WorldWideScience

Sample records for upper air structure

  1. The GCOS Reference Upper-Air Network (GRUAN)

    Science.gov (United States)

    Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.

    2009-04-01

    While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.

  2. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  3. 40 CFR 81.55 - Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Pennsylvania-Upper Delaware... Designation of Air Quality Control Regions § 81.55 Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region. The Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control...

  4. THE ELABORATION OF THE OPTIMAL SYNTHESIS ALGORITHM FOR COMPLEX PROCESSING INFORMATION OF THE SPATIAL POSITION OF THE UPPER-AIR RADIOSONDE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article considers the elaboration of the problem of optimal algorithm synthesis of complex signal processing of satel- lite GLONASS/GPS systems navigation relayed from the Board of the upper-air radiosonde and the output data upper-air radar to determine the spatial coordinates of upper-air radiosonde. The upper-air sounding is performed with the help of technical means of radio sounding system of atmosphere, including the upper-air radiosonde, manufactured in free flight, and ground supporting equipment, which includes devices for signal processing of upper-air radiosonde and preparation of the operational upper-air mes- sages. The peculiarity of atmosphere radio sounding of domestic system is the measurement with method of radar slant range to upper-air radiosonde, the viewing angles of the antenna upper-air radar to determine azimuth and elevation of upper-air radiosonde. The disadvantage of the radar method of radiosonde support is the relatively low accuracy of determining the coordinates of the radiosonde and the possible disruption of automatic tracking in angular coordinates. Satellite navigation system based on the mi- crowave sensors has clear advantages in terms of efficiency, size, mobility, and use on mobile objects, however, with significant drawbacks associated primarily with the geometric factor and the error propagation of the navigation signal. The article presents a mathematical model useful incoherent GLONASS/GPS signals, relayed by the upper-air radiosonde, and interference on the input receiver ground point for complex information processing, and mathematical models of output data in upper-air radars.

  5. Effects of air pollution on general practitioner consultations for upper respiratory diseases in London

    OpenAIRE

    Hajat, S; Anderson, H; Atkinson, R; Haines, A; Seaton, A.

    2002-01-01

    Objectives: Few published studies have examined the effect of air pollution on upper respiratory conditions. Furthermore, most epidemiological studies on air pollution focus on mortality or hospital admissions as the main health outcomes, but very rarely consider the effect in primary care. If pollution effects do exist then the public health impact could be considerable because of the many patient contacts involved. We investigated the relation between air pollution and upper respiratory dis...

  6. Final report on 3-D experiment project air-water upper plenum experiments

    International Nuclear Information System (INIS)

    Jacoby, J.K.; Mohr, C.M.

    1978-11-01

    The results are presented from upper plenum air-water reflood behavior testing performed as part of the program to investigate three-dimensional aspects of PWR LOCA research. Tests described were performed at near ambient temperature and pressure in a plexiglass vessel which included the important features of the upper core and upper plenum regions corresponding to a single fuel bundle in both Westinghouse Electric Corporation (Trojan) and Kraftwerk Union (KKU) PWR designs. The data included observed two-phase flow characteristics, particularly with regard to countercurrent flow, and cinematography of the characteristic upper plenum flow patterns

  7. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    climate model results, b) check and validate the stochastic downscaling scheme for the period when precipitation measurements are available, and c) simulate synthetic rainfall series based on future climate projections of upper-air indices. The obtained results shed light to the effects of climate change on the statistical structure of rainfall. Acknowledgments: The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.

  8. Distinction between upper and lower gastrointestinal perforation: Usefulness of the periportal free air sign on computed tomography

    International Nuclear Information System (INIS)

    Cho, Hyun Sun; Yoon, Seong Eon; Park, Seong Hoon; Kim, Hyewon; Lee, Young-Hwan; Yoon, Kwon-Ha

    2009-01-01

    Purpose: To evaluate the usefulness of the periportal free air (PPFA) sign on computed tomography (CT) to distinguish upper from lower gastrointestinal (GI) tract perforation. Materials and methods: During a 30-month period, we retrospectively analyzed abdominal CT images of 53 consecutive patients with surgically proven GI tract perforation. We divided the patients into two groups, i.e. upper and lower GI tract perforation groups. According to the distribution of free air, we divided the peritoneal cavity into supramesocolic compartment and inframesocolic compartment. We observed the presence or absence of free air in each compartment in each group. When there was free air in the periportal area, it was defined as periportal free air (PPFA) and the sign was positive. To evaluate the usefulness of the PPFA sign, we compared the PPFA sign with the falciform ligament sign and the ligamentum teres sign, both of which are well-known CT signs of pneumoperitoneum. Statistical analyses were performed with univariate and multivariate analyses using SPSS version 11.5 for significant findings among the CT signs. Results: Free air was seen in supramesocolic compartment in 29 of 30 (97%) patients in the upper GI perforation group and in 17 of 23 (74%) in the lower GI perforation group. Free air in inframesocolic compartment did not show significant difference in either group (p = .16). The PPFA sign was seen in 28 of 30 (93%) patients with upper GI tract perforation, but in only 8 of 23 (35%) patients with lower GI tract perforation (p < .0001). The falciform ligament sign was seen in 24 of 30 (80%) patients with upper GI tract perforation and in 10 of 23 (43%) patients with lower GI tract perforation (p = .020). The ligamentum teres sign was seen in 16 of 30 (53%) patients with upper GI tract perforation and in 2 of 23 (8%) patients with lower GI tract perforation (p = .008). Multivariate logistic regression analysis showed that the PPFA sign was the only variable, which

  9. Distinction between upper and lower gastrointestinal perforation: Usefulness of the periportal free air sign on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Sun; Yoon, Seong Eon; Park, Seong Hoon; Kim, Hyewon; Lee, Young-Hwan [Department of Radiology, Wonkwang University School of Medicine, 344-2 Sinyong-dong, Iksan, Jeonbuk 570-711 (Korea, Republic of); Yoon, Kwon-Ha [Department of Radiology, Wonkwang University School of Medicine, 344-2 Sinyong-dong, Iksan, Jeonbuk 570-711 (Korea, Republic of)], E-mail: khy1646@wonkwang.ac.kr

    2009-01-15

    Purpose: To evaluate the usefulness of the periportal free air (PPFA) sign on computed tomography (CT) to distinguish upper from lower gastrointestinal (GI) tract perforation. Materials and methods: During a 30-month period, we retrospectively analyzed abdominal CT images of 53 consecutive patients with surgically proven GI tract perforation. We divided the patients into two groups, i.e. upper and lower GI tract perforation groups. According to the distribution of free air, we divided the peritoneal cavity into supramesocolic compartment and inframesocolic compartment. We observed the presence or absence of free air in each compartment in each group. When there was free air in the periportal area, it was defined as periportal free air (PPFA) and the sign was positive. To evaluate the usefulness of the PPFA sign, we compared the PPFA sign with the falciform ligament sign and the ligamentum teres sign, both of which are well-known CT signs of pneumoperitoneum. Statistical analyses were performed with univariate and multivariate analyses using SPSS version 11.5 for significant findings among the CT signs. Results: Free air was seen in supramesocolic compartment in 29 of 30 (97%) patients in the upper GI perforation group and in 17 of 23 (74%) in the lower GI perforation group. Free air in inframesocolic compartment did not show significant difference in either group (p = .16). The PPFA sign was seen in 28 of 30 (93%) patients with upper GI tract perforation, but in only 8 of 23 (35%) patients with lower GI tract perforation (p < .0001). The falciform ligament sign was seen in 24 of 30 (80%) patients with upper GI tract perforation and in 10 of 23 (43%) patients with lower GI tract perforation (p = .020). The ligamentum teres sign was seen in 16 of 30 (53%) patients with upper GI tract perforation and in 2 of 23 (8%) patients with lower GI tract perforation (p = .008). Multivariate logistic regression analysis showed that the PPFA sign was the only variable, which

  10. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    Science.gov (United States)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  11. Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission.

    Directory of Open Access Journals (Sweden)

    A Roderick Escombe

    2009-03-01

    Full Text Available Institutional tuberculosis (TB transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air.For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304 of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303 by ionizers, and to 9.5% (29/307 by UV lights (both p < 0.0001 compared with the control group. TB disease was confirmed in 8.6% (26/304 of control group animals, and this was reduced to 4.3% (13/303 by ionizers, and to 3.6% (11/307 by UV lights (both p < 0.03 compared with the control group. Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001 and by UV lights (log-rank 46; p < 0.0001. Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055 and by UV lights (log-rank 5.4; p = 0.02. An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB

  12. A Novice-Expert Study of Modeling Skills and Knowledge Structures about Air Quality

    Science.gov (United States)

    Hsu, Ying-Shao; Lin, Li-Fen; Wu, Hsin-Kai; Lee, Dai-Ying; Hwang, Fu-Kwun

    2012-01-01

    This study compared modeling skills and knowledge structures of four groups as seen in their understanding of air quality. The four groups were: experts (atmospheric scientists), intermediates (upper-level graduate students in a different field), advanced novices (talented 11th and 12th graders), and novices (10th graders). It was found that when…

  13. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  14. Retrospective Review of Air Transportation Use for Upper Extremity Amputations at a Level-1 Trauma Center.

    Science.gov (United States)

    Grantham, W Jeffrey; To, Philip; Watson, Jeffry T; Brywczynski, Jeremy; Lee, Donald H

    2016-08-01

    Air transportation to tertiary care centers of patients with upper extremity amputations has been utilized in hopes of reducing the time to potential replantation; however, this mode of transportation is expensive and not all patients will undergo replantation. The purpose of this study is to review the appropriateness and cost of air transportation in upper extremity amputations. Consecutive patients transported by aircraft with upper extremity amputations in a 7-year period at a level-1 trauma center were retrospectively reviewed. The distance traveled was recorded, along with the times of the injury, referral, transportation duration, arrival, and start of the operation. The results of the transfer were defined as replantation or revision amputation. Overall, 47 patients were identified with 43 patients going to the operating room, but only 14 patients (30%) undergoing replantation. Patients arrived at the tertiary hand surgery center with a mean time of 182.3 minutes following the injury, which includes 105.2 minutes of transportation time. The average distance traveled was 105.4 miles (range, 22-353 miles). The time before surgery of those who underwent replantation was 154.6 minutes. The average cost of transportation was $20,482. Air transportation for isolated upper extremity amputations is costly and is not usually the determining factor for replantation. The type of injury and patients' expectations often dictate the outcome, and these may be better determined at the time of referral with use of telecommunication photos, discussion with a hand surgeon, and patient counseling. III.

