, P.C.

    1989-01-01

    The oocytes of Lepidopteran insects take up several yolk proteins in defined proportions even though their relative availability in the hemolymph changes during the several days required to complete yolk formation in all the eggs. There are three hemolymph yolk precursors, vitellogenin, microvitellogenin and lipophorin; one precursor, paravitellogenin is produced in the ovary. The control mechanism for their proportional endocytosis is not known. In this thesis, the author describe the purification of all four proteins and the radiolabeling of the hemolymph precursors. The radiolabeled proteins were tested with an in vitro incubation system to assess the biological activity of the proteins and the reliability of the incubation methods. All of the labeled probes were transferred from the incubation medium to yolk spheres within the oocyte in a saturable, energy-dependent, and stage-specific manner. The rates of uptake were similar to the estimated rates of uptake in situ. The concentration dependence of in vitro uptake was investigated and found to be consistent with in situ concentrations and the composition of yolk in mature eggs. Two precursors, vitellogenin and lipophorin, competed for uptake indicating that they share a common binding site while the third, microvitellin, did not compete with the others. Though vitellogenin and lipophorin competed for uptake, only vitellogenin displayed the unique ability to increase the uptake rate of microvitellin and fluid in vitro

  4. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    Science.gov (United States)

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  5. Application of Elovich equation on uptake kinetics of 137Cs by living freshwater macrophytes - a short duration laboratory study

    International Nuclear Information System (INIS)

    Jaison, T.J.; Patra, A.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Application of Elovich equation on uptake kinetics of 137 Cs by two living macrophytes during controlled experiments on short duration exposure is studied. Compliance to 2 nd order kinetics indicates the mechanism could be chemi-sorption, involving polar functional groups present on the extracelluar surface of the macrophytes. Data analysis suggests that Myriophyllum s. exhibits faster adsorption rate than Hydrilla v. As Myriophyllum s. exhibits better kinetics than Hydrilla v., former could be a better natural adsorbing media for 137 Cs. (author)

  6. Comparative kinetic analysis of89 Sr,60 Co and65 Zn Uptake by human bone powder

    International Nuclear Information System (INIS)

    Abdel-Fatah, A.T.A.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder samples were prepared from recent femurs. The Bone particles range between 30 and 40 MU in diameter. One portion of this powder was prepared fat-free (FFB), the second portion as protein-free (PFB) and the last portion was left as raw bone powder-(RB). The sequence of uptake of 89 Sr by these types of bone powder is : FFB > RB > PFB, while that of 60 Co and 65 Zn is: PFB > FFB > RB. Kinetic analysis of the uptake curves of the 3 isotopes indicated that these processes proceed in 3 distinct steps; very fast initial, moderate intermediate and slow last step. The obtained rates of uptake indicated that : (1) the uptake by PEB is faster in its third step than the other types, (2) the most predominant step in case of 89 Sr and 60 Co is the third step (ion exchange step) while in case of 65 Zn it is the first step (physical adsorption), (3) defatenisation or deproteinisation, in general, inhances the uptake process

  7. Kinetics of radiolabelled silver uptake and depuration in the gills of rainbow trout (Oncorhynchus mykiss) and European eel (Anguilla anguilla)

    DEFF Research Database (Denmark)

    Wood, C.M.; Grosell, M.; Hogstrand, C.

    2002-01-01

    We examined the influence of speciation on the kinetics of silver uptake and deputation in the gills of two freshwater fish, the rainbow trout (Oncorhynchus mykiss) which has high branchial Na+ and Cl- uptake rates and is relatively sensitive to silver, and the European eel (Anguilla anguilla...... labile than from Ag+ exposures, with 1.6-1.8-fold greater loss rates during the fast phases in both species. Differences in branchial silver uptake between eel and trout correlate well with differences in acute toxicity, but are not as large as differences in ion uptake rates. The complex time...

  8. Root-exuded acid phosphatase and 32Pi-uptake kinetics of wheat, rye and triticale under phosphorus starvation

    International Nuclear Information System (INIS)

    Pandey, Renu

    2006-01-01

    A nutrient culture experiment was conducted with cereal species viz., wheat (Triticum aestivum L.) cv. PBW-343), rye (Secale cereale L cv. R-308) and triticale (Triticale octoploide L. cv. DT-46), a hybrid of wheat and rye, to examine the genetic variation in root-exuded acid phosphatase (ACPase) activity and kinetics of 32 Pi-uptake under P deficient condition. The ACPase activity was assayed in the extract (intra-) and on surface (extra-cellular) or root, using p-nitrophenyl phosphate as substrate. Significantly higher ACPase activity was observed in wheat followed by rye and triticale both on the root surface and in root extract. In general, root surface ACPase activity was 2.2-fold higher than that in root extract. A strong correlation (r 2 = 0.87**) between extra and intra-cellular ACPase activity was observed. In terms of kinetic parameters, it was observed that 32 Pi uptake and I max values were significantly higher in rye while C min and K m were lowest compared to wheat and triticale. The dry weights of shoot, root and total plant were significantly higher in rye compared to wheat and triticale. Rye also had higher amount of total plant P content The superiority of rye over wheat and triticale in P uptake was observed mainly due to efficient Pi-uptake system, which needs further studies to ascertain the enhancement of Pi-induced high-affinity P transporter in these cereals. (author)

  9. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Andersen, Frede Østergaard; Jensen, Henning S.

    2016-01-01

    Phosphate (Pi) uptake kinetics were determined in shoot and root tissues for four freshwater macrophyte species, Littorella uniflora, Potamogeton perfoliatus, Myriophyllum alterniflorum and Elodea canadensis, using a radioactive 33P phosphate technique. Collection of plant material in the oligotr...

  10. Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells

    International Nuclear Information System (INIS)

    Guarnieri, Daniela; Guaccio, Angela; Fusco, Sabato; Netti, Paolo A.

    2011-01-01

    The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50–60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.

  11. A Study of Corrective Feedback and Learner's Uptake in Classroom Interactions

    Directory of Open Access Journals (Sweden)

    Fatemeh Esmaeili

    2014-07-01

    Full Text Available The present study aims to examine corrective feedback and learner uptake in classroom interactions. Inspired by Lyster and Ranta’s corrective feedback framework (1997, this study intends to describe and analyze the patterns of corrective feedback utilized by Iranian teachers, and learners' uptake and the repair of those errors. To this aim, 400 minutes of classroom interaction from three elementary EFL classes which comprised 29 EFL learners were audiotaped and transcribed. The learners were within age range of 16-29 and were native speakers of Turkish language. The teachers were within 26-31 age range and had 3-4 years experience of teaching and hold MA degree in TOEFL. Analysis of data constituted the frequency of six different feedback types used by three teachers, in addition distribution of learners' uptake following each feedback type. The findings indicated that among six corrective feedback types, recast was the most frequent feedback utilized by teachers although it did not lead to high amount of learner uptake. Metalinguistic feedback, elicitation and clarification request led to higher level of uptake. It was also found that explicit feedback was more effective than implicit feedback in promoting learner uptake.

  12. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    OpenAIRE

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ? 7 years) were compared to 25 healthy age- and gender-matched cont...

  13. Physiological background of the change point in VO2 and the slow component of oxygen uptake kinetics.

    Science.gov (United States)

    Zoładź, J A; Korzeniewski, B

    2001-06-01

    It is generally believed that oxygen uptake during incremental exercise--until VO2max, increases linearly with power output (see eg. Astrand & Rodahl, 1986). On the other hand, it is well established that the oxygen uptake reaches a steady state only during a low power output exercise, but during a high power output exercise, performed above the lactate threshold (LT), the oxygen uptake shows a continuous increase until the end of the exercise. This effect has been called the slow component of VO2 kinetics (Whipp & Wasserman, 1972). The presence of a slow component in VO2 kinetics implies that during an incremental exercise test, after the LT has been exceeded, the VO2 to power output relationship has to become curvilinear. Indeed, it has recently been shown that during the incremental exercise, the exceeding of the power output, at which blood lactate begins to accumulate (LT), causes a non-proportional increase in VO2 (Zoladz et al. 1995) which indicates a drop in muscle mechanical efficiency. The power output at which VO2 starts to rise non-proportionally to the power output has been called "the change point in VO2" (Zoladz et al. 1998). In this paper, the significance of the factors most likely involved in the physiological mechanism responsible for the change point in oxygen uptake (CP-VO2) and for the slow component of VO2 kinetics, including: increase of activation of additional muscle groups, intensification of the respiratory muscle activity, recruitment of type II muscle fibres, increase of muscle temperature, increase of the basal metabolic rate, lactate and hydrogen ion accumulation, proton leak through the inner mitochondrial membrane, slipping of the ATP synthase and a decrease in the cytosolic phosphorylation potential, are discussed. Finally, an original own model describing the sequence of events leading to the non-proportional increase of oxygen cost of work at a high exercise intensity is presented.

  14. Non-invasive differentiation of pancreatic lesions: is analysis of FDG kinetics superior to semiquantitative uptake value analysis?

    International Nuclear Information System (INIS)

    Nitzsche, E.U.; Hoegerle, S.; Mix, M.; Brink, I.; Otte, A.; Moser, E.

    2002-01-01

    The diagnostic utility of fluorine-18 2-deoxy-D-glucose positron emission tomography (FDG PET) for the non-invasive differentiation of focal pancreatic lesions originating from cancer or chronic pancreatitis by combined visual image interpretation and semiquantitative uptake value analysis has been documented. However, in clinical routine some misdiagnosis is still observed. This is because there is potential overlap between the semiquantitative uptake values obtained for active inflammatory lesions and cancer. Therefore, this prospective study was undertaken to test the hypothesis that analysis of dynamic kinetics of focal pancreatic lesions based on FDG PET may more accurately determine the benign or malignant nature of such lesions. Thirty patients (56±17 years) were studied dynamically with FDG PET for a period of 60-90 min. Patients were assigned to one of four groups: control, acute pancreatitis, chronic pancreatitis or pancreatic cancer. Two observers, blinded to the clinical data, analysed the time-activity curves of FDG kinetics based on region of interest analysis. The diagnosis predicted by FDG PET was compared with the result of histological examination of the surgical specimen. Analysis of FDG kinetics revealed significant differences in the shape of the time-activity curve for controls, pancreatic cancer and inflammatory disease. Surprisingly, there was no significant difference in the time-activity curve shape for chronic pancreatitis and acute pancreatitis; this is, however, not a clinical issue. Furthermore, acquisition time (60 min vs 90 min) did not affect interpretation of the time-activity curve, so that scanning time may be regularly shortened to 60 min. Interobserver agreement was 1. Based on these findings, non-invasive differentiation between pancreatic cancer and chronic pancreatitis was correctly predicted in all cases, as confirmed by histology. In addition, the specificity was increased compared with that obtained from standardised

  15. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jason P; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Giansiracusa, Jeffrey H [Department of Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford, OX1 3LB (United Kingdom)], E-mail: hollanj3@mskcc.org, E-mail: jasonpholland@gmail.com

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [{sup 60/62/64}Cu(II)ATSM] and [{sup 60/62/64}Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO{sub 2}-dependent in vitro cellular uptake and retention of [{sup 64}Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k{sub 1} = 9.8 {+-} 0.59 x 10{sup -4} s{sup -1} and k{sub 2} = 2.9 {+-} 0.17 x 10{sup -3} s{sup -1}), intracellular reduction (k{sub 3} = 5.2 {+-} 0.31 x 10{sup -2} s{sup -1}), reoxidation (k{sub 4} = 2.2 {+-} 0.13 mol{sup -1} dm{sup 3} s{sup -1}) and proton-mediated ligand dissociation (k{sub 5} = 9.0 {+-} 0.54 x 10{sup -5} s{sup -1}). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have

  16. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    Science.gov (United States)

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  17. Influence of oxygen uptake kinetics on physical performance in youth soccer.

    Science.gov (United States)

    Doncaster, Greg; Marwood, Simon; Iga, John; Unnithan, Viswanath

    2016-09-01

    To examine the relationship between oxygen uptake kinetics (VO2 kinetics) and physical measures associated with soccer match play, within a group of highly trained youth soccer players. Seventeen highly trained youth soccer players (age: 13.3 ± 0.4 year, self-assessed Tanner stage: 3 ± 1) volunteered for the study. Players initially completed an incremental treadmill protocol to exhaustion, to establish gaseous exchange threshold (GET) and VO2max (59.1 ± 5.4 mL kg(-1) min(-1)). On subsequent visits, players completed a step transition protocol from rest-moderate-intensity exercise, followed by an immediate transition, and from moderate- to severe-intensity exercise (moderate: 95 % GET, severe: 60 %∆), during which VO2 kinetics were determined. Physical soccer-based performance was assessed using a maximal Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) and via GPS-derived measures of physical soccer performance during soccer match play, three 2 × 20 min, 11 v 11 matches, to gain measures of physical performance during soccer match play. Partial correlations revealed significant inverse relationships between the unloaded-to-moderate transition time constant (tau) and: Yo-Yo IR1 performance (r = -0.58, P = 0.02) and GPS variables [total distance (TD): r = -0.64, P = 0.007, high-speed running (HSR): r = -0.64, P = 0.008 and high-speed running efforts (HSReff): r = -0.66, P = 0.005]. Measures of VO2 kinetics are related to physical measures associated with soccer match play and could potentially be used to distinguish between those of superior physical performance, within a group of highly trained youth soccer players.

  18. Depuration and uptake kinetics of I, CS, MN, ZN and CD by the earthworm (lumbricus terrestris) in radiotracer-spiked litter

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.; Cornwell, T.C.

    1997-01-01

    The relative depuration and uptake kinetics of contaminants should be known to interpret appropriately the use of organisms such as earthworms in environmental bioassays and monitoring. For example, 14-d earthworm bioassays should be interpreted with the knowledge that some contaminants will continue to accumulate in tissues for months. The radiotracers 125 I, 134 Cs, 54 Mn, 65 Zn, and 109 Cd were applied to deciduous litter and specimens of Lumbricus terrestris were exposed, either to litter alone or to litter on the top of soil columns. Depuration was monitored for 120 d and uptake, in a separate experiment, for 20 d. Both depuration and uptake were described using two-phase, first-order statistical models. Gut clearance had a mean half-time of 1.4 d. The mean half-time for physiological depuration decreased from I (210 d) > Cd (150 d) > Zn (69 d) > Mn (40 d) > Cs (24 d). Both the deputation and the uptake experiments were necessary to resolve even partially the multiphase processes. Earthworm/soil dry weight concentration ratios decreased from Cd > Zn > I ≥ Cs ≥ Mn. The very slow kinetics indicate that tissue concentrations will increase continuously for a long time, with important implications for subsequent food-chain transfers. (author)

  19. Quantification of protein interaction kinetics in a micro droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L. L. [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wang, S. P., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, S. T. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  20. THE KINETICS OF NH(4)+ AND NO3(-) UPTAKE BY DOUGLAS-FIR FROM SINGLE N-SOLUTIONS AND FROM SOLUTIONS CONTAINING BOTH NH(4)+ AND NO3(-)

    NARCIS (Netherlands)

    KAMMINGAVANWIJK, C; PRINS, HBA

    The kinetics of NH4+ and NO3- uptake in young Douglas fir trees (Pseudotsuga menziesii [Mirb.] Franco) were studied in solutions, containing either one or both N species. Using solutions containing a single N species, the V(max) of NH4+ uptake was higher than that of NO3- uptake. The K(m) of NH4+

  1. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants.

    Science.gov (United States)

    Hafke, Jens B; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J E

    2013-01-01

    Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV). In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H(+)-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie-Hofstee (EH) -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: K m1 1.2-1.8 mM, K m2 6.6-9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, K m values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher K m values (EH: K m1 10 mM, K m2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) K m values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of K m values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose

  2. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.

    Science.gov (United States)

    Zoladz, J A; Korzeniewski, B; Grassi, B

    2006-11-01

    It is well known that the oxygen uptake kinetics during rest-to-work transition (V(O2) on-kinetics) in trained subjects is significantly faster than in untrained individuals. It was recently postulated that the main system variable that determines the transition time (t(1/2)) of the V(O2) on-kinetics in skeletal muscle, at a given moderate ATP usage/work intensity, and under the assumption that creatine kinase reaction works near thermodynamic equilibrium, is the absolute (in mM) decrease in [PCr] during rest-to-work transition. Therefore we postulate that the training-induced acceleration of the V(O2) on-kinetics is a marker of an improvement of absolute metabolic stability in skeletal muscles. The most frequently postulated factor responsible for enhancement of muscle metabolic stability is the training-induced increase in mitochondrial proteins. However, the mechanism proposed by Gollnick and Saltin (1982) can improve absolute metabolic stability only if training leads to a decrease in resting [ADP(free)]. This effect is not observed in many examples of training causing an acceleration of the V(O2) on-kinetics, especially in early stages of training. Additionally, this mechanism cannot account for the significant training-induced increase in the relative (expressed in % or as multiples of the resting values) metabolic stability at low work intensities, condition in which oxidative phosphorylation is not saturated with [ADP(free)]. Finally, it was reported that in the early stage of training, acceleration in the V(O2) on-kinetics and enhancement of muscle metabolic stability may precede adaptive responses in mitochondrial enzymes activities or mitochondria content. We postulate that the training-induced acceleration in the V(O2) on-kinetics and the improvement of the metabolite stability during moderate intensity exercise in the early stage of training is mostly caused by an intensification of the "parallel activation" of ATP consumption and ATP supply pathways

  3. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    Science.gov (United States)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  4. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp

    International Nuclear Information System (INIS)

    Ayub, J. Juri; Velasco, R. H.; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.

    2008-01-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs + (and K + ) using electrophysiological techniques. Although the 137 Cs soil inventory ranged between 328-730 Bq m -2 in this region, no 137 Cs activity was detected in these plants. However, all the species, submitted previously to K + starvation, showed the uptake of both Cs + and K + when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. K M values were smaller for K + than for Cs + , indicating a higher affinity for the first cation. The presence of increasing K + concentrations in the assay medium inhibited Cs + uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs + is smaller than K + concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors

  5. The Balescu kinetic equation with exchange interaction

    International Nuclear Information System (INIS)

    Belyi, V V; Kukharenko, Yu A

    2009-01-01

    Starting with the quantum BBGKY hierarchy for the distribution functions, we have obtained the quantum kinetic equation including the dynamical screening of the interaction potential, which exactly takes into account the exchange scattering in the plasma. The collision integral is expressed in terms of the Green function of the linearized Hartree–Fock equation. The potential energy takes into account the polarization and exchange interaction too

  6. Deciphering relationships between in-stream travel times, nutrient concentrations, and uptake through analysis of hysteretic and non-hysteretic kinetic behavior

    Science.gov (United States)

    Covino, T. P.; Bowden, W. B.; Gooseff, M. N.; Wollheim, W. M.; McGlynn, B. L.; Whittinghill, K. A.; Wlostowski, A. N.; Herstand, M. R.

    2012-12-01

    Understanding the relationship between solute travel time, concentration, and nutrient uptake remains a central question in watershed hydrology and biogeochemistry. Theoretical understanding predicts that nutrient uptake should increase as in-stream solute travel time lengthens and/or as concentration increases; however, results from field-based studies have been contradictory. We used a newly developed approach, Tracer Additions for Spiraling Curve Characterization (TASCC), to investigate relationships between solute travel time, nutrient concentration, and nutrient uptake across a range of stream types. This approach allows us to quantify in-stream nutrient uptake across a range of travel times and nutrient concentrations using single instantaneous injections (slugs) of conservative and non-conservative tracers. In some systems we observed counter-clockwise hysteresis loops in the relationship between nutrient uptake and concentration. Greater nutrient uptake on the falling limb of tracer breakthrough curves indicates stronger uptake for a given concentration at longer travel times. However, in other systems we did not observe hysteresis in these relationships. Lack of hysteresis indicates that nutrient uptake kinetics were not influenced by travel time travel time. Here we investigate the potential roles of travel time and in-stream flowpaths that could be responsible for hysteretic behavior.

  7. Kinetic Models for Topological Nearest-Neighbor Interactions

    Science.gov (United States)

    Blanchet, Adrien; Degond, Pierre

    2017-12-01

    We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.

  8. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  9. Kinetics of molybdenum and chlorine interaction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Nazarov, Yu.N.; Sarkarov, T.Eh.; Tulyakov, N.V.

    1977-01-01

    The kinetics is studied of molybdenite chlorination with gaseous chlorine. The time dependences of the depth and degree of molybdenite chlorination are given along with the dependence on chlorine concentration of molybdenite chlorination rate. Active interaction is shown to take place at 450-470 deg C. At 350-435 deg C, chlorination occurs in the kinetic range, the apparent activation energy being equal to 22.2 kcal/mole and the order of reaction by chlorine to 0.77. At 435-610 deg C, the process takes place in the diffusion range and is restricted by dissipation of the reaction products (activation energy - 4.05 kcal/mole; order of reaction by chlorine - 0.6)

  10. COMPARISON OF OXYGEN UPTAKE KINETICS AND OXYGEN DEFICIT IN SEVERELY OVERWEIGHT AND NORMAL WEIGHT ADOLESCENT FEMALES

    Directory of Open Access Journals (Sweden)

    Mark Loftin

    2005-12-01

    Full Text Available The purpose of this study was to determine if differences in oxygen uptake kinetics and oxygen deficit existed between normal weight and severely overweight adolescent girls. Subjects included 10 normal weight and 8 severely overweight girls. The participants performed a leg cycling VO2 peak test and a constant load leg cycling test at 80% of the ventilatory threshold (T-vent. In the constant workload test O2 kinetics as indicated by Phase I (VO2 L at 20 sec and Phase II time constants (t were determined. Also, the O2 deficit (VO2 L was measured. As expected significant differences were noted in body composition and VO2 peak relative to mass with normal weight body mass averaging 55.3 ± 7.0 kg, severely overweight 90.5 ± 18.0 kg, % fat normal weight 27.3 ± 3.9%, severely overweight 49.7 ± 4.9% and VO2 peak (ml·kg-1·min-1 normal weight 32.0 ± 2.7 and severely overweight 22.0 ± 5.3. VO2 peak (l·min-1 and T-vent (%VO2 max were similar between groups. Results revealed similar O2 kinetic responses between groups; phase I kinetics normal weight 0.72 ± 0.15 L; severely overweight 0.75 ± 0.13L, phase II (t normal weight 41.5 ± 21.3 sec; severely overweight 33.9 ± 22.7 sec. However, the O2 deficit was significantly higher in the severely overweight (0.75 ± 0.15L when compared to the normal weight group (0.34 ± 0.13L. Correlations ranged from r = -0.15 to 0.51 between VO2 peak (L·min-1 or fat weight and phase I, t and O2 deficit. These data generally support previous research concerning the independence of O2 uptake response and body size

  11. Nitrogen uptake kinetics of freshly isolated zooxanthellae

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; Rajkumar, R.

    that for nitrate [2.8 nmol. ( mu chl-a)./1h/1] and urea [0.37 nmol. ( mu chl-a)./1h/1]. Half-saturation constants for uptake of the three nitrogen compounds were in the range of 10-15 mu mol.l/1. Generally, uptake of any one nitrogen substrate appears to be inhibit...

  12. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.

    2012-01-01

    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...... induced enhancement of the reaction yield. (C) 2012 Elsevier B.V. All rights reserved....

  13. Tritium uptake kinetics in crayfish (Orconectes immunis)

    International Nuclear Information System (INIS)

    Patrick, P.H.

    1985-06-01

    Uptake of tritiated water (HTO) by Orconectes immunis was investigated under laboratory conditions. Tritium uptake in the tissue-free water fraction (TFWT) was described using an exponential model. When steady-state was reached, the ratio of TFWT to HTO was approximately 0.9. Uptake of tritium in the organically-bound fraction (OBT) proceeded slowly, and had not reached steady-state after 117 days of culture. Although steady-state was never reached, the maximum observed ration of OBT to TFWT in whole animals was approximately 0.6. However, this ratio exceeded unity in the exoskeleton. Specific activity ratios of OBT between crayfish and lettuce (food source) were less than or at unity for various test conditions

  14. OXYGEN UPTAKE KINETICS DURING INCREMENTAL- AND DECREMENTAL-RAMP CYCLE ERGOMETRY

    Directory of Open Access Journals (Sweden)

    Fadıl Özyener

    2011-09-01

    Full Text Available The pulmonary oxygen uptake (VO2 response to incremental-ramp cycle ergometry typically demonstrates lagged-linear first-order kinetics with a slope of ~10-11 ml·min-1·W-1, both above and below the lactate threshold (ӨL, i.e. there is no discernible VO2 slow component (or "excess" VO2 above ӨL. We were interested in determining whether a reverse ramp profile would yield the same response dynamics. Ten healthy males performed a maximum incremental -ramp (15-30 W·min-1, depending on fitness. On another day, the work rate (WR was increased abruptly to the incremental maximum and then decremented at the same rate of 15-30 W.min-1 (step-decremental ramp. Five subjects also performed a sub-maximal ramp-decremental test from 90% of ӨL. VO2 was determined breath-by-breath from continuous monitoring of respired volumes (turbine and gas concentrations (mass spectrometer. The incremental-ramp VO2-WR slope was 10.3 ± 0.7 ml·min-1·W-1, whereas that of the descending limb of the decremental ramp was 14.2 ± 1.1 ml·min-1·W-1 (p < 0.005. The sub-maximal decremental-ramp slope, however, was only 9. 8 ± 0.9 ml·min-1·W-1: not significantly different from that of the incremental-ramp. This suggests that the VO2 response in the supra-ӨL domain of incremental-ramp exercise manifest not actual, but pseudo, first-order kinetics

  15. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake.

    Science.gov (United States)

    Kader, Mohammed; Lamb, Dane T; Wang, Liang; Megharaj, Mallavarapu; Naidu, Ravi

    2017-11-01

    Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not well understood in natural systems. The aim of this study was to observe their interaction in solubility (soil-solution), bioaccumulation (shoot uptake) and toxicity to cucumber (Cucumis sativa L) conducting 4 weeks pot study in 5 different soils spiked with As (0, 2, 4, 8 to 1024 mg kg -1 ) individually and with Zn at two phytotoxic doses. The As pore-water concentration was significantly reduced (df = 289, Adjusted R 2  = 0.84, p soils. This outcome may be due to adsorption/surface precipitation or tertiary bridging complexation. No homogenous precipitation of zinc arsenate could be established using electron microscopy, XRD or even equilibrium calculations. For bioaccumulation phase, no significant effect of Zn on As uptake was observed except acidic MG soil whereas, Zn uptake was significantly reduced (p soil. The synergistic response (more than additive) was predominant in this soil for a wide range of inhibition concentration (0-80%) at both Zn EC10 and EC50 levels. Since additive response is mostly considered in risk assessment for mixtures, precautions should be implemented for assessment of toxicity for As-Zn mixture in acidic soil due to their synergistic response in some soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Kinetic interaction in hydrogenitrogenation of quinoline and acridine

    International Nuclear Information System (INIS)

    El-Bishtawi, R.F.; Seapan, M.

    1988-01-01

    Liquid fossil fuels contain numerous nitrogen compounds. During hydrodenitrogenation processes, these compounds for the active catalytic sites, with each compound affecting the kinetics of the other compounds. An understanding of the kinetic interaction is essential in using the results of model compound kinetics to predict the behavior of complex mixtures. In this work, the authors study the hydrodenitrogenation of quinoline and acridine in n-hexadecane over a commercial nickel-molybdenum catalyst in a batch autoclave reactor at 8.3 MPa (1200 psig) and 357-390 0 C. The reaction networks and kinetics of individual compounds were developed. These results confirm the existing knowledge of reaction networks for quinoline and acridine. Furthermore, their experiments show that formation for o-ethylaniline, o-toluidine and aniline are also important steps in quinoline denitrogenation. For total nitrogen removal, a dual site Langmuir-Hinshelwood type model considering separate sites for adsorption of hydrogen and nitrogen compounds give the best fit

  17. Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on-kinetics

    Science.gov (United States)

    Jones, Andrew M; Krustrup, Peter; Wilkerson, Daryl P; Berger, Nicolas J; Calbet, José A; Bangsbo, Jens

    2012-01-01

    Following the start of low-intensity exercise in healthy humans, it has been established that the kinetics of skeletal muscle O2 delivery is faster than, and does not limit, the kinetics of muscle O2 uptake (). Direct data are lacking, however, on the question of whether O2 delivery might limit kinetics during high-intensity exercise. Using multiple exercise transitions to enhance confidence in parameter estimation, we therefore investigated the kinetics of, and inter-relationships between, muscle blood flow (), a– difference and following the onset of low-intensity (LI) and high-intensity (HI) exercise. Seven healthy males completed four 6 min bouts of LI and four 6 min bouts of HI single-legged knee-extension exercise. Blood was frequently drawn from the femoral artery and vein during exercise and , a– difference and were calculated and subsequently modelled using non-linear regression techniques. For LI, the fundamental component mean response time (MRTp) for kinetics was significantly shorter than kinetics (mean ± SEM, 18 ± 4 vs. 30 ± 4 s; P exercise intensities; however, the MRTp for a– difference was significantly shorter for HI compared with LI (17 ± 3 vs. 28 ± 4 s; P exercise and remained unaltered thereafter, with no differences between LI and HI. These results indicate that bulk O2 delivery does not limit kinetics following the onset of LI or HI knee-extension exercise. PMID:22711961

  18. Uptake of mineral elements by plants

    International Nuclear Information System (INIS)

    Ven Babu, P.

    2008-01-01

    Scientific investigations into the mineral nutrition of plants, date back to the late 17th century and vast amount of literature has accumulated since then, encompassing the occurrence of mineral elements, their interaction in soil and within plants, kinetics of their uptake, role in metabolism, toxicity to plants and animals and so on. Despite great advances made in the fields of plant physiology, plant biochemistry and genetic engineering and application of sophisticated analytical and biochemical techniques, many aspects of nutrient uptake by plants, their movement within roots and the long distance transport to shoots remain yet to be fully answered and a combination of hypothesis and assumptions are taken into account, for understanding the phenomena. This write up deals with the subject in a brief and narrative manner, so as to enable the reader to get an insight into the field

  19. Kinetics of pyrophosphate-driven proton uptake by acidocalcisomes of Leptomonas wallacei

    International Nuclear Information System (INIS)

    Moraes Moreira, Bernardo Luiz; Soares Medeiros, Lia Carolina A.; Miranda, Kildare; Souza, Wanderley de; Hentschel, Joachim; Plattner, Helmut; Barrabin, Hector

    2005-01-01

    In this work, we show the kinetics of pyrophosphate-driven H + uptake by acidocalcisomes in digitonin-permeabilized promastigotes of Leptomonas wallacei. The vacuolar proton pyrophosphatase activity was optimal in the pH range of 7.5-8.0, was inhibited by imidiodiphosphate, and was completely dependent on K + and PPi. H + was released with the addition of Ca 2+ , suggesting the presence of a Ca 2+ /H + antiport. In addition, X-ray elemental mapping associated with energy-filtering transmission electron microscopy showed that most of the Ca, Na, Mg, P, K, Fe, and Zn were located in acidocalcisomes. L. wallacei immunolabeled with antibodies against Trypanosoma cruzi pyrophosphatase show intense fluorescence in cytoplasmatic organelles of size and distribution similar to the acidocalcisomes. Altogether, the results show that L. wallacei acidocalcisomes possess a H + -pyrophosphatase with characteristics of type I V-H + -PPase. However, we did not find any evidence, either for the presence of H + -ATPases or for Na + /H + exchangers in these acidocalcisomes

  20. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    Science.gov (United States)

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Uptake of dissolved inorganic and organic nitrogen by the benthic toxic dinoflagellate Ostreopsis cf. ovata.

    Science.gov (United States)

    Jauzein, Cécile; Couet, Douglas; Blasco, Thierry; Lemée, Rodolphe

    2017-05-01

    Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15 N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH 4 + ), nitrate (NO 3 - ) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10μmolNL -1 , kinetic curves showed a clear preference pattern following the ranking NH 4 + >NO 3 - >N-urea, where the preferential uptake of NH 4 + relative to NO 3 - was accentuated by an inhibitory effect of NH 4 + concentration on NO 3 - uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH 4 + relative to NO 3 - was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO 3 - uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH 4 + was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  3. DOC:NO3- ratios and NO3- uptake in forested headwater streams

    Science.gov (United States)

    Rodríguez-Cardona, Bianca; Wymore, Adam S.; McDowell, William H.

    2016-01-01

    The underlying mechanisms driving the coupled interactions between inorganic nitrogen uptake and dissolved organic matter are not well understood, particularly in surface waters. To determine the relationship between dissolved organic carbon (DOC) quantity and nitrate (NO3-) uptake kinetics in streams, we performed a series of NO3- Tracer Additions for Spiraling Curve Characterization experiments in four streams within the Lamprey River Watershed, New Hampshire, across a range in background DOC concentrations (1-8 mg C/L). Experiments were performed throughout the 2013 and 2014 growing seasons. Across streams and experimental dates, ambient uptake velocity (Vf) correlated positively with increasing DOC concentrations and DOC:NO3- ratios but was only weakly negatively associated with NO3- concentrations. Ambient NO3- Vf was unrelated to pH, light, temperature, dissolved oxygen, and Specific Ultraviolet Absorbance at 254 nm. Although there were general tendencies across the entire Lamprey River Watershed, individual sites behaved differently in their uptake kinetics. NO3- uptake dynamics in the Lamprey River Watershed are most strongly influenced by DOC concentrations rather than NO3- concentrations or physicochemical parameters, which have been identified as regional- to continental-scale drivers in previous research. Understanding the fundamental relationships between dissolved organic matter and inorganic nutrients will be important as global and climatic changes influence the delivery and production of DOC and NO3- in aquatic ecosystems.

  4. Interaction and uptake of exosomes by ovarian cancer cells

    International Nuclear Information System (INIS)

    Escrevente, Cristina; Keller, Sascha; Altevogt, Peter; Costa, Júlia

    2011-01-01

    Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to

  5. Cell uptake survey of pegylated nanographene oxide.

    Science.gov (United States)

    Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M

    2012-11-23

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  6. Cell uptake survey of pegylated nanographene oxide

    International Nuclear Information System (INIS)

    Vila, M; Nieto, A; Vallet-Regi, M; Portolés, M T; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Marques, P A A P; Gonçalves, G; Cruz, S M A

    2012-01-01

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml −1 pegylated GO solutions. GO uptake kinetics revealed differences in the agent’s uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy. (paper)

  7. Lateral interactions and non-equilibrium in surface kinetics

    Science.gov (United States)

    Menzel, Dietrich

    2016-08-01

    Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.

  8. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  9. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    Directory of Open Access Journals (Sweden)

    E. Gioseffi

    2012-04-01

    Full Text Available Soil-borne amino acids may constitute a source of nitrogen (N for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly and glutamine (Gln by wheat roots and their interactions with nitrate (NO3 and ammonium (NH4+ during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake, thereby resulting in similar total N uptake rates. Amino acids were enriched with double-labelled 15N and 13C, while NO3 and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3 and NH4+ did not differ from each other and were generally about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50% of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3 did not affect glycine uptake, while the presence of glycine down-regulated NO3 uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction

  10. Effects of oxygen delivery, dietary nitrate, intensified training and prior exercise on oxygen uptake kinetics and performance in humans

    DEFF Research Database (Denmark)

    Christensen, Peter Møller

    benefits from supplementing with nitrate to improve exercise efficiency and performance in endurance trained subjects. Furthermore it appears difficult to improve VO2 kinetics with intensified training in trained athletes; however intense exercise can amplify the VO2 response during subsequent high......In response to an increase in the metabolic demand the oxygen uptake (VO2) increases in an exponential fashion in exercising muscles and stabilizes after 1-2 min eventually reaching a plateau or steady state where the energy demand is matched by the l vel of VO2. VO2 kinetics describes the distinct...... phases of the VO2 response at the onset of exercise. Fast VO2 kinetics are considered to be beneficial in intense endurance sports with competitions lasting ~2-8 min, whereas low VO2 at steady state (high efficiency) is considered beneficial especially in events of longer duration. To improve...

  11. Oxygen uptake kinetics during and after exercise are useful markers of coronary artery disease in patients with exercise electrocardiography suggesting myocardial ischemia

    International Nuclear Information System (INIS)

    Tajima, Akihiko; Ohkoshi, Nobuyuki; Kawara, Tokuhiro; Aizawa, Tadanori; Itoh, Haruki; Maeda, Tomoko; Osada, Naohiko; Omiya, Kazuto; Wasserman, K.

    2009-01-01

    The aim of the current study was to determine if the slowed exercise oxygen uptake (VO 2 ) kinetics, which is developed by myocardial ischemia, would be accompanied by delayed recovery VO 2 kinetics in patients with coronary artery disease (CAD). Thirty-seven patients with significant ST depression during treadmill exercise underwent cardiopulmonary exercise testing with cycle ergometer. Measurements performed are the ratios of change in increase in oxygen (O 2 ) uptake relative to increase in work rate (ΔVO 2 /ΔWR) across anaerobic threshold (AT) and 1 mm ST depression point (ST-dep), the time constants of VO 2 during recovery (T 1/2 VO 2 ), stress radio-isotope scintigraphy and coronary angiography. Patients were divided into CAD positive (CAD+) and CAD negative (CAD-) groups, based on coronary angiography. In CAD+, ΔVO 2 /ΔWR decreased above AT and ST-dep, in contrast to CAD- patients. The T 1/2 VO 2 in CAD+ (103.1±13.0 s) was greater than that of CAD- (76.5±8.7 s) and showed negative correlations to the ratios of ΔVO 2 /ΔWR across AT and ST-dep. These parameters improved in the patients who underwent coronary bypass surgery. Exercise and recovery VO 2 kinetics were slowed when myocardial ischemia was provoked by exercise. Measurement of exercise and recovery VO 2 kinetics improve the accuracy of the exercise electrocardiogram diagnosis of CAD. (author)

  12. Training-induced acceleration of O(2) uptake on-kinetics precedes muscle mitochondrial biogenesis in humans.

    Science.gov (United States)

    Zoladz, Jerzy A; Grassi, Bruno; Majerczak, Joanna; Szkutnik, Zbigniew; Korostyński, Michał; Karasiński, Janusz; Kilarski, Wincenty; Korzeniewski, Bernard

    2013-04-01

    The effects of 5 weeks of moderate-intensity endurance training on pulmonary oxygen uptake kinetics (V(O(2)) on-kinetics) were studied in 15 healthy men (mean ± SD: age 22.7 ± 1.8 years, body weight 76.4 ± 8.9 kg and maximal V(O(2)) 46.0 ± 3.7 ml kg(-1) min(-1)). Training caused a significant acceleration (P = 0.003) of V(O(2)) on-kinetics during moderate-intensity cycling (time constant of the 'primary' component 30.0 ± 6.6 versus 22.8 ± 5.6 s before and after training, respectively) and a significant decrease (P = 0.04) in the amplitude of the primary component (837 ± 351 versus 801 ± 330 ml min(-1)). No changes in myosin heavy chain distribution, muscle fibre capillarization, level of peroxisome proliferator-activated receptor γ coactivator 1α and other markers of mitochondrial biogenesis (mitochondrial DNA copy number, cytochrome c and cytochrome oxidase subunit I contents) in the vastus lateralis were found after training. A significant downregulation in the content of the sarcoplasmic reticulum ATPase 2 (SERCA2; P = 0.03) and a tendency towards a decrease in SERCA1 (P = 0.055) was found after training. The decrease in SERCA1 was positively correlated (P = 0.05) with the training-induced decrease in the gain of the V(O(2)) on-kinetics (ΔV(O(2)) at steady state/Δpower output). In the early stage of training, the acceleration in V(O(2)) on-kinetics during moderate-intensity cycling can occur without enhanced mitochondrial biogenesis or changes in muscle myosin heavy chain distribution and in muscle fibre capillarization. The training-induced decrease of the O(2) cost of cycling could be caused by the downregulation of SERCA pumps.

  13. A kinetic study of cation release from a mixed mineral assemblage: implications for determination of uranium uptake

    International Nuclear Information System (INIS)

    Fenton, B.R.; Waite, T.D.

    1996-01-01

    The uptake of U(VI) as UO 2+ 2 on a natural complex mineral assemblage has been studied using batch selective chemical extraction techniques and secondary ion mass spectroscopy (SIMS). Sediments used in the study consisted of a quartz/mica schist collected from the locale of the Koongarra Uranium ore body, Alligator Rivers Uranium Province, Northern Territory, Australia. The bulk sediment was gravity separated into four size fractions, with attention focused on the nominally <25 μm and 250-1000 μm fractions of the bulk sample, in order to assess the effects of particle size on uranium uptake. Investigation of the kinetics of elemental release in the presence of selective extractants show that uranium is bound largely within the iron and aluminium oxyhydroxides of the assemblage, with a highly mobile fraction of this associated with aluminol sites. SIMS analysis of the natural substrate confirms that significant quantities of aluminium are present in surface layers. The effect of particle size on the uptake of uranium indicates very little change with respect to particle size. This finding may be attributed to the presence of highly porous surface coatings. (orig.)

  14. Enhancing Children's Language Learning and Cognition Experience through Interactive Kinetic Typography

    Science.gov (United States)

    Lau, Newman M. L.; Chu, Veni H. T.

    2015-01-01

    This research aimed at investigating the method of using kinetic typography and interactive approach to conduct a design experiment for children to learn vocabularies. Typography is the unique art and technique of arranging type in order to make language visible. By adding animated movement to characters, kinetic typography expresses language…

  15. Interaction and uptake of exosomes by ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Altevogt Peter

    2011-03-01

    Full Text Available Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. Results In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. Conclusions In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific

  16. Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Song; Zhu, Bin; Huang, Aiguo [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Hu, Yang [College of Science, Northwest A& F University, Yangling 712100 (China); Wang, Gaoxue, E-mail: wanggaoxue@126.com [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Ling, Fei, E-mail: feiling@nwsuaf.edu.cn [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China)

    2016-11-15

    Highlights: • MWCNTs (<100 mg/L) were not toxic to S. cerevisiae. • MWCNTs were internalized in S. cerevisiae cells by three pathways. • The uptake kinetics and the subcellular distribution of MWCNTs in S. cerevisiae cells were shown. • S. cerevisiae cells were undergoing apoptosis by mitochondrial impairment pathway. - Abstract: Using Saccharomyces cerevisiae as an experimental model, the potential toxicological effects of oxidized multi-walled carbon nanotubes (MWCNTs) were investigated following exposure to 0–600 mg/L for 24 h. Results indicated that MWCNTs (>100 mg/L) had adverse effects on the cell proliferation. MWCNTs were clearly visible in lysosome, vacuole, endosome, mitochondria, multivesicular body and localization in the perinuclear region. The uptake kinetics data demonstrated that the maximum MWCNTs content (209.61 mg/g) was reached at 3 h, and a steady state was reached after 18 h. Based on the combined results of transmission electron microscope, endocytosis inhibition experiments and endocytosis-related genes (END3, END6, Sla2 and Rsp5) expression analysis, we elucidated MWCNTs uptake mechanism: (i) via a direct penetration of single MWCNTs; (ii) via endocytosis of single MWCNTs; and (iii) via endocytosis of MWCNTs aggregates. The percentage of apoptosis was significant increased at 600 mg/L. The decrease of mitochondrial transmembrane potential and the leakage of cytochrome c shown dose-dependent manners. Interestingly, there was no significant increase of reactive oxygen species (ROS). The apoptosis-related genes (SOD1, SOD2, Yca1, Nma111 and Nuc1) were significant changed. These results obtained in our study demonstrated that oxidized MWCNTs induce Saccharomyces cerevisiae apoptosis via mitochondrial impairment pathway.

  17. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  18. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  19. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  20. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  1. Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions.

    Science.gov (United States)

    Carvajal, Andrea; Akmirza, Ilker; Navia, Daniel; Pérez, Rebeca; Muñoz, Raúl; Lebrero, Raquel

    2018-05-15

    Anoxic mineralization of BTEX represents a promising alternative for their abatement from O 2 -deprived emissions. However, the kinetics of anoxic BTEX biodegradation and the interactions underlying the treatment of BTEX mixtures are still unknown. An activated sludge inoculum was used for the anoxic abatement of single, dual and quaternary BTEX mixtures, being acclimated prior performing the biodegradation kinetic tests. The Monod model and a Modified Gompertz model were then used for the estimation of the biodegradation kinetic parameters. Results showed that both toluene and ethylbenzene are readily biodegradable under anoxic conditions, whereas the accumulation of toxic metabolites resulted in partial xylene and benzene degradation when present both as single components or in mixtures. Moreover, the supplementation of an additional pollutant always resulted in an inhibitory competition, with xylene inducing the highest degree of inhibition. The Modified Gompertz model provided an accurate fitting for the experimental data for single and dual substrate experiments, satisfactorily representing the antagonistic pollutant interactions. Finally, microbial analysis suggested that the degradation of the most biodegradable compounds required a lower microbial specialization and diversity, while the presence of the recalcitrant compounds resulted in the selection of a specific group of microorganisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction.

    Science.gov (United States)

    Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng

    2013-08-21

    Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.

  3. Effects of vehicle on the uptake and elimination kinetics of capsaicinoids in human skin in vivo

    International Nuclear Information System (INIS)

    Pershing, Lynn K.; Reilly, Christopher A.; Corlett, Judy L.; Crouch, Dennis J.

    2004-01-01

    While the physiologic and molecular effects of capsaicinoids have been extensively studied in various model systems by a variety of administration routes, little is known about the uptake and elimination kinetic profiles in human skin following topical exposure. The present study evaluated the uptake and elimination kinetics of capsaicinoids in human stratum corneum following a single topical exposure to 3% solutions containing 55% capsaicin, 35% dihydrocapsaicin, and 10% other analogues prepared in three vehicles: mineral oil (MO), propylene glycol (PG), and isopropyl alcohol (IPA). Capsaicinoid solutions were evaluated simultaneously in a random application pattern on the volar forearms of 12 subjects using a small, single 150-μg dose. Capsaicin and dihydrocapsaicin were recovered from human skin using commercial adhesive discs to harvest stratum corneum from treated sites. Capsaicinoids were extracted from the stratum corneum-adhesive discs and quantified by liquid chromatography/mass spectroscopy (LC/MS). Both capsaicinoids were detected in stratum corneum 1 min after application with all vehicles and achieved a pseudo-steady state shortly thereafter. IPA delivered three times greater capsaicin and dihydrocapsaicin into the human stratum corneum than PG or MO at all time points investigated. The C max of capsaicin in IPA, PG, and MO was 16.1, 6.2, and 6.5 μg, respectively. The dihydrocapsaicin content was 60% of capsaicin with all vehicles. The estimated T half of capsaicin and dihydrocapsaicin in the three vehicles was similar (24 h). Thus, maximal cutaneous capsaicinoid concentrations were achieved quickly in the human stratum corneum and were concentration and vehicle dependent. In contrast, capsaicinoid half-life was long and vehicle independent

  4. Oxygen Uptake Kinetics Is Slower in Swimming Than Arm Cranking and Cycling during Heavy Intensity

    Science.gov (United States)

    Sousa, Ana; Borrani, Fabio; Rodríguez, Ferran A.; Millet, Grégoire P.

