WorldWideScience

Sample records for upper-division undergraduate physics

  1. NSF Support for Physics at the Undergraduate Level: A View from Inside

    Science.gov (United States)

    McBride, Duncan

    2015-03-01

    NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF

  2. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  3. Coupled Multiple-Response versus Free-Response Conceptual Assessment: An Example from Upper-Division Physics

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2014-01-01

    Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE), provide rich, fine-grained information about students' reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase…

  4. Use of clickers and sustainable reform in upper-division physics courses

    Science.gov (United States)

    Dubson, Michael

    2008-03-01

    At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!

  5. Identity Statuses in Upper-Division Physics Students

    Science.gov (United States)

    Irving, Paul W.; Sayre, Eleanor C.

    2016-01-01

    We use the theories of identity statuses and communities of practice to describe three different case studies of students finding their paths through undergraduate physics and developing a physics subject-specific identity. Each case study demonstrates a unique path that reinforces the link between the theories of communities of practice and…

  6. Teaching Astrophysics to Upper Level Undergraduates

    Science.gov (United States)

    Van Dorn Bradt, Hale

    2010-03-01

    A Socratic peer-instruction method for teaching upper level undergraduates is presented. Basically, the instructor sits with the students and guides their presentations of the material. My two textbooks* (on display) as well as many others are amenable to this type of teaching. *Astronomy Methods - A Physical Approach to Astronomical Observations (CUP 2004) *Astrophysics Processes-The Physics of Astronomical Phenomena (CUP 2008)

  7. Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment

    Science.gov (United States)

    Messersmith, Stephania J.

    2014-01-01

    An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical…

  8. Design and Implementation of Instructional Videos for Upper-Division Undergraduate Laboratory Courses

    Science.gov (United States)

    Schmidt-McCormack, Jennifer A.; Muniz, Marc N.; Keuter, Ellie C.; Shaw, Scott K.; Cole, Renée S.

    2017-01-01

    Well-designed laboratories can help students master content and science practices by successfully completing the laboratory experiments. Upper-division chemistry laboratory courses often present special challenges for instruction due to the instrument intensive nature of the experiments. To address these challenges, particularly those associated…

  9. ACER: A framework on the use of mathematics in upper-division physics

    Science.gov (United States)

    Caballero, Marcos D.; Wilcox, Bethany R.; Pepper, Rachel E.; Pollock, Steven J.

    2013-01-01

    At the University of Colorado Boulder, as part of our broader efforts to transform middle- and upper-division physics courses, we research students' difficulties with particular concepts, methods, and tools in classical mechanics, electromagnetism, and quantum mechanics. Unsurprisingly, a number of difficulties are related to students' use of mathematical tools (e.g., approximation methods). Previous work has documented a number of challenges that students must overcome to use mathematical tools fluently in introductory physics (e.g., mapping meaning onto mathematical symbols). We have developed a theoretical framework to facilitate connecting students' difficulties to challenges with specific mathematical and physical concepts. In this paper, we motivate the need for this framework and demonstrate its utility for both researchers and course instructors by applying it to frame results from interview data on students' use of Taylor approximations.

  10. A Deliberate Practice Instructional Approach for Upper Division Physics Courses

    Science.gov (United States)

    Jones, David

    2015-05-01

    In upper division physics courses, an overarching educational goal is to have students think about and use the material much as a practicing physicist in the field does. Specifically, this would include knowledge (such as concepts, formalism, and instruments), approaches, and metacognitive skills that physicists use in solving ``typical'' (research context) problems to both understand and predict physical observations and accompanying models. Using an interactive instructional approach known as deliberate practice (described earlier in this session) we will discuss our work on how to provide students with the necessary practice and feedback to achieve these skills in a core DAMOP course of modern optics. We present the results of a direct and explicit comparison between this approach and traditional lecture-based instruction revealing evidence that a significant improvement of the students' mastery of these skills occurs when deliberate practice is employed. Our work was supported by the University of British Columbia through the CWSEI.

  11. Upper-division student difficulties with the Dirac delta function

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2015-03-01

    Full Text Available The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them. To characterize student difficulties with the delta function at the upper-division level, we examined students’ responses to traditional exam questions and a standardized conceptual assessment, and conducted think-aloud interviews. Our analysis was guided by an analytical framework that focuses on how students activate, construct, execute, and reflect on the Dirac delta function in the context of problem solving in physics. Here, we focus on student difficulties using the delta function to express charge distributions in the context of junior-level electrostatics. Common challenges included invoking the delta function spontaneously, translating a description of a charge distribution into a mathematical expression using delta functions, integrating 3D or non-Cartesian delta function expressions, and recognizing that the delta function can have units. We also briefly discuss implications of these difficulties for instruction.

  12. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  13. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    Science.gov (United States)

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  14. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    Science.gov (United States)

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  15. Investigating Quantum Mechanical Tunneling at the Nanoscale via Analogy: Development and Assessment of a Teaching Tool for Upper-Division Chemistry

    Science.gov (United States)

    Muniz, Marc N.; Oliver-Hoyo, Maria T.

    2014-01-01

    We report a novel educational activity designed to teach quantum mechanical tunneling to upper-division undergraduate students in the context of nanochemistry. The activity is based on a theoretical framework for analogy and is split into three parts that are linked pedagogically through the framework: classical ball-and-ramp system, tunneling…

  16. Validation and analysis of the coupled multiple response Colorado upper-division electrostatics diagnostic

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2015-11-01

    Full Text Available Standardized conceptual assessment represents a widely used tool for educational researchers interested in student learning within the standard undergraduate physics curriculum. For example, these assessments are often used to measure student learning across educational contexts and instructional strategies. However, to support the large-scale implementation often required for cross-institutional testing, it is necessary for these instruments to have question formats that facilitate easy grading. Previously, we created a multiple-response version of an existing, validated, upper-division electrostatics diagnostic with the goal of increasing the instrument’s potential for large-scale implementation. Here, we report on the validity and reliability of this new version as an independent instrument. These findings establish the validity of the multiple-response version as measured by multiple test statistics including item difficulty, item discrimination, and internal consistency. Moreover, we demonstrate that the majority of student responses to the new version are internally consistent even when they are incorrect and provide an example of how the new format can be used to gain insight into student difficulties with specific content in electrostatics.

  17. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  18. Argonne Physics Division Colloquium

    Science.gov (United States)

    [Argonne Logo] [DOE Logo] Physics Division Home News Division Information Contact PHY Org Chart Physics Division Colloquium Auditorium, Building 203, Argonne National Laboratory Fridays at 11:00 AM 2017 : Sereres Johnston 15 Sep 2017 Joint Physics and Materials Science Colloquium J. C. Séamus Davis, Cornell

  19. Using a Research-based Approach to Transform Upper-division Courses in Classical and Quantum Mechanics and E&M

    Science.gov (United States)

    Pollock, Steven

    2013-04-01

    At most universities, including the University of Colorado, upper-division physics courses are taught using a traditional lecture approach that does not make use of many of the instructional techniques that have been found to improve student learning at the introductory level. We are transforming several upper-division courses using principles of active engagement and learning theory, guided by the results of observations, interviews, and analysis of student work at CU and elsewhere. In this talk I outline these transformations, including the development of faculty consensus learning goals, clicker questions, tutorials, modified homeworks, and more. We present evidence of the effectiveness of these transformations relative to traditional courses, based on student grades, interviews, and through research-based assessments of student conceptual mastery and student attitudes. Our results suggest that many of the tools that have been effective in introductory courses are effective for our majors, and that further research is warranted in the upper-division environment. (See www.colorado.edu/sei/departments/physics.htm for materials)

  20. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  1. Colorado Upper-Division Electrostatics Diagnostic: A Conceptual Assessment for the Junior Level

    Science.gov (United States)

    Chasteen, Stephanie V.; Pepper, Rachel E.; Caballero, Marcos D.; Pollock, Steven J.; Perkins, Katherine K.

    2012-01-01

    As part of an effort to systematically improve our junior-level E&M I course, we have developed a tool to assess student conceptual learning of electrostatics at the upper division. Together with a group of physics faculty, we established a list of learning goals for the course that, with results from student observations and interviews,…

  2. What Physicists Mean By the Equals Sign in Undergraduate Education

    Science.gov (United States)

    Kornick, Kellianne; Alaee, Dina; Sayre, Eleanor; Franklin, Scott

    2017-01-01

    Mathematical syntax allows for the description of meaningful concepts in the physical sciences, and having nuanced proficiency in mathematical formalism is closely tied to communication and understanding of physical principles. The concept of equality is especially important, as it constrains and dictates the relationships between two equated expressions, and a student with detailed understanding of these relationships can derive physical meaning from syntactical expressions mediated by equals signs by knowing the ``meaning'' of equals signs. We delineate types of equals signs as used in undergraduate textbooks and develop a categorization scheme in order to investigate how equals signs are used paradigmatically and culturally in textbooks to convey physical meaning. We classify equals signs into general clusters (causal, definitional, assignment, balancing, and ``just math''), each cluster containing more detailed types. We investigate differences across various topics and between introductory and upper-division textbooks. We found that upper division textbooks are more likely to use balancing, definitional, and more complex kinds of assignment forms, while introductory texts have much higher frequencies of simple assignment and ``just math'' types.

  3. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    Science.gov (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  4. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles [fr

  5. The Geosciences Division of the Council on Undergraduate Research (GeoCUR): Supporting Faculty that Mentor Undergraduate Researchers

    Science.gov (United States)

    Fox, L. K.; Guertin, L. A.; Manley, P. L.; Fortner, S. K.

    2012-12-01

    Undergraduate research is a proven effective pedagogy that has a number of benefits including: enhancing student learning through mentoring relationships with faculty; increasing retention; increasing enrollment in graduate programs; developing critical thinking, creativity, problem solving and intellectual independence; and, developing an understanding of research methodology. Undergraduate research also has been demonstrated in preparing students for careers. In addition to developing disciplinary and technical expertise, participation in undergraduate research helps students improve communication skills (written, oral, and graphical) and time management. Early involvement in undergraduate research improves retention and, for those engaged at the 2YC level, helps students successfully transfers to 4YC. The Geosciences Division of the Council on Undergraduate Research (GeoCUR) supports faculty in their development of undergraduate research programs at all levels. GeoCUR leads workshops for new and future faculty covering all aspects of undergraduate research including incorporating research into coursework, project design, mentoring students, sustaining programs, and funding sources. GeoCUR members support new faculty by providing a range of services including: peer-review of grant proposals; advice on establishing an undergraduate research program; balancing teaching and research demands; and networking with other geoscientist. GeoCUR has also developed web resources that support faculty and departments in development of undergraduate research programs (http://serc.carleton.edu/NAGTWorkshops/undergraduate_research/index.html). This presentation will describe the services provided by GeoCUR and highlight examples of programs and resources available to geoscientists in all career stages for effective undergraduate research mentoring and development.

  6. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  7. Theoretical Physics Division

    International Nuclear Information System (INIS)

    This report is a survey of the studies done in the Theoretical Physics Division of the Nuclear Physics Institute; the subjects studied in theoretical nuclear physics were the few-nucleon problem, nuclear structure, nuclear reactions, weak interactions, intermediate energy and high energy physics. In this last field, the subjects studied were field theory, group theory, symmetry and strong interactions [fr

  8. Physics division annual report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  9. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    Science.gov (United States)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  10. A Methods-Based Biotechnology Course for Undergraduates

    Science.gov (United States)

    Chakrabarti, Debopam

    2009-01-01

    This new course in biotechnology for upper division undergraduates provides a comprehensive overview of the process of drug discovery that is relevant to biopharmaceutical industry. The laboratory exercises train students in both cell-free and cell-based assays. Oral presentations by the students delve into recent progress in drug discovery.…

  11. Integration of physics and biology: synergistic undergraduate education for the 21st century.

    Science.gov (United States)

    Woodin, Terry; Vasaly, Helen; McBride, Duncan; White, Gary

    2013-06-01

    This is an exciting time to be a biologist. The advances in our field and the many opportunities to expand our horizons through interaction with other disciplines are intellectually stimulating. This is as true for people tasked with helping the field move forward through support of research and education projects that serve the nation's needs as for those carrying out that research and educating the next generation of biologists. So, it is a pleasure to contribute to this edition of CBE-Life Sciences Education. This column will cover three aspects of the interactions of physics and biology as seen from the viewpoint of four members of the Division of Undergraduate Education of the National Science Foundation. The first section places the material to follow in context. The second reviews some of the many interdisciplinary physics-biology projects we support. The third highlights mechanisms available for supporting new physics-biology undergraduate education projects based on ideas that arise, focusing on those needing and warranting outside support to come to fruition.

  12. Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Science.gov (United States)

    Dounas-Frazer, Dimitri R.; Stanley, Jacob T.; Lewandowski, H. J.

    2017-12-01

    We investigate students' sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students' interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain—namely, upper-division physics labs—they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.

  13. Building Undergraduate Physics Programs for the 21st Century

    Science.gov (United States)

    Hilborn, Robert

    2001-04-01

    Undergraduate physics programs in the United States are under stress because of changes in the scientific and educational environment in which they operate. The number of undergraduate physics majors is declining nationwide; there is some evidence that the "best" undergraduate students are choosing majors other than physics, and funding agencies seem to be emphasizing K-12 education. How can physics departments respond creatively and constructively to these changes? After describing some of the details of the current environment, I will discuss the activities of the National Task Force on Undergraduate Physics, supported by the American Institute of Physics, the America Physical Society, the American Association of Physics Teachers and the ExxonMobil Foundation. I will also present some analysis of Task Force site visits to departments that have thriving undergraduate physics programs, pointing out the key features that seem to be necessary for success. Among these features are department-wide recruitment and retention efforts that are the theme of this session.

  14. Physics division. Progress report, January 1, 1995--December 31, 1996

    International Nuclear Information System (INIS)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations

  15. Physics division. Progress report, January 1, 1995--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R. [eds.] [comps.] [and others

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  16. Teaching Introductory Upper-Level Religion and Theology Classes

    Science.gov (United States)

    Clingerman, Forrest; O'Brien, Kevin J.

    2015-01-01

    The undergraduate study of religion is predominantly undertaken by non-majors who are meeting a general education requirement. This means that, while curricular discussions make important distinctions between the work of lower- and upper-division courses, many religion and theology faculty are teaching hybrid courses that we call…

  17. Bring Your Own Device: A Digital Notebook for Undergraduate Biochemistry Laboratory Using a Free, Cross-Platform Application

    Science.gov (United States)

    Van Dyke, Aaron R.; Smith-Carpenter, Jillian

    2017-01-01

    The majority of undergraduates own a smartphone, yet fewer than half view it as a valuable learning technology. Consequently, a digital laboratory notebook (DLN) was developed for an upper-division undergraduate biochemistry laboratory course using the free mobile application Evernote. The cloud-based DLN capitalized on the unique features of…

  18. Progress report of Applied Physics Division. 1 October 1980 - 30 June 1981. Acting Division Chief - Dr. J. Parry

    International Nuclear Information System (INIS)

    2004-01-01

    In September 1980, the Commission approved a reorganization of Physics Division, Engineering Research Division and Instrumentation and Control Division to form two new research divisions to be known as Applied Physics Division and Nuclear Technology Division. The Applied Physics Division will be responsible for applied science programs, particularly those concerned with nuclear techniques. The Division is organized as four sections with the following responsibilities: (1) Nuclear Applications and Energy Studies Section. Program includes studies in nuclear physics, nuclear applications, ion implantation and neutron scattering. (2) Semiconductor and Radiation Physics Section. Studies in semiconductor radiation detectors, radiation standards and laser applications. (3) Electronic Systems Section. This includes systems analysis, digital systems, instrument design, project instrumentation and instrument maintenance. (4) Fusion Physics Section. This covers work carried out by staff currently attached to university groups (author)

  19. Coupled multiple-response versus free-response conceptual assessment: An example from upper-division physics

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2014-10-01

    Full Text Available Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE, provide rich, fine-grained information about students’ reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase the scalability and usability of the CUE, we set out to create a new version of the assessment that preserves the insights afforded by a free-response format while exploiting the logistical advantages of a multiple-choice assessment. We used our extensive database of responses to the free-response CUE to construct distractors for a new version where students can select multiple responses and receive partial credit based on the accuracy and consistency of their selections. Here, we describe the development of this modified CUE format, which we call coupled multiple response (CMR, and present data from direct comparisons of both versions. We find that the two formats have the same average score and perform similarly on multiple measures of validity and reliability, suggesting that the new version is a potentially viable alternative to the original CUE for the purpose of large-scale research-based assessment. We also compare the details of student responses on each of the two versions. While the CMR version does not capture the full scope of potential student responses, nearly three-quarters of our students’ responses to the free-response version contained one or more elements that matched options provided on the CMR version.

  20. Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Directory of Open Access Journals (Sweden)

    Dimitri R. Dounas-Frazer

    2017-12-01

    Full Text Available We investigate students’ sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students’ interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain—namely, upper-division physics labs—they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.

  1. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    Science.gov (United States)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  2. 3. Theoretical Physics Division

    International Nuclear Information System (INIS)

    For the period September 1980 - Aug 1981, the studies in theoretical physics divisions have been compiled under the following headings: in nuclear physics, nuclear structure, nuclear reactions and intermediate energies; in particle physics, NN and NantiN interactions, dual topological unitarization, quark model and quantum chromodynamics, classical and quantum field theories, non linear integrable equations and topological preons and Grand unified theories. A list of publications, lectures and meetings is included [fr

  3. Activity Report of Reactor Physics Division - 1997

    International Nuclear Information System (INIS)

    Singh, Om Pal

    1998-01-01

    The research and development activities of the Reactor Physics Division of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1997 are reported. The activities are arranged under the headings: nuclear data processing and validation, PFBR and KAMINI core physics, FBTR core physics, radioactivity and shielding and safety analysis. A list of publications of the Division and seminars delivered are included at the end of the report

  4. Students' views about the nature of experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-12-01

    The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.

  5. Upper-Level Undergraduate Chemistry Students' Goals for Their Laboratory Coursework

    Science.gov (United States)

    DeKorver, Brittland K.; Towns, Marcy H.

    2016-01-01

    Efforts to reform undergraduate chemistry laboratory coursework typically focus on the curricula of introductory-level courses, while upper-level courses are bypassed. This study used video-stimulated recall to interview 17 junior- and senior- level chemistry majors after they carried out an experiment as part of a laboratory course. It is assumed…

  6. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  7. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory

    Science.gov (United States)

    Fennie, Michael W.; Roth, Jessica M.

    2016-01-01

    In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…

  8. Progress report - physical sciences TASCC division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1991-09-01

    This is the second in a new series of reports of the work of the TASCC Division since the creation of the Physical Sciences Unit in 1990. Physical Sciences comprises four main sectors, namely the TASCC, Physics and Chemistry Divisions, and the National Fusion Program Management Office. Physics Division is responsible for research and development in the areas of condensed matter physics, neutron and neutrino physics, and accelerator physics, while TASCC Division deals with research performed with the Tandem and Superconducting Cyclotron accelerators, primarily in the field of Heavy Ion Nuclear Physics

  9. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  10. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  11. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    International Nuclear Information System (INIS)

    Williams, J.R.; Clark, J.C.; Isaacs-Smith, T.

    2001-01-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed

  12. Lymph Node Metastases and Prognosis in Left Upper Division Non-Small Cell Lung Cancers: The Impact of Interlobar Lymph Node Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kuroda

    Full Text Available Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC located in the left upper division.We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako's method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station.We enrolled 417 patients (237 men, 180 women. Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC.Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC.

  13. Activity report of Reactor Physics Division - 1988

    International Nuclear Information System (INIS)

    Keshavamurthy, R.S.

    1989-01-01

    This report highlights the progress of activities carried out during the year 1988 in Reactor Physics Division in the form of brief summaries. The topics are organised under the following subject categories:(1) nuclear data evaluation , processing and validation, (2) core physics and analysis, (3) reactor kinetics and safety analysis, (4) noise analysis and (5) radiation transport and shielding. List of publications by the members of the Division and the Reactor Physics Seminars held during the year 1988, is included at the end of report. (author). refs., figs., tabs

  14. Physics Division progress report, January 1, 1991--December 31, 1991

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1992-06-01

    This report provides selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1991, through December 31, 1991. It also provides a general description of the goals and interests of the Division, very brief descriptions of projects in the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and other programs

  15. SPIN-UP and Preparing Undergraduate Physics Majors for Careers in Industry

    Science.gov (United States)

    Howes, Ruth

    2011-03-01

    Seven years ago, the Strategic Programs for Innovations in Undergraduate Physics (SPIN-UP) Report produced by the National Task Force on Undergraduate Physics identified several key characteristics of thriving undergraduate physics departments including steps these departments had taken to prepare students better for careers in industry. Today statistical data from AIP shows that almost 40% of students graduating with a degree in physics seek employment as soon as they graduate. Successful undergraduate physics programs have taken steps to adapt their rigorous physics programs to ensure that graduating seniors have the skills they need to enter the industrial workplace as well as to go on to graduate school in physics. Typical strategies noted during a series of SPIN-UP workshops funded by a grant from NSF to APS, AAPT, and AIP include flexible curricula, early introduction of undergraduates to research techniques, revised laboratory experiences that provide students with skills they need to move directly into jobs, and increased emphasis on ``soft'' skills such as communication and team work. Despite significant success, undergraduate programs face continuing challenges in preparing students to work in industry, most significantly the fact that there is no job called ``physicist'' at the undergraduate level. supported by grant NSF DUE-0741560.

  16. Computers in Nuclear Physics Division

    International Nuclear Information System (INIS)

    Kowalczyk, M.; Tarasiuk, J.; Srebrny, J.

    1997-01-01

    Improving of the computer equipment in Nuclear Physics Division is described. It include: new computer equipment and hardware upgrading, software developing, new programs for computer booting and modernization of data acquisition systems

  17. Physics Division progress report, January 1, 1990--December 31, 1990

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1991-07-01

    This report provides selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1990, through December 31, 1990. It also provides a general description of the goals and interests of the Division, very brief descriptions of projects in the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; and (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and programs supporting the Strategic Defense Initiative

  18. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  19. Time and space: undergraduate Mexican physics in motion

    Science.gov (United States)

    Candela, Antonia

    2010-09-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in undergraduate physics and management. Routledge Farmer, London, 1994). The potential of this socio-cultural perspective allows an analysis of how students are connected through extended spaces and times with an international core discipline as well as with cultural features related to local networks of power and construction. Through an example, I show that, from an actor-network-theory (Latour in Science in action. Harvard University Press, Cambridge, 1987), that in order to understand the complexities of undergraduate physics processes of learning you have to break classroom walls and take into account students' movements through complex spatial and temporal traces of the discipline of physics. Mexican professors do not give classes following one textbook but in a moment-to-moment open dynamism tending to include undergraduate students as actors in classroom events extending the teaching space-time of the classroom to the disciplinary research work of physics. I also find that Mexican undergraduate students show initiative and display some autonomy and power in the construction of their itineraries as they are encouraged to examine a variety of sources including contemporary research articles, unsolved physics problems, and even to participate in several physicists' spaces, as for example being speakers at the national congresses of physics. Their itineraries also open up new spaces of cultural and social practices, creating more extensive networks beyond those associated with a discipline. Some economic, historical and cultural contextual features of this school of sciences are analyzed in order to help understanding the particular

  20. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    Science.gov (United States)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I

  1. Lymph Node Metastases and Prognosis in Left Upper Division Non-Small Cell Lung Cancers: The Impact of Interlobar Lymph Node Metastasis

    Science.gov (United States)

    Kuroda, Hiroaki; Sakao, Yukinori; Mun, Mingyon; Uehara, Hirofumi; Nakao, Masayuki; Matsuura, Yousuke; Mizuno, Tetsuya; Sakakura, Noriaki; Motoi, Noriko; Ishikawa, Yuichi; Yatabe, Yasushi; Nakagawa, Ken; Okumura, Sakae

    2015-01-01

    Background Left upper division segmentectomy is one of the major pulmonary procedures; however, it is sometimes difficult to completely dissect interlobar lymph nodes. We attempted to clarify the prognostic importance of hilar and mediastinal nodes, especially of interlobar lymph nodes, in patients with primary non-small cell lung cancer (NSCLC) located in the left upper division. Methods We retrospectively studied patients with primary left upper lobe NSCLC undergoing surgical pulmonary resection (at least lobectomy) with radical lymphadenectomy. The representative evaluation of therapeutic value from the lymph node dissection was determined using Sasako’s method. This analysis was calculated by multiplying the frequency of metastasis to the station and the 5-year survival rate of the patients with metastasis to the station. Results We enrolled 417 patients (237 men, 180 women). Tumors were located in the lingular lobe and at the upper division of left upper lobe in 69 and 348 patients, respectively. The pathological nodal statuses were pN0 in 263 patients, pN1 in 70 patients, and pN2 in 84 patients. Lymph nodes #11 and #7 were significantly correlated with differences in node involvement in patients with left upper lobe NSCLC. Among those with left upper division NSCLC, the 5-year overall survival in pN1 was 31.5% for #10, 39.3% for #11, and 50.4% for #12U. The involvement of node #11 was 1.89-fold higher in the anterior segment than that in the apicoposterior segment. The therapeutic index of estimated benefit from lymph node dissection for #11 was 3.38, #4L was 1.93, and the aortopulmonary window was 4.86 in primary left upper division NSCLC. Conclusions Interlobar node involvement is not rare in left upper division NSCLC, occurring in >20% cases. Furthermore, dissection of interlobar nodes was found to be beneficial in patients with left upper division NSCLC. PMID:26247881

  2. Mechanics problems in undergraduate physics

    CERN Document Server

    Strelkov, S P

    2013-01-01

    Problems in Undergraduate Physics, Volume I: Mechanics focuses on solutions to problems in physics. The book first discusses the fundamental problems in physics. Topics include laws of conservation of momentum and energy; dynamics of a point particle in circular motion; dynamics of a rotating rigid body; hydrostatics and aerostatics; and acoustics. The text also offers information on solutions to problems in physics. Answers to problems in kinematics, statics, gravity, elastic deformations, vibrations, and hydrostatics and aerostatics are discussed. Solutions to problems related to the laws of

  3. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  4. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  5. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M.

    1998-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  6. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Popkiewicz, M.

    1997-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' by NPD director prof. Ch. Droste

  7. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2003

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Skwira, I.; Grodner, E.

    2004-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2003 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  8. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Szeflinski, Z.

    1999-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  9. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2004

    International Nuclear Information System (INIS)

    Kirejczyk, M.K.

    2005-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2004 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  10. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  11. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2000

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2000 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in 'Preface' written by NDP director prof. K. Siwek-Wilczynska

  12. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2001

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2001 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one which contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  13. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1999

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2000-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1999 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  14. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    International Nuclear Information System (INIS)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division

  15. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL`s research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  16. Upper-Division Student Difficulties with the Dirac Delta Function

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…

  17. Conceptual assessment tool for advanced undergraduate electrodynamics

    Science.gov (United States)

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-12-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  18. Activity report of Reactor Physics Division - 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The highlights of the various studies carried out during the year 1989 in Reactor Physics Division are presented in this report in the form of summaries. The topics are organised under the following subjects: (1) nuclear data evaluation, processing and validation, (2) core physics and analysis, (3) reacto r kinetics and safety analysis, (4) noise analysis, and radiation transport and shielding. It is observed that with the restart and operation of FBTR at low power for some time, some of the low power physics experiments were completed and plans and procedures for the remaining physics experiments at intermediate and high power (upto 10 MWt) have been prepared. The lists of publications by the members of Division and the Reactor Physics Seminars held during the year 19 89, are included at the end of the report. (author). refs., figs., tabs

  19. Nuclear Physics Division annual report 1992

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    The report covers the research and development activities of the Nuclear Physics Division for the period January to December 1992. These research and development activities are reported under the headings: 1) Experiments, 2) Theory, 3) Applications, 4) Instrumentation, and 5) The Pelletron Accelerator. At the end a list of publications by the staff scientists of the Division is given. Colloquia and seminars held during the year are also listed. (author). refs., tabs., figs

  20. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  1. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department

  2. An introduction to beam physics

    CERN Document Server

    Berz, Martin; Wan, Weishi

    2015-01-01

    The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, high...

  3. Observations on Student Difficulties with Mathematics in Upper-Division Electricity and Magnetism

    Science.gov (United States)

    Pepper, Rachel E.; Chasteen, Stephanie V.; Pollock, Steven J.; Perkins, Katherine K.

    2012-01-01

    We discuss common difficulties in upper-division electricity and magnetism (E&M) in the areas of Gauss's law, vector calculus, and electric potential using both quantitative and qualitative evidence. We also show that many of these topical difficulties may be tied to student difficulties with mathematics. At the junior level, some students…

  4. Student Perceptions of an Upper-Level, Undergraduate Human Anatomy Laboratory Course without Cadavers

    Science.gov (United States)

    Wright, Shirley J.

    2012-01-01

    Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This…

  5. Progress report - physical sciences - physics division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the Physics Division. Of special note within the period covered by this report was the successful acceleration of over 75 mA of protons to 600 keV in RFQ1 making it the highest current RFQ in the world. Our electron accelerator expertise has been recognized by the award of one of the R and D 100 awards for the IMPELA (10 MeV 50 kW) machine. Considerable activity was associated with bringing the new dual beam neutron spectrometer DUALSPEC to completion. This instrument has been jointly funded by AECL and NSERC through McMaster University and will be a central component of the national neutron scattering facility at NRU in the 1990's. A major effort was made with the writing of a Project Definition Document for installation of a cold neutron source at the most opportune time

  6. Conceptual assessment tool for advanced undergraduate electrodynamics

    Directory of Open Access Journals (Sweden)

    Charles Baily

    2017-09-01

    Full Text Available As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II: the Colorado UppeR-division ElectrodyNamics Test (CURrENT. This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument’s development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  7. Integrating numerical computation into the undergraduate education physics curriculum using spreadsheet excel

    Science.gov (United States)

    Fauzi, Ahmad

    2017-11-01

    Numerical computation has many pedagogical advantages: it develops analytical skills and problem-solving skills, helps to learn through visualization, and enhances physics education. Unfortunately, numerical computation is not taught to undergraduate education physics students in Indonesia. Incorporate numerical computation into the undergraduate education physics curriculum presents many challenges. The main challenges are the dense curriculum that makes difficult to put new numerical computation course and most students have no programming experience. In this research, we used case study to review how to integrate numerical computation into undergraduate education physics curriculum. The participants of this research were 54 students of the fourth semester of physics education department. As a result, we concluded that numerical computation could be integrated into undergraduate education physics curriculum using spreadsheet excel combined with another course. The results of this research become complements of the study on how to integrate numerical computation in learning physics using spreadsheet excel.

  8. Nuclear Physics Division: annual report 1991

    International Nuclear Information System (INIS)

    Betigeri, M.G.