  15. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE).

    NARCIS (Netherlands)

    Nagel, Gabriele; Stafoggia, Massimo; Pedersen, Marie; Andersen, Zorana J; Galassi, Claudia; Munkenast, Jule; Jaensch, Andrea; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Vermeulen, Roel; Eeftens, Marloes; Plusquin, Michelle; Key, Timothy J; Concin, Hans; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Cesaroni, Giulia; Forastiere, Francesco; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole; Weinmayr, Gudrun

    2018-01-01

    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer

  16. Air pollution and hospital visits for acute upper and lower respiratory infections among children in Ningbo, China: A time-series analysis.

    Science.gov (United States)

    Zheng, Pei-Wen; Wang, Jian-Bing; Zhang, Zhen-Yu; Shen, Peng; Chai, Peng-Fei; Li, Die; Jin, Ming-Juan; Tang, Meng-Ling; Lu, Huai-Chu; Lin, Hong-Bo; Chen, Kun

    2017-08-01

    Acute upper and lower respiratory infections are main causes of mortality and morbidity in children. Air pollution has been recognized as an important contributor to development and exacerbation of respiratory infections. However, few studies are available in China. In this study, we investigated the short-term effect of air pollution on hospital visits for acute upper and lower respiratory infections among children under 15 years in Ningbo, China. Poisson generalized models were used to estimate the associations between air pollution and hospital visits for acute upper and lower respiratory infections adjusted for temporal, seasonal, and meteorological effects. We found that four pollutants (PM 2.5 , PM 10 , NO 2 , and SO 2 ) were significantly associated with hospital visits for acute upper and lower respiratory infections. The effect estimates for acute upper respiratory infections tended to be higher (PM 2.5 ER = 3.46, 95% CI 2.18, 4.76; PM 10 ER = 2.81, 95% CI 1.93, 3.69; NO 2 ER = 11.27, 95% CI 8.70, 13.89; SO 2 ER = 15.17, 95% CI 11.29, 19.19). Significant associations for gaseous pollutants (NO 2 and SO 2 ) were observed after adjustment for particular matter. Stronger associations were observed among older children and in the cold period. Our study suggested that short-term exposure to outdoor air pollution was associated with hospital visits for acute upper and lower respiratory infections in Ningbo.

  17. Upper cervical spine movement during intubation: fluoroscopic comparison of the AirWay Scope, McCoy laryngoscope, and Macintosh laryngoscope.

    Science.gov (United States)

    Maruyama, K; Yamada, T; Kawakami, R; Kamata, T; Yokochi, M; Hara, K

    2008-01-01

    The AirWay Scope (AWS) is a new fibreoptic intubation device, which allows visualization of the glottic structures without alignment of the oral, pharyngeal, and tracheal axes, and thus may be useful in patients with limited cervical spine (C-spine) movement. We fluoroscopically evaluated upper C-spine movement during intubation with the AWS or Macintosh or McCoy laryngoscope. Forty-five patients, with normal C-spine, scheduled for elective surgery were randomly assigned to one of the three intubation devices. Movement of the upper C-spine was examined by measuring angles formed by adjacent vertebrae during intubation. Time to intubation was also recorded. Median cumulative upper C-spine movement was 22.3 degrees, 32.3 degrees, and 36.5 degrees with the AWS, Macintosh laryngoscope, and McCoy laryngoscope, respectively (Pmovement of the C-spine at C1/C2 in comparison with the Macintosh or McCoy laryngoscope (P=0.012), and at C3/C4 in comparison with the McCoy laryngoscope (P=0.019). Intubation time was significantly longer in the AWS group than in the Macintosh group (P=0.03). Compared with the Macintosh or McCoy laryngoscope, the AWS produced less movement of upper C-spine for intubation in patients with a normal C-spine.

  18. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu; Raman, Aaswath; Fan, Shanhui

    2012-01-01

    to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar

  19. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    Science.gov (United States)

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  20. [Women boxing athletes' EMG of upper limbs and lumbar muscles in the training of air striking of straight punch].

    Science.gov (United States)

    Zhang, Ri-Hui; Kang, Zhi-Xin

    2011-05-01

    To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.

  1. Integrity analysis of an upper guide structure flange

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Kang, Sung Sik; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time–history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

  2. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja

    2015-08-20

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable polymers of intrinsic microporosity (PIMs), with gas-sieving ultramicroporosity yields high-performance gas separation membranes. Highly ultramicroporous PIMs have redefined the state-of-the-art in large-scale air (e.g., O2/N2) and hydrogen recovery (e.g., H2/N2, H2/CH4) applications with unprecedented molecular sieving gas transport properties. Accordingly, presented herein are new 2015 permeability/selectivity “upper bounds” for large-scale commercial membrane-based air and hydrogen applications that accommodate the substantial performance enhancements of recent PIMs over preceding polymers. A subtle balance between intrachain rigidity and interchain spacing has been achieved in the amorphous microstructures of PIMs, fine-tuned using unique bridged-bicyclic building blocks (i.e., triptycene, ethanoanthracene and Tröger’s base) in both ladder and semiladder (e.g., polyimide) structures.

  3. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu

    2012-10-01

    The coupling between free space radiation and optical media critically influences the performance of optical devices. We show that, for any given photonic structure, the sum of the external coupling rates for all its optical modes are subject to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar absorbers. © 2012 American Physical Society.

  4. The Relationship Between Air Particulate Levels and Upper Respiratory Disease in Soldiers Deployed to Bosnia (1997-1998)

    National Research Council Canada - National Science Library

    Hastings, Deborah

    2001-01-01

    This study had three objectives: to determine if there is a relationship between air particulate levels and upper respiratory disease in soldiers deployed to Bosnia between 1997-98, to establish a method for linking environmental...

  5. Structural Analysis for an Upper Port of the ITER Vacuum Vessel

    International Nuclear Information System (INIS)

    Yun-Seok Hong; Kwon, T. K.; Ahn, H. J.; Kim, Y.K.; Lee, C.D.

    2006-01-01

    The ITER vacuum vessel (VV) has numerous openings for the port structures including upper, equatorial, and lower ports used for equipment installation, utility feed through, vacuum pumping, and access into the vessel for maintenance. Every upper port, slanted upward slightly, has a trapezoidal/rectangular cross-section and consists of a port stub, a stub extension and a port extension with a connecting duct. To investigate the structural integrity and to increase the structural reliability of the VV and ports, the structural analyses of the upper port structure have been performed. The global structural analysis of the upper port with the in-port components has been carried out. The local analyses of a tangential key, an upper port flange, a connecting duct and a sealing unit have been performed. The design loads are dead weight, normal and abnormal pressure load, electromagnetic load, and seismic load in consideration of the dynamic amplification factors. The stress analyses were performed in a nonlinear elastic approach taking into account the contact surface between port extension flange and port plug flange. Two advanced designs from the ITER international team have been reviewed. To verify the strength of the reinforcing ribs for the connecting duct and of the fastening/sealing units, the local analyses utilizing the sub-modeling technique have been performed. The ASME code and the ITER design criteria were applied for the evaluation of the structural analysis results from the global and local analyses. The clearance between a port and a plug to accommodate the plug deformation has been assessed. The upper port flange based on the original design could withstand design loads, but there could be a gap on the flange surface under the design condition. The modified flange design, which is under the bolt friction only without tangential key was proposed. The deflection of the plug for an advanced design with a removable flange is higher than that for the original

  6. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  7. Upper Gastrointestinal (GI) Series

    Science.gov (United States)

    ... standard barium upper GI series, which uses only barium a double-contrast upper GI series, which uses both air and ... evenly coat your upper GI tract with the barium. If you are having a double-contrast study, you will swallow gas-forming crystals that ...

  8. New airborne pathogen transport model for upper-room UVGI spaces conditioned by chilled ceiling and mixed displacement ventilation: Enhancing air quality and energy performance

    International Nuclear Information System (INIS)

    Kanaan, Mohamad; Ghaddar, Nesreen; Ghali, Kamel; Araj, Georges

    2014-01-01

    Highlights: • A model of bacteria transport is developed in CC/DV conditioned spaces with UVGI. • The model identifies buoyant, partially mixed, and fully mixed transport zones. • The predicted bacteria concentration agreed well with CFD results. • The higher the supply flow rate, the more restrictive is return air mixing ratio. • Upper-room UVGI results in higher return mixing and 33% in energy savings. - Abstract: The maximum allowable return air ratio in chilled ceiling (CC) and mixed displacement ventilation (DV) system for good air quality is regulated by acceptable levels of CO 2 concentration not to exceed 700 ppm and airborne bacterial count to satisfy World Health Organization (WHO) requirement for bacterial count not to exceed 500 CFU/m 3 . Since the CC/DV system relies on buoyancy effects for driving the contaminated air upwards, infectious particles will recirculate in the upper zone allowing effective utilization of upper-room ultraviolet germicidal irradiation (UVGI) to clean return air. The aim of this work is to develop a new airborne bacteria transport plume-multi-layer zonal model at low computational cost to predict bacteria concentration distribution in mixed CC/DV conditioned room without and with upper-room UVGI installed. The results of the simplified model were compared with layer-averaged concentration predictions of a detailed and experimentally-validated 3-D computational fluid dynamics (CFD) model. The comparison showed good agreement between bacteria transport model results and CFD predictions of room air bacteria concentration with maximum error of ±10.4 CFU/m 3 in exhaust air. The simplified model captured the vertical bacteria concentration distribution in room air as well as the locking effect of highest concentration happening at the stratification level. The developed bacteria transport model was used in a case study to determine the return air mixing ratio that minimizes energy consumption and maintains acceptable IAQ