    2017-01-01

    Oxygen uptake (V·O2) kinetics has been reported to be influenced by the activity mode. However, only few studies have compared V·O2 kinetics between activities in the same subjects in which they were equally trained. Therefore, this study compared the V·O2 kinetics response to swimming, arm cranking, and cycling within the same group of subjects within the heavy exercise intensity domain. Ten trained male triathletes (age 23.2 ± 4.5 years; height 180.8 ± 8.3 cm; weight 72.3 ± 6.6 kg) completed an incremental test to exhaustion and a 6-min heavy constant-load test in the three exercise modes in random order. Gas exchange was measured by a breath-by-breath analyzer and the on-transient V·O2 kinetics was modeled using bi-exponential functions. V·O2peak was higher in cycling (65.6 ± 4.0 ml·kg−1·min−1) than in arm cranking or swimming (48.7 ± 8.0 and 53.0 ± 6.7 ml·kg−1·min−1; P kinetics were slower in swimming (τ1 = 31.7 ± 6.2 s) than in arm cranking (19.3 ± 4.2 s; P = 0.001) and cycling (12.4 ± 3.7 s; P = 0.001). The amplitude of the primary component was lower in both arm cranking and swimming (21.9 ± 4.7 and 28.4 ± 5.1 ml·kg−1·min−1) compared with cycling (39.4 ± 4.1 ml·kg−1·min−1; P = 0.001). Although the gain of the primary component was higher in arm cranking compared with cycling (15.3 ± 4.2 and 10.7 ± 1.3 ml·min−1·W−1; P = 0.02), the slow component amplitude, in both absolute and relative terms, did not differ between exercise modes. The slower V·O2 kinetics during heavy-intensity swimming is exercise-mode dependent. Besides differences in muscle mass and greater type II muscle fibers recruitment, the horizontal position adopted and the involvement of trunk and lower-body stabilizing muscles could be additional mechanisms that explain the differences between exercise modalities. PMID:28919863

  5. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    Science.gov (United States)

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effect of 17-AAG on iodine uptake kinetics of NIS-transfected anaplastic thyroid cancer

    International Nuclear Information System (INIS)

    Wang Renfei; Tan Jian; Li Wei; Meng Zhaowei; Zheng Wei

    2012-01-01

    Objective: To investigate the effect of 17-allylamino-17-demethoxy geldanamycin (17-AAG) on iodine uptake kinetics of NIS-transfected anaplastic thyroid cancer (ATC) cells. Methods: Lipofection was used to transfect the recombinant plasmid, namely pcDNA3.1-NIS, into FRO cells (ATC cell line). A stable cell line NIS-FRO was obtained by G418 resistance selection. 125 I was added into the medium, and influx and efflux experiments were performed. Different time-radioactivity curves were drawn, and further analysis was performed between the non-transfected cells (the control group) and NIS-FRO cells treated with 1 μmol/L 17-AAG for 24 h. Student's t-test was used to analyze the data. Results: The iodine uptake ability of the NIS-FRO cells was significantly higher than that of the FRO cells (about 10.68 times, t=45.329, P<0.001). However, 125 I out-flowed rapidly when removed from the medium, and the retention rate of 125 I in the NIS-FRO cells was only 10.5% of the initial amount after 30 rin. After treatment with 1 μmol/L 17-AAG for 24 h, the 125 I uptake ability of NIS-FRO cells further increased. During the 20-60 min incubation with 125 I, the iodine uptake ability of 17-AAG treated NIS-FRO cells increased significantly with radioactive counts of 31771.8- 54815.5 per minute,which was much higher than that of the control group (24020.3-41293.8 per minute; t=3.096, 4.275, 3.055, 4.292 and 5.496, respectively, all P<0.05). The iodine uptake ability increased about 24.8%-35.5%. Furthermore, 5-30 min after removing the medium, the retention rates of 125 I in the 17-AAG treated NIS-FRO cells were significantly increased compared with those of the control group (32.7%-85.2% vs 10.5%-56.8%; t=22.801, 13.096, 19.631, 38.205, 43.519, 29.322, respectively, all P<0.01), and 125 I efflux was reduced. After 30 min, 125 I retention rate of the treatment group was 32.7%, which was 3.1 times higher than that of the control group. Conclusion: The iodine uptake ability can be

  7. Nitrogen uptake by wheat seedlings, interactive effects of four nitrogen sources: NO3-, NO2-, NH4+, and urea

    Science.gov (United States)

    Criddle, R. S.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The net influx (uptake) rates of NO3-, NH4+, NO2-, and urea into roots of wheat (Triticum aestivum cv Yecora Rojo) seedlings from complete nutrient solutions containing all four compounds were monitored simultaneously. Although urea uptake was too slow to monitor, its presence had major inhibitory effects on the uptake of each of the other compounds. Rates of NO3-, NH4+, and NO2- uptake depended in a complex fashion on the concentration of all four N compounds. Equations were developed which describe the uptake rates of each of the compounds, and of total N, as functions of concentrations of all N sources. Contour plots of the results show the interactions over the range of concentrations employed. The coefficients of these equations provide quantitative values for evaluating primary and interactive effects of each compound on N uptake.

  8. Revisiting the density scaling of the non-interacting kinetic energy.

    Science.gov (United States)

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2014-07-28

    Scaling relations play an important role in the understanding and development of approximate functionals in density functional theory. Recently, a number of these relationships have been redefined in terms of the Kohn-Sham orbitals [Calderín, Phys. Rev. A: At., Mol., Opt. Phys., 2013, 86, 032510]. For density scaling the author proposed a procedure involving a multiplicative scaling of the Kohn-Sham orbitals whilst keeping their occupation numbers fixed. In the present work, the differences between this scaling with fixed occupation numbers and that of previous studies, where the particle number change implied by the scaling was accommodated through the use of the grand canonical ensemble, are examined. We introduce the terms orbital and ensemble density scaling for these approaches, respectively. The natural ambiguity of the density scaling of the non-interacting kinetic energy functional is examined and the ancillary definitions implicit in each approach are highlighted and compared. As a consequence of these differences, Calderín recovered a homogeneity of degree 1 for the non-interacting kinetic energy functional under orbital scaling, contrasting recent work by the present authors [J. Chem. Phys., 2012, 136, 034101] where the functional was found to be inhomogeneous under ensemble density scaling. Furthermore, we show that the orbital scaling result follows directly from the linearity and the single-particle nature of the kinetic energy operator. The inhomogeneity of the non-interacting kinetic energy functional under ensemble density scaling can be quantified by defining an effective homogeneity. This quantity is shown to recover the homogeneity values for important approximate forms that are exact for limiting cases such as the uniform electron gas and one-electron systems. We argue that the ensemble density scaling provides more insight into the development of new functional forms.

  9. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle

    Directory of Open Access Journals (Sweden)

    Giorgio Kaniadakis

    2018-06-01

    Full Text Available Master equations define the dynamics that govern the time evolution of various physical processes on lattices. In the continuum limit, master equations lead to Fokker–Planck partial differential equations that represent the dynamics of physical systems in continuous spaces. Over the last few decades, nonlinear Fokker–Planck equations have become very popular in condensed matter physics and in statistical physics. Numerical solutions of these equations require the use of discretization schemes. However, the discrete evolution equation obtained by the discretization of a Fokker–Planck partial differential equation depends on the specific discretization scheme. In general, the discretized form is different from the master equation that has generated the respective Fokker–Planck equation in the continuum limit. Therefore, the knowledge of the master equation associated with a given Fokker–Planck equation is extremely important for the correct numerical integration of the latter, since it provides a unique, physically motivated discretization scheme. This paper shows that the Kinetic Interaction Principle (KIP that governs the particle kinetics of many body systems, introduced in G. Kaniadakis, Physica A 296, 405 (2001, univocally defines a very simple master equation that in the continuum limit yields the nonlinear Fokker–Planck equation in its most general form.

  10. Kinetics of 3H-serotonin uptake by platelets in infantile autism and developmental language disorder (including five pairs of twins)

    International Nuclear Information System (INIS)

    Katsui, T.; Okuda, M.; Usuda, S.; Koizumi, T.

    1986-01-01

    The kinetics of 5-HT uptake by platelets was studied in cases of infantile autism and developmental language disorder (DLD) and normal subjects. Two patients of the autism group were twins, and the seven patients of the DLD group were members of four pairs of twins. The Vmax values (means +/- SD) for autism and DLD were 6.46 +/- .90 pmol 5-HT/10(7) cells/min and 4.85 +/- 1.50 pmol 5-HT/10(7) cells/min, respectively. These values were both significantly higher than that of 2.25 +/- .97 pmole 5-HT/10(7) cells/min for normal children. The Km values of the three groups were not significantly different. Data on the five pairs of twins examined suggested that the elevated Vmax of 5-HT uptake by platelets was determined genetically

  11. Kinetics of 3H-serotonin uptake by platelets in infantile autism and developmental language disorder (including five pairs of twins)

    Energy Technology Data Exchange (ETDEWEB)

    Katsui, T.; Okuda, M.; Usuda, S.; Koizumi, T.

    1986-03-01

    The kinetics of 5-HT uptake by platelets was studied in cases of infantile autism and developmental language disorder (DLD) and normal subjects. Two patients of the autism group were twins, and the seven patients of the DLD group were members of four pairs of twins. The Vmax values (means +/- SD) for autism and DLD were 6.46 +/- .90 pmol 5-HT/10(7) cells/min and 4.85 +/- 1.50 pmol 5-HT/10(7) cells/min, respectively. These values were both significantly higher than that of 2.25 +/- .97 pmole 5-HT/10(7) cells/min for normal children. The Km values of the three groups were not significantly different. Data on the five pairs of twins examined suggested that the elevated Vmax of 5-HT uptake by platelets was determined genetically.

  12. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.

    Science.gov (United States)

    Karsten, Bettina; Baker, Jonathan; Naclerio, Fernando; Klose, Andreas; Bianco, Antonino; Nimmerichter, Alfred

    2018-02-01

    To investigate single-day time-to-exhaustion (TTE) and time-trial (TT) -based laboratory tests values of critical power (CP), W prime (W'), and respective oxygen-uptake-kinetic responses. Twelve cyclists performed a maximal ramp test followed by 3 TTE and 3 TT efforts interspersed by 60 min recovery between efforts. Oxygen uptake ( V ˙ O 2 ) was measured during all trials. The mean response time was calculated as a description of the overall [Formula: see text]-kinetic response from the onset to 2 min of exercise. TTE-determined CP was 279 ± 52 W, and TT-determined CP was 276 ± 50 W (P = .237). Values of W' were 14.3 ± 3.4 kJ (TTE W') and 16.5 ± 4.2 kJ (TT W') (P = .028). While a high level of agreement (-12 to 17 W) and a low prediction error of 2.7% were established for CP, for W' limits of agreements were markedly lower (-8 to 3.7 kJ), with a prediction error of 18.8%. The mean standard error for TTE CP values was significantly higher than that for TT CP values (2.4% ± 1.9% vs 1.2% ± 0.7% W). The standard errors for TTE W' and TT W' were 11.2% ± 8.1% and 5.6% ± 3.6%, respectively. The [Formula: see text] response was significantly faster during TT (~22 s) than TTE (~28 s). The TT protocol with a 60-min recovery period offers a valid, time-saving, and less error-filled alternative to conventional and more recent testing methods. Results, however, cannot be transferred to W'.

  13. Quantitative assessment of surface functionality effects on microglial uptake and retention of PAMAM dendrimers

    Science.gov (United States)

    Liaw, Kevin; Gök, Ozgul; DeRidder, Louis B.; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2018-04-01

    Dendrimers are a promising class of polymeric nanoparticles for delivery of therapeutics and diagnostics. Polyamidoamine (PAMAM) dendrimers have shown significant efficacy in many animal models, with performance dependent on surface functionalities. Understanding the effects of end groups on biological interactions is critical for rational design of dendrimer-mediated therapies. In this study, we quantify the cellular trafficking kinetics (endocytosis and exocytosis) of generation 4 neutral (D4-OH), cationic (D4-NH2), anionic (D3.5-COOH), and generation 6 neutral (D6-OH) PAMAM dendrimers to investigate the nanoscale effects of surface functionality and size on cellular interactions. Resting and LPS-activated microglia were studied due to their central roles in dendrimer therapies for central nervous system disorders. D4-OH exhibits greater cellular uptake and lower retention than the larger D6-OH. D4-OH and D3.5-COOH exhibit similar trafficking kinetics, while D4-NH2 exhibits significant membrane interactions, resulting in faster cell association but lower internalization. Cationic charge may also enhance vesicular escape for greater cellular retention and preferential partitioning to nuclei. LPS activation further improves uptake of dendrimers, with smaller and cationic dendrimers experiencing the greatest increases in uptake compared to resting microglia. These studies have implications for the dependence of trafficking pathway on dendrimer properties and inform the design of dendrimer constructs tailored to specific therapeutic needs. Cationic dendrimers are ideal for delivering genetic materials to nuclei, but toxicity may be a limiting factor. Smaller, neutral dendrimers are best suited for delivering high levels of therapeutics in acute neuroinflammation, while larger or cationic dendrimers provide robust retention for sustained release of therapeutics in longer-term diseases.

  14. Study on kinetics of glucose uptake by some species of plankton

    Science.gov (United States)

    Li, Wenquan; Wang, Xian; Zhang, Yaohua

    1993-03-01

    The rates of glucose uptake by some species of plankton were determined by3H-glucose tracer method. Experimental results indicated that the observed glucose uptake at natural seawater concentrations by Platymonas subcordiformis and Brachionus plicatilis was principally a metabolic process fitted with the Michaelis-Menten equation in the range of adaptive temperatures. Heterotrophic uptake by Platymonas subcordiformis was mainly dependent on diffusion at high glucose levels. The uptake by Brachionus plicatilis showed active transport even at high glucose levels, indicating its high heterotrophic activity. The uptake rate by Artemia salina was lower, and its V m/K ratio was lower than those of the other two species of plankton.

  15. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves

    Directory of Open Access Journals (Sweden)

    V. G. Polnikov

    2003-01-01

    Full Text Available A lot of discrete configurations for the four-wave nonlinear interaction processes have been calculated and tested by the method proposed earlier in the frame of the concept of Fast Discrete Interaction Approximation to the Hasselmann's kinetic integral (Polnikov and Farina, 2002. It was found that there are several simple configurations, which are more efficient than the one proposed originally in Hasselmann et al. (1985. Finally, the optimal multiple Discrete Interaction Approximation (DIA to the kinetic integral for deep-water waves was found. Wave spectrum features have been intercompared for a number of different configurations of DIA, applied to a long-time solution of kinetic equation. On the basis of this intercomparison the better efficiency of the configurations proposed was confirmed. Certain recommendations were given for implementation of new approximations to the wave forecast practice.

  16. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations.

    Science.gov (United States)

    Mehta, S K; Singh, Alpana; Gaur, J P

    2002-03-01

    Adsorption and uptake of Cu2+ by Chlorella vulgaris were distinguished by extracting the surface-bound Cu2+ with EDTA. The uptake of Cu2+ followed Michaelis Menten kinetics. The maximum rate of Cu2+ uptake (0.362fmolcell(-1) h(-1)) was obtained at pH 6.0. The rate of Cu2+ uptake was greater for cultures in the exponential phase of growth, and increased with a rise in temperature from 6 to 25 degrees C, thus pointing towards an active mechanism. The maximum number of Cu2+ binding sites was 3.245 fmol cell(-1) at pH 4.5. Adsorption of Cu2+ was strongly pH-dependent thereby indicating that the number and nature of metal binding sites on the cell surface change with changing chemistry of the solution. Unlike uptake, the adsorption remained unaffected by small changes in temperature. Older cultures displayed a higher Cu2+ adsorption capacity than the exponentially growing ones thus suggesting generation of new and/or additional Cu2+ binding sites on older cells of C. vulgaris. By pH titration, the cation-exchange capacity of Chlorella, measured in terms of H+/ Na+ exchange, was about 17 fmol cell(-1) at pH 10.5. Negligible cation exchange capacity at and below pH 5.0 indicated that ion exchange was not the sole mechanism of Cu2+ adsorption by Chlorella. The uptake and adsorption of Cu2+ were inhibited by 100 microM of various cations including other heavy metal ions. The general concept that cations competitively inhibit accumulation of metals in living organisms does not hold for C. vulgaris. Non-competitive, uncompetitive and mixed inhibition of Cu2+ uptake and adsorption by various cations were more common than competitive inhibition.

  17. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  18. The heterogeneous interaction of trace gases on mineral dust and soot: kinetics and mechanism

    OpenAIRE

    Karagulian, Federico; Rossi, Michel

    2007-01-01

    The present thesis work deals with the investigation of the heterogeneous reactions involving nitrate radical (NO3), dinitrogen pentoxide (N2O5) and ozone (O3) on surrogates of atmospheric mineral dust particles characteristic of the troposphere. An additional investigation of heterogeneous reaction of NO3 on flame soot was carried out. The goal is to characterize the kinetics (the uptake coefficient γ) as well as the reaction products. The obtained results are intended to provide reliable da...

  19. Phosphorus Uptake Kinetics of Different Types of Duckweed.%不同品种浮萍磷素吸收动力学特征

    Institute of Scientific and Technical Information of China (English)

    蔡树美; 刘文桃; 张震; 柏彦超; 钱晓晴

    2011-01-01

    以长江三角洲地区常见的3种浮萍--稀脉浮萍(Lemna aequinoctialis)、少根紫萍(Spirodela oligorrhiza)和紫萍(Spriodela polyrrhiza)为对象,研究不同品种浮萍对HPO42-的吸收动力学影响.结果表明,3种浮萍对无机磷的吸收动力学特征基本可采用Michaelis-Menten方程描述,3种浮萍无机磷吸收速率V对磷浓度S双倒数曲线的拟合关系均在α=0.01水平上显著.稀脉浮萍对无机磷的亲和力较强,适宜应用于对低磷浓度污水的净化;紫萍对无机磷的最大吸收速率Vmax较高,适宜应用于对高磷浓度污水的净化.%An increasing attention has been paid to the use of duckweed in treating eutrophicated water as a tool of bio-remediation of domestic wastewater.Phosphorus uptake kinetics was studied,of different species of duckweeds, i.e.Lemna aequinoctialis, Spirodela oligorrhiza and Spriodela polyrrhiza, which are common in the Yangtze River Delta area.Results show that the phosphorus uptake kinetics of the duckweeds could be expressed with the Michaelis-Menten equation; and the relation between phosphorus uptake rate (V) of the duckweeds and inorganic phosphorus(Pi) concentration (S), was well fitted with a double-reciprocal curve with at =0.01; the Km value for Pi uptake of Lemna aequinoctialis was lower than that of Spirodela oligorrhiza and Spriodela polyrrhiza, making it a better candidate for treating wastewater low in Pi concentration.The maximum phosphorus uptake rate of Spriodela polyrrhiza was higher than that of the other two species, which allows Spriodela polyrrhiza better performance in purifying wastewater higher in Pi concentration.

  20. Seasonal variability in nitrate and phosphate uptake kinetics in a forested headwater stream using pulse nutrient additions

    Science.gov (United States)

    Griffiths, N. A.; Mulholland, P. J.

    2011-12-01

    We used the Tracer Additions for Spiraling Curve Characterization (TASCC) approach to quantify seasonal variability in ambient nutrient spiraling metrics and nutrient uptake kinetics in the West Fork of Walker Branch, a forested headwater stream in eastern Tennessee, USA. We performed instantaneous additions of nitrate (NO3-) and phosphate (PO4-3) separately with a conservative tracer (chloride, Cl-) during the following biologically-important time periods: autumn (during leaf fall, high organic matter [OM] standing stocks), winter (low OM standing stocks), spring (prior to canopy closure), and summer (closed canopy). We predicted that nutrient demand would be highest during autumn and spring, as OM inputs fuel heterotrophic respiration and high light availability stimulates autotrophic production, respectively. The measured ambient PO4-3 uptake rates (Vf-amb) followed our predictions, with the highest Vf-amb rates in autumn (Vf-amb = 2.8 mm/min) and spring (Vf-amb = 2.9 mm/min), and undetectable uptake in winter. Further, maximum areal PO4-3 uptake rates (Umax) were higher in autumn (Umax = 297 μg/m2/min) than spring (Umax = 106 μg/m2/min), possibly due to greater nutrient demand of heterotrophs on leaf litter accumulations. Contrary to our predictions, ambient NO3- uptake rates were highest in autumn and winter (autumn: Vf-amb = 2.8 mm/min, winter: Vf-amb = 2.4 mm/min), and lowest in spring (Vf-amb = 1.0 mm/min). The higher than expected Vf-amb rate in winter may be due to higher stream metabolism rates and thus greater nitrogen demand; the lower than expected Vf-amb rate in spring may reflect an alleviation of nitrogen demand due to high ammonium concentrations during this time. As the demand for both nitrogen and phosphorus in Walker Branch is greatest in autumn, future work will characterize how nutrient metrics change during this dynamic time period (i.e., before, during, and after leaf fall).

  1. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  2. Equilibrium and kinetics studies on the adsorption of substituted phenols by a Cu–Al layered double hydroxide intercalated with 1-naphthol-3,8-disulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, Tomohito, E-mail: kameda@env.che.tohoku.ac.jp; Uchiyama, Tomomi; Yoshioka, Toshiaki

    2016-06-15

    Cu–Al layered double hydroxides (Cu–Al LDHs) intercalated with 1-naphthol-3,8-disulfonate (1-N-3,8-DS{sup 2−}) were confirmed to easily take up substituted phenols with electron-poor benzene rings from aqueous solution. The uptake of the substituted phenols by the 1-N-3,8-DS• Cu–Al LDH was better expressed by the Langmuir-type than the Dubinin−Radushkevich (DR) adsorption model. The negative values of ΔG for all substituted phenols indicate that the adsorption process is spontaneous regardless of the temperature. The |ΔH| values for all substituted phenols are less than 20 kJ mol{sup −1}, indicating that the phenol uptake by this LDH can be considered a physical adsorption process caused by π–π stacking interactions. Although the uptake of the substituted phenols by the 1-N-3,8-DS• Cu–Al LDH can be considered a physical adsorption process caused by π–π stacking interactions, it is closely related chemically to Langmuir-type adsorption. The uptake of various substituted phenols by 1-N-3,8-DS• Cu–Al LDH followed the pseudo-second-order kinetic model. By fitting the results of phenol uptake by 1-N-3,8-DS• Cu–Al LDH to the Eyring equation, it was found that positive values of ΔH{sup ‡} and ΔG{sup ‡} indicated the presence of an energy barrier in the adsorption process. Furthermore, the positive value of ΔH{sup ‡} confirmed that the process was endothermic. - Highlights: • The uptake of the substituted phenols was better expressed by the Langmuir-type. • The uptake can be considered a physical adsorption process caused by π–π stacking interactions. • The uptake followed the pseudo-second-order kinetic model.

  3. Quantification of nanowire uptake by live cells

    KAUST Repository

    Margineanu, Michael B.

    2015-05-01

    Nanostructures fabricated by different methods have become increasingly important for various applications at the cellular level. In order to understand how these nanostructures “behave” and for studying their internalization kinetics, several attempts have been made at tagging and investigating their interaction with living cells. In this study, magnetic iron nanowires with an iron oxide layer are coated with (3-Aminopropyl)triethoxysilane (APTES), and subsequently labeled with a fluorogenic pH-dependent dye pHrodo™ Red, covalently bound to the aminosilane surface. Time-lapse live imaging of human colon carcinoma HCT 116 cells interacting with the labeled iron nanowires is performed for 24 hours. As the pHrodo™ Red conjugated nanowires are non-fluorescent outside the cells but fluoresce brightly inside, internalized nanowires are distinguished from non-internalized ones and their behavior inside the cells can be tracked for the respective time length. A machine learning-based computational framework dedicated to automatic analysis of live cell imaging data, Cell Cognition, is adapted and used to classify cells with internalized and non-internalized nanowires and subsequently determine the uptake percentage by cells at different time points. An uptake of 85 % by HCT 116 cells is observed after 24 hours incubation at NW-to-cell ratios of 200. While the approach of using pHrodo™ Red for internalization studies is not novel in the literature, this study reports for the first time the utilization of a machine-learning based time-resolved automatic analysis pipeline for quantification of nanowire uptake by cells. This pipeline has also been used for comparison studies with nickel nanowires coated with APTES and labeled with pHrodo™ Red, and another cell line derived from the cervix carcinoma, HeLa. It has thus the potential to be used for studying the interaction of different types of nanostructures with potentially any live cell types.

  4. Characterization of dietary Ni uptake in the rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Leonard, Erin M; Nadella, Sunita R; Bucking, Carol; Wood, Chris M

    2009-07-26

    We characterized dietary Ni uptake in the gastrointestinal tract of rainbow trout using both in vivo and in vitro techniques. Adult trout were fed a meal (3% of body mass) of uncontaminated commercial trout chow, labeled with an inert marker (ballotini beads). In vivo dietary Ni concentrations in the supernatant (fluid phase) of the gut contents averaged from 2 micromoll(-1) to 24 micromoll(-1), and net overall absorption efficiency of dietary Ni was approximately 50% from the single meal, similar to that for the essential metal Cu, adding to the growing evidence of Ni essentiality. The stomach and mid-intestine emerged as important sites of Ni uptake in vivo, accounting for 78.5% and 18.9% of net absorption respectively, while the anterior intestine was a site of net secretion. Most of the stomach uptake occurred in the first 4h. In vitro gut sac studies using radiolabeled Ni (at 30 micromoll(-1)) demonstrated that unidirectional uptake occurred in all segments, with area-weighted rates being highest in the anterior intestine. Differences between in vivo and in vitro results likely reflect the favourable uptake conditions in the stomach, and biliary secretion of Ni in the anterior intestine in vivo. The concentration-dependent kinetics of unidirectional Ni uptake in vitro were biphasic in nature, with a saturable Michaelis-Menten relationship observed at 1-30 micromoll(-1) Ni (K(m) - 11 micromoll(-1), J(max) - 53 pmolcm(-2)h(-1) in the stomach and K(m) - 42 micromoll(-1), J(max) - 215 pmolcm(-2)h(-1) in the mid-intestine), suggesting mediation by a channel or carrier process. A linear uptake relationship was seen at higher concentrations, indicative of simple diffusion. Ni uptake (at 30 micromoll(-1)) into the blood compartment was significantly reduced in the stomach by high Mg (50 mmoll(-1)), and in the mid-intestine by both Mg (50 mmoll(-1)) and Ca (50 mmoll(-1)). In both regions, kinetic analysis demonstrated reductions in J(max) with unchanged K

  5. Kinetics of the norepinephrine analog [76Br]-meta-bromobenzylguanidine in isolated working rat heart

    International Nuclear Information System (INIS)

    Raffel, David; Loc'h, Christian; Mardon, Karine; Maziere, Bernard; Syrota, Andre

    1998-01-01

    A related set of kinetic studies of the norepinephrine analog [ 76 Br]-meta-bromobenzylguanidine (MBBG) were performed with an isolated working rat heart preparation. A series of constant infusion studies over a wide range of MBBG concentrations allowed estimation of the Michaelis-Menten constants for transport by the neuronal norepinephrine transporter (uptake 1 ) and the extraneuronal uptake system (uptake 2 ). Pharmacological blocking studies with inhibitors of uptake 1 , uptake 2 and vesicular uptake were performed to delineate the relative importance of these norepinephrine handling mechanisms on the kinetics of MBBG in the rat heart. Bolus injection studies were done to assess the ability of compartmental modeling techniques to characterize the kinetics of MBBG. These studies demonstrate that MBBG shares many of the same uptake mechanisms as norepinephrine in the rat heart. PET imaging studies with MBBG would be useful for assessing sympathetic nerve status in the living human heart

  6. Kinetics of 13N-ammonia uptake in myocardial single cells indicating potential limitations in its applicability as a marker of myocardial blood flow

    International Nuclear Information System (INIS)

    Rauch, B.; Helus, F.; Grunze, M.; Braunwell, E.; Mall, G.; Hasselbach, W.; Kuebler, W.

    1985-01-01

    To study kinetics and principles of cellular uptake of 13 N-ammonia, a marker of coronary perfusion in myocardial scintigraphy, heart muscle cells of adult rats were isolated by perfusion with collagenase and hyaluronidase. Net uptake of 13 N, measured by flow dialysis, reached equilibrium within 20 sec in the presence of sodium bicarbonate and carbon dioxide (pH 7.4, 37 degrees C). Total extraction, 80 sec after the reaction start, was 786 +/- 159 mumol/ml cell volume. Cells destroyed by calcium overload were unable to extract 13 N-ammonia. Omission of bicarbonate and carbon dioxide reduced total extraction to 36% of control. 13 N-Ammonia uptake could also be reduced by 50 muM 4,4' diisothiocyanostilbene 2,2' disulfonic acid, by 100 micrograms/ml 1-methionine sulfoximine, and by preincubation with 5 muM free oleic acid. These results indicate that in addition to metabolic trapping by glutamine synthetase, the extraction of 13 N-ammonia by myocardial cells is influenced by cell membrane integrity, intracellular-extracellular pH gradient, and possibly an anion exchange system for bicarbonate. For this reason, the uptake of 13 N-ammonia may not always provide a valid measurement of myocardial perfusion

  7. High-dose inhaled salbutamol has no acute effects on aerobic capacity or oxygen uptake kinetics in healthy trained men

    DEFF Research Database (Denmark)

    Elers, J; Mørkeberg, Jakob; Jansen, T

    2012-01-01

    enrolled nine healthy well-trained men in a randomized, blinded, placebo-controlled crossover study. Subjects were randomized to inhalation of 40 puffs of 0.2 mg salbutamol or two placebo tablets and performed an incremental test to exhaustion and three submaximal tests at 75% of peak power to determine...... oxygen uptake kinetics. During the incremental test, there were no effects of inhaled salbutamol on VO(2max) in absolute or relative terms, and no effect on peak power and lactate threshold. During the submaximal test, we found no effects on the time constant, time delay, the mean response time or O(2...

  8. Uptake and depuration of gold nanoparticles in Daphnia magna

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Kern, Kristina; Hjorth, Rune

    2014-01-01

    This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics...

  9. Root water uptake and lateral interactions among root systems in a temperate forest

    Science.gov (United States)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  10. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  11. Basic microscopic theory of the distribution, transfer and uptake kinetics of dissolved radionuclides by suspended particulate matter - Part I; Theory development

    International Nuclear Information System (INIS)

    Abril, J.M.

    1998-01-01

    Recently much experimental effort has been focused on determining those factors which affect the kinetics and the final equilibrium conditions for the uptake of radionuclides from the aqueous phase by particulate matter. At present, some of these results appear to be either surprising or contradictory and introduce some uncertainty in which parameter values are most appropriate for environmental modelling. In this paper, we study the ionic exchange between the dissolved phase and suspended particles from a microscopic viewpoint, developing a mathematical description of the kinetic transfer and the k d distribution coefficients. The most relevant contribution is the assumption that the exchange of radionuclides occurs in a specific surface layer on the particles, with a non-zero thickness. A wide range of experimental findings can be explained with this theory. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Technical note: Influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies

    Directory of Open Access Journals (Sweden)

    G. Li

    2018-02-01

    Full Text Available Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney–Kim–Davis (CKD/Knopf–Pöschl–Shiraiwa (KPS methods, which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ. We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method or γKPS (derived with the KPS method can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg ∕ R0. On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity, to ensure not only unaffected laminar flow patterns but also other specific requirements for an

  13. Prior exercise speeds pulmonary oxygen uptake kinetics and increases critical power during supine but not upright cycling.

    Science.gov (United States)

    Goulding, Richie P; Roche, Denise M; Marwood, Simon

    2017-09-01

    What is the central question of this study? Critical power (CP) represents the highest work rate for which a metabolic steady state is attainable. The physiological determinants of CP are unclear, but research suggests that CP might be related to the time constant of phase II oxygen uptake kinetics (τV̇O2). What is the main finding and its importance? We provide the first evidence that τV̇O2 is mechanistically related to CP. A reduction of τV̇O2 in the supine position was observed alongside a concomitant increase in CP. This effect may be contingent on measures of oxygen availability derived from near-infrared spectroscopy. Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance and is related to the time constant of phase II pulmonary oxygen uptake kinetics (τV̇O2). To test the hypothesis that this relationship is causal, we determined the impact of prior exercise ('priming') on CP and τV̇O2 in the upright and supine positions. Seventeen healthy men were assigned to either upright or supine exercise groups, whereby CP, τV̇O2 and muscle deoxyhaemoglobin kinetics (τ [HHb] ) were determined via constant-power tests to exhaustion at four work rates with (primed) and without (control) priming exercise at ∼31%Δ. During supine exercise, priming reduced τV̇O2 (control 54 ± 18 s versus primed 39 ± 11 s; P exercise had no effect on τV̇O2 (control 37 ± 12 s versus primed 35 ± 8 s; P = 0.82), τ [HHb] (control 10 ± 5 s versus primed 14 ± 10 s; P = 0.10) or CP (control 235 ± 42 W versus primed 232 ± 35 W; P = 0.57) during upright exercise. The concomitant reduction of τV̇O2 and increased CP following priming in the supine group, effects that were absent in the upright group, provide the first experimental evidence that τV̇O2 is mechanistically related to critical power. The increased τ [HHb+Mb] suggests that this effect was mediated, at least in part, by improved oxygen

  14. Comparison of molecular dynamics and kinetic modeling of gas-surface interactions

    NARCIS (Netherlands)

    Frezzotti, A.; Gaastra - Nedea, S.V.; Markvoort, A.J.; Spijker, P.; Gibelli, L.

    2008-01-01

    The interaction of a dilute monatomic gas with a solid surface is studied byMolecular Dynamics (MD) simulations and by numerical solutions of a recently proposed kinetic model. Following previous investigations, the heat transport between parallel walls and Couette flow have been adopted as test

  15. Nitrogen nutrition of Salvinia natans: Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and nitrate

    DEFF Research Database (Denmark)

    Jampeetong, Arunothai; Brix, Hans

    2009-01-01

    In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3-, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3- had lower growth rates (0.17 ± 0.01 g g-1 d-1), shorter roots, smaller...... leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3- (RGR = 0.28 ± 0.01 g g-1 d-1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6-14 times higher than the maximal uptake rate of NO3- and the minimum concentration...... for uptake (Cmin) was lower for NH4+ than for NO3-. Plants supplied with NO3- had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3- was primarily reduced in the roots, but NRA levels were generally low (NH4...

  16. Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

    International Nuclear Information System (INIS)

    Zhang Peng; Feng Zheng-Peng; Luo Si-Qiang; Wang Zhe

    2016-01-01

    We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size. (paper)

  17. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  18. Competition between organics and bromide at the aqueous solution-air interface as seen from ozone uptake kinetics and X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Lee, Ming-Tao; Brown, Matthew A; Kato, Shunsuke; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2015-05-14

    A more detailed understanding of the heterogeneous chemistry of halogenated species in the marine boundary layer is required. Here, we studied the reaction of ozone (O3) with NaBr solutions in the presence and absence of citric acid (C6H8O7) under ambient conditions. Citric acid is used as a proxy for oxidized organic material present at the ocean surface or in sea spray aerosol. On neat NaBr solutions, the observed kinetics is consistent with bulk reaction-limited uptake, and a second-order rate constant for the reaction of O3 + Br(-) is 57 ± 10 M(-1) s(-1). On mixed NaBr-citric acid aqueous solutions, the uptake kinetics was faster than that predicted by bulk reaction-limited uptake and also faster than expected based on an acid-catalyzed mechanism. X-ray photoelectron spectroscopy (XPS) on a liquid microjet of the same solutions at 1.0 × 10(-3)-1.0 × 10(-4) mbar was used to obtain quantitative insight into the interfacial composition relative to that of the bulk solutions. It revealed that the bromide anion becomes depleted by 30 ± 10% while the sodium cation gets enhanced by 40 ± 20% at the aqueous solution-air interface of a 0.12 M NaBr solution mixed with 2.5 M citric acid in the bulk, attributed to the role of citric acid as a weak surfactant. Therefore, the enhanced reactivity of bromide solutions observed in the presence of citric acid is not necessarily attributable to a surface reaction but could also result from an increased solubility of ozone at higher citric acid concentrations. Whether the acid-catalyzed chemistry may have a larger effect on the surface than in the bulk to offset the effect of bromide depletion also remains open.

  19. Uptake of cadmium from hydroponic solutions by willows (Salix spp ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2011-11-16

    Nov 16, 2011 ... which indicated that cadmium uptake across the plasma membrane was ... to cadmium pollution in water-soil-plant systems because .... plants were separated into roots and shoots, blotted dry with paper tissue .... Analysis of the kinetic constants for cadmium uptake ..... proteins (Welch and Norvell, 1999).

  20. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  1. Kinetic Analysis of the Uptake and Release of Fluorescein by Metal-Organic Framework Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tobias Preiß

    2017-02-01

    Full Text Available Metal-organic framework nanoparticles (MOF NPs are promising guest-host materials with applications in separation, storage, catalysis, and drug delivery. However, on- and off-loading of guest molecules by porous MOF nanostructures are still poorly understood. Here we study uptake and release of fluorescein by two representative MOF NPs, MIL-100(Fe and MIL-101(Cr. Suspensions of these MOF NPs exhibit well-defined size distributions and crystallinity, as verified by electron microscopy, dynamic light scattering, and X-ray diffraction. Using absorbance spectroscopy the equilibrium dissociation constants and maximum numbers of adsorbed fluorescein molecules per NP were determined. Time-resolved fluorescence studies reveal that rates of release and loading are pH dependent. The kinetics observed are compared to theoretical estimates that account for bulk diffusion into NPs, and retarded internal diffusion and adsorption rates. Our study shows that, rather than being simple volumetric carriers, MOF-NPs are dominated by internal surface properties. The findings will help to optimize payload levels and develop release strategies that exploit varying pH for drug delivery.

  2. Kinetic box models for the uptake of radionuclides and heavy metals by suspended particulate matter: equivalence between models and its implications

    International Nuclear Information System (INIS)

    Barros, H.; Abril, J.M.

    2008-01-01

    In recent years an increasing experimental effort has been paid to the study of the sorption process of radionuclides and heavy metals by particulate matter in aquatic environments. This has led to the development of different kinetic box models. Most of them are variations of two basic approaches: one containing several (up to three) parallel reactions while the other involves consecutive reactions. All the reactions are reversible (irreversibility is contained as a particular case) with concentration independent coefficients. The present work provides analytical solutions and demonstrates that both approaches are mathematically equivalent. That is, both models produce the same analytical solution for the uptake curve (time course of the concentrations in the dissolved phase), which is illustrated using literature data. This result unifies the description of the observed behaviour, but it brings up the question of the physical meaning of the involved coefficients. Finally, the mathematical relationship developed here serves to discuss some limitations found in recent attempts in literature devoted to distinguish the actual uptake mechanism

  3. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    Science.gov (United States)

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  4. VO2 OFF TRANSIENT KINETICS IN EXTREME INTENSITY SWIMMING

    Directory of Open Access Journals (Sweden)

    Ana Sousa

    2011-09-01

    Full Text Available Inconsistencies about dynamic asymmetry between the on- and off- transient responses in oxygen uptake are found in the literature. Therefore, the purpose of this study was to characterize the oxygen uptake off-transient kinetics during a maximal 200-m front crawl effort, as examining the degree to which the on/off regularity of the oxygen uptake kinetics response was preserved. Eight high level male swimmers performed a 200-m front crawl at maximal speed during which oxygen uptake was directly measured through breath-by-breath oxymetry (averaged every 5 s. This apparatus was connected to the swimmer by a low hydrodynamic resistance respiratory snorkel and valve system. Results: The on- and off-transient phases were symmetrical in shape (mirror image once they were adequately fitted by a single-exponential regression models, and no slow component for the oxygen uptake response was developed. Mean (± SD peak oxygen uptake was 69.0 (± 6.3 mL·kg-1·min-1, significantly correlated with time constant of the off- transient period (r = 0.76, p < 0.05 but not with any of the other oxygen off-transient kinetic parameters studied. A direct relationship between time constant of the off-transient period and mean swimming speed of the 200-m (r = 0.77, p < 0.05, and with the amplitude of the fast component of the effort period (r = 0.72, p < 0.05 were observed. The mean amplitude and time constant of the off-transient period values were significantly greater than the respective on- transient. In conclusion, although an asymmetry between the on- and off kinetic parameters was verified, both the 200-m effort and the respectively recovery period were better characterized by a single exponential regression model

  5. Effect of interaction of heavy metals on (Na+-K+) ATPase and uptake of 3H-DA and 3H-NA in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Chandra, S.V.; Murthy, R.C.; Husain, T.; Bansal, S.K.

    1984-01-01

    The effect of interaction of Mn 2+ , Pb 2+ and CD 2+ on (Na + -K + ) ATPase and uptake of labelled dopamine ( 3 H-DA) and labelled noradrenaline ( 3 H-NA) were studied in vitro in rat brain synaptosomes. The inhibition of (Na + -K + )ATPase by Pb 2+ + Cd 2+ alone was concentration dependent, however, Mn 2+ had almost no effect on the activity of this enzyme. Interaction of Cd 2+ with either Pb 2+ or Mn 2+ was almost powerful in inhibiting the activity of synaptosomal transport ATPase. Lower concentrations of Pb 2+ increased while higher concentrations inhibited synaptosomal uptake of 3 H-DA and 3 H-NA. Lower concentrations of CD 2+ increased the uptake of 3 H-DA while at concentrations of 100 μM, the uptake was inhibited, this metal had strong inhibitory effect on the uptake of 3 H-NA. Mn 2+ had inhibited the uptake of labelled amines. Interaction of Mn 2+ with Pb 2+ or Cd 2+ produced inhibition on the uptake of 3 H-DA and 3 H-NA. The results of the uptake of biogenic amines in the presence of metal ions apparently had no correlation with the activity og (Na + -K + ) ATPase which is involved in the active transport of cations across cell membranes. (author)

  6. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands

    DEFF Research Database (Denmark)

    Carvalho, Pedro N; Basto, M Clara P; Almeida, C Marisa R

    2014-01-01

    the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results....... This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation...

  7. Acute toxicity, uptake and accumulation kinetics of nickel in an invasive copepod species: Pseudodiaptomus marinus.

    Science.gov (United States)

    Tlili, Sofiène; Ovaert, Julien; Souissi, Anissa; Ouddane, Baghdad; Souissi, Sami

    2016-02-01

    Pseudodiaptomus marinus is a marine calanoid copepod originating of the Indo-Pacific region, who has successfully colonized new areas and it was recently observed in the European side of the Mediterranean Sea as well as in the North Sea. Actually, many questions were posed about the invasive capacity of this copepod in several non-native ecosystems. In this context, the main aim of this study was to investigate the tolerance and the bioaccumulation of metallic stress in the invasive copepod P. marinus successfully maintained in mass culture at laboratory conditions since 2 years. In order to study the metallic tolerance levels of P. marinus, an emergent trace metal, the nickel, was chosen. First, lethal concentrations determination experiments were done for 24, 48, 72 and 96 h in order to calculated LC50% but also to select a relevant ecological value for the suite of experiments. Then, three types of experiments, using a single concentration of nickel (correspond the 1/3 of 96 h-LC50%) was carried in order to study the toxico-kinetics of nickel in P. marinus. Concerning lethal concentrations, we observed that P. marinus was in the same range of sensitivity compared to other calanoid copepods exposed to nickel in the same standardized experimental conditions. Results showed that the uptake of nickel in P. marinus depends from the pathways of entrance (water of food), but also that Isochrysis galbana, used as a food source, has an important bioaccumulation capacity and a rapid uptake of nickel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Uptake of exogenous spermidine by rat lungs perfused in situ

    International Nuclear Information System (INIS)

    Rannels, D.E.; Addison, J.L.

    1987-01-01

    Uptake of the polyamine spermidine (SPD) from the pulmonary circulation was characterized by using ventilated rat lungs perfused in situ with Krebs-Henseleit-bicarbonate buffer containing 4.5% bovine serum albumin, 5.6 mM glucose, and 20 amino acids at plasma levels. [ 14 C]SPD was accumulated by the lungs in a time- and concentration-dependent manner. The pathway of SPD uptake exhibited saturation kinetics with an apparent K/sub m/ in the range of 1 μM and a V/sub max/ of 450-540 pmol/g lung min. SPD uptake was inhibited by the naturally occurring polyamines putrescine and spermine (SPM) and by the inhibitor of polyamine synthesis, methyglyoxal bis(guanylhydrazone) (MGBG). Inhibition of SPD uptake by SPM followed competitive kinetics; although MGBG was also a competitive inhibitor of SPD uptake, MGBG was less effective than SPM. These observations indicate that SPD is taken up from the pulmonary circulation by a carrier-mediated pathway that is inhibited by other natural polyamines and by MGBG and exhibits by other natural polyamines and by MGBG and exhibits substrate affinity in the range of plasma SPD concentrations

  9. Uptake of exogenous spermidine by rat lungs perfused in situ

    Energy Technology Data Exchange (ETDEWEB)

    Rannels, D.E.; Addison, J.L.

    1987-01-01

    Uptake of the polyamine spermidine (SPD) from the pulmonary circulation was characterized by using ventilated rat lungs perfused in situ with Krebs-Henseleit-bicarbonate buffer containing 4.5% bovine serum albumin, 5.6 mM glucose, and 20 amino acids at plasma levels. (/sup 14/C)SPD was accumulated by the lungs in a time- and concentration-dependent manner. The pathway of SPD uptake exhibited saturation kinetics with an apparent K/sub m/ in the range of 1 ..mu..M and a V/sub max/ of 450-540 pmol/g lung min. SPD uptake was inhibited by the naturally occurring polyamines putrescine and spermine (SPM) and by the inhibitor of polyamine synthesis, methyglyoxal bis(guanylhydrazone) (MGBG). Inhibition of SPD uptake by SPM followed competitive kinetics; although MGBG was also a competitive inhibitor of SPD uptake, MGBG was less effective than SPM. These observations indicate that SPD is taken up from the pulmonary circulation by a carrier-mediated pathway that is inhibited by other natural polyamines and by MGBG and exhibits by other natural polyamines and by MGBG and exhibits substrate affinity in the range of plasma SPD concentrations.

  10. Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (phaeophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Haines, K.C. (Univ. of Texas Marine Science Inst., St. Croix, US Virgin Islands); Wheeler, P.A.

    1978-01-01

    NH/sub 4//sup +/ and NO/sub 3//sup -/ uptake were measured by continuous sampling with an autoanalyzer. For Hypnea musciformis (Wulfen) Lamouroux, NO/sub 3//sup -/ uptake followed saturable kinetics (K/sub s/ = 4.9 ..mu..g-at N.l/sup -1/, V/sub max/ = 2.85 ..mu..g-at N-g(wet)/sup -1/.h/sup -1/). The ammonium uptake data fit a truncated hyperbola, i.e., saturation was not reached at the concentrations used, NO/sub 3//sup -/ uptake was reduced one-half in the presence of NH/sub 4//sup +/, but presence of NO/sub 3//sup -/ had no effect on NH/sub 4//sup +/ uptake. Darkness reduced both NO/sub 3//sup -/ and NH/sub 4//sup +/ uptake by one-third to one-half. For Macrocystis pyrifera (L.) C. Agardh. NO/sub 3//sup -/ uptake followed saturable kinetics; K/sub s/ = 13.1 ..mu..g-at N.l/sup -1/, V/sub max/ = 3.05 ..mu..g-at N.g(wet)/sup -1/.h/sup -1/. NH/sub 4//sup +/ uptake showed saturable kinetics at concentrations below 22 ..mu..g-at N.l/sup -1/(K/sub s/ = 5.3 ..mu..g-at N.l/sup -1/, V/sub max/ = 2.38 ..mu..g-at N g(wet)/sup -1/.h/sup -1/); at higher concentrations uptake increased linearly with concentration. NO/sub 3//sup -/ and NH/sub 4//sup +/ were taken up simultaneously; presence of one form did not affect uptake of the other.

  11. Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses

    International Nuclear Information System (INIS)

    Zhu, Song; Zhu, Bin; Huang, Aiguo; Hu, Yang; Wang, Gaoxue; Ling, Fei

    2016-01-01

    Highlights: • MWCNTs ( 100 mg/L) had adverse effects on the cell proliferation. MWCNTs were clearly visible in lysosome, vacuole, endosome, mitochondria, multivesicular body and localization in the perinuclear region. The uptake kinetics data demonstrated that the maximum MWCNTs content (209.61 mg/g) was reached at 3 h, and a steady state was reached after 18 h. Based on the combined results of transmission electron microscope, endocytosis inhibition experiments and endocytosis-related genes (END3, END6, Sla2 and Rsp5) expression analysis, we elucidated MWCNTs uptake mechanism: (i) via a direct penetration of single MWCNTs; (ii) via endocytosis of single MWCNTs; and (iii) via endocytosis of MWCNTs aggregates. The percentage of apoptosis was significant increased at 600 mg/L. The decrease of mitochondrial transmembrane potential and the leakage of cytochrome c shown dose-dependent manners. Interestingly, there was no significant increase of reactive oxygen species (ROS). The apoptosis-related genes (SOD1, SOD2, Yca1, Nma111 and Nuc1) were significant changed. These results obtained in our study demonstrated that oxidized MWCNTs induce Saccharomyces cerevisiae apoptosis via mitochondrial impairment pathway.

  12. Defining Nitrogen Kinetics for Air Break in Prebreath

    Science.gov (United States)

    Conkin, Johnny

    2010-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe(PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. METHODS: Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without airbreaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and airbreaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the airbreak was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = (Delta)P defined decompression dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. RESULTS: The log likelihood (LL) without decompression dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. CONCLUSION: The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included airbreaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an airbreak in PB within the narrow range of tested conditions.

  13. Defining Nitrogen Kinetics for Air Break in Prebreathe

    Science.gov (United States)

    Conkin, Johnny

    2009-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe (PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without air breaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and air breaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the air break was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = delta P defined DCS dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. The log likelihood (LL) without DCS dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included air breaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an air break in PB within the narrow range of tested conditions.

  14. Uptake and Loss Kinetics of 57Co, 85Sr and 134Cs on Blood Cockle Anadara granosa

    International Nuclear Information System (INIS)

    Srisuksawad, K; Prasertchiewchan, N.; Tungkitjanukij, S.; Pakkong, P.