    1993-01-01

    A brief account of the research and development activities carried out by the Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay during the period January 1991 to December 1991 is presented. These R and D activities are reported under the headings : 1) Accelerator Facilities, 2) Research Activities, and 3) Instrumentation. At the end, a list of publications by the staff scientists of the Division is given. The list includes papers published in journals, papers presented at conferences, symposia etc., and technical reports. (author). figs., tabs

  9. Applied Physics Division 1998 Progress Report

    International Nuclear Information System (INIS)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M.

    2001-01-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program

  10. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  11. Physics in ;Real Life;: Accelerator-based Research with Undergraduates

    Science.gov (United States)

    Klay, J. L.

    All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.

  12. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  13. A Model for the Development an Upper-Division Marketing Certificate Program: Professional Sales.

    Science.gov (United States)

    Grahn, Joyce L.

    The sequential components of a model for the development of an upper-division marketing certificate program in professional sales are described in this report as they were implemented at the University of Minnesota's General College during Fall 1980. After introductory material examining the responsibilities of the professional sales…

  14. Physics Division progress report, October 1, 1986--September 30, 1987

    International Nuclear Information System (INIS)

    Shera, E.B.; Sowerwine, H.

    1989-05-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period October 1, 1986 through September 30, 1987. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the nation's needs in defense and basic sciences: defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; laser physics and applications, especially to high-density plasmas; and fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission

  15. Physics Division Annual Report, April 1, 1994--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Henning, W.F.

    1995-08-01

    This report summarizes the research performed over the past year by the Argonne Physics Division in the areas of nuclear and atomic physics. The Division`s programs in nuclear physics include operation of ATLAS as a national heavy-ion user facility and related accelerator development, nuclear structure research and reactions with beams of heavy ions, primarily at ATLAS but also using forefront instrumentation elsewhere, medium energy nuclear physics at SLAC, Fermilab, Novosibirsk, DESY and CEBAF, and nuclear theory. In atomic and molecular physics the research programs are directed towards studies of highly charged ions at ATLAS, and towards studies with synchrotron radiation, currently at the National Synchrotron Light Source at Brookhaven but also in preparation for the future program at the Advanced Photon Source at Argonne. Separate abstracts have been indexed for individual contributions to this report.

  16. Theoretical Physics Division progress report October 1978 -September 1979

    International Nuclear Information System (INIS)

    1980-03-01

    A progress report of the Theoretical Physics Division of the Atomic Energy Research Establishment, Harwell for the year October 1978 to September 1979 is presented. The sections include: (1) Nuclear, atomic and molecular physics (nuclear theory, atomic theory, nuclear power applications). (2) Theory of fluids (statistical mechanics, mathematical physics, computational fluid mechanics). (3) Radiation damage and theoretical metallurgy. (4) Theory of solid state materials (point defects and point-defect determined processes, surface studies, non-destructive examination). A bibliography is given of reports and publications written by the division during the period. (UK)

  17. Physics Division progress report for period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported.

  18. Physics Division progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported

  19. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  20. Student learning of upper-level thermal and statistical physics: The derivation and use of the Boltzmann factor

    Science.gov (United States)

    Thompson, John

    2015-04-01

    As the Physical Review Focused Collection demonstrates, recent frontiers in physics education research include systematic investigations at the upper division. As part of a collaborative project, we have examined student understanding of several topics in upper-division thermal and statistical physics. A fruitful context for research is the Boltzmann factor in statistical mechanics: the standard derivation involves several physically justified mathematical steps as well as the invocation of a Taylor series expansion. We have investigated student understanding of the physical significance of the Boltzmann factor as well as its utility in various circumstances, and identified various lines of student reasoning related to the use of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students do not use the Boltzmann factor when answering questions related to probability in applicable physical situations, even after lecture instruction. We designed an inquiry-based tutorial activity to guide students through a derivation of the Boltzmann factor and to encourage deep connections between the physical quantities involved and the mathematics. Observations of students working through the tutorial suggest that many students at this level can recognize and interpret Taylor series expansions, but they often lack fluency in creating and using Taylor series appropriately, despite previous exposure in both calculus and physics courses. Our findings also suggest that tutorial participation not only increases the prevalence of relevant invocation of the Boltzmann factor, but also helps students gain an appreciation of the physical implications and meaning of the mathematical formalism behind the formula. Supported in part by NSF Grants DUE-0817282, DUE-0837214, and DUE-1323426.

  1. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  2. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    Science.gov (United States)

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  3. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  4. Progress report physics division, 1983 July 1 - December 31

    International Nuclear Information System (INIS)

    1984-02-01

    This report summarizes work carried out during the last half of 1983 in the Physics Division of the Chalk River Nuclear Laboratories in the areas of superconducting cyclotron facility development, nuclear physics research, applied physics, solid state physics, and applied mathematics and computation

  5. A Comprehensive Probability Project for the Upper Division One-Semester Probability Course Using Yahtzee

    Science.gov (United States)

    Wilson, Jason; Lawman, Joshua; Murphy, Rachael; Nelson, Marissa

    2011-01-01

    This article describes a probability project used in an upper division, one-semester probability course with third-semester calculus and linear algebra prerequisites. The student learning outcome focused on developing the skills necessary for approaching project-sized math/stat application problems. These skills include appropriately defining…

  6. Undergraduate Research in Physics as an Educational Tool

    Science.gov (United States)

    Hakim, Toufic M.; Garg, Shila

    2001-03-01

    The National Science Foundation's 1996 report "Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering and Technology" urged that in order to improve SME&T education, decisive action must be taken so that "all students have access to excellent undergraduate education in science .... and all students learn these subjects by direct experience with the methods and processes of inquiry." Research-related educational activities that integrate education and research have been shown to be valuable in improving the quality of education and enhancing the number of majors in physics departments. Student researchers develop a motivation to continue in science and engineering through an appreciation of how science is done and the excitement of doing frontier research. We will address some of the challenges of integrating research into the physics undergraduate curriculum effectively. The departmental and institutional policies and infrastructure required to help prepare students for this endeavor will be discussed as well as sources of support and the establishment of appropriate evaluation procedures.

  7. Physics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described

  8. Physics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described.

  9. Physics Division progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source

  10. Physics Division progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source.

  11. Methods of teaching the physics of climate change in undergraduate physics courses

    Science.gov (United States)

    Sadler, Michael

    2015-04-01

    Although anthropogenic climate change is generally accepted in the scientific community, there is considerable skepticism among the general population and, therefore, in undergraduate students of all majors. Students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). I will present my experiences and recommendations for teaching the physics of climate change to both physics and non-science majors. For non-science majors, the basic approach is to try to develop an appreciation for the scientific method (particularly peer-reviewed research) in a course on energy and the environment. For physics majors, the pertinent material is normally covered in their undergraduate courses in modern physics and thermodynamics. Nevertheless, it helps to review the basics, e.g. introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, and blackbody radiation. I have done this in a separate elective topics course, titled ``Physics of Climate Change,'' to help the students see how their knowledge gives them insight into a topic that is very volatile (socially and politically).

  12. A systemic analysis of cheating in an undergraduate engineering mechanics course.

    Science.gov (United States)

    Bertram Gallant, Tricia; Van Den Einde, Lelli; Ouellette, Scott; Lee, Sam

    2014-03-01

    Cheating in the undergraduate classroom is not a new problem, and it is recognized as one that is endemic to the education system. This paper examines the highly normative behavior of using unauthorized assistance (e.g., a solutions manual or a friend) on an individual assignment within the context of an upper division undergraduate course in engineering mechanics. The findings indicate that there are varying levels of accepting responsibility among the students (from denial to tempered to full) and that acceptance of responsibility can lead to identification of learning and necessary behavioral changes. The findings have implications for institutions and engineering faculty, in particular the need for consistent academic integrity education and the teaching of professional integrity and ethics.

  13. Should I Take Further Mathematics? Physics Undergraduates' Experiences of Post-Compulsory Mathematics

    Science.gov (United States)

    Bowyer, Jessica; Darlington, Ellie

    2017-01-01

    It is essential that physics undergraduates are appropriately prepared for the mathematical demands of their course. This study investigated physics students' perceptions of post-compulsory mathematics as preparation for their degree course. 494 physics undergraduates responded to an online questionnaire about their experiences of A-level…

  14. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e + e - colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

  15. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  16. "deutsche Sprache, gute Sprache...": Minorities in Germany and Their German-Language Literature for Upper-Division German.

    Science.gov (United States)

    Veteto-Conrad, Marilya

    1997-01-01

    Describes how the topic of minorities and minority literature can be integrated into an upper-division German course. Presents materials and approaches used in a recent fourth-year model minicourse. (28 references) (Author/CK)

  17. Physical activity level among undergraduate students in ...

    African Journals Online (AJOL)

    Physical activity level among undergraduate students in Terengganu, Malaysia using pedometer. N.A.M. Yusoff, S Ganeson, K.F. Ismail, H Juahir, M.R. Shahril, L.P. Lin, A Ahmad, S.W. Wafa, S Harith, R Rajikan ...

  18. Physics Division: Annual report, 1 January-31 December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-05-01

    This report summarizes the research programs of the Physics Division of the Lawrence Berkeley Laboratory during calendar 1985. The Division's principal activities are research in theoretical and experimental high energy physics, and the development of tools such as sophisticated detectors to carry out that research. The physics activity also includes a program in astrophysics, and the efforts of the Particle Data Group whose compilations serve the worldwide high energy physics community. Finally, in addition to the physics program, there is a smaller but highly significant research effort in applied mathematics. Some specific topics included in this report are: Research on e/sup +/e/sup -/ annihilation, superconducting super collider, double beta decay, high energy astrophysics and interdisciplinary experiments, detector research and development, electroweak interactions, strong interaction, quantum field theory, superstrings and quantum gravity, vortex methods and turbulence and computational mathematics.

  19. Physics Division: Annual report, 1 January-31 December 1985

    International Nuclear Information System (INIS)

    1987-05-01

    This report summarizes the research programs of the Physics Division of the Lawrence Berkeley Laboratory during calendar 1985. The Division's principal activities are research in theoretical and experimental high energy physics, and the development of tools such as sophisticated detectors to carry out that research. The physics activity also includes a program in astrophysics, and the efforts of the Particle Data Group whose compilations serve the worldwide high energy physics community. Finally, in addition to the physics program, there is a smaller but highly significant research effort in applied mathematics. Some specific topics included in this report are: Research on e + e - annihilation, superconducting super collider, double beta decay, high energy astrophysics and interdisciplinary experiments, detector research and development, electroweak interactions, strong interaction, quantum field theory, superstrings and quantum gravity, vortex methods and turbulence and computational mathematics

  20. Physics Division annual review, 1 April 1975--31 March 1976

    International Nuclear Information System (INIS)

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages

  1. Women of the Solar Physics Division

    Science.gov (United States)

    Dupree, Andrea K.

    2007-05-01

    In 1970, when the Solar Physics Division was established, the invitation to become a founding member of the Division was extended by the Organizing Committee to a group of 61 solar scientists of which 4 were women (6.6%). At the first SPD meeting in Huntsville AL (1970), 11% of the papers were given by women. Near that time (1973), women accounted for 8% of all AAS members. The representation of women in the SPD has more than doubled in percentage since the first years. Currently, women comprise about 15.5% of SPD members which, however, is less than the percentage in the AAS general membership (18%) in March 2007. In the 37 years that the SPD has existed, women have frequently held the office of Treasurer and Secretary of the Division and made notable contributions. Elske V.P. Smith was elected the first Treasurer of the SPD and that began a long tradition. Women appear to be considered exceptionally trustworthy since they have been reelected and occupied the position of Treasurer for 75% of the available terms. The Office of SPD Secretary has seen a woman for 13% of the terms. Yet women are practically absent among those in the top leadership positions and in the lists of prize winners of the SPD. Among the 21 SPD Chairs, only 1 woman, Judith T. Karpen, has held that office. The Hale Prize has been awarded 19 times in almost 3 decades, and all of the awardees have been men. Several aspects of the participation of women and their contributions to the Solar Physics Division of the AAS will be reviewed, and compared to that of the AAS and astronomy in general.

  2. Physics division annual report 2005

    International Nuclear Information System (INIS)

    Glover, J.

    2007-01-01

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in 252 No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of 16 N beta-decay to determine the 12 C(α, γ) 16 O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for

  3. Physics division annual report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium

  4. Physics Division activities report, 1986--1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e + e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC

  5. Physics division annual report - 1999

    International Nuclear Information System (INIS)

    Thayer, K.

    2000-01-01

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R and D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design

  6. Physics division. Progress report for period ending September 30, 1995

    International Nuclear Information System (INIS)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, 69 As and 70 As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as 17,18 F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research

  7. Physics Division activities report, 1986--1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  8. Activity report of Reactor Physics Division - 1993

    International Nuclear Information System (INIS)

    Indira, R.

    1994-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs

  9. Activity report of Reactor Physics Division-1995

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1996-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1995 are reported. The activity are arranged under the headings: Nuclear Data Processing and Validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. refs., figs., tabs

  10. Activity report of Reactor Physics Division - 1993

    Energy Technology Data Exchange (ETDEWEB)

    Indira, R [ed.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-12-31

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs.

  11. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department

  12. Physics Division progress report, Special 50th anniversary issue, January 1, 1992--December 31, 1992

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1993-01-01

    This special anniversary issue of the Physics Division progress report presents a series of articles that describe the missions and projects of the past and present Physics Division Leaders during their respective tenures. The report also includes selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1992, through December 31, 1992, a general description of the goals and interests of the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; and (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and other programs

  13. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    Science.gov (United States)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

  14. Progress report [of] Technical Physics Division

    International Nuclear Information System (INIS)

    Vijendran, P.; Deshpande, R.Y.

    1975-01-01

    Activities of the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, over the last few years are reported. This division is engaged in developing various technologies supporting the development of nuclear technology. The various fields in which development is actively being carried out are : (i) vacuum technology, (ii) mass spectrometry, (iii) crystal technology, (iv) cryogenics, and (v) magnet technology. For surface studies, the field emission microscope and the Auger electron spectrometer and other types of spectrometers have been devised and perfected. Electromagnets of requisite strength to be used in MHD programme and NMR instruments are being fabricated. Various crystals such as NaI(Tl), Ge, Fluorides, etc. required as windows and prisms in X and gamma-ray spectroscopy, have been grown. In the cryogenics field, expansion engines required for air liquefaction plants, vacuum insulated dewars, helium gas thermometers etc. have been constructed. In addition to the above, the Division provides consultancy and training to personnel from various institutions and laboratories. Equipment and systems perfected are transferred to commercial organizations for regular production. (A.K.)

  15. Social cognitive perspective of gender disparities in undergraduate physics

    Science.gov (United States)

    Kelly, Angela M.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] This article synthesizes sociopsychological theories and empirical research to establish a framework for exploring causal pathways and targeted interventions for the low representation of women in post-secondary physics. The rationale for this article is based upon disproportionate representation among undergraduate physics majors in the United States; women earned only 19.7% of physics undergraduate degrees in 2012. This disparity has been attributed to a variety of factors, including unwelcoming classroom atmospheres, low confidence and self-efficacy, and few female role models in physics academic communities. Recent empirical studies have suggested gender disparities in physics and related STEM fields may be more amenable to social cognitive interventions than previously thought. Social psychologists have found that women improved physics self-concept when adopting a malleable view of intelligence, when they received support and encouragement from family and teachers, and when they experienced interactive learning techniques in communal environments. By exploring research-based evidence for strategies to support women in physics, precollege and university faculty and administrators may apply social cognitive constructs to improve the representation of women in the field.

  16. Social cognitive perspective of gender disparities in undergraduate physics

    Directory of Open Access Journals (Sweden)

    Angela M. Kelly

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] This article synthesizes sociopsychological theories and empirical research to establish a framework for exploring causal pathways and targeted interventions for the low representation of women in post-secondary physics. The rationale for this article is based upon disproportionate representation among undergraduate physics majors in the United States; women earned only 19.7% of physics undergraduate degrees in 2012. This disparity has been attributed to a variety of factors, including unwelcoming classroom atmospheres, low confidence and self-efficacy, and few female role models in physics academic communities. Recent empirical studies have suggested gender disparities in physics and related STEM fields may be more amenable to social cognitive interventions than previously thought. Social psychologists have found that women improved physics self-concept when adopting a malleable view of intelligence, when they received support and encouragement from family and teachers, and when they experienced interactive learning techniques in communal environments. By exploring research-based evidence for strategies to support women in physics, precollege and university faculty and administrators may apply social cognitive constructs to improve the representation of women in the field.

  17. Annual report of the Nuclear Physics Division [for] period ending December 31, 1976

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajitanand, N.N.; Kailas, S.

    1978-01-01

    The research and development (R and D) activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1976 are reported. The R and D activities of the Division cover the areas of nuclear physics, fission physics and solid state physics. Various experimental techniques and instruments developed are also briefly described. (M.G.B.)

  18. Physics division. Progress report for period ending September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J. [ed.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.

  19. Physics Division progress report, January 1, 1984-September 30, 1986

    International Nuclear Information System (INIS)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center

  20. Analysis of graphical representation among freshmen in undergraduate physics laboratory

    Science.gov (United States)

    Adam, A. S.; Anggrayni, S.; Kholiq, A.; Putri, N. P.; Suprapto, N.

    2018-03-01

    Physics concept understanding is the importance of the physics laboratory among freshmen in the undergraduate program. These include the ability to interpret the meaning of the graph to make an appropriate conclusion. This particular study analyses the graphical representation among freshmen in an undergraduate physics laboratory. This study uses empirical study with quantitative approach. The graphical representation covers 3 physics topics: velocity of sound, simple pendulum and spring system. The result of this study shows most of the freshmen (90% of the sample) make a graph based on the data from physics laboratory. It means the transferring process of raw data which illustrated in the table to physics graph can be categorised. Most of the Freshmen use the proportional principle of the variable in graph analysis. However, Freshmen can't make the graph in an appropriate variable to gain more information and can't analyse the graph to obtain the useful information from the slope.

  1. Physics Division Annual Report, April 1, 1994--March 31, 1995

    International Nuclear Information System (INIS)

    Henning, W.F.

    1995-08-01

    This report summarizes the research performed over the past year by the Argonne Physics Division in the areas of nuclear and atomic physics. The Division's programs in nuclear physics include operation of ATLAS as a national heavy-ion user facility and related accelerator development, nuclear structure research and reactions with beams of heavy ions, primarily at ATLAS but also using forefront instrumentation elsewhere, medium energy nuclear physics at SLAC, Fermilab, Novosibirsk, DESY and CEBAF, and nuclear theory. In atomic and molecular physics the research programs are directed towards studies of highly charged ions at ATLAS, and towards studies with synchrotron radiation, currently at the National Synchrotron Light Source at Brookhaven but also in preparation for the future program at the Advanced Photon Source at Argonne. Separate abstracts have been indexed for individual contributions to this report

  2. Physics Division annual review, 1 April 1975--31 March 1976. [ANL

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G. T.

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)

  3. Physics Division progress report, January 1, 1984-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Keller, W.E. (comp.)

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.

  4. Physics Division semiannual report, July 1-December 31, 1982

    International Nuclear Information System (INIS)

    Trela, W.J.

    1983-09-01

    The Physics Division is organized into three major research areas: Fusion Physics, Weapons Physics, and Basic Research. In Fusion Physics, the KrF laser project reached two important milestones: successful testing of a 1-m 2 electron diode for KrF gas excitation and completion of a combined aperture demonstration showing the feasibility of accurate alignment of spherical mirrors. In the CO 2 program, the 5-kJ Helios lasers were used to evaluate many physics issues concerning the use of 10-μm light for inertial fusion and the 30- to 40-kJ Antares laser construction projects is on schedule for completion in October 1983. In Weapons Physics, significant progress was made on developing continuous time-dependent imaging systems using tomographic techniques with 400-ps shuttering capability, fiber-optic Cerenkov detector systems for fast fusion measurements, and iron-doped indium-phosphide detectors with 70-ps impulse response. A proposal to build x-ray beam lines at the National Synchrotron Light Source was approved and we expect funding in 1984. In Basic Physics Research, we have begun new initiatives to study biomagnetism in collaboration with the Life Sciences Division and to develop a neutrino physics program. During this period numerous significant experiments were completed in our nuclear physics, condensed matter physics, and thermal physics programs

  5. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  6. Visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy

    Directory of Open Access Journals (Sweden)

    Yasushi Mizukami

    2017-10-01

    Full Text Available Abstract Background Pulmonary visceral subpleural hematoma is rare. We report visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy. This very rare case was difficult to distinguish from thoracic abscess. Case presentation A 68-year-old man with hypertension had undergone video-assisted thoracoscopic left upper division segmentectomy for suspected lung carcinoma. Deep vein thrombosis of the lower leg was identified and edoxaban, a so-called novel oral anticoagulant, was started on postoperative day 7. The chest drainage tube was removed on postoperative day 12 because of persistent air leakage, but fever appeared the same day. Computed tomography revealed a cavity with mixed air and fluid, so antibiotics were started on suspicion of abscess. Computed tomography-guided drainage was attempted, but proved unsuccessful. Fever continued and surgical investigation was therefore performed. Visceral subpleural hematoma was identified under the diaphragmatic surface of the left basal lung. We excised the pleura, then performed drainage and applied running sutures. The parenchyma and visceral pleura were covered with polyglycolic acid sheet and fibrin glue. Edoxaban was restarted on postoperative day 12 of video-assisted thoracoscopic surgery and no recurrence of hematoma has been revealed. Conclusions Visceral subpleural hematoma after thoracic surgery is extremely rare. Furthermore, correct diagnosis was difficult and surgery offered a good diagnostic and therapeutic procedure.

  7. Activity report of Reactor Physics Division : 1990

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1991-01-01

    The major Research and Development and Project activities carried out during the year 1990 in Reactor Physics Division are presented in the form of summaries in this report. The various activities are organised under the following areas : (1) Nuclear Data Evaluation, Processing and Validation, (2) Core Physics and Analysis, (3) Reactor Kinetics and Safety Analysis, (4) Noise Analysis, and (5) Radiation Transport and Shielding. FBTR was restarted in July 1990 and the power was raised upto 500 kW. A number of low power physics experiments on reactivity coefficients, kinetics and noise, neutron flux and gamma dose in B cells, were performed, which are discussed in this report. (author). figs., tabs

  8. Physics Division annual report, April 1, 1993--March 31, 1994

    International Nuclear Information System (INIS)

    Thayer, K.J.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research

  9. Validation and Analysis of the Coupled Multiple Response Colorado Upper-Division Electrostatics Diagnostic

    Science.gov (United States)

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    Standardized conceptual assessment represents a widely used tool for educational researchers interested in student learning within the standard undergraduate physics curriculum. For example, these assessments are often used to measure student learning across educational contexts and instructional strategies. However, to support the large-scale…

  10. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures

  11. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  12. Annual progress report for 1983 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Menon, S.V.G.

    1984-01-01

    A resume of the work done in the Theoretical Physics Division of the Bhadha Atomic Research Centre, Bombay, during the calendar year 1983 is reported in the form of individual summaries. The main thrust of the work has been in the field of particle transport theory, reactor physics and reactor safety. (M.G.B)

  13. Progress report - physical sciences TASCC division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the TASCC Division. During the period covered by this report, the operation of the superconducting cyclotron has matured considerably, with over 30 accelerated ion beams more-or-less routinely available for a wide variety of nuclear physics experiments. The TASCC team, together with all the engineers, trades-people and other staff members who contributed to the design, constructed and commissioning of the Tandem Accelerator Superconducting Cyclotron facility, are to be heartily congratulated on bringing it to its present highly successful state in an unusually short period of time. In conjunction with our many outside collaborators, we are now engaged on exciting experiments in several areas of nuclear physics research, as reported in the following pages. We are well on the way to the establishment of a truly National Centre for Nuclear Physics research in Canada

  14. Greek Undergraduate Physical Education Students' Basic Computer Skills

    Science.gov (United States)

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  15. Exploring relativity: a workbook for undergraduate students (undergraduate lecture notes in physics)

    CERN Document Server

    Lorimer, Dunan

    2013-01-01

    Einstein’s special and general theories of relativity are explored graphically and quantitatively using elementary algebra through a series of fifteen interactive lectures designed for undergraduate physics majors.  Topics covered include:  space-time diagrams, special relativity, the equivalence principle, general relativity, and black holes.  The goal of this book is to provide the student with a sound, conceptual understanding of both the special and the general theories of relativity, so the student will gain insight into how astrophysicists are using these theories to study black holes in the universe.  At the end of each chapter, there is a set of exercises to further facilitate the student’s understanding of the material. The ultimate goal of the book is for students to continue to use it as a preferred reference during and after their undergraduate career.

  16. The Impact of a Student-Led Pedometer Intervention Incorporating Cognitive-Behavioral Strategies on Step Count and Self-Efficacy

    Science.gov (United States)

    Raedeke, Thomas D.; Focht, Brian C.; King, Jenna S.

    2010-01-01

    This study evaluated the effectiveness of a student-led physical activity intervention that incorporated pedometers and cognitive-behavioral strategies. Undergraduate students (N = 117) enrolled in upper division exercise and sport science courses recruited participants. Participants in the cognitive-behavioral intervention condition received…

  17. Annual report of the Nuclear Physics Division [for] period ending December 31, 1982

    International Nuclear Information System (INIS)

    Eswaran, M.A.; Paranjpe, A.S.

    1985-01-01

    The research and development work of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay for the period ending on 31 December 1982 is reported in the form of individual summaries arranged under the headings: (1) nuclear physics, (2) solid state physics, and (3) instrumentation and techniques. A list of papers by the staff-members of the Division published in journals and presented at conferences during the report period is also given. (author)

  18. Inter-Institutional Partnerships Propel A Successful Collaborative Undergraduate Degree Program In Chemistry.

    Science.gov (United States)

    D'Souza, Malcolm J; Wang, Qiquan

    2012-10-01

    Small private liberal arts colleges are increasingly tuition-dependent and mainly attract students by creating student-centered learning communities. On the other hand, larger universities tend to be trendsetters where its faculty tend to seek intellectual independence and are involved in career focused cutting-edge research. The Institutional Development Awards (IDeA) and Experimental Program to Stimulate Competitive Research (EPSCoR) are federal-state-university partnerships that builds basic research infrastructure and coax the state-wide higher education institutions to collaborate with each other in order to enhance their competitiveness. As a result in Delaware, Wesley College instituted curricular and operational changes to launch an undergraduate program in biological chemistry where its students take three upper division chemistry courses and can choose to participate in annual summer undergraduate internships at nearby Delaware State University.

  19. Progress report, October 1 to December 31, 1959. Physics Division

    International Nuclear Information System (INIS)

    1959-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from October 1, to December 31, 1959. It describes the research in nuclear physics, general physics, theoretical physics and electronics. The research areas covered in this report include nuclear structure, the tandem accelerator, particle detector development, developments in electronics, neutron decay, beta ray spectrometer, fission studies, electronics development and neutron transport theory.

  20. Transforming the Learning Environment of Undergraduate Physics Laboratories to Enhance Physics Inquiry Processes

    Directory of Open Access Journals (Sweden)

    Gregory P. Thomas

    2017-04-01

    Full Text Available Concerns persist regarding the lack of promotion of students’ scientific inquiry processes in undergraduate physics laboratories. The consensus in the literature is that, especially in the early years of undergraduate physics programs, students’ laboratory work is characterized by recipe type, step-by-step instructions for activities where the aim is often confirmation of an already well-established physics principle or concept. In response to evidence reflecting these concerns at their university, the authors successfully secured funding for this study. A mixed-method design was employed. In the 2011/2012 academic year baseline data were collected. A quantitative survey, the Undergraduate Physics Laboratory Learning Environment Scale (UPLLES was developed, validated, and used to explore students’ perceptions of their physics laboratory environments. Analysis of data from the UPLLES and from interviews confirmed the concerns evident in the literature and in a previous evaluation of laboratories undertaken in 2002. To address these concerns the activities that students were to perform in the laboratory section of the course/s were re/designed to engage students in more inquiry oriented thinking and activity. In Fall 2012, the newly developed laboratory activities and tutorials, were implemented for the first time in PHYS124; a first year course. These changes were accompanied by structured training of teaching assistants and changes to the structure of the evaluation of students’ laboratory performance. At the end of that term the UPLLES was administered (n = 266 and interviews with students conducted (n = 16 to explore their perceptions of their laboratory environments. Statistically significant differences (p<.001 between the students in the PHYS 124 classes of 2011/2012 and 2012/2013 across all dimensions were found. Effect sizes of 0.82 to 1.3, between the views of students in the first semester physics classes of 2011/2012 and 2012

  1. Undergraduate Physics Course Innovations and Their Impact on Student Learning

    Science.gov (United States)

    Iverson, Heidi L.; Briggs, Derek C.; Ruiz-Primo, Maria A.; Talbot, Robert M.; Shepard, Lorrie A.

    2009-11-01

    This paper presents results of an NSF project in which the goal is to provide a synthesis of research on instructional innovations that have been implemented in undergraduate courses in physics. The research questions guiding the project are: What constitutes the range of principal course innovations that are being implemented in undergraduate physics courses? What are the effects of these course innovations on student learning? The paper describes: (1) the literature search procedures used to gather over 400 innovation-related journal articles, (2) the procedures followed to analyze the studies within these articles, (3) the characteristics of the studies reported, and (4) the results from synthesizing the quantitative results of those studies that met our criteria for inclusion.

  2. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Nuclear Physics Division Biennial Report 1995-1996

    International Nuclear Information System (INIS)

    Kumar, K.; Nayak, B.K.; Jain, B.K.