  9. Air cathode structure manufacture

    Science.gov (United States)

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  10. BOREAS AFM-08 ECMWF Hourly Surface and Upper Air Data for the SSA and NSA

    Science.gov (United States)

    Viterbo, Pedro; Betts, Alan; Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-8 team focused on modeling efforts to improve the understanding of the diurnal evolution of the convective boundary layer over the boreal forest. This data set contains hourly data from the European Center for for Medium-Range Weather Forecasts (ECMWF) operational model from below the surface to the top of the atmosphere, including the model fluxes at the surface. Spatially, the data cover a pair of the points that enclose the rawinsonde sites at Candle Lake, Saskatchewan, in the Southern Study Area (SSA) and Thompson, Manitoba, in the Northern Study Area (NSA). Temporally, the data include the two time periods of 13 May 1994 to 30 Sept 1994 and 01 Mar 1996 to 31 Mar 1997. The data are stored in tabular ASCII files. The number of records in the upper air data files may exceed 20,000, causing a problem for some software packages. The ECMWF hourly surface and upper air data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  11. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  12. Impacts of using reformulated and oxygenated fuel blends on the regional air quality of the upper Rhine valley

    Directory of Open Access Journals (Sweden)

    J.-F. Vinuesa

    2006-01-01

    Full Text Available The effects of using three alternative gasoline fuel blends on regional air quality of the upper Rhine valley have been investigated. The first of the tested fuels is oxygenated by addition of ethyl-tertio-butyl ether (ETBE, the second is based on a reformulation of its composition and the third on is both oxygenated and reformulated. The upper Rhine valley is a very sensitive region for pollution episodes and several meteorological and air quality studies have already been performed. High temporal and spatial emission inventories are available allowing relevant and realistic modifications of the emission inventories. The calculation period, i.e., 11 May 1998, corresponds to a regional photochemical ozone pollution episode during which ozone concentrations exceeded several times the information threshold of the ozone directive of the European Union (180 μg m-3 as 1 hourly average. New emission inventories are set up using specific emission factors related to the alternative fuels by varying the fraction of gasoline passenger cars (from 50% to 100% using the three fuel blends. Then air quality modeling simulations are performed using these emission inventories over the upper Rhine valley. The impact of alternative fuels on regional air quality is evaluated by comparing these simulations with the one using a reference emission inventory, e.g., where no modifications of the fuel composition are included. The results are analyzed by focusing on peak levels and daily averaged concentrations. The use of the alternative fuels leads to general reductions of ozone and volatile organic compounds (VOC and increases of NOx levels. We found different behaviors related to the type of the area of concern i.e. rural or urban. The impacts on ozone are enhanced in urban areas where 15% reduction of the ozone peak and daily averaged concentrations can be reached. This behavior is similar for the NOx for which, in addition, an increase of the levels can be noted

  13. Efficiency and limitations of the upper airway mucosa as an air conditioner evaluated from the mechanisms of bronchoconstriction in asthmatic subjects.

    Science.gov (United States)

    Konno, A; Terada, N; Okamoto, Y; Togawa, K

    1985-01-01

    To elucidate a limit to the efficiency of the upper airway mucosa as an air conditioner, the temperatures of the inspiratory air and mucosa were measured in the cervical trachea. Both of them were affected only minimally by change of atmospheric air temperature during resting nose breathing, but were affected greatly by change of mode of breathing. During hyperventilation through the mouth, when the atmospheric air temperature was 1 degree C, a temperature difference of 9 degrees C was noted between inspiratory air in the cervical trachea and body temperature, together with a mucosal temperature fall by 1.86 +/- 0.61 degree C. Wearing of a mask caused a rise of 3 degrees C in the inspiratory air temperature in the cervical trachea.

  14. Structural analysis of the Upper Internals Structure for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Houtman, J.L.

    1979-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides control of core outlet flow to prevent severe thermal transients from occuring at the reactor vessel and primary heat transport outlet piping, provides instrumentation to monitor core performance, provides support for the control rod drivelines, and provides secondary holddown of the core. All of the structural analysis aspects of assuring the UIS is structurally adequate are presented including simplified and rigorous inelastic analysis methods, elevated temperature criteria, environmental effects on material properties, design techniques, and manufacturing constraints

  15. The Vertical Structure of Relative Humidity and Ozone in the Tropical Upper Troposphere: Intercomparisons Among In Situ Observations, A-Train Measurements and Large-Scale Models

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, Michael; Douglass, Anne R.; Oman, Luke; Pawson, Steven; Ott, Lesley; Benson, Craig; Stolarski, Richard

    2010-01-01

    In situ measurements in the tropics have shown that in regions of active convection, relative humidity with respect to ice in the upper troposphere is typically close to saturation on average, and supersaturations greater than 20% are not uncommon. Balloon soundings with the cryogenic frost point hygrometer (CFH) at Costa Rica during northern summer, for example, show this tendency to be strongest between 11 and 15.5 km (345-360 K potential temperature, or approximately 250-120 hPa). this is the altitude range of deep convective detrainment. Additionally, simultaneous ozonesonde measurements show that stratospheric air (O3 greater than 150 ppbv) can be found as low as approximately 14 km (350 K/150 hPa). In contrast, results from northern winter show a much drier upper troposphere and little penetration of stratospheric air below the tropopause at 17.5 km (approximately 383 K). We show that these results are consistent with in situ measurements from the Measurement of Ozone and water vapor by Airbus In-service airCraft (MOZAIC) program which samples a wider, though still limited, range of tropical locations. To generalize to the tropics as a whole, we compare our insitu results to data from two A-Train satellite instruments, the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) on the Aqua and Aura satellites respectively. Finally, we examine the vertical structure of water vapor, relative humidity and ozone in the NASA Goddard MERRA analysis, an assimilation dataset, and a new version of the GEOS CCM, a free-running chemistry-climate model. We demonstrate that conditional probability distributions of relative humidity and ozone are a sensitive diagnostic for assessing the representation of deep convection and upper troposphere/lower stratosphere mixing processes in large-scale analyses and climate models.

  16. Upper mantle and crustal structure of the East Greenland Caledonides

    DEFF Research Database (Denmark)

    Schiffer, Christian; Balling, N.; Jacobsen, B. H.

    The East Greenland and Scandinavian Caledonides once formed a major coherent mountain range, as a consequence of the collision of the continents of Laurentia and Baltica. The crustal and upper mantle structure was furthermore influenced by several geodynamic processes leading to the formation of ...

  17. Effects of air pollutants on epicuticular wax structure

    International Nuclear Information System (INIS)

    Huttunen, S.

    1994-01-01

    In xerophytes, like conifers, the epicuticular wax is well developed. Especially in and around stomatal entrances, a thick wax coating is present. Epicuticular waxes are modified by changes in plant growth conditions such as temperature, relative humidity, irradiance, and wind, or acid rain. The fine structure of epicuticular waxes, their chemistry, and ecophysiological function are modified, especially in evergreen, long-lived conifer needles with characteristic crystalline wax structures. During needle flushing and development, wax structure is easily modified. Acid rain-treated Scots pine needles had 50% less epicuticular waxes in early August. Pollution-induced delayed development, destruction, and disturbances have been identified in many plant species. The structural changes in wax crystals are known. Acid rain or polluted air can destroy the crystalloid epicuticular waxes in a few weeks. In Pinus sylvestris, the first sign of pollution effect is the fusion of wax tubes. In Picea abies and P. sitchensis, modifications of crystalloid wax structure are known. In Californian pine trees phenomena of recrystallization of wax tubes on second-year needles were observed after delayed epicuticular wax development in Pinus ponderosa and P. coulteri. Thus, the effects of air pollutants are modified by climate. Accelerated senescence of leaves and needles have been associated with natural and anthropogenic stresses. The accelerated erosion rate of epicuticular waxes has been measured under air pollution conditions. Many short-term air pollution experiments have failed to show any structural changes in epicuticular wax structures. The quantity and quality of needle waxes grown in open-top chambers, glass houses, or polluted air before treatment, differ from field conditions and make it difficult to detect effects of any treatment. (orig.)

  18. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    Science.gov (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  19. Upper-mantle velocity structure and its relation to topography across the Caledonides in Greenland and Norway

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2015-01-01

    This study investigates the upper-mantle P- and S-wave velocity structure as well as structure in the VP/VS ratio across the high topography areas of north Atlantic Caledonides, integrating data from a new East Greenland Caledonide Central Fjord Array (EGCFA) with results of recent studies...... strong upper-mantle velocity boundary under the East Greenland Caledonides. However, the contrast in the VP/VS ratio is not as clear at this location. A correlation study of topography versus upper-mantle velocity revealed positive correlation in southern Norway but negative or absent correlation...

  20. Jacking mechanism for upper internals structure of a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Gillett, J.E.; Wineman, A.L.

    1984-01-01

    A jacking mechanism is described for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns have a pin structure which rides up and down in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring bolt holes through the locking plates into alignment with a set of bolt holes in the housing, there being a set of such housing bolt holes corresponding to both a raised and a lowered position of the support column. When the locking plate is so aligned, a surface of the locking plate mates with a surface in the housing such that the support column is then supported by the locking plate and not by the ball jacks. Since the locking plates are to be installed and bolted to the housing during periods of reactor operation, the ball jacks need not be sized to react the large forces which occur or potentially could occur on the upper internals structure of the reactor during operation. The locking plates react these loads. The ball jacks, used only during refueling, can be smaller, which enable conventionally available equipment to fulfill the precision requirements for the task within available space

  1. The Origins of Air Parcels Uplifted in a Two Dimensional Gravity Wave in the Tropical Upper Troposphere During the NASA Stratosphere Troposphere Exchange Project (STEP)

    Science.gov (United States)

    Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken

    1989-01-01

    During January and February 1987, as part of the Stratosphere-Troposphere Exchange Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent seas. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated air on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden air and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.

  2. Jacking mechanism for upper internals structure of a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Gillett, J.E.; Wineman, A.L.

    1983-01-01

    A jacking mechanism for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns each have a pin which rides in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring the locking plates into engagement with the housing in a raised or a lowered position of the support column such that the support column is then supported by the locking plate and not by the ball screw jacks. (author)

  3. Association between air pollution and general outpatient clinic consultations for upper respiratory tract infections in Hong Kong.