    2005-02-01

    Adult blood cockle (A. granosa) were exposed in the laboratory to 57 Co, 85 Sr, and 134 Cs in seawater at average +- s.e. stable activities of 0.725+-0.010 Bq/ml, 0.917+-0.066 Bq/ml and 1.37+-0.105 Bq/ml, respectively. The study aims to determine key contaminant bioaccumulation, retention and loss parameters for bio-indicator organisms used in assessment of the impact of the effluent discharge from nuclear and non-nuclear facilities on coastal area. Natural coastal water conditions in dry season with a salinity of 30 ppt, at 30οC and p H 8.1+-0.1 of the study area (Bang Pa Kong river basin) were simulated as far as practicable. 19 d uptake of radiotracers showed that blood cockle did not accumulate 134 Cs and 85 Sr but considerably accumulated 57 Co. Non-linear regression model fitting of a 1-compartment exponential uptake model derived overall weight concentration factors for the whole cockle at saturation of 687.6+-6.23 ml/g for 57 Co. 22 d loss experiment showed that 57 Co is tightly bounded in blood cockle and 63.2+-15.2% retained in the whole body. Loss of 57 Co displayed 2-compartment loss kinetic. The calculated half time for the short and long components of loss model was estimated 1.4 dand 41 d, respectively

  15. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    Science.gov (United States)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  16. Neutron radiography for the study of water uptake in painting canvases and preparation layers

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.J. [Swiss Institute for Art Research (SIK-ISEA), Zurich (Switzerland); FOM Institute AMOLF, Amsterdam (Netherlands); Hendrickx, R.; Ferreira, E.S.B. [Swiss Institute for Art Research (SIK-ISEA), Zurich (Switzerland); Eijkel, G.; Cerjak, I. [FOM Institute AMOLF, Amsterdam (Netherlands); Kaestner, A. [Paul Scherrer Institut, Neutron Imaging and Activation Group, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland)

    2015-11-15

    Easel paintings on canvas are subjected to alteration mechanisms triggered or accelerated by moisture. For the study of the spatial distribution and kinetics of such interactions, a moisture exposure chamber was designed and built to perform neutron radiography experiments. Multilayered sized and primed canvas samples were prepared for time-resolved experiments in the ICON cold neutron beamline. The first results show that the set-up gives a good contrast and sufficient resolution to visualise the water uptake in the layers of canvas, size and priming. The results allow, for the first time, real-time visualisation of the interaction of water vapour with such layered systems. This offers important new opportunities for relevant, spatially and time-resolved material behaviour studies and opens the way towards numerical modelling of the process. These first results show that cellulose fibres and glue sizing have a much stronger water uptake than the chalk-glue ground. Additionally, it shows that the uptake rate is not uniform throughout the thickness of the sized canvas. With prolonged moisture exposure, a higher amount of water is accumulating at the lower edge of the canvas weave suggesting a decrease in permeability in the sized canvas with increased water content. (orig.)

  17. Compost mixture influence of interactive physical parameters on microbial kinetics and substrate fractionation.

    Science.gov (United States)

    Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile

    2010-01-01

    Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. 2010 Elsevier Ltd. All rights reserved.

  18. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  19. Kinetic energy and added mass of hydrodynamically interacting gas bubbles in liquid

    NARCIS (Netherlands)

    Kok, Jacobus B.W.

    1988-01-01

    By averaging the basic equations on microscale, expressions are derived for the effective added mass density and the kinetic energy density of a mixture of liquid and gas bubbles. Due to hydrodynamic interaction between the bubbles there appears to be a difference between the effective added mass

  20. Organic N cycling in Arctic ecosystems: Quantifying root uptake kinetics and temporal variability of soil amino acids.

    Science.gov (United States)

    Homyak, P. M.; Iverson, S. L.; Slessarev, E.; Marchus, K.; Schimel, J.

    2017-12-01

    Arctic ecosystems are undergoing shifts in plant community composition with increased warming. How these changes may alter ecosystem function is not well constrained, owing in part to uncertainties on how plant-soil feedbacks influence nutrient cycling. For nitrogen (N), in particular, understanding how these feedbacks may alter cycling rates is challenging because i) Arctic plants take up organic N (i.e., amino acids; AA) when inorganic N is limiting, yet ii) it has never been quantified, for any plant species growing in the wild, how much of its N demand is actually met by taking up AA. To advance fundamental understanding of plant-soil feedbacks as the Arctic warms, we are integrating field measurements of AA availability in N-limited tussock tundra (E. vaginatum) and a comparably less N-limited birch shrub tundra (Betula nana and Salix spp.) with a root uptake model. We used soil microdialysis to determine available AA concentrations in the soil solution and potential rates of AA diffusion and mass flow to roots at the Toolik Field Station in Alaska. These measurements are being combined with AA root uptake kinetic experiments using E. vaginatum to establish actual AA root uptake rates. We found that in the early growing season (June), total AA concentrations in the soil solution averaged 104 µg N L-1 and were similar to NH4+ across sites. In the late growing season (August), AA were the dominant form of N averaging 75 µg N L-1 while NH4+ decreased to 13 µg N L-1. In the early growing season AA diffusion rates in the soil averaged 200 ng N cm-2 s-1 and declined to 150 ng N cm-2 s-1 in the late growing season. Lysine, serine, and arginine were the most abundant AA and differences in the N status of sites did not affect total AA concentrations. Amino acids made up at least half of the N diffusing through the soil solution, suggesting they can subsidize the N demand of arctic plants. Ongoing field experiments at Toolik will be used to constrain actual AA root

  1. Decreased cisplatin uptake by resistant L1210 leukemia cells

    International Nuclear Information System (INIS)

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  2. Studies on the kinetics of absorption of phosphorus by rice (Orysa sativa L.) and beans (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    Baraibar, A.; Villamil, J.; Fiore, M.F.; Marcondes, R.F.; Muraoka, T.; Cabral, C.P.; Malavolta, M.L.; Malavolta, E.

    1987-01-01

    Three experiments were conducted under controlled conditions with the objectives of evaluating the effect of different concentrations of phosphorus and on the presence of other ions on the kinetic of absorption. Excised roots of rice and bean were placed in aereated solutions containing increasing concentrations of NaH 2 PO 4 (10 -7 M to 5x10 -2 M) during 90 minutes. The rate of absorption (v = umols P/g dry matter) and the kinetic constants Vmax and Km were determined. Similar procedure was used to to evaluate the interaction of Mg +2 , Al +3 , K + , N-NH 4 + , N-NO 3 - and N-ureia in the uptake of phosphorus during 120 minutes. In another experiment, the effect of the presence of Mg +2 and/for Al +3 in the uptake and redistribution of phosphorus, was evaluated by varying the external concentration (1 ppm, 5 ppm, 10 ppm and 20 ppm) during a period of 17 hours, and utilizing whole rice plants. It was observed a dual mechanism, with two phases following the Michaelis-Menten kinetics and with transition phase 1 - 50 x 10 -5 M. The best explanation of the experimental data was obtained, by transforming the data in accordance with HOFSTEE (1952). Bean was more efficient than rice in the first phase of uptake (higher Vmax). Al 3 had a clear stimulatory effect on the uptake of phosphorus, promoting, however, the anion fixation in the root at lower concentrations. At the highest concentrations (20 ppm) of phosphorus this effect was not evident. No effect on the uptake was observed with Mg +2 , K + and different forms of nitrogen. Urea could have a depressive effect although, not significant. Possible mechanisms involved are discussed. (author) [pt

  3. Identification of a single sinusoidal bile salt uptake system in skate liver

    International Nuclear Information System (INIS)

    Fricker, G.; Hugentobler, G.; Meier, P.J.; Kurz, G.; Boyer, J.L.

    1987-01-01

    To identify the sinusoidal bile acid uptake system(s) of skate liver, photoaffinity labeling and kinetic transport studies were performed in isolated plasma membranes as well as intact hepatocytes. In both preparations photoaffinity labeling with the photolabile bile salt derivative revealed the presence of a predominant bile salt binding polypeptide with an apparent molecular weight of 54,000. The [ 3 H]-labeling of this polypeptide was inhibited by taurocholate and cholate in a concentration-dependent manner and was virtually abolished by 1 mM of the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Kinetic studies of hepatic uptake with taurocholate, cholate, and the photoreactive bile salt derivative indicated the involvement of a single transport system, and all three substrates mutually competed with the uptake of each other. Finally, irreversible inhibition of the bile salt uptake system of photoaffinity labeling of hepatocytes with high concentrations of photolabile derivative reduced the V max but the K m of taurocholate uptake. These findings strongly indicate that a single polypeptide with an apparent molecular weight of 54,000 is involved in sinusoidal bile salt uptake into skate hepatocytes. These findings contrast with similar studies in rat liver that implicate both a 54,000- and 48,000-K polypeptide in bile salt uptake and are consistent with a single Na + -independent transport mechanism for hepatic bile salt uptake in this primitive vertebrate

  4. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Kimelberg, H.K.; Pang, S.; Treble, D.H.

    1989-01-01

    In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems

  5. N-isopropyl-[123I]p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Horst, W.D.; Braun, L.; Oldendorf, W.H.; Hattner, R.; Parker, H.

    1980-01-01

    The kinetics of N-isopropyl-p-[ 123 I]iodoamphetamine in rat brains were determined by serial measurements of brain uptake index (BUI) after intracarotid injection; also studied were its effects on amine uptake and release in rat's brain cortical synaptosomes; and its in vivo distribution in the dog and monkey. No specific localization in brain nuclei of the dog was seen, but there was progressive accumulation in the eyes. Rapid initial brain uptake in the ketamine-sedated monkey was noted, and further slow brain uptake occurred during the next 20 min but without retinal localization. High levels of brain activity were maintained for several hours. The quantitative initial single-pass clearance of the agent in the brain suggests its use in evaluation of regional brain perfusion. Its interaction with brain amine-binding sites suggests its possible application in studies of cerebral amine metabolism

  6. Hepatic bilirubin uptake in the isolated perfused rat liver is not facilitated by albumin binding

    International Nuclear Information System (INIS)

    Stollman, Y.R.; Gaertner, U.; Theilmann, L.; Ohmi, N.; Wolkoff, A.W.

    1983-01-01

    Bilirubin uptake by the liver has kinetic characteristics which suggest carrier-mediation. Bilirubin is readily bound to albumin. A liver cell surface receptor for albumin has been postulated. The present study was designed to examine directly whether albumin facilitates the hepatic uptake of bilirubin and whether uptake of bilirubin depends on binding to albumin. Rat liver was perfused with a protein-free fluorocarbon medium, and single-pass uptake of 1, 10, or 200 nmol of [ 3 H]bilirubin was determined after injection as an equimolar complex with 125 I-albumin, with 125 I-ligandin, or free with only a [ 14 C]sucrose reference. Uptake of 10 nmol of [ 3 H]bilirubin was 67.5 +/- 3.7% of the dose when injected with 125 I-albumin, 67.4 +/- 6.5% when injected with 125 I-ligandin, and 74.9 +/- 2.4% when injected with [ 14 C]sucrose (P greater than 0.1). At 200 nmol, uptake fell to 46.4 +/- 3.1% ( 125 I-albumin) and 63.3 +/- 3.4% [( 14 C]sucrose) of injected [ 3 H]bilirubin (P less than 0.01), which suggests saturation of the uptake mechanism. When influx was quantitated by the model of Goresky, similar results were obtained. When [ 3 H]bilirubin was injected simultaneously with equimolar 125 I-albumin and a [ 14 C]sucrose reference, there was no delay in 125 I-albumin transit as compared with that of [ 14 C]sucrose. This suggested that the off-rate of albumin from a putative hepatocyte receptor would have to be very rapid, which is unusual for high affinity receptor-ligand interaction. There was no evidence for facilitation of bilirubin uptake by binding to albumin or for interaction of albumin with a liver cell surface receptor. These results suggest that the hepatic bilirubin uptake mechanism is one of high affinity which can extract bilirubin from circulating carriers such as albumin, ligandin, or fluorocarbon

  7. Exploring the interaction of silver nanoparticles with pepsin and its adsorption isotherms and kinetics.

    Science.gov (United States)

    Li, Xiangrong; Wang, Kaiwei; Peng, Yanru

    2018-04-25

    The interaction of nanoparticles (NPs) with proteins is a topic of high relevance for the medical application of nanomaterials. In the study, a comprehensive investigation was performed for the binding properties of silver nanoparticles (AgNPs) to pepsin. The results indicate that the binding of AgNPs to pepsin may be a static quenching mechanism. Thermodynamic analysis reveals that AgNPs binds to pepsin is synergistically driven by enthalpy and entropy, and the major driving forces are hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy shows that AgNPs may induce microenvironmental changes of pepsin. The hydrophobicity of Trp is increased while the hydrophility of Tyr is increased. The adsorption of pepsin on AgNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fit well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicate that pseudo-second-order kinetic equation better describes the adsorption kinetics. The study provides an accurate and full basic data for clarifying the binding mechanism, adsorption isotherms and kinetic behaviors of AgNPs with pepsin. These fundamental works will provide some new insights into the safe and effective application of AgNPs in biological and medical areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Two-time temperature Green functions in kinetic theory and molecular hydrodynamics. 3. Account of interactions of hydrodynamic fluctuations

    International Nuclear Information System (INIS)

    Tserkovnikov, Yu.A.

    2001-01-01

    The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru

  9. COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACEOUS SURFACES; ANNUAL

    International Nuclear Information System (INIS)

    Radisav D. Vidic; Eric V. Borguet; Karl J. Johnson

    2000-01-01

    The overall goal of this research program is to gain fundamental understanding of the important chemistry and physics involved in mercury adsorption on carbonaceous surfaces. This knowledge will then be used to optimize adsorption processes and operating conditions to maximize the uptake of mercury within the required contact time. An additional long-term benefit of this research is the basic understanding of the Hg adsorption process, which may facilitate the design of new adsorbents for more efficient and cost-effective removal of Hg from a variety of effluent streams. Molecular modeling of the adsorption of Hg on carbonaceous surfaces will greatly increase the insight into the physics of the adsorption process and combined with in situ rate measurements of mercury adsorption and desorption (conventional and pulsed laser) on graphite using linear and nonlinear optical probes with real time optical resolution have the potential to provide fundamental insight into the process of mercury uptake by carbonaceous surfaces. Besides accurate assessment of key parameters influencing adsorption equilibrium, fundamental understanding of the kinetics of mercury adsorption, desorption, and diffusion will be developed in this study. These key physical and chemical processes postulated through molecular modeling efforts and verified by in situ measurements will be utilized to select (or develop) promising sorbents for mercury control, which will be tested under dynamic conditions using simulated flue gas

  10. Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.).

    Science.gov (United States)

    Xu, Xuehui; Wen, Bei; Huang, Honglin; Wang, Sen; Han, Ruixia; Zhang, Shuzhen

    2016-01-01

    This study presents a detailed kinetic investigation on the uptake, acropetal translocation and transformation of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.) by hydroponic exposure. Root uptake followed the order: BDE-47 > 6-MeO-BDE-47 > 6-OH-BDE-47, while 6-OH-BDE-47 was the most prone to acropetal translocation. Debromination rates of BDE-47 were 1.31 and 1.46 times greater than the hydroxylation and methoxylation rates, respectively. Transformation from BDE-47 to lower brominated OH/MeO-PBDEs occurred mainly through debromination first followed by hydroxylation or methoxylation. There was no transformation from 6-OH-BDE-47 or 6-MeO-BDE-47 to PBDEs. Methylation rate of 6-OH-BDE-47 was twice as high as that of 6-MeO-BDE-47 hydroxylation, indicating methylation of 6-OH-BDE-47 was easier and more rapid than hydroxylation of 6-MeO-BDE-47. Debromination and isomerization were potential metabolic pathways for 6-OH-BDE-47 and 6-MeO-BDE-47 in maize. This study provides important information for better understanding the mechanism on plant uptake and transformation of PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Characterization of gas-aerosol interaction kinetics using morphology dependent stimulated Raman scattering

    International Nuclear Information System (INIS)

    Aker, P.M.

    1993-01-01

    This study is aimed at characterizing the influence of aerosol surface structure on the kinetics of gas-aerosol interactions. Changes in gas phase chemical reaction rates as a function of exposure to a specific aerosol are measured with aerosols having different surface properties due to the composition and/or temperature of the material making up the aerosol. The kinetic data generated can be used directly in atmospheric modeling calculations. The surface structure of the aerosol is using morphology-dependent enhancement of simulated Raman scattering (MDSRS). Detailed dynamics of gas-aerosol interactions can be obtained by correlating the change in the reaction rate with change in surface structure and by monitoring the change in aerosol surface structure during, the course of the reaction. This dynamics information can be used to generate kinetic data for systems which are similar in nature to those studied, but are not amenable to laboratory investigation. We show here that increased MDSRS sensitivity is achieved by using an excitation laser source that has a narrow linewidth and we have been able to detect sulfate anion concentrations much lower than previously reported. We have shown that the linewidth of the MDSRS mode excited in a droplet is limited by the laser linewidth. This is a positive result for it eases our ability to quantify the MDSRS gain equation. This result also suggests that MDSRS signal size should be independent of droplet size, and preliminary experiments confirm this hypothesis

  12. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    Science.gov (United States)

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-09

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.

  13. Thermodynamic and kinetic approaches for evaluation of monoclonal antibody - Lipoprotein interactions.

    Science.gov (United States)

    Multia, Evgen; Sirén, Heli; Andersson, Karl; Samuelsson, Jörgen; Forssén, Patrik; Fornstedt, Torgny; Öörni, Katariina; Jauhiainen, Matti; Riekkola, Marja-Liisa

    2017-02-01

    Two complementary instrumental techniques were used, and the data generated was processed with advanced numerical tools to investigate the interactions between anti-human apoB-100 monoclonal antibody (anti-apoB-100 Mab) and apoB-100 containing lipoproteins. Partial Filling Affinity Capillary Electrophoresis (PF-ACE) combined with Adsorption Energy Distribution (AED) calculations provided information on the heterogeneity of the interactions without any a priori model assumptions. The AED calculations evidenced a homogenous binding site distribution for the interactions. Quartz Crystal Microbalance (QCM) studies were used to evaluate thermodynamics and kinetics of the Low-Density Lipoprotein (LDL) and anti-apoB-100 Mab interactions. High affinity and selectivity were observed, and the emerging data sets were analysed with so called Interaction Maps. In thermodynamic studies, the interaction between LDL and anti-apoB-100 Mab was found to be predominantly enthalpy driven. Both techniques were also used to study antibody interactions with Intermediate-Density (IDL) and Very Low-Density (VLDL) Lipoproteins. By screening affinity constants for IDL-VLDL sample in a single injection we were able to distinguish affinity constants for both subpopulations using the numerical Interaction Map tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A fast-start pacing strategy speeds pulmonary oxygen uptake kinetics and improves supramaximal running performance.

    Directory of Open Access Journals (Sweden)

    Tiago Turnes

    Full Text Available The focus of the present study was to investigate the effects of a fast-start pacing strategy on running performance and pulmonary oxygen uptake (VO2 kinetics at the upper boundary of the severe-intensity domain. Eleven active male participants (28±10 years, 70±5 kg, 176±6 cm, 57±4 mL/kg/min visited the laboratory for a series of tests that were performed until exhaustion: 1 an incremental test; 2 three laboratory test sessions performed at 95, 100 and 110% of the maximal aerobic speed; 3 two to four constant speed tests for the determination of the highest constant speed (HS that still allowed achieving maximal oxygen uptake; and 4 an exercise based on the HS using a higher initial speed followed by a subsequent decrease. To predict equalized performance values for the constant pace, the relationship between time and distance/speed through log-log modelling was used. When a fast-start was utilized, subjects were able to cover a greater distance in a performance of similar duration in comparison with a constant-pace performance (constant pace: 670 m±22%; fast-start: 683 m±22%; P = 0.029; subjects also demonstrated a higher exercise tolerance at a similar average speed when compared with constant-pace performance (constant pace: 114 s±30%; fast-start: 125 s±26%; P = 0.037. Moreover, the mean VO2 response time was reduced after a fast start (constant pace: 22.2 s±28%; fast-start: 19.3 s±29%; P = 0.025. In conclusion, middle-distance running performances with a duration of 2-3 min are improved and VO2 response time is faster when a fast-start is adopted.

  15. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    Markin, Craig J.; Spyracopoulos, Leo

    2012-01-01

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K D value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1 H– 15 N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k off ). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k off ∼ 3,000 s −1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k off from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k off values over a wide range, from 100 to 15,000 s −1 . The validity of line shape analysis for k off values approaching intermediate exchange (∼100 s −1 ), may be facilitated by more accurate K D measurements from NMR

  16. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    Science.gov (United States)

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  17. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    International Nuclear Information System (INIS)

    Katz, D.M.; Kimelberg, H.K.

    1985-01-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; [ 3 H]-5-HT). At concentrations in the range of 0.01 to 0.7 microM [ 3 H]-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM [ 3 H]-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of [ 3 H]-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of [ 3 H]-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate [ 3 H]-5-HT up to 44-fold at an external [ 3 H]-5-HT concentration of 10(-7) M. Inhibition of [ 3 H]-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of [ 3 H]-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on [ 3 H]-5-HT uptake

  18. Uptake and depuration of 131I by the edible periwinkle Littorina littorea: uptake from labelled seaweed (Chondrus crispus)

    International Nuclear Information System (INIS)

    Wilson, R.C.; Vives i Batlle, J.; McDonald, P.; Parker, T.G.

    2005-01-01

    Uptake and depuration experiments of 131 I from labelled seaweed (Chondrus crispus) by the edible periwinkle Littorina littorea have been performed. Radioiodine concentrations in winkles during uptake followed first-order kinetics with an uptake half-time of 1 day, and a calculated equilibrium concentration (C ∞ ) of 21 000 Bq kg -1 resulting in a transfer factor of 0.07 with respect to the labelled seaweed used as food. For depuration, a biphasic sequence with biological half-lives of 1 and 24 days was determined. The results suggest that in general, iodine turnover in periwinkles is slower than observed for other molluscs (monophasic biological half-lives in the order of 2-3 days). Both environmental media, food and seawater, can be significant sources of radioiodine for the winkle

  19. Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics.

    Science.gov (United States)

    Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali

    2016-04-01

    In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Studies on the influence of the interval after blood withdrawal and different storage temperatures on the uptake and kinetics of 14C-serotonin in human thrombocytes in vitro

    International Nuclear Information System (INIS)

    Jarosch, U.

    1978-07-01

    The active in-vitro uptake of 14 C-serotonin in human thrombocytes was investigated in dependence of the interval after blood withdrawal (10-130 min) and the storage temperature of the platelet-rich plasma (4 0 , 22 0 , 37 0 C) for different incubation periods (2, 5, 10 minutes at 37 0 C). The kinetic study of 14 C serotonin uptake showed a constant affinity to the thrombocyte serotonin transport system for all experimental conditions while the maximum reaction rate was clearly affected. One exception was the value determined after 130 minutes of storage time and a storage temperature of 37 0 C for a 14 C serotonin concentration of 10 -5 M which showed a reduced affinity. (orig./AJ) [de

  1. Reproducibility of O-(2-{sup 18}F-fluoroethyl)-L-tyrosine uptake kinetics in brain tumors and influence of corticoid therapy: an experimental study in rat gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Stegmayr, Carina; Schoeneck, Michael; Oliveira, Dennis; Willuweit, Antje [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); Filss, Christian; Coenen, Heinz H.; Langen, Karl-Josef [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Galldiks, Norbert [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Cologne, Department of Neurology, Cologne (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich (Germany)

    2016-06-15

    Positron emission tomography (PET) using O-(2-{sup 18}F-fluoroethyl)-L-tyrosine ({sup 18}F-FET) is a well-established method for the diagnostics of brain tumors. This study investigates reproducibility of {sup 18}F-FET uptake kinetics in rat gliomas and the influence of the frequently used dexamethasone (Dex) therapy. F98 glioma or 9L gliosarcoma cells were implanted into the striatum of 31 Fischer rats. After 10-11 days of tumor growth, the animals underwent dynamic PET after injection of {sup 18}F-FET (baseline). Thereafter, animals were divided into a control group and a group receiving Dex injections, and all animals were reinvestigated 2 days later. Tumor-to-brain ratios (TBR) of {sup 18}F-FET uptake (18-61 min p.i.) and the slope of the time-activity-curves (TAC) (18-61 min p.i.) were evaluated using a Volume-of-Interest (VOI) analysis. Data were analyzed by two-way repeated measures ANOVA and reproducibility by the intraclass correlation coefficient (ICC). The slope of the tumor TACs showed high reproducibility with an ICC of 0.93. A systematic increase of the TBR in the repeated scans was noted (3.7 ± 2.8 %; p < 0.01), and appeared to be related to tumor growth as indicated by a significant correlation of TBR and tumor volume (r = 0.77; p < 0.0001). After correction for tumor growth TBR showed high longitudinal stability with an ICC of 0.84. Dex treatment induced a significant decrease of the TBR (-8.2 ± 6.1 %; p < 0.03), but did not influence the slope of the tumor TAC. TBR of {sup 18}F-FET uptake and tracer kinetics in brain tumors showed high longitudinal stability. Dex therapy may induce a minor decrease of the TBR; this needs further investigation. (orig.)

  2. 99Tcm-N(NOEt2 Uptake Kinetics Difference among KMB17 Human Embryonic Lung Diploid Fibroblast and Different Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei JIA

    2010-04-01

    Full Text Available Background and objective PET/CT imaging is expensive, so searching the tumor imaging agent for SPECT/CT is necessary. 99Tcm-N(NOEt2 [bis (N-ethoxy-N-ethyl dithiocarbamato nitrido99Tcm (V] can be uptaken by lung cancer cells and other cells alike. The aim of this study is to evaluate the distinctive value in lung tumor with 99Tcm-N(NOEt2, the difference in its uptake kinetics in human embryonic lung diploid fibroblasts KMB17 and several kinds of lung cancer cells lines. Methods Firstly, six different cell culture medium which contained YTMLC Gejiu human lung squamous carcinoma cell, SPC-A1 human lung adenocarcinoma cell, AGZY low metastatic human lung adenocarcinoma, 973 high metastatic human lung adenocarcinoma cell, GLC-82 Gejiu human lung adenocarcinoma cell, and KMB17 human embryonic lung diploid fibroblast, respectively with equal cell density of 1×106/mL and the same volume were prepared; secondly, the same radioactive dose of 99Tcm-N(NOEt2 was added into each sample and then 300 μL mixed sample was taken out respectively and cultured in 37 oC culture box; Finally, 5 min, 15 min, 30 min, 45 min, 60 min, 75 min, 90 min after cultivation, centrifuged each cultured sample and determined the intracellular radiocounts of each sample, calculated each cell sample’s uptake rate of 99Tcm-N(NOEt2 at different time. Results Statistical difference was found among six cell samples, and the uptake rate sequence from high to low is 973 and SPC-A1>YTMLC>GLC-82>AGZY>KMB17 respectively; furthermore, 30 min-45 min after culture, the uptake rate reached stability, and the 45 min uptake rate of each sample was higher than its 96.7% uptake peak. Conclusion Based on the results above mentioned, it is supposed that there are discriminative clinical value when using 99Tcm-N(NOEt2 as a tumor targeting imaging agent, and 30 min or so after injection may be the best imaging time in the early imaging stage.

  3. Power-Law Kinetics and Determinant Criteria for the Preclusion of Multistationarity in Networks of Interacting Species

    DEFF Research Database (Denmark)

    Wiuf, Carsten Henrik; Feliu, Elisenda

    2013-01-01

    is derived from the determinant of the Jacobian of the species formation rate function. Using this characterization, we further derive similar determinant criteria applicable to general sets of kinetics. The criteria are conceptually simple, computationally tractable, and easily implemented. Our approach...... embraces and extends previous work on multistationarity, such as work in relation to chemical reaction networks with dynamics defined by mass-action or noncatalytic kinetics, and also work based on graphical analysis of the interaction graph associated with the system. Further, we interpret the criteria...... and how the species influence each reaction. We characterize families of so-called power-law kinetics for which the associated species formation rate function is injective within each stoichiometric class and thus the network cannot exhibit multistationarity. The criterion for power-law kinetics...

  4. Oxygen uptake during the exercise: temporal aspectos and adjustments of curves

    Directory of Open Access Journals (Sweden)

    Fernando Roberto de Oliveira

    2004-12-01

    Full Text Available The oxygen uptake has been considered as one of the most important physiological variables for exercise physiology. The first models relating oxygen uptake with performance emerged in the beginning of last century and it has been intensely discussed in the literature until today. This review discussed some topics about oxygen uptake, more specifically on aspects related with the kinetic and influences of the time response of this variable on the adjustment curve during an incremental test. Discussion on the level of aerobic condition and exercise intensity on the kinetics of oxygen uptake are also included in the text. Finally, verification on the slow component and on the physiological control of the oxygen uptake kinetics is also presented. RESUMO O consumo de oxigênio tem sido considerado uma das variáveis fisiológicas mais importantes para a fisiologia do exercício. Os primeiros modelos relacionando o consumo de oxigênio com o desempenho esportivo surgiram no inicio do século passado e continua sendo intensamente discutido na literatura atual. A presenterevisão discutiu alguns tópicos sobre consumo de oxigênio, mais especificamente sobre aspectos relacionados à cinética e a influencia do tempo de resposta dessa variável sobre os ajustes de curva em teste progressivo. Discussões relacionadas a influencia do nível de aptidão aeróbia e a intensidade do exercício sobre a cinética do consumo de oxigênio também estão inseridas no texto. Por fim, algumas constatações sobre componente lento e os controles fisiológicos da cinética do consumo de oxigênio são abordados.

  5. Cs-134 transfer from water or food to the Ciprinid Tinca tinca Linnaeus: uptake and loss kinetics

    International Nuclear Information System (INIS)

    Corisco, J.A.G.; Carreiro, M.C.V.

    1991-01-01

    Experiments with 134 Cs and the fish Tinca tinca Linnaeus (fam. Cyprinidae), as a part of a more extensive work, concerning a simplified freshwater trophic chain using water from Fratel dam, (at Tejo River), were undertaken. Direct uptake from water, during a period of about 30 days, leads to a kinetics expressed by the power function: CF (t) = 0.58 t 0.781 (t in days), the concentration factor (CF) referred to wet weight. Retention study, showed the existence of two biological half-lives, Tb 1 = 7 days and Tb 2 = 87 days, which might concern respectively, the 134 Cs desorption from the transit organs and the loss of the assimilated isotope from the storage organs. In the accumulation through the food chain, using planktonic crustacean Daphnia magna Straus (Cladocera) as prey, a transfer factor (TF) related to wet weight of both fish and prey, is estimated through the power function: TF (t) = 0.022 t 0.578 (t in days). Finally, the retention study following the food pathway contamination, stresses the existence of one long term component, with half-life Tb = 61 days. The transfer factor kinetics seems to point out to a rather slow process, leading to lower 134 Cs concentration values, than the contamination through the water. The loss of the assimilated 134 Cs, uptaken through both pathways, water or food, is a slow process. The longer biological half-life is very important in Radiological Protection, once it may be attributed to the radionuclide loss from the muscular mass. (author)

  6. Muscle glycogen reduction in man: relationship between surface EMG activity and oxygen uptake kinetics during heavy exercise.

    Science.gov (United States)

    Osborne, Mark A; Schneider, Donald A

    2006-01-01

    The purpose of this study was to determine whether muscle glycogen reduction prior to exercise would alter muscle fibre recruitment pattern and change either on-transient O2 uptake (VO2) kinetics or the VO2 slow component. Eight recreational cyclists (VO2peak, 55.6 +/- 1.3 ml kg (-1) min(-1)) were studied during 8 min of heavy constant-load cycling performed under control conditions (CON) and under conditions of reduced type I muscle glycogen content (GR). VO2 was measured breath-by-breath for the determination of VO2 kinetics using a double-exponential model with independent time delays. VO2 was higher in the GR trial compared to the CON trial as a result of augmented phase I and II amplitudes, with no difference between trials in the phase II time constant or the magnitude of the slow component. The mean power frequency (MPF) of electromyography activity for the vastus medialis increased over time during both trials, with a greater rate of increase observed in the GR trial compared to the CON trial. The results suggest that the recruitment of additional type II motor units contributed to the slow component in both trials. An increase in fat metabolism and augmented type II motor unit recruitment contributed to the higher VO2 in the GR trial. However, the greater rate of increase in the recruitment of type II motor units in the GR trial may not have been of sufficient magnitude to further elevate the slow component when VO2 was already high and approaching VO2peak .

  7. Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline.

    Science.gov (United States)

    DiMenna, Fred J; Wilkerson, Daryl P; Burnley, Mark; Jones, Andrew M

    2008-08-01

    It has been suggested that the slower O2 uptake (VO2) kinetics observed when exercise is initiated from an elevated baseline metabolic rate are linked to an impairment of muscle O2 delivery. We hypothesized that "priming" exercise would significantly reduce the phase II time constant (tau) during subsequent severe-intensity cycle exercise initiated from an elevated baseline metabolic rate. Seven healthy men completed exercise transitions to 70% of the difference between gas exchange threshold (GET) and peak VO2 from a moderate-intensity baseline (90% GET) on three occasions in each of the "unprimed" and "primed" conditions. Pulmonary gas exchange, heart rate, and the electromyogram of m. vastus lateralis were measured during all tests. The phase II VO2 kinetics were slower when severe exercise was initiated from a baseline of moderate exercise compared with unloaded pedaling (mean+/-SD tau, 42+/-15 vs. 33+/-8 s; P0.05). The amplitude of the VO2 slow component and the change in electromyogram from minutes 2 to 6 were both significantly reduced following priming exercise (VO2 slow component: from 0.47+/-0.09 to 0.27+/-0.13 l/min; change in integrated electromyogram between 2 and 6 min: from 51+/-35 to 26+/-43% of baseline; Pchanges in muscle fiber activation.

  8. Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas

    NARCIS (Netherlands)

    Schmidt, I.; Look, C.; Bock, E.; Jetten, M.S.M.

    2004-01-01

    Starved cells of Nitrosomonas europaea and further ammonia oxidizers were able to rapidly accumulate ammonium and hydroxylamine to an internal concentration of about 1 and 0.8 M, respectively. In kinetic studies, the uptake/accumulation rates for ammonium [3.1 mmol (g protein)(-1) min(-1)] and

  9. Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis)

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Matthew S.; Vikesland, Peter J. [Virginia Tech Department of Civil and Environmental Engineering, Blacksburg, VA (United States); Virginia Tech Institute for Critical Technology and Applied Science (ICTAS) (United States); Virginia Tech Center for Sustainable Nanotechnology (VT SuN) (United States); Center for the Environmental Implications of Nanotechnology (CEINT) (United States); Schultz, Irvin R., E-mail: ir_schultz@pnl.gov [Battelle Pacific Northwest National Laboratory (PNNL), Marine Sciences Laboratory, Sequim, WA (United States)

    2013-09-15

    Highlights: •We measured uptake of two types of nanomaterials in a marine mussel. •Uptake from water was rapid and complete in less than 24 h. •Only particles suspended in the water appeared to be absorbed. •Most absorbed nanomaterial was concentrated in the digestive gland. -- Abstract: We measured the uptake, distribution and elimination of two types of metallic nanoparticles (MetNPs) by the aquatic mussel Mytilus galloprovincialis in static seawater column exposures. Test MetNPs included polyethylene glycol (PEG) functionalized Fe{sub 3}O{sub 4} nanoparticles (PEG-FeOxNP) and PEG-functionalized cadmium-selenide quantum dots (PEG-Qdot). Exposure water was sampled at various times to assess MetNP clearance, and mussels were serially euthanized to assess uptake of MetNPs into the hemolymph, digestive gland, and remaining carcass. Results indicated that >90% of both types of MetNPs were taken up by mussels within 8 h of initial exposure. Nearly the entire retained dose of FeOxNPs and PEG-Qdots was deposited in the digestive gland. Our results provide important insights on the uptake and elimination kinetics of MetNPs in filter-feeding marine bivalves, and will be useful for subsequent development of toxicokinetic models to predict the kinetics of these processes.

  10. Kinetics of interaction from low-energy-ion bombardment of surfaces

    International Nuclear Information System (INIS)

    Horton, C.C.

    1988-01-01

    The kinetics of interaction from low energy oxygen ion bombardment of carbon and Teflon surfaces have been investigated. The surfaces were bombarded with 4.5 to 93 eV oxygen ions and emitted species were observed with a mass spectrometer. To obtain the kinetic information, the ion beam was square pulse modulated and reaction products were observed as a function of time. The kinetic information is contained in the response of the emitted species to the pulsed ion beam. Oxygen bombardment of carbon produced CO in three parallel branches with each following an adsorption-desorption process. The fast branch, with a rate constants of 12,000/sec, appeared to be sputter induced an was absent below about 19 eV. The medium and slow branches, with rate constants of 850/sec and 45/sec respectively, has little energy dependence and appeared to be due to chemical sputtering from two sites. The ratio of the fraction of the medium branch to that of the slow was constant at 1:3. The bombardment of Teflon produced CF in two parallel branches, with one following a series process and the other an adsorb-desorb process. The rate constant of the other branch were 22,000/sec and 7,000/sec and the rate constant of the other branch was 90/sec. The total signal fell monotonically with decreasing ion energy with the fraction for each branch holding constant at 71% for the series and 29% for the adsorb-desorb

  11. Cellular uptake of 99mTcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    International Nuclear Information System (INIS)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel; Fontaine, Eric; Pasqualini, Roberto

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ( 99m TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether 99m TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of 99m TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of 99m TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG 2 M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of 99m TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of 99m TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG 2 M. The uptake of 99m TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that 99m TcN-NOET might be a marker of cell proliferation. (orig.)

  12. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-12-15

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K{sub D}) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K{sub D} value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of {sup 1}H-{sup 15}N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k{sub off}). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k{sub off} {approx} 3,000 s{sup -1} in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k{sub off} from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k{sub off} values over a wide range, from 100 to 15,000 s{sup -1}. The validity of line shape analysis for k{sub off} values approaching intermediate exchange ({approx}100 s{sup -1}), may be facilitated by

  13. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line

    International Nuclear Information System (INIS)

    Clift, Martin J.D.; Rothen-Rutishauser, Barbara; Brown, David M.; Duffin, Rodger; Donaldson, Ken; Proudfoot, Lorna; Guy, Keith; Stone, Vicki

    2008-01-01

    This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH 2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 μg ml -1 ). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH 2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p 2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction

  14. Design of compounds having enhanced tumour uptake, using serum albumin as a carrier. Pt. 2

    International Nuclear Information System (INIS)

    Schilling, U.; Friedrich, E.A.; Sinn, H.; Schrenk, H.H.; Clorius, J.H.; Maier-Borst, W.

    1992-01-01

    In the present in vivo study the uptake kinetics of radioiodinated albumin were determined in normal organs, and tumours of rats using sequential scintigraphy. Results indicate that cellular uptake of the marker takes place. Fluorescence was not observed in muscle tissue. This appears to suggest that the albumin uptake is greater in tumours than in normal tissue, and that it is metabolized in the tumour cells. (Author)

  15. Nucleoside uptake in macrophages from various murine strains: a short-time and a two-step stimulation model

    International Nuclear Information System (INIS)

    Busolo, F.; Conventi, L.; Grigolon, M.; Palu, G.

    1991-01-01

    Kinetics of [3H]-uridine uptake by murine peritoneal macrophages (pM phi) is early altered after exposure to a variety of stimuli. Alterations caused by Candida albicans, lipopolysaccharide (LPS) and recombinant interferon-gamma (rIFN-gamma) were similar in SAVO, C57BL/6, C3H/HeN and C3H/HeJ mice, and were not correlated with an activation process as shown by the amount of tumor necrosis factor-alpha (TNF-alpha) being released. Short-time exposure to all stimuli resulted in an increased nucleoside uptake by SAVO pM phi, suggesting that the tumoricidal function of this cell either depends from the type of stimulus or the time when the specific interaction with the cell receptor is taking place. Experiments with priming and triggering signals confirmed the above findings, indicating that the increase or the decrease of nucleoside uptake into the cell depends essentially on the chemical nature of the priming stimulus. The triggering stimulus, on the other hand, is only able to amplify the primary response

  16. Kinetics of two-dimensional electron plasma, interacting with fluctuating potential

    International Nuclear Information System (INIS)

    Boiko, I.I.; Sirenko, Y.M.

    1990-01-01

    In this paper, from the first principles, after the fashion of Klimontovich, the authors derive quantum kinetic equation for electron gas, inhomogeneous in z-direction and homogeneous in XY-plane. Special attention is given to the systems with quasi-two-dimensional electron gas (2 DEG), which are widely explored now. Both interaction between the particles of 2 DEG (in general, of several sorts), and interaction with an external system (phonons, impurities, after change carries etc.) are considered. General theory is used to obtain energy and momentum balance equations and relaxation frequencies for 2 DEG in the basis of plane waves. The case of crossed electric and magnetic fields is also treated. As an illustration the problems of 2 DEG scattering on semibounded three-dimensional electron gas and on two-dimensional hole gas are considered; transverse conductivity of nondegenerate 2 DEG, scattered by impurities in ultraquantum magnetic field, is calculated

  17. Analysis of thermoluminescence kinetics of Mg2SiO4:Tb compounds employing an interactive model

    International Nuclear Information System (INIS)

    Marcazzo, J.; Prokic, M.; Santiago, M.; Molina, P.; Caselli, E.

    2009-01-01

    The kinetics involved in the thermoluminescence (TL) of Mg 2 SiO 4 :Tb compounds has been investigated by unfolding glow curves employing both the General Order model and a model that takes into account interactions among traps. The dependence of the glow curve shape on dose is only correctly described if interaction among traps is included in the analysis.

  18. Kinetic parameter estimation from attenuated SPECT projection measurements

    International Nuclear Information System (INIS)

    Reutter, B.W.; Gullberg, G.T.

    1998-01-01

    Conventional analysis of dynamically acquired nuclear medicine data involves fitting kinetic models to time-activity curves generated from regions of interest defined on a temporal sequence of reconstructed images. However, images reconstructed from the inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system can contain artifacts that lead to biases in the estimated kinetic parameters. To overcome this problem the authors investigated the estimation of kinetic parameters directly from projection data by modeling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated transverse slice, kinetic parameters were estimated for simple one compartment models for three myocardial regions of interest, as well as for the liver. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated data had biases ranging between 1--63%. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Predicted uncertainties (standard deviations) of the parameters obtained for 500,000 detected events ranged between 2--31% for the myocardial uptake parameters and 2--23% for the myocardial washout parameters

  19. Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas

    International Nuclear Information System (INIS)

    Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart

    2006-01-01

    A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses

  20. Elimination kinetic model for organic chemicals in earthworms.

    NARCIS (Netherlands)

    Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.

    2010-01-01

    Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of

  1. Characteristics of sugar uptake by immature maize embryos

    International Nuclear Information System (INIS)

    Griffith, S.M.; Jones, R.J.; Brenner, M.L.

    1986-01-01

    Characteristics of sugar uptake by immature maize embryos were determined in vitro utilizing a 14 C-sugar solution incubation method. Hexose uptake rates were greater than those for sucrose, however, all showed biphasic kinetics. Glucose and fructose saturable components were evidence at <50 mM and sucrose at <5 mM. Chemical inhibitors (CCCP, DNP, NaCN, and PCMBS) and low temperature reduced sugar uptake. Sucrose influx was pH dependent while glucose was not. Embryos maintained a high sucrose to hexose ratio throughout development. At 25 days after pollination sucrose levels exceeded 200 mM while hexose levels remained below 5 mM. Glucose was rapidly converted to sucrose upon transport into the embryo. These circumstantial data indicate that sugar uptake by immature maize embryos is metabolically dependent and carrier mediated. Furthermore, sucrose transport appears to occur against its concentration gradient involving a H+/sucrose cotransport mechanism, while glucose influx is driven by its concentration gradient and subsequent metabolism

  2. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture.

    Science.gov (United States)

    Xiong, TianTian; Austruy, Annabelle; Pierart, Antoine; Shahid, Muhammad; Schreck, Eva; Mombo, Stéphane; Dumat, Camille

    2016-08-01

    At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption. Copyright © 2016. Published by Elsevier B.V.

  3. Uptake of nuclides by plants

    International Nuclear Information System (INIS)

    Greger, Maria

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate

  4. Uptake of nuclides by plants

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate.

  5. A modified assay method for determining serotonin uptake in human platelets

    International Nuclear Information System (INIS)

    Arora, R.C.; Meltzer, H.Y.

    1981-01-01

    Effects of various experimental conditions on serotonin (5-HT) uptake in human platelets were examined. The experimental design allowed the evaluation of the effect of diffusion and other non-saturable processes on the affinity and maximum activity of the membrane pump for 5-HT uptake. Total 5-HT uptake was determined by incubating platelet-rich plasma (PRP) with increasing concentrations of serotonin at 37 0 C for 4 min. The passive uptake was measured by the addition of various 5-HT concentrations to PRP in buffer at 37 0 C, followed by immediate transfer to an ice-cold water bath. The difference between the total and passive uptake was linear for 6 min. The affinity (Ksub(m)) for active platelet serotonin uptake was 0.45 +- 0.09 μmol/l and maximal rate of uptake (V) was 10.7 +- 2.1 pmol/10 7 platelets/min. The described method provides a convenient and reliable measure of active 5-HT uptake suitable for clinical investigation. The effect of passive diffusion on kinetic parameters is discussed. (Auth.)

  6. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

    Science.gov (United States)

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-05-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of (18)F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of (18)F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure (18)F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and (18)F-FDG uptake constant (K(i)) were derived by Patlak graphical analysis. In the brain, SUV and K(i) were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral K(i) was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, K(i), and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and K(i) were strongly dependent on the dietary state, and K(i) did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal (18)F-FDG PET. Cerebral K(i) varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the K(i) values of the myocardium and skeletal muscle are strongly dependent on

  7. Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate.

    Science.gov (United States)

    Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E

    2018-02-01

    Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolation and evolution of labile sulfur allotropes via kinetic encapsulation in interactive porous networks

    Directory of Open Access Journals (Sweden)

    Hakuba Kitagawa

    2016-07-01

    Full Text Available The isolation and characterization of small sulfur allotropes have long remained unachievable because of their extreme lability. This study reports the first direct observation of disulfur (S2 with X-ray crystallography. Sulfur gas was kinetically trapped and frozen into the pores of two Cu-based porous coordination networks containing interactive iodide sites. Stabilization of S2 was achieved either through physisorption or chemisorption on iodide anions. One of the networks displayed shape selectivity for linear molecules only, therefore S2 was trapped and remained stable within the material at room temperature and higher. In the second network, however, the S2 molecules reacted further to produce bent-S3 species as the temperature was increased. Following the thermal evolution of the S2 species in this network using X-ray diffraction and Raman spectroscopy unveiled the generation of a new reaction intermediate never observed before, the cyclo-trisulfur dication (cyclo-S32+. It is envisaged that kinetic guest trapping in interactive crystalline porous networks will be a promising method to investigate transient chemical species.

  9. Kinetic Interaction of Uranium Vacancies and Dislocations in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States); Subramanian, Gopinath [Univ. of South Mississippi, Hattiesburg, MS (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    Understanding how point defects and defect clusters interact with dislocations in urania is important for a number of phenomena. For example, dislocations are one (of many) trap sites in the fuel where fission gases may accumulate and ultimately nucleate fission gas bubbles. Further, some creep mechanisms are governed by the flow of point defects to dislocations. Thus, for a variety of reasons, it is important to examine how dislocations attract and accelerate the kinetics of point defects.

  10. Uptake and release kinetics of 134Cs by goldfish (Carassius auratus) and 137Cs by zebra fish (Brachydanio rerio) in controlled aquatic environment

    International Nuclear Information System (INIS)

    Srivastava, A.; Reddy, S.J.; Kelber, O.; Urich, K.; Denschlag, H.O.

    1994-01-01

    The uptake and release kinetics of 134 Cs by Goldfish (Carassius auratus) and 137 Cs by Zebra Fish (Brachydanio rerio) from aquatic media of different ionic compositions and temperature was studied in controlled laboratory conditions. The accumulation of radiocesium in the case of Brachydanio rerio is observed to be strongly dependent on the potassium ion concentration of the aquatic medium, but in the case of Carassius auratus this dependence is quite weak. The biological half-lives of the cesium isotopes incorporated into the fish investigated in the present work vary from 19 to 80 days and are influenced by the temperature and the ionic composition of the aquatic medium. (author) 19 refs.; 1 fig.; 3 tabs

  11. Sphagnum mosses : Masters of efficient N-uptake while avoiding intoxication

    NARCIS (Netherlands)

    Fritz, Christian; Lamers, Leon P.M.; Riaz, Muhammed; van den Berg, Leon J.L.; Elzenga, Theo J.T.M.

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant

  12. Platinum uptake from chloride solutions using biosorbents

    Directory of Open Access Journals (Sweden)

    Mehmet Hakan Morcali

    2013-04-01

    Full Text Available Present work investigates platinum uptake from synthetically prepared, dilute platinum-bearing solutions using biomass residues, i.e. pistachio nut shell and rice husk, which are abundant in Turkey, and provides a comparison between these two biosorbents. Effects of the different uptake parameters, sorbent dosage, contact time, temperature and pH of solution on platinum uptake (% were studied in detail on a batch sorption. Before the pistachio nut shell was activated, platinum uptake (% was poor compared to the rice husk. However, after the pistachio nut shell was activated at 1000 °C under an argon atmosphere, the platinum uptake (% increased two-fold. The pistachio nut shell (original and activated and rice husk were shown to be better than commercially available activated carbon in terms of adsorption capacity. These two sorbents have also been characterized by FTIR and SEM. Adsorption equilibrium data best complied with the Langmuir isotherm model. Maximum adsorption capacities, Qmax, at 25 °C were found to be 38.31 and 42.02 mg.g- 1for the activated pistachio nut shell and rice husk, respectively. Thermodynamic calculations using the measured ∆H°, ∆S° and ∆G° values indicate that the uptake process was spontaneous and endothermic. The experimental data were shown to be fit the pseudo-second-order kinetic model.

  13. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Kong, W.D.; Zhu, Y.G.; Liang, Y.C.; Zhang, J.; Smith, F.A.; Yang, M.