    1997-01-01

    The report gives an overview of the scientific and technical activities of the Nuclear Physics Division (NPD) during the last two years. The physics report includes detailed experimental explorations carried out using heavy ion beams at the BARC-TIFR Pelletron facility located at Tata Institute of Fundamental Research (TIFR) and operated by NPD staff. The report also includes the experimental collaborations carried out at advanced accelerator facilities, like RHIC, COSY, etc., abroad for the quark gluon plasma studies and the η meson production in the intermediate energy nuclear reactions. The theoretical research reported includes that relevant to various experimental programs mentioned above and in general, the nuclear physics in non- and sub-nucleonic domains. In the field of accelerator development the division has the ongoing projects of the design, development, fabrication and installation of the 7 MV Folded Tandem Ion Accelerator (FOTIA) and Superconducting Linac Booster for the Pelletron Accelerator. The first stage of the linac project has been completed. It has successfully demonstrated the functioning of the indigenously developed resonator modules. On FOTIA project the installation has begun. The injector part for putting the beam in the vertical column is working. The Pelletron Accelerator, the main work horse for experimentalists, provided an excellent service to the users. A report on its running and maintenance is included. (author)

  4. PREFACE: X Workshop of the Gravitation and Mathematical Physics Division, Mexican Physical Society

    Science.gov (United States)

    2014-11-01

    The collection of papers in this volume was presented during the X Workshop of the Gravitation and Mathematical Physics Division of the Mexican Physical Society (DGFM-SMF), which was held in Pachuca, Hidalgo, México, December 2-6, 2013. The Workshop is a bi-annual series of conferences sponsored by the DGFM-SMF that started in 1993 with the purposes of discussing and exchanging the research and experience of the gravitational and mathematical physics communities in Mexico. Each Mexican Workshop has been devoted to subjects of broad interest, so that students, in particular, can have access to specialized courses and talks that allow them to raise up their qualifications as professional researchers. Recurrent topics in the Mexican Workshop are supergravity, branes, black holes, the early Universe, observational cosmology, quantum gravity and cosmology and numerical relativity. Following our previous Workshops, distinguished researchers in the field, working in Mexico, were invited to give courses, whereas young researchers were invited for plenary lectures. More specialized talks were also presented in parallel sessions, with ample participation of researchers, and graduate and undergraduate students; most of the presentations have been included in these proceedings. The contributions in this volume have been peer-reviewed, and they represent most of the courses, plenary talks and contributed talks presented during our Workshop. We are indebted to the contributors of these proceedings, as well as to the other participants and organizers, all for making the event a complete success. We acknowledge the professionalism of our reviewers, who helped us to keep high quality standards in all manuscripts. Acknowledgments The organizing committee would like to acknowledge the financial support of the Mexican National Science and Technology Council (CONACyT), the Mexican Physical Society (SMF), as well as several Institutions including: Centro de Investigación y Estudios

  5. Annual progress report for 1984 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Menon, S.V.G.; Jain, R.P.

    1985-01-01

    This report presents a resume of the work done in the Theoretical Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1984. The report is divided into two parts, namely, Nuclear Technology and Mathematical Physics. The topics covered are described by brief summaries. A list of research publications and papers presented in symposia/workshops is also included. (author)

  6. Progress report of Applied Physics Division. July 1984 - June 1985

    International Nuclear Information System (INIS)

    2004-01-01

    The activities of the Division during 1984/85 were again directed towards the general program objectives of the past two years. A shift in emphasis resulted in some organization changes. The increased importance of nuclear safeguards research in the Government's support for the International Atomic Energy Agency program has prompted a re-arrangement of the nuclear physics and science activities. Dr JR. Bird holds the responsibility for the Nuclear Science Section comprising the Nuclear Applications Group, Biomedical and Reactor Applications Group and the Neutron Scattering Group. The newly formed Safeguards and Nuclear Physics Section is headed by Dr J.W. Boldeman and includes the Safeguards Group and Nuclear Physics Group. The organization of the remainder of the Division is unchanged. The work on the electronic properties of hydrogen in silicon has been particularly rewarding and the plasma physics studies received recognition with an IAEA sponsored workshop on Compact Torus Research held in Sydney in March 1985 (author)

  7. Progress report of Applied Physics Division. July 1984 - June 1985

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The activities of the Division during 1984/85 were again directed towards the general program objectives of the past two years. A shift in emphasis resulted in some organization changes. The increased importance of nuclear safeguards research in the Government's support for the International Atomic Energy Agency program has prompted a re-arrangement of the nuclear physics and science activities. Dr JR. Bird holds the responsibility for the Nuclear Science Section comprising the Nuclear Applications Group, Biomedical and Reactor Applications Group and the Neutron Scattering Group. The newly formed Safeguards and Nuclear Physics Section is headed by Dr J.W. Boldeman and includes the Safeguards Group and Nuclear Physics Group. The organization of the remainder of the Division is unchanged. The work on the electronic properties of hydrogen in silicon has been particularly rewarding and the plasma physics studies received recognition with an IAEA sponsored workshop on Compact Torus Research held in Sydney in March 1985 (author)

  8. Physics Division annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  9. Physics Division annual report 2004

    International Nuclear Information System (INIS)

    Glover, J.

    2006-01-01

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to

  10. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center

  11. High Energy Physics Division semiannual report of research activities, January 1, 1996--June 30, 1996

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1 - June 30, 1996. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. List of Division publications and colloquia are included

  12. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R.

    1998-01-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included

  13. Progress report - physical sciences - physics division 1991 July 01 - December 31

    International Nuclear Information System (INIS)

    1992-05-01

    The reports from the three branches in Physics Division, Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics, are each presented in separate sections. Each section features a topical review, highlighting in this report the use of high-temperature rf and microwave response of materials, magnetic excitations in hexagonal ABX 3 materials, and meson exchange currents in nuclear beta decay. Noteworthy achievements in the Accelerator Physics program include the successful operation to design energy of the re-vaned RFQ1 accelerator enabling now an energy of 1250 keV. The ECR ion source has operated for greater than 75 hours without failure and has produced the 100 mA needed for the RFQ1 accelerator. The neutron scattering program was again hampered by the NRU Reactor being down for repair. The good news is that the reactor was brought back up to full power in December thus enabling experiments to begin again. Experiments earlier in the year were carried out at Oak Ridge (US), Riso (Denmark), National Institute for Standards and Technology (US) and the Rutherford-Appleton Laboratory (UK). A new high capacity, portable pumping system was commissioned replacing a fixed one that had become obsolete and allowing now greater use of environment control devices on all spectrometers. An analysis of double-charge exchange reactions in nuclei has been used to provide limits on the radius of the neutron halo in 11 Li. The most up-to-date, complete and accurate tables of neutron scattering lengths and cross-sections have been completed. Continuous quality improvement (CQI) analyses were initiated for all the activities in Physics Division with the goal to enhance performance and provide better service to our many customers

  14. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31

  15. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M. (ed.)

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31.

  16. Annual progress report for 1985 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1986-01-01

    This report presents a resume of the work done in the Theoretical Physics Division during the calender year, 1985. The topics covered are described by their brief summaries. The main fields of the work were : (a) physics design of the 500 MWe PHWR and related developmental studies, (b) reactor physics work related to Rajasthan, Narora and Tarapur stations, (c) laser fusion studies, (d) mathematical physics studies on Monte-Carlo method, transport equation and Fokker-Planck Equation and (e) theoretical physics studies related to Feynman path integrals and quantum optics. The lists of research publications and Trombay Colloquia organised are also appended. (author)

  17. High Energy Physics Division. Semiannual report of research activities, January 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1995-July 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  18. High Energy Physics Division semiannual report of research activities, January 1, 1994--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1994-June 30, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  19. High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  20. High Energy Physics Division. Semiannual report of research activities, January 1, 1995--June 30, 1995

    International Nuclear Information System (INIS)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1995-July 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  1. High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  2. High Energy Physics Division semiannual report of research activities, July 1, 1993--December 31, 1993

    International Nuclear Information System (INIS)

    Wagner, R.; Moonier, P.; Schoessow, P.; Talaga, R.

    1994-05-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1993--December 31, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  3. High Energy Physics Division semiannual report of research activities, January 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    1994-09-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1994-June 30, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  4. High Energy Physics Division semiannual report of research activities, January 1, 1993--June 30, 1993

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1993--June 30, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  5. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    International Nuclear Information System (INIS)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  6. High Energy Physics division semiannual report of research activities, January 1, 1998 - June 30, 1998

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R.

    1999-01-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included

  7. High Energy Physics Division semiannual report of research activities, January 1, 1992--June 30, 1992

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-11-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1992--June 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  8. High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

    1999-03-09

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  9. Physical Exercise Practice and Associated Factors Among Undergraduate Students from a Southern Region of Brazil

    Directory of Open Access Journals (Sweden)

    Teixeira Marcio

    2016-12-01

    Full Text Available Purpose. The aim of the study was to analyse the prevalence and factors associated with not performing physical exercise in undergraduate students. Methods. The sample was composed of 2738 undergraduate students of Londrina city, Parana, Brazil. The dependent variables were: not performing physical exercise of moderate intensity for at least 30 minutes per week; not performing vigorous physical exercise for at least 20 minutes per week; not performing muscular strengthening exercises (8-12 repetitions in a week. The independent variables were gender, age, skin colour, marital status, housing, study pattern, year of course, paid work, and area of the course. Odds ratio (OR was estimated by multivariate analysis with the use of binary logistic regression. Results. The prevalence of undergraduate students not performing physical exercise of moderate intensity, of vigorous intensity, or muscular strengthening exercises was 47.3, 61.0, and 66.2%, respectively. Female sex was associated with a risk of not performing moderate physical exercise (OR = 1.23, vigorous physical exercise (OR = 1.47, and strengthening exercises (OR = 1.22. Undergraduate students of exact sciences (OR = 1.40 and 1.52, juridical sciences (OR = 1.48 and 1.51, and humanities (OR = 1.45 and 1.52 were at risk of not performing physical exercise of moderate or vigorous intensity, respectively. Being a 2nd (OR = 0.79, 3rd (OR = 0.74, or 4th (OR = 0.71 year student was bound with a lower likelihood of not performing physical exercise of moderate intensity. Conclusions. Intervention programmes with the aim of promoting physical exercise practice in undergraduate students should consider gender, year, and area of the course.

  10. An Empirical Study of the Process of Crafting and Using Definitions

    Science.gov (United States)

    Little, Angela Jean

    2013-01-01

    In this dissertation I analyze the process of crafting definitions whose purpose is classification. The context I examine is undergraduate upper-division physical science majors defining and naming sub-categories of a physical phenomenon in the context of a design task over an extended period of time. The goal of the design task is one of…

  11. Progress report : Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1978-01-01

    The research and development work carried out in the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, is reported. Some of the achievements are: (1) fabrication of mass spectrometers for heavy water analysis and lithium 6/7 isotope ratio measurement, (2) fabrication of electronic components for mass spectrometers, (3) growing of sodium iodide crystals for radiation detectors, (4) development of sandwich detectors comprising of NaI(Tl) and CaI(Na), (5) fabrication of mass spectrometer type leak detectors and (6) fabrication of the high vacuum components of the vacuum system of the variable energy cyclotron based at Calcutta. (M.G.B.)

  12. Progress report, Physics Division, 1 October - 31 December, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The work of the Physics Division during the quarter is reviewed. Nuclear physics activities included parity violation experiments, mass difference measurements using the ISOL facility, studies of high spin state decays, and scattering length measurements. In accelerator physics, construction of the heavy-ion superconducting cyclotron continued and development of the fast intense neutron source and the high current proton accelerator progressed. Neutron scattering experiments were carried out on a number of solids. Work in applied mathematics and computation is also reviewed

  13. Progress report: Physics Division, 1982 January 1 to March 1

    International Nuclear Information System (INIS)

    1982-05-01

    The work of the Physics Division at Chalk River Nuclear Laboratories during the quarter is presented. Areas of interest include nuclear physics, neutron sources, the development of a superconducting cyclotron, high current proton accelerators and electron accelerators, diffraction studies and other solid state physics work in organic and inorganic substances, and computer codes. The operation of the MP tandem accelerator and the computer facilities is reviewed

  14. Impact of the Joint Task Force on Undergraduate Physics Programs for Innovation and Entrepreneurship Education in Physics

    Science.gov (United States)

    Arion, Douglas

    The Joint Task Force on Undergraduate Physics Programs has worked diligently to develop recommendations for what physics programs could and should be doing to prepare graduates for 21st century careers. While the `traditional' physics curriculum has served for many years, the demands of the new workforce, and the recognition that only a few percent of physics students actually become faculty - the vast majority entering the workforce and applying their skills to a very diverse range of problems, projects, and products - implies that a review of the education undergraduates receives is in order. The outcomes of this study point to the need to provide greater connection between the education process and the actual skills, knowledge, and abilities that the workplace demands. This presentation will summarize these considerations, and show how entrepreneurship and innovation programs and curricula are a particularly effective means of bringing these elements to physics students.

  15. Engineering Physics Division progress report for period ending November 30, 1978

    International Nuclear Information System (INIS)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included

  16. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.

  17. Transient-Absorption Spectroscopy of Cis-Trans Isomerization of N,N-dimethyl-4,4'-Azodianiline with 3D-Printed Temperature-Controlled Sample Holder

    Science.gov (United States)

    Kosenkov, Dmytro; Shaw, James; Zuczek, Jennifer; Kholod, Yana

    2016-01-01

    The laboratory unit demonstrates a project based approach to teaching physical chemistry laboratory where upper-division undergraduates carry out a transient-absorption experiment investigating the kinetics of cis-trans isomerization of N,N-dimethyl-4,4'-azodianiline. Students participate in modification of a standard flash-photolysis spectrometer…

  18. Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle

    Science.gov (United States)

    Smith, Trevor I.; Christensen, Warren M.; Mountcastle, Donald B.; Thompson, John R.

    2015-01-01

    We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students…

  19. Report on R and D activities of Health Physics Division 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A; Narayanan, K K; Katoch, D S; Sharma, R C [comps.; Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    1996-10-01

    This report is a compilation of the activities and also of the results of various R and D programmes of the Health Physics Division of Bhabha Atomic Research Centre (BARC) during the period 1994-1995. The topics covered are: environmental studies, radiation dosimetry- internal and external, operational health physics and nuclear safety, instruments and techniques, radiation physics, mathematical modelling and software development, micrometeorology and industrial hygiene. The matter is presented in the form of abstracts with the publication details. Also included are extracts from IAEA research agreements and the summary of theses submitted by the staff members of the Division during the above period.

  20. Report on R and D activities of Health Physics Division 1994-1995

    International Nuclear Information System (INIS)

    Raju, A.; Narayanan, K.K.; Katoch, D.S.; Sharma, R.C.

    1996-10-01

    This report is a compilation of the activities and also of the results of various R and D programmes of the Health Physics Division of Bhabha Atomic Research Centre (BARC) during the period 1994-1995. The topics covered are: environmental studies, radiation dosimetry- internal and external, operational health physics and nuclear safety, instruments and techniques, radiation physics, mathematical modelling and software development, micrometeorology and industrial hygiene. The matter is presented in the form of abstracts with the publication details. Also included are extracts from IAEA research agreements and the summary of theses submitted by the staff members of the Division during the above period

  1. Progress report April 1, to June 30, 1956. Physics Division

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1956-07-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  2. Progress report April 1, to June 30, 1956. Physics Division

    International Nuclear Information System (INIS)

    1956-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  3. Research and development activities of High Pressure Physics Division (October 1993 - March 1996)

    International Nuclear Information System (INIS)

    Gyanchandani, Jyoti; Gangrade, B.K.

    1996-07-01

    The research and development activities of the High Pressure Physics Division during the period October 1993-March 1996 are reported in the form of collection of papers presented in journals, conference proceedings and abstracts in conferences and Bhabha Atomic Research Centre (BARC) technical reports. The report is organised in two sections: (A) High Pressure Physics Division, and (B) Seismology Section. A list of staff members is enclosed at the end

  4. Research and development activities of High Pressure Physics Division (October 1993 - March 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Gyanchandani, Jyoti; Gangrade, B K [eds.; High Pressure Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    1996-07-01

    The research and development activities of the High Pressure Physics Division during the period October 1993-March 1996 are reported in the form of collection of papers presented in journals, conference proceedings and abstracts in conferences and Bhabha Atomic Research Centre (BARC) technical reports. The report is organised in two sections: (A) High Pressure Physics Division, and (B) Seismology Section. A list of staff members is enclosed at the end.

  5. Physics Division annual review, 1 April 1985-31 March 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The highlight of the Argonne Physics Division during the past year (1985/86) has been the completion and dedication of the final superconducting linac stages of the ATLAS system and the beginning of the research program that utilizes the full capabilities of that system. The transition to using the full ATLAS and the new experimental area has been a smooth one and the research program is beginning to bear fruit. The experimental facilities have also come into operation with three major components, consisting of the first stage of a gamma detection system incorporating an array of Compton-suppressed germanium detectors and BGO total energy detectors, a magnetic spectrograph of the Enge split-pole design, with a focal-plane detector system adapted to heavy ions, and a new scattering facility with a number of features. Interesting new data are emerging on quasi-elastic processes, on the transition between fission and quasi-fission and the study of nuclear structure at high spin. The past year has also seen the merging of the nuclear research in the Argonne Chemistry Division, mostly in heavy-ion and medium-energy nuclear physics, with the Physics Division. The merger is leading to full cooperation within the larger group and will help broaden and strengthen the total effort in nuclear physics. In medium-energy physics the year has seen the successful execution of an experiment at the SLAC NPAS station to study the delta resonance in nuclei. Progress is being made in the effort at Fermilab on deep inelastic muon scattering, on the development of a tensor polarized gas deuterium target for use with storage rings, and on the LAMPF neutrino oscillation experiment. In theoretical nuclear physics an effort is continuing on investigating the relevant degrees of freedom in the microscopic dynamics of nuclei and the importance of three-body forces. 51 figs., 2 tabs.

  6. Physics Division annual review, 1 April 1985-31 March 1986

    International Nuclear Information System (INIS)

    1986-09-01

    The highlight of the Argonne Physics Division during the past year (1985/86) has been the completion and dedication of the final superconducting linac stages of the ATLAS system and the beginning of the research program that utilizes the full capabilities of that system. The transition to using the full ATLAS and the new experimental area has been a smooth one and the research program is beginning to bear fruit. The experimental facilities have also come into operation with three major components, consisting of the first stage of a gamma detection system incorporating an array of Compton-suppressed germanium detectors and BGO total energy detectors, a magnetic spectrograph of the Enge split-pole design, with a focal-plane detector system adapted to heavy ions, and a new scattering facility with a number of features. Interesting new data are emerging on quasi-elastic processes, on the transition between fission and quasi-fission and the study of nuclear structure at high spin. The past year has also seen the merging of the nuclear research in the Argonne Chemistry Division, mostly in heavy-ion and medium-energy nuclear physics, with the Physics Division. The merger is leading to full cooperation within the larger group and will help broaden and strengthen the total effort in nuclear physics. In medium-energy physics the year has seen the successful execution of an experiment at the SLAC NPAS station to study the delta resonance in nuclei. Progress is being made in the effort at Fermilab on deep inelastic muon scattering, on the development of a tensor polarized gas deuterium target for use with storage rings, and on the LAMPF neutrino oscillation experiment. In theoretical nuclear physics an effort is continuing on investigating the relevant degrees of freedom in the microscopic dynamics of nuclei and the importance of three-body forces. 51 figs., 2 tabs

  7. Expressive writing promotes self-reported physical, social and psychological health among Chinese undergraduates.

    Science.gov (United States)

    Yang, Zhihan; Tang, Xiaoqing; Duan, Wenjie; Zhang, Yonghong

    2015-03-01

    The present study examines the efficacy of expressive writing among Chinese undergraduates. The sample comprised of 74 undergraduates enrolled in a 9-week intervention (35 in experimental class vs. 39 in control class). The writing exercises were well-embedded in an elective course for the two classes. The 46-item simplified Chinese Self-Rated Health Measurement Scale, which assesses psychological, physical and social health, was adopted to measure the outcome of this study. Baseline (second week) and post-test (ninth week) scores were obtained during the classes. After the intervention on the eighth week, the self-reported psychological, social and physical health of the experimental class improved. Psychological health obtained the maximum degree of improvement, followed by social and physical health. Furthermore, female participants gained more psychological improvement than males. These results demonstrated that the expressive writing approach could improve the physical, social and psychological health of Chinese undergraduates, and the method can be applied in university psychological consulting settings in Mainland China. © 2014 International Union of Psychological Science.

  8. Physics Division annual review, 1 April 1983-31 March 1984

    International Nuclear Information System (INIS)

    1984-08-01

    A broad but necessarily incomplete review of the research activities within the Division is presented. Activities in medium-energy physics research include studies of pion reaction mechanisms, nuclear structure studies, two-nucleon physics with pions and electrons, weak interactions and particle searches. Research at the Superconducting Linac Accelerator includes studies on quasi-elastic processes and reaction strengths, heavy-ion fusion reactions, high angular momentum states in nuclei, accelerator mass spectrometry and equipment development at the Tandem-Linac Facility. Theoretical nuclear physics studies reviewed are grouped in the areas: nuclear forces and subnucleon degrees of freedom, variational calculation of finite many-body systems, nuclear shell theory and nuclear structure, intermediate energy physics, heavy-ion reactions and other theoretical studies. The status of the superconducting linac program is detailed, and operation and development of the tandem-linac accelerator and the Dynamitron Facility are described. The atomic and molecular physics research is detailed in the five ongoing programs: photoionization-photoelectron research, high-resolution laser-rf spectroscopy with atomic and molecular beams, photon interactions involving fast ions, interactions of fast atomic and molecular ions with solid and gaseous targets, and theoretical atomic physics. A complete list of publications and the Division roster are included

  9. Adapting to a Changing World--Challenges and Opportunities in Undergraduate Physics Education

    Science.gov (United States)

    National Academies Press, 2013

    2013-01-01

    "Adapting to a Changing World" was commissioned by the National Science Foundation to examine the present status of undergraduate physics education, including the state of physics education research, and, most importantly, to develop a series of recommendations for improving physics education that draws from the knowledge we have about…

  10. Physical inactivity among physiotherapy undergraduates: exploring the knowledge-practice gap.

    Science.gov (United States)

    Ranasinghe, Chathuranga; Sigera, Chathurani; Ranasinghe, Priyanga; Jayawardena, Ranil; Ranasinghe, Ayodya C R; Hills, Andrew P; King, Neil

    2016-01-01

    Physical inactivity is a common risk factor for several non-communicable diseases (NCDs). Increasing physical activity could reduce the burden of disease due to major NCDs and increase life expectancy. Undergraduate physiotherapy students represent a group of young-adults expected to have a good knowledge of physical activity. We evaluated physical activity levels of undergraduate physiotherapy students of University of Colombo, Sri Lanka and determined their motives and barriers for participation in physical activity. All physiotherapy undergraduates studying at the University of Colombo, Sri Lanka in 2013 were invited for the study. Phase one was a quantitative study to evaluate the physical activity levels and phase two was a qualitative study to identify motives and barriers for physical activity and sports in the same cohort. Physical activity levels (phase 1) were assessed using the interviewer administered International Physical Activity Questionnaire (long-version). The qualitative study (phase 2) was conducted in the same population using Focus Group Discussions ( n  = 3) and individual In-depth Interviews ( n  = 5). Sample size in phase 1 and phase 2 were 113 (response rate = 98%; [N-115]) and 87 (response rat = 97%; [N-90]) respectively. Mean age (±SD) of participants was 23.4 ± 1 years. The mean weekly total MET minutes (±SD) of the study population was 1791.25 ± 3097. According to the IPAQ categorical score a higher percentage of participants were 'inactive' (48.7%), while only 15.9% were in the 'Highly active' group. Lack of support and encouragement received during childhood to engage in sports activity seem to have played an important role in continuing their exercise behavior through to the adult life. Academic activities were given priority by both parents and teachers. The environment and support from teachers, family and friends were important to initiate and adhere to sports and physical activity. A higher

  11. Progress report - physical sciences - physics division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    1991-09-01

    This is the second in the new series of reports for the Physics Division since the creation of the Physical Sciences Unit in 1990. This report has been subdivided into three self-contained sections covering the activities in the branches for Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics. It is noteworthy that the RFQ1 program with the original vanes has come to a successful conclusion having accelerated 79 mA of protons to 600 keV. The new vanes to achieve a high energy of 1.2 MeV have now been installed and will form the basis for the low energy end of high current proton accelerator development. The progress in the neutron scattering program has been hampered by the NRU reactor being down for repairs since January 1991. Nevertheless a very successful opening ceremony was held to mark the completion of the new DUALSPEC spectrometers and several workshops have been held to promote the understanding of neutron scattering

  12. Physics Division annual report, April 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1996-11-01

    The past year has seen several major advances in the Division`s research programs. In heavy-ion physics these include experiments with radioactive beams of interest to nuclear astrophysics, a first exploration of the structure of nuclei situated beyond the proton drip line, the discovery of new proton emitters--the heaviest known, the first unambiguous detection of discrete linking transitions between superdeformed and normal deformed states, and the impact of the APEX results which were the first to report, conclusively, no sign of the previously reported sharp electron positron sum lines. The medium energy nuclear physics program of the Division has led the first round of experiments at the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility and the study of color transparency in rho meson propagation at the HERMES experiment at DESY, and it has established nuclear polarization in a laser driven polarized hydrogen target. In atomic physics, the non-dipolar contribution to photoionization has been quantitatively established for the first time, the atomic physics beamline at the Argonne 7 GeV Advanced Photon Source was constructed and, by now, first experiments have been successfully performed. The theory program has pushed exact many-body calculations with fully realistic interactions (the Argonne v{sub 18} potential) to the seven-nucleon system, and interesting results have been obtained for the structure of deformed nuclei through meanfield calculations and for the structure of baryons with QCD calculations based on the Dyson-Schwinger approach. Brief summaries are given of the individual research programs.

  13. [The physical therapy undergraduate students' responses to the gross human anatomy subjects].

    Science.gov (United States)

    Anahara, Reiko; Kawashiro, Yukiko; Matsuno, Yoshiharu; Mori, Chisato; Kohno, Toshihiko

    2008-09-01

    Instruction in gross human anatomy is one of the important items in the subject for co-medical students of the physical therapist course. The physical therapy undergraduate students are required to have a solid understanding of the structure and formation of the human body. Therefore, their good-understanding of the course on the gross human anatomy and their experience of the gross human anatomy laboratory (observation practice) are acquired to improve their knowledge of the human body. To clarify the student responses to the gross human anatomy course including the gross human anatomy laboratory, several questionnaires were administered to the freshman physical therapy undergraduate student for two years. We found that more than 80% of the students, who felt a negative attitude for gross human anatomy before the course started, had a positive attitude about the gross human anatomy after going through the course. The experience of the gross human anatomy laboratory increased the students' activity of learning and they thought more about the dignity of being human after the course than before viewing. In addition, the results suggested that the multiple experiences of the gross human anatomy course are useful for the physical therapy undergraduate students to improve the quality of their understanding of the human body.

  14. Sexual Harassment Reported Among a Sample of Undergraduate Women in Physics

    Science.gov (United States)

    Aycock, Lauren M.; Brewe, Eric; Clancy, Kathryn B. H.; Goertzen, Renee Michelle; Hazari, Zarha; Hodapp, Theodore

    2016-05-01

    The field of physics lags behind most other scientific fields in gender parity of students earning bachelor's degrees. The transition from enrollment in high school physics to graduating with physics degree represents the biggest decrease in the proportion of female students for any step in physics educational attainment. Sexual harassment contributes to an unwelcome climate. It is unknown how prevalent sexual harassment is in the field of physics and whether it's a contributing factor to the field's inability to recruit and retain female students. Our goal was to measure a quantitative baseline for sexual harassment--associated with physics--observed and experienced by a sample of female undergraduate students. As part of a larger conference evaluation survey, we conducted an internet-based survey (n = 632) of attendees of the APS Conference for Undergraduate Women in Physics to measure the extent to which they personally experienced or observed sexual harassment in a context associated with physics. We will present results from this survey. Opinions, findings, or conclusions expressed in this work do not necessarily reflect the views of the NSF, DOE, or APS. This work was supported in part by the National Science Foundation (PHY-1346627) and by the Department of Energy (DE-SC0011076).

  15. Progress report of Technical Physics Division: April 1980 - March 1982

    International Nuclear Information System (INIS)

    Chaudhry, Ramesh; Vijendran, P.

    1983-01-01

    Activities, with an individual summary of each, of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre (BARC), Bombay are reported for the period April 1980 - March 1982. The major thrust of the TPD's work has been in: (i) design and fabrication of instruments, devices and equipment and (ii) development of techniques in the frontline research and technology areas like vacuum science, surface analysis, cryogenics and crystal growing. The Division also provided custombuilt electronics equipment, vacuum systems and glass components and devices to the various Divisions of BARC and other units of the DAE. Training and manpower development activities and technology transfer activities are also reported. Lists of seminars, colloquia, publications during the period of the report are given. (M.G.B.)

  16. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  17. What does a physics undergraduate education give you? A perspective from Australian physics

    Science.gov (United States)

    Sharma, Manjula; Pollard, Judith; Mendez, Alberto; Mills, David; O'Byrne, John; Scott, Dale; Hagon, Sue; Gribble, Joan; Kirkup, Les; Livett, Michelle; Low, David; Merchant, Alex; Rayner, Anton; Swan, Geoff; Zadnik, Marjan; Zealey, Willam

    2008-01-01

    In a study to assess how effectively undergraduate physics studies have prepared students for the workplace, we attempted to locate and interview traditional 3-year or 4-year physics students who had graduated in the past five years (2000 to 2004), and the employers of these graduates. The study was limited to recent graduates who have majored in physics and not obtained further or concurrent degrees. Overseas studies of the destinations of physics graduates referred to in this paper have not isolated the group we interviewed as a distinct group. A major finding was that the number of these graduates was unexpectedly low. Indeed, most physics graduates have two degrees. Interviews with graduates and employers suggest that physics graduates have particular strengths in problem solving and are good at applying their skills at the workplace.

  18. An Experiment in Upper-Division Education. Planning for Higher Education; Vol. 4, No. 1:4/4 February 1975.

    Science.gov (United States)

    Lauper, Russell T.; Meskill, Victor P.

    In June 1973, the New York State Board of Regents approved the establishment of the Coordinate Campus proposed by two private institutions, the C.W. Post Center of Long Island University and St. Joseph's College. This report describes the general purpose and history of upper-division education and examines the experiment in interinstitutional…

  19. On The Role Of Division, Jordan And Related Algebras In Particle Physics

    International Nuclear Information System (INIS)

    Gursey, F.; C-H Tze

    1996-11-01

    This monograph surveys the role of some associative and non-associative algebras, remarkable by their ubiquitous appearance in contemporary theoretical physics,particularly in particle physics. It concerns the interplay between division algebras, specifically quaternions and octonions, between Jordan and related algebras on the one hand, and unified theories of the basic interactions on the other. Selected applications of these algebraic structures are discussed: quaternion analyticity of Yang Mills instantons, octonionic aspects of exceptional broken gauge, supergravity theories, division algebras in anyonic phenomena and in theories of extended objects in critical dimensions. The topics presented deal primarily with original contributions by the authors

  20. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e + e - annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of πN scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies

  1. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  2. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1995-12-31

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: (i) Reaction Mechanism and Nuclear Structure (12 articles); (ii) Experimental Methods and Instrumentation (2 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  3. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    International Nuclear Information System (INIS)

    Osuch, S.

    1995-01-01

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: i) Reaction Mechanism and Nuclear Structure (12 articles); ii) Experimental Methods and Instrumentation (2 articles); iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented

  4. Report of the Nuclear Physics Division, January 1, 1978 -December 31, 1979

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajitanand, N.N.; Kerekatte, S.S.