    Science.gov (United States)

    Tam, Wilson W S; Wong, Tze Wai; Ng, Lorna; Wong, Samuel Y S; Kung, Kenny K L; Wong, Andromeda H S

    2014-01-01

    Many studies have shown the adverse effects of air pollution on respiratory health, but few have examined the effects of air pollution on service utilisation in the primary care setting. The aim of this study was to examine the association between air pollution and the daily number of consultations due to upper respiratory tract infections (URTIs) in general outpatient clinics (GOPCs) in Hong Kong. Daily data on the numbers of consultations due to URTIs in GOPCs, the concentrations of major air pollutants, and the mean values of metrological variables were retrospectively collected over a 3-year period (2008-2010, inclusive). Generalised additive models were constructed to examine the association between air pollution and the daily number of consultations, and to derive the relative risks and 95% confidence intervals (95% CI) of GOPC consultations for a unit increase in the concentrations of air pollutants. The mean daily consultations due to URTIs in GOPCs ranged from 68.4 to 253.0 over the study period. The summary relative risks (and 95% CI) of daily consultations in all GOPCs for the air pollutants PM10, NO2, O3, and SO2 were 1.005 (1.002, 1.009), 1.010 (1.006, 1.013), 1.009 (1.006, 1.012), and 1.004 (1.000, 1.008) respectively, per 10 µg/m(3) increase in the concentration of each pollutant. Significant associations were found between the daily number of consultations due to URTIs in GOPCs and the concentrations of air pollutants, implying that air pollution incurs a substantial morbidity and increases the burden of primary health care services.

  4. Basinal Structure Of Yola Arm Of The Upper Benue Trough Nigeria ...

    African Journals Online (AJOL)

    Aeromagnetic data interpretation of the Yola arm of the Upper Benue Trough has previously been carried out. However, no detail modeling of the Crustal Structures has been undertaken. Two composite reduced Aeromagnetic maps on a scale of 1:250,000 were digitized and processed using computer techniques.

  5. Temperature structure of the Uranian upper atmosphere

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.

    1979-01-01

    The temperature structure of the upper atmosphere of Uranus at two locations on the planet was determined from observations of the occultation of the star SAO158687 by Uranus on 10 March 1977, carried out at the Kuiper Airborne Observatory. The temperature-pressure relationships obtained from the immersion and emersion data for 7280 A channel show peak-to-peak variations of 45 K for immersion and 35 K for emersion. The mean temperature for both immersion and emersion profiles is about 100 K, which shows that Uranus has a temperature inversion between 0.001 mbar and the 100 mbar level probed by IR measurements. Both profiles show wavelike temperature variations, which may be due to dynamical or photochemical processes.

  6. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  7. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  8. Structure and floristic similarities of upper montane forests in Serra Fina mountain range, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo Dias Meireles

    2015-03-01

    Full Text Available The upper montane forests in the southern and southeastern regions of Brazil have an unusual and discontinuous geographic distribution at the top of the Atlantic coastal mountain ranges. To describe the floristic composition and structure of the Atlantic Forest near its upper altitudinal limit in southeastern Brazil, 30 plots with 10 × 10 m were installed in three forest sites between 2,200 and 2,300 m.a.s.l. at Serra Fina. The floristic composition and phytosociological structure of this forest were compared with other montane and upper montane forests. In total, 704 individuals were included, belonging to 24 species, 15 families, and 19 genera. Myrsinaceae, Myrtaceae, Symplocaceae, and Cunoniaceae were the most important families, and Myrsine gardneriana, Myrceugenia alpigena, Weinmannia humilis, and Symplocos corymboclados were the most important species. The three forest sites revealed differences in the abundance of species, density, canopy height, and number of stems per individual. The upper montane forests showed structural similarities, such as lower richness, diversity, and effective number of species, and they tended to have higher total densities and total dominance per hectare to montane forests. The most important species in these upper montane forests belong to Austral-Antartic genera or neotropical and pantropical genera that are typical of montane areas. The high number of species shared by these forests suggests past connections between the vegetation in southern Brazilian high-altitude areas.

  9. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways?

    Science.gov (United States)

    Kesimer, Mehmet; Kirkham, Sara; Pickles, Raymond J.; Henderson, Ashley G.; Alexis, Neil E.; DeMaria, Genevieve; Knight, David; Thornton, David J.; Sheehan, John K.

    2009-01-01

    Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products. PMID:18931053

  10. Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures

    Science.gov (United States)

    Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.

    2017-12-01

    Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.

  11. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach

    OpenAIRE

    Onodera, Andrea N.; Gavi?o Neto, Wilson P.; Roveri, Maria Isabel; Oliveira, Wagner R.; Sacco, Isabel CN

    2017-01-01

    Background Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial...

  12. Crust and upper mantle structure in the Caribbean region by group velocity tomography and regionalization

    International Nuclear Information System (INIS)

    O'Leary, Gonzalez; Alvarez, L.; Chimera, G.; Panza, G.F.

    2004-04-01

    An overview of the crust and upper mantle structure of the Central America and Caribbean region is presented as a result of the processing of more than 200 seismograms recorded by digital broadband stations from SSSN and GSN seismic networks. By FTAN analysis of the fundamental mode of the Rayleigh waves, group velocity dispersion curves are obtained in the period range from 10 s to 40 s; the error of these measurements varies from 0.06 and 0.10 km/s. From the dispersion curves, seven tomographic maps at different periods and with average spatial resolution of 500 km are obtained. Using the logical combinatorial classification techniques, eight main groups of dispersion curves are determined from the tomographic maps and eleven main regions, each one characterized by one kind of dispersion curves, are identified. The average dispersion curves obtained for each region are extended to 150 s by adding data from the tomographic study of and inverted using a non-linear procedure. As a result of the inversion process, a set of models of the S-wave velocity vs. depth in the crust and upper mantle are found. In six regions, we identify a typically oceanic crust and upper mantle structure, while in the other two the models are consistent with the presence of a continental structure. Two regions, located over the major geological zones of the accretionary crust of the Caribbean region, are characterized by a peculiar crust and upper mantle structure, indicating the presence of lithospheric roots reaching, at least, about 200 km of depth. (author)

  13. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Chick, John H; Ickes, Brian S; Pegg, Mark A; Barko, Valerie A; Hrabik, Robert A; Herzog, David P

    2005-01-01

    Variation in community composition (presence/absence data) and structure (relative abundance) of Upper Mississippi River fishes was assessed using data from the Long Term Resource Monitoring Program...

  14. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach

    Directory of Open Access Journals (Sweden)

    Andrea N. Onodera

    2017-02-01

    Full Text Available Background Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Methods Twenty-seven experienced male runners (63 ± 44 km/week run ran in four-shoe design that combined two resilience-cushioning materials (low and high and two uppers (minimalist and structured. Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features. Results The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16% biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. Discussion The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects

  15. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach.

    Science.gov (United States)

    Onodera, Andrea N; Gavião Neto, Wilson P; Roveri, Maria Isabel; Oliveira, Wagner R; Sacco, Isabel Cn

    2017-01-01

    Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the

  16. Spatial structure of extensive air showers near the axis

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, E N; Gal' perin, M D; Glemba, P Ya [AN SSSR, Moscow. Inst. Yadernykh Issledovanij; Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1978-07-01

    The spatial structure of the extensive air showers has been investigated. The tests have been staged on the 400 scintillation counter installation. It has been shown, that spatial distribution of the extensive air showers in the vicinity of the axis does not vary in case of the Nsub(e) electron number showers in the 10/sup 5/-10/sup 6/ range. The share of the showers having a clear-cut multicore structure is approximately 3% with Nsub(e) >= 2x10/sup 5/.

  17. Effect of the internal rib structure of the inclusions on the two-dimensional phononic crystal composed of periodic slotted tubes in air

    International Nuclear Information System (INIS)

    Yu Kunpeng; Chen Tianning; Wang Xiaopeng; Zhou Anan

    2012-01-01

    Using a finite element method based on the Bloch theorem, a new phononic crystal composed of periodic slotted tubes with internal rib structure in air is investigated. Two parallel plates with slit are introduced into the inclusion as the internal rib structure and its effect on band gaps is studied. The band structure and acoustic modes of the PC are calculated. Results show that the starting frequency of the first band gap is rather lower than that of slotted tubes without rib structure. The internal rib structure plays an important role in both the lower and upper edges of the first band gap. Some rib structural parameters are also studied for their effects on the first band gap. Results show that the first gap can be modulated widely by these parameters and the Helmholtz resonator theory can be used to explain the relationship between the band gap and the parameters.

  18. Method of X-ray examination of upper respiratory tracts

    International Nuclear Information System (INIS)

    Portnoj, L.M.; Surenchik, V.I.; Shuster, M.A.; Sal'nikova, Eh.A.

    1982-01-01

    Method of X-ray examination of upper respiratory tracts by radiography both in direct and lateral projection with an introduction of radiocontrast media through tracheostoma is described. The main objective of the invention is to improve accuracy of diagnostics of larynx and trachea cicatrix structures in children. The objective is attained by the examination under general anesthesia; barium sulfate is simultaneously introduced through laryngoscope and tracheostoma, and polypositional radiography is accomplished just in the moment of air introduction under 130-170 mm Hg pressure in the amounts of 60-200 ml

  19. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  20. Upper crustal structure of Madeira Island revealed from ambient noise tomography

    Science.gov (United States)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo

    2015-06-01

    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  1. Open tube guideway for high speed air cushioned vehicles

    Science.gov (United States)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  2. PWR upper/lower internals shield

    Energy Technology Data Exchange (ETDEWEB)

    Homyk, W.A. [Indian Point Station, Buchanan, NY (United States)

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use of lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.

  3. Analytical Approach for Estimating Preliminary Mass of ARES I Crew Launch Vehicle Upper Stage Structural Components

    Science.gov (United States)

    Aggarwal, Pravin

    2007-01-01

    In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and

  4. Composition and structure of the martian upper atmosphere: analysis of results from viking.

    Science.gov (United States)

    McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O

    1976-12-11

    Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.