    2007-01-01

    A series of experiments were conducted in a hydroponic system to investigate the uptake of oxytetracycline (OTC) and its toxicity to alfalfa (Medicago sativa L.). OTC inhibited alfalfa shoot and root growth by up to 61% and 85%, respectively. The kinetics of OTC uptake could be well described by Michaelis-Menten equation with V max of 2.25 μmol g -1 fresh weight h -1 , and K m of 0.036 mM. The uptake of OTC by alfalfa was strongly inhibited by the metabolic inhibitor, 2,4-DNP (2,4-dinitrophenol), at pH 3.5 and 6.0, but not by the aquaporin competitors, glycerol and Ag + . OTC uptake, however, was significantly inhibited by Hg 2+ , suggesting that the inhibition of influx was due to general cellular stress rather than the specific action of Hg 2+ on aquaporins. Results from the present study suggested that OTC uptake into alfalfa is an energy-dependent process. - Plant uptake of antibiotic oxytetracycline is energy-dependent

  14. The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro

    International Nuclear Information System (INIS)

    Lankoff, Anna; Carmichael, Wayne W.; Grasman, Keith A.; Yuan, Moucun

    2004-01-01

    Microcystin-LR is a cyanobacterial heptapeptide that presents acute and chronic hazards to animal and human health. We investigated the influence of this toxin on human and chicken immune system modulation in vitro. Peripheral blood lymphocytes were treated with microcystin-LR at environmentally relevant doses of 1, 10 and 25 μg/ml for 12, 24, 48, 72 h (for proliferation assay cells were treated for 72 h). T-cell and B-cell proliferation as well as apoptosis and necrosis were determined in human and chicken samples. IL-2 and IL-6 production by human lymphocytes also was measured. In addition, uptake kinetics of microcystin-LR into human and chicken peripheral blood lymphocytes were calculated by Liquid Chromatography (LS) /Mass Spectrometry (MS) analysis. At the highest dose microcystin-LR decreased T-cell proliferation and all doses of microcystin-LR inhibited B-cell proliferation. The frequency of apoptotic and necrotic cells increased in a dose and time-dependent manner. Human lymphocytes responded to stimulation with microcystin-LR by increased production of IL-6 and decreased production of IL-2. Human lymphocytes were able to uptake from 0.014 to 1.663 μg/ml and chicken lymphocytes from 0.035 to 1.733 μg/ml of the microcystin-LR added to the cultures, depending on the treatment time and dose. In conclusion, microcystin-LR acted as an immunomodulator in cytokine production and down-regulated lymphocyte functions by induction of apoptosis and necrosis. However, further studies dealing with the influence of microcystin-LR on expression cytokine genes and transcription factors are necessary to confirm these hypotheses

  15. Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake.

    Science.gov (United States)

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka

    2015-01-01

    Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.

  16. Extracting the basal extracellular dopamine concentrations from the evoked responses: re-analysis of the dopamine kinetics.

    Science.gov (United States)

    Chen, Kevin C; Budygin, Evgeny A

    2007-08-15

    Fast-scan cyclic voltammetry in conjunction with carbon fiber microelectrode has been used to study dopamine (DA) release and uptake mechanisms in rat brains because of the smaller size of the electrode and the subsecond resolution. Current voltammetry data were analyzed by a DA kinetic model assuming a zero baseline, which is in conflict with existing microdialysis findings and a recent claim of the striatal extracellular DA concentration at micromolar levels. This work applied a new analysis approach based on a modified DA kinetic model to analyze the kinetics of electrically evoked DA overflow in the caudate-putamen of anesthetized rats. The DA uptake parameters were fitted from the electrical stimulation phase, and subsequently used to calculate theoretical DA uptake rates. Comparison of the theoretical uptake rates with experimental clearance rates allows for the study of the tonic DA release process following electrical stimulations. Analyses of DA voltammetry data suggest that the locally averaged basal level of extracellular DA in the rat striatum might be confined between 95 and 220 nM. The disparate time scales in the clearance kinetics of endogenous and exogenous DA were investigated. Long-distance diffusion could only partially explain the slow clearance time course of exogenous DA. Model simulations and parameter analyses on evoked DA responses indicate that suppression of the nonevoked DA release process immediately following electrical stimulation cannot completely account for the rapid clearance of the electrically evoked DA. Inconsistency in the measured uptake strengths in the literature studying endogenous and exogenous DA remains to be investigated in the future.

  17. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    International Nuclear Information System (INIS)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping

    2016-01-01

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  18. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping, E-mail: gpsheng@ustc.edu.cn

    2016-01-25

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  19. Ontogeny of methionine utilization and splanchnic uptake in critically ill children

    Science.gov (United States)

    To determine the rates of methionine splanchnic uptake and utilization in critically ill pediatric patients, we used two kinetic models: the plasma methionine enrichment,and the "intracellular" homocysteine enrichment. Twenty-four patients, eight infants, eight children, and eight adolescents, were ...

  20. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  1. Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Xu, Xuehui; Wen, Bei; Huang, Honglin; Wang, Sen; Han, Ruixia; Zhang, Shuzhen

    2016-01-01

    This study presents a detailed kinetic investigation on the uptake, acropetal translocation and transformation of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.) by hydroponic exposure. Root uptake followed the order: BDE-47 > 6-MeO-BDE-47 > 6-OH-BDE-47, while 6-OH-BDE-47 was the most prone to acropetal translocation. Debromination rates of BDE-47 were 1.31 and 1.46 times greater than the hydroxylation and methoxylation rates, respectively. Transformation from BDE-47 to lower brominated OH/MeO-PBDEs occurred mainly through debromination first followed by hydroxylation or methoxylation. There was no transformation from 6-OH-BDE-47 or 6-MeO-BDE-47 to PBDEs. Methylation rate of 6-OH-BDE-47 was twice as high as that of 6-MeO-BDE-47 hydroxylation, indicating methylation of 6-OH-BDE-47 was easier and more rapid than hydroxylation of 6-MeO-BDE-47. Debromination and isomerization were potential metabolic pathways for 6-OH-BDE-47 and 6-MeO-BDE-47 in maize. This study provides important information for better understanding the mechanism on plant uptake and transformation of PBDEs. - Highlights: • Uptake and translocation of BDE-47 and 6-OH/MeO-BDE-47 were analog-specific. • Debromination was the fast and dominant metabolic reaction of BDE-47 in maize. • Metabolic pathways of BDE-47, 6-OH/MeO-BDE-47 in maize were discussed. • Metabolic processes should be considered in exploring phytoremediation strategy. - This article provides direct in vivo evidences of bioaccumulation and biotransformation of PBDEs, OH-PBDEs and MeO-PBDEs in plants.

  2. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  3. Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones

    2009-01-01

    Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...

  4. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  5. Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry.

    Science.gov (United States)

    Saunders, John E; Chen, Hao; Brauer, Chris; Clayton, McGregor; Chen, Weijian; Barnes, Jack A; Loock, Hans-Peter

    2015-12-07

    The uptake and release of sorbates into films and coatings is typically accompanied by changes of the films' refractive index and thickness. We provide a comprehensive model to calculate the concentration of the sorbate from the average refractive index and the film thickness, and validate the model experimentally. The mass fraction of the analyte partitioned into a film is described quantitatively by the Lorentz-Lorenz equation and the Clausius-Mosotti equation. To validate the model, the uptake kinetics of water and other solvents into SU-8 films (d = 40-45 μm) were explored. Large-angle interferometric refractometry measurements can be used to characterize films that are between 15 μm to 150 μm thick and, Fourier analysis, is used to determine independently the thickness, the average refractive index and the refractive index at the film-substrate interface at one-second time intervals. From these values the mass fraction of water in SU-8 was calculated. The kinetics were best described by two independent uptake processes having different rates. Each process followed one-dimensional Fickian diffusion kinetics with diffusion coefficients for water into SU-8 photoresist film of 5.67 × 10(-9) cm(2) s(-1) and 61.2 × 10(-9) cm(2) s(-1).

  6. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    Directory of Open Access Journals (Sweden)

    I. J. George

    2007-08-01

    Full Text Available The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl sebacate (BES particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS and scanning mobility particle sizer (SMPS was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0=1.3 (±0.4, confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  7. Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.

    Science.gov (United States)

    Poteat, Monica D; Díaz-Jaramillo, Mauricio; Buchwalter, David B

    2012-05-01

    Despite their ecological importance and prevalent use as ecological indicators, the trace element physiology of aquatic insects remains poorly studied. Understanding divalent metal transport processes at the water-insect interface is important because these metals may be essential (e.g. Ca), essential and potentially toxic (e.g. Zn) or non-essential and toxic (e.g. Cd). We measured accumulation kinetics of Zn and Cd across dissolved concentrations ranging 4 orders of magnitude and examined interactions with Ca and Mn in the caddisfly Hydropsyche sparna. Here, we provide evidence for at least two transport systems for both Zn and Cd, the first of which operates at concentrations below 0.8 μmol l(-1) (and is fully saturable for Zn). We observed no signs of saturation of a second lower affinity transport system at concentrations up to 8.9 μmol l(-1) Cd and 15.3 μmol l(-1) Zn. In competition studies at 0.6 μmol l(-1) Zn and Cd, the presence of Cd slowed Zn accumulation by 35% while Cd was unaffected by Zn. At extreme concentrations (listed above), Cd accumulation was unaffected by the presence of Zn whereas Zn accumulation rates were reduced by 58%. Increasing Ca from 31.1 μmol l(-1) to 1.35 mmol l(-1) resulted in only modest decreases in Cd and Zn uptake. Mn decreased adsorption of Cd and Zn to the integument but not internalization. The L-type Ca(2+) channel blockers verapamil and nifedipine and the plasma membrane Ca(2+)-ATPase inhibitor carboxyeosin had no influence on Ca, Cd or Zn accumulation rates, while Ruthenium Red, a Ca(2+)-ATPase inhibitor, significantly decreased the accumulation of all three in a concentration-dependent manner.

  8. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.

    Science.gov (United States)

    Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M

    2015-04-21

    to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.

  9. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    Science.gov (United States)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols containing metal ions, such as Cu and Fe. Humidity and aerosol pH did not significantly impact the reactive HO2 uptake. Preliminary experiments have also

  10. Simple mass transport model for metal uptake by marine macroalgae growing at different rates

    Energy Technology Data Exchange (ETDEWEB)

    Rice, D.L.

    1984-01-01

    Although algae growing at different rates may exhibit different concentrations of a given metal, such differences in algal chemistry may or may not reflect actual effects of environmental growth factors on the kinetics of metal uptake. Published data on uptake of rubidium, cadmium, and manganese by the green seaweed Ulva fasciata Delile grown at different rates in open system sea water was interpreted using the model. Differences in exposure time to sea water of relatively old and relatively young thalli were responsible for significant decreases in algal rubidium and cadmium concentrations with increases in specific growth rate. The biomass-specific growth rates of uptake of these two metals did not vary with growth rate. Both algal concentrations and specific rates of uptake of manganese increase significantly with increasing growth rate, thus indicating a distinct link between the kinetics of manganese uptake and metabolic rate. Under some circumstances, seaweed bioassay coupled with an interpretive model may provide the only reasonable approach to the study of chemical uptake-growth phenomena. In practice, if the residence time of sea water in culture chambers is sufficiently low to preclude pseudo-closed system artifacts, differences in trace metal concentrations between input and output sea water may be difficult to detect. In the field and in situ experiments based on time-series monitoring of changes in the water chemistry would be technically difficult or perhaps impossible to perform. 13 references, 1 figure.

  11. Leg and arm lactate and substrate kinetics during exercise

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Jensen-Urstad, M; Rosdahl, H

    2003-01-01

    To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed...... kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level...... despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying...

  12. Characterization of the selenite uptake mechanism in the coccolithophore Emiliania huxleyi (Haptophyta).

    Science.gov (United States)

    Araie, Hiroya; Sakamoto, Kou; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2011-07-01

    The marine coccolithophore Emiliania huxleyi (Haptophyta) requires selenium as an essential element for growth, and the active species absorbed is selenite, not selenate. This study characterized the selenite uptake mechanism using ⁷⁵Se as a tracer. Kinetic analysis of selenite uptake showed the involvement of both active and passive transport processes. The active transport was suppressed by 0.5 mM vanadate, a membrane-permeable inhibitor of H⁺-ATPase, at pH 8.3. When the pH was lowered from 8.3 to 5.3, the selenite uptake activity greatly increased, even in the presence of vanadate, suggesting that the H⁺ concentration gradient may be a motive force for selenite transport. [⁷⁵Se]Selenite uptake at selenite-limiting concentrations was hardly affected by selenate, sulfate and sulfite, even at 100 μM. In contrast, 3 μM orthophosphate increased the K(m) 5-fold. These data showed that HSeO₃⁻, a dominant selenite species at acidic pH, is the active species for transport through the plasma membrane and transport is driven by ΔpH energized by H⁺-ATPase. Kinetic analysis showed that the selenite uptake activity was competitively inhibited by orthophosphate. Furthermore, the active selenite transport mechanism was shown to be induced de novo under Se-deficient conditions and induction was suppressed by the addition of either sufficient selenite or cycloheximide, an inhibitor of de novo protein synthesis. These results indicate that E. huxleyi cells developed an active selenite uptake mechanism to overcome the disadvantages of Se limitation in ecosystems, maintaining selenium metabolism and selenoproteins for high viability.

  13. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, M.N.; Lærke, P.E.

    2011-01-01

    received 65% of FI after tuber bulking and lasted for six weeks until final harvest. Results showed that the irrigation treatments were not significantly different in terms of N uptake in the tubers, shoot, and whole crop. However, there was a statistical difference between the soil textures where plants...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  14. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  15. Cellular uptake of {sup 99m}TcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel [Universite de Grenoble, Radiopharmaceutiques Biocliniques, La Tronche (France); Fontaine, Eric [Universite de Grenoble, Laboratoire de Bioenergetique Fondamentale et Appliquee, Grenoble (France); Pasqualini, Roberto [Cis Bio International Schering SA, Gif-sur-Yvette (France)

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ({sup 99m}TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether {sup 99m}TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of {sup 99m}TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of {sup 99m}TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG{sub 2}M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of {sup 99m}TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of {sup 99m}TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG{sub 2}M. The uptake of {sup 99m}TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that {sup 99m}TcN-NOET might be a marker of cell proliferation. (orig.)

  16. Uptake and depuration of 131I from labelled diatoms (Skeletonema costatum) to the edible periwinkle (Littorina littorea)

    International Nuclear Information System (INIS)

    Wilson, R.C.; Vives i Batlle, J.; Watts, S.J.; McDonald, P.; Parker, T.G.

    2007-01-01

    Uptake and depuration of 131 I into winkles through consumption of the diatom Skeletonema costatum is described. The work follows on from previous studies that investigated the uptake of iodine into winkles from seawater and seaweed. Incorporation of 131 I in S. costatum from labelled seawater followed linear first-order kinetics with an uptake half-time of 0.40 days. Iodine uptake in winkles from labelled S. costatum also followed linear first-order kinetics, with a calculated equilibrium concentration (C ∞ ) of 42 Bq kg -1 and a transfer factor (TF) of 1.1 x 10 -4 with respect to labelled diatom food. This TF is lower than that observed for uptake of 131 I in winkles from labelled seaweed. For the depuration stage, a biphasic sequence with biological half-lives of 1.3 and 255 days was determined. The first phase is biokinetically important, given that winkles can lose two-thirds of their activity during that period. This study shows that, whilst winkles can obtain radioactive iodine from phytoplankton consumption, they do not retain the majority of that activity for very long. Hence, compared with other exposure pathways, such as uptake from seawater and macroalgae, incorporation from phytoplankton is a relatively minor exposure route

  17. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W D [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Y G [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liang, Y C [Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Soils and Fertilizers, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang, J [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Smith, F A [Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, DP 636, Adelaide, SA 5005 (Australia); Yang, M [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2007-05-15

    A series of experiments were conducted in a hydroponic system to investigate the uptake of oxytetracycline (OTC) and its toxicity to alfalfa (Medicago sativa L.). OTC inhibited alfalfa shoot and root growth by up to 61% and 85%, respectively. The kinetics of OTC uptake could be well described by Michaelis-Menten equation with V {sub max} of 2.25 {mu}mol g{sup -1} fresh weight h{sup -1}, and K {sub m} of 0.036 mM. The uptake of OTC by alfalfa was strongly inhibited by the metabolic inhibitor, 2,4-DNP (2,4-dinitrophenol), at pH 3.5 and 6.0, but not by the aquaporin competitors, glycerol and Ag{sup +}. OTC uptake, however, was significantly inhibited by Hg{sup 2+}, suggesting that the inhibition of influx was due to general cellular stress rather than the specific action of Hg{sup 2+} on aquaporins. Results from the present study suggested that OTC uptake into alfalfa is an energy-dependent process. - Plant uptake of antibiotic oxytetracycline is energy-dependent.

  18. Pulmonary O2 uptake on-kinetics in endurance- and sprint-trained master athletes.

    Science.gov (United States)

    Berger, N J A; Rittweger, J; Kwiet, A; Michaelis, I; Williams, A G; Tolfrey, K; Jones, A M

    2006-12-01

    The purpose of this study was to characterise the VO2 kinetic response to moderate intensity cycle exercise in endurance-trained (END) and sprint or power-trained (SPR) track and field master athletes ranging in age from 45 to 85 years. We hypothesised that the time constant (tau) describing the Phase II VO2 on-response would be smaller in the END compared to the SPR athletes, and that the tau would become greater with increasing age in both groups. Eighty-four master athletes who were competing at either the British or European Veteran Athletics Championships acted as subjects, and were classified as either END (800 m - marathon; n = 41), or SPR (100 - 400 m and field events; n = 43) specialists. Subjects completed two 6 minute "step" transitions to a work rate of moderate intensity on a cycle ergometer and pulmonary gas exchange was measured breath-by-breath. Analysis of variance revealed that SPR athletes had slower VO2 on-kinetics (i.e., greater tau) compared to END athletes at each of the age groups studied: 46 - 55 yrs (END: 25 +/- 6 vs. SPR: 36 +/- 9 s; p kinetics became slower with advancing age in the SPR athletes (p kinetics in SPR compared to END master athletes is consistent both with differences in physiology (e.g., muscle fibre type, oxidative/glycolytic capacity) and training between these specialist athletes. Master END athletes have similar tau values to their younger counterparts (approximately 25 s) suggesting that participation in endurance exercise training limits the slowing of VO2 on-kinetics with age in this population.

  19. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Kinetics of heat damage autologous red blood cells. Mechanism of clearance from blood

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Ryan, P.F.J.; Klonizakis, I.; Elkon, K.B.; Lewis, S.M.; Hughes, G.R.V.; Lavender, J.P. (Hammersmith Hospital, London (UK))

    1982-01-01

    The kinetics of radiolabelled heat damage red cell (HDRBC) distribution have been studied in humans using a gamma camera, and compared with the kinetics of other blood cells. Liver uptake of /sup 111/In labelled HDRBC was completed within about 10 min of injection; splenic uptake was biphasic with a half time of about 5 min over the first 20 min in following injection, and a later half time much longer than this. Activity initially present in the lung fields cleared within 24 h. The rate constant of liver uptake of sup(99m)Tc labelled HDRBC and of /sup 111/In labelled platelets were very similar; the rate constants of splenic uptake of these 2 particles were also very similar up to about 20 min following injection when the splenic platelet levels became constant and the HDRBC level continued to slowly rise. Splenic uptake and blood clearance of red cells coated with IgG (IgG-RBC), in contrast to HDRBC, were monoexponential. It was concluded that: (1) the blood clearance of HDRBC was due to pooling within, and to irreversible extraction by, the spleen; (2) liver uptake of HDRBC, which was irreversible, was completed within 10 min of injection; (3) IgG-RBC clearance was due to irreversible extraction by the spleen; (4) HDRBC uptake in the lung was unrelated to reticuloendothelial function, and represented prolonged transit through the lung microvasculature.

  1. Effect of hypoxia on thallium kinetics in cultured chick myocardial cells

    International Nuclear Information System (INIS)

    Friedman, B.J.; Beihn, R.; Friedman, J.P.

    1987-01-01

    To assess the effect of hypoxia on cellular thallium-201 ( 201 Tl) uptake and washout independent of coronary flow, we studied thallium kinetics during normoxia and hypoxia in cultured chick ventricular cells. Monolayers of contracting ventricular cells grown on coverslips were placed in a chamber and perfused to asymptote with media containing 201 Tl. Perfusates were equilibrated with 5% CO 2 -95% air or 5% CO 2 -95% nitrogen for normoxia and hypoxia, respectively. Washout thallium kinetics were then observed during perfusion with unlabeled media. Twenty paired experiments were performed, randomly alternating the sequence of normoxia and hypoxia. Pharmacokinetics for thallium were determined by computer using standard formulae. Thallium uptake and washout were best described by assuming that intracellular thallium was contained within a single compartment. Cellular thallium uptake, as well as transfer rate constants for thallium uptake and for thallium washout during normoxia and hypoxia, were compared using paired t-tests. During normoxia and hypoxia, respectively, thallium uptake was 22 +/- 7% and 19 +/- 7% of asymptote (p less than 0.01); the compartmental rate constant for uptake by the cell was 0.16 +/- 0.07 min-1 and 0.15 +/- 0.06 min-1 (N.S.); and the transfer rate constant for washout from the cell was 0.26 +/- 0.06 min-1 and 0.23 +/- 0.05 min-1 (p less than 0.01). We conclude that there was a small (14%) decrease in thallium uptake during hypoxia. The rate of thallium uptake and washout was slightly less during hypoxia, although only the rate of washout was significantly less. These data show that cellular accumulation of thallium and the rate of washout of thallium were minimally decreased by hypoxia independent of blood flow

  2. Ethanol intake and 3H-serotonin uptake II: A study in alcoholic patients using platelets 3H-paroxetine binding

    International Nuclear Information System (INIS)

    Daoust, M.; Boucly, P.; Ernouf, D.; Breton, P.; Lhuintre, J.P.

    1991-01-01

    The kinetic parameters of 3 H-paroxetine binding and 3 H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in 3 H-paroxetine binding. When binding and 3 H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology

  3. Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201

    International Nuclear Information System (INIS)

    Beller, G.A.; Holzgrefe, H.H.; Watson, D.D.

    1983-01-01

    Myocardial thallium-201 (201Tl) uptake and clearance after intravenous administration of dipyridamole (150 micrograms/kg) were determined in 12 open-chest anesthetized dogs with a partial coronary artery stenosis. 201Tl (1.5 mCi) was injected intravenously and myocardial biopsy specimens were obtained 10 min, 60 min, and 2 hr after injection. Serial changes in 201Tl activity in the normal zone and in the zone of partial stenosis were correlated with microsphere-determined regional blood flow and distal coronary pressure. Another nine dogs with equivalent stenosis not given dipyridamole before 201Tl served as controls. Data indicate that dipyridamole-induced vasodilation in the presence of a partial stenosis results in diminished uptake and delayed clearance compared with increased uptake and more rapid clearance in normally perfused myocardium producing an initial 201Tl defect with delayed redistribution

  4. The uptake of NO3-, NO2-, and NH4+ by intact wheat (Triticum aestivum) seedlings. I. Induction and kinetics of transport systems

    Science.gov (United States)

    Goyal, S. S.; Huffaker, R. C.

    1986-01-01

    The inducibility and kinetics of the NO3-, NO2-, and NH4+ transporters in roots of wheat seedlings (Triticum aestivum cv Yercora Rojo) were characterized using precise methods approaching constant analysis of the substrate solutions. A microcomputer-controlled automated high performance liquid chromatography system was used to determine the depletion of each N species (initially at 1 millimolar) from complete nutrient solutions. Uptake rate analyses were performed using computerized curve-fitting techniques. More precise estimates were obtained for the time required for the extent of the induction of each transporter. Up to 10 and 6 hours, respectively, were required to achieve apparent full induction of the NO3- and NO2- transporters. Evidence for substrate inducibility of the NH4+ transporters requiring 5 hours is presented. The transport of NO3- was mediated by a dual system (or dual phasic), whereas only single systems were found for transport of NO2- and NH4+. The Km values for NO3-, NO2-, and NH4+ were, respectively, 0.027, 0.054, and 0.05 millimolar. The Km for mechanism II of NO3- transport could not be defined in this study as it exhibited only apparent first order kinetics up to 1 millimolar.

  5. Kinetics of Interactions of Matter, Antimatter and Radiation Consistent with Antisymmetric (CPT-Invariant Thermodynamics

    Directory of Open Access Journals (Sweden)

    A.Y. Klimenko

    2017-05-01

    Full Text Available This work investigates the influence of directional properties of decoherence on kinetics rate equations. The physical reality is understood as a chain of unitary and decoherence events. The former are quantum-deterministic, while the latter introduce uncertainty and increase entropy. For interactions of matter and antimatter, two approaches are considered: symmetric decoherence, which corresponds to conventional symmetric (CP-invariant thermodynamics, and antisymmetric decoherence, which corresponds to antisymmetric (CPT-invariant thermodynamics. Radiation, in its interactions with matter and antimatter, is shown to be decoherence-neutral. The symmetric and antisymmetric assumptions result in different interactions of radiation with matter and antimatter. The theoretical predictions for these differences are testable by comparing absorption (emission of light by thermodynamic systems made of matter and antimatter. Canonical typicality for quantum mixtures is briefly discussed in Appendix A.

  6. [14C]-Sucrose uptake by guard cell protoplasts of pisum sativum, argenteum mutant

    International Nuclear Information System (INIS)

    Rohrig, K.; Raschke, K.

    1991-01-01

    Guard cells rely on import for their supply with reduced carbon. The authors tested by silicone oil centrifugation the ability of guard cell protoplasts to accumulated [ 14 C]-sucrose. Uptake rates were corrected after measurement of 14 C-sorbitol and 3 H 2 O spaces. Sucrose uptake followed biphasic kinetics, with a high-affinity component below 1 mM external sucrose (apparent K m 0.8 mM at 25C) and a low-affinity nonsaturable component above. Uptake depended on pH (optimum at pH 5.0). Variations in the concentrations of external KCl, CCCP, and valinomycin indicated that about one-half of the sucrose uptake rate could be related to an electrochemical gradient across the plasmalemma. Total uptake rates measured at 5 mM external sucrose seem to be sufficient to replenish emptied plastids with starch within a few hours

  7. Characterization of hydroxybenzoic acid chelating resins: equilibrium, kinetics, and isotherm profiles for Cd(II and Pb(II uptake

    Directory of Open Access Journals (Sweden)

    BHAVNA A. SHAH

    2011-06-01

    Full Text Available Chelating ion-exchange resins were synthesized by polycondensation of ortho/para hydroxybenzoic acid with resorcinol/catechol employing formaldehyde as cross-linking agent at 80±5 °C in DMF. The resins were characterized by FTIR and XRD. The uptake behaviour of synthesized resins for Cd(II and Pb(II ions have been studied depending on contact time, pH, metal ion concentration and temperature. The sorption data obtained at optimized conditions were analyzed by the Langmuir and Freundlich isotherms. Experimental data of all metal–resin system were best represented by the Freundlich isotherm. The maximum obtained sorption capacity for cadmium was 69.53 mg g-1 and 169.32 mg g-1 for Lead. The adsorption process follows first order kinetics and the specific rate constant Kr was obtained by the application of the Lagergan equation. Thermodynamic parameters ∆Gads, ∆Sads and ∆Hads were calculated for the metal–resin systems. The external diffusion rate constant (KS and the intra-particle diffusion rate constant (Kid were calculated by the Spahn–Schlunder and Weber–Morris models, respectively. The sorption process was found to follow an intra-particle diffusion phenomenon.

  8. [{sup 14}C]Serotonin uptake and [O-methyl-{sup 11}C]venlafaxine kinetics in porcine brain

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.F. E-mail: dfsmith@inet.uni2.dk; Hansen, S.B.; Oestergaard, L.; Gee, A.D.; Danielsen, E.; Ishizu, K.; Bender, D.; Poulsen, P.H.; Gjedde, A

    2001-08-01

    As part of our program of developing PET tracers for neuroimaging of psychotropic compounds, venlafaxine, an antidepressant drug, was evaluated. First, we measured in vitro rates of serotonin uptake in synaptosomes prepared from selected regions of porcine brain. Then, we determined the pharmacokinetics of venlafaxine, [O-methyl-{sup 11}C]-labeled for PET. Synaptosomal studies showed that the active uptake of [{sup 14}C]5-HT differed markedly between brain regions, with highest rates in hypothalamus, raphe region, and thalamus, and lowest rates in cortex and cerebellum. PET studies showed that the unidirectional rate of uptake of [O-methyl-{sup 11}C]venlafaxine from blood to brain was highest in the hypothalamus, raphe region, thalamus and basal ganglia and lowest in the cortex and cerebellum. Under normal physiological conditions, the capillary permeability-surface area (PS) product for [O-methyl-{sup 11}C]venlafaxine could not be estimated, because of complete flow-limitation of the cerebral uptake. Nevertheless, a correlation occurred between the apparent partition volume of the radiotracer and the rate of active uptake of 5-HT in selected regions of the porcine brain. During hypercapnia, limitations of blood-brain transfer were observed, giving PS-products for water that were only ca. 50% higher than those of venlafaxine. Thus, under normal physiological conditions, the rate of uptake of venlafaxine from blood into brain is completely flow-limited.

  9. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis

    Science.gov (United States)

    Chin, Lisa M. K.; Heigenhauser, George J. F.; Paterson, Donald H.

    2010-01-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (V̇o2p) and leg femoral conduit artery (“bulk”) blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) ∼40 mmHg] and sustained hyperventilation (Hypo; PetCO2 ∼20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). V̇o2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Δ[HHb])-, oxy (Δ[O2Hb])-, and total hemoglobin-myoglobin (Δ[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of V̇o2p, LBF, and Δ[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 V̇o2p (Hypo, 49 ± 26 s; Con, 28 ± 8 s) and LBF (Hypo, 46 ± 16 s; Con, 23 ± 6 s) were greater (P alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given ΔV̇o2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of V̇o2p (and muscle O2 utilization) kinetics. PMID:20339012

  10. Uptake of /sup 86/Rb/sup +/ into photoautotrophic mesophyll cells of Papaver somniferum

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, W.M.; Jeschke, W.D.; Hartung, W.

    1982-06-01

    Uptake of /sup 86/Rb/sup +/, used as a tracer for potassium, into isolated photoautotrophic mesophyll cells of Papaver somniferum was weakly but consistently stimulated in the light. It showed mono-phasic saturation kinetics with a pH optimum of 7.0, a Vsub(max) of 6.7 ..mu..mol mg/sup -1/ Chl x h/sup -1/ and a Ksub(m) of 2.7 mmol l/sup -1/. Different anions as Cl/sup -/, NO/sub 3//sup -/ and PO/sub 4//sup 3 -/ had no effects on /sup 86/Rb/sup +/ uptake. Sodium ions influenced Rb/sup +/-uptake very weakly, indicating a high K/sup +/ -specificity of the mesophyll cell plasmalemma. Fusicoccin stimulated /sup 86/Rb/sup +/ -uptake strongly whereas abscisic acid inhibited uptake only following preincubation for two hours. Nitrite, CCCP and Dio-9 inhibited /sup 86/Rb/sup +/-uptake which gives evidence that this process is dependent on intact pH-gradients within the cells and on ATP-formation.

  11. Uranium uptake by the filamentous fungal biomass, Aspergillus fumigatus and mechanism of biosorption

    International Nuclear Information System (INIS)

    Bhainsa, Kuber C.; D'Souza, S.F.

    2010-01-01

    Uptake of uranium by Aspergillus fumigatus was investigated in a batch study. Previously, we had reported good uranium uptake capacity, i.e., 423 mg U/g by this fungal biomass. The objective of the present study was to investigate the uranium uptake and mechanism of biosorption by Aspergillus fumigatus. The metal uptake was rapid and 80% of metal ion could be removed within 4 minutes of contact time. Kinetic modeling indicated that the uptake of uranium followed Lagergren's pseudo-second order reaction indicating the process to be mediated through chemisorption mechanism. Further studies on isotherm modeling were carried out using D-R isotherm to confirm the same. The energy of biosorption obtained from D-R isotherm was found to be 14.4 kJ/mol. This energy corresponds to the energy of chemisorption (ion-exchange) which varies between 8-16 kJ/mol. All these results suggest that uranium uptake by Aspergillus fumigatus is mediated through chemisorptions mechanism. (author)

  12. Kinetic analysis of the cannabinoid-1 receptor PET tracer [{sup 18}F]MK-9470 in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Sanabria-Bohorquez, Sandra Marina; Hamill, Terence G.; Burns, H.D. [Merck Research Laboratories, Imaging, West Point, PA (United States); Goffin, Karolien; Laere, Koen van [University Hospital and K.U. Leuven, Division of Nuclear Medicine, Leuven (Belgium); Lepeleire, Inge de [Merck Research Laboratories, Brussels (Belgium); Bormans, Guy [K.U. Leuven, Laboratory of Radiopharmacy, Leuven (Belgium)

    2010-05-15

    Quantitative imaging of the type 1 cannabinoid receptor (CB1R) opens perspectives for many neurological and psychiatric disorders. We characterized the kinetics and reproducibility of the CB1R tracer [{sup 18}F]MK-9470 in human brain. [{sup 18}F]MK-9470 data were analysed using reversible models and the distribution volume V{sub T} and V{sub ND} k{sub 3} (V{sub ND} k{sub 3} = K{sub 1} k{sub 2}) were estimated. Tracer binding was also evaluated using irreversible kinetics and the irreversible uptake constant K{sub i} and fractional uptake rate (FUR) were estimated. The effect of blood flow on these parameters was evaluated. Additionally, the possibility of determining the tracer plasma kinetics using a reduced number of blood samples was also examined. A reversible two-tissue compartment model using a global k{sub 4} value was necessary to describe brain kinetics. Both V{sub T} and V{sub ND} k{sub 3} were estimated satisfactorily and their test-retest variability was between 10% and 30%. Irreversible methods adequately described brain kinetics and FUR values were equivalent to K{sub i}. The linear relationship between K{sub i} and V{sub ND} k{sub 3} demonstrated that K{sub i} or FUR and thus the simple measure of tracer brain uptake provide CB1R availability information. The test-retest variability of K{sub i} and FUR was <10% and estimates were independent of blood flow. Brain uptake can be used as a receptor availability index, albeit at the expense of potential bias due to between-subject differences in tracer plasma kinetics. [{sup 18}F]MK-9470 specific binding can be accurately determined using FUR values requiring a short scan 90 to 120 min after tracer administration. Our results suggest that [{sup 18}F]MK-9470 plasma kinetics can be assessed using a few venous samples. (orig.)

  13. Uptake and kinetics of 226Ra, 210Pb and 210Po in big sage brush

    International Nuclear Information System (INIS)

    Simon, S.L.

    1985-01-01

    Root uptake of 226 Pb and 210 Po by mature sage brush was studied using a soil injection method for spiking the soil with minimal root disturbance. The main objective was to measure vegetation concentrations and determine concentration ratios (CR's) due to root uptake as a function of time in mature big sage brush. Concentration ratios obtained in mature vegetation and in steady-state situations may be valuable in assessing the impact of uranium mining and milling. The vegetation was sampled approximately every 3 mo for A 2 y period. Significant levels of activity were detected in the vegetation beginning at the first sampling (81 d after soil injection for 226 Ra, 28 d for 210 Pb and 210 Po). There was an exponential decrease in concentration to an apparent steady state value. Mean values (geometric) of the data pooled over the second year period indicated that steady-state Cr's for 226 Ra, 210 Pb and 210 Po, as determined in mature sage brush, were 0.04, 0.009, and 0.08, respectively. Investigations were also carried out to verify the suitability of soil injection for uptake studies and to evaluate the time dependence of 226 Ra leaching from sage brush leaves. The soil injection method was determined to produce, on the average, uptake equivalent to that produce by a uniform soil distribution, however, the variety of uptake for plants growing in injected soil was higher than for plants growing in uniformly contaminated soil. A three compartment mathematical model was formulated to help understand mechanisms of plant uptake and to predict, if possible, the concentration of 226 Ra, 210 Po in vegetation as a function of time after soil spiking

  14. Kinetic analysis of the cannabinoid-1 receptor PET tracer [18F]MK-9470 in human brain

    International Nuclear Information System (INIS)

    Sanabria-Bohorquez, Sandra Marina; Hamill, Terence G.; Burns, H.D.; Goffin, Karolien; Laere, Koen van; Lepeleire, Inge de; Bormans, Guy

    2010-01-01

    Quantitative imaging of the type 1 cannabinoid receptor (CB1R) opens perspectives for many neurological and psychiatric disorders. We characterized the kinetics and reproducibility of the CB1R tracer [ 18 F]MK-9470 in human brain. [ 18 F]MK-9470 data were analysed using reversible models and the distribution volume V T and V ND k 3 (V ND k 3 = K 1 k 2 ) were estimated. Tracer binding was also evaluated using irreversible kinetics and the irreversible uptake constant K i and fractional uptake rate (FUR) were estimated. The effect of blood flow on these parameters was evaluated. Additionally, the possibility of determining the tracer plasma kinetics using a reduced number of blood samples was also examined. A reversible two-tissue compartment model using a global k 4 value was necessary to describe brain kinetics. Both V T and V ND k 3 were estimated satisfactorily and their test-retest variability was between 10% and 30%. Irreversible methods adequately described brain kinetics and FUR values were equivalent to K i . The linear relationship between K i and V ND k 3 demonstrated that K i or FUR and thus the simple measure of tracer brain uptake provide CB1R availability information. The test-retest variability of K i and FUR was 18 F]MK-9470 specific binding can be accurately determined using FUR values requiring a short scan 90 to 120 min after tracer administration. Our results suggest that [ 18 F]MK-9470 plasma kinetics can be assessed using a few venous samples. (orig.)

  15. Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time.

    Science.gov (United States)

    Peirce, Courtney A E; Priest, Craig; McBeath, Therese M; McLaughlin, Mike J

    2016-01-07

    The delivery and uptake of nutrients at the surface of plant leaves is an important physicochemical phenomenon that depends on leaf surface morphology and chemistry, fertilizer formulation chemistry (including adjuvant and associated surfactants), wetting dynamics, and many other physical, chemical and biological factors. In this study, the role of spreading dynamics in determining uptake of the macronutrient phosphorus from phosphoric acid fertilizer solution in combination with three different adjuvants was measured in the absence of droplet run-off and splashing. When run-off and splashing losses were zero, spreading and drying rates had a small to negligible effect on the uptake efficiency. The results suggest that uptake may be much less sensitive to the specific choice of adjuvant and long time-scale spreading behaviour than one might intuitively expect.

  16. Nonthermal effect of microwave irradiation on nitrite uptake in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Pedrajas, C.; Cotrino, J.

    1989-01-01

    When cells of the unicellular green alga Chlamydomonas reinhardtii were subjected to microwave irradiation at 2.45 GHz, nitrite uptake kinetics still obeyed the Michaelis-Menten equation, the Km of the process remaining constant, whereas V max increased, which indicates an enhanced nonthermal permeability in irradiated cells. (author)

  17. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  18. Substrate uptake, phosphorus repression, and effect of seed culture on glycopeptide antibiotic production

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Singh, Kamaleshwar P.; Eliasson Lantz, Anna

    2010-01-01

    may experience catabolite repression by one or more of the substrates. Availability of reliable process models is a key bottleneck in optimization of such processes. Here we present a structured kinetic model to describe the growth, substrate uptake and product formation for the glycopeptide....... The model is also able to predict key phenomena such as simultaneous uptake of glucose and glycerol but with different specific uptake rates, and inhibition of glycopeptide production by high intracellular phosphate levels. The model is successfully applied to both production and seed medium with varying....... The model may have applications in optimizing seed transfer, medium composition, and feeding strategy for maximizing production....

  19. Interstitial diffusion and the relationship between compartment modelling and multi-scale spatial-temporal modelling of (18)F-FLT tumour uptake dynamics.

    Science.gov (United States)

    Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D

    2014-09-07

    Tumour cell proliferation can be imaged via positron emission tomography of the radiotracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT). Conceptually, the number of proliferating cells might be expected to correlate more closely with the kinetics of 18F-FLT uptake than with uptake at a fixed time. Radiotracer uptake kinetics are standardly visualized using parametric maps of compartment model fits to time-activity-curves (TACs) of individual voxels. However the relationship between the underlying spatiotemporal accumulation of FLT and the kinetics described by compartment models has not yet been explored. In this work tumour tracer uptake is simulated using a mechanistic spatial-temporal model based on a convection-diffusion-reaction equation solved via the finite difference method. The model describes a chain of processes: the flow of FLT between the spatially heterogeneous tumour vasculature and interstitium; diffusion and convection of FLT within the interstitium; transport of FLT into cells; and intracellular phosphorylation. Using values of model parameters estimated from the biological literature, simulated FLT TACs are generated with shapes and magnitudes similar to those seen clinically. Results show that the kinetics of the spatial-temporal model can be recovered accurately by fitting a 3-tissue compartment model to FLT TACs simulated for those tumours or tumour sub-volumes that can be viewed as approximately closed, for which tracer diffusion throughout the interstitium makes only a small fractional change to the quantity of FLT they contain. For a single PET voxel of width 2.5-5 mm we show that this condition is roughly equivalent to requiring that the relative difference in tracer uptake between the voxel and its neighbours is much less than one.

  20. Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca Americana L

    Energy Technology Data Exchange (ETDEWEB)

    Peng Kejian [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Hunan Research Academy of Environmental Sciences Changsha 410004 (China); Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); You Wuxin [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lian Chunlan [Asian Natural Environmental Science Center, University of Tokyo, 1-1-8 Midori-cho, Nishitokyo, Tokyo 188-0002 (Japan); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Shen Zhenguo [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: zgshen@njau.edu.cn

    2008-06-15

    In the present study, the accumulation of Mn and other metals by Phytolacca Americana L. from contaminated soils in Hunan Province, South China, was investigated. Results showed that the average concentrations of Mn in the leaves and roots reached 2198 and 80.4 mg kg{sup -1} (dry weight), respectively, with a maximum 13,400 mg kg{sup -1} in the leaves. A significant correlation was found between Mn concentrations in the plant leaves and those in the corresponding soils. Hydroponic experiments were also conducted to study the Cd uptake ability and interactions between Mn and Cd in the plant. It was found that P. americana hyperaccumulated not only Mn, but also Cd in the leaves. In the presence of Cd, adding Mn to the solution significantly improved the plant growth and reduced the concentrations of Cd in all organs of the plant.

  1. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-11-19

    Biosorption of chromium and zinc ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). Langmuir and Langmuir-Freundlich equilibrium models describe well the equilibrium data. The parameters of Langmuir equilibrium model at pH 5.3 and 20 degrees C were for the algae, q(L)=18 mg Cr(III)g(-1) and 13 mgZn(II)g(-1), K(L) = 0.021l mg(-1)Cr(III) and 0.026l mg(-1) Zn(II); for the algal waste, q(L)=12 mgCr(III)g(-1) and 7mgZn(II)g(-1), K(L)=0.033lmg(-1) Cr(III) and 0.042l mg(-1) Zn(II); for the composite material, q(L) = 9 mgCr(III)g(-1) and 6 mgZn(II)g(-1), K(L)=0.032l mg(-1)Cr(III) and 0.034l mg(-1)Zn(II). The biosorbents exhibited a higher preference for Cr(III) ions and algae Gelidium is the best one. The pseudo-first-order Lagergren and pseudo-second-order models fitted well the kinetic data for the two metal ions. Kinetic constants and equilibrium uptake concentrations given by the pseudo-second-order model for an initial Cr(III) and Zn(II) concentration of approximately 100 mgl(-1), at pH 5.3 and 20 degrees C were k(2,ads)=0.04 g mg(-1)Cr(III)min(-1) and 0.07 g mg(-1)Zn(II)min(-1), q(eq)=11.9 mgCr(III)g(-1) and 9.5 mgZn(II)g(-1) for algae; k(2,ads)=0.17 g mg(-1)Cr(III)min(-1) and 0.19 g mg(-1)Zn(II)min(-1), q(eq)=8.3 mgCr(III)g(-1) and 5.6 mgZn(II)g(-1) for algal waste; k(2,ads)=0.01 g mg(-1)Cr(III)min(-1) and 0.18 g mg(-1)Zn(II)min(-1), q(eq)=8.0 mgCr(III)g(-1) and 4.4 mgZn(II)g(-1) for composite material. Biosorption was modelled using a batch adsorber mass transfer kinetic model, which successfully predicts Cr(III) and Zn(II) concentration profiles. The calculated average homogeneous diffusivities, D(h), were 4.2 x 10(-8), 8.3 x 10(-8) and 1.4 x 10(-8)cm(2)s(-1) for Cr(III) and 4.8 x 10(-8), 9.7 x 10(-8) and 6.2 x 10(-8)cm(2)s(-1

  2. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    Science.gov (United States)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  3. Thallium kinetics in rat cardiac transplant rejection

    International Nuclear Information System (INIS)

    Barak, J.H.; LaRaia, P.J.; Boucher, C.A.; Fallon, J.T.; Buckley, M.J.

    1988-01-01

    Cardiac transplant rejection is a very complex process involving both cellular and vascular injury. Recently, thallium imaging has been used to assess acute transplant rejection. It has been suggested that changes in thallium kinetics might be a sensitive indicator of transplant rejection. Accordingly, thallium kinetics were assessed in vivo in acute untreated rat heterotopic (cervical) transplant rejection. Male Lewis rats weighing 225-250 g received heterotopic heart transplants from syngeneic Lewis rats (group A; n = 13), or allogeneic Brown Norway rats (group B; n = 11). Rats were imaged serially on the 2nd and the 7th postoperative days. Serial cardiac thallium content was determined utilizing data collected every 150 sec for 2 hr. The data were fit to a monoexponential curve and the decay rate constant (/sec) derived. By day 7 all group B hearts had histological evidence of severe acute rejection, and demonstrated decreased global contraction. Group A hearts showed normal histology and contractility. However, thallium uptakes and washout of the two groups were the same. Peak thallium uptake of group B was +/- 3758 1166 counts compared with 3553 +/- 950 counts in the control group A (P = 0.6395); The 2-hr percentage of washout was 12.1 +/- 1.04 compared with 12.1 +/- 9.3 (P = 1.0000); and the decay constant was -0.00002065 +/- 0.00001799 compared with -0.00002202 +/- 0.00001508 (P = 0.8409). These data indicate that in vivo global thallium kinetics are preserved during mild-to-severe acute transplant rejection. These findings suggest that the complex cellular and extracellular processes of acute rejection limit the usefulness of thallium kinetics in the detection of acute transplant rejection

  4. New Methods for Processing and Quantifying VO2 Kinetics to Steady State: VO2 Onset Kinetics

    Directory of Open Access Journals (Sweden)

    Craig R. McNulty

    2017-09-01

    Full Text Available Current methods of oxygen uptake (VO2 kinetics data handling may be too simplistic for the complex physiology involved in the underlying physiological processes. Therefore, the aim of this study was to quantify the VO2 kinetics to steady state across the full range of sub-ventilatory threshold work rates, with a particular focus on the VO2 onset kinetics. Ten healthy, moderately trained males participated in five bouts of cycling. Each bout involved 10 min at a percentage of the subject's ventilation threshold (30, 45, 60, 75, 90% from unloaded cycling. The VO2 kinetics was quantified using the conventional mono-exponential time constant (tau, τ, as well as the new methods for VO2 onset kinetics. Compared to linear modeling, non-linear modeling caused a deterioration of goodness of fit (main effect, p < 0.001 across all exercise intensities. Remainder kinetics were also improved using a modified application of the mono-exponential model (main effect, p < 0.001. Interestingly, the slope from the linear regression of the onset kinetics data is similar across all subjects and absolute exercise intensities, and thereby independent of subject fitness and τ. This could indicate that there are no functional limitations between subjects during this onset phase, with limitations occurring for the latter transition to steady state. Finally, the continuing use of mono-exponential modeling could mask important underlying physiology of more instantaneous VO2 responses to steady state. Consequently, further research should be conducted on this new approach to VO2 onset kinetics.

  5. Differentiation of Glioblastomas from Metastatic Brain Tumors by Tryptophan Uptake and Kinetic Analysis: A Positron Emission Tomographic Study with Magnetic Resonance Imaging Comparison

    Directory of Open Access Journals (Sweden)

    David O. Kamson

    2013-07-01

    Full Text Available Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI; molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-L-tryptophan (AMT–positron emission tomography (PET to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs. Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD] from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74% and the tumor/cortex VD ratio had the highest positive predictive value (82%. The combined accuracy of MRI (size of contrast-enhancing lesion and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.