    1980-01-01

    The research activities, with an individual summary of each, of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar years 1978 and 1979 are reported. The Division is organised into three sections, namely, the Solid State physics Section, the Fission Physics Section and the Van de Graaff Laboratory. The supporting facilities of the Division include a workshop, and facilities for electronic design and development, neutron radiography and accelerator maintenance. Techniques of neutron scattering, light scattering and Moessbauer spectroscopy are used for studies in solid state physics. Major activities of the Fission Physics Section relate to theoretical studies of the fission process, heavy ion reactions and nuclear level densities. The activities of this Section during the report period deserving a special mention are studies on the mass division in fission based on the nuclear exchange process and deduction of heavy ion fusion cross sections from fission fragment angular distribution. Experimental work for multiparameter studies of the light charged particles emitted in the thermal induced fission of 235 U and for search of superheavy elements by K X-ray technique is continued. Van de Graaff accelerator is used to study nuclear reactions, nuclear structure and cross sections. Ion beam techniques including ion implantation are used for blistering studies. During the period of the report, 2 MW tandem accelerator was commissioned and DUMAS heavy duty mass separator was tested for performance. A linear, position sensitive X-ray detector has been developed. The report also includes lists of staff members, articles published in journals, papers presented at conferences, symposia etc., reports issued, theses presented, seminars, workshops etc., lecturers delivered by the staff members at other institutions and training courses. (M.G.B.)

  5. Assessing Program Learning Objectives to Improve Undergraduate Physics Education

    Science.gov (United States)

    Menke, Carrie

    2014-03-01

    Our physics undergraduate program has five program learning objectives (PLOs) focusing on (1) physical principles, (2) mathematical expertise, (3) experimental technique, (4) communication and teamwork, and (5) research proficiency. One PLO is assessed each year, with the results guiding modifications in our curriculum and future assessment practices; we have just completed our first cycle of assessing all PLOs. Our approach strives to maximize the ease and applicability of our assessment practices while maintaining faculty's flexibility in course design and delivery. Objectives are mapped onto our core curriculum with identified coursework collected as direct evidence. We've utilized mostly descriptive rubrics, applying them at the course and program levels as well as sharing them with the students. This has resulted in more efficient assessment that is also applicable to reaccreditation efforts, higher inter-rater reliability than with other rubric types, and higher quality capstone projects. We've also found that the varied quality of student writing can interfere with our assessment of other objectives. This poster outlines our processes, resources, and how we have used PLO assessment to strengthen our undergraduate program.

  6. Physics Division progress report for period ending September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  7. Physics Division progress report for period ending September 30, 1984

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes

  8. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  9. Engineering Physics Division progress report for period ending November 30, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included. (RWR)

  10. Report on R and D activities of Health Physics Division 1984 - 1985

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Somasundaram, S.

    1986-01-01

    A summary of the research and development programmes undertaken in Health Physics Division during the period 1984-1985 is contained in the report. The details of the various investigations are given in references listed under each abstract, most of which are published in the form of papers in symposia and journals or as BARC reports. Some of the investigations have been carried out in collaboration with other Divisions of BARC and outside organisations. A list of these leading to M.Sc./Ph.D Degrees submitted by members of the Division is given at the end. The Division has also a number of research contracts with IAEA. A summary of work carried out under these projects is included in a separate section. (author)

  11. Physics Division annual review, April 1, 1992--March 31, 1993

    International Nuclear Information System (INIS)

    Thayer, K.J.

    1993-08-01

    This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation

  12. Promoting Clinical Reasoning in Undergraduate Physical Therapy Education: A Review of Strategies and Approaches

    DEFF Research Database (Denmark)

    Brekke, Anders Falk

    2015-01-01

    Title: Promoting Clinical Reasoning in Undergraduate Physical Therapy Education: A Review of Strategies and Approaches Juneja H1, Brekke A F2 1,2 Physical Therapy Education, University College Zealand, Denmark Background: Clinical reasoning (CR) also referred to as “critical thinking” or “decision....... It is imperative that physical therapy educators utilize innovative pedagogical methods to facilitate learning of reasoning skills in students. Purpose: The review is an attempt to highlight and discuss selected pedagogical strategies and approaches to enhance clinical reasoning skills in undergraduate physical...... programs was shortlisted for the review. References of pertinent literature were scanned to identify further relevant citations. Results: The review provides a detailed insight into the interwoven nature of pedagogical techniques to promote clinical reasoning being used by different physical therapy...

  13. Engineering Physics Division integral experiments and their analyses

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Integral experiments are performed as part of the Engineering Physics Division's on-going research in the development and application of radiation shielding methods. Integral experiments performed at the Oak Ridge Electron Linear Accelerator (ORELA) under the Division's Magnetic Fusion program are designed to provide data against which ORNL and all other organizations involved in shielding calculations for fusion devices can test their calculational methods and interaction data. The Tower Shielding Facility (TSF) continues to be the primary source of integral data for fission reactor shielding design. The experiments performed at the TSF during the last few years have been sponsored by the Gas Cooled Fast Reactor (GCFR) program. During this report period final documentation was also prepared for the remaining LMFBR shielding experiments, including an examination of streaming through annular slits and measurement of secondary gamma-ray production in reinforced concrete

  14. Physics Division annual progress report for period ending June 30, 1977. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Stelson, P.H.

    1977-09-01

    The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)

  15. Nuclear Physics Division biennial report 1993-1994

    International Nuclear Information System (INIS)

    Kumar, K.; Kataria, S.K.

    1995-01-01

    The activities of the Nuclear Physics Division of Bhabha Atomic Research Centre for the two year period January 1993 to December 1994 are summarised. The experimental nuclear physics research activities are centred around the 14 UD Pelletron accelerator. Instrumentation development for the research utilization of the accelerator as well as accelerator development activities connected with the superconducting LINAC booster are included. During the period the conversion of the 5.5 MV single stage Van de Graaff Accelerator into a 7 MV folded tandem accelerator for light and heavy ions, for use not only in low energy nuclear physics but also in various inter-disciplinary areas was carried out. The research activity in the field of study of heavy ion reactions involving elastic scattering, transfer reactions, fusion-fission phenomena, heavy ion resonances, high energy photons in nuclear reactions and level density determination from charged particle spectra emitted in heavy ion reactions are given. (author). refs., figs., tabs

  16. Theoretical Physics Division annual report (1 Sep 1981 - 31 Aug 1982)

    International Nuclear Information System (INIS)

    The Division of Theoretical Physics is organized in two groups, one oriented towards problems in nuclear physics and the other working on problems in particle physics. The fields of research can be summarized as follows: - in nuclear physics: systems with few nucleons, self-consistant calculations of nuclear properties, nuclear spectroscopy, nuclear physics at intermediate energies, weak interactions, nuclear reactions; - in particle physics: nucleon-nucleon scattering and the Paris potential, the nucleon-antinucleon interaction, dual topological unitarization and multiquark states, Gauge theories, covariant representations of classical systems, binding potentials derived from local relativistic wave equations, renormalization problems in quantum field theory [fr

  17. Progress report of Physics Division. 1 October 1979 - 30 September 1980. Acting Division Chief - Dr. J. Parry

    International Nuclear Information System (INIS)

    2004-01-01

    The work of the Division concentrated on topics reported in the previous Progress Report with one additional project, namely, the application of ion beam techniques and laser annealing to the production of photovoltaic devices. The MOATA reactor and 3 MeV accelerator operated for Divisional projects and for other work, including collaborative projects supported by the Australian Institute of Nuclear Science and Engineering. Staff were seconded to the Reactors Department (New Reactor Study) and to universities (plasma physics and fusion program). Results obtained on four main themes (reactor calculations, neutron physics, nuclear applications and plasma physics) are reported in the following sections (author)

  18. Relationships between Undergraduates' Argumentation Skills, Conceptual Quality of Problem Solutions, and Problem Solving Strategies in Introductory Physics

    Science.gov (United States)

    Rebello, Carina M.

    2012-01-01

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…

  19. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  20. An epistemic framing analysis of upper level physics students' use of mathematics

    Science.gov (United States)

    Bing, Thomas Joseph

    Mathematics is central to a professional physicist's work and, by extension, to a physics student's studies. It provides a language for abstraction, definition, computation, and connection to physical reality. This power of mathematics in physics is also the source of many of the difficulties it presents students. Simply put, many different activities could all be described as "using math in physics". Expertise entails a complicated coordination of these various activities. This work examines the many different kinds of thinking that are all facets of the use of mathematics in physics. It uses an epistemological lens, one that looks at the type of explanation a student presently sees as appropriate, to analyze the mathematical thinking of upper level physics undergraduates. Sometimes a student will turn to a detailed calculation to produce or justify an answer. Other times a physical argument is explicitly connected to the mathematics at hand. Still other times quoting a definition is seen as sufficient, and so on. Local coherencies evolve in students' thought around these various types of mathematical justifications. We use the cognitive process of framing to model students' navigation of these various facets of math use in physics. We first demonstrate several common framings observed in our students' mathematical thought and give several examples of each. Armed with this analysis tool, we then give several examples of how this framing analysis can be used to address a research question. We consider what effects, if any, a powerful symbolic calculator has on students' thinking. We also consider how to characterize growing expertise among physics students. Framing offers a lens for analysis that is a natural fit for these sample research questions. To active physics education researchers, the framing analysis presented in this dissertation can provide a useful tool for addressing other research questions. To physics teachers, we present this analysis so that it

  1. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Science.gov (United States)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  2. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Directory of Open Access Journals (Sweden)

    Idaykis Rodriguez

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI and the Integrated Science Learning Environment (ISLE in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  3. Physics Division annual progress report, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Trela, W.J.

    1984-12-01

    The Physics Division is organized into three major research areas: Weapons Physics, Inertial Fusion Physics, and Basic Research. In Weapons Physics, new strategic defensive research initiatives were developed in response to President Reagan's speech in May 1983. Significant advances have been made in high-speed diagnostics including electro-optic technique, fiber-optic systems, and imaging. In Inertial Fusion, the 40-kJ Antares CO 2 laser facility was completed, and the 1- by 1- by 2-m-long large-aperture module amplifier (LAM) was constructed and operated. In Basic Research, our main emphasis was on development of the Weapons Neutron Research (WNR) facility as a world-class pulsed neutron research facility

  4. Plenary lectures of the divisions semiconductor physics, thin films, dynamics and statistical physics, magnetism, metal physics, surface physics, low temperature physics

    International Nuclear Information System (INIS)

    Roessler, U.

    1992-01-01

    This volume contains a selection of plenary and invited lectures of the Solid State Division spring meeting of the DPG (Deutsche Physikalische Gesellschaft) 1992 in Regensburg. The constribution come mainly from five fields of the physics of condensed matter: doped fullerenes and high Tc superconductors, surfaces, time-resolved on nonlinear optics, polymer melts, and low-dimensional semiconductor systems. (orig.)

  5. High Energy Physics Division semiannual report of research activities, July 1, 1990--December 31, 1990

    International Nuclear Information System (INIS)

    Berger, E.; Moonier, P.; May, E.; Norem, J.

    1991-02-01

    A report is presented of research and development activities conducted in the High Energy Physics Division at Argonne National Laboratory during the six month period July 1 through December 31, 1990. Analyses of data from experiments performed by members of the Division are summarized, and the status of experiments taking data and of those being prepared is reviewed. Descriptions are included of research on theoretical and phenomenological topics in particle physics. Progress reports are provided on accelerator research and development, detector research and development, and experimental facilities research. Lists are presented of publications, of colloquia and conference talks, and of significant external community activities of members of the Division

  6. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    International Nuclear Information System (INIS)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center

  7. Instructors' Application of the Theory of Planned Behavior in Teaching Undergraduate Physical Education Courses

    Science.gov (United States)

    Filho, Paulo Jose Barbosa Gutierres; Monteiro, Maria Dolores Alves Ferreira; da Silva, Rudney; Hodge, Samuel R.

    2013-01-01

    The purpose of this study was to analyze adapted physical education instructors' views about the application of the theory of planned behavior (TpB) in teaching physical education undergraduate courses. Participants ("n" = 17) were instructors of adapted physical activity courses from twelve randomly selected institutions of higher…

  8. Closed-kinetic chain upper-body training improves throwing performance of NCAA Division I softball players.

    Science.gov (United States)

    Prokopy, Max P; Ingersoll, Christopher D; Nordenschild, Edwin; Katch, Frank I; Gaesser, Glenn A; Weltman, Arthur

    2008-11-01

    Closed-kinetic chain resistance training (CKCRT) of the lower body is superior to open-kinetic chain resistance training (OKCRT) to improve performance parameters (e.g., vertical jump), but the effects of upper-body CKCRT on throwing performance remain unknown. This study compared shoulder strength, power, and throwing velocity changes in athletes training the upper body exclusively with either CKCRT (using a system of ropes and slings) or OKCRT. Fourteen female National Collegiate Athletic Association Division I softball player volunteers were blocked and randomly placed into two groups: CKCRT and OKCRT. Blocking ensured the same number of veteran players and rookies in each training group. Training occurred three times weekly for 12 weeks during the team's supervised off-season program. Olympic, lower-body, core training, and upper-body intensity and volume in OKCRT and CKCRT were equalized between groups. Criterion variables pre- and posttraining included throwing velocity, bench press one-repetition maximum (1RM), dynamic single-leg balance, and isokinetic peak torque and power (PWR) (at 180 degrees x s(-1)) for shoulder flexion, extension, internal rotation, and external rotation (ER). The CKCRT group significantly improved throwing velocity by 2.0 mph (3.4%, p performance. Strength coaches can incorporate upper-body CKCRT without sacrificing gains in maximal strength or performance criteria associated with an athletic open-chain movement such as throwing.

  9. Annual report of the Nuclear Physics Division [for] period ending December 1974

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Eswaran, M.A.; Nadkarni, D.M.

    1975-01-01

    The R and D activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the year 1974 are reported. During the year, the Division was reorganised into three units, namely, Van de Graaff Laboratory, Solid State Physics Section and Fission Physics Section. Topics of some of the research studies are: higher isospin states in 36 Ar through alpha particle capture resonance, spectra of doubly odd nuclei, shell correction energies obtained by the Strutinsky method for deformed nuclear shapes relevant to fission barrier calculations, trajectory calculations in spontaneous fission of 252 Cf, fission fragment and alpha particle energy correlations in the thermal neutron-induced fission of 235 U, magnetic structure of magnetic materials by polarised neutron diffraction, vibrational modes of water molecules in BeSO 4 .H 2 O and dynamics of NH 4 + ions in ammonium compounds by neutron inelastic scattering. (M.G.B.)

  10. Undergraduate physics course innovations and their impact on student learning

    Science.gov (United States)

    Iverson, Heidi Louise

    Over the last several decades, the efficacy of the traditional lecture-based instructional model for undergraduate physics courses has been challenged. As a result, a large number of reform-oriented instructional innovations have been developed, enacted, and studied in undergraduate physics courses around the globe---all with the intended purpose of improving student learning. This thesis satisfies the need for a comprehensive synthesis of the effectiveness of these course innovations by analyzing: (1) the types of innovations that have been enacted, (2) the impact of these innovations on student learning, and (3) the common features of effective innovations. An exhaustive literature search for studies published after 1990 on undergraduate physics course innovations yielded 432 articles which were then coded with respect to the characteristics of the innovations used as well as the methodological characteristics of the studies. These codes facilitated a descriptive analysis which characterized the features of the pool of studies. These studies were then meta-analyzed in order to evaluate the effect of innovations on student learning. Finally, a case-study analysis was conducted in order to identify the critical characteristics of effective innovations. Results indicate that most innovations focus on introductory mechanics and use some combination of conceptually oriented tasks, collaborative learning, and technology. The overall effect of course innovations has been positive, but with the caveat that a large number of studies suffer from poor methodological designs and potential threats to validity. In addition, over half of the studies had to be eliminated from the meta-analysis because they did not report the data necessary for an effect size to be calculated. Despite these limitations the results of the meta-analysis indicated that there was one innovation which had particularly high effect sizes---Workshop/Studio Physics---an innovation which involves an

  11. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

  12. Real division algebras and other algebras motivated by physics

    International Nuclear Information System (INIS)

    Benkart, G.; Osborn, J.M.

    1981-01-01

    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  13. Physics Division annual review, 1 April 1986-31 March 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This review presents a broad view of the research activities within the Division for the year ending in March 1987. Major topic areas are: Medium Energy Physics Research; Theoretical Nuclear Physics; Superconducting Linac Development, and Accelerator Operations. Research at ATLAS is also included as a broad topic. Included in this research are studies in the areas of: Quasielastic Processes and Strongly Damped Collisions; Fusion and Fission of Heavy Ions; High Angular Momentum States in Nuclei; Accelerator Mass Spectroscopy; and Equipment Development

  14. Report on R and D activities of Health Physics Division 1990-1993

    International Nuclear Information System (INIS)

    Raju, A.; Narayanan, K.K.; Sharma, R.C.

    1994-01-01

    This report is a compilation of various R and D programmes undertaken, continued and/or completed by Health Physics Division of Bhabha Atomic Research Centre (BARC) during the period 1990-1993. The findings and results of several types of investigations on topics ranging from environmental studies, radiation dosimetry - internal and external, operational health physics, site evaluation studies, micrometeorology, instrumentation and techniques and industrial hygiene and safety are presented in the form of abstracts. The abstracts have been arranged subject wise. References to the scientific papers and technical reports published or presented have been included. Also included are extracts from IAEA Research Agreements and theses submitted for the award of M.Sc./Ph.D. degrees by research by the staff members of the Division. (author). appendix

  15. Annual report 1983/1984. Division of Solid State Physics

    International Nuclear Information System (INIS)

    1984-10-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, as well as optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  16. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  17. Developing and Assessing Curriculum on the Physics of Medical Instruments

    Science.gov (United States)

    Christensen, Warren; Johnson, James K.; Van Ness, Grace R.; Mylott, Elliot; Dunlap, Justin C.; Anderson, Elizabeth A.; Widenhorn, Ralf

    2013-01-01

    Undergraduate educational settings often struggle to provide students with authentic biologically or medically relevant situations and problems that simultaneously improve their understanding of physics. Through exercises and laboratory activities developed in an elective Physics in Biomedicine course for upper-level biology or pre-health majors…

  18. High Energy Physics Division semiannual report of research activities. Semi-annual progress report, July 1, 1995--December 31, 1995

    International Nuclear Information System (INIS)

    Norem, J.; Bajt, D.; Rezmer, R.; Wagner, R.

    1996-10-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1995 - December 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  19. Engaging undergraduate students in hadron physics research and instrumentation

    Science.gov (United States)

    Horn, Tanja

    2017-09-01

    Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program

  20. Building an undergraduate physics program with Learning Assistants

    Science.gov (United States)

    Price, Edward

    2013-04-01

    In 2007, the CSUSM Physics Department began offering a B.S. in Applied Physics, its first physics bachelors degree program. The program has grown from 11 majors in 2008 to over 80 in 2012, due in part to recruiting students from local high schools and community colleges. More broadly, because most CSUSM students come from the local region, the longer-term health of the Department is coupled with the vitality and strength of local high school physics education. In addition, establishing a new physics degree required curriculum development and offered the opportunity to incorporate recent innovations in physics education when developing courses. A Learning Assistants (LA) Program, established by the Department in 2008, has been a critical component in these efforts to recruit students, build local educational networks, and implement innovative curricula. In an LA Program, undergraduate Learning Assistants assist faculty in class, meet regularly with the course instructor, and participate in a weekly seminar on teaching and learning, which provides guidance on effective instruction and an opportunity to reflect on their experiences in the classroom. The LA program promotes course transformation, improved student learning, and teacher recruitment. This talk will describe the CSUSM LA Program and its role in support of our growing applied physics degree program.

  1. Comparison of chosen physical fitness characteristics of Turkish professional basketball players by division and playing position.

    Science.gov (United States)

    Köklü, Yusuf; Alemdaroğlu, Utku; Koçak, Fatma Ünver; Erol, A Emre; Fındıkoğlu, Gülin

    2011-12-01

    The purpose of the present study was to compare chosen physical fitness characteristics of Turkish professional basketball players in different divisions (first and second division) and playing positions. Forty-five professional male basketball players (14 guards, 15 forwards, 16 centers) participated in this study voluntarily. For each player, anthropometric measurements were performed, as well as a multi-stage 20 m shuttle run, isokinetic leg strength, squat jump (SJ), countermovement jump (CMJ), 10-30 meter single-sprint and T-drill agility tests. The differences in terms of division were evaluated by independent t-test and the differences by playing position were evaluated by one-way ANOVA with Post Hoc Tukey test. First division players' CMJ measurements were significantly higher than those of second division players' (p≤0.05), whereas second division players' 10 m sprint times were significantly better than those of first division players' (p≤0.05). In addition, forwards and centers were significantly taller than guards. Centers were significantly heavier and their T-drill test performances were inferior to those of forwards and guards (p≤0.05). Moreover, guards had a significantly higher maximal oxygen uptake (VO2 max) than centers. Guards and forwards showed significantly better performance in the 10 and 30 m sprint tests than centers (p≤0.05). Forwards and centers had significantly better left leg flexor strength at 180°.s(-1)(p≤0.05). In conclusion, the findings of the present study indicated that physical performance of professional basketball players differed among guards, forwards and centers, whereas there were not significant differences between first and second division players. According to the present study, court positions have different demands and physical attributes which are specific to each playing position in professional basketball players. Therefore, these results suggest that coaches should tailor fitness programs according to

  2. Physics Division progress report for period ending September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics. (LEW)

  3. Physics Division progress report for period ending September 30, 1985

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics

  4. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    Science.gov (United States)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  5. Annual report of the Nuclear Physics Division

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Rao, K.R.P.M.

    1974-01-01

    The various activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, India, during the year 1973 are reported. The main research programme, centred around the 5.5 meV Van-de-Graaff accelerator at Trombay, planning of the proposed experiments with the Variable Energy Cyclotron at Calcutta, expected to go into operation soon, experiments in fission physics involving multiparameter studies of spontaneous and neutron induced fission, etc. are described in detail. Apart from the advanced studies in X-ray and neutron diffraction, neutron scattering in solids and liquids, attempts have been made to use these techniques for the understanding of the geometrical structures of many biologically significant molecules, the magnetic structures of technologically important materials like ferrites and the dynamics of condensed media. Experiments with (1) the Fast Critical Facility, (2) Purnima and (3) the development of X-ray fluorescence spectrometer and the neutron radiography facility are also explained. (K.B.)

  6. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al 3 Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs

  7. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al{sub 3} Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs.

  8. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S [ed.

    1997-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  9. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1996-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  10. Progress report, Physics Division, July 1 to September 30, 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Progress in the Physics Division, Chalk River Nuclear Laboratories, is reported for the period July 1 to September 30, 1976. Operation of the MP Tandem accelerator is described. Design highlights are provided for a proposed superconcucting cyclotron. Elastic and inelastic scattering experiments, many conducted in cooperation with other laboratories, are summarized. Activities of the Chalk River computation centre are also described. (O.T.)

  11. Report on R and D activities of Health Physics Division: 1988-1989

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Chakraborty, P.P.; Sengupta, S.; Iyer, M.R.

    1991-01-01

    The report summarises the different aspects of R and D programmes carried out in the Health Physics Division, BARC during 1988 and 1989. The results of various types of investigations on radiation physics, radiation dosimetry, instrumentation and techniques, environmental studies, micrometeorology etc. are presented in the form of abstracts. References to the detailed studies covered in the abstracts are also given in the appropriate sections. (author)

  12. An American instructor in an upper-level Italian physics class

    International Nuclear Information System (INIS)

    Feldman, Gerald

    2015-01-01

    In this paper, I report on my experience in teaching a 3rd-year undergraduate physics class at the University of Trento during the Spring 2014 semester. I address questions relating to the application of active-learning techniques, usage of English language in the classroom, and student reactions to an innovative style of pedagogy.

  13. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    International Nuclear Information System (INIS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-01-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  14. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  15. Synthesizing and Characterizing Graphene via Raman Spectroscopy: An Upper-Level Undergraduate Experiment That Exposes Students to Raman Spectroscopy and a 2D Nanomaterial

    Science.gov (United States)

    Parobek, David; Shenoy, Ganesh; Zhou, Feng; Peng, Zhenbo; Ward, Michelle; Liu, Haitao

    2016-01-01

    In this upper-level undergraduate experiment, students utilize micro-Raman spectroscopy to characterize graphene prepared by mechanical exfoliation and chemical vapor deposition (CVD). The mechanically exfoliated samples are prepared by the students while CVD graphene can be purchased or obtained through outside sources. Owing to the intense Raman…

  16. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    Science.gov (United States)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  17. Bibliography of the literature of the Health Physics Division through calendar year 1975

    International Nuclear Information System (INIS)

    Dixon, M.N.

    1976-03-01

    The literature of the Health Physics Division is documented. The bibliography contains open literature publications, report literature, and special literature. An author index and separate listings of theses and patents are included

  18. E-Division activities report

    International Nuclear Information System (INIS)

    Barschall, H.H.

    1984-07-01

    E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included

  19. Progress report for Applied Physics Division 1 July 1981 - 30 June 1982

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The Division is organised as four sections: nuclear applications and energy studies; semiconductor and radiation physics; electronics systems; and fusion physics. Research activities include studies in neutron fission, neutron capture and neutron scattering; use of nuclear techniques of analysis such as PIXE; development of semiconductor detectors; rotamak experiments, and further fusion studies on MHD surface waves and alfven resonance heating of plasmas. A list of publications is included

  20. Report on R and D activities of Health Physics Division. 1982-83

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Somasundaram, S.

    1984-01-01

    The research and development work of the Health Physics Division of the Bhabha Atomic Research Centre, Bombay, during the period 1982-1983 is reported in the form of individual summaries under the headings: radiation physics, radiation dosimetry, instrumentation, environmental monitoring, operational health physics, industrial hygiene, reactor safety studies, micrometeorology, stable and radioactive elements in environmental systems, and in vivo radioactivity measurement. The work carried out under research contracts with the IAEA and under bilateral collaboration programmes is summarised under the heading: collaboration studies. (M.G.B.)

  1. Annual report of the Nuclear Physics Division [for] the period ending December 1975

    International Nuclear Information System (INIS)

    Jain, B.K.; Nadkarni, D.M.; Rao, K.R.P.M.

    1976-01-01

    The R and D activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during 1975, are described. The following are the significant areas of research activities of the Division : resonance reactions, nuclear spectra, fast fission, ternary and quaternary fission, neutron diffraction studies of magnetic materials, neutron inelastic scattering and dynamics of condensed media. The progress of development work on various experimental techniques and facilities including ion implantation facility and terminal tandem accelerator has been reported. (M.G.B.)

  2. Utility subroutine package used by Applied Physics Division export codes

    International Nuclear Information System (INIS)

    Adams, C.H.; Derstine, K.L.; Henryson, H. II; Hosteny, R.P.; Toppel, B.J.

    1983-04-01

    This report describes the current state of the utility subroutine package used with codes being developed by the staff of the Applied Physics Division. The package provides a variety of useful functions for BCD input processing, dynamic core-storage allocation and managemnt, binary I/0 and data manipulation. The routines were written to conform to coding standards which facilitate the exchange of programs between different computers

  3. Bibliography of the literature of the Health Physics Division through calendar year 1975

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, M.N. (comp.)

    1976-03-01

    The literature of the Health Physics Division is documented. The bibliography contains open literature publications, report literature, and special literature. An author index and separate listings of theses and patents are included. (HLW)

  4. Argonne National Laboratory Physics Division annual report, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  5. Physics Division annual review, 1 April 1984-31 March 1985

    International Nuclear Information System (INIS)

    1985-09-01

    Separate abstracts were prepared for individual sections in this annual report of the Physics Division of Argonne National Laboratory. Many diverse topics of research were discussed. Among these were topics of medium-energy research such as a study of non-nucleonic effects in nuclei, two-nucleon physics with pions and electrons, nuclear structure studies and weak interaction studies. Research efforts which were performed at the superconducting Linac accelerator were studies of fusion of heavy ions, investigation of quasielastic and strongly damped collisions, studies of high angular momentum states in nuclei, accelerator mass spectrometry, and nuclear spectrometry. Atomic and molecular research programs included photoionization-photoelectron studies, high-resolution laser spectroscopy with beams, beam foil studies, and studies of interactions of beams with solids and gases. Theoretical endeavors were carried out in both atomic physics and nuclear physics

  6. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    International Nuclear Information System (INIS)

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO 2 laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs

  7. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO{sub 2} laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs.

  8. 6th Annual Midwest Conference for Undergraduate Women in Physics, January 18-20, 2013, Urbana, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Kevin T. [University of Illinois at Urbana-Champaign

    2016-04-28

    This document is the program for the 6th Annual Midwest Conference for Undergraduate Women in Physics, which was held at the University of Illinois at Urbana-Champaign on January 18-20, 2013. The goals of the conference were to foster a culture in which undergraduate women are encouraged and supported to pursue, and also to succeed in, higher education in physics; to provide career information to students in physics and related fields; to give women the resources, motivation, and confidence to apply to graduate school and successfully complete a Ph.D. program in Physics; to provide information and dispel misconceptions about the application process for graduate school and the diverse employment opportunities in physics and related fields, enabling women to make more informed decisions about their goals and attain them; and to connect female physics students with successful female physicists to whom they can relate and who can act as inspirational role models and mentors.

  9. Success Stories of Undergraduate Retention: A Pathways Study of Graduate Students in Solar and Space Physics

    Science.gov (United States)

    Morrow, C. A.; Stoll, W.; Moldwin, M.; Gross, N. A.

    2012-12-01

    This presentation describes results from an NSF-funded study of the pathways students in solar and space physics have taken to arrive in graduate school. Our Pathways study has documented results from structured interviews conducted with graduate students attending two, week-long, NSF-sponsored scientific workshops during the summer of 2011. Our research team interviewed 48 solar and space physics students (29 males and 19 females currently in graduate programs at US institutions,) in small group settings regarding what attracted and retained them along their pathways leading to grad school. This presentation addresses what these students revealed about the attributes and influences that supported completion of their undergraduate experience and focused their aspirations toward graduate school. In advance of the interview process, we collected 125 on-line survey responses from students at the two workshops. This 20-item survey included questions about high school and undergraduate education, as well as about research and graduate experience. A subset of the 125 students who completed this on-line survey volunteered to be interviewed. Two types of interview data were collected from the 48 interviewees: 1) written answers to a pre-interview questionnaire; and 2) detailed notes taken by researchers during group interviews. On the pre-interview questionnaire, we posed the question: "How did you come to be a graduate student in your field?" Our findings to date are based on an analysis of responses to this question, cross correlated with the corresponding on-line survey data. Our analysis reveals the importance of early research experiences. About 80% of the students participating in the Pathways study cited formative undergraduate research experiences. Moreover, about 50% of participants reported undergraduate research experiences that were in the field of their current graduate studies. Graduate students interviewed frequently cited a childhood interest in science

  10. Annual report of the Nuclear Physics Division [for the] period ending December 31, 1977

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajtanand, N.N.; Kerekatte, S.S.