  5. Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China

    Science.gov (United States)

    Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.

    2002-01-01

    Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.

  6. Conceptual design on structure and cooling channel of ITER upper port plug

    International Nuclear Information System (INIS)

    Pak, Sunil; Lee, Hyeon Gon; Jung, Ki Jung; Walker, C.; Kim, Doo Gi; Choi, Kwang Suk; Eo, Sang Gon

    2007-01-01

    This study has performed conceptual design on structure and cooling channel for the upper port plug of the International Thermonuclear Experimental Reactor (ITER), in which electron cyclotron heating (ECH) launcher and various diagnostic modules will be installed with the same structure. There are twelve diagnostic plugs and four ECH plugs at the upper port in ITER Tokamak. The use of the same port plug structure is beneficial for installation of diagnostic modules and ECH launcher from the viewpoint of cost reduction and simple RH maintenance. The diagnostic modules have rectangular cross-section and ECH modules have trapezoidal crosssection with the lower part wider. Here was suggested the bolt-jointed common structure of inverted-U shape beam and bottom plate, where the diagnostic and ECH modules are installed onto the bottom plate and then the assembly is bolted to the inverted-U beam from the bottom. The common structure of Inverted-U type was evaluated by considering several aspects, such as installation, remote handling (RH) maintenance, cooling line connection, manufacturing, and structural stiffness. For the inverted-U port plug structure developed here, this paper proposed a network of water channel for cooling and baking. Pressurized water as working fluid has to be supplied into the whole port plug. It consists of the structure, diagnostic/shielding modules fixed onto the bottom plate, and the blanket shield module (BSM) attached to the front. The internal water ways for these three components were designed in the direction that would not only minimize the RH connections, flow restrictors, and the length of water-vacuum welding, but also make the welding reliable. Independent coolant loops were composed for three parts of the structure, BSM, and diagnostic/shielding modules with bottom plate. These loops, therefore, make it possible to perform the leakage test for each one separately. Finally hydraulic analysis has been performed with ANSYS in order to

  7. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman Ill Ballistic Missiles At Vandenberg Air Force Base

    Science.gov (United States)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2013-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.

  8. Bragg gratings in air-silica structured fibers

    NARCIS (Netherlands)

    Groothoff, N.; Canning, J.; Buckley, E.; Lyttikainen, K.; Zagari, J.

    2003-01-01

    We report on grating writing in air-silica structured optical fibers with pure silica cores by use of two-photon absorption at 193 nm. A decrease in propagation loss with irradiation was observed. The characteristic growth curves were obtained. © 2003 Optical Society of America.

  9. Final design of the generic upper port plug structure for ITER diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sunil, E-mail: paksunil@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Feder, Russell [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia; Josseaume, Fabien [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kalish, Michael; Loesser, Douglas [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maquet, Philippe [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Ordieres, Javier; Panizo, Marcos [NATEC, Ingenieros, Gijón (Spain); Pitcher, Spencer; Portalès, Mickael [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Proust, Maxime [CEA, Cadarache, St. Paul-lez-Durance (France); Ronden, Dennis [FOM Institute DIFFER, Nieuwegein (Netherlands); Serikov, Arkady [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Tanchuk, Victor [NIIEFA, St.-Petersburg (Russian Federation); Udintsev, Victor; Vacas, Christian [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2016-01-15

    The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review in 2013, is described here. The diagnostic port plug is cantilevered to the vacuum vessel with a heavy payload at the front, so called the diagnostic first wall (DFW) and the diagnostic shield module (DSM). Most of electromagnetic (EM) load (∼80%) occurs in DFW/DSM. Therefore, the mounting design to transfer the EM load from DFW/DSM to the GUPP structure is challenging, which should also comply with thermal expansion and tolerance for assembly and manufacturing. Another key design parameter to be considered is the gap between the port plug and the vacuum vessel port. The gap should be large enough to accommodate the remote handling of the heavy port plug (max. 25 t), the structural deflection due to external loads and machine assembly tolerance. At the same time, the gap should be minimized to stop the neutron streaming according to the ALARA (as low as reasonably achievable) principle. With these design constraints, the GUPP structure should also provide space for diagnostic integration as much as possible. This requirement has led to the single wall structure having the gun-drilled water channels inside the structure. Furthermore, intensive efforts have been made on the manufacturing study including material selection, manufacturing codes and French regulation related to nuclear equipment and safety. All these main design and manufacturing aspects are discussed in this paper, including requirements, interfaces, loads and structural assessment and maintenance.

  10. Structural dynamic and resistance to nuclear air blast

    International Nuclear Information System (INIS)

    Qureshi, S.M.

    2003-01-01

    A need exists to design protective shelters attached to specialized facilities against nuclear airbursts, explosive shocks and impacting projectiles. Designing such structures against nuclear and missile impact is a challenging task that needs to be looked into for design methodology formulation and practicability. Structures can be designed for overpressure pulsed generated by a nuclear explosion as well as the scabbing and perforation/punching of an impacting projectile. This paper discuses and formulates the methods of dynamic analysis and design required to undertake such a task. Structural resistance to peak overpressure pulse for a 20 KT weapons and smaller tactical nuclear weapons of 1 KT (16 psi, overpressure) size as a direct air blast overpressure has been considered in design of walls, beams and slabs of a special structure under review. The design of shear reinforcement as lacing is also carried out. Adopting the philosophy of strengthening and hardening can minimize the effect of air blast overpressure and projectile impact. The objective is to avoid a major structural failure. The structure then needs to be checked against ballistic penetration by a range of weapons or be required to resist explosive penetration from the charge detonated in contact with the structure. There is also a dire need to formulate protective guidelines for all existing and future critical facilities. (author)

  11. Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM

    Science.gov (United States)

    Luo, Hao; Zheng, Fei; Zhu, Jiang

    2017-12-01

    Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.

  12. Three-dimensional crust and upper mantle structure at the Nevada test site

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1983-01-01

    The three-dimensional crust and upper mantle structure at the Nevada Test Site (NTS) is derived by combining teleseismic P wave travel time residuals with Pn source time terms. The NTS time terms and relative teleseismic residuals are calculated by treating the explosions as a network of 'receivers' which record 'shots' located at the surrounding stations. Utilization of the Pn time terms allows for better crustal resolution than is possible from teleseismic information alone. Average relative teleseismic P wave residuals show a consistent progression of positive (late arrivals) to negative residuals from east to west across the NTS. However, Pn time terms beneath Rainier Mesa are at least 0.3 and 0.5 s less than those beneath Pahute Mesa and Yucca Flat, respectively, indicating the presence of high-velocity crustal material or crustal thinning beneath Rainier Mesa. The time terms at Pahute Mesa are surprisingly uniform, and the largest time terms and residuals are observed in the northwest and southern parts of Yucca Flat. The Pn time terms show a slight correlation with the working-point velocity at the shot point for Pahute Mesa and Yucca Flat, indicating that part of the observed lateral variations are caused by shallow effects of the upper crust. Three-dimensional inversion of the travel time residuals suggests that Yucca Flat is characterized by low-velocity anomalies confined to the upper crust, Rainer Mesa by very high velocities in the upper and middle crust, and Pahute Mesa by a high-velocity anomaly extending through the crust and into the upper mantle. Relatively low velocities are observed in the lower crust beneath the Timber Mountain caldera south of Pahute Mesa with no expression in the upper mantle. These observed differences in velocity beneath the Tertiary Silent Canyon and Timber Mountain calderas may be related to their magma volume and mode of enrichment from a mantle-derived magma source

  13. Air-gun signature modelling considering the influence of mechanical structure factors

    International Nuclear Information System (INIS)

    Li, Guofa; Liu, Zhao; Wang, Jianhua; Cao, Mingqiang

    2014-01-01

    In marine seismic prospecting, as the air-gun array is usually composed of different types of air-guns, the signature modelling of different air-guns is particularly important to the array design. Different types of air-guns have different mechanical structures, which directly or indirectly affect the signatures. In order to simulate the influence of the mechanical structure, five parameters—the throttling constant, throttling power law exponent, mass release efficiency, fluid viscosity and heat transfer coefficient—are used in signature modelling. Through minimizing the energy relative error between the simulated and the measured signatures by the simulated annealing method, the five optimal parameters can be estimated. The method is tested in a field experiment, and the consistency between the simulated and the measured signatures is improved with the optimal parameters. (paper)

  14. Average structure of the upper earth mantle and crust between Albuquerque and the Nevada Test Site

    International Nuclear Information System (INIS)

    Garbin, H.D.

    1979-08-01

    Models of Earth structures were constructed by inverting seismic data obtained from nuclear events with a 1600-m-long laser strain meter. With these models the general structure of the earth's upper mantle and crust between Albuquerque and the Nevada Test Site was determined. 3 figures, 3 tables

  15. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    International Nuclear Information System (INIS)

    Martha, Agustya Adi; Widiyantoro, Sri; Cummins, Phil; Saygin, Erdinc; Masturyono

    2015-01-01

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images

  16. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Martha, Agustya Adi [Meteorological, Climatological and Geophysical Agency, Jakarta (Indonesia); Graduate Research on Earthquakes and Active Tectonics, Institut Teknologi Bandung, Bandung (Indonesia); Widiyantoro, Sri [Global Geophysics Group, Institut Teknologi Bandung, Bandung (Indonesia); Center for Disaster Mitigation, Institut Teknologi Bandung, Bandung (Indonesia); Cummins, Phil; Saygin, Erdinc [Research School of Earth Sciences, Australian National University, Canberra (Australia); Masturyono [Meteorological, Climatological and Geophysical Agency, Jakarta (Indonesia)

    2015-04-24

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images.