  6. Different transport mechanisms for cadmium and mercury in Caco-2 cells: inhibition of Cd uptake by Hg without evidence for reciprocal effects

    International Nuclear Information System (INIS)

    Aduayom, Ismaeel; Campbell, Peter G.C.; Denizeau, Francine; Jumarie, Catherine

    2003-01-01

    Cadmium/Hg interactions have been studied in the TC7 clone of the enterocytic-like Caco-2 cells to test the hypothesis that these metals may compete for intestinal transport. Comparison of the kinetic parameter values for 203 Hg(II) and 109 Cd(II) uptake in a serum-free medium revealed that Hg is accumulated much more rapidly and to higher concentrations. The very rapid uptake/binding step and the initial uptake rate of 109 Cd were both significantly inhibited by an excess of unlabeled Cd or Hg (apparent K i for Hg of 9.3 ± 1.2 μM) without reciprocal effects. 109 Cadmium uptake was highly sensitive to temperature and a significant fraction of accumulation (12%) was EDTA extractable. 203 Hg uptake remained insensitive to temperature or the EDTA washing procedure. However, the uptake of both tracers was half-decreased when an excess of the respective unlabeled metal was added in the stop solution, suggesting an exchange mechanism for adsorption. Cell pretreatment with N-ethylmaleimide (NEM) led to a 30% decrease or a 73% increase in the 3-min specific transport of 109 Cd when NEM was still present in or removed from the uptake medium, respectively. NEM had no effect on 203 Hg uptake. Overall our results suggest the involvement of a saturable specific mechanism for Cd, which is highly sensitive to inhibition by Hg and NEM under some conditions, and a nonspecific passive diffusion for Hg. The Hg- or NEM-induced inhibition of Cd uptake likely involves a thiol-mediated reaction, but our results suggest that NEM pretreatment may activate other cellular mechanisms leading to a stimulatory effect

  7. Kinetics in radiation chemistry

    International Nuclear Information System (INIS)

    Hummel, A.

    1987-01-01

    In this chapter the authors first briefly review the kinetics of first- and second-order processes for continuous and pulsed irradiation, without taking the effects of nonhomogeneous formation of the species into consideration. They also discuss diffusion controlled reactions under conditions where interactions of more than two particles can be neglected, first the kinetics of the diffusion-controlled reaction of randomly generated species (homogeneous reaction) and then that of isolated pairs of reactants. The latter is often called geminate kinetics when dealing with pairs of oppositely charged species; they shall use this term for the kinetics of isolated pairs in general. In the last section they discuss briefly the kinetics of groups of more than two reactants

  8. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  9. The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis).

    Science.gov (United States)

    Lai, Hung-Yu; Chen, Zueng-Sang

    2006-10-11

    Soil used in this study was artificially contaminated with Cd, Zn, Pb, or applied in combinations (Cd-Zn, Cd-Pb, Zn-Pb, or Cd-Zn-Pb) to study the interactions of metals in soil contaminated with multiple metals. After planting rainbow pink (Dianthus chinensis) in these soils for 21 days, three different concentrations of ethylenedinitrilotetraacetic acid (EDTA) solutions were added to study the effect of applying EDTA on the interactions among these metals. The concentrations of Cd, Zn, and Pb in the soil solutions of different metals-treated soils increased significantly after applying 5 mmol EDTA kg(-1) soil (p<0.05). The potential of groundwater contamination will increase after applying EDTA and it is not recommended to be in situ used or have to use very carefully. The existence of Pb in the Cd-contaminated soil enhanced the uptake of Cd in rainbow pink in the treatments of control and 2 mmol EDTA kg(-1) soil. Cadmium inhibited the concentration of Zn without applying EDTA. However, whether the application of EDTA or not and the applied EDTA concentration had the greatest effect on the uptake of Pb when compared to Cd and Zn. After applying 5 mmol EDTA kg(-1) soil, Cd or Zn in the Pb-contaminated soil inhibited the uptake of Pb in rainbow pink, but there were no effect in other treatments.

  10. Uptake and kinetics of 226Ra, 210Pb and 210Po in big sagebrush

    International Nuclear Information System (INIS)

    Simon, S.L.

    1985-01-01

    Root uptake of 226 Ra, 210 Pb and 210 Po by mature sagebrush was studied using a soil injection method for spiking the soil with minimal root disturbance. The main objective was to measure vegetation concentrations and determine concentration ratios (CR's) due to root uptake as a function of time in mature big sagebrush. Concentration ratios obtained in mature vegetation and in steady-state situations may be valuable in assessing the impact of uranium mining and milling. The vegetation was sampled approximately every 3 months for a 2 year period. Significant levels of activity were detected in the vegetation beginning at the first sampling (81 days after soil injection for 226 Ra, 28 days for 210 Pb and 210 Po). There was an exponential decrease in concentration to an apparent steady-state value. Mean values (geometric) of the data pooled over the second year period indicated that the steady-state CR's for 226 Ra, 210 Pb and 210 Po, as determined in mature sagebrush, were 0.04, 0.009, and 0.08, respectively. A three compartment mathematical model was formulated to help understand mechanisms of plant uptake and to predict, if possible, the concentration of 226 Ra, 210 Pb and 210 Po in vegetation as a function of time after soil spiking. A numerical solution was determined by 'calibrating' the general model solution with constants determined from regressions of concentrations in vegetation, soil leaching and leaf leaching data. Validation of the model is currently not possible because of an absence of similar time-dependent uptake studies. 168 refs., 19 figs., 18 tabs

  11. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  12. Myocardial uptake and clearance of thallium-201 in normal subjects: comparison of dipyridamole-induced hyperemia with exercise stress

    International Nuclear Information System (INIS)

    Ruddy, T.D.; Gill, J.B.; Finkelstein, D.M.; Strauss, H.W.; McKusick, K.A.; Okada, R.D.; Boucher, C.A.

    1987-01-01

    Thallium-201 uptake and clearance after dipyridamole infusion may differ from that after exercise stress because the hemodynamic effects of these two interventions are different. In this study of normal volunteers, thallium kinetics after dipyridamole (n = 13) were determined from three serial image sets (early, intermediate and delayed) and from serial blood samples and compared with thallium kinetics after exercise (n = 15). Absolute myocardial thallium uptake was greater after dipyridamole compared with exercise (p less than 0.0001), although the relative myocardial distribution was similar. The myocardial clearance (%/h) of thallium was slower after dipyridamole than it was after exercise. Comparing dipyridamole and exercise, the differences in clearance were large from the early to the intermediate image (anterior, -11 +/- 17 versus 24 +/- 5, p = 0.0005; 50 degrees left anterior oblique, -7 +/- 11 versus 15 +/- 8, p = 0.004; 70 degrees left anterior oblique, 3 +/- 9 versus 21 +/- 6, p = 0.001). In contrast, the differences in clearance were small from the intermediate to the delayed image (anterior, 15 +/- 4 versus 20 +/- 2, p = 0.025; 50 degrees left anterior oblique, 15 +/- 4 versus 19 +/- 3, p = 0.13; 70 degrees left anterior oblique, 15 +/- 3 versus 18 +/- 2, p = 0.047). Thallium uptake and clearance in the liver, splanchnic region and spleen were greater after dipyridamole (p less than 0.001). Blood thallium levels were greater after dipyridamole (p less than 0.05) and cleared more slowly (p = 0.07). Thus, myocardial thallium-201 uptake and clearance after dipyridamole infusion differ from thallium kinetics after exercise. This difference is, in part, related to associated differences in extracardiac and blood kinetics. Diagnostic criteria for the detection of abnormal thallium-201 clearance must be specific for the type of intervention

  13. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    Science.gov (United States)

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  14. Study of the Dynamic Uptake of Free Drug and Nanostructures for Drug Delivery Based on Bioluminescence Measurements

    Directory of Open Access Journals (Sweden)

    Zhongjian Fang

    2017-01-01

    Full Text Available The past two decades have witnessed the great growth of the development of novel drug carriers. However, the releasing dynamics of drug from drug carriers in vivo and the interactions between cells and drug carriers remain unclear. In this paper, liposomes were prepared to encapsulate D-luciferin, which was the substrate of luciferase and served as a model drug. Based on the theoretical calculation of active loading, methods of preparation for liposomes were optimized. Only when D-luciferin was released from liposomes or taken in by the cells could bioluminescence be produced under the catalysis of luciferase. Models of multicellular tumor spheroid (MCTS were built with 4T1-luc cells that expressed luciferase stably. The kinetic processes of uptake and distribution of free drugs and liposomal drugs were determined with models of cell suspension, monolayer cells, MCTS, and tumor-bearing nude mice. The technology platform has been demonstrated to be effective for the study of the distribution and kinetic profiles of various liposomes as drug delivery systems.

  15. Uptake of acidic and basic sugar derivatives in Lemna gibba G1

    International Nuclear Information System (INIS)

    Sanz, A.; Ullrich, C.I.

    1989-01-01

    The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution induced a small decrease of the membrane potential. After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. ( 14 C)glucosamine uptake followed Michaelis-Menten kinetics together with a linear component. Influx of this substrate was inhibited by glucose but the type of competition could not be clearly distinguished. Glucosamine, 50 millimolar, inhibited the respiration rate by 30%. The glucosamine uptake was pH-dependent, with maximum uptake at around pH 7. Lack of enhancement of uptake by low pH as well as the permanent membrane depolarization suggest a uniport mechanism for the charged species of the substrate and an electroneutral diffusion of the uncharged species

  16. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    Directory of Open Access Journals (Sweden)

    L. H. Renbaum

    2011-07-01

    Full Text Available In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane and supercooled (brassidic acid and 2-octyldodecanoic acid organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  17. Study of the cellular uptake and distribution of 57cobalt bleomycin in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Metelmann, H.R.

    1980-01-01

    We investigated the dependence of the cellular uptake of 57 cobalt-bleomycin on the exposure time and on the dose. In addition we observed the influences due to the incubation temperature, to the growth phase of the tumor cells and due to the composition of the suspensory medium. In supplementary experiments we investigated the binding of the labelled cytostatic agent to erythrocytes, its adsorption to broken Ehrlich ascites tumor cells and the 57 cobalt-bleomycin outflow from pre-loaded intact Ehrlich ascites tumor cells. The 57 cobalt-bleomycin uptake of intact Ehrlich ascites tumor cells is determined by characteristic kinetics. Moreover, the erythrocytes and injured Ehrlich ascites tumor cells show a qualitatively similar graph of the 57 cobalt-bleomycin binding, which can clearly be distinguished from the kinetics found with intact Ehrlich ascites tumor cells. The uptake of this cytostatic agent depends on an unequivocal time-dose-temperature relationship. The transport mechanism of the 57 cobalt-bleomycin uptake was considered as endocytosis. An endocytosis-stimulating inducer could not be detected. However, we obtained indications that the cell-bound cytostatic agent is taken up in two compartments: on the cellular surface and in the interior of the cell. (orig./MG) [de

  18. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  19. Carbon: Nitrogen Interaction Regulates Expression of Genes Involved in N-Uptake and Assimilation in Brassica juncea L.

    Science.gov (United States)

    Goel, Parul; Bhuria, Monika; Kaushal, Mamta

    2016-01-01

    In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C) and Nitrogen (N) are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source) on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N), C source alone (+Suc-N), with N and C source (+Suc+N) or without N and C source (-Suc-N). Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8) in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2) in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen. PMID:27637072

  20. Carbon: Nitrogen Interaction Regulates Expression of Genes Involved in N-Uptake and Assimilation in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Parul Goel

    Full Text Available In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C and Nitrogen (N are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N, C source alone (+Suc-N, with N and C source (+Suc+N or without N and C source (-Suc-N. Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8 in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2 in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen.

  1. Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system.

    Science.gov (United States)

    Lee, Ju Yeon; Rahman, Arifur; Azam, Hossain; Kim, Hyung Seok; Kwon, Man Jae

    2017-01-01

    A balanced nutrient supply is essential for the healthy growth of plants in hydroponic systems. However, the commonly used electrical conductivity (EC)-based nutrient control for plant cultivation can provide amounts of nutrients that are excessive or inadequate for proper plant growth. In this study, we investigated the kinetics of major and minor nutrient uptake in a nutrient solution during the growth of tomato (Solanum lycopersicum var. cerasiforme Alef.) in a closed hydroponic system. The concentrations of major and minor ions in the nutrient solution were determined by various analytical methods including inductively coupled plasma-optical emission spectroscopy (ICP-OES), ion chromatography (IC), ion specific electrodes, and/or colorimetric methods. The concentrations of the individual nutrient ions were compared with changes in the EC. The EC of the nutrient solution varied according to the different growth stages of tomato plants. Variation in the concentrations of NO3-, SO42-, Mg2+, Ca2+, and K+ was similar to the EC variation. However, in the cases of PO43-, Na+, Cl-, dissolved Fe and Mn, Cu2+, and Zn2+, variation did not correspond with that of EC. These ions were generally depleted (to 0 mg L-1) during tomato growth, suggesting that these specific ions should be monitored individually and their supply increased. Nutrient uptake rates of major ions increased gradually at different growth stages until harvest (from 15 mg L-1 d-1). Saturation indices determined by MINEQL+ simulation and a mineral precipitation experiment demonstrated the potential for amorphous calcium phosphate precipitation, which may facilitate the abiotic adsorptive removal of dissolved Fe, dissolved Mn, Cu2+, and Zn2+.

  2. Models for in vivo kinetic interactions of dopamine D2-neuroreceptors and 3-(2'-[18F]fluoroethyl)spiperone examined with positron emission tomography

    International Nuclear Information System (INIS)

    Bahn, M.M.; Huang, S.C.; Hawkins, R.A.; Satyamurthy, N.; Hoffman, J.M.; Barrio, J.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    The in vivo tracer kinetics of 3-(2'-[18F]fluoroethyl)spiperone (FESP) in the caudate/striatum and cerebellar regions of the human and monkey brain were studied with positron emission tomography (PET). The minimal model configuration that can describe the kinetics was determined statistically. Three two-compartment model configurations were found to be suitable for describing the kinetics in caudate/striatum and cerebellum: (1) a nonlinear model (five parameters) applicable to studies using nontracer (partially saturating) quantities of FESP in monkey striatum, (2) a linear four-parameter model applicable to the caudate/striatal and cerebellar kinetics in human and monkey studies with tracer quantities of FESP, and (3) a linear three-parameter model derived from the four-parameter model by assuming irreversible binding applicable to tracer studies of the human caudate. In the human studies, when the caudate kinetics (n = 4) were fit by model 2 (with four parameters), the value of the in vivo ligand dissociation constant kd was found to be 0.0015 +/- 0.0032/min. The three-parameter model (model 3) was found to fit the data equally well: this model is equivalent to model 2 with kd set to zero. In the monkey studies, it was found that for short (90 min) studies using tracer quantities of FESP, model 2 fit the striatal kinetics better than model 3. The parameters estimated using model 2 (four parameters) were in better agreement with those estimated by the nonlinear model (model 1) than those estimated using model 3 (three parameters). The use of a graphical approach gives estimates of the plasma-tissue fractional transport rate constant K1 and the net uptake constant K3 comparable to estimates using model 3 for both human and monkey studies

  3. The influence of adsorbate interactions on elementary reaction kinetics : CO with NO, N, O, or H on Rh(100)

    NARCIS (Netherlands)

    Jansen, M.M.M.

    2010-01-01

    The kinetics of heterogeneously catalysed reactions is often described by highly simplified models. For example, the reacting adsorbates occupy one kind of site, surfaces do not reconstruct and lateral interactions between adsorbates are often neglected. Particularly the latter is only allowed for

  4. Kinetics of depletion interactions

    NARCIS (Netherlands)

    Vliegenthart, G.A.; Schoot, van der P.P.A.M.

    2003-01-01

    Depletion interactions between colloidal particles dispersed in a fluid medium are effective interactions induced by the presence of other types of colloid. They are not instantaneous but built up in time. We show by means of Brownian dynamics simulations that the static (mean-field) depletion force

  5. The H2A-H2B dimeric kinetic intermediate is stabilized by widespread hydrophobic burial with few fully native interactions.

    Science.gov (United States)

    Guyett, Paul J; Gloss, Lisa M

    2012-01-20

    The H2A-H2B histone heterodimer folds via monomeric and dimeric kinetic intermediates. Within ∼5 ms, the H2A and H2B polypeptides associate in a nearly diffusion limited reaction to form a dimeric ensemble, denoted I₂ and I₂*, the latter being a subpopulation characterized by a higher content of nonnative structure (NNS). The I₂ ensemble folds to the native heterodimer, N₂, through an observable, first-order kinetic phase. To determine the regions of structure in the I₂ ensemble, we characterized 26 Ala mutants of buried hydrophobic residues, spanning the three helices of the canonical histone folds of H2A and H2B and the H2B C-terminal helix. All but one targeted residue contributed significantly to the stability of I₂, the transition state and N₂; however, only residues in the hydrophobic core of the dimer interface perturbed the I₂* population. Destabilization of I₂* correlated with slower folding rates, implying that NNS is not a kinetic trap but rather accelerates folding. The pattern of Φ values indicated that residues forming intramolecular interactions in the peripheral helices contributed similar stability to I₂ and N₂, but residues involved in intermolecular interactions in the hydrophobic core are only partially folded in I₂. These findings suggest a dimerize-then-rearrange model. Residues throughout the histone fold contribute to the stability of I₂, but after the rapid dimerization reaction, the hydrophobic core of the dimer interface has few fully native interactions. In the transition state leading to N₂, more native-like interactions are developed and nonnative interactions are rearranged. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Preclinical dynamic 18F-FDG PET - tumor characterization and radiotherapy response assessment by kinetic compartment analysis

    International Nuclear Information System (INIS)

    Roee, Kathrine; Aleksandersen, Thomas B.; Nilsen, Line B.; Hong Qu; Ree, Anne H.; Malinen, Eirik; Kristian, Alexandr; Seierstad, Therese; Olsen, Dag R.

    2010-01-01

    Background. Non-invasive visualization of tumor biological and molecular processes of importance to diagnosis and treatment response is likely to be critical in individualized cancer therapy. Since conventional static 18 F-FDG PET with calculation of the semi-quantitative parameter standardized uptake value (SUV) may be subject to many sources of variability, we here present an approach of quantifying the 18 F-FDG uptake by analytic two-tissue compartment modeling, extracting kinetic tumor parameters from dynamic 18 F-FDG PET. Further, we evaluate the potential of such parameters in radiotherapy response assessment. Material and methods. Male, athymic mice with prostate carcinoma xenografts were subjected to dynamic PET either untreated (n=8) or 24 h post-irradiation (7.5 Gy single dose, n=8). After 10 h of fasting, intravenous bolus injections of 10-15 MBq 18 F-FDG were administered and a 1 h dynamic PET scan was performed. 4D emission data were reconstructed using OSEM-MAP, before remote post-processing. Individual arterial input functions were extracted from the image series. Subsequently, tumor 18 F-FDG uptake was fitted voxel-by-voxel to a compartment model, producing kinetic parameter maps. Results. The kinetic model separated the 18 F-FDG uptake into free and bound tracer and quantified three parameters; forward tracer diffusion (k1), backward tracer diffusion (k2), and rate of 18 F-FDG phosphorylation, i.e. the glucose metabolism (k3). The fitted kinetic model gave a goodness of fit (r2) to the observed data ranging from 0.91 to 0.99, and produced parametrical images of all tumors included in the study. Untreated tumors showed homogeneous intra-group median values of all three parameters (k1, k2 and k3), whereas the parameters significantly increased in the tumors irradiated 24 h prior to 18 F-FDG PET. Conclusions. This study demonstrates the feasibility of a two-tissue compartment kinetic analysis of dynamic 18 F-FDG PET images. If validated, extracted

  7. Children-Adult Comparisons of VO2 and HR Kinetics during Submaximum Exercise.

    Science.gov (United States)

    Sady, Stanley P.; And Others

    1983-01-01

    Oxygen uptake and heart rate kinetics for submaximum exercise (bicycle riding) were compared in prepubescent boys and adult men. Resulting data suggest that children and adults do not differ significantly in cardiorespiratory adjustments during low-intensity exercise. (Authors/PP)

  8. The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis)

    International Nuclear Information System (INIS)

    Lai, H.-Y.; Chen, Z.-S.

    2006-01-01

    Soil used in this study was artificially contaminated with Cd, Zn, Pb, or applied in combinations (Cd-Zn, Cd-Pb, Zn-Pb, or Cd-Zn-Pb) to study the interactions of metals in soil contaminated with multiple metals. After planting rainbow pink (Dianthus chinensis) in these soils for 21 days, three different concentrations of ethylenedinitrilotetraacetic acid (EDTA) solutions were added to study the effect of applying EDTA on the interactions among these metals. The concentrations of Cd, Zn, and Pb in the soil solutions of different metals-treated soils increased significantly after applying 5 mmol EDTA kg -1 soil (p -1 soil. Cadmium inhibited the concentration of Zn without applying EDTA. However, whether the application of EDTA or not and the applied EDTA concentration had the greatest effect on the uptake of Pb when compared to Cd and Zn. After applying 5 mmol EDTA kg -1 soil, Cd or Zn in the Pb-contaminated soil inhibited the uptake of Pb in rainbow pink, but there were no effect in other treatments

  9. Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator.

    Science.gov (United States)

    Bertrand, R; Danielson, D; Gong, V; Olynik, B; Eze, M O

    2012-01-01

    Efforts to explore possible relationships between nitric oxide (NO) and antioxidant enzymes in an Escherichia coli model have uncovered a possible interaction between sodium nitroprusside (SNP), a potent, NO-donating drug, and the ferric uptake regulator (Fur), an iron(II)--dependent regulator of antioxidant and iron acquisition proteins present in Gram-negative bacteria. The enzymatic profiles of superoxide dismutase and hydroperoxidase during logarithmic phase of growth were studied via non-denaturing polyacrylamide gel electrophoresis and activity staining specific to each enzyme. Though NO is known to induce transcription of the manganese-bearing isozyme of SOD (MnSOD), treatment with SNP paradoxically suppressed MnSOD expression and greatly enhanced the activity of the iron-containing equivalent (FeSOD). Fur, one of six global regulators of MnSOD transcription, is uniquely capable of suppressing MnSOD while enhancing FeSOD expression through distinct mechanisms. We thus hypothesize that Fur is complacent in causing this behaviour and that the iron(II) component of SNP is activating Fur. E. coli was also treated with the SNP structural analogues, potassium ferricyanide (PFi) and potassium ferrocyanide (PFo). Remarkably, the ferrous PFo was capable of mimicking the SNP-related pattern, whereas the ferric PFi was not. As Fur depends upon ferrous iron for activation, we submit this observation of redox-specificity as preliminary supporting evidence for the hypothesized Fur-SNP interaction. Iron is an essential metal that the human innate immune system sequesters to prevent its use by invading pathogens. As NO is known to inhibit iron-bound Fur, and as activated Fur regulates iron uptake through feedback inhibition, we speculate that the administration of this drug may disrupt this strategic management of iron in favour of residing Gram-negative species by providing a source of iron in an otherwise iron-scarce environment capable of encouraging its own uptake

  10. Studies on the uptake of para-boronophenylalanine in melanoma cells

    International Nuclear Information System (INIS)

    Papageorges, M.; Elstad, C.A.; Meadows, G.G.; Gavin, P.R.; Sande, R.D.; Bauer, W.F.

    1992-01-01

    Cell-associated boron levels adequate for neutron capture therapy (NCT) have been demonstrated in-vitro using cultured melanoma cells and in-vivo using xenografts in mice. Preliminary in-vivo studies performed by researchers at the College of Veterinary Medicine, Washington State University (WSU), using a spontaneous canine melanoma model, showed subtherapeutic tumor concentrations of para-boronophenylananine (p-BPA) in a large proportion of dogs. Possible explanations include poor solubility of p-BPA at physiological pH, physiological differences between transplanted and spontaneous tumors, and lack of metabolic incorporation at the cellular level. Reports of in-vitro p-BPA uptake studies are few and contradictory, and the kinetics of boron uptake at the average p-BOA blood concentration achieved in dogs (100 mg/L) is unknown. In-vitro and in-vivo experiments were designed to study boron loading in melanoma cells and to test the hypothesis that short-term tyrosine and phenylalanine deprivation can increase the uptake of p-BPA

  11. Effect of wortmannin and phorbol ester on Paramecium fluid-phase uptake in the presence of transferrin

    Directory of Open Access Journals (Sweden)

    J Wiejak

    2009-12-01

    Full Text Available The kinetics of the uptake of the fluid phase marker Lucifer Yellow (LY, and its alteration by wortmannin, an inhibitor of phosphatidylinositol-3 kinase (PI-3K, and the PKC modulators: GF 109203 X, an inhibitor, and phorbol ester, an activator was studied in eukaryotic model Paramecium aurelia. Spectrophotometric quantification of LY accumulation was performed in the presence or absence of transferrin, a marker of receptor-mediated endocytosis. Internalization of LY showed a curvilinear kinetics: the high initial rate of LYuptake (575 ng LY/ mg protein /hr decreased almost 5-fold within 15 min, reaching plateau at 126 ng/ mg protein /hr. Transferrin induced a small increase (7.5% in the fluid phase uptake rate (after 5 min followed by a small decrease at longer incubation times. Lucifer Yellow and transferrin (visualized by streptavidin– FITC were localized in Paramecium by 3-D reconstruction by confocal microscopy. LY showed a scattered, diffuse fluorescence typical of fluid phase uptake whereas transferrin accumulated in membrane-surrounded endosomes. Wortmannin did not affect LY accumulation but decreased it when transferrin was present in the incubation medium. This suggests an effect on the transferrin uptake pathway, presumably on the stage of internalization in “mixing” endosomes to which transferrin and LY were targeted. Phorbol ester diminished LY accumulation by 22% and this effect persisted up to 25 min of incubation. PKC inhibitor did not affect LY uptake. However, in the presence of transferrin, the LY uptake increased within the first 15 minutes followed by a rapid 20% decrease in comparison to the control. Such an effect of PKC modulators suggests that PMA action on fluid phase uptake is not directly mediated by PKC.

  12. Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides

    International Nuclear Information System (INIS)

    Makris, Konstantinos C.; Shakya, Kabindra M.; Datta, Rupali; Sarkar, Dibyendu; Pachanoor, Devanand

    2007-01-01

    The efficiency of vetiver grass (Vetiveria zizanioides) in removing 2,4,6-trinitrotoluene (TNT) from aqueous media was explored in the presence of a common agrochemical, urea, used as a chaotropic agent. Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), thus, enhancing plant TNT uptake. The primary objectives of this study were to: (i) characterize TNT absorption by vetiver in hydroponic media, and (ii) determine the effect of urea on chemically catalyzing TNT uptake by vetiver grass in hydroponic media. Results showed that vetiver exhibited a high TNT uptake capacity (1.026 mg g -1 ), but kinetics were slow. Uptake was considerably enhanced in the presence of urea, which significantly (p<0.001) increased the 2nd-order reaction rate constant over that of the untreated (no urea) control. Three major TNT metabolites were detected in the roots, but not in the shoot, namely 1,3,5-trinitrobenzene, 4-amino 2,6-dinitrotoluene, and 2-amino 4,6-dinitrotoluene, indicating TNT degradation by vetiver grass. - A common agrochemical, urea catalyzes TNT removal by vetiver grass in aqueous media

  13. Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides

    Energy Technology Data Exchange (ETDEWEB)

    Makris, Konstantinos C. [Environmental Geochemistry Laboratory, Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Shakya, Kabindra M. [Environmental Geochemistry Laboratory, Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Datta, Rupali [Environmental Geochemistry Laboratory, Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Sarkar, Dibyendu [Environmental Geochemistry Laboratory, Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)]. E-mail: dibyendu.sarkar@utsa.edu; Pachanoor, Devanand [Environmental Geochemistry Laboratory, Department of Earth and Environmental Science, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)

    2007-07-15

    The efficiency of vetiver grass (Vetiveria zizanioides) in removing 2,4,6-trinitrotoluene (TNT) from aqueous media was explored in the presence of a common agrochemical, urea, used as a chaotropic agent. Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), thus, enhancing plant TNT uptake. The primary objectives of this study were to: (i) characterize TNT absorption by vetiver in hydroponic media, and (ii) determine the effect of urea on chemically catalyzing TNT uptake by vetiver grass in hydroponic media. Results showed that vetiver exhibited a high TNT uptake capacity (1.026 mg g{sup -1}), but kinetics were slow. Uptake was considerably enhanced in the presence of urea, which significantly (p<0.001) increased the 2nd-order reaction rate constant over that of the untreated (no urea) control. Three major TNT metabolites were detected in the roots, but not in the shoot, namely 1,3,5-trinitrobenzene, 4-amino 2,6-dinitrotoluene, and 2-amino 4,6-dinitrotoluene, indicating TNT degradation by vetiver grass. - A common agrochemical, urea catalyzes TNT removal by vetiver grass in aqueous media.

  14. Uptake of [N-Me-3H]-choline by synaptosomes from the central nervous system of Locusta migratoria

    International Nuclear Information System (INIS)

    Breer, H.

    1982-01-01

    The accumulation of 3H-choline by isolated synaptosomes from the central nervous system of locust was studied at concentrations varying from 0.05 to 40 microM. Kinetic analysis of the saturable process revealed a high-affinity and a low-affinity system. The high-affinity uptake was competitively inhibited by hemicholinium-3 and was absolutely dependent on external sodium. Elevated potassium concentrations inhibited choline uptake. The choline uptake by insect synaptosomes was found to be remarkably resistant to a variety of metabolic inhibitors. The reduced choline uptake under depolarizing conditions (high potassium concentration or veratridine) in the absence of calcium implies that electrochemical gradients are important for high-affinity choline uptake. Depolarization of preloaded synaptosomes under appropriate conditions resulted in a significant release of newly accumulated choline radioactivity

  15. Multiple pathways of sigma(1) receptor ligand uptakes into primary cultured neuronal cells.

    Science.gov (United States)

    Yamamoto, H; Karasawa, J; Sagi, N; Takahashi, S; Horikomi, K; Okuyama, S; Nukada, T; Sora, I; Yamamoto, T

    2001-08-03

    Although many antipsychotics have affinities for sigma receptors, the transportation pathway of exogenous sigma(1) receptor ligands to intracellular type-1 sigma receptors are not fully understood. In this study, sigma(1) receptor ligand uptakes were studied using primary cultured neuronal cells. [(3)H](+)-pentazocine and [(3)H](R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), used as a selective sigma(1) receptor ligands, were taken up in a time-, energy- and temperature-dependent manner, suggesting that active transport mechanisms were involved in their uptakes. sigma(1) receptor ligands taken up into primary cultured neuronal cells were not restricted to agonists, but also concerned antagonists. The uptakes of these ligands were mainly Na(+)-independent. Kinetic analysis of [(3)H](+)-pentazocine and [(3)H]MS-377 uptake showed K(m) values (microM) of 0.27 and 0.32, and V(max) values (pmol/mg protein/min) of 17.4 and 9.4, respectively. Although both ligands were incorporated, the pharmacological properties of these two ligands were different. Uptake of [(3)H](+)-pentazocine was inhibited in the range 0.4-7.1 microM by all the sigma(1) receptor ligands used, including N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a selective sigma(1) receptor ligand. In contrast, the inhibition of [(3)H]MS-377 uptake was potently inhibited by haloperidol, characterized by supersensitivity (IC(50), approximately 2 nM) and was inhibited by NE-100 with low sensitivity (IC(50), 4.5 microM). Moreover, kinetic analysis revealed that NE-100 inhibited [(3)H]MS-377 uptake in a noncompetitive manner, suggesting that NE-100 acted at a site different from the uptake sites of [(3)H]MS-377. These findings suggest that there are at least two uptake pathways for sigma(1) receptor ligands in primary cultured neuronal cells (i.e. a haloperidol-sensitive pathway and another, unclear, pathway). In

  16. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    Science.gov (United States)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  17. Revelation of Different Nanoparticle-Uptake Behavior in Two Standard Cell Lines NIH/3T3 and A549 by Flow Cytometry and Time-Lapse Imaging

    Directory of Open Access Journals (Sweden)

    André Jochums

    2017-07-01

    Full Text Available The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs. Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549 and mouse fibroblast (NIH/3T3 cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC and propidium iodide (PI. We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies.

  18. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    Science.gov (United States)

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.

  19. Mechanisms of Hg(II) uptake and methylation in methylating bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Francois M. M. [Princeton Univ., NJ (United States). Geosciences

    2016-10-14

    The goal of this project was to understand the critical factors which control the availability and transport of Hg(II) into cells, a first step in the production of the neurotoxin, methylmercury. Specifically, this research focused on understanding the mechanism of bacterial mercury uptake and how mercury speciation affects the specificity and kinetics of mercury transport. Our research has shown that Hg(II) uptake in three different iron and sulfate-reducing proteobacteria occurs by the following mechanism (1) : Hg(II) uptake is an active transport process requiring energy, (2) it is dependent upon the structure of the Hg binding ligand, and (3) it is mediated by a heavy metal transporter such as one which transports the essential metal, Zn(II). In order to determine whether this mechanism extends to more diverse phylogenetic groups, we have begun examining Hg(II) uptake and bioavailability in two representative Hg methylating strains within the Firmicutes. These organisms have remarkably different membrane structures distinct from the Proteobacteria. Our results show low uptake rates in these two species of Firmicutes relative to the previously characterized Proteobacteria. This may explain the low methylation rates and yields observed in these organisms. Most surprisingly, however, these organisms appear to take up Hg(II) passively, as the addition of a protonophore failed to reduce Hg(II) uptake in these organisms. This is quite different to what has been observed previously for the Proteobacteria and suggests a different mechanism for Hg(II) uptake in the Firmicutes. We are continuing to understand and describe Hg(II) uptake in these organisms. A manuscript is expected to be submitted on this research in June 2016.

  20. Uptake, absorption efficiency and elimination of DDT in marine phytoplankton, copepods and fish

    International Nuclear Information System (INIS)

    Wang Xinhong; Wang Wenxiong

    2005-01-01

    Uptake, absorption efficiency and elimination of DDT were measured in marine phytoplankton, copepods (Acartia erythraea) and fish (mangrove snappers Lutjanus argentimaculatus). The uptake rate constant of DDT from water decreased with increasing trophic level. The dietary absorption efficiency (AE) of DDT was 10-29% in copepods and 72-99% in fish. Food concentration did not significantly affect the AEs of DDT, but the AEs varied considerably among the different food diets. The elimination rate constants of DDT by the copepods were comparable following uptake from the diet and from the water. Elimination of DDT from the fish was exceedingly low. Both aqueous and dietary uptake are equally important for DDT accumulation in the copepods. In fish, dissolved exposure is a more significant route than intake from the diet. The predicted trophic transfer factors in the copepods and the fish are consistent with the field measurements in marine zooplankton and fish. -Biomagnification and exposure of DDT in a marine food chain is demonstrated by measurements of uptake and elimination rates and kinetic modeling

  1. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B F [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1998-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  2. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  3. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon.

    Science.gov (United States)

    Rakowska, M I; Kupryianchyk, D; Smit, M P J; Koelmans, A A; Grotenhuis, J T C; Rijnaarts, H H M

    2014-03-15

    Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for extraction of polycyclic aromatic hydrocarbons (PAH) from sediment by GAC, using a first-order multi-compartment kinetic model. The parameters were obtained by modeling sediment-GAC exchange kinetic data following a tiered model calibration approach. First, parameters for PAH desorption from sediment were calibrated using data from systems with 50% (by weight) GAC acting as an infinite sink. Second, the estimated parameters were used as fixed input to obtain GAC uptake kinetic parameters in sediment slurries with 4% GAC, representing the ex situ remediation scenario. PAH uptake rate constants (kGAC) by GAC ranged from 0.44 to 0.0005 d(-1), whereas GAC sorption coefficients (KGAC) ranged from 10(5.57) to 10(8.57) L kg(-1). These values are the first provided for GAC in the presence of sediment and show that ex situ extraction with GAC is sufficiently fast and effective to reduce the risks of the most available PAHs among those studied, such as fluorene, phenanthrene and anthracene. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas; Eriksen, J

    2002-01-01

    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal...... rate constant for the initial taurine uptake was reduced by 45% (high-affinity system) and 49% (low affinity system) in the resistant subline whereas the affinity of the transporters to taurine was unchanged. By immunoblotting we identified 3 TauT protein bands in the 50-70 kDa region. A visible...... reduction in the intensity of the band with the lowest molecular weight was observed in resistant cells. Quantitative RT-PCR indicated a significant reduction in the amount of taurine transporter mRNA in the resistant cells. Drug resistance in DNR Ehrlich cells is associated with overexpression of the mdr1...

  5. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.

    1992-01-01

    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  6. Development of Interactive Learning Media on Kinetic Gas Theory at SMAN 2 Takalar

    Science.gov (United States)

    Yanti, M.; Ihsan, N.; Subaer

    2017-02-01

    Learning media is the one of the most factor in supporting successfully in the learning process. The purpose of this interactive media is preparing students to improve skills in laboratory practice without need for assistance and are not bound by time and place. The subject of this study was 30 students grade XI IPA SMAN 2 Takalar. This paper discuss about the development of learning media based in theory of gas kinetic. This media designed to assist students in learning independently. This media made using four software, they are Microsoft word, Snagit Editor, Macromedia Flash Player and Lectora. This media are interactive, dynamic and could support the users desires to learn and understand course of gas theory. The development produce followed the four D models. Consisted of definition phase, design phase, development phase and disseminate phase. The results showed 1) the media were valid and reliable, 2) learning tools as well as hardcopy and softcopy which links to website 3) activity learners above 80% and 4) according to the test results, the concept of comprehension of student was improved than before given interactive media.

  7. Uptake behavior of titanium molybdophosphate for cesium and strontium

    International Nuclear Information System (INIS)

    Yavari, R.; Ahmadi, S.J.; Huang, Y.D.

    2010-01-01

    This study investigates uptake of cesium and strontium from aqueous solution similar to nuclear waste on three samples of titanium molybdophosphate (TMP) synthesized under various conditions. Effects of concentration of sodium nitrate, pH and contact time on the uptake of cesium and strontium have been studied by bath method. The results showed that TMP has high affinity toward cesium and strontium at pH > 2 and relatively low concentration of sodium nitrate. Kinetic data indicated that cesium uptake process to achieve equilibrium was faster than strontium. Cesium and strontium breakthrough curves were examined at 25 deg C using column packed with H 3 O + form of TMP and breakthrough curves showed symmetrical S-shaped profiles. At the same time, the calculated breakthrough capacity for cesium was higher than strontium. The results of desorption studies showed that over 99% of cesium and strontium was washed out of column by using 4 M NH 4 Cl solution. This study suggests that TMP can have great potential applications for the removal of strontium and specially cesium from nuclear waste solution. (author)

  8. Fatty acid uptake in normal human myocardium

    International Nuclear Information System (INIS)

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R.

    1991-01-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 ± 0.024 mumol/g and 0.37 ± 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells

  9. Cerebral uptake of radioiodinated amphetamines - basic research and clinical results

    International Nuclear Information System (INIS)

    Biersack, H.J.; Kluenenberg, H.; Friedrich, G.; Knopp, R.; Ledda, R.; Doppelfeld, E.; Winkler, C.

    1985-01-01

    Work on cerebral uptake and organ kinetics of amphetamine derivatives has led to the clinical use of N-isopropyl amphetamine (IMP). Due to the fact that there is only 5 to 10% cerebral uptake relatively high amounts of the I 123 labelled tracer have to be administered resulting in high costs. Above that, it extensive pulmonary retention leads to a high radiation burden to this organ. In this chapter other tracers with superior properties for brain imaging are evaluated. Five amphetamine derivatives namely N-isopropyl amphetamine (IMP), fenetylline, pentyl amphetamine, benzyl amphetamine, and N-sec. butyl amphetamine (BMP) were tested. The experimental series consisted of wistar rats in which I-123 was labelled to these derivatives. BMP appeared to be superior in functional brain imaging. (Auth.)

  10. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology

    Science.gov (United States)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2007-12-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution

  11. Correlated kinetic energy density functional of ground states of harmonically confined two-electron atoms for arbitrary interparticle interaction

    International Nuclear Information System (INIS)

    Amovilli, C; March, N H

    2012-01-01

    Utilizing the earlier work of Holas et al (2003 Phys. Lett. A 310 451) and the more recent contribution of Akbari et al (2009 Phys. Rev. A 80 032509), we construct an integral equation for the relative motion (RM) contribution t RM (r) to the correlated kinetic energy density for modelling two-electron atoms with harmonic confinement but arbitrary interparticle interaction. It is stressed that t RM = t RM [f(G)], where f(G) is the atomic scattering factor: the Fourier transform of the density ρ(r). As a simple illustrative example of this functional relation for the correlated kinetic energy density, the harmonic Moshinsky case is investigated, the scattering factor then having a Gaussian form. (paper)

  12. The role of high temperature heterogeneous reaction kinetics in the rate of radionuclide vaporisation during core-concrete interactions

    International Nuclear Information System (INIS)

    Raymond, D.P.; Clough, P.N.

    1989-09-01

    Heterogeneous reactions may cause enhanced release of radionuclides during the core-concrete interaction (CCl) stage of a PWR severe accident. The VANESA computer code models these CCI releases using chemical equilibrium assumptions; however, the possibility that chemical kinetics could prevent equilibrium from being achieved is considered in this report. Direct experimental evidence is lacking on these reactions. Therefore, some analogues studies are reviewed, including examples of Eyring's surface reaction rate theory; sequential vaporisation-oxidation processes; iron and steelmaking chemistry; radionuclide evaporation from solid UO 2 . This circumstantial evidence appeared to agree with the current assumptions, in VANESA and some UK modelling studies, that mass transfer, rather than chemical kinetics will limit the rate at which equilibrium is attained. (author)

  13. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Katja, E-mail: K.Kettler@science.ru.nl [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Giannakou, Christina; Jong, Wim H. de [National Institute for Public Health and the Environment (RIVM) (Netherlands); Hendriks, A. Jan [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Krystek, Petra [Philips Innovation Services (Netherlands)

    2016-09-15

    Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.

  14. Kinetics and Thermodynamics of Flexographic-plate Polymer Interaction With Low-molecular Liquids

    Directory of Open Access Journals (Sweden)

    Akaky Dzhvarsheyshvili

    2007-11-01

    Full Text Available Flexographic printing plates contact solvents in the process of their production and operation: washing solvents and printing paint components. As a results of such contact plates swell. Swelling changes polymers’ elastic properties of which the plate is made, changes the scan point sizes that, in the final analysis, affects the printing product quality. The kinetics of swelling flexographic plate polymer interaction with low-molecular liquids used in the process of plate production and operation was studied. Constants of speed, parameters Flory - Huggins, diffusion coefficient D for each solvent was determined. The changes of the basic thermodynamic functions ΔG, ΔS, ΔH of swelling, are calculated. The received data allow to choose the optimum solvents for processes of polygraphic technology.

  15. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Dan [Department of Environmental Sciences, East China Normal University, Shanghai (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong); Wu Shengchun; Wu Fuyong [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong); Deng Hong, E-mail: lilac_deng@yahoo.com.c [Department of Environmental Sciences, East China Normal University, Shanghai (China); Tiantong National Station of Forest Ecosystem, Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Wong Minghung, E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong)

    2010-08-15

    Hydroponic experiments were carried out to investigate the effects of root anatomy, induced by aeration and stagnation, and Fe plaque on arsenic (III and V) uptake and translocation by rice plants. The results showed that As uptake in rice plants (Gui Chao-2) treated by aeration was decreased due to lower root specific surface area. Rice roots with larger specific surface area tended to form more Fe plaque, and Fe plaque affected As uptake kinetics by changing As influx curves from linear to hyperbolic for As(III) and from hyperbolic to S-curve for As(V). Fe plaque increased As(III and V) adsorption and minimized the effects of root anatomy characteristics on As uptake into roots and subsequently translocation to shoots. Fe plaque increased As(III) uptake rate at As(III) concentrations of 0.5{approx}8 mg L{sup -1}, reduced As(V) uptake rate at low As(V) concentrations (<2 mg L{sup -1}), but increased As uptake rate at high As(V) concentrations (>6 mg L{sup -1}). - Rice root anatomy and Fe plaque affect As uptake.

  16. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture

    International Nuclear Information System (INIS)

    Deng, Dan; Wu Shengchun; Wu Fuyong; Deng Hong; Wong Minghung

    2010-01-01

    Hydroponic experiments were carried out to investigate the effects of root anatomy, induced by aeration and stagnation, and Fe plaque on arsenic (III and V) uptake and translocation by rice plants. The results showed that As uptake in rice plants (Gui Chao-2) treated by aeration was decreased due to lower root specific surface area. Rice roots with larger specific surface area tended to form more Fe plaque, and Fe plaque affected As uptake kinetics by changing As influx curves from linear to hyperbolic for As(III) and from hyperbolic to S-curve for As(V). Fe plaque increased As(III and V) adsorption and minimized the effects of root anatomy characteristics on As uptake into roots and subsequently translocation to shoots. Fe plaque increased As(III) uptake rate at As(III) concentrations of 0.5∼8 mg L -1 , reduced As(V) uptake rate at low As(V) concentrations ( -1 ), but increased As uptake rate at high As(V) concentrations (>6 mg L -1 ). - Rice root anatomy and Fe plaque affect As uptake.

  17. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Vazquez, M.D.; Lopez, J.; Carballeira, A.

    2006-01-01

    Samples of the aquatic bryophyte Fontinalis antipyretica Hedw. were transplanted to different sites with the aim of characterizing the kinetics of the uptake and discharge of heavy metals in the extra and intracellular compartments. The accumulation of metals in extracellular compartments, characterized by an initial rapid accumulation, then a gradual slowing down over time, fitted perfectly to a Michaelis-Menten model. The discharge of metals from the same compartment followed an inverse linear model or an inverse Michaelis-Menten model, depending on the metal. In intracellular sites both uptake and discharge occurred more slowly and progressively, following a linear model. We also observed that the acidity of the environment greatly affected metal accumulation in extracellular sites, even when the metals were present at relatively high concentrations, whereas the uptake of metals within cells was much less affected by pH. - The kinetics of uptake and discharge of heavy metals, in different cellular locations, were studied in transplanted aquatic mosses

  18. Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure-affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids.

    Science.gov (United States)

    Cao, Hui; Jia, Xueping; Shi, Jian; Xiao, Jianbo; Chen, Xiaoqing

    2016-07-01

    Dietary stilbenoids are associated with many benefits for human health, which depend on their bioavailability and bioaccessibility. The stilbenoid-human serum albumin (HSA) interactions are investigated to explore the structure-affinity relationship and influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. The structure-affinity relationship of the stilbenoids-HSA interaction was found as: (1) the methoxylation enhanced the affinity, (2) an additional hydroxyl group increases the affinity and (3) the glycosylation significantly weakened the affinity. HSA obviously masked the free radical scavenging potential of stilbenoids. The stabilities of stilbenoids in different medium were determined as: HSA solution>human plasma>Dulbecco's modified Eagle's medium. It appears that the milk enhanced the cell uptake of stilbenoids with multi-hydroxyl groups and weakened the cell uptake of stilbenoids with methoxyl group on EA.hy 926 endothelial cells. The stilbenoids are hardly absorbed by human umbilical vein endothelial cells in the presence of milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Interaction of polybrominated diphenyl ethers and aerobic granular sludge: biosorption and microbial degradation.

    Science.gov (United States)

    Ni, Shou-Qing; Cui, Qingjie; Zheng, Zhen

    2014-01-01

    As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209). Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly via biosorption onto aerobic granular sludge. The uptake capacity increased when temperature, contact time, and sludge dosage increased or solution pH dropped. Ionic strength had a negative influence on BDE-209 adsorption. The modified pseudo first-order kinetic model was appropriate to describe the adsorption kinetics. Microbial debromination of BDE-209 did not occur during the first 30 days of operation. Further study found that aerobic microbial degradation of 4,4(')-dibromodiphenyl ether happened with the production of lower BDE congeners.

  20. Interaction of Polybrominated Diphenyl Ethers and Aerobic Granular Sludge: Biosorption and Microbial Degradation

    Directory of Open Access Journals (Sweden)

    Shou-Qing Ni

    2014-01-01

    Full Text Available As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209. Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly via biosorption onto aerobic granular sludge. The uptake capacity increased when temperature, contact time, and sludge dosage increased or solution pH dropped. Ionic strength had a negative influence on BDE-209 adsorption. The modified pseudo first-order kinetic model was appropriate to describe the adsorption kinetics. Microbial debromination of BDE-209 did not occur during the first 30 days of operation. Further study found that aerobic microbial degradation of 4,4′-dibromodiphenyl ether happened with the production of lower BDE congeners.

  1. Exercise: Kinetic considerations for gas exchange.

    Science.gov (United States)

    Rossiter, Harry B

    2011-01-01

    The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease. © 2011 American Physiological Society.

  2. Characterization of simvastatin acid uptake by organic anion transporting polypeptide 3A1 (OATP3A1) and influence of drug-drug interaction.

    Science.gov (United States)

    Atilano-Roque, Amandla; Joy, Melanie S

    2017-12-01

    Human organic anion transporting polypeptide 3A1 (OATP3A1) is predominately expressed in the heart. The ability of OATP3A1 to transport statins into cardiomyocytes is unknown, although other OATPs are known to mediate the uptake of statin drugs in liver. The pleiotropic effects and uptake of simvastatin acid were analyzed in primary human cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. Treatment with simvastatin acid reduced indoxyl sulfate-mediated reactive oxygen species and modulated OATP3A1 expression in cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. We observed a pH-dependent effect on OATP3A1 uptake, with more efficient simvastatin acid uptake at pH5.5 in HEK293 cells transfected with the OATP3A1 gene. The Michaelis-Menten constant (K m ) for simvastatin acid uptake by OATP3A1 was 0.017±0.002μM and the V max was 0.995±0.027fmol/min/10 5 cells. Uptake of simvastatin acid was significantly increased by known (benzylpenicillin and estrone-3-sulfate) and potential (indoxyl sulfate and cyclosporine) substrates of OATP3A1. In conclusion, the presence of OATP3A1 in cardiomyocytes suggests that this transporter may modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    Science.gov (United States)

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  4. A comparative investigation of 18F kinetics in receptors: a compartment model analysis

    International Nuclear Information System (INIS)

    Tiwari, Anjani K.; Swatantra; Kaushik, A.; Mishra, A.K.