    1979-01-01

    The research and development activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1977 are reported. The Division is organised into three research sections, namely, solid state physics section, fission physics section and Van de Graaff Laboratory. Techniques of neutron scattering, light scattering, compton scattering and Moessbauer spectroscopy are used in the studies of solid state physics Solid State Physics section. In the Fission Physics Section, experimental studies are concentrated on fission phenomena accompanied by light charged particle emission and theoretical investigations deal with various aspects of fission process, heavy ion reactions and other related areas of nuclear reactions. Research activities of the Van de Graaff Laboratory include: (1) experimental studies of (p,n), (α,n) and (α,α) nuclear reactions; (2) theoretical studies of nuclear structure, pion reactions, (p,2p) and other knock-out phenomena, ion-ion potentials and heavy ion collisions and (3) use of ion beam techniques for production of surface alloys and blistering by helium ion bombardment. Progress in the fabrication of DUMAS mass separator and tandem accelerator is reported. A 100 keV ion implantation facility has been set up and commissioned. (M.G.B.)

  11. Physics Identity Development: A Snapshot of the Stages of Development of Upper-Level Physics Students

    Science.gov (United States)

    Irving, Paul W.; Sayre, Eleanor C.

    2013-01-01

    As part of a longitudinal study into identity development in upper-level physics students a phenomenographic research method is employed to assess the stages of identity development of a group of upper-level students. Three categories of description were discovered which indicate the three different stages of identity development for this group…

  12. Progress report, Physics Division, July 1 to September 30, 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Progress in the Physics Division, CRNL, for the period July 1 to September 30, 1975 is reported. Operation of the MP tandem accelerator and design studies for a superconducting heavy ion cyclotron are summarized. Research on nuclear reactions and radioisotope decay is reported. Studies of neutron scattering on liquid helium and properties of ferromagnetic alloys are presented. A summary of computing centre operations is also provided. (O.T.)

  13. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example

  14. Georgetown University and Hampton University Prostate Cancer Undergraduate Fellowship Program

    Science.gov (United States)

    2018-01-01

    goals. The first goal was to integrate upper level undergraduate students from Hampton University into the Georgetown Lombardi Comprehensive Cancer...upper level undergraduate Biology and Biochemistry Majors from Hampton University to work throughout the summer participating in prostate cancer...Dominican Republic summer 2017 Marissa Willis HU-GU Fellow Summer 2016 (Notario lab) Biology Major Hampton University, class of 2018, Math and

  15. A Thriving and Innovative Undergraduate Experiential Physics Program

    Science.gov (United States)

    Roughani, Bahram

    2013-03-01

    The thriving physics program at Kettering University has experienced a three-fold increase in the number of physics majors since 2002. Our unique physics program requires students alternate between on-campus academic terms and off-campus co-op work terms on a three months rotation format to complete their degree in 4.5 years that includes summer as either school or co-op term. Students complete a minimum of five terms (~15 months) of cooperative work terms, and two terms (~6 months) of senior thesis work. The IP of the thesis work done at a co-op site belongs to the company. This has attracted co-op sponsors for our program by removing the IP concerns. The cooperative and experiential education part of our program is required for graduation, without any credits assigned to it. At the end of every co-op term students' work performance is evaluated by their co-op supervisor, which should match expected performance standards. In addition to co-op and thesis, our programs include a senior capstone design project course, concentrations within physics (Acoustics, Optics, and Materials), a required technical sequence outside physics, as well as entrepreneurship across curriculum. The success of our student securing the highest paid jobs for undergraduate physics majors in the nation plus their success in graduate studies are the main ``Pull Factors'' that has lead to three fold increase the physics majors since 2002.

  16. Observations Of General Learning Patterns In An Upper-Level Thermal Physics Course

    Science.gov (United States)

    Meltzer, David E.

    2009-11-01

    I discuss some observations from using interactive-engagement instructional methods in an upper-level thermal physics course over a two-year period. From the standpoint of the subject matter knowledge of the upper-level students, there was a striking persistence of common learning difficulties previously observed in students enrolled in the introductory course, accompanied, however, by some notable contrasts between the groups. More broadly, I comment on comparisons and contrasts regarding general pedagogical issues among different student sub-populations, for example: differences in the receptivity of lower- and upper-level students to diagrammatic representations; varying receptivity to tutorial-style instructional approach within the upper-level population; and contrasting approaches to learning among physics and engineering sub-populations in the upper-level course with regard to use of symbolic notation, mathematical equations, and readiness to employ verbal explanations.

  17. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  18. Teaching Quantum Physics in Upper Secondary School in France:

    Science.gov (United States)

    Lautesse, Philippe; Vila Valls, Adrien; Ferlin, Fabrice; Héraud, Jean-Loup; Chabot, Hugues

    2015-01-01

    One of the main problems in trying to understand quantum physics is the nature of the referent of quantum theory. This point is addressed in the official French curriculum in upper secondary school. Starting in 2012, after about 20 years of absence, quantum physics has returned to the national program. On the basis of the historical construction…

  19. Progress report [of] Technical Physics and Prototype Engineering Division, April 1982 - March 1984

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.; Chaudhry, Ramesh

    1985-01-01

    The work done by the Technical Physics and Prototype Engineering Division of the Bhabha Atomic Research Centre (BARC) at Bombay during the period from April 1982 to March 1984 is described in the form of summaries. The main thrust of the work of the Division is towards designing, developing, fabricating and if needed, producing on a large scale various instruments, equipment and components required for the programmes of the BARC and the Department of Atomic Energy. The summaries describing the work are grouped under the headings:(1) vacuum, (2) surface analysis, (3) mass spectrometry, (4) electronics, (5) cryogenics, (6) crystals and detectors, (7) glass technology and devices, and (8) optoelectronics. A list of publications of the staff-members of the Division during the report period is given. (M.G.B.)

  20. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  1. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  2. Report of the Solid State Physics Division (1991-1992)

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the activities carried out in the Solid State Physics Division at Bhabha Atomic Research Centre (BARC) covering the period from 1991-1992. The activities are reported in the form of individual summaries arranged under headings: Research Activities, Instrumentation and Software Development. The main research activity of the Division is centered around the utilisation of the neutron beams at the Dhruva and Cirus reactors. A number of research proposals from the universities, funded by the Inter University Consortium come under the category of powder diffraction studies. Another area of research where there is a good demand from universities is in the field of small angle neutron scattering. In addition to the neutron beam research, a number of other investigations pertaining to Raman scattering, liquid crystals, model membranes, magnetism, protein crystallography etc. have contributed significantly to the research programme. The fully indigenous guide laboratory is expected to become operational soon. A list of published papers, internal reports and submitted theses is given at the end. (author). refs., figs., tabs

  3. Predicting Physical Activity and Healthy Nutrition Behaviors Using Social Cognitive Theory: Cross-Sectional Survey among Undergraduate Students in Chongqing, China.

    Science.gov (United States)

    Xu, Xianglong; Pu, Yang; Sharma, Manoj; Rao, Yunshuang; Cai, Yilin; Zhao, Yong

    2017-11-05

    (1) Background: Generally suggested public health measures to reduce obesity were to limit television (TV) viewing, enhance daily physical activities, enable the consumption of fruit and vegetables, and reduce sugar-sweetened beverage intake. This study analyzed the extent to which selected social cognitive theory constructs can predict these behaviors among Chinese undergraduate students. (2) Methods: This cross-sectional study included 1976 undergraduate students from six universities in Chongqing, China. A self-administered five-point Likert common physical activity and nutrition behavior scale based on social cognitive theory was utilized. (3) Results: This study included 687 (34.77%) males and 1289 (65.23%) females. A total of 60.14% of the students engaged in exercise for less than 30 min per day. Approximately 16.5%of the participants spent at least 4 h watching TV and sitting in front of a computer daily. Approximately 79% of the participants consumed less than five cups of fruit and vegetables daily. Undergraduate students who had high self-efficacy scores had more leisure time physical activities. Those who have high expectation scores had considerable time watching TV and sitting in front of a computer. Undergraduate students who had high expectation and self-efficacy scores had substantially low consumption of sugar-sweetened beverages. Those who had high self-efficacy scores consumed considerable amounts of fruit and vegetables. Furthermore, the type of university, BMI group, gender, age, lack of siblings, and grade level were associated with the aforementioned four behaviors. (4) Conclusion: Physical inactivity and unhealthy nutrition behaviors are common among undergraduate students. This study used social cognitive theory to provide several implications for limiting the TV viewing, enhancing daily physical activities, consuming fruit and vegetables, and reducing sugar-sweetened beverage intake among undergraduate students.

  4. Organization of an undergraduate research group

    International Nuclear Information System (INIS)

    Hill, J.; Noteboom, E.

    1995-01-01

    Traditionally, research groups consist of senior physicists, staff members, and graduate students. The physics department at Creighton University has formed a Relativistic Heavy Ion physics research group consisting primarily of undergraduate students. Although senior staff and graduate students are actively involved, undergraduate research and the education of undergraduates is the focus of the group. The presentation, given by two undergraduate members of the group, will outline progress made in the group's organization, discuss the benefits to the undergraduate group members, and speak to the balance which must be struck between education concerns and research goals

  5. APDAS : Applied Physics Division analytical services

    International Nuclear Information System (INIS)

    1989-01-01

    Applied Physics Division Analytical Services (APDAS) is a new initiative within the Australian Nuclear Science and Technology Organization. Because of its background and achievements in high-tech research, APDAS can provide solutions to many of the problems that arise in Australian industries. One of the facilities available to APDAS is a positive ion particle accelerator. This enables any positive ion in a gaseous medium to be accelerated to energies ranging from a few hundred thousand to three million electron volts for single charge states. Ion beams can be stead-state or pulsed with pulse durations as low as three nanoseconds. Target preparation and fully automated data recording are also available. Accelerator-based services, presently available are outlined in 7 separate leaflets, briefly describing the techniques, particular applications, typical costs and availability. These include : surface analysis and depth profiling using ion beams; standard neutron irradiation facility (SNIF); soil-moisture determination; hydrogen analysis neutron radiography; adsorbed dose calibration standards; gas phase enrichment monitor; 18 O analysis. 26 figs

  6. The Role of Humor in Learning Physics: A Study of Undergraduate Students

    Science.gov (United States)

    Berge, Maria

    2017-01-01

    We all know that they do it, but what do students laugh "about" when learning science together? Although research has shown that students do use humor when they learn science, the role of humor in science education has received little attention. In this study, undergraduate students' laughter during collaborative work in physics has been…

  7. Role of the Land Valuation Division in Property Rating by District Assemblies in Ghana's Upper East Region

    Directory of Open Access Journals (Sweden)

    Maxwell Kwotua Petio

    2013-05-01

    Full Text Available District Assemblies in Ghana are charged with the responsibility of developing their areas of jurisdiction mainly through internally mobilised revenue. As a consequence, the assemblies are empowered by various pieces of legislation to impose local taxes within their jurisdiction. The local taxes include property rates which are a form of tax that only the District Assemblies may levy. The study therefore looked at the levying of property rates in the Upper East Region and assessed the role and institutional capacity of the Land Valuation Division of the Lands Commission in the tax administration. Findings included limited coverage of the tax, use of flat rates due to absence of up-to-date property values, inadequate technical personnel and logistics for the Land Valuation Division (LVD and lack of political will to levy the rates fully. Relevant suggestions are made, such as the need to introduce mass valuation, widen the tax coverage, establish a fund for revaluation and revive the Valuation Training School, as well as provide requisite logistics for efficient performance of the LVD.

  8. Basic abstract algebra for graduate students and advanced undergraduates

    CERN Document Server

    Ash, Robert B

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this text surveys fundamental algebraic structures and maps between these structures. Its techniques are used in many areas of mathematics, with applications to physics, engineering, and computer science as well. Author Robert B. Ash, a Professor of Mathematics at the University of Illinois, focuses on intuitive thinking. He also conveys the intrinsic beauty of abstract algebra while keeping the proofs as brief and clear as possible.The early chapters provide students with background by investigating the basic properties of groups

  9. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    Science.gov (United States)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  10. Engineering Physics Division progress report for period ending November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution.

  11. Engineering Physics Division progress report for period ending November 30, 1980

    International Nuclear Information System (INIS)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution

  12. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  13. DIVISION OF FORMATION IN PHYSICAL EDUCATION: “CHRONICLE OF A DEATH ANNOUNCED”

    Directory of Open Access Journals (Sweden)

    Giovanni Frizzo

    2010-08-01

    Full Text Available The objective of this paper is systematize the process of implementing National Curriculum Guidelines for Physical Education, that promoted the division of the teacher’s formation in Licenciature and Graduation and that currently has been questioned in several universities who are carrying out a process of restructuring curriculum. We suppose that changes in curriculum of Physical Education are the expression of a societal project that needs to form a new worker model to attend the demands of capital, that goes through a structural crisis.

  14. Statistical and thermal physics with computer applications

    CERN Document Server

    Gould, Harvey

    2010-01-01

    This textbook carefully develops the main ideas and techniques of statistical and thermal physics and is intended for upper-level undergraduate courses. The authors each have more than thirty years' experience in teaching, curriculum development, and research in statistical and computational physics. Statistical and Thermal Physics begins with a qualitative discussion of the relation between the macroscopic and microscopic worlds and incorporates computer simulations throughout the book to provide concrete examples of important conceptual ideas. Unlike many contemporary texts on the

  15. Progress report for 1978-79, Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1980-01-01

    The research and development activities of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre, Bombay, during the calendar years 1978 and 1979 are reported. The TPD's major areas of work are electronics instrumentation, crystal technology, mass spectrometers, cryogenic equipment and vacuum equipment. Some of the major achievements are: (1) fabrication of various electronic instruments and components for the pulsed nuclear magnetic resonance spectrometers, (2) growth of large size NaI(Tl) and Ge crystals, (3) growth of CsI, KDP and arsenic selenide crystals, (4) fabrication of quadrupole mass filters and (5) fabrication of mass spectrometers for gas analysis and D/H analysis in water samples. (M.G.B.)

  16. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

    Science.gov (United States)

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.

    2017-01-01

    In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

  17. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study.

    Science.gov (United States)

    Mellis, Birgit; Soto, Patricia; Bruce, Chrystal D; Lacueva, Graciela; Wilson, Anne M; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004-2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students.

  18. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study

    Science.gov (United States)

    Soto, Patricia; Bruce, Chrystal D.; Lacueva, Graciela; Wilson, Anne M.; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004–2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students. PMID:29698502

  19. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    Science.gov (United States)

    Shakur, Asif; Connor, Rainor

    2018-01-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and…

  20. Progress report: Physics Division, 1 July to 30 September 1981

    International Nuclear Information System (INIS)

    1981-11-01

    The work of the Physics Division during the quarter is reviewed. Nuclear physics activities included investigations of beta-delayed proton decay, lifetime measurements using the ISOL facility, radiocarbron dating experiments, studies of high spin states, and crystal blocking measurements for fission fragments from 16 O bombardment of 197 Au. Construction of the haavy ion superconducting cyclotron and development of the high current proton accelerator continued. Neutron diffraction studies were carried out on a number of compounds, low-frequency soliton modes were observed in a magnetic chain compound, vacancy formation energy in thorium metal was measured, and the size of a collision cascade initiated by a single ion passing through condensed matter was calculated. Work in applied mathematics and computation is reviewed

  1. Relationship between Academic Performance with Physical, Psychosocial, Lifestyle, and Sociodemographic Factors in Female Undergraduate Students.

    Science.gov (United States)

    Dubuc, Marie-Maude; Aubertin-Leheudre, Mylène; Karelis, Antony D

    2017-01-01

    The purpose of this study was to investigate the relationship between physical, psychosocial, lifestyle and sociodemographic factors with academic performance in female undergraduate students. One hundred undergraduate female students from the Faculty of Science at the University of Quebec at Montreal participated in this study (mean age = 24.4 ± 4.6 years old). All participants provided their university transcript and had to complete at least 45 course credits from their bachelor degree. Body composition (DXA), handgrip strength, estimated maximal oxygen consumption (VO 2 max) (Bruce Protocol) and blood pressure were measured. Participants also completed a questionnaire on their psychosocial, academic motivation, lifestyle and sociodemographic profile. Significant correlations were observed between GPA with estimated VO 2 max ( r = 0.32), intrinsic motivation toward knowledge ( r = 0.23), intrinsic motivation toward accomplishment ( r = 0.27) and external regulation ( r = -0.30, P = 0.002). In addition, eating breakfast every morning and being an atheist was positively associated with academic performance ( P breakfast explained 28.5 % of the variation in the GPA in our cohort. Results of the present study indicate that motivational, physical and lifestyle factors appear to be predictors of academic performance in female undergraduate students.

  2. E-Division activities report

    International Nuclear Information System (INIS)

    Barschall, H.H.

    1979-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics. In addition, this report describes work on accelerators, radiation damage, microwaves, and plasma diagnostics

  3. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    Science.gov (United States)

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  4. Quantum mechanics for applied physics and engineering

    CERN Document Server

    Fromhold, Albert T

    2011-01-01

    This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch

  5. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  6. Nuclear Physics Divisions progress report for the period 1st January to 31st December 1979

    International Nuclear Information System (INIS)

    Sofield, C.J.; Lees, E.W.; Longworth, G.

    1980-04-01

    The annual progress report of the Nuclear Physics Division of the Atomic Energy Research Division of the Atomic Energy Research Establishment, Harwell for 1979, is presented under the headings; nuclear data and technology for nuclear power, nuclear studies, applications of nuclear and associated techniques, and accelerator operation, maintenance and development. Lists of reports, publications and conference papers and also of divisional, attached and research student staff are appended. (U.K.)

  7. High Energy Physics Division semiannual report of research activities, July 1, 1996 - December 31, 1996

    International Nuclear Information System (INIS)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-12-01

    This report is divided into the following areas: (1) experimental research program; (2) theoretical research program; (3) accelerator research and development; (4) divisional computing activities; (5) publications; (6) colloquia and conference talks; (7) high energy physics community activities; and (7) High Energy Physics Division research personnel. Summaries are given for individual research programs for activities (1), (2) and (3)

  8. Research and development activities of the Neutron Physics Division for the period January 1980 - December 1980

    International Nuclear Information System (INIS)

    Basu, T.K.; Bhakay-Tamhane, S.

    1981-01-01

    The highlights of the research and development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during January - December 1980 are summarised. The R and D activities are in the fields of critical and subcritical fission systems, the plasma focus device, applied neutron physics, neutron and X-ray crystallography, materials physics and seismology. (M.G.B.)

  9. Closing the Feedback Loop: Physics Undergraduates' Use of Feedback Comments on Laboratory Coursework

    Science.gov (United States)

    Donovan, Pam

    2014-01-01

    The laboratory notebooks of physics undergraduates taking two second-year practical courses were audited to discover whether they had used feedback comments in their subsequent coursework. Ninety-five per cent of the 37 students on the first course and 100% of the 14 students on the second course whose work was audited had used feedback. The…

  10. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    International Nuclear Information System (INIS)

    Wahlstroem, C.G.

    1995-01-01

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper

  11. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C.G. [ed.

    1995-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  12. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C G [ed.

    1996-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  13. Guidelines for Undergraduate Exercise Physiology in a Physical Education Teacher Education Program. Guidance Document

    Science.gov (United States)

    National Association for Sport and Physical Education, 2006

    2006-01-01

    A course in Exercise Physiology is a common requirement among undergraduate students preparing for a career in physical education, adult fitness, or athletic training. Often, such courses are taught to an assortment of students from a variety of disciplines (Van Donselaar & Leslie, 1990) with an emphasis on physiological principles applied to…

  14. Multimedia as a Means to Enhance Teaching Technical Vocabulary to Physics Undergraduates in Rwanda

    Science.gov (United States)

    Rusanganwa, Joseph

    2013-01-01

    This study investigates whether the integration of ICT in education can facilitate teaching and learning. An example of such integration is computer assisted language learning (CALL) of English technical vocabulary by undergraduate physics students in Rwanda. The study draws on theories of cognitive load and multimedia learning to explore learning…

  15. A little something from physics for medicine (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2014)

    International Nuclear Information System (INIS)

    2014-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'A little something from physics for medicine', was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) 'Translational medicine as a basis of progress in hematology/oncology'; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) 'Promising nuclear medicine research at the INR, RAS'; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) 'Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics'; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) 'New approaches in laser mass-spectrometry of organic objects'. The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239–1243 (conferences and symposia)

  16. Joint Task Force on Undergraduate Physics Programs: Implications for physics programs and why you should care

    Science.gov (United States)

    Hodapp, Theodore

    2016-03-01

    The content of undergraduate physics programs has not changed appreciably in 50 years, however, the jobs our students take have changed dramatically. Preparing students for careers they are likely to encounter requires physics programs to rethink and in some cases retool to provide an education that will not only educate an individual in the habits of mind and keen sense of how to solve complex technical problems, but also what related skills they will need to be effective in those careers. Do you teach your student how to read or create a budget? How about dealing with a low-performing member of an R&D team? This talk will explore driving forces behind this report, potential implications for physics departments, and practical steps faculty members can take to continue to consider improvements in experiences for our students. This work is supported in part by the National Science Foundation (NSF-1540570).

  17. E-Division activities report

    International Nuclear Information System (INIS)

    Barschall, H.H.

    1981-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in material science. In addition this report describes work on accelerators, microwaves, plasma diagnostics, determination of atmospheric oxygen and of nitrogen in tissue

  18. Research and development activities of the Neutron Physics Division for the period January 1977-December 1978

    International Nuclear Information System (INIS)

    Ramanadham, M.; Joneja, O.P.

    1979-01-01

    The research and development programmes of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, for the period 1977-1978 are outlined. The fields covered include reactor (neutron) physics, fusion and plasma neutronics, biological and high precision crystallography, solid state phenomena and seismology as well as the associated workshop facilities. (K.B.)

  19. Undergraduate Research as a Primary Pathway to STEM Careers: Perspectives from the Council on Undergraduate Research

    Science.gov (United States)

    Manley, P. L.; Ambos, E. L.

    2012-12-01

    Undergraduate research (UR) is one of the most authentic and effective ways to promote student learning, and is a high-impact educational practice that can lead to measurable gains in student retention and graduation rates, as well as career aspirations. In recent years, UR has expanded from intensive summer one-on-one faculty-student mentored experiences to application in a variety of educational settings, including large lower division courses. The Council on Undergraduate Research (CUR), founded in 1978, is a national organization of individual (8000) and institutional members (650) within a divisional structure that includes geosciences, as well as 10 other thematic areas. CUR's main mission is to support and promote high-quality undergraduate student-faculty collaborative research and scholarship that develops learning through research. CUR fulfills this mission through extensive publication offerings, faculty and student-directed professional development events, and outreach and advocacy activities that share successful models and strategies for establishing, institutionalizing, and sustaining undergraduate research programs. Over the last decade, CUR has worked with hundreds of academic institutions, including two-year colleges, to develop practices to build undergraduate research into campus cultures and operations. As documented in CUR publications such as Characteristics of Excellence in Undergraduate Research (COEUR), strategies institutions may adopt to enhance and sustain UR often include: (1) the establishment of a central UR campus office, (2) extensive student and faculty participation in campus-based, as well as regional UR celebration events, (3) development of a consistent practice of assessment of UR's impact on student success, and, (4) establishment of clear policies for recognizing and rewarding faculty engagement in UR, particularly with respect to mentorship and publication with student scholars. Three areas of current focus within the

  20. Progress report 1990/91 of the Division of Fusion Plasma Physics

    International Nuclear Information System (INIS)

    Lehnert, B.

    1991-08-01

    A summary is given of the historical background, research, education and available resources of the Division of Fusion Plasma Physics at the newly established Alfven Laboratory. Experimental and theoretical research is performed, including basic physics of magnetized plasma as well as applications to magnetically confined fusion plasma, and to certain technical and cosmical problems. The major project consists of the 'Extrap' high-beta confinement scheme within which a large experimental facility, EXTRAP T2, is under preparation. This research is performed in terms of extensive international collaboration and commitments, in particular with the European Community (Euratom). The education includes pregraduate and postgraduate teaching, the latter being based on obligatory, optional and extra courses which are connected with the research activities

  1. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    Science.gov (United States)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  2. Academic performance and student engagement in level 1 physics undergraduates

    International Nuclear Information System (INIS)

    Casey, M M; McVitie, S

    2009-01-01

    At the beginning of academic year 2007-08, staff in the Department of Physics and Astronomy at the University of Glasgow started to implement a number of substantial changes to the administration of the level 1 physics undergraduate class. The main aims were to improve the academic performance and progression statistics. With this in mind, a comprehensive system of learning support was introduced, the main remit being the provision of an improved personal contact and academic monitoring and support strategy for all students at level 1. The effects of low engagement with compulsory continuous assessment components had already been observed to have a significant effect on students sitting in the middle of the grade curve. Analysis of data from the 2007-08 class showed that even some nominally high-achieving students achieved lowered grades due to the effects of low engagement. Nonetheless, academic and other support measures put in place during 2007-08 played a part in raising the passrate for the level 1 physics class by approximately 8% as well as raising the progression rate by approximately 10%.

  3. Academic performance and student engagement in level 1 physics undergraduates

    Energy Technology Data Exchange (ETDEWEB)

    Casey, M M; McVitie, S [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)], E-mail: m.casey@physics.gla.ac.uk

    2009-09-15

    At the beginning of academic year 2007-08, staff in the Department of Physics and Astronomy at the University of Glasgow started to implement a number of substantial changes to the administration of the level 1 physics undergraduate class. The main aims were to improve the academic performance and progression statistics. With this in mind, a comprehensive system of learning support was introduced, the main remit being the provision of an improved personal contact and academic monitoring and support strategy for all students at level 1. The effects of low engagement with compulsory continuous assessment components had already been observed to have a significant effect on students sitting in the middle of the grade curve. Analysis of data from the 2007-08 class showed that even some nominally high-achieving students achieved lowered grades due to the effects of low engagement. Nonetheless, academic and other support measures put in place during 2007-08 played a part in raising the passrate for the level 1 physics class by approximately 8% as well as raising the progression rate by approximately 10%.

  4. Report of the Nuclear Physics Division (January 1, 1987 to December 31, 1987)

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Chakrabarty, D.R.

    1988-01-01

    Nuclear Physics Division is involved in research in nuclear and solid state physics. The year 1987 has been a fairly eventful one for the Division in the sense that several activities came to a high level of fruition. A beam of 5 + silicon ions accelerated to about 14 MeV in the BARC-TIFR Pelletron accelerator was obtained for the first time in September. Experiments on the cyclotron at Calcutta and the CN Van-de-Graaff accelerator at Trombay have continued. The latter continued to be heavily utilised for nuclear, chemical, materials and other applications in its twentysixth year of operation. For the neutron scattering programme at Dhruva Reactor two new diffractometers were commissioned, one of a conventional type and another based on a metre long position sensitive detectors (PSD). A neutron interferrometer was successfully operated at the CIRUS reactor. A modular CW argon laser giving a total power of about 2.7 watts has been incorporated with the Raman scattering spectrometer thus increasing the range of performable experiments. The modularity allows quick replacement of parts. A number of interesting investigations were carried out by the members of the Division; among others they include observations of quasi-molecular heavy ion resonances in Sisup(2s), anomalous behaviour of deep sub-barrier fission in uranium, crystalline to amorphous to crystalline transition in tetracyanoethylene, exceptional stability of the quasi-crystal Al 6 CuMg 4 and the development of a phenomenological mode to describe magnetisation curves in the new high-Tsub(c) superconductors. These and many other investigations are reported. (M.G.B.)

  5. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    Science.gov (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  6. Relationship between academic performance with physical, psychosocial, lifestyle, and sociodemographic factors in female undergraduate students

    Directory of Open Access Journals (Sweden)

    Marie-Maude Dubuc

    2017-01-01

    Full Text Available Background: The purpose of this study was to investigate the relationship between physical, psychosocial, lifestyle and sociodemographic factors with academic performance in female undergraduate students. Methods: One hundred undergraduate female students from the Faculty of Science at the University of Quebec at Montreal participated in this study (mean age = 24.4 ± 4.6 years old. All participants provided their university transcript and had to complete at least 45 course credits from their bachelor degree. Body composition (DXA, handgrip strength, estimated maximal oxygen consumption (VO2max (Bruce Protocol and blood pressure were measured. Participants also completed a questionnaire on their psychosocial, academic motivation, lifestyle and sociodemographic profile. Results: Significant correlations were observed between GPA with estimated VO2max (r = 0.32, intrinsic motivation toward knowledge (r = 0.23, intrinsic motivation toward accomplishment (r = 0.27 and external regulation (r = -0.30, P = 0.002. In addition, eating breakfast every morning and being an atheist was positively associated with academic performance (P < 0.05. Finally, a stepwise linear regression analysis showed that external regulation, intrinsic motivation toward accomplishment, VO2max levels and eating a daily breakfast explained 28.5 % of the variation in the GPA in our cohort. Conclusions: Results of the present study indicate that motivational, physical and lifestyle factors appear to be predictors of academic performance in female undergraduate students.

  7. Astronomical Data in Undergraduate courses

    Science.gov (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  8. Gamification: using elements of video games to improve engagement in an undergraduate physics class

    Science.gov (United States)

    Rose, J. A.; O'Meara, J. M.; Gerhardt, T. C.; Williams, M.

    2016-09-01

    Gamification has been extensively implemented and studied in corporate settings and has proven to be more effective than traditional employee-training programs, however, few classroom studies of gamification have been reported in the literature. Our study explored the potential of gamified on-line undergraduate physics content as a mechanism to enhance student learning and motivation. Specifically, the main objective of this work was to determine whether extrinsic motivation indicators commonly used in video games could increase student engagement with course content outside of the classroom. Life Science students taking an introductory physics course were provided access to gamified multiple choice quizzes as part of their course assessment. The quizzes incorporated common gaming elements such as points, streaks, leaderboards and achievements, as well as some gamified graphical enhancements and feedback. Student attitudes and performance among those using the gamified quizzes were examined and compared to non-gamified control groups within the same course. Student engagement was quantified through examining student participation above and beyond the minimum course requirements. The results showed that gaming techniques are significantly correlated with increased engagement with course material outside of the classroom. These results may assist instructors in engaging and motivating students outside the classroom through carefully designed online and distance-delivered undergraduate physics content. Furthermore, the gaming elements incorporated in this study were not specifically tied to the physics content and can be easily translated to any educational setting.

  9. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development

  10. A conference experience for undergraduates

    International Nuclear Information System (INIS)

    Collins, L.A.; Magee, N.H.; Bryant, H.C.; Zeilik, M.

    1999-01-01

    Programs launched by many universities and the federal government expose many undergraduate students in the physical sciences to research early in their careers. However, in their research experiences, undergraduates are not usually introduced to the modes by which scientific knowledge, which they may have helped gather, is communicated and evaluated by working scientists. Nor is it always made clear where the research frontiers really lie. To this end, we guided a selected group of undergraduates through a national scientific conference, followed by a week of tutorials and discussions to help them better understand what had transpired. The program complemented the basic undergraduate research endeavors by emphasizing the importance of disseminating results both to other scientists and to society in general. Tutors and discussion leaders in the second week were experts in their fields and included some of the invited speakers from the main meeting. A considerable improvement in the understanding of the issues and prospects for a career in physics was discernible among the students after their two-week experience. copyright 1999 American Association of Physics Teachers

  11. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.