  17. The effect of form pressure on the air void structure of SCC

    DEFF Research Database (Denmark)

    Jensen, Mikkel Vibæk; Hasholt, Marianne Tange; Geiker, Mette Rica

    2005-01-01

    The high workability of self-compacting concrete (SCC) invites to high casting rates. However, casting walls at high rate may result in large pressure at the bottom of the form and subsequently compression of the air voids. This paper deals with the influence of hydrostatic pressure during setting...... on the air void structure of hardened, air entrained SCC. The subject was examined through laboratory investigations of SCC with two different amounts of air entrainment. The condition in the form was simulated by using containers making it possible to cure concrete under various pressures corresponding...... to the bottom of castings of 0, 2, 4, and 6 meters height. The laboratory investigations were supplemented with data from two full-scale wall castings. The air void structure of the hardened concretes was determined on plane sections. The results indicate that the pressure related changes of the air void...

  18. Observed OH and HO2 concentrations in the upper troposphere inside and outside of Asian monsoon influenced air.

    Science.gov (United States)

    Marno, D. R.; Künstler, C.; Hens, K.; Tatum Ernest, C.; Broch, S.; Fuchs, H.; Martinez, M.; Bourtsoukidis, E.; Williams, J.; Holland, F.; Hofzumahaus, A.; Tomsche, L.; Fischer, H.; Klausner, T.; Schlager, H.; Eirenschmalz, L.; Stratmann, G.; Stock, P.; Ziereis, H.; Roiger, A.; Bohn, B.; Zahn, A.; Wahner, A.; Lelieveld, J.; Harder, H.

    2016-12-01

    The Asian monsoon convectively transports pollutants like volatile organic compounds (VOCs), NOx, and SO2 from the boundary layer over South Asia into the upper troposphere where they can potentially enter the stratosphere, or be dispersed globally. Therefore, it is crucial to understand the oxidizing capacity of this system regarding the rate of aerosol formation, and conversion of pollutants into compounds that have much shorter atmospheric lifetimes. OH plays a central role in this oxidation process. During the OMO-ASIA campaign in the summer of 2015, OH and HO2 were measured onboard the High Altitude Long-Range (HALO) Research Aircraft. Two laser-induced fluorescence instruments based on the fluorescence assay by gas expansion technique (LIF-FAGE) had been deployed, the AIR-LIF instrument from Forschungszentrum Jülich GmbH and the HORUS instrument from the Max Planck Institute for Chemistry, Mainz. To measure the chemical background of OH potentially produced inside the HORUS instrument from highly oxidized VOCs, atmospheric OH is scavenged by an Inlet Pre-injector (IPI) system. This was the first time an IPI system was implemented within an airborne LIF-FAGE instrument measuring OH and HO2. Throughout this campaign OH and HO2 were measured at 12 to 15km within the Asian monsoon anticyclone. These measurements have been contrasted by probing air outside the anticyclone in air masses influenced by North American emissions, and in very clean air masses originated from the southern hemisphere.

  19. Relationship between diversity and the vertical structure of the upper ocean

    Science.gov (United States)

    Longhurst, Alan R.

    1985-12-01

    The sources of diversity in the plankton ecosystem of the upper 250 m in the eastern tropical Pacific Ocean are explored in the data from LHPR plankton profiles. Though there is good evidence for resource partitioning among feeding guilds of congeners, and for specialization in predation—both known to create diversity in simple aquatic ecosystems—the existence of a stable vertical structure, including a thermocline, may be one of the more important causes of variation in regional plankton diversity in the euphotic zone.

  20. Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research

    Science.gov (United States)

    Bowman, Kenneth P.; Pan, Laura L.; Campos, Teresa; Gao, Rushan

    2007-09-01

    The Progressive Science Mission in December 2005 was the first research use of the new NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft. The Stratosphere-Troposphere Analyses of Regional Transport (START) component of the mission was designed to investigate the dynamical and chemical structure of the upper troposphere and lower stratosphere. Flight 5 of the Progressive Science mission was a START flight that sampled near the tropopause in an area between the main jet stream and a large, quasi-stationary, cutoff low. The large-scale flow in this region was characterized by a hyperbolic (saddle) point. In this study the in situ measurements by HIAPER are combined with flow analyses and satellite data to investigate the quasi-isentropic stirring of trace species in the upper troposphere. As expected from theoretical considerations, strong stretching and folding deformation of the flow near the hyperbolic point resulted in rapid filamentation of air masses and sharp gradients of constituents. Calculations of the stirring using operational meteorological analyses from the NCEP Global Forecast System model produced excellent agreement with HIAPER and satellite observations of trace species. Back trajectories indicate that elevated ozone levels in some filaments likely came from a large stratospheric intrusion that occurred upstream in the jet over the north Pacific Ocean. The methods presented here can be used with operational forecasts for future flight planning.

  1. Computer vision for shoe upper profile measurement via upper and sole conformal matching

    Science.gov (United States)

    Hu, Zhongxu; Bicker, Robert; Taylor, Paul; Marshall, Chris

    2007-01-01

    This paper describes a structured light computer vision system applied to the measurement of the 3D profile of shoe uppers. The trajectory obtained is used to guide an industrial robot for automatic edge roughing around the contour of the shoe upper so that the bonding strength can be improved. Due to the specific contour and unevenness of the shoe upper, even if the 3D profile is obtained using computer vision, it is still difficult to reliably define the roughing path around the shape. However, the shape of the corresponding shoe sole is better defined, and it is much easier to measure the edge using computer vision. Therefore, a feasible strategy is to measure both the upper and sole profiles, and then align and fit the sole contour to the upper, in order to obtain the best fit. The trajectory of the edge of the desired roughing path is calculated and is then smoothed and interpolated using NURBS curves to guide an industrial robot for shoe upper surface removal; experiments show robust and consistent results. An outline description of the structured light vision system is given here, along with the calibration techniques used.

  2. Observing Boundary-Layer Winds from Hot-Air Balloon Flights

    NARCIS (Netherlands)

    Bruijn, de E.I.F.; Haan, de S.; Bosveld, F.C.; Wichers Schreur, B.G.J.; Holtslag, A.A.M.

    2016-01-01

    High-resolution upper-air wind observations are sparse, and additional observations are a welcome source of meteorological information. In this paper the potential of applying balloon flights for upper-air wind measurements is explored, and the meteorological content of this information is

  3. Simulant-material experimental investigation of flow dynamics in the CRBR Upper-Core Structure

    International Nuclear Information System (INIS)

    Wilhelm, D.; Starkovich, V.S.; Chapyak, E.J.

    1982-09-01

    The results of a simulant-material experimental investigation of flow dynamics in the Clinch River Breeder Reactor (CRBR) Upper Core Structure are described. The methodology used to design the experimental apparatus and select test conditions is detailed. Numerous comparisons between experimental data and SIMMER-II Code calculations are presented with both advantages and limitations of the SIMMER modeling features identified

  4. Investigating gravity waves evidences in the Venus upper atmosphere

    Science.gov (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  5. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  6. Imaging of upper crustal structure beneath East Java-Bali, Indonesia with ambient noise tomography

    Science.gov (United States)

    Martha, Agustya Adi; Cummins, Phil; Saygin, Erdinc; Sri Widiyantoro; Masturyono

    2017-12-01

    The complex geological structures in East Java and Bali provide important opportunities for natural resource exploitation, but also harbor perils associated with natural disasters. Such a condition makes the East Java region an important area for exploration of the subsurface seismic wave velocity structure, especially in its upper crust. We employed the ambient noise tomography method to image the upper crustal structure under this study area. We used seismic data recorded at 24 seismographs of BMKG spread over East Java and Bali. In addition, we installed 28 portable seismographs in East Java from April 2013 to January 2014 for 2-8 weeks, and we installed an additional 28 seismographs simultaneously throughout East Java from August 2015 to April 2016. We constructed inter-station Rayleigh wave Green's functions through cross-correlations of the vertical component of seismic noise recordings at 1500 pairs of stations. We used the Neighborhood Algorithm to construct depth profiles of shear wave velocity (Vs). The main result obtained from this study is the thickness of sediment cover. East Java's southern mountain zone is dominated by higher Vs, the Kendeng basin in the center is dominated by very low Vs, and the Rembang zone (to the North of Kendeng zone) is associated with medium Vs. The existence of structures with oil and gas potential in the Kendeng and Rembang zones can be identified by low Vs.

  7. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  8. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method

    Science.gov (United States)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-06-01

    We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the

  9. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Besson, D.; Blake, S. A.; Byrne, M.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Farhang-Boroujeny, B.; Fujii, T.; Fukushima, M.; Gillman, W. H.; Goto, T.; Hanlon, W.; Hanson, J. C.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jayanthmurthy, C.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kunwar, S.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Prohira, S.; Pshirkov, M. S.; Rezazadeh-Reyhani, A.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Schurig, D.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takai, H.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Venkatesh, S.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 μs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/μs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector. The transmitter is under the direct control of experimenters, and in a radio-quiet area isolated from other radio frequency (RF) sources. The power and radiation pattern are known at all times. Forward power up to 40 kW and gain exceeding 20 dB maximize energy density in the radar field. Continuous wave (CW) transmission gives 100% duty cycle, as opposed to pulsed radar. TARA utilizes a high sample rate DAQ (250 MS/s). TARA is colocated with a large state-of-the-art conventional CR observatory, allowing the radar data stream to be sampled at the arrival times of known cosmic ray events. Each of these attributes of the TARA detector has been discussed in detail in the literature [8]. A map

  10. Estimation of the Influence of Thin Air Layers on Structures by the Use of Qualitative One-Dimensional Models

    Science.gov (United States)

    Chimeno Manguan, M.; Roibas Millan, E.; Simon Hidalgo, F.

    2014-06-01

    Air layers are regions of air between structural elements than can be found in numerous spacecraft structures. The space between folded solar panels and between antennas and a satellite's body are cases of air layers. For some cases, depending on the flexibility of the contiguous structures, the contribution of air layers can modify noticeably the dynamic response of a spacecraft structure. The analysis of these problems in detailed numerical models as Finite and Boundary Element models are characterised by a very small element size because of the requirements imposed by the thickness of the air layers and the fluid-structure interface. Then, a preliminary assessment of the influence of the air layer allows optimizing the development work flow of these elements. This work presents a methodology to preliminarily assess the influence of air layers in the structural response. The methodology is based on the definition of simplified one-dimensional models for the structure and the air gaps. The study of these simple models can be a useful tool to determine the degree of influence of the air layers in the system. Along with the introduction of the methodology a study on several of the model parameters as the number of degrees of freedom for the air layer or the structure is presented. The performance of the methodology is illustrated with results for several cases including actual spacecraft structures.