    2010-01-01

    Full text: Some authors reported that 18 F kinetics might be useful for evaluation of neuro receptors. We hypothesized that 18 F kinetics may show some information about neuronal damage, and each rate constant might have statistically significant correlation with WO function. The purpose of this study was to investigate 99m Tc MIBI kinetics through a compartment model analysis. Each rate constant from compartment analysis was compared with WO, T1/2, and (H/M) ratio in early and delayed phase. Different animal model were studied. After an injection the dynamic planar imaging was performed on a dual-headed digital gamma camera system for 30 minutes. An ROI was drawn manually to assess the global kinetics of 18 F. By using the time-activity curve (TAC) of ROI as a response tissue function and the TAC of Aorta as an input function, we analysed 18 F pharmacokinetics through a 2-compartment model. We defined k1 as influx rate constant, k2 as out flux rate constant and k3 as specific uptake rate constant. And we calculated k1/k2 as distribution volume (Vd), k1k3/k2 as specific uptake (SU), and k1k3/(k2+k3) as clearance. For non-competitive affinity studies of PET two modelling parameters distribution volume (DV) and Bmax / Kd are also calculated. Results: Statistically significant correlations were seen between k2 and T1/2 (P 18 F at the injection had relation to the uptake of it at 30 minutes and 2 hours after the injection. Furthermore, some indexes had statistically significant correlation with DV and Bmax. These compartment model approaches may be useful to estimate the other related studies

  5. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  6. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    International Nuclear Information System (INIS)

    Kettler, Katja; Krystek, Petra; Giannakou, Christina; Hendriks, A. Jan; Jong, Wim H. de

    2016-01-01

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  7. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Katja, E-mail: K.Kettler@science.ru.nl [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Krystek, Petra [VU University, Institute for Environmental Studies (IVM) (Netherlands); Giannakou, Christina [National Institute for Public Health and the Environment (RIVM) (Netherlands); Hendriks, A. Jan [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Jong, Wim H. de [National Institute for Public Health and the Environment (RIVM) (Netherlands)

    2016-07-15

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  8. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer.

    Science.gov (United States)

    Sörensen, Jens; Owenius, Rikard; Lax, Michelle; Johansson, Silvia

    2013-02-01

    [(18)F]Fluciclovine (anti-[(18)F]FACBC) is a synthetic amino acid developed for PET assessment of the anabolic component of tumour metabolism in clinical routine. This phase 1 trial evaluated the safety, tracer stability and uptake kinetics of [(18)F]fluciclovine in patients. Six patients with biopsy-proven prostate cancer were investigated with 3-T MRI and PET/CT. All underwent dynamic [(18)F]fluciclovine PET/CT of the pelvic area for up to 120 min after injection of 418 ± 10 MBq of tracer with simultaneous blood sampling of radioactivity. The kinetics of uptake in tumours and normal tissues were evaluated using standardized uptake values (SUVs) and compartmental modelling. Tumour deposits as defined by MRI were clearly visualized by PET. Urine excretion was minimal and normal tissue background was low. Uptake of [(18)F]fluciclovine in tumour from the blood was rapid and the tumour-to-normal tissue contrast was highest between 1 and 15 min after injection with a 65 % reduction in mean tumour uptake at 90 min after injection. A one-compartment model fitted the tracer kinetics well. Early SUVs correlated well with both the influx rate constant (K (1)) and the volume of distribution of the tracer (V (T)). There were no signs of tracer metabolite formation. The product was well tolerated in all patients without significant adverse events. [(18)F]Fluciclovine shows high uptake in prostate cancer deposits and appears safe for use in humans. The production is robust and the formulation stable in vivo. An early imaging window seems to provide the best visual results. SUV measurements capture most of the kinetic information that can be obtained from more advanced models, potentially simplifying quantification in future studies.

  9. Thermodynamic and kinetic analysis of solid-phase interaction of alkali metal carbonates with arsenic pentoxide

    International Nuclear Information System (INIS)

    Pashinkin, A.S.; Buketov, E.A.; Isabaeva, S.M.; Kasenov, B.K.

    1985-01-01

    The thermodynamic analysis of solid-phase reactions of alkali metal carbonates with arsenic pentoxide showing the possibility of formation of all arsenates at a higher than the room temperature is performed. Energetically most advantageous is formation of meta-arsenates. It is shown that temperature increase favours the reaction process. By Gibbs standard energy decrease the reactions form the Li>Na>K>Rb>Cs series. On the base of calculation data linear dependence of Gibbs standard energy in reactions on the atomic number of alkali metalis established. By the continuous weighing method the kinetics of interaction of alkali metal carbonates with arsenic pentoxide under isothermal conditions in the 450-500 deg C range is studied. Studies is the dependence of apparent energy of interaction of carbonates wih As 2 0 5 an atomic parameters of al

  10. Uptake of inorganic phosphorus by the aquatic plant Isoetes australis inhabiting oligotrophic vernal rock pools

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Pulido, Cristina; Pedersen, Ole

    2017-01-01

    The submerged aquatic freshwater macrophyte Isoetes australis S. Williams grows in rock pools situated in south-western Australia, an environment where dissolved inorganic phosphorus (Pi) availability possibly limits growth. In contrast to the two coexisting aquatic species, Glossostigma drummundii...... experiment revealed high amounts of Pi translocation internally in the plant which seemed to go from roots and oldest leaves to younger leaves. As a result of the high root to shoot ratio, high surface area, root uptake kinetics, and sediment Pi availability, roots accounted for 87% of plant Pi uptake...

  11. Uptake of SPECT radiopharmaceuticals in neocortical brain cultures

    Energy Technology Data Exchange (ETDEWEB)

    Jong, B.M. de; Royen, E.A. van

    1989-01-01

    The uptake, retention and uptake antagonism of /sup 201/Tl-DDC, /sup 201/Tl-Cl, /sup 123/I-IMP, /sup 99m/Tc-HMPAO and /sup 99m/Tc-O4/sup -/ were compared in rat neocortex cultures. /sup 201/Tl-DDC and /sup 123/I-IP revealed the highest uptake of radioactivity in the cultures. /sup 99m/Tc-HMPAO and /sup 123/I-IMP showed the highest retention of radioactivity within the tissue in washout experiments. Blocking of bioelectric activity by tetrodotoxin did not significantly affect the uptake of the radiopharmaceuticals (RPHA). Inhibition of Na K ATPase by ouabain inhibited the uptake of /sup 201/Tl-Cl (77%) and /sup 201/Tl-DDC (27%). Imipramine showed a significantly stronger inhibitory effect on /sup 123/I-IMP uptake in comparison with the effect on other RPHA. /sup 99m/Tc-O4/sup -/ was not concentrated within the cultured tissue. Under the in vitro conditions used in this study, the various RPHA were characterised by distinct differences in their interaction with cortical brain tissue.

  12. Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Das, Biswajit; Gangopadhyay, Gautam

    2012-01-01

    Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

  13. Vlasov simulations of kinetic Alfvén waves at proton kinetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Observatorio Astronómico de Quito, Escuela Politécnica Nacional, Quito (Ecuador); Valentini, F.; Veltri, P. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Camporeale, E. [Centrum Wiskunde and Informatica, Amsterdam (Netherlands)

    2014-11-15

    Kinetic Alfvén waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton gyro radius ρ{sub p} and/or inertial length d{sub p} and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic Alfvén waves at proton kinetic scales, in typical conditions of the solar wind environment (proton plasma beta β{sub p} = 1). In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to d{sub p} and β{sub p} ≃ 1 (for which ρ{sub p} ≃ d{sub p}) the kinetic Alfvén waves have small phase speed compared to the proton thermal velocity, wave-particle interaction processes produce significant deformations in the core of the particle velocity distribution, appearing as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space, three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.

  14. 18F-FLT uptake kinetics in head and neck squamous cell carcinoma: A PET imaging study

    International Nuclear Information System (INIS)

    Liu, Dan; Fenwick, John D.; Chalkidou, Anastasia; Landau, David B.; Marsden, Paul K.

    2014-01-01

    Purpose: To analyze the kinetics of 3 ′ -deoxy-3 ′ -[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Methods: Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k 3-2tiss and k 5 of the two- and three-tissue models were studied alongside the flux parameters K FLT-2tiss and K FLT of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion (“EM-BIC clustering”) was used to distil the information from noisy parametric images. Results: Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps ofK FLT and K FLT-2tiss are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for K FLT-2tiss , 0.64 for K FLT ). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k 3-2tiss vs K FLT-2tiss and r = 0.68 for k 5 vs K FLT ); however, neither phosphorylation

  15. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    Science.gov (United States)

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (PPEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential for enhancing the cellular uptake and transport of small peptide

  16. Kinetic modeling in PET imaging of hypoxia

    Science.gov (United States)

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  17. Soil-modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions.

    Science.gov (United States)

    Svegl, I G; Ogorevc, B

    2000-08-01

    Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.

  18. Separate effects of ischemia, hypoxia, and contractility on thallium-201 kinetics in rabbit myocardium

    International Nuclear Information System (INIS)

    Leppo, J.A.; Macneil, P.B.; Moring, A.F.; Apstein, C.S.

    1986-01-01

    The effects of hypoxia and ischemia, as well as altered contractility, on thallium-201 ( 201 TI) kinetics were evaluated in 42 isolated isovolumetrically contracting rabbit hearts. In Group A, three subgroups (n = 7 each) were studied that had either normal flow and oxygenation, hypoxia and normal flow, or ischemic flow and normal perfusate oxygen content. In Group B, three subgroups (n = 7 each) were studied and all hearts had normal flow but the contractile state was either enhanced with isoproterenol or impaired by hypocalcemia. A hemoglobin-free buffer perfusate was used in all experiments and multiple timed collections of arterial and coronary sinus effluent were used to model myocardial isotope activity during 30 min of constant uptake followed by 30 min of tracer clearance. During ischemia, hypoxia and hypocalcemia peak developed pressure and peak positive and negative dP/dt were all significantly reduced when compared to normal hemodynamic parameters (p less than 0.01). As expected, isoproterenol significantly elevated these parameters (p less than 0.04). Myocardial 201 TI kinetics were adequately described utilizing a bi-exponential model having a fast and slow component. Only ischemic hearts had significantly lower rate constants for 201 TI uptake and clearance than normal hearts (p less than 0.001). The mean (+/- s.d.) myocardial uptake and clearance rates for 201 TI (%/min) varied between 4.86 +/- 0.87 and 7.18 +/- 1.45 for the remaining groups of hearts. Therefore, myocardial 201 TI kinetics appear to be dominated by coronary flow and may not reflect marked alterations in the metabolic and contractile state. These data suggest that normal 201 TI uptake in impaired or hypercontractile cells, receiving normal flow, may not represent normal cellular function

  19. Fitness Level and Not Aging per se, Determines the Oxygen Uptake Kinetics Response

    Directory of Open Access Journals (Sweden)

    Mitchell A. George

    2018-03-01

    Full Text Available Although aging has been associated to slower V˙O2 kinetics, some evidence indicates that fitness status and not aging per se might modulate this response. The main goal of this study was to examine the V˙O2, deoxygenated hemoglobin+myoglobin (deoxy-[Hb+Mb] kinetics, and the NIRS-derived vascular reperfusion responses in older compared to young men of different training levels (i.e., inactive, recreationally active, and endurance trained. Ten young inactive [YI; 26 ± 5 yrs.; peak V˙O2 (V˙O2peak, 2.96 ± 0.55 L·min−1], 10 young recreationally active (YR; 26 ± 6 yrs.; 3.92 ± 0.33 L·min−1, 10 young endurance trained (YT; 30 ± 4 yrs.; 4.42 ± 0.32 L·min−1, 7 older inactive (OI; 69 ± 4 yrs.; 2.50 ± 0.31 L·min−1, 10 older recreationally active (OR; 69 ± 5 yrs.; 2.71 ± 0.42 L·min−1, and 10 older endurance trained (OT; 66 ± 3 yrs.; 3.20 ± 0.35 L·min−1 men completed transitions of moderate intensity cycling exercise (MODS to determine V˙O2 and deoxy-[Hb+Mb] kinetics, and the deoxy-[Hb+Mb]/V˙O2 ratio. The time constant of V˙O2 (τV˙O2 was greater in YI (38.8 ± 10.4 s and OI (44.1 ± 10.8 s compared with YR (26.8 ± 7.5 s and OR (26.6 ± 6.5 s, as well as compared to YT (14.8 ± 3.4 s, and OT (17.7 ± 2.7 s (p < 0.05. τV˙O2 was greater in YR and OR compared with YT and OT (p < 0.05. The deoxy-[Hb+Mb]/V˙O2 ratio was greater in YI (1.23 ± 0.05 and OI (1.29 ± 0.08 compared with YR (1.11 ± 0.03 and OR (1.13 ± 0.06, as well as compared to YT (1.01 ± 0.03, and OT (1.06 ± 0.03 (p < 0.05. Similarly, the deoxy-[Hb+Mb]/ V˙O2 ratio was greater in YR and OR compared with YT and OT (p < 0.05. There was a main effect of training (p = 0.033, whereby inactive (p = 0.018 and recreationally active men (p = 0.031 had significantly poorer vascular reperfusion than endurance trained men regardless of age. This study demonstrated not only that age-related slowing of V˙O2 kinetics can be eliminated in endurance trained individuals

  20. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  1. Kinetic studies of the acylation of pig muscle–d-glyceraldehyde 3-phosphate dehydrogenase by 1,3-diphosphoglycerate and of proton uptake and release in the overall enzyme mechanism

    Science.gov (United States)

    Harrigan, P. J.; Trentham, D. R.

    1973-01-01

    In the presence of NAD+ the acylation by 1,3-diphosphoglycerate of the four active sites of pig muscle d-glyceraldehyde 3-phosphate dehydrogenase can be monitored at 365nm by the disappearance of the absorption band present in the binary complex of NAD+ and the enzyme. A non-specific salt effect decreased the acylation rate 25-fold when the ionic strength was increased from 0.10 to 1.0. This caused acylation to be the rate-limiting process in the enzyme-catalysed reductive dephosphorylation of 1,3-diphosphoglycerate at high ionic strength at pH8. The salt effect permitted investigation of the acylation over a wide range of conditions. Variation of pH from 5.4 to 8.6 produced at most a two-fold change in the acylation rate. One proton was taken up per site acylated at pH8.0. By using a chromophoric H+ indicator the rate of proton uptake could be monitored during the acylation and was also almost invariant in the pH range 5.5–8.5. Transient kinetic studies of the overall enzyme-catalysed reaction indicated that acylation was the process involving proton uptake at pH8.0. The enzyme mechanism is discussed in the light of these results. PMID:4360248

  2. The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Danny, E-mail: danny-perez@lanl.gov; Sandoval, Luis; Voter, Arthur F. [Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Uberuaga, Blas P. [Materials Science and Technology MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-05-28

    Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we use traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.

  3. Uptake and utilization of nutrients by developing kernels of Zea mays L

    International Nuclear Information System (INIS)

    Lyznik, L.A.

    1987-01-01

    The mechanisms involved in amino acid and sugar uptake by developing maize kernels were investigated. In the pedicel region of maize kernel, the site of nutrient unloading from phloem terminals, amino acids are accumulated in considerable amounts and undergo significant interconversion. A wide spectrum of enzymatic activities involved in the metabolism of amino acids is observed in these tissues. Subsequently, amino acids are taken up by the endosperm tissue in processes which require energy and the presence of carrier proteins. Conversely, no evidence was found that energy and carriers are involved in sugar uptake. This process of sugar uptake is not inhibited by metabolic inhibitors and shows nonsaturable kinetics, but the uptake is pH-dependent. L-glucose is taken up at a significantly reduced rate in comparison to D-glucose uptake. Based on analysis of radioactivity distribution among sugar fractions after incubations of kernels with radiolabeled D-glucose, it seems that sucrose is not efficiently resynthesized from D-glucose in the endosperm tissue. Thus, the proposed mechanism of sucrose transport involving sucrose hydrolysis in the pedicel region and subsequent resynthesis in endosperm cells may not be the main pathway. The evidence that transfer cells play an active role in D-glucose transport is presented

  4. Kinetics of bacterial fluorescence staining with 3,3'-diethylthiacyanine.

    Science.gov (United States)

    Thomas, Marlon S; Nuñez, Vicente; Upadhyayula, Srigokul; Zielins, Elizabeth R; Bao, Duoduo; Vasquez, Jacob M; Bahmani, Baharak; Vullev, Valentine I

    2010-06-15

    For more than a century, colorimetric and fluorescence staining have been the foundation of a broad range of key bioanalytical techniques. The dynamics of such staining processes, however, still remains largely unexplored. We investigated the kinetics of fluorescence staining of two gram-negative and two gram-positive species with 3,3'-diethylthiacyanine (THIA) iodide. An increase in the THIA fluorescence quantum yield, induced by the bacterial dye uptake, was the principal reason for the observed emission enhancement. The fluorescence quantum yield of THIA depended on the media viscosity and not on the media polarity, which suggested that the microenvironment of the dye molecules taken up by the cells was restrictive. The kinetics of fluorescence staining did not manifest a statistically significant dependence neither on the dye concentration, nor on the cell count. In the presence of surfactant additives, however, the fluorescence-enhancement kinetic patterns manifested species specificity with statistically significant discernibility.

  5. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok Woo; /Stanford U., Geballe Lab.; Lee, Hyun-Wook; /Stanford U., Materials Sci. Dept.; Ryu, Ill; /Brown U.; Nix, William D.; /Stanford U., Materials Sci. Dept.; Gao, Huajian; /Brown U.; Cui, Yi; /Stanford U., Materials Sci. Dept. /SLAC

    2015-06-01

    Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Herein, we demonstrate physical/mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. SLAC-PUB-16300 2 lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high performance Li-ion batteries.

  6. Influence of free fatty acids on glucose uptake in prostate cancer cells

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar

    2014-01-01

    The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate.......The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate....

  7. One-dimensional model of interacting-step fluctuations on vicinal surfaces: Analytical formulas and kinetic Monte-Carlo simulations

    Science.gov (United States)

    Patrone, Paul; Einstein, T. L.; Margetis, Dionisios

    2011-03-01

    We study a 1+1D, stochastic, Burton-Cabrera-Frank (BCF) model of interacting steps fluctuating on a vicinal crystal. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. Our goal is to formulate and validate a self-consistent mean-field (MF) formalism to approximately solve the system of coupled, nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. We derive formulas for the time-dependent terrace width distribution (TWD) and its steady-state limit. By comparison with kinetic Monte-Carlo simulations, we show that our MF formalism improves upon models in which step interactions are linearized. We also indicate how fitting parameters of our steady state MF TWD may be used to determine the mass transport regime and step interaction energy of certain experimental systems. PP and TLE supported by NSF MRSEC under Grant DMR 05-20471 at U. of Maryland; DM supported by NSF under Grant DMS 08-47587.

  8. Uptake kinetics of the somatostatin receptor ligand [86Y]DOTA-dPhe1-Tyr3-octreotide ([86Y]SMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue

    International Nuclear Information System (INIS)

    Roesch, F.; Brockmann, J.; Koehle, M.

    1999-01-01

    [ 90 Y]DOTA-dPhe 1 -Tyr 3 -octreotide ([ 90 Y]-SMT487) has been suggested as a promising radiotherapeutic agent for somatostatin receptor-expressing tumours. In order to quantify the in vivo parameters of this compound and the radiation doses delivered to healthy organs, the analogue [ 86 Y]DOTA-dPhe 1 -Tyr 3 -octreotide was synthesised and its uptake measured in baboons using positron emission tomography (PET). [ 86 Y]DOTA-dPhe 1 -Tyr 3 -octreotide was administered at two different peptide concentrations, namely 2 and 100 μg peptide per m 2 body surface. The latter concentration corresponded to a radiotherapeutic dose. In a third protocol [ 86 Y]DOTA-dPhe 1 -Tyr 3 -octreotide was injected in conjunction with a simultaneous infusion of an amino acid solution that was high in l-lysine in order to lower the renal uptake of radioyttrium. Quantitative whole-body PET scans were recorded to measure the uptake kinetics for kidneys, liver, lung and bone. The individual absolute uptake kinetics were used to calculate the radiation doses for [ 90 Y]DOTA-dPhe 1 -Tyr 3 -octreotide according to the MIRD recommendations extrapolated to a 70-kg human. The highest radiation dose was received by the kidneys, with 2.1-3.3 mGy per MBq [ 90 Y]DOTA-dPhe 1 -Tyr 3 -octreotide injected. For the 100 μg/m 2 SMT487 protocol with amino acid co-infusion this dose was about 20%-40% lower than for the other two treatment protocols. The liver and the red bone marrow received doses ranging from 0.32 to 0.53 mGy and 0.03 to 0.07 mGy per MBq [ 90 Y]DOTA-dPhe 1 -Tyr 3 -octreotide, respectively. The average effective dose equivalent amounted to 0.23-0.32 mSv/MBq. The comparatively low estimated radiation doses to normal organs support the initiation of clinical phase I trials with [ 90 Y]DOTA-dPhe 1 -Tyr 3 -octreotide in patients with somatostatin receptor-expressing tumours. (orig.)

  9. Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support

    Directory of Open Access Journals (Sweden)

    Jae H. Kwon

    2014-03-01

    Full Text Available Sorption uptake kinetics and equilibrium studies for 4-hydroxy-3-nitrobenzene arsonic acid (roxarsone was evaluated with synthetic magnetite (Mag-P, commercial magnetite (Mag-C, magnetite 10%, 19%, and 32% composite material (CM-10, -19, -32 that contains granular activated carbon (GAC, and synthetic goethite at pH 7.00 in water at 21 °C for 24 h. GAC showed the highest sorptive removal of roxarsone and the relative uptake for each sorbent material with roxarsone are listed in descending order as follows: GAC (471 mg/g > goethite (418 mg/g > CM-10 (377 mg/g CM-19 (254 mg/g > CM-32 (227 mg/g > Mag-P (132 mg/g > Mag-C (29.5 mg/g. The As (V moiety of roxarsone is adsorbed onto the surface of the iron oxide/oxyhydrate and is inferred as inner-sphere surface complexes; monodentate-mononuclear, bidentate-mononuclear, and bidentate-binuclear depending on the protolytic speciation of roxarsone. The phenyl ring of roxarsone provides the primary driving force for the sorptive interaction with the graphene surface of GAC and its composites. Thus, magnetite composites are proposed as multi-purpose adsorbents for the co-removal of inorganic and organic arsenicals due to the presence of graphenic and iron oxide active adsorption sites.

  10. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  11. Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates (Briefing Charts)

    Science.gov (United States)

    2015-03-24

    Motivation • SOTA Theories of Moisture Uptake in Thermosetting Networks • New Tools and New Discoveries • Unresolved Issues and Ways to Address Them...Temperature Thermosetting Polymers: Cyanate Esters • Glass transition temperatures at full cure of 200 – 400°C • Uncured resins exist as low-melting solids...Summary: Basic Studies of Moisture Uptake in Cyanate Ester Networks • Many aspects of moisture uptake (and its minimization) in thermosetting polymer

  12. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.

    Science.gov (United States)

    Damodaran, Dilna; Vidya Shetty, K; Raj Mohan, B

    2014-06-01

    Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Positron imaging feasibility studies: characteristics of [3H]thymidine uptake in rodent and canine neoplasms

    International Nuclear Information System (INIS)

    Larson, S.M.; Weiden, P.L.; Grunbaum, J.

    1981-01-01

    Uptake [ 3 H]thymidine was studied in BALB/c mice with EMT-6 sarcoma, in Buffalo rats with Morris 7777 hepatoma, and in nine dogs with spontaneous neoplasms: four lymphomas, two osteosarcomas, two soft-tissue sarcomas, and a thyroid carcinoma. High tumor-to-tissue ratios were observed for all tumor types assayed, and absolute uptakes, when computed as percent dose per gram tumor normalized for body weight, were similar for transplanted and spontaneous tumors. In the rodent tumors, radiothymidine was retained for at least 3 hr in the tumor without appreciable loss. In canine neoplasms, although the highest uptakes were observed in cellular tumors with many mitotic figures, tumor uptake showed significant variability that did not correlate with any obvious histologic change, and thus may reflect true biologic differences in metabolism among tumors at different sites in the same animal. These studies provide additional experimental evidence that the ratios of neoplastic to normal tissue and the kinetics of thymidine uptake by tumors are suitable for positron emission tomography of neoplasms in small and large, animals, including both transplanted and spontaneous tumors

  14. Thermodynamic and kinetic studies on CO2 capture with Poly[VBTMA][Arg

    Science.gov (United States)

    Raja Shahrom, Maisara Shahrom; Wilfred, Cecilia Devi; Chong, Fai Kait

    2018-05-01

    This paper discusses the technologies for capturing CO2 from the natural gas using poly[VBTMA][Arg], a type of poly(ionic liquids) with an amino acid as the anion. The results revealed that the CO2 uptake increased from 3.23 mmol/g to 7.91 mmol/g at 1-10 bar, 298 K due to both chemical absorption and physical adsorption increments. Four adsorption isotherm models were applied to study the interaction between adsorbate and adsorbent to study the physical adsorption i.e. Freundlich, Langmuir, Dubinin Raduschkevich and Temkin isotherms at 298 K, 313 K and 333 K. Promising results were obtained that suggested the Freundlich model and the pseudo-first order model are well fitted with the kinetic data at 298 K with a 0.9943 R2 value. This study has provided empirical evidence to the current body of knowledge pertaining to CO2 capture technologies.

  15. Modelling oral up-take of hydrophobic and super-hydrophobic chemicals in fish.

    Science.gov (United States)

    Larisch, Wolfgang; Goss, Kai-Uwe

    2018-01-24

    We have extended a recently published toxicokinetic model for fish (TK-fish) towards the oral up-take of contaminants. Validation with hydrophobic chemicals revealed that diffusive transport through aqueous boundary layers in the gastro-intestinal tract and in the blood is the limiting process. This process can only be modelled correctly if facilitated transport by albumin or bile micelles through these boundary layers is accounted for. In a case study we have investigated the up-take of a super hydrophobic chemical, Dechlorane Plus. Our results suggest that there is no indication of a hydrophobicity or size cut-off in the bioconcentration of this chemical. Based on an extremely high, but mechanistically sound facilitation factor we received model results in good agreement with experimental values from the literature. The results also indicate that established experimental procedures for BCF determination cannot cover the very slow up-take and clearance kinetics that are to be expected for such a chemical.

  16. Accuracy of two simple methods for estimation of thyroidal 131I kinetics for dosimetry-based treatment of Graves' disease

    International Nuclear Information System (INIS)

    Traino, A. C.; Xhafa, B.

    2009-01-01

    One of the major challenges to the more widespread use of individualized, dosimetry-based radioiodine treatment of Graves' disease is the development of a reasonably fast, simple, and cost-effective method to measure thyroidal 131 I kinetics in patients. Even though the fixed activity administration method does not optimize the therapy, giving often too high or too low a dose to the gland, it provides effective treatment for almost 80% of patients without consuming excessive time and resources. In this article two simple methods for the evaluation of the kinetics of 131 I in the thyroid gland are presented and discussed. The first is based on two measurements 4 and 24 h after a diagnostic 131 I administration and the second on one measurement 4 h after such an administration and a linear correlation between this measurement and the maximum uptake in the thyroid. The thyroid absorbed dose calculated by each of the two methods is compared to that calculated by a more complete 131 I kinetics evaluation, based on seven thyroid uptake measurements for 35 patients at various times after the therapy administration. There are differences in the thyroid absorbed doses between those derived by each of the two simpler methods and the ''reference'' value (derived by more complete uptake measurements following the therapeutic 131 I administration), with 20% median and 40% 90-percentile differences for the first method (i.e., based on two thyroid uptake measurements at 4 and 24 h after 131 I administration) and 25% median and 45% 90-percentile differences for the second method (i.e., based on one measurement at 4 h post-administration). Predictably, although relatively fast and convenient, neither of these simpler methods appears to be as accurate as thyroid dose estimates based on more complete kinetic data.

  17. Interaction effect on nitrogen and sulfur on growth and nutrient uptake by maize

    International Nuclear Information System (INIS)

    Jaggi, R.C.; Aulakh, M.S.; Dev, G.

    1977-01-01

    A pot culture experiment was conducted in the greenhouse on an arid brown loamy sand deficient in both available N and S with maize (Ganga-5) as the test corp. Three levels of N (0, 30, 60 ppm) as NH 4 Cl in factorial combination with three levels of S (0, 10, 20 ppm) as Na 2 35 SO 4 were replicated thrice. Application of N upto 60 ppm S significantly increased dry matter yield and uptake of N and S by maize (stem + levels) and their combined application showed sinergistic effect for both yield and uptake of these nutrients. Maximum yield of dry matter and uptake of the nutrients were obtained with the application of 60 ppm N and 20 ppm S. The radioassay data corroborated the beneficial effect of N on the efficiency of applied S. (author)

  18. Kinetic Titration Series with Biolayer Interferometry

    Science.gov (United States)

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  19. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    Science.gov (United States)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  20. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    Science.gov (United States)

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  1. Kinetic regularities of the heat release for the interaction of some organic compounds with ammonium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsov, Yury I.; Kazakov, Anatoly I.; Lempert, David B.; Manelis, George B. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Av. 1, Chernogolovka, Moscow Region, 142432 (Russian Federation)

    2006-12-15

    Ammonium nitrate (AN) is used as an oxidant in a series of systems with a wide spectrum of applications, from explosive compositions up to smokeless stoichiometric self-burning compositions with low combustion temperature. The knowledge of the thermal stability of such compositions is of great importance in using them in practice. In this work the research of kinetics of heat release in the interaction of AN with different organic compounds has been performed using the automatic differential calorimeter. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. A group-kinetic theory of turbulent collective collisions

    International Nuclear Information System (INIS)

    Tchen, C.M.; Misguich, J.H.

    1983-05-01

    The main objective is the derivation of the kinetic equation of turbulence which has a memory in the turbulent collision integral. We consider the basic pair-interaction, and the interaction between a fluctuation and the organized cluster of other fluctuations in the collection systems, called the multiple interaction. By a group-scaling procedure, a fluctuation is decomposed into three groups to represent the three coupled transport processes of evolution, transport coefficient, and relaxation. The kinetic equation of the scaled singlet distribution is capable of investigating the spectrum of turbulence without the need of the knowledge of the pair distribution. The exact propagator describes the detailed trajectory in the phase space, and is fundamental to the Lagrangian-Eulerian transformation. We calculate the propagator and its scaled groups by means of a probability of retrograde transition. Thus our derivation of the kinetic equation of the distribution involves a parallel development of the kinetic equations of the propagator and the transition probability. In this way, we can avoid the assumptions of independence and normality. Our result shows that the multiple interaction contributes to a shielding and an enchancement of the collision in weak turbulence and strong turbulence, respectively. The weak turbulence is dominated by the wave resonance, and the strong turbulence is dominated by the diffusion

  3. Drug Release Kinetics and Front Movement in Matrix Tablets Containing Diltiazem or Metoprolol/λ-Carrageenan Complexes

    Directory of Open Access Journals (Sweden)

    Ruggero Bettini

    2014-01-01

    Full Text Available In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.

  4. Kinetic parameter estimation from SPECT cone-beam projection measurements

    International Nuclear Information System (INIS)

    Huesman, Ronald H.; Reutter, Bryan W.; Zeng, G. Larry; Gullberg, Grant T.

    1998-01-01

    Kinetic parameters are commonly estimated from dynamically acquired nuclear medicine data by first reconstructing a dynamic sequence of images and subsequently fitting the parameters to time-activity curves generated from regions of interest overlaid upon the image sequence. Biased estimates can result from images reconstructed using inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system. If the SPECT data are acquired using cone-beam collimators wherein the gantry rotates so that the focal point of the collimators always remains in a plane, additional biases can arise from images reconstructed using insufficient, as well as truncated, projection samples. To overcome these problems we have investigated the estimation of kinetic parameters directly from SPECT cone-beam projection data by modelling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated chest image volume, kinetic parameters were estimated for simple one-compartment models for four myocardial regions of interest. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated cone-beam data had biases ranging between 3-26% and 0-28%, respectively. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Statistical uncertainties of parameter estimates for 10 000 000 events ranged between 0.2-9% for the uptake parameters and between 0.3-6% for the washout parameters. (author)

  5. Effects of cadmium on the uptake of dopamine and norepinephrine in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Cadmium (Cd) a known environmental contaminant is neurotoxic. Kinetics of cadmium inhibition indicate that the metal may compete with ATP and Na + sites on Na + -K + ATPase in rat brain synaptosomes. Uptake and release processes of catecholamines into the central nervous system are dependent on membrane bound Na + -K + ATPase. It is suggested that the uptake and release processes of dopamine (DA) and norepinephrine (NE) in neurons are energy utilizing and hence are dependent on active ion transport. If the two aforementioned mechanisms are truly interdependent, then any alteration caused by a toxin to either of the above two mechanisms should also cause a parallel change in the other. The purpose of this study was to examine in vitro effects of cadmium chloride on the uptake of DA and NE and the activity of ATPase in the rat brain synaptosome

  6. Kinetics of biosorption of hazardous metals by green soil supplement

    Science.gov (United States)

    Bagla, Hemlata; Khilnani, Roshan

    2016-04-01

    The process of metal retention by soil may include ion exchange, adsorption and precipitation. These reaction mechanisms have been defined through fitting the data into different equilibrium and kinetic models. The natural organic matter in soil consists of various fractions like macro-organic material, plant residues, soil biomass and stable humus. Most of the organic matter is dominated with large amount of humic substances. Humic fractions in soil are known to have indirect and direct effects on plant growth and crop production. Humic substances increase the cation exchange capacity, providing a strong buffer capacity to resist sudden drastic chemical changes in soil which enhance soil fertility and environmental quality. The cation-humic interactions exert control on the reactivity of the cation, influencing its bioavailability in the soil system. The investigation of metal concentrations adsorbed with time can be useful to estimate the metal bioavailability in soil. Understanding how metals interact and compete for adsorption sites is of great interest to those involved in environmental remediation. Cow Dung is bio-organic, complex, polymorphic fecal matter of the bovine species, enriched with 'Humic acid' (HA), 'Fulvic Acid', etc. The HA in Cow Dung has been successfully extracted using neutralization reaction and its presence was confirmed by comparison with FTIR spectra of standard HA (IHSS). Since, dry Cow dung powder (DCP) is being added as a soil supplement to enhance the quality of soil, it is important to understand the kinetics associated with it. This work reports kinetic studies of various toxic and hazardous elements such as Cr(III), Cr(VI), Sr(II), Cd(II), Hg(II) and Co(II) adsorption by dry Cow dung powder. Kinetic experiments demonstrated rapid metal uptake. The Kinetic biosorption data were obtained by Batch experiments to explore the rate of biosorption by DCP at optimum parameters and varying the time of reaction from 1-30 min. The dynamics

  7. Comparison of simplified quantitative analyses of FDG uptake

    International Nuclear Information System (INIS)

    Graham, M.M.; Peterson, L.M.; Hayward, R.M.

    2000-01-01

    Quantitative analysis of [ 18 F]-fluoro-deoxyglucose (FDG) uptake is important in oncologic positron emission tomography (PET) studies to be able to set an objective threshold in determining if a tissue is malignant or benign, in assessing response to therapy, and in attempting to predict the aggressiveness of an individual tumor. The most common method used today for simple, clinical quantitation is standardized uptake value (SUV). SUV is normalized for body weight. Other potential normalization factors are lean body mass (LBM) or body surface area (BSA). More complex quantitation schemes include simplified kinetic analysis (SKA), Patlak graphical analysis (PGA), and parameter optimization of the complete kinetic model to determine FDG metabolic rate (FDGMR). These various methods were compared in a group of 40 patients with colon cancer metastatic to the liver. The methods were assessed by (1) correlation with FDGMR, (2) ability to predict survival using Kaplan-Meier plots, and (3) area under receiver operating characteristic (ROC) curves for distinguishing between tumor and normal liver. The best normalization scheme appears to be BSA with minor differences depending on the specific formula used to calculate BSA. Overall, PGA is the best predictor of outcome and best discriminator between normal tissue and tumor. SKA is almost as good. In conventional PET imaging it is worthwhile to normalize SUV using BSA. If a single blood sample is available, it is possible to use the SKA method, which is distinctly better. If more than one image is available, along with at least one blood sample, PGA is feasible and should produce the most accurate results

  8. Effect of different biochars on Nitrogen uptake in poplar trees

    Science.gov (United States)

    George, Elizabeth; Tonon, Giustino; Scandellari, Francesca

    2014-05-01

    Influence of biochar on soil nitrogen transformation and plant uptake has been reported. This paper presents preliminary results of plant N uptake in poplars by using 15N isotope tracer approach Two types of biochar were applied to two sets of pots containing only sand and each pot received a pre-rooted poplar cutting. Half of the pots were inoculated with commercial mycorrhizal gel and the other half were left without. It is intended to provide information on how biochar, mycorrhiza and root interaction mediate nitrogen uptake and organ allocation.

  9. Kinetic study of hydrogen-material interactions in nickel base alloy 600 and stainless steel 316L through coupled experimental and numerical analysis

    International Nuclear Information System (INIS)

    Hurley, Caitlin-Mae

    2015-01-01

    In France all of the nuclear power plant facilities in service today are pressurized water reactors (PWR). Some parts of the PWR in contact with the primary circuit medium, such as the steam generator tubes (fabricated in nickel base alloy A600) and some reactor core internal components (fabricated in stainless steel 316L), can fall victim to environmental degradation phenomena such as stress corrosion cracking (SCC). In the late 1950's, H. Coriou observed experimentally and predicted this type of cracking in alloys traditionally renowned for their SCC resistance (A600). Just some 20 to 30 years later his predictions became a reality. Since then, numerous studies have focused on the description and comprehension of the SCC phenomenon in primary water under reactor operating conditions. In view of reactor lifetime extension, it has become both critical and strategic to be capable of simulating SCC phenomenon in order to optimize construction materials, operating conditions, etc. and to understand the critical parameters in order to limit the damage done by SCC. This study focuses on the role hydrogen plays in SCC phenomenon and in particular H-material interactions. Hydrogen, from primary medium in the form of dissolved H gas or H from the water, can be absorbed by the alloy during the oxidation process taking place under reactor operating conditions. Once absorbed, hydrogen may be transported across the material, diffusing in the interstitial sites of the crystallographic structure and interacting with local defects, such as dislocations, precipitates, vacancies, etc. The presence of these [local defect] sites can slow the hydrogen transport and may provoke local H accumulation in the alloy. This accumulation could modify the local mechanical properties of the material and favor premature rupture. It is therefore essential to identify the nature of these H-material interactions, specifically the rate of H diffusion and hydrogen trapping kinetics at these

  10. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    International Nuclear Information System (INIS)

    Andreev, Pavel A.

    2015-01-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction

  11. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires.

    Science.gov (United States)

    Nambo, Apolo; He, Juan; Nguyen, Tu Quang; Atla, Veerendra; Druffel, Thad; Sunkara, Mahendra

    2017-06-14

    In this paper, the Li 4 SiO 4 nanowires (NWs) were shown to be promising for CO 2 capture with ultrafast kinetics. Specifically, the nanowire powders exhibited an uptake of 0.35 g g -1 of CO 2 at an ultrafast adsorption rate of 0.22 g g -1 min -1 at 650-700 °C. Lithium silicate (Li 4 SiO 4 ) nanowires and nanopowders were synthesized using a "solvo-plasma" technique involving plasma oxidation of silicon precursors mixed with lithium hydroxide. The kinetic parameter values (k) extracted from sorption kinetics obtained using NW powders are 1 order of magnitude higher than those previously reported for the Li 4 SiO 4 -CO 2 reaction system. The time scales for CO 2 sorption using nanowires are approximately 3 min and two orders magnitude faster compared to those obtained using lithium silicate powders with spherical morphologies and aggregates. Furthermore, Li 4 SiO 4 nanowire powders showed reversibility through sorption-desorption cycles indicating their suitability for CO 2 capture applications. All of the morphologies of Li 4 SiO 4 powders exhibited a double exponential behavior in the adsorption kinetics indicating two distinct time constants for kinetic and the mass transfer limited regimes.

  12. Role of point defects and additives in kinetics of hydrogen storage materials

    Science.gov (United States)

    van de Walle, Chris

    2010-03-01

    First-principles computational studies of hydrogen interactions with storage materials can provide direct insight into the processes of H uptake and release, and may help in developing guidelines for designing storage media with improved storage capacity and kinetics. One important conclusion is that the defects involved in kinetics of semiconducting or insulating H-storage materials are charged, and hence their formation energy is Fermi-level dependent and can be affected by the presence of impurities that change the Fermi level [1,2]. This provides an explanation for the role played by transition-metal impurities in the kinetics of NaAlH4 and related materials. Desorption of H and decomposition of NaAlH4 requires not only mass transport of H but also of Al and/or Na. This process is mediated by native defects. We have investigated the structure, stability, and migration enthalpy of native defects based on density functional theory. The results allow us to estimate diffusion activation energies for the defects that may be involved in mass transport. Most of the relevant defects exist in charge states other than neutral, and consideration of these charge states is essential for a proper description of kinetics. We propose specific new mechanisms to explain the observed activation energies and their dependence on the presence of impurities. We have also expanded our studies to materials other than NaAlH4. In the case of LiBH4 and Li4BN3H10 we have found that the calculations have predictive power in terms of identifying which impurities will actually enhance kinetics. Other complex hydrides that we are currently investigating include Li2NH and LiNH2. [4pt] [1] A. Peles and C. G. Van de Walle, Phys. Rev. B 76, 214101 (2007). [0pt] [2] C. G. Van de Walle, A. Peles, A. Janotti, and G. B. Wilson-Short, Physica B 404, 793 (2009).

  13. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption

    International Nuclear Information System (INIS)

    Teo, How Wei Benjamin; Chakraborty, Anutosh; Kayal, Sibnath

    2017-01-01

    Highlights: • Modification of parent MIL-101(Cr) metal organic framework (MOF) employing alkali metal ions (Li + , Na + , K + ). • Surface characteristics of the parent and alkali doped MIL-101(Cr) adsorbents. • Water uptakes are measured for the temperatures ranging from 25 °C to 60 °C under static and dynamic conditions. • Isotherms and kinetics data are fitted with Langmuir analogy models. • The 5% Li-doped MIL-101(Cr) is suitable for adsorption cooling. - Abstract: This article presents the surface characteristics of alkali (Li + , Na + , K + ) doped MIL-101(Cr) metal organic frameworks (MOFs), and the structural properties are evaluated by scanning electron micrography (SEM), X-ray diffraction (XRD), thermo-gravimetric analyser (TGA) and N 2 adsorption analysis. The amount of water uptakes are measured by a gravimetric analyser for the temperatures ranging from 298 K to 333 K and pressures up to the saturated conditions. The experimentally measured isotherms and kinetics data are fitted with the equations developed from the concept of Langmuir analogy. The isosteric heat of adsorption is calculated employing Van’t Hoff equation in the pressure-temperature-uptake co-ordinate systems. The hydrophobic length at low pressure regions is shortened by the addition of alkali dopants. It is observed that the alkali (Na, K and Li) ions on MIL-101(Cr) MOF increase the water uptakes at lower relative pressure region with fast kinetics. We have shown here that the alkali doped MIL-101(Cr) MOFs can be used as potential adsorbents for various low temperature heat transmission applications such as adsorption assisted heat pump, cooling and desalination.

  14. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Baldisserotto, B. [Departamento de Fisiologia, Universidade Federal de Santa Maria, 97105.900 Santa Maria, RS (Brazil); Chowdhury, M.J. [Department of Biology, McMaster University, Hamilton, Ont., L8S 4K1 (Canada); Wood, Chris M. [Department of Biology, McMaster University, Hamilton, Ont., L8S 4K1 (Canada)]. E-mail: woodcm@mcmaster.ca

    2005-03-25

    The objective of this study was to examine the effects of chronically elevated dietary Ca{sup 2+} (as CaCO{sub 3}), alone and in combination with elevated dietary Cd, on survival, growth, and Cd and Ca{sup 2+} accumulation in several internal compartments in juvenile rainbow trout (Oncorhynchus mykiss). In addition, effects on short-term branchial uptake and internal distribution of newly accumulated waterborne Ca{sup 2+} and Cd during acute waterborne Cd exposure (50 {mu}g/L as CdNO{sub 3} for 3 h) were monitored using radiotracers ({sup 45}Ca, {sup 65}Cd). Fish were fed with four diets: 20 mg Ca{sup 2+}/g food (control), 50 mg Ca{sup 2+}/g food, 300 {mu}g Cd/g food, and 50 mg Ca{sup 2+}/g + 300 {mu}g Cd/g food for 30 days. There were no significant effects on growth, mortality, or total body Ca{sup 2+} accumulation. The presence of elevated Ca{sup 2+}, Cd, or Ca{sup 2+} + Cd in the diet all reduced waterborne Ca{sup 2+} uptake in a short-term experiment (3 h), though the inhibitory mechanisms appeared to differ. The effects were marked after 15 days of feeding, but attenuated by 30 days, except when the diet was elevated in both Ca{sup 2+} and Cd. The presence of elevated Ca{sup 2+} in the diet had only modest influence on Cd uptake from the water during acute Cd challenges but greatly depressed Cd uptake from the diet and accumulation in most internal tissues. None of the treatment diets prevented the decreases in waterborne Ca{sup 2+} uptake and new Ca{sup 2+} accumulation in internal tissues caused by acute exposure to waterborne Cd. In conclusion, there are complex interactions between waterborne and dietary effects of Ca{sup 2+} and Cd. Elevated dietary Ca{sup 2+} protects against both dietary and waterborne Cd uptake, whereas both waterborne and dietary Cd elevations cause reduced waterborne Ca{sup 2+} uptake.

  15. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  16. Semi-Mechanistic Population Pharmacokinetic Modeling of L-Histidine Disposition and Brain Uptake in Wildtype and Pht1 Null Mice.

    Science.gov (United States)

    Wang, Xiao-Xing; Li, Yang-Bing; Feng, Meihua R; Smith, David E

    2018-01-05

    To develop a semi-mechanistic population pharmacokinetic (PK) model to quantitate the disposition kinetics of L-histidine, a peptide-histidine transporter 1 (PHT1) substrate, in the plasma, cerebrospinal fluid and brain parenchyma of wildtype (WT) and Pht1 knockout (KO) mice. L-[ 14 C]Hisidine (L-His) was administrated to WT and KO mice via tail vein injection, after which plasma, cerebrospinal fluid (CSF) and brain parenchyma samples were collected. A PK model was developed using non-linear mixed effects modeling (NONMEM). The disposition of L-His between the plasma, brain, and CSF was described by a combination of PHT1-mediated uptake, CSF bulk flow and first-order micro-rate constants. The PK profile of L-His was best described by a four-compartment model. A more rapid uptake of L-His in brain parenchyma was observed in WT mice due to PHT1-mediated uptake, a process characterized by a Michaelis-Menten component (V max  = 0.051 nmoL/min and K m  = 34.94 μM). A semi-mechanistic population PK model was successfully developed, for the first time, to quantitatively characterize the disposition kinetics of L-His in brain under in vivo conditions. This model may prove a useful tool in predicting the uptake of L-His, and possibly other PHT1 peptide/mimetic substrates, for drug delivery to the brain.

  17. Enviromental influences on the 137Cs kinetics of the yellow-bellied turtle (Trachemys Scripta)

    International Nuclear Information System (INIS)

    Peters, E.L.; Brisbin, L.I. Jr.

    1996-01-01

    Assessments of ecological risk require accurate predictions of contaminant dynamics in natural populations. However, simple deterministic models that assume constant uptake rates and elimination fractions may compromise both their ecological realism and their general application to animals with variable metabolism or diets. In particular, the temperature-dependent model of metabolic rates characteristic of ectotherms may lead to significant differences between observed and predicted contaminant kinetics. We examined the influence of a seasonally variable thermal environment on predicting the uptake and annual cycling of contaminants by ectotherms, using a temperature-dependent model of 137 Cs kinetics in free-living yellow-bellied turtles, Trachemys scripta. We compared predictions from this model with those of deterministics negative exponential and flexibly shaped Richards sigmoidal models. Concentrations of 137 Cs in a population if this species in Pond B, a radionuclide-contaminated nuclear reactor cooling reservoir, and 137 Cs uptake by the uncontaminated turtles held captive in Pond B for 4 yr confirmed both the pattern of uptake and the equilibrium concentrations predicted by the temperature-dependent model. Almost 90% of the variance on the predicted time-integrated 137 Cs concentration was explainable by linear relationships with model paramaters. The model was also relatively insensitive to uncertainties in the estimates of ambient temperature, suggesting that adequate estimates of temperature-dependent ingestion and elimination may require relatively few measurements of ambient conditions at sites of interest. Analyses of Richards sigmoidal models of 137 Cs uptake indicated significant differences from a negative exponential trajectory in the 1st yr after the turtles' release into Pond B. 76 refs., 7 figs., 5 tabs

  18. Mechanism of uranium(VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xia, E-mail: lux2009@lzu.edu.cn; Zhou, Xiao-jiao; Wang, Tie-shan, E-mail: tswang@lzu.edu.cn

    2013-11-15

    Highlights: • Equilibrium reaches very rapid within 15 min. • pH shift towards neutral indicates release of hydroxyl ions. • High ionic strength inhabits biosorption capacity. • Uptake capacity of heat-killed cells is an order of magnitude higher than live one. • Electrostatic interaction, precipitation, and complexation are the main mechanisms. -- Abstract: Biosorption is of significance for the safety evaluation of high-level nuclear wastes repositories and remediation of radioactive contamination places. Quantitive study and structural characterization of uranium uptake by both live and heat-killed Saccharomyces cerevisiae at environmentally relevant uranium concentration and with different ionic strengths were carried out. Kinetic investigation showed the equilibrium reached within 15 min. In equilibrium studies, pH shift towards neutral indicated release of hydroxyl ions. pH was the most important factor, which partly affected electrostatic interaction between uranyl ions and S. cerevisiae surface. The high ionic strength inhibited biosorption capacity, which can be explained by a competitive reaction between sodium ions and uranyl ions. Heat killing process significantly enhanced biosorption capacity, showing an order of magnitude higher than that of live cells. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray (EDX) showed needle-like uranium-phosphate precipitation formed on the cell walls for both live and heat-killed cells. Besides, dark-field micrographs displayed considerable similar uranium-phosphate precipitation presented outside the heat-killed cells. The phosphate released during heat-killing process. FTIR illustrated function groups hydroxyl, carboxyl, phosphate, and amino groups played important role in complexation with uranium.