    1993-05-01

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  12. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    International Nuclear Information System (INIS)

    Ward, R.C.

    1993-05-01

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period

  13. Health perceptions, self and body image, physical activity and nutrition among undergraduate students in Israel.

    Science.gov (United States)

    Korn, Liat; Gonen, Ester; Shaked, Yael; Golan, Moria

    2013-01-01

    This study examines health perceptions, self and body image, physical exercise and nutrition among undergraduate students. A structured, self-reported questionnaire was administered to more than 1500 students at a large academic institute in Israel. The study population was heterogenic in both gender and fields of academic study. High correlations between health perceptions, appropriate nutrition, and positive self and body image were found. The relationships between these variables differed between the subpopulation in the sample and the different genders. Engagement in physical exercise contributed to positive body image and positive health perceptions more than engagement in healthy nutrition. Nutrition students reported higher frequencies of positive health perceptions, positive self and body image and higher engagement in physical exercise in comparison to all other students in the sample. This study suggests, as have many before, that successful health promotion policy should reflect a collectivist rather than an individualist ethos by providing health prerequisites through a public policy of health-promotion, where the academic settings support a healthy lifestyle policy, by increasing availability of a healthy, nutritious and varied menu in the cafeterias, and offering students various activities that enhance healthy eating and exercise. IMPLICATIONS AND CONTRIBUTION: This study examined health perceptions, self-image, physical exercise and nutrition among undergraduate students and found high correlations between these topics. Nutrition students reported higher frequencies of positive health perceptions, and positive self and body image and engaged more in physical exercise when compared with all other students in the sample.

  14. Report of the Solid State Physics Division (July 1, 1990 to December 31, 1991)

    International Nuclear Information System (INIS)

    1992-01-01

    This is the first report summarizing the activities carried out by scientists in the recently constituted Solid State Physics Division at Bhabha Atomic Research Centre (BARC) covering the period from July 1990 to December 1991. The activities are reported in the form of individual summaries arranged under headings : Research Activities, Instrumentation, Papers published, Papers presented, Lectures, Physics colloquia, Theses and other activities. The main thrust of the research activities of the Division relates to experimental investigations of a variety of materials using microscopic scattering techniques like neutron scattering, light scattering, x-ray diffraction and related other techniques like Moessbauer Spectroscopy, calorimetry, nuclear magnetic resonance etc. During the period under review, a large number of high T c superconductors, proteins and enzyme derivatives, micellar systems, model membranes and other complex systems have been investigated to understand their basic structural and dynamical aspects. As a result, the structure-property correlations are better appreciated, whether they relate to drug-membrane interactions or biological functions of enzymes or nature of superconductivity etc. (author). figs

  15. The PROMIS physical function correlates with the QuickDASH in patients with upper extremity illness.

    Science.gov (United States)

    Overbeek, Celeste L; Nota, Sjoerd P F T; Jayakumar, Prakash; Hageman, Michiel G; Ring, David

    2015-01-01

    To assess disability more efficiently with less burden on the patient, the National Institutes of Health has developed the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function-an instrument based on item response theory and using computer adaptive testing (CAT). Initially, upper and lower extremity disabilities were not separated and we were curious if the PROMIS Physical Function CAT could measure upper extremity disability and the Quick Disability of Arm, Shoulder and Hand (QuickDASH). We aimed to find correlation between the PROMIS Physical Function and the QuickDASH questionnaires in patients with upper extremity illness. Secondarily, we addressed whether the PROMIS Physical Function and QuickDASH correlate with the PROMIS Depression CAT and PROMIS Pain Interference CAT instruments. Finally, we assessed factors associated with QuickDASH and PROMIS Physical Function in multivariable analysis. A cohort of 93 outpatients with upper extremity illnesses completed the QuickDASH and three PROMIS CAT questionnaires: Physical Function, Pain Interference, and Depression. Pain intensity was measured with an 11-point ordinal measure (0-10 numeric rating scale). Correlation between PROMIS Physical Function and the QuickDASH was assessed. Factors that correlated with the PROMIS Physical Function and QuickDASH were assessed in multivariable regression analysis after initial bivariate analysis. There was a moderate correlation between the PROMIS Physical Function and the QuickDASH questionnaire (r=-0.55, p<0.001). Greater disability as measured with the PROMIS and QuickDASH correlated most strongly with PROMIS Depression (r=-0.35, p<0.001 and r=0.34, p<0.001 respectively) and Pain Interference (r=-0.51, p<0.001 and r=0.74, p<0.001 respectively). The factors accounting for the variability in PROMIS scores are comparable to those for the QuickDASH except that the PROMIS Physical Function is influenced by other pain conditions while the QuickDASH is

  16. Physics Division progress report, January 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hollen, G.Y.; Schappert, G.T. [comp.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division`s Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La{sub 2}CuO{sub 4+{delta}} Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  17. Modern particle physics

    CERN Document Server

    AUTHOR|(CDS)2079874

    2013-01-01

    Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book

  18. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    Science.gov (United States)

    Shakur, Asif; Connor, Rainor

    2018-03-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and cost-saving achieved by replacing a plethora of traditional laboratory sensors, wires, and equipment clutter with the smart cart are reported here.

  19. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    The studies in 1977 are reviewed. In theoretical nuclear physics: nuclear structure, nuclear reactions, intermediate energy physics; in elementary particle physics: field theory, strong interactions dynamics, nucleon-nucleon interactions, new particles, current algebra, symmetries and quarks are studied [fr

  20. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs.

  1. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    International Nuclear Information System (INIS)

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs

  2. Prevention of upper limb symptoms and signs of nerve afflictions in computer operators: The effect of intervention by stretching

    Directory of Open Access Journals (Sweden)

    Thomsen Gert

    2008-01-01

    Full Text Available Abstract Background In a previous study of computer operators we have demonstrated the relation of upper limb pain to individual and patterns of neurological findings (reduced function of muscles, sensory deviations from normal and mechanical allodynia of nerve trunks. The identified patterns were in accordance with neural afflictions at three specific locations (brachial plexus at chord level, posterior interosseous and median nerve on elbow level. We have introduced an intervention program aiming to mobilize nerves at these locations and tested its efficacy. Methods 125 and 59, respectively, computer operators in two divisions of an engineering consultancy company were invited to answer a questionnaire on upper limb symptoms and to undergo a blinded neurological examination. Participants in one division were subsequently instructed to participate in an upper limb stretching course at least three times during workdays in a six month period. Subjects from the other division served as controls. At the end of the intervention both groups were invited to a second identical evaluation by questionnaire and physical examination. Symptoms and findings were studied in the right upper limb. Perceived changes of pain were recorded and individual and patterns of physical findings assessed for both groups at baseline and at follow-up. In subjects with no or minimal preceding pain we additionally studied the relation of incident pain to the summarized findings for parameters contained in the definition of nerve affliction at the three locations. Results Summarized pain was significantly reduced in the intervention group but unchanged in controls. After the intervention, fewer neurological abnormalities in accordance with nerve affliction were recorded for the whole material but no conclusion could be drawn regarding the relation to the intervention of this reduction. Incident pain correlated to findings in accordance with the three locations of nerve

  3. Research and development activities of the High Pressure Physics Division for the period March 1991-September 1993

    International Nuclear Information System (INIS)

    Godwal, B.K.; Bhadauria, Y.S.

    1993-01-01

    The research and development activities of the High Pressure Physics Division during the period March 1991 to September 1993 are reported in the form of abstracts and titles of the publications. The report is organised into two sections: (A) High Pressure Physics Section, and (B) Seismology Section. A list of staff members of the two sections is also given. (author)

  4. The Rhetoric of Campus Architecture

    Science.gov (United States)

    Smith, Cynthia Duquette

    2016-01-01

    The group activity described in this article was originally designed for an upper-division undergraduate course on Rhetoric and Architecture, but would also be well suited for courses in Persuasion, Rhetorical Criticism, or Visual Rhetoric. Any undergraduate course related to communication and design (including Advertising) could make excellent…

  5. Relationship between Academic Performance with Physical, Psychosocial, Lifestyle, and Sociodemographic Factors in Female Undergraduate Students

    Science.gov (United States)

    Dubuc, Marie-Maude; Aubertin-Leheudre, Mylène; Karelis, Antony D.

    2017-01-01

    Background: The purpose of this study was to investigate the relationship between physical, psychosocial, lifestyle and sociodemographic factors with academic performance in female undergraduate students. Methods: One hundred undergraduate female students from the Faculty of Science at the University of Quebec at Montreal participated in this study (mean age = 24.4 ± 4.6 years old). All participants provided their university transcript and had to complete at least 45 course credits from their bachelor degree. Body composition (DXA), handgrip strength, estimated maximal oxygen consumption (VO2 max) (Bruce Protocol) and blood pressure were measured. Participants also completed a questionnaire on their psychosocial, academic motivation, lifestyle and sociodemographic profile. Results: Significant correlations were observed between GPA with estimated VO2 max (r = 0.32), intrinsic motivation toward knowledge (r = 0.23), intrinsic motivation toward accomplishment (r = 0.27) and external regulation (r = -0.30, P = 0.002). In addition, eating breakfast every morning and being an atheist was positively associated with academic performance (P academic performance in female undergraduate students. PMID:28479964

  6. Upper And Lower Limbs Disability And Personality Traits.

    Science.gov (United States)

    Jabeen, Tahira; Kazmi, Syeda Farhana; Rehman, Atiq Ur; Ahmed, Sajjad

    2016-01-01

    It is believed that the study of personality has the potentials to enhance our prognostic abilities and can better to expose the etiology of mental illness through the relationship of revealed mechanisms. The focus of this study was to investigate and compare the habitual patterns of behavior, thought and emotions of upper and lower limb physically disabled students in terms of personality traits. This cross sectional study consisted of 100 upper limbs and lower limbs disabled students taken from Kingston school Inclusive Education System Abottabad, Mashal special education system Haripur, Syed Ahmed Shaheed special education center Abottabad, Al-Munir Foundation Mansehra and Hera Special Education System Haripur and 100 normal students taken from Islamic International School Abottabad, Falcon Public School Haripur, Iqra Academy Mansehra and Alhamd International School Haripur of Hazara Division by purposive sampling technique. This study was conducted during the month of June 2013 to May 2014. Goldberg five big personality scale was used for measuring personality traits of physically disabled and normal students. The significant difference of personality traits scores between physically disabled students (M = 139.2, SD=12.0) and normal students (M=184.5, SD=13.2), t (198) =25.3, ptraits, i.e., Extraversion, Agreeableness, Conscientiousness, Emotional Stability and Openness to Experience.

  7. Upper and Lower Limbs Disability and Personality Traits

    International Nuclear Information System (INIS)

    Jabeen, T.; Kazmi, S. F.; Rehman, A. U.; Ahmed, S.

    2016-01-01

    Background: It is believed that the study of personality has the potentials to enhance our prognostic abilities and can better to expose the etiology of mental illness through the relationship of revealed mechanisms. The focus of this study was to investigate and compare the habitual patterns of behavior, thought and emotions of upper and lower limb physically disabled students in terms of personality traits. Methods: This cross sectional study consisted of 100 upper limbs and lower limbs disabled students taken from Kingston school Inclusive Education System Abottabad, Mashal special education system Haripur, Syed Ahmed Shaheed special education center Abottabad, Al-Munir Foundation Mansehra and Hera Special Education System Haripur and 100 normal students taken from Islamic International School Abottabad, Falcon Public School Haripur, Iqra Academy Mansehra and Alhamd International School Haripur of Hazara Division by purposive sampling technique. This study was conducted during the month of June 2013 to May 2014. Goldberg five big personality scale was used for measuring personality traits of physically disabled and normal students. Results: The significant difference of personality traits scores between physically disabled students (M = 139.2, SD=12.0) and normal students (M=184.5, SD=13.2), t (198) =25.3, p<.05 was observed. Conclusion: Normal students have high scores as compared to physically disabled students on big five traits, i.e., Extraversion, Agreeableness, Conscientiousness, Emotional Stability and Openness to Experience. (author)

  8. Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives

    Science.gov (United States)

    Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni

    2018-03-01

    This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.

  9. Lightning Talks 2015: Theoretical Division

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  10. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  11. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  12. Computational physics problem solving with Python

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2015-01-01

    The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python progr

  13. Review of student difficulties in upper-level quantum mechanics

    Directory of Open Access Journals (Sweden)

    Chandralekha Singh

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students’ problem-solving and metacognitive skills in these courses. Some of these studies were multiuniversity investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor, and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to overgeneralizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approaches that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics.

  14. What Works for Women in Undergraduate Physics and What We Can Learn from Women's Colleges

    Science.gov (United States)

    Whitten, Barbara L.; Dorato, Shannon R.; Duncombe, Margaret L.; Allen, Patricia E.; Blaha, Cynthia A.; Butler, Heather Z.; Shaw, Kimberly A.; Taylor, Beverley A. P.; Williams, Barbara A.

    We are studying the recruitment and retention of women in undergraduate physics by conducting site visits to physics departments. In this second phase of the project, we visited six physics departments in women's colleges. We compared these departments to each other and to the nine departments in coeducational schools that we visited in phase 1 of the project (Whitten, Foster, & Duncombe, 2003a; Whitten et al., 2003b; Whitten et al., 2004). We learned that women's colleges, much more than coed schools, try to recruit students into the physics major. This has led us to criticize the "leaky pipeline" metaphor often used to describe women in physics and to call attention to women dropping in to the physics pipeline. We discuss our results for students and pedagogy and for faculty and institutions, and we offer some advice on how to make a physics department more female friendly.

  15. Introduction to plasma engineering

    International Nuclear Information System (INIS)

    Roth, J.R.

    1988-01-01

    The author has begun writing a textbook entitled Introduction to Plasma Engineering, which is intended for upper division undergraduates or professionals who are entering the field. This paper features a detailed topical outline of all 20 chapters of the book. The text is organized so that the first five chapters cover plasma physics and basic principles; the next 13 chapters cover the most important engineering applications of plasmas, in order of increasing plasma energy/number density; and two final chapters cover plasma diagnostics and magnetic coil design

  16. What Physicist Mean By The Equals Sign In Undergraduate Education

    Science.gov (United States)

    Zohrabi Alaee, Dina; Kornick, Kellianne; Sayre, Eleanor C.; Franklin, Scott V.

    2017-01-01

    Mathematical concepts and tools have an important role in physics. Faculties want students to think critically about mathematics and the underlying fundamental concepts, rather than simply memorizing a series of equations and answers. The equals sign - ubiquitous in problem solving - carries different conceptual meaning depending on how it is used; this meaning is deeply tied to cultural practices in problem solving in physics. We use symbolic forms to investigate the conceptual and cultural meanings of the equals sign across physics contexts. We built and validated a rubric to classify the ways that physics students use the equals sign in their written work. Our categories are causality, assignments, definitional, balancing, and just math. We analyze students' use of the equals sign in their written homework and exam solutions in an upper-division electrostatics course. We correlate the kinds of equal signs within problem solutions with the difficulty of the problem. We compare they ways students use the equals sign to their course lectures and textbook.

  17. From the history of physics (Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 17 December 2012. The following reports were put on the session's agenda posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Dianov E M (Fiber Optics Research Center, RAS, Moscow) O n the threshold of a peta era ; (2) Zabrodskii A G (Ioffe Physical Technical Institute, RAS, St. Petersburg) S cientists' contribution to the great victory in WWII using the example of the Leningrad (now A F Ioffe) Physical Technical Institute ; (3) Ilkaev R I (Russian Federal Nuclear Center --- All-Russian Research Institute of Experimental Physics, Sarov) M ajor stages of the Soviet Atomic Project ; (4) Cherepashchuk A M (Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow) H istory of the Astronomy history . Papers written on the basis of the reports are published below. . On the Threshold of Peta-era, E M Dianov Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 486–492 . Scientists' contribution to the Great Victory in WWII on the example of the Leningrad (now A F Ioffe) Physical Technical Institute, A G Zabrodskii Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 493–502 . Major stages of the Atomic Project, R I Ilkaev Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 502–509. History of the Universe History, A M Cherepashchuk Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 509–530 (conferences and symposia)

  18. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data.

  19. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data

  20. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  1. Developing Effective Undergraduate Research Experience

    Science.gov (United States)

    Evans, Michael; Ilie, Carolina C.

    2011-03-01

    Undergraduate research is a valuable educational tool for students pursuing a degree in physics, but these experiences can become problematic and ineffective if not handled properly. Undergraduate research should be planned as an immersive learning experience in which the student has the opportunity to develop his/her skills in accordance with their interests. Effective undergraduate research experiences are marked by clear, measurable objectives and frequent student-professor collaboration. These objectives should reflect the long and short-term goals of the individual undergraduates, with a heightened focus on developing research skills for future use. 1. Seymour, E., Hunter, A.-B., Laursen, S. L. and DeAntoni, T. (2004), ``Establishing the benefits of research experiences for undergraduates in the sciences: First findings from a three-year study''. Science Education, 88: 493--534. 2. Behar-Horenstein, Linda S., Johnson, Melissa L. ``Enticing Students to Enter Into Undergraduate Research: The Instrumentality of an Undergraduate Course.'' Journal of College Science Teaching 39.3 (2010): 62-70.

  2. Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients.

    Science.gov (United States)

    Ackerley, Suzanne J; Byblow, Winston D; Barber, P Alan; MacDonald, Hayley; McIntyre-Robinson, Andrew; Stinear, Cathy M

    2016-05-01

    Recovery of upper limb function is important for regaining independence after stroke. To test the effects of priming upper limb physical therapy with intermittent theta burst stimulation (iTBS), a form of noninvasive brain stimulation. Eighteen adults with first-ever chronic monohemispheric subcortical stroke participated in this randomized, controlled, triple-blinded trial. Intervention consisted of priming with real or sham iTBS to the ipsilesional primary motor cortex immediately before 45 minutes of upper limb physical therapy, daily for 10 days. Changes in upper limb function (Action Research Arm Test [ARAT]), upper limb impairment (Fugl-Meyer Scale), and corticomotor excitability, were assessed before, during, and immediately, 1 month and 3 months after the intervention. Functional magnetic resonance images were acquired before and at one month after the intervention. Improvements in ARAT were observed after the intervention period when therapy was primed with real iTBS, but not sham, and were maintained at 1 month. These improvements were not apparent halfway through the intervention, indicating a dose effect. Improvements in ARAT at 1 month were related to balancing of corticomotor excitability and an increase in ipsilesional premotor cortex activation during paretic hand grip. Two weeks of iTBS-primed therapy improves upper limb function at the chronic stage of stroke, for at least 1 month postintervention, whereas therapy alone may not be sufficient to alter function. This indicates a potential role for iTBS as an adjuvant to therapy delivered at the chronic stage. © The Author(s) 2015.

  3. Supporting Upper-Level Undergraduate Students in Building a Systems Perspective in a Botany Course

    Science.gov (United States)

    Zangori, Laura; Koontz, Jason A.

    2017-01-01

    Undergraduate biology majors require biological literacy about the critical and dynamic relationships between plants and ecosystems and the effect human-made processes have on these systems. To support students in understanding systems relationships, we redesigned an undergraduate botany course using an ecological framework and embedded systems…

  4. The Importance of Search as Intertextual Practice for Undergraduate Research

    Science.gov (United States)

    Bodemer, Brett B.

    2012-01-01

    By first reassessing the role of search in the literacy event of the lower division undergraduate paper, this article argues that searching is not a lower-order mental activity but a concurrent, integral component of the research-writing process. This conclusion has large implications for information literacy instructional design, and several…

  5. Safety and Health Division achievements during 40 years

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2012-01-01

    During her speech, presenter outlined several issues regarding on establishment of Safety and Health Division since 40 years. This division contain of 3 sub unit; Physical Safety Group, Medical Physic Group and Non-ionizing Radiation group (NIR). The objectives of this division to implement R and D activities and services regarding safety and radiological health also non-radiological to ensure public safety, environment and asset suit with obligations established by authorities, IAEA standards and regulations.(author)

  6. Transforming Spatial Reasoning Skills in the Upper-Level Undergraduate Geoscience Classroom Through Curricular Materials Informed by Cognitive Science Research

    Science.gov (United States)

    Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.

    2014-12-01

    Spatial visualization is an essential skill in the STEM disciplines, including the geosciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may be unable to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. As a group of geoscience faculty members and cognitive psychologists, we have developed a set of curricular materials for Mineralogy, Sedimentology & Stratigraphy, and Structural Geology courses. These materials are designed to improve students' spatial skills, and in particular to improve students' abilities to reason about spatially complex 3D geological concepts and problems. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate STEM education by removing one significant barrier to success in the STEM disciplines. The curricular materials we have developed are based on several promising teaching strategies that have emerged from cognitive science research on spatial thinking. These strategies include predictive sketching, making visual comparisons, gesturing, and the use of analogy. We have conducted a three-year study of the efficacy of these materials in strengthening the spatial skills of students in upper-level geoscience courses at three universities. Our methodology relies on a pre- and post-test study design, with several tests of spatial thinking skills administered at the beginning and end of each semester. In 2011-2012, we used a "business as usual" approach to gather baseline data, measuring how much students' spatial thinking skills improved in response to the existing curricula. In the two subsequent years we have incorporated our new curricular materials, which can be found on the project website: http://serc.carleton.edu/spatialworkbook/activities.html Structural Geology

  7. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  8. Nuclear Physics Division Biennial Report 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B K; Jain, A K [eds.; Nuclear Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    1999-09-01

    This report brings out, in brief, an overview of the research and development activities of the Division during the last two years. The main work-horse for the experimental research had been our 14 MV Pelletron Accelerator facility situated at TIFR. This facility, this year, also completed ten years of a very fruitful and productive operation. The beam time available to users during this period had been outstanding. It was around (60-70)%, which is very much at the international level of any efficiently run facility. To mark the occasion a two day seminar was held. In addition the division had collaborative research programs at various international advanced accelerators centres, like RHIC, CERN, COSY, RIKEN and Legnaro. These collaboration involved the development and fabrication of detector systems for quark-gluon plasma experiments at RHIC and eta-meson production at COSY. The experiments were carried out at these centres using the heavy-ion and the intermediate energy proton/deuteron beams. On the development side, the main efforts have been on the installation and commissioning of the Folded Tandem Ion Accelerator (FOTIA). The machine is expected to be ready soon during the current year. In addition, a write-up for a multi-GeV hadron facility proposal has also been initiated during the last two years by the division. (author)

  9. Laboratory portrait: the Saclay nuclear physics division

    International Nuclear Information System (INIS)

    Alamanos, N.; Auger, F.

    2005-01-01

    The research activities of the nuclear physics division (SPHN) of DAPNIA (Cea) take place within strong national and international collaborations. Its programs cover a broad range of topics in nuclear physics from low to high energies, they include the structure and dynamics of the nucleus, the structure of the nucleon, the search for phase transitions in nuclear matter, and contribution to the development of nuclear energy. Concerning the structure of the nucleus, SPHN is involved in the study of the structure of light exotic nuclei such as He 6-8 , C 10-11 , Ne 27 and in the study of shape coexistence in Kr isotopes. The experiments are performed at GANIL. SPHN is also involved in the study of the structure of Md 251 through experiments made in Finland. Near-barrier and sub-barrier fusion of light unstable nuclei and their respective stable isotopes with U 238 targets are studied in Louvain-la-Neuve (Belgium). Concerning nuclear phase transitions, the purpose of our activities is twofold: the study of the liquid-gas phase transition in nuclei at relatively low incident energies and the search for the quark-gluon plasma (QGP) at very high energies. We look for QGP signatures in 2 experiments: Phenix with the accelerator RHIC at Bnl and Alice at the LHC (CERN). Concerning the structure of the nucleon, SPHN is involved in 2 experimental programs both using electromagnetic probes, one to obtain information on the spin carried by the gluons in the proton (Compass at CERN) and the other to extract information on generalized parton distributions by means of deeply virtual Compton scattering (Clas at Jlab). Concerning nuclear energy, the activities are focused along 3 main lines: spallation studies, neutron cross-section measurements and application oriented modeling. (A.C.)

  10. Effects of online games on student performance in undergraduate physics

    Science.gov (United States)

    Sadiq, Irfan

    The present state of physics teaching and learning is a reflection of the difficulty of the subject matter which has resulted in students' low motivation toward physics as well as lack of meaningful and deeper learning experiences. In light of an overall decline in interest in physics, an investigation of alternate teaching and learning methods and tools was appropriate. The research posed the following question: To what extent do online games about kinematics and two-dimensional motion impact student performance in undergraduate general physics as measured by a unit posttest? Two intact classes of 20 students each were randomly assigned to either the experimental group or the control group. Only the experimental group received the treatment of using online games. The duration of topics covered in the game content was identical to the lecture on kinematics and two-dimensional motion. Instructors for the experimental group incorporated online games in their regular classroom teaching, whereas those in the control group continued with their previously used curriculum without games. This study was conducted in three weekly sessions. Although students were not selected using random sampling, existing classes were randomly assigned to either the experimental group or the control group. There were 20 students in the experimental group and 20 students in the control group. The independent samples t test was conducted to compare the means of two independently sampled experimental and control groups. Analysis of covariance (ANCOVA) was used to determine if the two groups were significantly different with regard to their general physics performance on the posttest while controlling for the pretest scores. Analysis of posttest and pretest scores revealed that game-based learning did not significantly impact student performance.

  11. The influence of personality and ability on undergraduate teamwork and team performance.

    Science.gov (United States)

    Rhee, Jinny; Parent, David; Basu, Anuradha

    2013-12-01

    The ability to work effectively on a team is highly valued by employers, and collaboration among students can lead to intrinsic motivation, increased persistence, and greater transferability of skills. Moreover, innovation often arises from multidisciplinary teamwork. The influence of personality and ability on undergraduate teamwork and performance is not comprehensively understood. An investigation was undertaken to explore correlations between team outcomes, personality measures and ability in an undergraduate population. Team outcomes included various self-, peer- and instructor ratings of skills, performance, and experience. Personality measures and ability involved the Five-Factor Model personality traits and GPA. Personality, GPA, and teamwork survey data, as well as instructor evaluations were collected from upper division team project courses in engineering, business, political science, and industrial design at a large public university. Characteristics of a multidisciplinary student team project were briefly examined. Personality, in terms of extraversion scores, was positively correlated with instructors' assessment of team performance in terms of oral and written presentation scores, which is consistent with prior research. Other correlations to instructor-, students' self- and peer-ratings were revealed and merit further study. The findings in this study can be used to understand important influences on successful teamwork, teamwork instruction and intervention and to understand the design of effective curricula in this area moving forward. The online version of this article (doi:10.1186/2193-1801-2-16) contains supplementary material, which is available to authorized users.

  12. Physical Fitness and Metabolic Profile among Malay Undergraduates of a Public University in Selangor Malaysia

    OpenAIRE

    M. Emad; M. Kandiah; W. K. Lim; M. Y. Barakatun-Nisak; A. Rahmat; S. Norasruddin; M. Appukutty

    2017-01-01

    This study investigated health-related components of physical fitness consisting of morphological fitness (body fat % or BF %; Body Mass Index or BMI; and waist circumference or WC), metabolic fitness (blood glucose, lipid profiles and haemoglobin) and aerobic capacity (VO2max). This crosssectional study involved 324 undergraduates recruited voluntarily by systematic random sampling from a public university in the city Shah Alam, Selangor Malaysia. The respondents’ aerobic capacity was measur...

  13. Esoteric elementary particle phenomena in undergraduate physics: spontaneous symmetry breaking and scale invariance

    International Nuclear Information System (INIS)

    Greenberger, D.M.

    1978-01-01

    We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer

  14. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  15. Scientific explanations in Greek upper secondary physics textbooks

    Science.gov (United States)

    Velentzas, Athanasios; Halkia, Krystallia

    2018-01-01

    In this study, an analysis of the structure of scientific explanations included in physics textbooks of upper secondary schools in Greece was completed. In scientific explanations for specific phenomena found in the sample textbooks, the explanandum is a logical consequence of the explanans, which in all cases include at least one scientific law (and/or principle, model or rule) previously presented, as well as statements concerning a specific case or specific conditions. The same structure is also followed in most of the cases in which the textbook authors explain regularities (i.e. laws, rules) as consequences of one or more general law or principle of physics. Finally, a number of the physics laws and principles presented in textbooks are not deduced as consequences from other, more general laws, but they are formulated axiomatically or inductively derived and the authors argue for their validity. Since, as it was found, the scientific explanations presented in the textbooks used in the study have similar structures to the explanations in internationally known textbooks, the findings of the present work may be of interest not only to science educators in Greece, but also to the community of science educators in other countries.

  16. Facebook, stress, and incidence of upper respiratory infection in undergraduate college students.

    Science.gov (United States)

    Campisi, Jay; Bynog, Pamela; McGehee, Hope; Oakland, Joshua C; Quirk, Shannon; Taga, Carlee; Taylor, Morgan

    2012-12-01

    Having a large social network is generally beneficial to health. However, it is unclear how Internet-based social networks might influence health. Chronic stress can have negative health consequences, and some data suggest that Facebook could be a new source of psychological stress. Thus, we examined undergraduate college student perceptions of Facebook use and incidence of upper respiratory infections (URIs). We hypothesized that subjects with more diverse networks (i.e., more friends on Facebook) would have fewer URIs than their less diverse counterparts; that subjects reporting Facebook-induced stress would be more susceptible to URIs; and that subjects with more diverse networks who report Facebook-induced stress would be less susceptible to URIs than subjects with less diverse social networks who reported Facebook-induced stress. In this prospective study, healthy college students completed online questionnaires that assessed use and perceptions of Facebook and technology, and then were interviewed weekly for 10 weeks to track incidence of URI. URI episodes were defined by a symptom-based criterion. The social network size was significantly related to the rate of URI, such that, the larger the social network, the greater the incidence rate of URI. Most (85.7 percent) respondents experienced some degree of Facebook-induced stress. The effects of Facebook-induced stress on incidence of URI varied across the social network size, such that, the impact of stress on the URI incidence rate increased with the size of the social network. These results are largely in contrast to our hypotheses, but clearly suggest an association between Facebook use, psychological stress, and health.

  17. Argonne National Laboratory Physics Division annual report, January--December 1996

    International Nuclear Information System (INIS)

    Thayer, K.J.

    1997-08-01

    The past year has seen several of the Physics Division's new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne's massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year

  18. Promoting Success in the Physical Sciences: The University of Wisconsin's Physics Learning Program

    Science.gov (United States)

    Nossal, S. M.; Jacob, A. T.