  11. UV laser cleaving of air-polymer structured fibre

    NARCIS (Netherlands)

    Canning, J.; Buckley, E.; Groothoff, N.; Luther-Davies, B.; Zagari, J.

    2002-01-01

    The demonstration of ultraviolet (UV) laser ablation technique for cleaving of air-polymer structure (APF) fiber was presented. ArF exciplex laser with an unstable resonator cavity with pulse-to-pulse intensity fluctuations was used for the study. The thermal diffusion time across a 200 µm diameter

  12. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE).

    Science.gov (United States)

    Nagel, Gabriele; Stafoggia, Massimo; Pedersen, Marie; Andersen, Zorana J; Galassi, Claudia; Munkenast, Jule; Jaensch, Andrea; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Vermeulen, Roel; Eeftens, Marloes; Plusquin, Michelle; Key, Timothy J; Concin, Hans; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Cesaroni, Giulia; Forastiere, Francesco; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole; Weinmayr, Gudrun

    2018-04-26

    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-use regression models for particulate matter (PM) below 10 µm (PM 10 ), below 2.5 µm (PM 2.5 ), between 2.5 and 10 µm (PM coarse ), PM 2.5 absorbance and nitrogen oxides (NO 2 and NO X ) as well as approximated by traffic indicators. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. During average follow-up of 14.1 years of 305 551 individuals, 744 incident cases of gastric cancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5 µg/m 3 of PM 2.5 was 1.38 (95%-CI 0.99;1.92) for gastric and 1.05 (95%-CI 0.62;1.77) for UADT cancers. No associations were found for any of the other exposures considered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influence markedly the effect estimate for PM 2.5 and gastric cancer. Higher estimated risks of gastric cancer associated with PM 2.5 was found in men (HR 1.98 (1.30;3.01)) as compared to women (HR 0.85 (0.5;1.45)). This large multicentre cohort study shows an association between long-term exposure to PM 2.5 and gastric cancer, but not UADT cancers, suggesting that air pollution may contribute to gastric cancer risk. This article is protected by copyright. All rights reserved. © 2018 UICC.

  13. Simulating the 3-D Structure of Titan's Upper Atmosphere

    Science.gov (United States)

    Bell, J. M.; Waite, H.; Westlake, J.; Magee, B.

    2009-05-01

    We present results from the 3-D Titan Global Ionosphere-Thermosphere Model (Bell et al [2009], PSS, in review). We show comparisons between simulated N2, CH4, and H2 density fields and the in-situ data from the Cassini Ion Neutral Mass Spectrometer (INMS). We describe the temperature and wind fields consistent with these density calculations. Variations with local time, longitude, and latitude will be addressed. Potential plasma heating sources can be estimated using the 1-D model of De La Haye et al [2007, 2008] and the impacts on the thermosphere of Titan can be assessed in a global sense in Titan-GITM. Lastly, we will place these findings within the context of recent work in modeling the 2-D structure of Titan's upper atmosphere (Mueller-Wodarg et al [2008]).

  14. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  15. The Development of the Flat-Knitted Shaped Uppers based on Ergonomics

    Directory of Open Access Journals (Sweden)

    Lu Zhiwen

    2016-06-01

    Full Text Available To achieve the efficiency and specification of the flat-knitted uppers design, the basic patterns of uppers are made from shoe lasts based on the research on the characteristics of human’s feet and wearability requirements on uppers. The knitting technology for half-shaped and fully shaped uppers was formed after the shear deformation of basic pattern and combination with flat knitting technology. As regards to the functional requirements on key parts of uppers, the structures of flat-knitted shaped uppers were intensively analysed and studied, dividing them into two categories (functional structure and decorative structure, discussing the knitting methods and advantages of different structure, and finally experimentally proving that the planar pattern of flat knitted uppers can apply to the design of flat-knitted uppers and achieve the combination of functionality and artistry of sneakers after combining with structural changes, with a great significance on the achievement of the efficient production of uppers and the enhancement of its commercial value.

  16. A conceptual design of the ITER upper port plug structure and its cooling channels

    International Nuclear Information System (INIS)

    Pak, S.I.; Lee, H.G.; Jung, K.J.; Walker, C.I.; Kim, D.G.; Choi, K.S.

    2008-01-01

    A study is conducted on the conceptual design of the structure and cooling channels of the upper port plug of International Thermonuclear Experimental Reactor (ITER). Modification of the earlier port plug design is made and a simple fabrication method is proposed. It is shown that the newly designed port plug can accommodate the installation of both diagnostic and electron cyclotron heating (ECH) devices. Design assessment is carried out through structural and thermo-hydraulic analyses. Results of the analyses show that the port plug structure is stable against one of the most severe plasma events and the total pressure drop of the coolant is within the allowable level

  17. Surface and upper air meteorological features during onset phase

    Indian Academy of Sciences (India)

    There was a sharp fall in the temperature difference between 850 and 500 hPa, and the height of zero degree isotherm about 2–3 days before the monsoon onset. The flux of sensible heat was positive (sea to air) over south Arabian Sea during the onset phase. Over the Bay of Bengal higher negative (air to sea) values of ...

  18. Structural properties of the Chinese air transportation multilayer network

    International Nuclear Information System (INIS)

    Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo

    2016-01-01

    Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

  19. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    International Nuclear Information System (INIS)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-01-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in intersection -shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  20. Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution.

    Science.gov (United States)

    Shen, Yu-Sheng; Lung, Shih-Chun Candice

    2017-02-23

    Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, primary and secondary air pollutants separately using partial least squares model with data from Taiwan. The measurable characteristics of green structure include the largest patch percentage, landscape proportion, aggregation, patch distance, and fragmentation. The results showed that mortality of pneumonia and chronic lower respiratory diseases could be reduced by minimizing fragmentation and increasing the largest patch percentage of green structure, and the mediation effects are mostly through reducing air pollutants rather than temperature. Moreover, a high proportion of but fragmented green spaces would increase secondary air pollutants and enhance health risks; demonstrating the deficiency of traditional greening policy with primary focus on coverage ratio. This is the first research focusing on mediation effects of green structure characteristics on respiratory mortality, revealing that appropriate green structure planning can be a useful complementary strategy in environmental health management.

  1. Positive pressure ventilation in a patient with a right upper lobar bronchocutaneous fistula: right upper bronchus occlusion using the cuff of a left-sided double lumen endobronchial tube.

    Science.gov (United States)

    Omori, Chieko; Toyama, Hiroaki; Takei, Yusuke; Ejima, Yutaka; Yamauchi, Masanori

    2017-08-01

    In patients with a bronchocutaneous fistula, positive pressure ventilation leads to air leakage and potential hypoxemia. A male patient with a right upper bronchocutaneous fistula was scheduled for esophageal reconstruction. His preoperative chest computed tomography image revealed aeration in the right middle and lower lobe, a large bulla in the left upper lobe, and pleural effusion and pneumonia in the left lower lobe. Therefore, left one-lung ventilation was considered to result in hypoxemia. Before anesthesia induction, the bronchocutaneous fistula was covered with gauze and film to prevent air leakage. After anesthesia induction, mask ventilation was performed with a peak positive pressure of 10 cmH 2 O. A left-sided double lumen endobronchial tube (DLT) was then inserted into the right main bronchus for occluding only the right superior bronchus, and two-lung ventilation was performed to minimize airway pressure and maintain oxygenation, which did not cause air leakage through the fistula. During anesthesia, no ventilation-related difficulty was faced. The method of inserting a left-sided DLT into the right main bronchus and occluding the right upper bronchus selectively by bronchial cuff is considered to be an option for mechanical ventilation in patients with a right upper bronchial fistula, as demonstrated in the present case.

  2. Air-Inflated Fabric Structures

    National Research Council Canada - National Science Library

    Cavallaro, Paul V; Sadegh, Ali M

    2006-01-01

    .... Examples include air ships, weather balloons, inflatable antennas and radomes, temporary shelters, pneumatic muscles and actuators, inflatable boats, temporary bridging, and energy absorbers such as automotive air bags...

  3. Bacterial community structures in air conditioners installed in Japanese residential buildings.

    Science.gov (United States)

    Hatayama, Kouta; Oikawa, Yurika; Ito, Hiroyuki

    2018-01-01

    The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.

  4. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    Science.gov (United States)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  5. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  6. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  7. New Constraints on Upper Mantle Structure Underlying the Diamondiferous Central Slave Craton, Canada, from Teleseismic Body Wave Tomography

    Science.gov (United States)

    Esteve, C.; Schaeffer, A. J.; Audet, P.

    2017-12-01

    Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.