  19. Albendazole-praziquantel interaction in healthy volunteers: kinetic disposition, metabolism and enantioselectivity

    Science.gov (United States)

    Lima, Renata Monteiro; Ferreira, Maria Augusta Drago; de Jesus Ponte Carvalho, Teresa Maria; Dumêt Fernandes, Bruno José; Takayanagui, Osvaldo Massaiti; Garcia, Hector Hugo; Coelho, Eduardo Barbosa; Lanchote, Vera Lucia

    2011-01-01

    AIM This study investigated the kinetic disposition, metabolism and enantioselectivity of albendazole (ABZ) and praziquantel (PZQ) administered alone and in combination to healthy volunteers. METHODS A randomized crossover study was carried out in three phases (n = 9), in which some volunteers started in phase 1 (400 mg ABZ), others in phase 2 (1500 mg PZQ), and the remaining volunteers in phase 3 (400 mg ABZ + 1500 mg PZQ). Serial blood samples were collected from 0–48 h after drug administration. Pharmacokinetic parameters were calculated using a monocompartmental model with lag time and were analyzed using the Wilcoxon test; P≤ 0.05. RESULTS The administration of PZQ increased the plasma concentrations of (+)-ASOX (albendazole sulphoxide) by 264% (AUC 0.99 vs. 2.59 µg ml−1 h), (−)-ASOX by 358% (0.14 vs. 0.50 µg ml−1 h) and albendazole sulfone (ASON) by 187% (0.17 vs. 0.32 µg ml−1 h). The administration of ABZ did not change the kinetic disposition of (+)-(S)-PZQ (–)-(R)-4-OHPZQ or (+)-(S)-4-OHPZQ, but increased the plasma concentration of (–)-(R)-PZQ by 64.77% (AUC 0.52 vs. 0.86 µg ml−1 h). CONCLUSIONS The pharmacokinetic interaction between ABZ and PZQ in healthy volunteers was demonstrated by the observation of increased plasma concentrations of ASON, both ASOX enantiomers and (–)-(R)-PZQ. Clinically, the combination of ABZ and PZQ may improve the therapeutic efficacy as a consequence of higher concentration of both active drugs. On the other hand, the magnitude of this elevation may represent an increased risk of side effects, requiring, certainly, reduction of the dosage. However, further studies are necessary to evaluate the efficacy and safety of this combination. PMID:21395645

  20. Interactive effects of aluminum, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L. (Poaceae).

    Science.gov (United States)

    Koslowsky, S D; Boener, R E

    1989-01-01

    The effects of Al on Panicum virgatum (switchgrass), a widespread perennial grass, were determined in relation to factors which might interact with Al in the soil. Plants were grown for 8 weeks in sand culture and were treated with 3 Al levels (0.5, 2.0, 5.0 mM), 2 P levels (0.065, 0.161 mM), 2 inoculum types (vesicular-arbuscular mycorrhizal (VAM) inoculum or VAM-free soil inoculum) and 2 inoculum sources (a high Al forest in NY or a low Al forest in Ohio) in a factorial design. Plant growth decreased with increasing Al and increased with increasing P, but the Al effect was less at high P than low P. VAM-inoculated plants outgrew non-VAM plants, especially at low and medium Al levels. Total P and Ca uptake decreased with increasing Al concentration, especially at low P levels. VAM inoculation did not result in increased P uptake at any Al level though VAM plants took up significantly more Ca than non-VAM plants at any Al level. VAM plants had lower tissue Al concentrations and took up less Al than non-VAM plants; Al uptake increased with increasing soil Al in non-VAM plants but not in VAM plants. Plants given inoculum from the high Al site had significantly lower tissue Al than plants given the low Al site inoculum, regardless of VAM status. We conclude that the presence of a VAM infection, moderate levels of soil P, and the source of the inoculum can reduce the effects of soluble Al. We discuss potential physiological and edaphic mechanisms by which Al may be immobilized and Ca availability increased in the presence of VAM fungi and other soil microflora.

  1. Biodistribution and breast tumor uptake of 16α-[18F]-fluoro-17β-estradiol in rat

    International Nuclear Information System (INIS)

    Sasaki, Masayuki; Fukumura, Toshimitsu; Kuwabara, Yasuo; Yoshida, Tsuyoshi; Nakagawa, Makoto; Ichiya, Yuichi; Masuda, Kouji

    2000-01-01

    To evaluate the usefulness of 16α-[ 18 F]-fluoro-17β-estradiol (FES) for the assessment of estrogen receptor (ER), we examined the tissue distribution and kinetics of FES in immature female Sprague-Dawley rats and then examined FES uptake in rat breast tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA). The FES uptake by the uterus, an ER-rich tissue, was highly selective and it was 3.34±0.79%ID/g at 60 minutes and 1.57±0.57%ID/g at 120 minutes after injection. The FES uptakes in ER-negative tissues were 0.12±0.05%ID/g or less and 0.05±0.03%ID/g or less, respectively. Coadministration of unlabeled β-estradiol showed marked depression of uterine FES uptake. The FES uptake by rat breast tumors was 0.14±0.06%ID/g at 60 min and 0.12±0.09%ID/g at 120 min. The FES uptake by rat breast tumors correlated with the ER concentration (r=0.45, p<0.05). In conclusion, these results suggest that the FES uptake by tissue is mainly ER mediated and FES is thus useful for detecting ER positive breast tumors. (author)

  2. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  3. Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Jones, Andrew M.; Wilkerson, Daryl P.

    2009-01-01

    artery to vein and vein to artery). The kinetics of m O2 and p O2 were modelled using non-linear regression. The time constant (tau) describing the phase II p O2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + &tgr) for m O2...... kinetics for LI (30 +/- 3 vs. 30 +/- 3 s) but was slightly higher (P....05; r = -0.01) and HI (33 +/- 3 vs. 27 +/- 3, P>0.05; r = -0.04). MTT was ~17 s just before exercise and decreased to 10 s and 12 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II p O2 kinetics reflect m O2 kinetics during exercise but not during recovery where...

  4. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    Science.gov (United States)

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  5. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    Science.gov (United States)

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-07-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available.

  6. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    Science.gov (United States)

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-01-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available. PMID:3722128

  7. Study of liquid phase formation kinetics due to solid/solid chemical interaction and its model. Application to the Zircaloy/Inconel

    International Nuclear Information System (INIS)

    Garcia, E.A.; Denis, A.

    1990-01-01

    A description is made of the chemical interaction between Inconel spacing grids and the Zircaloy of the sheaths. Experiments performed at 1000, 1100 and 1200 deg C with base Zircaloy and with a previously formed layer of ZrO 2 , show that the kinetics is parabolic. The difference between both types of experiments is that the oxide layer delays the initiation of the Inconel-Zry interaction. A model is presented, for the description of the solid/solid interaction, which leads to the formation of eutectic that is liquid at the experiment temperature. Also a model, which represents the oxide layer dissolution and predicts the instant in which it disappears completely, is presented. (Author) [es

  8. 65Zn kinetics as a biomarker of DMH induced colon carcinogenesis

    International Nuclear Information System (INIS)

    Chadha, Vijayta Dani

    2012-01-01

    Dietary factors are considered crucial for the prevention of initiating events in the multistep progression of colon carcinoma. There is substantial evidence that zinc may play a pivotal role in host defense against several malignancies, including colon cancer. The present study was conducted to evaluate the kinetics of zinc utilization following experimental colon carcinogenesis in rat model. The rats were segregated into two groups viz., untreated control and DMH treated. Colon carcinogenesis was established through weekly subcutaneous injections of DMH (30mg/Kg body weight) for 16 weeks. Whole body 65 Zn kinetics followed two compartment kinetics, with Tb1 representing the initial fast component of the biological half-life and Tb2, the slower component. The present study revealed a significant depression in the Tb1 and Tb2 components of 65 Zn in DMH treated rats. Further, DMH treatment caused a significant increase in the percent uptake values of 65 Zn in the colon, small intestine, kidney and blood, whereas a significant decrease was observed in the liver. Subcellular distribution revealed a significant increase in 65 Zn uptake in the mitochondrial and microsomal fractions following 16 weeks of DMH supplementation. The present study demonstrated a slow mobilization of zinc during promotion of experimentally induced colon carcinogenesis and provides a physiological basis for the role of zinc in colon tumorigenesis, a paradigm which may have clinical implications in the management of colon cancer. (author)

  9. Kinetic Simulations of Type II Radio Burst Emission Processes

    Science.gov (United States)

    Ganse, U.; Spanier, F. A.; Vainio, R. O.

    2011-12-01

    The fundamental emission process of Type II Radio Bursts has been under discussion for many decades. While analytic deliberations point to three wave interaction as the source for fundamental and harmonic radio emissions, sparse in-situ observational data and high computational demands for kinetic simulations have not allowed for a definite conclusion to be reached. A popular model puts the radio emission into the foreshock region of a coronal mass ejection's shock front, where shock drift acceleration can create eletrcon beam populations in the otherwise quiescent foreshock plasma. Beam-driven instabilities are then assumed to create waves, forming the starting point of three wave interaction processes. Using our kinetic particle-in-cell code, we have studied a number of emission scenarios based on electron beam populations in a CME foreshock, with focus on wave-interaction microphysics on kinetic scales. The self-consistent, fully kinetic simulations with completely physical mass-ratio show fundamental and harmonic emission of transverse electromagnetic waves and allow for detailled statistical analysis of all contributing wavemodes and their couplings.

  10. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition?

    International Nuclear Information System (INIS)

    Guo, W.; Zhu, Y.-G.; Liu, W.-J.; Liang, Y.-C.; Geng, C.-N.; Wang, S.-G.

    2007-01-01

    Solution culture experiments were conducted to investigate the effects of silicon (Si) on arsenate (As V ) uptake by rice. The addition of Si to the pretreatment or uptake solution significantly decreased shoot and root As concentrations (P < 0.001 and P < 0.05). The presence of Si in the pretreatment or uptake solution also significantly decreased shoot P concentrations (P < 0.001). The data demonstrated that both internal and external Si inhibited the uptake of As and P. Results of As uptake kinetics showed that the mechanism of the effect of Si on arsenate uptake is not caused by direct competition for active sites of transporters with As. The effect of Si on As uptake was not entirely mediated through the effect of Si on P uptake. Although the addition of Si to pretreatment solutions still significantly decreased shoot and root As concentrations, the extent of reduction became smaller when rice roots were coated with iron plaque. - Arsenate uptake by rice seedlings is affected by both Si (internal and external) and iron plaque on root surface

  11. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  12. Kinetic studies on phosphorus sorption by selected soil amendments for septic tank effluent renovation.

    Science.gov (United States)

    Cheung, K C; Venkitachalam, T H

    2006-01-01

    A systematic kinetic study of phosphorus (P) sorption by various materials in the soil infiltration system of septic tanks was undertaken by following the time course of P sorption by sorbents in contact with various P solutions over periods up to 360 days. Uptake of P seemed to consist of two distinct stages. Initial uptake was very rapid and this phase was completed in 4 days or less. A slower removal stage followed for some materials over many months. Phosphorus sorption during the fast reaction stage appeared to be associated with the soluble Ca content of the materials. The fast reaction of calcareous materials accounted for the bulk (>70%) of the total P removed. Merribrook loamy sand exhibited the highest proportion of P sorption during the slow phase. It should be noted, however, that for solution P concentrations in the range found in typical effluents (approximately 20 mg L(-1)) the fast reaction phase seemed to be responsible for virtually all P removed. None of the six kinetic formulae examined possessed the sophistication and detail needed to portray accurately the time course of P sorption for all the sorbents investigated. The Elovich equation and the kinetic modification of the Freundlich isotherm expression appeared to provide a reasonable fit of the experimental data.

  13. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  14. Influence of extreme pedal rates on pulmonary O(2) uptake kinetics during transitions to high-intensity exercise from an elevated baseline.

    Science.gov (United States)

    Dimenna, Fred J; Wilkerson, Daryl P; Burnley, Mark; Bailey, Stephen J; Jones, Andrew M

    2009-10-31

    We used extreme pedal rates to investigate the influence of muscle fibre recruitment on pulmonary V(O)(2) kinetics during unloaded-to-moderate-intensity (U-->M), unloaded-to-high-intensity (U-->H), and moderate-intensity to high-intensity (M-->H) cycling transitions. Seven healthy men completed transitions to 60% of the difference between gas-exchange threshold and peak V(O)(2) from both an unloaded and a moderate-intensity (95% GET) baseline at cadences of 35 and 115rpm. Pulmonary gas exchange was measured breath-by-breath and iEMG of the m. vastus lateralis and m. gluteus maximus was measured during all tests. At 35rpm, the phase II time constant (tau(p)) values for U-->M, U-->H, and M-->H were 26+/-7, 31+/-7 and 36+/-8s with the value for M-->H being longer than for U-->M (PM, U-->H, and M-->H were 29+/-8, 48+/-16 and 53+/-20s with the value for U-->M being shorter than for the other two conditions (Pinfluenced by an interaction of exercise intensity and pedal rate and are consistent with the notion that changes in muscle fibre recruitment are responsible for slower phase II V(O)(2) kinetics during high-intensity and work-to-work exercise transitions.

  15. Removal of arsenic from simulated groundwater using GAC-Ca in batch reactor: kinetics and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Prasenjit; Mohanty, Bikash; Majumder, Chandrajit Balo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand (India)

    2012-05-15

    This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca{sup 2+} impregnated granular activated charcoal (GAC-Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after {proportional_to}24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC-Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (q{sub max}) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 {mu}g/g. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    Directory of Open Access Journals (Sweden)

    Dragana Savic MSc

    2016-12-01

    Full Text Available Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA. Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki and the normalized uptake (standardized uptake value of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and

  17. A method to account for the effect of hydrodynamics on polar organic compound uptake by passive samplers

    NARCIS (Netherlands)

    Booij, K.; Maarsen, N.L.; Theeuwen, M.; van Bommel, R.

    2017-01-01

    Mass transfer coefficients of the water boundary layer (kw) were measured using alabaster dissolution kinetics in a diffusion cell that was operated at stirring rates between 90 min−1 and 600 min−1, aiming to provide a more robust characterization of the effect of hydrodynamics on the uptake of

  18. Interaction of 2-aminopyrimidine with dichloro-[1-alkyl-2-(naphthylazo imidazole]palladium(II complexes : Kinetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Saha Sushanta

    2007-10-01

    Full Text Available Abstract Background The anticancer properties of cisplatin and palladium(II complexes stem from the ability of the cis-MCl2 fragment to bind to DNA bases. However, cisplatin also interacts with non-cancer cells, mainly through bonding molecules containing -SH groups, resulting in nephrotoxicity. This has aroused interest in the design of palladium(II complexes of improved activity and lower toxicity. The reaction of DNA bases with palladium(II complexes with chelating N,N/donors of the cis-MCl2 configuration constitutes a model system that may help explore the mechanism of cisplatin's anticancer activity. Heterocyclic compounds are found widely in nature and are essential to many biochemical processes. Amongst these naturally occurring compounds, the most thoroughly studied is that of pyrimidine. This was one of the factors that encouraged this study into the kinetics and mechanism of the interaction of 2-aminopyrimidine (2-NH2-Pym with dichloro-{1-alkyl-2-(α-naphthylazoimidazole}palladium(II [Pd(α-NaiRCl2, 1] and dichloro-{1-alkyl-2-(β-naphthylazoimidazole}palladium(II [Pd(β-NaiRCl2, 2] complexes where the alkyl R = Me (a, Et (b, or Bz (c. Results 2-NH2-Pym reacts with 1a, 1b, and 1c to yield [{1-alkyl-2-(α-naphthylazoimidazole}bis(2-aminopyrimidine]palladium(II (3a, 3b, 3c dichloride and with 2a, 2b, and 2c to yield [{1-alkyl-2-(β-naphthylazoimidazole}bis(2-aminopyrimidine]palladium(II (4a, 4b, 4c dichloride in an acetonitrile (MeCN medium. The products were characterized using spectroscopic techniques (FT-IR, UV-Vis, NMR. The ligand substitution reactions follow second order kinetics – first order dependence on the concentration of the Pd(II complex and 2-NH2-Pym. Addition of LiCl to the reaction does not influence its rate. The thermodynamic parameters (standard enthalpy of activation, Δ‡H° and standard entropy of activation, Δ‡S° were determined from variable temperature kinetic studies. The magnitude of the second order

  19. Subcellular distribution and uptake mechanism of di-n-butyl phthalate in roots of pumpkin (Cucurbita moschata) seedlings.

    Science.gov (United States)

    Lin, Qingqi; Yang, Xiuhong; Huang, Xiongfei; Wang, Shizhong; Chao, Yuanqing; Qiu, Rongliang

    2016-01-01

    Phthalate acid esters (PAEs) are of particular concern due to their potential environmental risk to human and nonhuman organisms. Although uptake of PAEs by plants has been reported by several researchers, information about the intracellular distribution and uptake mechanisms of PAEs is still lacking. In this study, a series of hydroponic experiments using intact pumpkin (Cucurbita moschata) seedlings was conducted to investigate how di-n-butyl phthalate (DnBP), one of the most frequently identified PAEs in the environment, enters and is distributed in roots. DnBP was transported into subcellular tissues rapidly in the initial uptake period (<12 h). More than 80% of DnBP was detected in the cell walls and organelles, which suggests that DnBP is primarily accumulated in these two fractions due to their high affinity to DnBP. The kinetics of DnBP uptake were fitted well with the Michaelis-Menten equation, suggesting that a carrier-mediated process was involved. The application of 2,4-dinitrophenol and sodium vanadate reduced the uptake of DnBP by 37 and 26%, respectively, while aquaporin inhibitors, silver and glycerol, had no effect on DnBP uptake. These data demonstrated that the uptake of DnBP included a carrier-mediated and energy-dependent process without the participation of aquaporins.

  20. Artificial Neural Network (ANN) design for Hg-Se interactions and their effect on reduction of Hg uptake by radish plant

    International Nuclear Information System (INIS)

    Kumar Rohit Raj; Abhishek Kardam; Shalini Srivastava; Jyoti Kumar Arora

    2010-01-01

    The tendency of selenium to interact with heavy metals in presence of naturally occurring species has been exploited for the development of green bioremediation of toxic metals from soil using Artificial Neural Network (ANN) modeling. The cross validation of the data for the reduction in uptake of Hg(II) ions in the plant R. sativus grown in soil and sand culture in presence of selenium has been used for ANN modeling. ANN model based on the combination of back propagation and principal component analysis was able to predict the reduction in Hg uptake with a sigmoid axon transfer function. The data of fifty laboratory experimental sets were used for structuring single layer ANN model. Series of experiments resulted into the performance evaluation based on considering 20% data for testing and 20% data for cross validation at 1,500 Epoch with 0.70 momentums The Levenberg-Marquardt algorithm (LMA) was found as the best of BP algorithms with a minimum mean squared error at the eighth place of the decimal for training (MSE) and cross validation. (author)

  1. Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas

    International Nuclear Information System (INIS)

    Crouseilles, N.

    2004-12-01

    For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)

  2. Nitrogen kinetics in aquatic plants in arctic Alaska

    International Nuclear Information System (INIS)

    McRoy, C.P.; Alexander, V.

    1975-01-01

    The kinetics of nitrogen in terms of ammonia uptake was measured for Carex aquatilis in arctic tundra ponds using 15 N tracer techniques. Nitrogen content of the leaves and primary productivity were measured throughout a growing season. The maximum uptake velocity for ammonia was 2.75 x 10 -2 % N/g dry weight per h with a Ksub(t) of 8.4-12.5 μgatoms/l. A second estimate of nitrogen uptake was made from the increase in nitrogen content throughout the season and from this a rate of 1.85 x 10 -2 % N/g dry weight per day was obtained for Carex aquatilis and 3.6 x 10 -2 % N/g dry weight per day for Arctophylla fulva. The total nitrogen concentration in the leaves was closely related to productivity, possible providing a new approach to productivity measurements for emergent vascular plants. Emergent vascular plants absorb ammonia across and translocate it to all portions of the plant. The ecological significance of this is considerable, since in many waters inorganic nitrogen content of sediment is much higher than that of the water surrounding the leaves and stems, and can provide a source of nitrogen

  3. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry

    Science.gov (United States)

    Vander Meulen, Kirk A.; Butcher, Samuel E.

    2012-01-01

    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake. PMID:22058128

  4. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans

    DEFF Research Database (Denmark)

    Steensberg, Adam; Fischer, Christian P; Sacchetti, Massimo

    2003-01-01

    adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake......The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three...... the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P

  5. A Study on the Kinetics of Propane-Activated Carbon: Theory and Experiments

    KAUST Repository

    Ismail, Azhar bin

    2013-08-01

    Experimental kinetics results of propane in Maxsorb III activated carbon is obtained at temperatures of 10°C and 30°C, and pressures up to 800kPa using a magnetic suspension balance. A multi-gradient linear driving force (LDF) approximation is used for adsorbate uptake as a function of time. The LDF mass-transfer-rate coefficients were thus determined. Using this approach, the experimentally derived LDF coefficients based on independently measured kinetic parameters for propane in the activated-carbon bed agree very well with experimental results. The computational efficiency is gained by adopting this extended LDF model. © (2013) Trans Tech Publications, Switzerland.

  6. A Study on the Kinetics of Propane-Activated Carbon: Theory and Experiments

    KAUST Repository

    Ismail, Azhar bin; Loh, Wai Soong; Thu, Kyaw; Ng, Kim Choon

    2013-01-01

    Experimental kinetics results of propane in Maxsorb III activated carbon is obtained at temperatures of 10°C and 30°C, and pressures up to 800kPa using a magnetic suspension balance. A multi-gradient linear driving force (LDF) approximation is used for adsorbate uptake as a function of time. The LDF mass-transfer-rate coefficients were thus determined. Using this approach, the experimentally derived LDF coefficients based on independently measured kinetic parameters for propane in the activated-carbon bed agree very well with experimental results. The computational efficiency is gained by adopting this extended LDF model. © (2013) Trans Tech Publications, Switzerland.

  7. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  8. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  9. In vivo kinetics of intestinal absorption of riboflavin in rats

    International Nuclear Information System (INIS)

    Feder, S.; Daniel, H.; Rehner, G.

    1991-01-01

    To investigate absorption kinetics of riboflavin under in vivo conditions, with blood and lymph circulation intact, the small intestine of anesthetized rats was perfused with [ 14 C]riboflavin in a concentration range between 0.31 and 10.00 mumol/L. Apart from the uptake of riboflavin from the perfusate, passage of the vitamin into the portal (vena portae) and peripheral (vena femoralis) blood was determined. The absorption proved to be a dual process: at low substrate concentrations (less than 2 mumol/L) a saturable component predominated; at higher concentrations simple diffusion was found to be the prevailing uptake mechanism. The apparent transport constant of the saturable component was calculated to be 0.38 mumol/L. [ 14 C]flavin concentrations in the portal and peripheral blood were estimated as a function of the riboflavin concentration of the perfusion media. The dual character of the absorption was reflected by the portal blood flavin levels. Due to the high retaining and equalizing capacity of the liver, the [ 14 C]flavin level of the peripheral blood was relatively low and obeyed saturation kinetics. Constants of elimination, determined by pharmacokinetic calculations, were different for the two blood compartments but independent of the concentration of riboflavin in the perfusion media

  10. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells.

    Science.gov (United States)

    Satsu, Hideo; Awara, Sohei; Unno, Tomonori; Shimizu, Makoto

    2018-04-01

    Inhibition of excessive fructose intake in the small intestine could alleviate fructose-induced diseases such as hypertension and non-alcoholic fatty liver disease. We examined the effect of phytochemicals on fructose uptake using human intestinal epithelial-like Caco-2 cells which express the fructose transporter, GLUT5. Among 35 phytochemicals tested, five, including nobiletin and epicatechin gallate (ECg), markedly inhibited fructose uptake. Nobiletin and ECg also inhibited the uptake of glucose but not of L-leucine or Gly-Sar, suggesting an inhibitory effect specific to monosaccharide transporters. Kinetic analysis further suggested that this reduction in fructose uptake was associated with a decrease in the apparent number of cell-surface GLUT5 molecules, and not with a change in the affinity of GLUT5 for fructose. Lastly, nobiletin and ECg suppressed the permeation of fructose across Caco-2 cell monolayers. These findings suggest that nobiletin and ECg are good candidates for preventing diseases caused by excessive fructose intake.

  11. 131I Metaiodobenzylguanidine (131I MIBG) kinetics in a carcinoid tumor

    International Nuclear Information System (INIS)

    Schiavo, R.; Concolino, G.; Fazi, F.; Iannantuono, P.; Voti, S. Li; Manzara, A.; Pavoni, P.

    1987-01-01

    The 131 I-MIBG kinetics was studied in vivo in patients with carcinoid tumors and liver metastases. Activity curve analysis showed that the maximum uptake of 131 I-MIBG in a carcinoid tumor occurred after 48 hours, while its biological half time was of 8 days and a half. Although more data are necessary to understand a significant variation in 131 I-MIBG kinetics between the different kinds of APUD neoplasms, it is thought that a dynamic-funtional study allowing the evaluation of the different biological half-time, could be helpful for the selection of these neoplasms, which could be treated with 131 I-MIBG. Radiation doses required for the treatment are also estimated. (M.E.L.) [es

  12. Inorganic tin and organotin interactions with candida maltosa

    Energy Technology Data Exchange (ETDEWEB)

    White, J.S.; Tobin, J.M. [School of Biotechnology, Dublin City Univ., Dublin (Ireland)

    2004-07-01

    As a consequence of the widespread industrial and agricultural applications of organotins, contamination of various ecosystems has occurred in recent decades. Understanding how these compounds interact with microorganisms is important in assessing the risks of organotin pollution. The organotins, tributyltin (TBT), trimethyltin (TMT) and inorganic tin, Sn(IV), were investigated for their physical interactions with non-metabolising cells and protoplasts of the yeast candida maltosa, an organism that is often associated with contaminated environments. Uptake, toxicity and membrane-acting effects of these compounds, at concentrations approximating those found in polluted environments, were assessed. Sn(IV) and TBT uptake occurred by different mechanisms. Uptake of Sn(IV) was 2-fold greater in intact cells than protoplasts, underlining the importance of cell wall binding, whereas TBT uptake levels by both cell types were similar. TBT uptake resulted in cell death and extensive K{sup +} leakage, while Sn(IV) uptake had no effect. TMT did not interact with cells. Of the three compounds, TBT alone altered membrane fluidity, as measured by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene incorporated into cells. Anisotropy of 1-(4-trimethylaminophenyl-6-phenyl-1,3,5-hexatriene) was not affected, implying that TBT is not confined to the surface of the cytoplasmic membrane, but acts within membrane lipids. These results indicate that the cell wall is the dominant site of Sn(IV) interactions with yeast, while lipophilic interactions play an important role in uptake and toxicity of TBT. (orig.)

  13. Microelectrode Studies of Seasonal Oxygen-Uptake in a Coastal Sediment - Role of Molecular-Diffusion

    DEFF Research Database (Denmark)

    RASMUSSEN, H.; JØRGENSEN, BB

    1992-01-01

    in the bay varied from 100 % air saturation during winter to 23 % during summer. The potentially higher O2 respiration during the summer months was counteracted by a lower O2 concentration in the bottom water, which led to a small seasonal variation in O2 uptake. Depth of the oxic sediment zone reached 5.1...... surface zone. The O2 consumption rates in the oxic surface layer, calculated from (b) and (c) using molecular diffusion coefficients of O2, closely agreed and accounted for 70 % of the total O2 uptake. The O2 uptake rates strongly depended on in situ O2 concentrations in the overlying seawater, which...... mm during winter, narrowed down rapidly to a few mm upon settling of a spring phytoplankton bloom, and was only 1.2 mm during summer. Modeling of O2 consumption from O2 microprofiles showed zero-order kinetics, i.e. constant O2 consumption rates throughout the oxic zone during winter. Enhanced O2...

  14. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    International Nuclear Information System (INIS)

    Njikam, Eloh; Schiewer, Silke

    2012-01-01

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO 3 . The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO 3 , desorption was incomplete and the model fit less perfect. Highlights: ► Metal desorption was over 90% complete within 50 min for most desorbents. ► Models for biosorbent desorption kinetics were developed. ► Desorption kinetics best fit a novel first-order model related to remaining metal bound. ► Cd uptake after desorption by HNO 3 was similar to the original uptake. ► The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO 3 , NaNO 3 , Ca(NO 3 ) 2 , EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by nitric acid, but considerably lower for calcium nitrate as the desorbent. While complexing agents were effective desorbents, their cost is higher than that

  15. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  16. Non-additive non-interacting kinetic energy of rare gas dimers

    Science.gov (United States)

    Jiang, Kaili; Nafziger, Jonathan; Wasserman, Adam

    2018-03-01

    Approximations of the non-additive non-interacting kinetic energy (NAKE) as an explicit functional of the density are the basis of several electronic structure methods that provide improved computational efficiency over standard Kohn-Sham calculations. However, within most fragment-based formalisms, there is no unique exact NAKE, making it difficult to develop general, robust approximations for it. When adjustments are made to the embedding formalisms to guarantee uniqueness, approximate functionals may be more meaningfully compared to the exact unique NAKE. We use numerically accurate inversions to study the exact NAKE of several rare-gas dimers within partition density functional theory, a method that provides the uniqueness for the exact NAKE. We find that the NAKE decreases nearly exponentially with atomic separation for the rare-gas dimers. We compute the logarithmic derivative of the NAKE with respect to the bond length for our numerically accurate inversions as well as for several approximate NAKE functionals. We show that standard approximate NAKE functionals do not reproduce the correct behavior for this logarithmic derivative and propose two new NAKE functionals that do. The first of these is based on a re-parametrization of a conjoint Perdew-Burke-Ernzerhof (PBE) functional. The second is a simple, physically motivated non-decomposable NAKE functional that matches the asymptotic decay constant without fitting.

  17. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    Science.gov (United States)

    Tang, Tien T; Rendon, David A; Zawaski, Janice A; Afshar, Solmaz F; Kaffes, Caterina K; Sabek, Omaima M; Gaber, M Waleed

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied

  18. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    Directory of Open Access Journals (Sweden)

    Tien T Tang

    Full Text Available Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS at a dose of 7.5 Gy, or whole body irradiated (WBI with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this

  19. Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2015-08-01

    This study investigated the kinetics of immobilisation and release of riboflavin, amino acids and peptides from whey microbeads. Blank whey microbeads were placed in solutions of the compounds. As the volume of microbeads added to the solution was increased, the uptake of the compounds increased, to a maximum of 95% for the pentapeptide and 56%, 57% and 45% for the dipeptide, riboflavin and tryptophan respectively, however, the rate of uptake remained constant. The rate of uptake increased with increasing molecule hydrophobicity. The opposite was observed in the release studies, the more hydrophobic compounds had lower release rate constants (kr). When whey microbeads are used as sorbents, they show excellent potential to immobilise small hydrophobic molecules and minimise subsequent diffusion, even in high moisture environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario

    2000-01-01

    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  1. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.

    Science.gov (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Watanabe, Tomoko; Debori, Yasuyuki; Maeda, Kazuya; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Ogilvie, Brian W; Parkinson, Andrew; Hu, Zhuohan; Sugiyama, Yuichi

    2011-06-01

    The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 μM, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.

  2. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    Science.gov (United States)

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium

    International Nuclear Information System (INIS)

    Nistor, A.; Simionescu, M.

    1986-01-01

    The mechanism by which the circulating low density lipoproteins (LDL) contribute to the lung surfactant cholesterol was investigated by perfusing the hamster lung in situ with LDL either radiolabeled or coupled to gold, or both. Part of [ 125 I]-LDL and [ 3 H]-cholesterol LDL were taken up by a specific process which was time- and concentration-dependent and reached saturation within 20 to 30 min of perfusion. Competition experiments and removal of receptor-bound LDL by heparin suggested that about 50% of LDL uptake is receptor-independent. Experiments using double labeled LDL showed a preferential uptake of 3 H-cholesterol versus 125 I by the lung both in situ and in vivo. LDL-gold particles (LDL-Au), recirculated through the isolated lung, bound to the endothelial luminal plasma membrane and to features potentially involved in receptor-mediated endocytosis (coated pits, coated vesicles, lysosomelike structures) and in transcytosis (plasmalemmal vesicles). The results suggest that LDL uptake by the lung takes place by both receptor-mediated and receptor-independent mechanisms. Cholesterol may be in part transferred to the lung without the apoprotein moiety; the alveolar capillary endothelium appears to be the first monitor of this complex process

  4. Change in the intrathyroidal kinetics of radioiodine under continued and discontinued antithyroid medication in Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunkelmann, Simone; Kuenstner, Hubertus; Nabavi, Elham; Rohde, Bettina; Groth, Peter; Schuemichen, Carl [University of Rostock, Clinic of Nuclear Medicine, Rostock (Germany)

    2007-02-15

    This study evaluated the thyroidal kinetics of radioiodine in Graves' disease under continued thiamazole medication and after discontinuation of thiamazole for 1-2 days, with a view to keeping the period of discontinuation as short as possible and to exploring the underlying mechanism of a postulated radioprotective effect of antithyroid drugs. In 316 patients, diagnostic and therapeutic radioiodine kinetics were followed up for 2 days by ten uptake measurements each and were defined mathematically by a two-compartment model. Without thiamazole or when thiamazole was discontinued for at least 2 days, all uptake curves could be fitted perfectly by a simple in- and output function; the mean square error (mse) was 0.38 (test) and 0.28 (therapy). Under continued thiamazole medication (11.0{+-}7.0 mg/day), the energy dose delivered to the thyroid was lowered by factor of 2.5. Uptake curves were deformed (mse: 1.06, test and 0.86, therapy) and appeared two peaked, suggesting coexistence of follicles with blocked and follicles with intact hormone synthesis and hence heterogeneous radioiodine uptake in the thyroid. In patients with maximally altered uptake curves, the success rate was as low as 31%. One day after discontinuation of thiamazole, mse was still increased (0.78, test), while 2 days afterwards it had normalised (0.36, test) and 3 days afterwards (mse: 0.24, therapy) the success rate was 87%. Efficacy of radioiodine therapy under continued thiamazole medication is reduced not only by a lower uptake and shorter half-life of radioiodine, but also by a heterogeneous energy dose distribution in the thyroid. Discontinuation of thiamazole (but probably not of propylthiouracil) for at least 2 days is required to restore the efficacy of radioiodine. (orig.)

  5. New aspects of cellular thallium uptake: Tl+-Na+-2Cl--cotransport is the central mechanism of ion uptake

    International Nuclear Information System (INIS)

    Sessler, M.J.; Maul, F.D.; Hoer, G.; Munz, D.L.; Geck, P.

    1986-01-01

    Cellular uptake mechanisms of 201 Tl + were studied in Ehrlich mouse ascites tumor cells. 201 Tl + phases the cell membrane of tumor cells using three transport systems: the ATPase, the Tl + -Na + -2Cl - -cotransport, and the Ca ++ -dependent ion channel. In the case of 201 Tl + the main route for entering the cells was the cotransport, its importance increasing with the age of the cells; in parallel, the ATPase activity was reduced. In contrast, the transport capacities of the ATPase and the cotransport were of the same magnitude in the case of 42 K + and 86 Rb + . This change in ion distribution was not brought about by varying velocity relations but by changing the number of transport systems in the cell membrane. There was no relationship between transport rates and diameters of the ions. 201 Tl + distribution is proportional to that of K + with a higher intracellular concentration of about 30%. Under physiological conditions the cotransport was reversible suggesting the ability to regulate steady state during varying extracellular ion concentrations. Cells and medium were two compartments, kinetically seen. Due to the significant difference of transport capacities between the three systems with the respective ions the term ''potassium-thallium-analogy'' may be misleading as it erroneously assumes identical uptake conditions. (orig.) [de

  6. Hypoxia-imaging with 18F-Misonidazole and PET: Changes of kinetics during radiotherapy of head-and-neck cancer

    International Nuclear Information System (INIS)

    Eschmann, Susanne Martina; Paulsen, Frank; Bedeshem, Claudia; Machulla, Hans-Juergen; Hehr, Thomas; Bamberg, Michael; Bares, Roland

    2007-01-01

    Background and purpose: PET with 18 F-Misonidazole (FMISO-PET) is a non-invasive method for measuring tumor hypoxia. We analysed changes of FMISO-uptake during radiotherapy and their impact on patient outcome. Materials and methods: Fourteen patients with HNC underwent repeated FMISO-PET prior to radiotherapy and after 30 Gy. Dynamic and static PET-scans (2 + 4 h p.i.) were acquired. FMISO-uptake was quantified by calculating standard uptake values (SUV) and tumor-muscle-ratios (TMR). Kinetic curve types representing tissue hypoxia were defined. Change of curve type was correlated with patient outcome. Results: The mean SUV 4 h p.i. and the TMR decreased significantly during radiotherapy. SUV decreased clearly in 12/14 patients, and increased in 2 patients. TMR decreased in 11 patients, and increased in 3 patients. Prior to radiotherapy, three different shapes of kinetic curve types indicative for the degree of hypoxia could be defined in 12/14 patients: (1) accumulation type (severe hypoxia (n = 8)) (2) intermediate type (intermediate degree of hypoxia (n = 3)), and (3) wash-out type (low degree of hypoxia (n = 1)). Curve type changed towards a lower degree of hypoxia at 30 Gy in all but 3 patients. In three patients curve type remained unchanged. Conclusions: The changes in tumor FMISO-uptake during radiotherapy indicate radio-induced reoxygenation

  7. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  8. Modeling the degradation kinetics of ascorbic acid.

    Science.gov (United States)

    Peleg, Micha; Normand, Mark D; Dixon, William R; Goulette, Timothy R

    2018-06-13

    Most published reports on ascorbic acid (AA) degradation during food storage and heat preservation suggest that it follows first-order kinetics. Deviations from this pattern include Weibullian decay, and exponential drop approaching finite nonzero retention. Almost invariably, the degradation rate constant's temperature-dependence followed the Arrhenius equation, and hence the simpler exponential model too. A formula and freely downloadable interactive Wolfram Demonstration to convert the Arrhenius model's energy of activation, E a , to the exponential model's c parameter, or vice versa, are provided. The AA's isothermal and non-isothermal degradation can be simulated with freely downloadable interactive Wolfram Demonstrations in which the model's parameters can be entered and modified by moving sliders on the screen. Where the degradation is known a priori to follow first or other fixed order kinetics, one can use the endpoints method, and in principle the successive points method too, to estimate the reaction's kinetic parameters from considerably fewer AA concentration determinations than in the traditional manner. Freeware to do the calculations by either method has been recently made available on the Internet. Once obtained in this way, the kinetic parameters can be used to reconstruct the entire degradation curves and predict those at different temperature profiles, isothermal or dynamic. Comparison of the predicted concentration ratios with experimental ones offers a way to validate or refute the kinetic model and the assumptions on which it is based.

  9. Kinetic of magnetic nanoparticles uptake evaluated by morphometry of mice peritoneal cells

    International Nuclear Information System (INIS)

    Silva, L.P.; Kuckelhaus, S.; Guedes, M.H.A.; Lacava, Z.G.M.; Tedesco, A.C.; Morais, P.C.; Azevedo, R.B.

    2005-01-01

    The development of magnetic fluids (MFs) has led to a wide range of new biomedical applications. Nevertheless, few studies have examined the kinetics of the magnetic nanoparticles (MNPs) internalization by phagocytes. In this study, we present morphometry as a method to quantify the cell surface covered by MNPs. The maximum cell surface covered by MNPs aggregates was 32.5% (8.5 min), 18.3% (24.1 min), and 18.0% (20.2 min) in DMSA, citric acid and dextran-coated MNPs, respectively. We concluded that the phagocytosis process of MNPs is strongly dependent upon the coating species

  10. Kinetics and mechanisms of interactions of nitrogen and carbon monoxide with liquid niobium

    International Nuclear Information System (INIS)

    Park, H.G.

    1990-01-01

    The kinetics and mechanisms of interactions of N 2 and CO with liquid niobium were investigated in the temperature range of 2,700 to 3,000 K in samples levitated in N 2 /Ar and CO/Ar streams. The nitrogen absorption and desorption processes were found to be second-order with respect to nitrogen concentration, indicating that the rate controlling step is either the adsorption of nitrogen molecules on the liquid surface or dissociation of absorbed nitrogen molecules into adsorbed atoms. The carbon and oxygen dissolution in liquid niobium from CO gas is an exothermic process and the solubilities of carbon and oxygen (C Ce , C Oe in at%) are related to the temperature and the partial pressure of CO. The reaction CO → [C] + [O] along with the evaporation of niobium oxide takes place during C and O dissolution, whereas C and O desorption occurs via CO evolution only

  11. Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT

    International Nuclear Information System (INIS)

    Petren-Mallmin, M.; Andreasson, I.; Bergh, J.; Ljunggren, Oe.; Ahlstroem, H.; Antoni, G.; Laangstroem, B.; Bergstroem, M.

    1998-01-01

    Objective. To characterise the uptake of 18 F in skeletal metastases from breast cancer using positron emission tomography (PET) and to relate these findings to the appearance on CT. Patients and design. PET with 18 F and CT were performed in five patients with multiple skeletal metastases from breast cancer. The CT characteristics were analysed in areas with high uptake on the PET study. Dynamic PET imaging of the skeletal kinetics of the 18 F-fluoride ion were included. Results. The areas of abnormal high accumulation of 18 F correlated well with the pathological appearance on CT. Lytic as well as sclerotic lesions had markedly higher uptake than normal bone, with a 5-10 times higher transport rate constant for trapping of the tracer in the metastatic lesions than in normal bone. Conclusion. PET with 18 F-fluoride demonstrates very high uptake in lytic and sclerotic breast cancer metastases. (orig.)

  12. A physicochemical study of Al(+3) interactions with edible seaweed biomass in acidic waters.

    Science.gov (United States)

    Lodeiro, Pablo; López-García, Marta; Herrero, Luz; Barriada, José L; Herrero, Roberto; Cremades, Javier; Bárbara, Ignacio; Sastre de Vicente, Manuel E

    2012-09-01

    In this article, a study of the Al(+3) interactions in acidic waters with biomass of different edible seaweeds: brown (Fucus vesiculosus, Saccorhiza polyschides), red (Mastocarpus stellatus, Gelidium sesquipedale, Chondrus crispus), and green (Ulva rigida, Codium tomentosum), has been performed. The influence of both, the initial concentration of metal and the solution pH, on the Al-uptake capacity of the biomass has been analyzed. From preliminary tests, species Fucus vesiculosus and Gelidium sesquipedale have been selected for a more exhaustive analysis. Sorption kinetic studies demonstrated that 60 min are enough to reach equilibrium. The intraparticle diffusion model has been used to describe kinetic data. Equilibrium studies have been carried out at pH values of 1, 2.5, and 4. Langmuir isotherms showed that the best uptake values, obtained at pH 4, were 33 mg/g for F. vesiculosus and 9.2 mg/g for G. sesquipedale. These edible seaweeds have been found particularly effective in binding aluminum metal ions for most of the conditions tested. Physicochemical data reported at these low pH values could be of interest, not only in modeling aluminum-containing antacids-food pharmacokinetic processes produced in the stomach (pH values 1 to 3) but in remediation studies in acidic waters. Aluminum is thought to be linked to neurological disruptions such as Alzheimer's disease. In this article, the adsorption ability of different types of edible seaweeds toward aluminum has been studied. The choice of low pH values is due to the fact that stomach region is acidic with a pH value between 1 and 3 as a consequence of hydrochloric secretion; so physicochemical data reported in this study could be of interest in modeling drug-food interactions, in particular those referring to aluminum-containing antacids-food pharmacokinetic processes produced in the gastrointestinal tract. © 2012 Institute of Food Technologists®

  13. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  14. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1981-12-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  15. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1982-01-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  16. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Parker, Benjamin L; Fritzen, Andreas Mæchel

    2017-01-01

    Exercise increases glucose uptake into insulin-resistant muscle. Thus, elucidating the exercise signalling network in muscle may uncover new therapeutic targets. mTORC2, a regulator of insulin-controlled glucose uptake, has been reported to interact with Rac1, which plays a role in exercise-induc...

  17. Modeling of the water uptake process for cowpea seeds (vigna unguiculata l.) under common treatment and microwave treatment

    International Nuclear Information System (INIS)

    Demirhan, E.

    2015-01-01

    The water uptake kinetics of cowpea seeds were carried out at two different water absorption treatments - common treatment and microwave treatment - to evaluate the effects of rehydration temperatures and microwave output powers on rehydration. Water uptake of cowpea seeds during soaking in water was studied at various temperatures of 20 - 45 degree C, and at various microwave output powers of 180 - 900 W. As the rehydration temperature and microwave output power increased, the water uptake of cowpea seeds increased and the rehydration time decreased. The Peleg and Richards Models were capable of predicting water uptake of cowpea seeds undergoing common treatment and microwave treatment, respectively. The effective diffusivity values were evaluated by fitting experimental absorption data to Fick second law of diffusion. The effective diffusivity coefficients for cowpea seeds varied from 7.75*10-11 to 1.99*10-10 m2/s and from 2.23*10-9 to 9.78*10-9 m2/s for common treatment and microwave treatment, respectively. (author)

  18. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    Science.gov (United States)

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components ( i.e. , smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (Δ G *), activation enthalpy (Δ H *), and activation entropy (Δ S *) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10 -2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals

  20. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  1. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target

  2. Kinetic modelling of bentonite - canister interaction. Implications for Cu, Fe and Pb corrosion in a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Wersin, P.; Bruno, J.; Spahiu, K.

    1993-06-01

    The chemical corrosion of three potential canister materials, Fe, Cu, and Pb is reviewed in terms of their thermodynamic and kinetic behavior in a repository. Thermodynamic predictions which are compatible with sedimentological observations indicate that for all three metals, chemical corrosion is expected at any time in a repository. From the kinetic information obtained by experimental and archeological data, long-term corrosion rates are assessed. In the case of Fe, the selected data allow extrapolation to repository conditions with a tolerable degree of uncertainty except for the possible effect of local corrosion in the initial oxic phase, For the other two metals, the scarcity of consistent experimental and archeological data limits the feasibility of this approach. In view of this shortcoming, a kinetic, single-box model, based on the STEADYQL code, is presented for quantitative prediction of long-term canister-bentonite interaction. The model is applied to the corrosion of Cu under anoxic conditions and upper and lower limits of corrosion rates are derived. The possibilities of extending this single-box model to a multi-box, diffusion-extended version are discussed. Finally, further potentials of STEADYQL for future applications of near field modelling are highlighted. 32 refs

  3. PET SUV correlates with radionuclide uptake in peptide receptor therapy in meningioma

    International Nuclear Information System (INIS)

    Haenscheid, Heribert; Buck, Andreas K.; Samnick, Samuel; Kreissl, Michael; Sweeney, Reinhart A.; Flentje, Michael; Loehr, Mario; Verburg, Frederik A.