    2002-05-01

    The Physics Learning Program at the University of Wisconsin-Madison provides small group, academic and mentoring support for students enrolled in algebra-based introductory physics courses. Those students accepted into our program are potentially at-risk academically in their physics course or for feeling isolated at the University. They include, among others, students who have not taken high school physics, returning adults, minority students, students with disabilities, and students with English as a second language. A core component of the program is the peer-lead teaching and mentoring groups that match upper level undergraduate physics majors with students potentially at-risk in introductory physics. The tutors receive ongoing training and supervision throughout the year. The program has expanded over the years to include staff tutors, the majority of whom are scientists who seek additional teaching experience. The Physics Peer Mentor Tutor Program is run in collaboration with a similar chemistry program at the University of Wisconsin's Chemistry Learning Center. We will describe our Physics Learning Programs and discuss some of the challenges, successes, and strategies used to work with our tutors and students.

  19. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  20. Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory

    International Nuclear Information System (INIS)

    Moreno, R; Page, A; Riera, J; Hueso, J L

    2014-01-01

    In this paper, we present a simple experiment to introduce the nonlinear behaviour of oscillating systems in the undergraduate physics laboratory. The transverse oscillations of a spring allow reproduction of three totally different scenarios: linear oscillations, nonlinear oscillations reducible to linear for small displacements, and intrinsically nonlinear oscillations. The chosen approach consists of measuring the displacements using video photogrammetry and computing the velocities and the accelerations by means of a numerical differentiation algorithm. In this way, one can directly check the differential equation of the motion without having to integrate it, or perform an experimental study of the potential energy in each of the analysed scenarios. This experiment allows first year students to reflect on the consequences and the limits of the linearity assumption for small displacements that is so often made in technical studies. (paper)

  1. Infrared Spectroscopy as a Preview of Coming Attractions: Teaching Chemistry with Instrumental Methods at Two-Year Colleges

    Science.gov (United States)

    Brown, David R.; Bushey, Michelle

    2010-01-01

    Two-year colleges (2YCs) provide a significant amount of chemical education to undergraduates in the United States. By design, the charge of the 2YCs is to provide coursework at the lower-division level. Nonetheless, general chemistry courses in 2YCs can be enhanced with content to prepare future chemistry majors for upper-division education. The…

  2. Fermilab | Particle Physics Division

    Science.gov (United States)

    Diversity Education Safety Sustainability and Environment Contact Science Science Particle Physics Neutrinos Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics

  3. Using Research Data to Stimulate Critical Thinking in Undergraduate Geoscience Courses: Examples and Future Directions

    Science.gov (United States)

    Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H.

    2007-12-01

    The results of major research initiatives, such as NSF-MARGINS, IODP and its predecessors DSDP and ODP, Ridge 2000, and NOAA's Ocean Explorer and Vents Programs provide a rich library of resources for inquiry-based learning in undergraduate classes in the geosciences. These materials are scalable for use in general education courses for the non-science major to upper division major and graduate courses, which are both content-rich and research-based. Examples of these materials include images and animations drawn from computer presentations at research workshops and audio/video clips from web sites, as well as data repositories, which can be accessed through GeoMapApp, a data exploration and visualization tool developed as part of the Marine Geoscience Data System by researchers at the LDEO (http://www.geomapapp.org/). Past efforts have focused on recreating sea-going research experiences by integrating and repurposing these data in web-based virtual environments to stimulate active student participation in laboratory settings and at a distance over the WWW. Virtual expeditions have been created based on multibeam mapping of the seafloor near the Golden Gate, bathymetric transects of the major ocean basins, subduction zone seismicity and related tsunamis, water column mapping and submersible dives at hydrothermal vents, and ocean drilling of deep-sea sediments to explore climate change. Students also make use of multichannel seismic data provided through the Marine Seismic Data Center of UTIG to study subduction zone processes at convergent plate boundaries. We will present the initial stages of development of a web-based virtual expedition for use in undergraduate classes, based on a recent 3-D seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan.

  4. Current programmes of Metallurgy Division (1991)

    International Nuclear Information System (INIS)

    1991-01-01

    Current research and development programmes of the Metallurgy Division are listed under the headings: 1)Thrust Areas, 2)High Temperature Materials Section, 3)Chemical Metallurgy Section, 4)Metallurgical Thermochemistry Section, 5)Physical Metallurgy Section, 6)Mechanical Metallurgy Section, 7)Corrosion Metallurgy Section, 8)Electrochemical Science and Technology Section, 9)Ceramics Section, and 10)Fabrication and Maintenance Group. A list of equipment in the Division and a list of sciientific personnel of the Division are also given. (M.G.B.)

  5. Health Physics Division annual report for the period ending December 31, 1972 Part I : Research and development

    International Nuclear Information System (INIS)

    1973-01-01

    The Health Physics Division of the Bhabha Atomic Research Centre, Bombay (India) is responsible for: (i) assessment and control of radiation and industrial hazards in various research establishments and industrial installations of the Department of Atomic Energy and (ii) prescribing limits and conditions in respect of waste releases to the environment from the above establishments and installations. For effective discharge of these responsibilities, the Division is engaged in various research programmes in the following areas: (1) radiation dosimetry (2) instrumentation (3) pollution (4) environmental radioactivity, both natural and artificial (5) radioactive contamination and nuclear safety (6) industrial hygiene and safety (7) radioecology (8) micrometeorology. These programmes are described in brief. (M.G.B.)

  6. Foundations of nuclear and particle physics

    CERN Document Server

    Donnelly, T William; Holstein, Barry R; Milner, Richard G; Surrow, Bernd

    2017-01-01

    This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.

  7. The Advanced Labs Website: resources for upper-level laboratories

    Science.gov (United States)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  8. How teaching practices are connected to student intention to enrol in upper secondary school physics courses

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari

    2016-05-01

    Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine whether pedagogical approaches influence student intention to enrol in upper secondary school physics courses. Sample: This study examined a clustered sample of 2949 Finnish students in the final year of comprehensive school (15-16 years old). Methods: Through explorative factor analysis, we extracted several variables that were expected to influence student intention to enrol in physics courses. We applied partial correlation to determine the underlying interdependencies of the variables. Results: The analysis revealed that the main predictor of enrolment in upper secondary school physics courses is whether students feel that physics is important. Although statistically significant, partial correlations between variables were rather small. However, the analysis of partial correlations revealed that pedagogical practices influence inquiry and attitudinal factors. Pedagogical practices that emphasise science experimentation and the social construction of knowledge had the strongest influence. Conclusions: The research implies that to increase student enrolment in physics courses, the way students interpret the subject's importance needs to be addressed, which can be done by the pedagogical practices of discussion, teacher demonstrations, and practical work.

  9. In the foot steps of Madame Curie: A cross-case study of female undergraduate physics majors

    Science.gov (United States)

    Jaladanki, Vani Savithri

    Females are disproportionately underrepresented in STEM (science, technology, engineering, and mathematics) majors. Further, the number of females who take physics in college has declined. While female students make up 61% of graduates in biological sciences and 50% in chemistry, the proportion of women completing physics degrees is only 21% (Sawtelle, 2011). In order to improve women's access to science and engineering education, research must focus on personal and environmental factors that motivate them to select these fields (AAUW, 2010). The purpose of this study was to explore how the educational experiences of three female undergraduate physics majors contribute to their current dispositions toward, interest in, and pursuit of physics as a major at a large southern research university. This qualitative study employs symbolic interactionism (Blumer, 1969) as its methodological framework and social cognitive career theory (Lent, Brown, & Hackett, 2002) as its theoretical framework. Case study methods (Yin, 2006) were implemented to investigate the experiences of three participants. The primary sources of data included critical incident interviews (Flanagan, 1954), photographs, documents, object elicitations, and the researcher's reflections. Narrative and arts-based techniques were employed to analyze and represent data. Findings are presented as co-constructed narratives of the participants' journeys to becoming undergraduate physics majors. Three major themes emerged from the cross case analysis: carving new spaces, authoring an empowered self, and show me you care and so will I. The direct experiences of engaging with science at a young age and social persuasions of family members, teachers, and peers strongly influenced the participants' interest in and pursuit of physics. Their current dispositions to physics result from vicarious experiences with professors and peers in combination with the social persuasions of the latter. This study informs science

  10. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  11. CBCT evaluation of the upper airway morphological changes in growing patients of class II division 1 malocclusion with mandibular retrusion using twin block appliance: a comparative research.

    Directory of Open Access Journals (Sweden)

    Liang Li

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate the morphological changes of upper airway after Twin Block (TB treatment in growing patients with Class II division 1 malocclusion and mandibular retrusion compared with untreated Class II patients by cone beam computed tomography (CBCT. MATERIALS AND METHODS: Thirty growing patients who have completed TB treatment were recruited into TB group. The control group (n = 30 was selected from the patients with the same diagnosis and without TB treatment. CBCT scans of the pre-treatment (T1 and post-treatment (T2 data of TB group and control data were collected. After three-dimensional (3D reconstruction and registration of T1 and T2 data, the morphological changes of upper airway during TB treatment were measured. The statistical differences between T1 and T2 data of TB group as well as T2 and control data were accessed by t-test. RESULTS: During the TB treatment, the mandible moved advanced by 3.52 ± 2.14 mm in the horizontal direction and 3.77 ± 2.10 mm in the vertical direction. The hyoid bone was in a more forward and inferior place. The upper airway showed a significant enlargement in nasopharynx, oropharynx and hypopharynx. In addition, the nasopharynx turned more circular, and the oropharynx became more elliptic in transverse shape. However, the transverse shape of the hypopharynx showed no significant difference. After comparison between T2 and control data, only the horizontal movement of the hyoid bone, the volumetric expansion of the oropharynx and hypopharynx, and changes of the oropharyngeal transverse shape showed significant difference. CONCLUSION: Compared to the untreated Class II patients, the upper airway of growing patients with Class II division 1 malocclusion and mandibular retrusion showed a significant enlargement in the oropharynx and hypopharynx as well as a more elliptic transverse shape in the oropharynx, and the hyoid bone moved to an anterior position after TB

  12. Green Chemistry Decision-Making in an Upper-Level Undergraduate Organic Laboratory

    Science.gov (United States)

    Edgar, Landon J. G.; Koroluk, Katherine J.; Golmakani, Mehrnaz; Dicks, Andrew P.

    2014-01-01

    A self-directed independent synthesis experiment was developed for a third-year undergraduate organic laboratory. Students were provided with the CAS numbers of starting and target compounds and devised a synthetic plan to be executed over two 4.5 h laboratory periods. They consulted the primary literature in order to develop and carry out an…

  13. Research and development activities of the Neutron Physics Division for the period January 1979-December 1979

    International Nuclear Information System (INIS)

    Basu, T.K.; Vohra, Y.K.

    1980-01-01

    Research and Development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay during the calendar year 1979 are reported in the form of individual summaries. The Division's R and D work covers the fields of reactor neutron physics, applied neutronics, fusion plasma pinches, materials physics, crystallography and seismology. Some of the highlights of these activities are: (1) the development of a criticality formula for PURNIMA-II, a BeO reflected 233 U-uranyl nitrate solution critical experiment, (2) commissioning of a 21 K3, 50 KV fast capacitor bank for experiments of high-density plasma focus devices, (3) the design of a bore-hole model to develop carbon-oxygen logging method for identifying the oil and water zones in sand-stone formations in the earth's sub-surface using neutrons from a 14 MeV neutron generator, (4) proposal of a theoretical model for the equation of state of high-density matter in the intermediate pressure (approximately 10-100 Megabar) region, (5) development of a quantitative relation between the crater dimensions and the mound kinetic energy imparted by the shock from an underground nuclear explosion, and (6) texture studies of uranium fuel element samples using neutron diffraction. Progress of work on PURNIMA-II experiment, fusion blanket neutronics experiment, monitoring of nuclear explosions and discriminating them from earthquakes using seismic and microbarographic data is also reported. (M.G.B.)

  14. Metacognitive gimmicks and their use by upper level physics students

    Science.gov (United States)

    White, Gary; Sikorski, Tiffany-Rose; Landay, Justin

    2017-01-01

    We report on the initial phases of a study of three particular metacognitive gimmicks that upper-level physics students can use as a tool in their problem-solving kit, namely: checking units for consistency, discerning whether limiting cases match physical intuition, and computing numerical values for reasonable-ness. Students in a one semester Griffiths electromagnetism course at a small private urban university campus are asked to respond to explicit prompts that encourage adopting these three methods for checking answers to physics problems, especially those problems for which an algebraic expression is part of the final answer. We explore how, and to what extent, these students adopt these gimmicks, as well as the time development of their use. While the term ``gimmick'' carries with it some pejorative baggage, we feel it describes the essential nature of the pedagogical idea adequately in that it gets attention, is easy for the students to remember, and represents, albeit perhaps in a surface way, some key ideas about which professional physicists care.

  15. Impact of virtual reality games on psychological well-being and upper limb performance in adults with physical disabilities: A pilot study.

    Science.gov (United States)

    Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S

    2017-04-01

    There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.

  16. Predictors of Academic Achievement among Physical Education and Sports Undergraduate Students

    Directory of Open Access Journals (Sweden)

    Ertuğrul Şahin

    2018-01-01

    Full Text Available Although a number of studies have attempted to determine the antecedents, correlates, and consequences of students’ academic performance, there are few studies in the literature that examine the correlates of academic achievement for physical education and sports undergraduate students. The aim of this study was to investigate the relationship between the academic achievement of first-year physical education and sports students and their sociodemographics, attitudes towards the teaching profession, personality traits, and achievement goal orientations. The participants of the study consisted of 127 (67% male physical education and sports students, ranging in age from 16 to 30 years old when they began their studies. Participants responded to a questionnaire to determine their sociodemographic characteristics, their attitudes towards the teaching profession in their high school years, their core self-evaluations, and their achievement goal orientations. Pearson correlation analysis results showed that students’ first year grade-point average (GPA was associated with gender, high school GPA, core-self evaluations, and mastery-approach achievement goal orientation. Results of the regression analysis suggested that the three variables that predicted the students’ first year GPA were their mastery-approach scores, attitudes towards the teaching profession in high school years, and high school GPA. In order to prevent academic failure in physical education and sports students, those who do not have a mastery-approach goal orientation and who had a low high school GPA should be identified at the beginning of the academic year, so that educational interventions can be directed at these students.

  17. The physics of the Manhattan project

    International Nuclear Information System (INIS)

    Reed, B. Cameron

    2011-01-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This book, prepared by a gifted teacher of physics, explores the challenges that faced the members of the Manhattan project. In doing so it gives a clear introduction to fission weapons at the level of an upper-level undergraduate physics student. Details of nuclear reactions, their energy release, the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design are covered. An extensive list of references and a number of problems for self-study are included. Links are given to several spreadsheets with which users can run many of the calculations for themselves. (orig.)

  18. The physics of the Manhattan project

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B. Cameron [Alma Coll., MI (United States). Dept. of Physics

    2011-07-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This book, prepared by a gifted teacher of physics, explores the challenges that faced the members of the Manhattan project. In doing so it gives a clear introduction to fission weapons at the level of an upper-level undergraduate physics student. Details of nuclear reactions, their energy release, the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design are covered. An extensive list of references and a number of problems for self-study are included. Links are given to several spreadsheets with which users can run many of the calculations for themselves. (orig.)

  19. The Physics of the Manhattan Project

    CERN Document Server

    Reed, B. Cameron

    2011-01-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This book, prepared by a gifted teacher of physics, explores the challenges that faced the members of the Manhattan project. In doing so it gives a clear introduction to fission weapons at the level of an upper-level undergraduate physics student. Details of nuclear reactions, their energy release, the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design are covered. An extensive list of references and a number of problems for self-study are included. Links are given to several spreadsheets with which users can run many of the calculations for themselves.

  20. The Undergraduate ALFALFA Team: Outcomes for Over 250 Undergraduate Participants

    Science.gov (United States)

    Troischt, Parker; Koopmann, Rebecca A.; Haynes, Martha P.; ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 19 institutions founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. In this talk we present outcomes for the more than 250 undergraduate students who have who have participated in the program during the 8 years of funding. 40% of these students have been women and members of underrepresented groups. To date 148 undergraduate students have attended annual workshops at Arecibo Observatory, interacting with faculty, graduate students, their peers, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 159 summer research projects and 120 academic year (e.g., senior thesis) projects. 68 students have traveled to Arecibo Observatory for observing runs and 55 have presented their results at national meetings such as the AAS. Through participation in the UAT, students are made aware of career paths they may not have previously considered. More than 90% of alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005

  1. Prevention of upper limb symptoms and signs of nerve afflictions in computer operators

    DEFF Research Database (Denmark)

    Riis Jepsen, Jørgen; Thomsen, Gert

    2008-01-01

    could be drawn regarding the relation to the intervention of this reduction. Incident pain correlated to findings in accordance with the three locations of nerve affliction. CONCLUSION: A six month course of stretching seems to reduce upper limb symptoms in computer operators but we could......ABSTRACT: BACKGROUND: In a previous study of computer operators we have demonstrated the relation of upper limb pain to individual and patterns of neurological findings (reduced function of muscles, sensory deviations from normal and mechanical allodynia of nerve trunks). The identified patterns......, respectively, computer operators in two divisions of an engineering consultancy company were invited to answer a questionnaire on upper limb symptoms and to undergo a blinded neurological examination. Participants in one division were subsequently instructed to participate in an upper limb stretching course...

  2. Evaluation of a Voluntary Tutoring Program in Chemistry, Physics and Mathematics for First-Year Undergraduates at Universidad Andres Bello, Chile

    Science.gov (United States)

    Jiménez, Verónica A.; Acuña, Fabiola C.; Quiero, Felipe J.; López, Margarita; Zahn, Carmen I.

    2015-01-01

    This work describes the preliminary results of a tutoring program that provides personalized academic assistance to first-year undergraduates enrolled in introductory chemistry, physics and mathematics courses at Universidad Andres Bello (UNAB), in Concepción, Chile. Intervened courses have historically large enrolments, diverse student population…

  3. Research and development activities of the Neutron Physics Division for the period January 1981 to December 1981

    International Nuclear Information System (INIS)

    Bhakay-Tamhane, Sandhya; Roy, Falguni

    1982-01-01

    Research and development activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during 1981 are reported in the form of individual summaries. These are presented under headings: Purnima laboratories, crystallography, materials physics and seismology. These activities include studies of: (i) 233 U-uranyl nitrate solution critical systems, (2) fusion blanket neutronics, (3) fusion plasma experiments using 20 KJ capacitor bank, (4) crystal structures using neutron and X-ray diffraction, (5) materials behaviour at high temperatures and under shock waves, and (6) detection of underground nuclear explosions and discriminating them from earthquakes. Design work for many systems/components of the 233 U-fuelled neutron source reactor under construction at Kalpakkam has been completed and fabrication work is being taken up. A 500 KJ capacitor bank facility is being set up for pulsed fusion studies. The feasibility study for a three-dimensional network of sensors close to the working mines of the Kolar Gold Fields, for rockburst studies, was completed. Several computer programs for biological crystallography were implemented on the computers made available to the Division. A list of publications and lectures by the staff is given in an appendix. (M.G.B.)

  4. Work-related physical and psychosocial risk factors for sick leave in patients with neck or upper extremity complaints

    NARCIS (Netherlands)

    Bot, S.D.M.; Terwee, C.B.; Windt, D.A.W.M. van der; Beek, A.J. van der; Bouter, L.M.; Dekker, J.

    2007-01-01

    Objectives: To study work-related physical and psychosocial risk factors for sick leave among patients who have visited their general practitioner for neck or upper extremity complaints. Methods: Three hundred and forty two patients with neck or upper extremity complaints completed self-report

  5. The Survey of the Knowledge and Skills Required for Transition Teachers in High School Divisions of Special Needs Education with Intellectual Disabilities : Based on the opinions of transition teachers in high school divisions of special needs education with intellectual disabilities

    OpenAIRE

    Fujii, Asuka; Ochiai, Toshiro

    2011-01-01

    The purpose of this study is to investigate the opinions that transition teachers in upper second education division of special school which are requested to themselves on the knowledge and skills needed for transition from school to work. The questionnaires were sent to 574 upper second education divisions of special schools. As the result of statistic analyze, the four domains about the knowledge and skills needed for transition. They were "Needs Assessment", "Coordination" "Job-Coaching" a...

  6. Introduction to Computational Physics for Undergraduates

    Science.gov (United States)

    Zubairi, Omair; Weber, Fridolin

    2018-03-01

    This is an introductory textbook on computational methods and techniques intended for undergraduates at the sophomore or junior level in the fields of science, mathematics, and engineering. It provides an introduction to programming languages such as FORTRAN 90/95/2000 and covers numerical techniques such as differentiation, integration, root finding, and data fitting. The textbook also entails the use of the Linux/Unix operating system and other relevant software such as plotting programs, text editors, and mark up languages such as LaTeX. It includes multiple homework assignments.

  7. The Effectiveness of Problem-Based Learning in the Web-Based Environment for the Delivery of an Undergraduate Physics Course

    Science.gov (United States)

    Atan, Hanafi; Sulaiman, Fauziah; Idrus, Rozhan M.

    2005-01-01

    This paper reports the investigation of the effectiveness of Problem-Based Learning (PBL) within a web-based environment in the delivery of an undergraduate Physics course. The effectiveness was evaluated by comparing the performances and the perceptions of the sample students (n=67) using the web-based PBL and comparing the outcomes with those of…

  8. Progress report: Plasma Physics Division (July 1985 to March 1990)

    International Nuclear Information System (INIS)

    Venkatramani, N.; Thakur, A.V.; Viswanadam, C.

    1991-01-01

    The report summarizes the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during the period July 1985 to March 1990. The R and D activites are reported under the headings: 1) Thermal Plasma, 2) Electron Beam Technology, and 3) Industrial Design Section. A list of scientific and technical staff working in the different sections of the Division is also given. (author)

  9. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. CT findings of a displaced left upper division bronchus in adults: Its importance for performing safe left pulmonary surgery

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, Yasuji, E-mail: oshiro4211@yahoo.co.jp [Department of Radiology, National Hospital Organization Okinawa Hospital, 20-14 Ganeko 3-chome, Ginowan city, Okinawa 901-2214 (Japan); Murayama, Sadayuki [Department of Radiology, University of the Ryukus School of Medicine, 207 Uehara, Nishihara-cho, Okinawa 903-0215 (Japan); Ohta, Morio [Department of Surgery, Nakagami Hospital, 6-25-5 Chibana, Okinawa-city, Okinawa 904-2195 (Japan); Teruya, Takao [Second Department of Surgery, University of the Ryukus School of Medicine, 207 Uehara, Nishihara-cho, Okinawa 903-0215 (Japan)

    2013-08-15

    Purpose: The aim of this study was to describe the CT findings of a displaced left upper division bronchus (DLUDB) in adults. Materials and methods: Ten patients with DLUDB were identified. The following CT features were assessed: origin of the DLUDB; distance between the origin of the DLUDB and the origin of the left upper lobe (LUL) bronchus; height of the origin of the DLUDB against the left pulmonary artery (LPA); difference of the main bronchial length; ventilated segment; course of the left pulmonary artery against the DLUDB; and presence of an accessory fissure or other anomalies. Results: DLUDB arose from the posterolateral or lateral aspect of the left main bronchus immediately proximal to the origin of the LUL bronchus. It tended to course along the posterior wall of the LPA and to ventilate the apicoposterior segment with or without the anterior segment. The LPA passed between the displaced bronchus and the lingular bronchus. The origin of the DLUDB was located lower than the inferior wall of the proximal LPA in 6 patients. The accessory fissure between the associated segment and remaining part of the LUL and right tracheal bronchus coexisted in 7 and 3 patients respectively. Conclusion: DLUDB has characteristic findings on CT. Radiologists should be aware of this entity and inform the surgeon as it can prevent serious complications in a patient who may undergo lobectomy of the left lung.

  11. CT findings of a displaced left upper division bronchus in adults: Its importance for performing safe left pulmonary surgery

    International Nuclear Information System (INIS)

    Oshiro, Yasuji; Murayama, Sadayuki; Ohta, Morio; Teruya, Takao

    2013-01-01

    Purpose: The aim of this study was to describe the CT findings of a displaced left upper division bronchus (DLUDB) in adults. Materials and methods: Ten patients with DLUDB were identified. The following CT features were assessed: origin of the DLUDB; distance between the origin of the DLUDB and the origin of the left upper lobe (LUL) bronchus; height of the origin of the DLUDB against the left pulmonary artery (LPA); difference of the main bronchial length; ventilated segment; course of the left pulmonary artery against the DLUDB; and presence of an accessory fissure or other anomalies. Results: DLUDB arose from the posterolateral or lateral aspect of the left main bronchus immediately proximal to the origin of the LUL bronchus. It tended to course along the posterior wall of the LPA and to ventilate the apicoposterior segment with or without the anterior segment. The LPA passed between the displaced bronchus and the lingular bronchus. The origin of the DLUDB was located lower than the inferior wall of the proximal LPA in 6 patients. The accessory fissure between the associated segment and remaining part of the LUL and right tracheal bronchus coexisted in 7 and 3 patients respectively. Conclusion: DLUDB has characteristic findings on CT. Radiologists should be aware of this entity and inform the surgeon as it can prevent serious complications in a patient who may undergo lobectomy of the left lung

  12. Physics Division annual report - 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  13. Physics Division annual report - 1998

    International Nuclear Information System (INIS)

    1999-01-01

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research

  14. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  15. Journal of Undergraduate Research, Volume VIII, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2008-01-01

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  16. Teaching undergraduate biomechanics with Just-in-Time Teaching.

    Science.gov (United States)

    Riskowski, Jody L

    2015-06-01

    Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.

  17. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  18. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1981

    International Nuclear Information System (INIS)

    Birge, R.W.

    1982-12-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1981. During the year under review the Division devoted roughly half its effort to the final construction stages of the Time Projection Chamber and other equipment for the PEP-4 facility at SLAC. The year was marked by the successful passage of milestone after milestone - the two-sector test of the TPC with cosmic rays in July 1981, the full TPC test in November 1981, and the roll-in onto the PEP beam line on 6 January 1982. In other e + e - experiments, the Mark II detector continued its productive data-taking at PEP. In other areas, the final stages of data analysis, particularly for the structure functions, proceeded for the inelastic muon scattering experiment performed at Fermilab, a muon polarimeter experiment was developed and mounted at TRIUMF to probe for the presence of right-handed currents in muon decay, and the design and then construction began of fine-grained hadron calorimeters for the end caps of the Colliding Detector Facility at Fermilab. The Particle Data Group intensified its activities, despite financial constraints, as it proceeded toward production of a new edition of its authoritative Review of Particle Properties early in 1982. During 1981 the Theoretical Physics Group pursued a diverse spectrum of research in its own right and also interacted effectively with the experimental program. Research and development continued on the segmented mirror for the ten-meter telescope proposed by the University of California. Activities in the Computer Science and Mathematics Department encompassed networking, database management, software engineering, and computer graphics, as well as basic research in nonlinear phenomena in combustion and fluid flow

  19. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1982-12-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1981. During the year under review the Division devoted roughly half its effort to the final construction stages of the Time Projection Chamber and other equipment for the PEP-4 facility at SLAC. The year was marked by the successful passage of milestone after milestone - the two-sector test of the TPC with cosmic rays in July 1981, the full TPC test in November 1981, and the roll-in onto the PEP beam line on 6 January 1982. In other e/sup +/e/sup -/ experiments, the Mark II detector continued its productive data-taking at PEP. In other areas, the final stages of data analysis, particularly for the structure functions, proceeded for the inelastic muon scattering experiment performed at Fermilab, a muon polarimeter experiment was developed and mounted at TRIUMF to probe for the presence of right-handed currents in muon decay, and the design and then construction began of fine-grained hadron calorimeters for the end caps of the Colliding Detector Facility at Fermilab. The Particle Data Group intensified its activities, despite financial constraints, as it proceeded toward production of a new edition of its authoritative Review of Particle Properties early in 1982. During 1981 the Theoretical Physics Group pursued a diverse spectrum of research in its own right and also interacted effectively with the experimental program. Research and development continued on the segmented mirror for the ten-meter telescope proposed by the University of California. Activities in the Computer Science and Mathematics Department encompassed networking, database management, software engineering, and computer graphics, as well as basic research in nonlinear phenomena in combustion and fluid flow.

  20. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    Science.gov (United States)

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  1. Developing critical thinking, creativity and innovation skills of undergraduate students

    Science.gov (United States)

    Shoop, Barry L.

    2014-07-01

    A desirable goal of engineering education is to teach students how to be creative and innovative. However, the speed of technological innovation and the continual expansion of disciplinary knowledge leave little time in the curriculum for students to formally study innovation. At West Point we have developed a novel upper-division undergraduate course that develops the critical thinking, creativity and innovation of undergraduate science and engineering students. This course is structured as a deliberate interactive engagement between students and faculty that employs the Socratic method to develop an understanding of disruptive and innovative technologies and a historical context of how social, cultural, and religious factors impact the acceptance or rejection of technological innovation. The course begins by developing the background understanding of what disruptive technology is and a historical context about successes and failures of social, cultural, and religious acceptance of technological innovation. To develop this framework, students read The Innovator's Dilemma by Clayton M. Christensen, The Structure of Scientific Revolutions by Thomas S. Kuhn, The Discoverers by Daniel J. Boorstin, and The Two Cultures by C.P. Snow. For each class meeting, students survey current scientific and technical literature and come prepared to discuss current events related to technological innovation. Each student researches potential disruptive technologies and prepares a compelling argument of why the specific technologies are disruptive so they can defend their choice and rationale. During course meetings students discuss the readings and specific technologies found during their independent research. As part of this research, each student has the opportunity to interview forward thinking technology leaders in their respective fields of interest. In this paper we will describe the course and highlight the results from teaching this course over the past five years.

  2. An analogy of a magnetic mirror in mechanics

    International Nuclear Information System (INIS)

    Lal, Amit; Badiger, Shrikrishna M

    2005-01-01

    The motion of a charged particle in a magnetic mirror device is compared to the motion of a bead spiralling into a smooth hollow cone. The complete solution of the motion of the bead is derived and physical aspects of the solution obtained are discussed. Similarities between the motion of the bead and that of a charged particle in a magnetic mirror device are pointed out. The effort is primarily aimed at enhancing the physical understanding of the mechanics of a charged particle in a magnetic mirror device and secondarily at proposing an equivalent mechanics problem, devoid of any electro-dynamical aspect but still possessing all the interesting features of the original problem. The proposed problem can be taught at upper-division undergraduate level

  3. 30 years of Physics Education Research at the University of Washington

    Science.gov (United States)

    Shaffer, Peter S.

    2017-01-01

    Over the past 30 years, members of the UW Physics Education Group have examined student learning in courses serving a wide range of populations. Most of the focus has been on elementary, middle, and high school teachers and students in introductory university physics courses, but more recently, the effort has expanded to include physics majors in upper-division courses on quantum mechanics and electrodynamics. In general, the group has taken a practical approach that focuses on identifying instructional strategies that are effective at promoting conceptual understanding and student reasoning ability. Examples will be drawn from across these courses to illustrate common themes and connections.