    2012-01-01

    To investigate whether the tumour uptake of radionuclide in peptide receptor radionuclide therapy (PRRT) of meningioma can be predicted by a PET scan with 68 Ga-labelled somatostatin analogue. In this pilot trial, 11 meningioma patients with a PET scan indicating somatostatin receptor expression received PRRT with 7.4 GBq 177 Lu-DOTATOC or 177 Lu-DOTATATE, followed by external beam radiotherapy. A second PET scan was scheduled for 3 months after therapy. During PRRT, multiple whole-body scans and a SPECT/CT scan of the head and neck region were acquired and used to determine the kinetics and dose in the voxel with the highest radionuclide uptake within the tumour. Maximum voxel dose and retention of activity 1 h after administration in PRRT were compared to the maximum standardized uptake values (SUV max ) in the meningiomas from the PET scans before and after therapy. The median SUV max in the meningiomas was 13.7 (range 4.3 to 68.7), and the maximum fractional radionuclide uptake in voxels of size 0.11 cm 3 was a median of 23.4 x 10 -6 (range 0.4 x 10 -6 to 68.3 x 10 -6 ). A strong correlation was observed between SUV max and the PRRT radionuclide tumour retention in the voxels with the highest uptake (Spearman's rank test, P max and the therapeutic uptake (r = 0.95) and between SUV max and the maximum voxel dose from PRRT (r = 0.76). Observed absolute deviations from the values expected from regression were a median of 5.6 x 10 -6 (maximum 9.3 x 10 -6 ) for the voxel fractional radionuclide uptake and 0.40 Gy per GBq (maximum 0.85 Gy per GBq) 177 Lu for the voxel dose from PRRT. PET with 68 Ga-labelled somatostatin analogues allows the pretherapeutic assessment of tumour radionuclide uptake in PRRT of meningioma and an estimate of the achievable dose. (orig.)

  4. Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegeli

    International Nuclear Information System (INIS)

    Zhang Li; Wang Wenxiong

    2007-01-01

    Gastrointestinal metal uptake represents a potential route for metal bioaccumulation in marine fish. Drinking of seawater for osmoregulation causes constant waterborne exposure of the gastrointestinal tract. Tissue specific Cd and Zn accumulation and distribution were investigated in juvenile black sea bream (Acanthopagrus schlegeli) exposed to waterborne Cd (5.7 nM) and Zn (2.6 nM) for 4 h-7 days. The intestine accumulated a large portion of the Cd (43-58%) and Zn (18-28%), and had the highest Cd (>1.0 nmol g -1 ) and Zn (>1.8 nmol g -1 ) concentrations of all body fractions, suggesting that the intestines were the major uptake sites for these waterborne metals. Among all the segments of the gastrointestinal tract, the anterior intestine played the most important role in Cd and Zn uptake. A gastrointestinal injection assay was conducted to distinguish waterborne metal uptake by the intestines and the gills. The intestine contained over 90% of the Cd in the body after depuration for 3-7 days, suggesting that little waterborne Cd entered the rest of the body through the intestine, and that Cd may exert its toxic effects on the gastrointestinal system. In contrast, intestine retained less than 20% of the total Zn after depuration, suggesting that Zn tended to be transported from the intestine to the internal tissues via the cardiovascular system. The uptake kinetics of waterborne Cd and Zn by the intestines and the gills were determined as a first-order and saturated pattern, respectively, over a wide range of ambient metal concentrations (6.2 nM-4.5 μM for Cd, and 13 nM-15 μM for Zn). An in vitro intestinal perfusion assay investigated the effects of intestinal metal composition and drinking rate on uptake. The presence of EDTA significantly reduced intestinal Zn uptake to 11%, while cysteine improved it by 59%. The intestinal Cd and Zn uptake rates were unaffected by the perfusion rate

  5. Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Grosell, M.; Hogstrand, C.; Wood, C.M.

    1997-01-01

    -acclimation clearly involves changes in copper accumulation kinetics in the plasma. The acclimated fish showed a 65% reduced Cu-64 accumulation after 65 h and an increased turnover of Cu in the plasma compared to the non-acclimated fish. Total Cu in the plasma increased by 59% after 3 h of exposure in the non...... aortic catheter. By measuring both Cu-64 accumulation and total Cu concentrations, we were able to analyse the ongoing uptake and turnover of ambient Cu, independent of any Cu already present in the fish. Plasma accounted for at least 90% of the Cu-64 labelled Cu present in the blood and Cu...... h of exposure. Acclimation did not have an unambiguous effect on branchial Cu uptake and differences in branchial uptake could not explain the reduced accumulation in the plasma. The rapidly exchangeable Cu pools were 54% in the gills and 33% in the liver, suggesting a considerable hepatic Cu...

  6. Influence of bilirubin, alcohol and certain drugs on the kinetics of sup(99m)Tc-diethyl IDA (EHIDA) in humans

    Energy Technology Data Exchange (ETDEWEB)

    Coenegracht, J.M.; Oei, T.L.; van Breda Vriesman, P.J.C.

    1983-04-01

    On the basis of the mathematical analysis of sup(99m)Tc-EHIDA hepatobiliary time-activity curves of normal individuals two rate constants, one related to accumulation of radioactivity (uptake) and the other to excretion, were calculated indicating a two-compartmental model. By means of computerized fitting the rate constant of excretion (Ksub(b)), the time of maximum uptake (Tsub(max)) and the rate constant of uptake (Ksub(a)) were calculated. In severely jaundiced patients (serum bilirubin concentrations >140 ..mu..mol/l) a markedly decreased or absent uptake of sup(99m)Tc-EHIDA was observed. In moderately jaundiced patients a low Ksub(b) was invariably observed; in obstructive jaundice due to malignant disease - but not in jaundice of benign obstructive or hepatocellular origin - an increase in Ksub(a) was frequently present. This latter finding was not always present, however, and consequently kinetic studies do not unequivocally differentiate between jaundice of obstructive and hepatocellular origin. A markedly increased uptake (a high Ksub(a)) was noticed in alcoholics and patients taking phenobarbital and diphenylhydantoin possibly because of drug-induced membrane alterations. When the alcoholics developed hepatocellular injury the Ksub(a) converted to normal values. Thus, sup(99m)Tc-EHIDA kinetics may be useful in the follow-up of patients with established or suspected alcoholism by virtue of the fact that it appears to be a sensitive monitor of functional changes in hepatocyte plasma membrane properties.

  7. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    NARCIS (Netherlands)

    Kettler, K.; Krystek, P.W.; Giannakou, C.; Hendriks, A.J.; de Jong, W.H.

    2016-01-01

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the

  8. Interactive Influence of N and P on their uptake by four different ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-06

    Oct 6, 2008 ... refreshment, the plants were left for 3 days in hydroponic culture without nitrogen ... The pH of the uptake solution was adjusted to 5.6 using 0.1 mmol/l HCl. ..... ascorbate specific peroxidase in spinach chloroplasts. Plant Cell.

  9. The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma

    Science.gov (United States)

    Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.

    2016-12-01

    We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.

  10. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  11. Uptake of [N-methyl-{sup 11}C]{alpha}-methylaminoisobutyric acid in untreated head and neck cancer studied by PET

    Energy Technology Data Exchange (ETDEWEB)

    Sutinen, Eija; Jyrkkioe, Sirkku; Minn, Heikki [Department of Oncology and Radiotherapy, Turku University Central Hospital, PO Box 52, 20521 Turku (Finland); Turku PET Centre, Turku University Central Hospital, Turku (Finland); Alanen, Kalle [Department of Pathology, Turku University Central Hospital, Turku (Finland); Naagren, Kjell [Turku PET Centre, Turku University Central Hospital, Turku (Finland)

    2003-01-01

    Amino acid transport system A is expressed strongly in neoplastic cells. [N-methyl-{sup 11}C]{alpha}-Methylaminoisobutyric acid ({sup 11}C-MeAIB) is a recently developed tracer for PET studies on system A amino acid transport. {sup 11}C-MeAIB is a metabolically stable amino acid analogue which is transported from plasma into the tissue by system A. This study evaluated the kinetics of {sup 11}C-MeAIB uptake from plasma into tumour tissue and normal tissues in 13 patients with untreated head and neck cancer. {sup 11}C-MeAIB uptake in tumour was compared with histological grade and proliferative activity. Tracer uptake was quantitated by calculating the standardised uptake values (SUVs) and the kinetic influx constants (K{sub i}) using graphical analysis. All tumours accumulated {sup 11}C-MeAIB and were visualised clearly. In the graphical analysis, linear plots were achieved; the mean K{sub i} value of tumour was 0.056{+-}0.026 min{sup -1}, and the mean SUV was 6.1{+-}2.7. A close correlation between graphically obtained K{sub i} and semi-quantitative SUV in tumours was found (r=0.887, P=0.00005). We could not demonstrate a correlation between the uptake of {sup 11}C-MeAIB and the grade of malignancy or the proliferative index, as assessed using Ki-67 immunohistochemical assay. Head and neck cancer can be effectively imaged with {sup 11}C-MeAIB PET. {sup 11}C-MeAIB showed active and rapid transport into tumour tissue and salivary glands. Further studies on the applicability of {sup 11}C-MeAIB PET for radiation treatment planning in the head and neck region and the regulation of system A amino acid transport under different metabolic states are warranted. (orig.)

  12. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    Science.gov (United States)

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Influence of Animal Heating on PET Imaging Quantification and Kinetics: Biodistribution of 18F-Tetrafluoroborate and 18F-FDG in Mice.

    Science.gov (United States)

    Goetz, Christian; Podein, Matthias; Braun, Friederike; Weber, Wolfgang A; Choquet, Philippe; Constantinesco, André; Mix, Michael

    2017-07-01

    Different environmental conditions under anesthesia may lead to unstable homeostatic conditions in rodents and therefore may alter kinetics. In this study, the impact of different heating conditions on PET imaging quantification was evaluated. Methods: Two groups of 6 adult female BALB/c nude mice with subcutaneously implanted tumors underwent microPET imaging after injection of 18 F-labeled tetrafluoroborate or 18 F-FDG. Dynamic scans were acquired under optimal and suboptimal heating conditions. Time-activity curves were analyzed to calculate uptake and washout time constants. Results: With 18 F-labeled tetrafluoroborate, optimal animal heating led to a stable heart rate during acquisition (515 ± 35 [mean ± SD] beats/min), whereas suboptimal heating led to a lower heart rate and a higher SD (470 ± 84 beats/min). Both uptake and washout time constants were faster ( P heating. Conclusion: Although the difference in heart rates was slight, optimal heating yielded significantly faster uptake and washout kinetics than suboptimal heating in all organs for both tracers. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  14. Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea

    KAUST Repository

    Talarmin, Agathe Anne Gaelle; Van Wambeke, F.; Lebaron, P.; Moutin, T.

    2015-01-01

    Microbial transformations are key processes in marine phosphorus cycling. In this study, we investigated the contribution of phototrophic and heterotrophic groups to phosphate (Pi) uptake fluxes in the euphotic zone of the low-Pi Mediterranean Sea and estimated Pi uptake kinetic characteristics. Surface soluble reactive phosphorus (SRP) concentrations were in the range of 6-80 nmol Lg'1 across the transect, and the community Pi turnover times, assessed using radiolabeled orthophosphate incubations, were longer in the western basin, where the highest bulk and cellular rates were measured. Using live cell sorting, four vertical profiles of Pi uptake rates were established for heterotrophic prokaryotes (Hprok), phototrophic picoeukaryotes (Pic) and Prochlorococcus (Proc) and Synechococcus (Syn) cyanobacteria. Hprok cells contributed up to 82% of total Pi uptake fluxes in the superficial euphotic zone, through constantly high abundances (2.7-10.2 × 105 cells mLg'1) but variable cellular rates (6.6 ± 9.3 amol P cellg'1 hg'1). Cyanobacteria achieved most of the Pi uptake (up to 62%) around the deep chlorophyll maximum depth, through high abundances (up to 1.4 × 105 Proc cells mLg'1) and high cellular uptake rates (up to 40 and 402 amol P cellg'1 hg'1, respectively for Proc and Syn cells). At saturating concentrations, maximum cellular rates up to 132 amol P cellg'1 hg'1 were measured for Syn at station (St.) C, which was 5 and 60 times higher than Proc and Hprok, respectively. Pi uptake capabilities of the different groups likely contribute to their vertical distribution in the low Pi Mediterranean Sea, possibly along with other energy limitations.

  15. Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea

    KAUST Repository

    Talarmin, Agathe Anne Gaelle

    2015-02-26

    Microbial transformations are key processes in marine phosphorus cycling. In this study, we investigated the contribution of phototrophic and heterotrophic groups to phosphate (Pi) uptake fluxes in the euphotic zone of the low-Pi Mediterranean Sea and estimated Pi uptake kinetic characteristics. Surface soluble reactive phosphorus (SRP) concentrations were in the range of 6-80 nmol Lg\\'1 across the transect, and the community Pi turnover times, assessed using radiolabeled orthophosphate incubations, were longer in the western basin, where the highest bulk and cellular rates were measured. Using live cell sorting, four vertical profiles of Pi uptake rates were established for heterotrophic prokaryotes (Hprok), phototrophic picoeukaryotes (Pic) and Prochlorococcus (Proc) and Synechococcus (Syn) cyanobacteria. Hprok cells contributed up to 82% of total Pi uptake fluxes in the superficial euphotic zone, through constantly high abundances (2.7-10.2 × 105 cells mLg\\'1) but variable cellular rates (6.6 ± 9.3 amol P cellg\\'1 hg\\'1). Cyanobacteria achieved most of the Pi uptake (up to 62%) around the deep chlorophyll maximum depth, through high abundances (up to 1.4 × 105 Proc cells mLg\\'1) and high cellular uptake rates (up to 40 and 402 amol P cellg\\'1 hg\\'1, respectively for Proc and Syn cells). At saturating concentrations, maximum cellular rates up to 132 amol P cellg\\'1 hg\\'1 were measured for Syn at station (St.) C, which was 5 and 60 times higher than Proc and Hprok, respectively. Pi uptake capabilities of the different groups likely contribute to their vertical distribution in the low Pi Mediterranean Sea, possibly along with other energy limitations.

  16. One-dimensional model of interacting-step fluctuations on vicinal surfaces: Analytical formulas and kinetic Monte Carlo simulations

    Science.gov (United States)

    Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios

    2010-12-01

    We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffusion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a suitably conservative white noise in the BCF equations.

  17. Effects of hypoxia on 13NH4+ fluxes in rice roots: kinetics and compartmental analysis

    International Nuclear Information System (INIS)

    Kronzucker, H.J.; Kirk, G.J.D.; Siddiqi, M.Y.; Glass, A.D.M.

    1998-01-01

    Techniques of compartmental (efflux) and kinetic influx analyses with the radiotracer 13NH4+ were used to examine the adaptation to hypoxia (15, 35, and 50% O2 saturation) of root N uptake and metabolism in 3-week-old hydroponically grown rice (Oryza sativa L., cv IR72) seedlings. A time-dependence study of NH4+ influx into rice roots after onset of hypoxia (15% O2) revealed an initial increase in the first 1 to 2.5 h after treatment imposition, followed by a decline to less than 50% of influx in control plants by 4 d. Efflux analyses conducted 0, 1, 3, and 5 d after the treatment confirmed this adaptation pattern of NH4+ uptake. Half-lives for NH4+ exchange with subcellular compartments, cytoplasmic NH4+ concentrations, and efflux (as percentage of influx) were unaffected by hypoxia. However, significant differences were observed in the relative amounts of N allocated to NH4+ assimilation and the vacuole versus translocation to the shoot. Kinetic experiments conducted at 100, 50, 35, and 15% O2 saturation showed no significant change in the K(m) value for NH4+ uptake with varying O2 supply. However, V(max) was 42% higher than controls at 50% O2 saturation, unchanged at 35%, and 10% lower than controls at 15% O2. The significance of these flux adaptations is discussed

  18. Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer

    Directory of Open Access Journals (Sweden)

    Paulsen Frank

    2005-12-01

    Full Text Available Abstract Background Hypoxia compromises local control in patients with head-and-neck cancer (HNC. In order to determine the value of [18F]-fluoromisonidazole (Fmiso with regard to tumor hypoxia, a patient study with dynamic Fmiso PET was performed. For a better understanding of tracer uptake and distribution, a kinetic model was developed to analyze dynamic Fmiso PET data. Methods For 15 HNC patients, dynamic Fmiso PET examinations were performed prior to radiotherapy (RT treatment. The data was analyzed using a two compartment model, which allows the determination of characteristic hypoxia and perfusion values. For different parameters, such as patient age, tumor size and standardized uptake value, the correlation to treatment outcome was tested using the Wilcoxon-Mann-Whitney U-test. Statistical tests were also performed for hypoxia and perfusion parameters determined by the kinetic model and for two different metrics based on these parameters. Results The kinetic Fmiso analysis extracts local hypoxia and perfusion characteristics of a tumor tissue. These parameters are independent quantities. In this study, different types of characteristic hypoxia-perfusion patterns in tumors could be identified. The clinical verification of the results, obtained on the basis of the kinetic analysis, showed a high correlation of hypoxia-perfusion patterns and RT treatment outcome (p = 0.001 for this initial patient group. Conclusion The presented study established, that Fmiso PET scans may benefit from dynamic acquisition and analysis by a kinetic model. The pattern of distribution of perfusion and hypoxia in the tissue is correlated to local control in HNC.

  19. Some remarks concerning relativistic kinetic theory

    International Nuclear Information System (INIS)

    Schroeter, J.

    1990-01-01

    The starting point of our investigation is a classical kinetic theory which includes correlational effects as well as the complete electromagnetic interaction. Also classical gravitation can be incorporated. The relativistic version of this theory is written down using some heuristic arguments. Its essential feature is the difference between terms representing gravitational interaction and the metric tensor representing geometrical properties. (author)

  20. Studies on the hepatic uptake of In-111 labeled monoclonal antibodies and the method to reduce the hepatic uptake

    International Nuclear Information System (INIS)

    Kinuya, Seigo

    1990-01-01

    Prolonged retention of In-111 labeled monoclonal antibody (In-111 MoAb) in the liver poses problems in radioimmunoscintigraphy. Therefore, subcellular kinetics of In-111 MoAb was investigated. In a study with In-111 225.28S in normal SD rats, the supernatant was found to be a predominant fraction of In-111 radioactivity (61% at 3 hr), with the activity decreasing with time to 21% at 72 hr; however, activity of the mitochondrial fraction was found to increase from 11% to 44%. High performance liquid chromatography for the supernatant revealed that In-111 activity at the earlier time was mainly eluted with the intact IgG peak, and that the major peak activity was thereafter reduced with associated activity peaks found in smaller moistly fractions. Such a sequential distribution change of In-111 225.28S was not found when labeled with I-125. A study with In-111 ZCE025 in mice bearing human colon cancer revealed that activity of the supernatant fraction decreased with time, but the lysosomal activity increased from 14% to 29%, as found in the experiment using normal rats. In tumors, the subcellular distribution of In-111 radioactivity almost remained unchanged throughout the study. The lysosomal fraction was not a predominant fraction of In-111 radioactivity in tumors. When 4 mg of ferric ion (Fe) was administered 48 hr before the injection of In-111 ZCE025, liver uptake of In-111 decreased as compared with the non-Fe group, but tumor uptake was unchanged. Intrahepatic lysosomal radioactivity was smaller in the Fe group than the non-Fe group. These results indicated the involvement of lysosomes in hepatic retention of In-111 MoAb. Once taken up by the liver, the MoAb was metabolized in the supernatant and In-111 ion was transchelated from DTPA onto the lysosomal substances resulting in prolonged retention in the liver. The lysosome in the liver could be saturated by Fe, resulting in a decrease of hepatic uptake without a decrease of tumor uptake. (N.K.) 53 refs

  1. Study on biofiltration capacity and kinetics of nutrient uptake by Gracilaria cervicornis (Turner J. Agardh (Rhodophyta, Gracilariaceae

    Directory of Open Access Journals (Sweden)

    Marcella A. A. Carneiro

    2011-04-01

    Full Text Available The absorption efficiency and kinetic parameters (Vmax, Ks and Vmax:Ks of the seaweed Gracilaria cervicornis for the nutrients NH4+, NO3- and PO4(3- were evaluated. Absorption efficiency was measured by monitoring nutrient concentrations for 5 h in culture media with initial concentrations of 5, 10, 20 and 30µM. Kinetic parameters were determined by using the Michaelis-Menten formula. Absorption efficiencies for this algae were greater in treatments with lower concentrations, as evidenced by a reduction of 85.3, 97.5 and 81.2% for NH4+, NO3- and PO4(3-, respectively. Kinetic parameters show that G. cervicornis exhibits greater ability to take up high concentrations of NH4+ (Vmax=158.5µM g dw-1 h-1 and low concentrations of PO4(3- (Ks=5µM and Vmax:Ks=10.3. These results suggest that this algal species has good absorption capacity for the nutrients tested and may be a promising candidate as a bioremediator of eutrophized environments.

  2. The influence of bilirubin, alcohol and certain drugs on the kinetics of sup(99m)Tc-diethyl IDA (EHIDA) in humans

    International Nuclear Information System (INIS)

    Coenegracht, J.M.; Oei, T.L.; Breda Vriesman, P.J.C. van; Rijksuniversiteit Limburg, Maastricht

    1983-01-01

    On the basis of the mathematical analysis of sup(99m)Tc-EHIDA hepatobiliary time-activity curves of normal individuals two rate constants, one related to accumulation of radioactivity (uptake) and the other to excretion, were calculated indicating a two-compartmental model. By means of computerized fitting the rate constant of excretion (Ksub(b)), the time of maximum uptake (Tsub(max)) and the rate constant of uptake (Ksub(a)) were calculated. In severely jaundiced patients (serum bilirubin concentrations >140 μmol/l) a markedly decreased or absent uptake of sup(99m)Tc-EHIDA was observed. In moderately jaundiced patients a low Ksub(b) was invariably observed; in obstructive jaundice due to malignant disease - but not in jaundice of benign obstructive or hepatocellular origin - an increase in Ksub(a) was frequently present. This latter finding was not always present, however, and consequently kinetic studies do not unequivocally differentiate between jaundice of obstructive and hepatocellular origin. A markedly increased uptake (a high Ksub(a)) was noticed in alcoholics and patients taking phenobarbital and diphenylhydantoin possibly because of drug-induced membrane alterations. When the alcoholics developed hepatocellular injury the Ksub(a) converted to normal values. Thus, sup(99m)Tc-EHIDA kinetics may be useful in the follow-up of patients with established or suspected alcoholism by virtue of the fact that it appears to be a sensitive monitor of functional changes in hepatocyte plasma membrane properties. (orig.)

  3. Kinetics of 17-(123I) iodoheptadecanoic acid in myocardium of rats

    International Nuclear Information System (INIS)

    Reske, S.N.; Auner, G.; Winkler, C.

    1983-01-01

    Myocardial uptake and turnover of 17-( 123 I)-iodoheptadecanoic acid, injected i.v., was studied in rats. Kinetics of radioactivity incorporated into myocardial tissue and heart lipids as well as myocardial radioactivity recovered as 123 I iodide were determined. Maximal heart uptake of IHA (7.9% dose/g) heart was observed as early as 30 sec., p.i., followed by monocomponent elimination period. Already 10 to 30 sec p.i. 70 to 80% of total myocardial radioactivity was recovered as 123 I iodide. IHA was incorporated only in modest amounts into myocardial phospholipids and triglycerides. Time course of total myocardial radioactivity grossly paralleled to that recovered as 123 I iodide. These findings indicate stringent limitations in utility of IHA as a tracer for assessment of β-oxidation. (author)

  4. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    Science.gov (United States)

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  5. Docosahexaenoic acid (DHA) accretion in the placenta but not the fetus is matched by plasma unesterified DHA uptake rates in pregnant Long Evans rats.

    Science.gov (United States)

    Metherel, Adam H; Kitson, Alex P; Domenichiello, Anthony F; Lacombe, R J Scott; Hopperton, Kathryn E; Trépanier, Marc-Olivier; Alashmali, Shoug M; Lin, Lin; Bazinet, Richard P

    2017-10-01

    Maternal delivery of docosahexaenoic acid (DHA, 22:6n-3) to the developing fetus via the placenta is required for fetal neurodevelopment, and is the only mechanism by which DHA can be accreted in the fetus. The aim of the current study was to utilize a balance model of DHA accretion combined with kinetic measures of serum unesterified DHA uptake to better understand the mechanism by which maternal DHA is delivered to the fetus via the placenta. Female rats maintained on a 2% α-linolenic acid diet free of DHA for 56 days were mated, and for balance analysis, sacrificed at 18 days of pregnancy, and fetus, placenta and maternal carcass fatty acid concentration were determined. For tissue DHA uptake, pregnant dams (14-18 days) were infused for 5 min with radiolabeled 14 C-DHA and kinetic modeling was used to determine fetal and placental serum unesterified DHA uptake rates. DHA accretion rates in the fetus were determined to be 38 ± 2 nmol/d/g, 859 ± 100 nmol/d/litter and 74 ± 3 nmol/d/pup, which are all higher (P  0.05) in placental DHA accretion rates versus serum unesterified DHA uptake rates were observed as values varied only 6-35% between studies. No differences in placental accretion and uptake rates suggests that serum unesterified DHA is a significant pool for the maternal-placental transfer of DHA, and lower fetal DHA uptake compared to accretion supports remodeling of placental DHA for delivery to the fetus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Uptake of heavy metals by Typha capensis from wetland sites polluted by effluent from mineral processing plants: implications of metal-metal interactions.

    Science.gov (United States)

    Zaranyika, M F; Nyati, W

    2017-10-01

    The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.

  7. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  8. Kinetics of [123I]iodide uptake and discharge by perchlorate in studies of inhibition of iodide binding by antithyroid drugs

    International Nuclear Information System (INIS)

    McCruden, D.C.; Connell, J.M.C.; Alexander, W.D.; Hilditch, T.E.

    1985-01-01

    Thyroidal binding of iodide was studied by kinetic analysis of [ 123 ]iodide uptake and its discharge by perchlorate in 80 hyperthyroid subjects receiving antithyroid drug therapy. Five dosage regimens ranging from 5 mg carbimazole twice daily to 15 mg methimazole twice daily were studied. Binding inhibition was estimated at 5-7 h after drug as an index of the mean effect of the 12 hourly regimen. In all cases, except one in the lowest dose group, binding was found to be markedly reduced with mean binding rates ranging from 0.002 to 0.020 min -1 (normal > 0.15 min -1 ). The net clearance of iodide in the lowest dose group was reduced to a mean value near the upper limit of the euthyroid range, whereas in the highest dose group it lay at the lower limit of the euthyroid range. These results were reflected in the serum thyroid hormone response. There was a reducing incidence of inadequate control of hyperthyroidism and an increasing incidence of hypothyroidism with increasing thiourylene dose. The exit rate constant of free iodide for the various doses showed values from 0.048 to 0.055 min -1 . Correpsonding mean values for the discharge rate constant after perchlorate were 0.087 to 0.105 min -1 . This suggests that perchlorate increases the rate of iodide release from the thyroid gland. Studies at a later interval after drug (12-14 h) showed no change in discharge rate constant. This leads to the conclusion that perchlorate may further inhibit iodide binding in subjects receiving antithyroid drug therapy. (author)

  9. Thyroid uptake test

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    The uptake of radioiodine by the thyroid gland is altered by the iodine content of diet or drugs. American diet has a high iodine content because each slice of the white bread contains nearly 150μg of iodine due to the bleaching process employed in the production of the bread. This carrier content of iodine reduces the uptake so much, that the normal American uptakes are usually three to four times lower than the uptakes in the developing countries. The other drawback of the thyroid uptake test is that it is affected by the iodine containing drugs. Anti-diarrhoea medications are quire common in the developing countries and many of them contain iodine moiety. Without a reliable drug history, a low thyroid uptake value may lead to a misleading conclusion

  10. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  11. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    Energy Technology Data Exchange (ETDEWEB)

    Millett, J., E-mail: j.millett@lboro.ac.uk [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Foot, G.W. [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Svensson, B.M. [Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala (Sweden)

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  12. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    International Nuclear Information System (INIS)

    Millett, J.; Foot, G.W.; Svensson, B.M.

    2015-01-01

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  13. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles.

    Science.gov (United States)

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens

    2015-01-01

    The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.

  14. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  15. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.; McCue, Scott W.; Dallaston, Michael C.; Moroney, Timothy J.

    2015-01-01

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  16. Generalized kinetic model of reduction of molecular oxidant by metal containing redox

    International Nuclear Information System (INIS)

    Kravchenko, T.A.

    1986-01-01

    Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.

  17. Chemical and kinetic equilibrations via radiative parton transport

    International Nuclear Information System (INIS)

    Zhang Bin; Wortman, Warner A

    2011-01-01

    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.

  18. Comparative study of uptake and washout of 99mTcN(NOEt)2 with 99mTc-MIBI in human cervical carcinoma cell lines

    International Nuclear Information System (INIS)

    Xing Shi'an; Zhang Yongxue; An Rui

    2002-01-01

    Objective: to investigate the cellular kinetics of bis (N-ethoxy-N-ethyl dithiocarbamato) nitrido 99m Tc(V) [ 99m TcN (NOEt) 2 ] in human cervical carcinoma cell line Hela and to compare it with that of 99m Tc hexakis-2- methoxyisobutyl isonitrile ( 99m Tc-MIBI), and hence to define the possible clinical value of 99m TcN(NOEt) 2 in tumor imaging. Methods: Using radionuclide tracer technique, 99m TcN(NOEt) 2 and 99m Tc-MIBI were incubated with human cervical carcinoma cell lines Hela at 37 degree C and at 22 degree C respectively. At several incubation times, the uptake and washout characteristics of the radiotracers in human cervical carcinoma cell line Hela were investigated and compared. Results: The maximum uptake of 99m TcN(NOEt) 2 in Hela was 46.15% and that of 99m Tc-MIBI was 12.6% (P 99m TcN(NOEt) 2 after 5 min incubation in human cervical carcinoma cell line Hela was 65% of the total uptake, while that of 99m Tc-MIBI was 50% of the total uptake (P 99m TcN(NOEt) 2 was retained in the Hela cells at one hour while 56.67% of 99m Tc-MIBI was retained (P 99m Tc-MIBI, the cellular kinetics of 99m TcN(NOEt) 2 was not temperature-dependent (the cellular kinetics is similar at 37 degree C and at 22 degree C, P>0.05). Conclusions: In vitro data suggest that 99m TcN(NOEt) 2 may be a better tracer than 99m Tc-MIBI in tumor imaging and 99m TcN(NOEt) 2 has potential application in clinical use

  19. On kinetic description of electromagnetic processes in a quantum plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Vladimirov, S. V.; Kompaneets, R.

    2011-01-01

    A nonlinear kinetic equation for nonrelativistic quantum plasma with electromagnetic interaction of particles is obtained in the Hartree's mean-field approximation. It is cast in a convenient form of Vlasov-Boltzmann-type equation with ''quantum interference integral'', which allows for relatively straightforward modification of existing classical Vlasov codes to incorporate quantum effects (quantum statistics and quantum interference of overlapping particles wave functions), without changing the bulk of the codes. Such modification (upgrade) of existing Vlasov codes may provide a direct and effective path to numerical simulations of nonlinear electrostatic and electromagnetic phenomena in quantum plasmas, especially of processes where kinetic effects are important (e.g., modulational interactions and stimulated scattering phenomena involving plasma modes at short wavelengths or high-order kinetic modes, dynamical screening and interaction of charges in quantum plasma, etc.) Moreover, numerical approaches involving such modified Vlasov codes would provide a useful basis for theoretical analyses of quantum plasmas, as quantum and classical effects can be easily separated there.

  20. Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles

    International Nuclear Information System (INIS)

    Witten, Katrin G.; Ruff, Julie; Mohr, Anne; Görtz, Dieter; Recker, Tobias; Rinis, Natalie; Rech, Claudia; Elling, Lothar; Müller-Newen, Gerhard; Simon, Ulrich

    2013-01-01

    DNA-functionalized gold nanoparticles (AuNP–DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal(β1-4)GlcNAc(β1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP–DNA–di-LacNAc. While AuNP–DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered

  1. Cellular uptake of fluorophore-labeled glyco-DNA-gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Katrin G.; Ruff, Julie [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany); Mohr, Anne; Goertz, Dieter; Recker, Tobias; Rinis, Natalie [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Rech, Claudia; Elling, Lothar [RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering (Germany); Mueller-Newen, Gerhard [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Simon, Ulrich, E-mail: ulrich.simon@ac.rwth-aachen.de [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany)

    2013-10-15

    DNA-functionalized gold nanoparticles (AuNP-DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal({beta}1-4)GlcNAc({beta}1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP-DNA-di-LacNAc. While AuNP-DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.

  2. Kinetics of glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Vinten, Jørgen

    1987-01-01

    The effects of insulin and prior muscle contractions, respectively, on 3-O-methylglucose (3-O-MG) transport in skeletal muscle were studied in the perfused rat hindquarter. Initial rates of entry of 3-O-MG in red gastrocnemius, soleus, and white gastrocnemius muscles as a function of perfusate 3-O-MG...... concentration exhibited Michaelis-Menten kinetics. Uptake by simple diffusion could not be detected. The maximum 3-O-MG transport velocity (Vmax) was increased more by maximum isometric contractions (10- to 40-fold, depending on fiber type) than by insulin (20,000 microU/ml; 3- to 20-fold) in both red and white...

  3. DNA effects upon the reaction between acetonitrile pentacyanoferrate (II) and ruthenium pentammine pyrazine: Kinetic and thermodynamic evidence of the interaction of DNA with anionic species

    International Nuclear Information System (INIS)

    Grueso, E.; Prado-Gotor, R.; Lopez, M.; Gomez-Herrera, C.; Sanchez, F.

    2005-01-01

    The kinetics of the reaction between ruthenium pentaammine pyrazine and acetonitrile pentacyanoferrate (II) to obtain the binuclear anionic complex [Fe(CN) 5 pzRu(NH 3 ) 5 ] - , and the reverse (dissociation) process, have been studied in solutions containing DNA. The results corresponding to this reaction and those corresponding to the reverse (dissociation) process show a clear influence of DNA on their kinetics. The results can be interpreted using a modified Pseudophase Model. From the results obtained for the dissociation reaction one can conclude that the binuclear anionic complex [Fe(CN) 5 pzRu(NH 3 ) 5 ] - interacts with DNA

  4. Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): Implications for dietary cadmium and lead absorption

    International Nuclear Information System (INIS)

    Kwong, Raymond W.M.; Andres, Jose A.; Niyogi, Som

    2010-01-01

    Recent studies suggested the probable involvement of an apical iron (Fe 2+ ) transporter, the divalent metal transporter-1 (DMT1), in the uptake of several divalent metals in fish. The present study examined the gastrointestinal expression of the DMT1 gene, and investigated the kinetics of Fe 2+ uptake and its interactions with cadmium and lead in isolated enterocytes of freshwater rainbow trout (Oncorhynchus mykiss). The expressions of two DMT1 isoforms (Nramp-β and -γ) were recorded along the entire gastrointestinal tract of fish as well as in the enterocytes. Fe 2+ uptake in isolated enterocytes was saturable and sensitive to the proton gradient and membrane potential, suggesting DMT1-mediated transport. Both cadmium and lead inhibited Fe 2+ uptake in isolated enterocytes in a concentration-dependent manner, and lead appeared to be a stronger inhibitor than cadmium. The kinetic characterization of Fe 2+ uptake revealed that the apparent affinity of uptake was significantly decreased (increased K m ) in the presence of either cadmium or lead, whereas the maximum uptake rate (J max ) remained unchanged-indicating that the interaction between Fe 2+ and cadmium or lead is competitive in nature. Overall, our study suggests that the uptake of dietary cadmium and lead may occur via the iron-transporting pathway in fish.

  5. Uranium(VI) speciation: modelling, uncertainty and relevance to bioavailability models. Application to uranium uptake by the gills of a freshwater bivalve

    International Nuclear Information System (INIS)

    Denison, F.H.

    2004-07-01

    The effects of varying solution composition on the interactions between uranium(VI) and excised gills of the freshwater bivalve Corbicula fluminea have been investigated in well defined solution media. A significant reduction in the uptake of uranium was observed on increasing the concentrations of the uranium complexing ligands citrate and carbonate. Saturation kinetics as a function of uranium concentration at a pH value of 5.0 were observed, indicating that the uptake of uranium is a facilitated process, probably involving one or several trans-membrane transport systems. A relatively small change in the uptake of uranium was found as a function of pH (factor of ca. 2), despite the extremely large changes to the solution speciation of uranium within the range of pH investigated (5.0 - 7.5). A comprehensive review of the thermodynamic data relevant to the solution composition domain employed for this study was performed. Estimates of the uncertainties for the formation constants of aqueous uranium(VI) species were integrated into a thermodynamic database. A computer program was written to predict the equilibrium distribution of uranium(VI) in simple aqueous systems, using thermodynamic parameter mean-values. The program was extended to perform Monte Carlo and Quasi Monte Carlo uncertainty analyses, incorporating the thermodynamic database uncertainty estimates, to quantitatively predict the uncertainties inherent in predicting the solution speciation of uranium. The use of thermodynamic equilibrium modelling as a tool for interpreting the bioavailability of uranium(VI) was investigated. Observed uranium(VI) uptake behaviour was interpreted as a function of the predicted changes to the solution speciation of uranium. Different steady-state or pre-equilibrium approaches to modelling uranium uptake were tested. Alternative modelling approaches were also tested, considering the potential changes to membrane transport system activity or sorption characteristics on

  6. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake

    Directory of Open Access Journals (Sweden)

    Telford William G

    2010-06-01

    Full Text Available Abstract Background The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. Results We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC, we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. Conclusions The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

  7. Foliar uptake of zinc by vascular plants. Radiometric study

    International Nuclear Information System (INIS)

    Maresova, J.; Remenarova, L.; Hornik, M.; Pipiska, M.; Augustin, J.; Lesny, J.

    2012-01-01

    The aim of this paper was to obtain quantitative data of foliar uptake kinetics and long distance transport of zinc in tobacco (Nicotiana tabacum L.) and hop (Humulus lupulus L.) plants. Zinc was used as a model of microelement and toxic metal, tobacco and hop as a representatives of agriculturally important plants. A tip of leaf blade was immersed in the solution spiked with 65 ZnCl 2 and foliar uptake and translocation to other parts of the plant grown in nutrient solution was measured by gamma-spectrometry and autoradiography. We found that foliar zinc uptake by both plants is dependent on the initial metal concentration within the range C 0 = 10-100 μmol dm -3 ZnCl 2 . Zinc is immobilized mainly in immersed part of the contact leaf and only 0 = 0.1 mmol dm -3 ZnCl 2 concentrations >2.5 mg/g Zn and 4.8 mg/g Zn (dry wt.) in immersed part of tobacco and hop leaf plant, respectively were found after 5 days of exposure. Low mobility of zinc entering the plant via the leaf surface can be attributed to the immobilization of zinc into Zn-ligand complexes with high stability constants log K at pH 6.0-8.0, such as the reaction products of Zn 2+ ions with citric acid, histidine or phosphates. Zinc can be extracted from dried leaves by the solutions of inorganic salts, carboxylic acids, amino acids and synthetic complexing ligands such as EDTA. Anionic (SDS) and non-ionic (Tween 40) surfactants causes the decrease of the Zn foliar uptake, but not translocation of Zn from the contact leaf area. Obtained data are discussed from the point of view of possible limited efficiency of liquid formulations designed for practical applications as Zn foliar fertilizers. (author)

  8. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

    Science.gov (United States)

    Poteat, Monica D; Buchwalter, David B

    2014-04-01

    Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate faunal group in most freshwater ecosystems. Here, we examined Ca uptake and interactions with heavy metals (Cd, Zn) at low ambient Ca levels (12.5 μmol l(-1)) in 12 aquatic insect species within Ephemerellidae (mayfly) and Hydropsychidae (caddisfly), two families differentially responsive to trace metal pollution. We found Ca uptake varied 70-fold across the 12 species studied. Body mass and clade (family) were found to significantly influence both Ca uptake and adsorption (P≤0.05). Zn and Cd uptake rate constants (ku) exhibited a strong correlation (r=0.96, Pinsects generally differ from other freshwater taxa in that aqueous Ca uptake does not appear to be compromised by Cd or Zn exposure. It is important to understand the trace metal and major ion physiology of aquatic insects because of their ecological importance and widespread use as ecological indicators.

  9. Suppression of phytohemagglutinin-induction of thymidine uptake in guinea pig lymphocytes by methylglyoxal bis(guanylhydrazone) treatment.

    Science.gov (United States)

    Otani, S; Matsui, I; Morisawa, S

    1977-10-18

    Treatment with methylglyoxal bis(guanylhydrazone), a specific inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), suppressed the phytohemagglutinin-induction of [3H]thymidine uptake by guinea pig lymphocytes. The kinetics of [3H]thymidine uptake revealed that the Km value for thymidine was not changed, but the V value was markedly lowered by the methylglyoxal bis(guanylhydrazone) treatment. The induction of ATP: thymidine 5'-phosphotransferase (EC 2.7.1.75) (thymidine kinase) activity by phytohemagglutinin was suppressed to about the same extent as the induction of thymidine uptake. These suppressions were dependent on the methylglyoxal bis(guanylhydrazone) doses and on duration of the methylglyoxal bis(guanylhydrazone) treatment. Analysis of [3H]thymidine labelled compounds of the acid-soluble fraction showed that conversion of thymidine to thymidine 5'-triphosphate was inhibited by the methylglyoxal bis(guanylhydrazone) treatment. DNA polymerase activity was less inhibited by the methylglyoxal bis(guanylhydrazone) treatment in comparison with the methylglyoxal bis(guanylhydrazone) inhibition of thymidine uptake by whole cells. These results strongly suggested that blocking of polyamine accumulation by the methylglyoxal bis(guanylhydrazone) treatment influenced phytohemagglutinin induction of thymidine phosphorylation, resulting in a decrease of thymidine incorporation into DNA.

  10. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    Science.gov (United States)

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  11. Uptake, translocation, distribution and persistence of 14C-metalaxyl in pearl millet (Pennisetum americanum [L.] Leeke)

    International Nuclear Information System (INIS)

    Singh, U.S.; Tripathi, R.K.; Kumar, J.; Dwivedi, T.S.

    1986-01-01

    Time course absorption and desorption of metalaxyl by seeds of pearl millet was analysed by following chemical kinetics equations. Uptake of metalaxyl through roots, leaves and seed, its translocation and distribution in different plant parts and persistence following seed application were studied in pearl millet using 14 C-metalaxyl. Both uptake and efflux of metalaxyl by pearl millet seeds were complex and compartmentalized. Distribution inside the seed was not uniform. A major part of applied fungicide remained within the treated plant part, particularly after seed and foliar applications. Metalaxyl was ambimobile inside the plant and was found to get accumulated at apex and margins of leaf blade. No metalaxyl could be detected in grains harvested from plants grown from metalaxyl treated seeds. (orig.) [de

  12. On the kinetic theory of quantum systems

    International Nuclear Information System (INIS)

    Calkoen, C.J.

    1986-01-01

    The contents of this thesis which deals with transport phenomena of specific gases, plasmas and fluids, can be separated into two distinct parts. In the first part a statistical way is suggested to estimate the neutrino mass. Herefore use is made of the fact that massive neutrinos possess a non-zero volume viscosity in contrast with massless neutrinos. The second part deals with kinetic theory of strongly condensed quantum systems of which examples in nature are: liquid Helium, heavy nuclei, electrons in a metal and the interior of stars. In degenerate systems fermions in general interact strongly so that ordinary kinetic theory is not directly applicable. For such cases Landau-Fermi-liquid theory, in which the strongly interacting particles are replaced by much weaker interacting quasiparticles, proved to be very useful. A method is developed in this theory to calculate transport coefficients. Applications of this method on liquid 3 Helium yield surprisingly good agreement with experimental results for thermal conductivities. (Auth.)

  13. Managing magnetic nanoparticle aggregation and cellular uptake: a precondition for efficient stem-cell differentiation and MRI tracking.

    Science.gov (United States)

    Fayol, Delphine; Luciani, Nathalie; Lartigue, Lenaic; Gazeau, Florence; Wilhelm, Claire

    2013-02-01

    The labeling of stem cells with iron oxide nanoparticles is increasingly used to enable MRI cell tracking and magnetic cell manipulation, stimulating the fields of tissue engineering and cell therapy. However, the impact of magnetic labeling on stem-cell differentiation is still controversial. One compromising factor for successful differentiation may arise from early interactions of nanoparticles with cells during the labeling procedure. It is hypothesized that the lack of control over nanoparticle colloidal stability in biological media may lead to undesirable nanoparticle localization, overestimation of cellular uptake, misleading MRI cell tracking, and further impairment of differentiation. Herein a method is described for labeling mesenchymal stem cells (MSC), in which the physical state of citrate-coated nanoparticles (dispersed versus aggregated) can be kinetically tuned through electrostatic and magnetic triggers, as monitored by diffusion light scattering in the extracellular medium and by optical and electronic microscopy in cells. A set of statistical cell-by-cell measurements (flow cytometry, single-cell magnetophoresis, and high-resolution MRI cellular detection) is used to independently quantify the nanoparticle cell uptake and the effects of nanoparticle aggregation. Such aggregation confounds MRI cell detection as well as global iron quantification and has adverse effects on chondrogenetic differentiation. Magnetic labeling conditions with perfectly stable nanoparticles-suitable for obtaining differentiation-capable magnetic stem cells for use in cell therapy-are subsequently identified. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sorption-reduction coupled gold recovery process boosted by Pycnoporus sanguineus biomass: Uptake pattern and performance enhancement via biomass surface modification.

    Science.gov (United States)

    Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong

    2017-09-01

    Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2  = 0.9988) and Langmuir isotherm model (R 2  = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.

  15. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  16. PET SUV correlates with radionuclide uptake in peptide receptor therapy in meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Haenscheid, Heribert; Buck, Andreas K.; Samnick, Samuel; Kreissl, Michael [University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Sweeney, Reinhart A.; Flentje, Michael [University Hospital Wuerzburg, Department of Radiation Oncology, Wuerzburg (Germany); Loehr, Mario [University Hospital Wuerzburg, Department of Neurosurgery, Wuerzburg (Germany); Verburg, Frederik A. [University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2012-08-15

    To investigate whether the tumour uptake of radionuclide in peptide receptor radionuclide therapy (PRRT) of meningioma can be predicted by a PET scan with {sup 68}Ga-labelled somatostatin analogue. In this pilot trial, 11 meningioma patients with a PET scan indicating somatostatin receptor expression received PRRT with 7.4 GBq {sup 177}Lu-DOTATOC or {sup 177}Lu-DOTATATE, followed by external beam radiotherapy. A second PET scan was scheduled for 3 months after therapy. During PRRT, multiple whole-body scans and a SPECT/CT scan of the head and neck region were acquired and used to determine the kinetics and dose in the voxel with the highest radionuclide uptake within the tumour. Maximum voxel dose and retention of activity 1 h after administration in PRRT were compared to the maximum standardized uptake values (SUV{sub max}) in the meningiomas from the PET scans before and after therapy. The median SUV{sub max} in the meningiomas was 13.7 (range 4.3 to 68.7), and the maximum fractional radionuclide uptake in voxels of size 0.11 cm{sup 3} was a median of 23.4 x 10{sup -6} (range 0.4 x 10{sup -6} to 68.3 x 10{sup -6}). A strong correlation was observed between SUV{sub max} and the PRRT radionuclide tumour retention in the voxels with the highest uptake (Spearman's rank test, P < 0.01). Excluding one patient who showed large differences in biokinetics between PET and PRRT and another patient with incomplete data, linear regression analysis indicated significant correlations between SUV{sub max} and the therapeutic uptake (r = 0.95) and between SUV{sub max} and the maximum voxel dose from PRRT (r = 0.76). Observed absolute deviations from the values expected from regression were a median of 5.6 x 10{sup -6} (maximum 9.3 x 10{sup -6}) for the voxel fractional radionuclide uptake and 0.40 Gy per GBq (maximum 0.85 Gy per GBq) {sup 177}Lu for the voxel dose from PRRT. PET with {sup 68}Ga-labelled somatostatin analogues allows the pretherapeutic assessment of tumour

  17. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline; Rinaldi, Carlos

    2013-01-01

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions

  18. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline [University of Puerto Rico, Department of Chemical Engineering (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2013-08-15

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle-cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine-silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33-45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from -50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle-cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.

  19. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rolipram depresses [{sup 3}H]2-deoxyglucose uptake in mouse brain and heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Megumi; Hosoi, Rie; Kobayashi, Kaoru; Inoue, Osamu [Department of Medical Physics, School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita-shi, Osaka (Japan); Nishimura, Tsunehiko [Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2002-09-01

    The effects of systemic administration of rolipram, a selective phosphodiesterase type 4 inhibitor, on [{sup 3}H]2-deoxyglucose (DG) uptake in brain and peripheral tissues were examined. Rolipram significantly and dose-dependently decreased [{sup 3}H]DG uptake in brain, heart and skeletal muscle. In contrast, the radioactivity concentrations in the plasma of rolipram-treated mice were significantly higher than those of control mice at all times after injection of the tracer. In the kinetic study, the initial uptake of [{sup 3}H]DG in brain was decreased by rolipram, whereas no significant differences were observed in the uptake in heart and skeletal muscle. However, radioactivity concentrations in the brain, heart and skeletal muscle 30 min after the injection of [{sup 3}H]DG were significantly lowered by rolipram to about 60%, 10% and 10% of control values, respectively. The uptake of [{sup 13}N]ammonia in brain and heart of rolipram-treated mice was slightly decreased, which indicated that rolipram diminished both cerebral and cardiac blood flow. These results indicate that the phosphorylation process via hexokinase rather than the transport of [{sup 3}H]DG might be depressed by rolipram. Together with the previous observations that inhibition of protein kinase A (PKA) markedly enhanced [{sup 14}C]DG uptake in rat brain, these results indicate an important role of the cAMP/PKA systems in the regulation of glucose metabolism in the living brain as well as in peripheral tissues such as the heart and skeletal muscle. (orig.)