  4. The undergraduate physics tutorial program at CSU Los Angeles assessment of utility and areas of interest

    Science.gov (United States)

    Avetyan, Smbat

    The Physics Education Research (PER) group at the University of Washington have researched traditional teaching methods and found that students in introductory physics are lacking a conceptual understanding of the physics material. The solution they put forth is an interactive tutorial program designed to meet the lack of conceptual understanding. Since the tutorial programs inception at CSU Los Angeles in Fall 2006 no evaluation has been successfully undertaken therefore the effect of the tutorial program in the physics 200 series is deeply obscure to the department. The research has shed light on the tutorial program and brought into context its effectiveness on the overall physics 200 series courses at CSU Los Angeles. The researcher has addressed the following research questions, what overall effect does the tutorial program have on the Physics 200 series curriculum? What is the size and significance of gains attributable to the undergraduate calculus based Physics 200 series tutorial program at CSU Los Angeles? What can we learn from gains about individual weekly lessons from the Physics 200 series tutorial courses? What is the correlation of tutorial gains with student final course grades? Are the gains from the tutorial program different for genders? Is there a difference in gains based on the different students' colleges?

  5. The Effect of Problem-Based Learning on Undergraduate Students' Learning about Solutions and Their Physical Properties and Scientific Processing Skills

    Science.gov (United States)

    Tosun, Cemal; Taskesenligil, Yavuz

    2013-01-01

    The aim of this study was to investigate the effect of Problem-Based Learning (PBL) on undergraduate students' learning about solutions and their physical properties, and on their scientific processing skills. The quasi experimental study was carried out through non-equivalent control and comparison groups pre-post test design. The data were…

  6. Exploring the undergraduate experience of Latina students in Science, Technology, Engineering, and Mathematics (STEM) majors: Motivators and strategies for achieving baccalaureate attainment

    Science.gov (United States)

    Carbajal, Sandy C.

    Drawing from Latino/a Critical Race Theory and the related Community Cultural Wealth (CCW) model, I concentrate on three forms of CCW---aspirational, navigational, and resistance capital---for this qualitative study on the undergraduate experience of Latina students in Science, Technology, Engineering, and Mathematics (STEM) majors, focusing on strategies and achieving baccalaureate attainment. I interviewed ten Latina students and asked them questions regarding their educational experiences in STEM majors, what contributed to their degree completion, and the strategies they employed for achieving baccalaureate attainment. I identified and described six themes within the study (the underrepresentation of Latinas in STEM majors, the lack of preparation by academic programs for upper division courses, motivators, involvement, time management, and support networks) that, when combined, contributed to participants' degree attainment. This study concludes with implications for policy and practice that would allow universities to better assist Latinas in STEM majors to achieve baccalaureate attainment.

  7. The effect of physical activity in leisure time on neck and upper limb symptoms

    NARCIS (Netherlands)

    Heuvel, S.G. van den; Heinrich, J.; Jans, M.P.; Beek, A.J. van der; Bongers, P.M.

    2005-01-01

    Background. Little is known of the preventive effects of physical activity in leisure time on neck and upper limb symptoms. Methods. A cohort of 1742 employees was selected from a prospective cohort study with a follow-up period of 3 years. Independent variables were sporting activities and

  8. SU-E-E-07: An Adaptable Approach for Education On Medical Physics at Undergraduate and Postgraduate Levels

    International Nuclear Information System (INIS)

    Miller-Clemente, R; Mendez-Perez, L

    2015-01-01

    Purpose: To contribute to the professional profile of future medical physicists, technologists and physicians, and implement an adaptable educational strategy at both undergraduate and postgraduate levels. Methods: The Medical Physics Block of Electives (MPBE) designed was adapted to the Program of B.S. in Physics. The conferences and practical activities were developed with participatory methods, with interdisciplinary collaboration from research institutions and hospitals engaged on projects of Research, Development and Innovation (RDI). The scientific education was implemented by means of critical analysis of scientific papers and seminars where students debated on solutions for real research problems faced by medical physicists. This approach included courses for graduates not associated to educational programs of Medical Physics (MP). Results: The implementation of the MPBE began in September 2014, with the electives of Radiation MP and Introduction to Nuclear Magnetic Resonance. The students of second year received an Introduction to MP. This initiative was validated by the departmental Methodological Workshop, which promoted the full implementation of the MPBE. Both postgraduated and undergraduate trainees participated in practices with our DICOM viewer system, a local prototype for photoplethysmography and a home-made interface for ROC analysis, built with MATLAB. All these tools were designed and constructed in previous RDI projects. The collaborative supervision of University’s researchers with clinical medical physicists will allow to overcome the limitations of residency in hospitals, to reduce the workload for clinical supervisors and develop appropriate educational activities. Conclusion: We demonstrated the feasibility of adaptable educational strategies, considering available resources. This provides an innovative way for prospective medical physicists, technologists and radiation oncologists. This strategy can be implemented in several regions

  9. SU-E-E-07: An Adaptable Approach for Education On Medical Physics at Undergraduate and Postgraduate Levels

    Energy Technology Data Exchange (ETDEWEB)

    Miller-Clemente, R [Centro de Biofisica Medica, Santiago De Cuba, Santiago de Cuba (Cuba); Universidad de Oriente, Santiago De Cuba, Santiago de Cuba (Cuba); Mendez-Perez, L [Universidad de Oriente, Santiago De Cuba, Santiago de Cuba (Cuba)

    2015-06-15

    Purpose: To contribute to the professional profile of future medical physicists, technologists and physicians, and implement an adaptable educational strategy at both undergraduate and postgraduate levels. Methods: The Medical Physics Block of Electives (MPBE) designed was adapted to the Program of B.S. in Physics. The conferences and practical activities were developed with participatory methods, with interdisciplinary collaboration from research institutions and hospitals engaged on projects of Research, Development and Innovation (RDI). The scientific education was implemented by means of critical analysis of scientific papers and seminars where students debated on solutions for real research problems faced by medical physicists. This approach included courses for graduates not associated to educational programs of Medical Physics (MP). Results: The implementation of the MPBE began in September 2014, with the electives of Radiation MP and Introduction to Nuclear Magnetic Resonance. The students of second year received an Introduction to MP. This initiative was validated by the departmental Methodological Workshop, which promoted the full implementation of the MPBE. Both postgraduated and undergraduate trainees participated in practices with our DICOM viewer system, a local prototype for photoplethysmography and a home-made interface for ROC analysis, built with MATLAB. All these tools were designed and constructed in previous RDI projects. The collaborative supervision of University’s researchers with clinical medical physicists will allow to overcome the limitations of residency in hospitals, to reduce the workload for clinical supervisors and develop appropriate educational activities. Conclusion: We demonstrated the feasibility of adaptable educational strategies, considering available resources. This provides an innovative way for prospective medical physicists, technologists and radiation oncologists. This strategy can be implemented in several regions

  10. A Peer Mentor Tutor Program in Physics

    Science.gov (United States)

    Nossal, S. M.; Jacob, A. T.; Buehlman, J. D.; Middlecamp, C. H.

    2001-05-01

    The Peer Mentor Tutor (PMT) program in the University of Wisconsin-Madison's Physics Department matches upper level undergraduate physics majors in small groups with students potentially at-risk for having academic trouble with their gateway introductory non-calculus physics course or for feeling isolated at the University. The program enhances students'learning and confidence by providing an emphasis on problem solving, a supportive environment for asking questions, and opportunities for acquiring missing math skills. The students assisted include, among others, returning adults, students of color,students with English as a second language, and students who have never taken physics in high school. The tutors acquire teaching and leadership experience with ongoing training throughout the year. The Physics PMT program is run in collaboration with a similar program in Chemistry. The peer model is also being applied to other science courses at the University of Wisconsin. We will describe the structure of the Physics PMT program and our current efforts to expand the program into a broader Physics Learning Center that may serve multiple purposes and courses.

  11. Wavefront division digital holography

    Science.gov (United States)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  12. Challenges and Resources of Mexican American Students within the Family, Peer Group, and University: Age and Gender Patterns.

    Science.gov (United States)

    Lopez, Edward M.

    1995-01-01

    A survey of 100 Mexican American undergraduate students assessed their perceptions of five challenges (and associated resources) to completing college: financial problems, domestic responsibilities, academic discouragement, and racial and gender discrimination. There were no differences between upper- and lower-division students. Males were more…

  13. Mathematics Career Simulations: An Invitation

    Science.gov (United States)

    Sinn, Robb; Phipps, Marnie

    2013-01-01

    A simulated academic career was combined with inquiry-based learning in an upper-division undergraduate mathematics course. Concepts such as tenure, professional conferences and journals were simulated. Simulation procedures were combined with student-led, inquiry-based classroom formats. A qualitative analysis (ethnography) describes the culture…

  14. Using Quenching to Detect Corrosion on Sculptural Metalwork: A Real-World Application of Fluorescence Spectroscopy

    Science.gov (United States)

    Hensen, Cory; Clare, Tami Lasseter; Barbera, Jack

    2018-01-01

    Fluorescence spectroscopy experiments are a frequently taught as part of upper-division teaching laboratories. To expose undergraduate students to an applied fluorescence technique, a corrosion detection method, using quenching, was adapted from authentic research for an instrumental analysis laboratory. In the experiment, students acquire…

  15. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1978-10-01

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  16. Undergraduate paramedic students cannot do drug calculations

    Science.gov (United States)

    Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett

    2012-01-01

    BACKGROUND: Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. METHODS: A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. RESULTS: The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they ‘did not have any drug calculations issues’. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. CONCLUSIONS: This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment. PMID:25215067

  17. Undergraduate paramedic students cannot do drug calculations.

    Science.gov (United States)

    Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett

    2012-01-01

    Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they 'did not have any drug calculations issues'. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment.

  18. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  19. Environmental Research Division technical progress report: January 1986--October 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases

  20. Environmental Research Division technical progress report: January 1986--October 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  1. Fundamental math and physics for scientists and engineers

    CERN Document Server

    Yevick, David

    2014-01-01

    This text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations, focusing on content relevant to practical applications.Covers  major undergraduate physics topics including the complete Physics GRE subject examination syllabusOverview of key results in undergraduate applied mathematics and introduces scientific programmingPresents simple, coherent derivations and illustrations of fundamental concepts

  2. Incorporating Inquiry into Upper-Level Undergraduate Homework Assignments: The Mini-Journal

    Science.gov (United States)

    Whittington, Alan; Speck, Angela; Witzig, Stephen; Abell, Sandra

    2010-05-01

    The US National Science Education Standards (2000) state that science should be taught through inquiry. The five essential features of classroom inquiry are that the leaner (i) engages in scientifically oriented questions, (ii) gives priority to evidence in responding to questions, (iii) formulates explanations from evidence, (iv) connects explanations to scientific knowledge, and (v) communicates and justifies explanations. One difficulty in achieving this vision at the university level lies in the common perception that inquiry be fully open and unstructured, and that its implementation will be impractical due to time and material constraints. In an NSF-funded project, "CUES: Connecting Undergraduates to the Enterprise of Science," faculty developed new inquiry-based laboratory curriculum materials using a "mini-journal" approach, which is designed as an alternative to the cookbook laboratory and represents the way that scientists do science. Here we adapt this approach to a homework assignment in an upper-level Planetary Science class, and show that inquiry is achievable in this setting. Traditional homeworks in this class consisted of problem sets requiring algebraic manipulation, computation, and in most cases an appraisal of the result Longer questions are broken down into chunks worth 1 to 4 points. In contrast, the mini-journal is a short article that is modeled in the way that scientists do and report science. It includes a title, abstract, introduction (with clear statement of the problem to be tackled), a description of the methods, results (presented as both tables and graphs), a discussion (with suggestions for future work) and a list of cited work. Students devise their research questions and hypothesis from the paper based on a logical next step in the investigation. Guiding questions in the discussion can assist the students ("it would be interesting to evaluate the effect of ..."). Students submit their own minijournal, using the same journal

  3. The artery blood supply variant of the upper limb

    Science.gov (United States)

    MASLARSKI, IVAN

    2015-01-01

    Variations of arterial patterns in the upper limb have represented the most common subject of vascular anatomy. Different types of artery branching pattern of the upper limb are very important for orthopedists in angiographic and microvascular surgical practice. The brachial artery (BA) is the most important vessel in the normal vascular anatomy of the upper limb. The classical pattern of the palmar hand region distribution shows the superficial palmar arch. Normally this arch is formed by the superficial branch of the ulnar artery and completed on the lateral side by one of these arteries: the superficial palmar branch of the radial artery, the princeps pollicis artery, the superficial palmar branch of the radial artery or the median artery. After the routine dissection of the right upper limb of an adult male cadaver, we found a very rare variant of the superficial arch artery – a division in a higher level brachial artery. We found this division at 10.4 cm from the beginning of the brachial artery. This superficial brachial artery became a radial artery and was not involved in the formation of the palm arch. In the forearm region, the artery variant was present with the median artery and the ulnar artery, which form the superficial palm arch. PMID:26733754

  4. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  5. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  6. 2016.11.22 Updated Materials Physics and Applications Division Overview Presentation for TV monitor in 3-1415-Lobby

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Susan M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    These slides are the updated overview presentation for the TV monitor in 3-1415-Lobby at Los Alamos National Laboratory (LANL). It gives an overview of the Materials Physics and Applications Division, including descriptions of the leaders, where researchers are fellows (such as APS or OSA), the newest LANL fellows at MPA, and many other researchers who have won prizes. Finally, MPA's research accomplishments and focuses are detailed.

  7. Effect of upper body plyometric training on physical performance in healthy individuals: A systematic review.

    Science.gov (United States)

    Singla, Deepika; Hussain, M Ejaz; Moiz, Jamal Ali

    2018-01-01

    To determine the impact of upper body plyometric training (UBPT) on physical performance parameters such as strength, ball throwing speed, ball throw distance and power in healthy individuals. PubMed, Scopus, ResearchGate and ERIC databases were searched up to August 2017. Selection of articles was done if they described the outcomes of an upper body plyometric exercise intervention; included measures of strength, ball throwing speed, ball throw distance, or power; included healthy individuals; used a randomized control trial; and had full text available in English language. The exclusion criteria were unpublished research work and clubbing of UBPT with some other type(s) of training apart from routine sports training. PEDro scale was used to rate the quality of studies eligible for this review. Initially 264 records were identified and out of them only 11 articles met the eligibility criteria and were selected (PEDro score = 4 to 6). Though large to very small effects observed in improving ball throwing velocity, ball throwing distance, power and strength of upper limb muscles after UBPT, the results should be implemented with caution. Inconclusive results obtained preclude any strong conclusion regarding the efficacy of UBPT on physical performance in healthy individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Using a Vaccine Proposal Assignment to Help Students Synthesize Topics Covered in an Undergraduate Immunology Course

    Directory of Open Access Journals (Sweden)

    Rebecca L. Sparks-Thissen

    2015-08-01

    Full Text Available Undergraduate students often have difficulty keeping track of all the pieces of the immune response and how they relate to each other.  To help students synthesize the information in an upper-level, undergraduate immunology course, the students in my course investigate the immune response to pathogen of their choosing and then use that information to design a vaccine to that pathogen.

  9. Nanofabrication and Electrochemical Characterization of Self- Assembled Monolayers Sandwiched between Metal Nanoparticles and Electrode Surfaces

    Science.gov (United States)

    Cea, Pilar; Martín, Santiago; Gonza´lez-Orive, Alejandro; Osorio, Henrry M.; Quintín, Pablo; Herrer, Lucía

    2016-01-01

    Nanoscience and nanotechnology have reached the syllabi of many upper-division undergraduate and master level courses all over the world. There is therefore a growing need for practical exercises that illustrate the fabrication, characterization, properties, and applications of nanomaterials. Here we describe an advanced-level laboratory…

  10. Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course

    Science.gov (United States)

    Carroll, John M.; Jiang, Hao; Borge, Marcela

    2015-01-01

    Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…

  11. Purification and Electrophoretic Characterization of Lactate Dehydrogenase from Mammalian Blood: A Different Twist on a Classic Experiment

    Science.gov (United States)

    Brunauer, Linda S.

    2016-01-01

    A multiweek protein purification suite, suitable for upper-division biochemistry or biotechnology undergraduate students, is described. Students work in small teams to isolate the enzyme lactate dehydrogenase (LDH) from a nontraditional tissue source, mammalian blood, using a sequence of three column chromatographic procedures: ion-exchange, size…

  12. Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer

    Science.gov (United States)

    Grasse, Elise K.; Torcasio, Morgan H.; Smith, Adam W.

    2016-01-01

    Visible absorbance spectroscopy is a widely used tool in chemical, biochemical, and medical laboratories. The theory and methods of absorbance spectroscopy are typically introduced in upper division undergraduate chemistry courses, but could be introduced earlier with the right curriculum and instrumentation. A major challenge in teaching…

  13. Physics momentum 'stars' draw majors

    CERN Multimedia

    Lindström, I

    2003-01-01

    Over the past decade, the number of University of Arizona students declaring physics as their major has doubled, amid a national decline. According to a recent report by the National Task Force on Undergraduate Physics, it is the university's dedication to its undergraduate physics program which draws students in (1 page).

  14. Interference by amplitude division with extended sources by paraxial boundary conditions

    International Nuclear Information System (INIS)

    Liñares, J; Nistal, M C

    2014-01-01

    We present a wave-optics paraxial approach to the interference by amplitude division produced by plane-parallel films (or plates) and non-plane-parallel films, or by equivalent optical devices such as a Michelson interferometer, when they are illuminated with extended (spatially incoherent) quasi-monochromatic sources. To the best of our knowledge, the most common approaches to the study of interference are based, for simplicity, on the combined use of geometrical optics concepts, such as the optical path length along a ray, together with some wave-optics concepts such as optical phases. However, interference phenomena have been the means by which the wave nature of light has been established and therefore geometrical and wave concepts are so far-off that their simultaneous use can give rise to misleading concepts. Therefore, the primary aim of this work is to provide an analytical homogeneous description of interference by amplitude division using only paraxial spherical waves and boundary conditions at smooth interfaces or discontinuities in such a way that the calculation of the total optical field, interference irradiance, fringe visibility, coherence degree, localization of the interference and so on, can be made in a unified way by taking a fully wave-optics approach. The paraxial regime is enough in most cases and, moreover, interference is generally collected by an optical instrument such as a lens or the eye itself, in which a paraxial approximation is required. This work is particularly aimed at university physics teachers and undergraduate and first year postgraduate students. (papers)

  15. High Intensity Physical Exercise and Pain in the Neck and Upper Limb among Slaughterhouse Workers: Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Emil Sundstrup

    2014-01-01

    Full Text Available Slaughterhouse work involves a high degree of repetitive and forceful upper limb movements and thus implies an elevated risk of work-related musculoskeletal disorders. High intensity strength training effectively rehabilitates musculoskeletal disorders among sedentary employees, but less is known about the effect among workers with repetitive and forceful work demands. Before performing randomized controlled trials it may be beneficial to assess the cross-sectional connection between exercise and musculoskeletal pain. We investigated the association between high intensity physical exercise and pain among 595 slaughterhouse workers in Denmark, Europe. Using logistic regression analyses, odds ratios for pain and work disability as a function of physical exercise, gender, age, BMI, smoking, and job position were estimated. The prevalence of pain in the neck, shoulder, elbow, and hand/wrist was 48%, 60%, 40%, and 52%, respectively. The odds for experiencing neck pain were significantly lower among slaughterhouse workers performing physical exercise (OR = 0.70, CI: 0.49–0.997, whereas the odds for pain in the shoulders, elbow, or hand/wrist were not associated with exercise. The present study can be used as general reference of pain in the neck and upper extremity among slaughterhouse workers. Future studies should investigate the effect of high intensity physical exercise on neck and upper limb pain in slaughterhouse workers.

  16. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  17. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  18. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  19. Socially Responsible Knowledge and Behaviors: Comparing Upper vs. Lower Classmen

    Science.gov (United States)

    Kozar, Joy M.; Connell, Kim Y. Hiller

    2010-01-01

    Utilizing a sample of undergraduate students and survey research methods, this study examined knowledge on issues of social responsibility within the apparel and textiles industry, comparing the sophistication among upper- versus lower-classmen. The study also investigated the differences between students in their socially responsible apparel…

  20. Theoretical physics 8 statistical physics

    CERN Document Server

    Nolting, Wolfgang

    2018-01-01

    This textbook offers a clear and comprehensive introduction to statistical physics, one of the core components of advanced undergraduate physics courses. It follows on naturally from the previous volumes in this series, using methods of probability theory and statistics to solve physical problems. The first part of the book gives a detailed overview on classical statistical physics and introduces all mathematical tools needed. The second part of the book covers topics related to quantized states, gives a thorough introduction to quantum statistics, followed by a concise treatment of quantum gases. Ideally suited to undergraduate students with some grounding in quantum mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successf...

  1. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  2. Theoretical Division progress report

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1979-04-01

    This report presents highlights of activities in the Theoretical (T) Division from October 1976-January 1979. The report is divided into three parts. Part I presents an overview of the Division: its unique function at the Los Alamos Scientific Laboratory (LASL) and within the scientific community as a whole; the organization of personnel; the main areas of research; and a survey of recent T-Division initiatives. This overview is followed by a survey of the 13 groups within the Division, their main responsibilities, interests, and expertise, consulting activities, and recent scientific accomplisments. The remainder of the report, Parts II and III, is devoted to articles on selected research activities. Recent efforts on topics of immediate interest to energy and weapons programs at LASL and elsewhere are described in Part II, Major National Programs. Separate articles present T-Divison contributions to weapons research, reactor safety and reactor physics research, fusion research, laser isotope separation, and other energy research. Each article is a compilation of independent projects within T Division, all related to but addressing different aspects of the major program. Part III is organized by subject discipline, and describes recent scientific advances of fundamental interest. An introduction, defining the scope and general nature of T-Division efforts within a given discipline, is followed by articles on the research topics selected. The reporting is done by the scientists involved in the research, and an attempt is made to communicate to a general audience. Some data are given incidentally; more technical presentations of the research accomplished may be found among the 47 pages of references. 110 figures, 5 tables

  3. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  4. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  5. Constructing Knowledge from an Ill-Structured Domain: Testing a Multimedia Hamlet.

    Science.gov (United States)

    Barnes, William G. W.

    How a multimedia program that employs concept maps and hypertext for teaching "Hamlet" facilitated comprehension in an undergraduate course is described. Results suggest factors that instructional designers should take into account to improve learning. Thirty-six upper-division college students were enrolled in a course on Shakespeare at…

  6. Engaging Students in Applied Electromagnetics at the University of San Diego

    Science.gov (United States)

    Lumori, M. L. D.; Kim, E. M.

    2010-01-01

    Two possible topical approaches that have been applied to teaching an upper-division undergraduate electrical engineering applied electromagnetics course are presented. Each approach was applied to one of two offerings of the course, taught in different semesters. In either case, the course includes the study of electromagnetic theory and…

  7. Synthesizing a Berberine Derivative and Evaluating Antimicrobial Activity to Reinforce with Students the Potential Significance of Small Chemical Structure Changes for Biological Systems

    Science.gov (United States)

    Rodrigues, Catarina A. B.; Neto, Iris; Rijo, Patricia; Afonso, Carlos A. M.

    2018-01-01

    The convenient synthesis of dihydroberberine by the reduction of berberine is described as an experiment for an upper-division undergraduate organic chemistry laboratory course. Students obtained up to 74% yield of the desired pure product without the use of chromatographic techniques. The antimicrobial activities of both compounds against…

  8. Assessing the Relationship between Youth Sport Participation Settings and Creativity in Adulthood

    Science.gov (United States)

    Bowers, Matthew T.; Green, B. Christine; Hemme, Florian; Chalip, Laurence

    2014-01-01

    This article presents an assessment of the relative influences of time spent participating in organized sports and informal sports during childhood with respect to the development of general creativity. In this study, 99 upper-division undergraduate and graduate students completed a comprehensive childhood leisure activities questionnaire and the…

  9. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    Science.gov (United States)

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  10. Comparison study of resistance exercise nomenclature adopted among professionals and undergraduate physical education students

    Directory of Open Access Journals (Sweden)

    Leonardo Mendes de Souza

    2016-05-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2016v18n2p233   In the past few years, increased popularity of resistance training (RT and a significant increase in the number of professionals and undergraduate in Physical Education students have been observed. A variety of names has been usually adopted for the same resistance exercise in fields. The aim of the study was to compare the resistance exercise nomenclature adopted by physical education professionals and students, and also to identify the frequencies of names adopted for these resistance exercises. The study included 191 graduate students and active physical education professionals of RT centers and gyms in the state of Rio de Janeiro, Brazil. Ten exercises traditionally performed on RT programs were selected. The results indicated that there was no association between the nomenclature of exercises and academic degree for all exercises included in the survey. However, there was significant difference (p <0.001 among response frequencies for each exercise, for the whole sample. In this sense, this study enabled identifying significant differences in the nomenclature of resistance exercises. Therefore, nomenclature standardization is essential to establish a direction and clearness in communication among professionals.

  11. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    International Nuclear Information System (INIS)

    2011-01-01

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume 54, Number

  12. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Science.gov (United States)

    2011-07-01

    The scientific session "Econophysics and evolutionary economics" of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) "The transition from simple reproduction to economic growth"; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) "Experimental data on the development of fast-growing innovative companies in Russia"; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) "Why is it sometimes possible to successfully model an economy? (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) "Theoretical economics"; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) "Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market"; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) "Fractal analysis of financial time series and the prediction problem"; Papers written on the basis of these reports are published below. • The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733 • High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737 • Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742 • On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume

  13. Computational Physics as a Path for Physics Education

    Science.gov (United States)

    Landau, Rubin H.

    2008-04-01

    Evidence and arguments will be presented that modifications in the undergraduate physics curriculum are necessary to maintain the long-term relevance of physics. Suggested will a balance of analytic, experimental, computational, and communication skills, that in many cases will require an increased inclusion of computation and its associated skill set into the undergraduate physics curriculum. The general arguments will be followed by a detailed enumeration of suggested subjects and student learning outcomes, many of which have already been adopted or advocated by the computational science community, and which permit high performance computing and communication. Several alternative models for how these computational topics can be incorporated into the undergraduate curriculum will be discussed. This includes enhanced topics in the standard existing courses, as well as stand-alone courses. Applications and demonstrations will be presented throughout the talk, as well as prototype video-based materials and electronic books.

  14. Quantum mechanical wavefunction: visualization at undergraduate level

    International Nuclear Information System (INIS)

    Chhabra, Mahima; Das, Ritwick

    2017-01-01

    Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom. (paper)

  15. Quantum mechanical wavefunction: visualization at undergraduate level

    Science.gov (United States)

    Chhabra, Mahima; Das, Ritwick

    2017-01-01

    Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom.

  16. Identifying and addressing specific student difficulties in advanced thermal physics

    Science.gov (United States)

    Smith, Trevor I.

    As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the

  17. Detection of the "cp4 epsps" Gene in Maize Line NK603 and Comparison of Related Protein Structures: An Advanced Undergraduate Experiment

    Science.gov (United States)

    Swope, Nicole K.; Fryfogle, Patrick J.; Sivy, Tami L.

    2015-01-01

    A flexible, rigorous laboratory experiment for upper-level biochemistry undergraduates is described that focuses on the Roundup Ready maize line. The work is appropriate for undergraduate laboratory courses that integrate biochemistry, molecular biology, or bioinformatics. In this experiment, DNA is extracted and purified from maize kernel and…

  18. A comparative cross-cultural study of the prevalence and nature of misconceptions in physics amongst English and Chinese undergraduate students

    Science.gov (United States)

    Abrahams, Ian; Homer, Matt; Sharpe, Rachael; Zhou, Mengyuan

    2015-01-01

    Background:Despite the large body of literature regarding student misconceptions, there has been relatively little cross-cultural research to directly compare the prevalence of common scientific misconceptions amongst students from different cultural backgrounds. Whilst previous research does suggest the international nature of many misconceptions, there is little evidence as to whether the prevalence of such common misconceptions varies from culture to culture. Purpose:To undertake a preliminary examination of the prevalence and reasons for some previously studied scientific misconceptions amongst English and Chinese undergraduate students so as to ascertain whether there is any evidence of cultural difference. Such a finding could help to identify teaching approaches in either country that are more effective in reducing the prevalence of common student misconceptions. Sample:The study involved a convenience sample of 40 undergraduate students - 20 English and 20 Chinese drawn equally from two universities in the North of England - whose formal science education ended at ages 16 and 15 respectively. Design and methods:The study employed semi-structured interview schedule containing eight questions. Results:Whilst similar misconceptions existed amongst both English and Chinese undergraduates, their prevalence was significantly higher amongst the English students (Overall mean score for scientifically correct answers amongst Chinese students was 27.7% higher, p Differences in the prevalence of misconceptions amongst English and Chinese undergraduates appear to arise from differences in the way in which specific areas of physics are taught in both countries. It might be possible to reduce the prevalence of misconceptions in both countries if a better understanding could be developed of how, and why, undergraduates use certain erroneous analogies, and why some teaching approaches seem more effective in reducing the prevalence of misconceptions than others.

  19. Current programmes on physical metallurgy and related areas in BARC

    International Nuclear Information System (INIS)

    1994-01-01

    Current research and development programmes on physical metallurgy and related areas from the following Divisions of Bhabha Atomic Research Centre are included in this report : Atomic Fuels Division, High Pressure Physics Division, Metallurgy Division, Radio Metallurgy Division, Solid State Physics Division. Important publications corresponding to each activity have also been listed. (author)

  20. Analysis of scientific argumentation in two physical chemistry classrooms using the POGIL approach

    Science.gov (United States)

    Moon, Alena C.

    The benefits of facilitating argumentation in science education have been well reported (Jimenez-Aleixandre & Erduran, 2007). Engaging in argumentation has shown to model authentic scientific inquiry as well as promote development of content knowledge. However, less emphasis has been placed on facilitating argumentation in upper level undergraduate courses, though it is important for evaluating undergraduate curricula to characterize upper level students' scientific reasoning. This work considers two implementations of the POGIL physical chemistry curriculum and evaluates the classroom argumentation. The researchers aimed to consider the content of the arguments and dialectical features characteristic of socially constructed arguments (Nielson, 2013). To do this, whole class sessions were videotaped and Toulmin's Argument Pattern (TAP) was used to identify the arguments generated during the class (Erduran, Simon, & Osborne, 2004). A learning progression on chemical thinking (Sevian & Talanquer, 2014) was used as a domain-specific measure of argument quality. Results show differences in argumentation between and across both classrooms that can be explained by analysis of instructor facilitation and the POGIL curriculum. The results from this work will be used to make recommendations for instructor facilitation of argumentation and reform of the POGIL curriculum.