  8. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    Science.gov (United States)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  9. Seismic structure of the European upper mantle based on adjoint tomography

    Science.gov (United States)

    Zhu, Hejun; Bozdağ, Ebru; Tromp, Jeroen

    2015-04-01

    We use adjoint tomography to iteratively determine seismic models of the crust and upper mantle beneath the European continent and the North Atlantic Ocean. Three-component seismograms from 190 earthquakes recorded by 745 seismographic stations are employed in the inversion. Crustal model EPcrust combined with mantle model S362ANI comprise the 3-D starting model, EU00. Before the structural inversion, earthquake source parameters, for example, centroid moment tensors and locations, are reinverted based on global 3-D Green's functions and Fréchet derivatives. This study consists of three stages. In stage one, frequency-dependent phase differences between observed and simulated seismograms are used to constrain radially anisotropic wave speed variations. In stage two, frequency-dependent phase and amplitude measurements are combined to simultaneously constrain elastic wave speeds and anelastic attenuation. In these two stages, long-period surface waves and short-period body waves are combined to simultaneously constrain shallow and deep structures. In stage three, frequency-dependent phase and amplitude anomalies of three-component surface waves are used to simultaneously constrain radial and azimuthal anisotropy. After this three-stage inversion, we obtain a new seismic model of the European curst and upper mantle, named EU60. Improvements in misfits and histograms in both phase and amplitude help us to validate this three-stage inversion strategy. Long-wavelength elastic wave speed variations in model EU60 compare favourably with previous body- and surface wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from the smooth starting model. Subducting slabs, slab detachments, ancient suture zones, continental rifts and backarc basins are well resolved in model EU60. We find an anticorrelation between shear wave speed and anelastic attenuation at depths agreement with previous global attenuation studies

  10. Design study for KALIMER upper internal structure and reactor refueling system

    International Nuclear Information System (INIS)

    Park, Jin Ho

    1996-09-01

    The design study for the KALIMER upper internal structure (UIS) and reactor refueling system has been described. Two distinct features are plug-in UIS and extended refueling outage. For the UIS system, the functional, structural and material requirements have been determined and the accommodation approaches to meet these functional requirements described. For the refueling system, the functional, structural, process and I and C (Instrument and Control) requirements have been established and the accommodation approaches for the functional and process requirements described. The impact on plant availability due to extension of the refueling outage has also been investigated. The accommodation approaches for UIS system show that the design concept of the system will satisfy the functional requirements with a few design issues to be resolved, such as UIS plug in/out handling system and cask design. It is also shown that the functional and process requirements of the refueling system are achievable with the design of the IVTM cask and related transfer system and the extended refueling outage has little effect (within 1%) on the plant availability if extra refueling time do not exceed 1 week. 1 refs. (Author)

  11. Design study for KALIMER upper internal structure and reactor refueling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-09-01

    The design study for the KALIMER upper internal structure (UIS) and reactor refueling system has been described. Two distinct features are plug-in UIS and extended refueling outage. For the UIS system, the functional, structural and material requirements have been determined and the accommodation approaches to meet these functional requirements described. For the refueling system, the functional, structural, process and I and C (Instrument and Control) requirements have been established and the accommodation approaches for the functional and process requirements described. The impact on plant availability due to extension of the refueling outage has also been investigated. The accommodation approaches for UIS system show that the design concept of the system will satisfy the functional requirements with a few design issues to be resolved, such as UIS plug in/out handling system and cask design. It is also shown that the functional and process requirements of the refueling system are achievable with the design of the IVTM cask and related transfer system and the extended refueling outage has little effect (within 1%) on the plant availability if extra refueling time do not exceed 1 week. 1 refs. (Author).

  12. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'JOYO'. 2. Replacement of upper core structure

    International Nuclear Information System (INIS)

    Ushiki, Hiroshi; Ito, Hiromichi; Okuda, Eiji; Suzuki, Nobuhiro; Sasaki, Jun; Oota, Katsu; Kawahara, Hirotaka; Takamatsu, Misao; Nagai, Akinori; Okawa, Toshikatsu

    2015-01-01

    In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of MARICO-2 (material testing rig with temperature control) had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS) in 2007. As a part of the restoration work, UCS replacement was begun at March 24, 2014 and was completed at December 17. In-vessel repair (including observation) for sodium-cooled fast reactors (SFRs) is distinct from that for light water reactors and necessitates independent development. Application of developed in-vessel repair techniques to operation and maintenance of SFRs enhanced their safety and integrity. There is little UCS replacement experience in the world and this experience and insights, which were accumulated in the replacement work of in-vessel large structure (UCS) used for more than 30 years, are expected to improve the in-vessel repair techniques in SFRs. (author)

  13. Race/Ethnicity and Social Capital among Middle- and Upper-Middle-Class Elementary School Families: A Structural Equation Model

    Science.gov (United States)

    Caldas, Stephen J.; Cornigans, Linda

    2015-01-01

    This study used structural equation modeling to conduct a first and second order confirmatory factor analysis (CFA) of a scale developed by McDonald and Moberg (2002) to measure three dimensions of social capital among a diverse group of middle- and upper-middle-class elementary school parents in suburban New York. A structural path model was…

  14. Global shear speed structure of the upper mantle and transition zone

    Science.gov (United States)

    Schaeffer, A. J.; Lebedev, S.

    2013-07-01

    The rapid expansion of broad-band seismic networks over the last decade has paved the way for a new generation of global tomographic models. Significantly improved resolution of global upper-mantle and crustal structure can now be achieved, provided that structural information is extracted effectively from both surface and body waves and that the effects of errors in the data are controlled and minimized. Here, we present a new global, vertically polarized shear speed model that yields considerable improvements in resolution, compared to previous ones, for a variety of features in the upper mantle and crust. The model, SL2013sv, is constrained by an unprecedentedly large set of waveform fits (˜3/4 of a million broad-band seismograms), computed in seismogram-dependent frequency bands, up to a maximum period range of 11-450 s. Automated multimode inversion of surface and S-wave forms was used to extract a set of linear equations with uncorrelated uncertainties from each seismogram. The equations described perturbations in elastic structure within approximate sensitivity volumes between sources and receivers. Going beyond ray theory, we calculated the phase of every mode at every frequency and its derivative with respect to S- and P-velocity perturbations by integration over a sensitivity area in a 3-D reference model; the (normally small) perturbations of the 3-D model required to fit the waveforms were then linearized using these accurate derivatives. The equations yielded by the waveform inversion of all the seismograms were simultaneously inverted for a 3-D model of shear and compressional speeds and azimuthal anisotropy within the crust and upper mantle. Elaborate outlier analysis was used to control the propagation of errors in the data (source parameters, timing at the stations, etc.). The selection of only the most mutually consistent equations exploited the data redundancy provided by our data set and strongly reduced the effect of the errors, increasing the

  15. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  16. Design of the upper internals structure for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Thompson, D.C.; Novendstern, E.H.

    1977-01-01

    The Upper Internals Structure (UIS) is located above the core and is supported from the head at four locations. It is designed to perform the following primary functions: provide secondary core holddown in the event of a malfunction of the core hydraulic holddown system; provide support for routing all in-vessel instrumentation to core assemblies; maintain alignment between the core assemblies, the UIS and the closure head; provide guidance and crossflow protection for the control rod drivelines; and mix/duct flow to the upper region of the vessel outlet plenum to minimize rapid temperature changes to components during a reactor trip transient. In accomplishing these functions, the UIS will experience a sodium environment with temperatures up to 1200 0 F (649 0 C), and as many as 7 x 10 8 cycles of fluid temperature fluctuations up to 250 0 F (121 0 C) at full power operation. It must be designed to survive these conditions in combination with seismic and flow-induced vibration loadings for its 30 year design life. The design program of designing to controlled functional requirements and design conditions is discussed. Included is a description of the significant parts of the design and the approach used to balance the requirement of tight joints. The thermal and hydraulic environment including the results of a comprehensive test program are discussed. The test program results establish the basis of the thermal boundary used in the structural evaluation, and the UIS vibration characteristics. A summary of the areas which have required design changes is included with a summary of the structural evaluation of these changes

  17. Bending Behavior of Plain-Woven Fabric Air Beams: Fluid-Structure Interaction Approach

    National Research Council Canada - National Science Library

    Cavallaro, Paul V; Sadegh, Ali M; Quigley, Claudia J

    2006-01-01

    ... to inflation and bending events. The structural responses to these events were obtained using the ABAQUS/Explicit finite element solver for a range of pressures, including those considered to be typical in safe operations of air-inflated structures...

  18. Upper air thermal inversion and their impact on the summer monsoon rainfall over Goa - A case study

    Science.gov (United States)

    Swathi, M. S.; Muraleedharan, P. M.; Ramaswamy, V.; Rameshkumar, M. R.; Aswini, Anirudhan

    2018-04-01

    Profiles of periodic GPS Radiosonde ascends collected from a station at the west coast of India (Goa) during summer monsoon months (June to September) of 2009 and 2013 have been used to analyze the thermal inversion statistics at various heights and their repercussions on the regional weather is studied. The interaction of contrasting air masses over the northern Arabian Sea often produces a two layer structure in the lower 5000 m close to the coastal station with warm and dusty air (Summer Shamal) occupying the space above the cool and moist Low Level Jet (LLJ) by virtue of their density differences. The warm air intrusion creates low lapse rate pockets above LLJ and modifies the gravitational stability strong enough to inhibit convection. It is observed that the inversion occurring in the lower 3000 m layer with an optimum layer thickness of 100-200 m has profound influence on the weather beneath it. We demonstrated the validity of the proposed hypothesis by analyzing the collocated data from radiosonde, lidar and the rain gauge during 16th July 2013 as a case study. The lidar depolarization ratio provides evidence to support the two layer structure in the lidar backscatter image. The presence of dust noticed in the two layer interface hints the intrusion of warm air that makes the atmosphere stable enough to suppress convection. The daily rainfall record of 2013 surprisingly coincides with the patterns of a regional break like situation centered at 16th July 2013 in Goa.

  19. Computational Thermodynamics Analysis of Vaporizing Fuel Droplets in the Human Upper Airways

    Science.gov (United States)

    Zhang, Zhe; Kleinstreuer, Clement

    The detailed knowledge of air flow structures as well as particle transport and deposition in the human lung for typical inhalation flow rates is an important precursor for dosimetry-and-health-effect studies of toxic particles as well as for targeted drug delivery of therapeutic aerosols. Focusing on highly toxic JP-8 fuel aerosols, 3-D airflow and fluid-particle thermodynamics in a human upper airway model starting from mouth to Generation G3 (G0 is the trachea) are simulated using a user-enhanced and experimentally validated finite-volume code. The temperature distributions and their effects on airflow structures, fuel vapor deposition and droplet motion/evaporation are discussed. The computational results show that the thermal effect on vapor deposition is minor, but it may greatly affect droplet deposition in human airways.

  20. Extensive Air Showers with unusual structure

    Directory of Open Access Journals (Sweden)

    Beznosko Dmitriy

    2017-01-01

    Full Text Available A total of 23500 Extensive Air Showers (EAS with energies above ∼ 1016 eV have been detected during the ∼3500 hours of the Horizon-T (HT detectors system operations before Aug. 2016. Among these EAS, more than a thousand had an unusual spatial and temporary structure that showed pulses with several maxima (modals or modes from several detection points of the HT at the same time. These modes are separated in time from each other starting from tens to thousands of ns. These EAS have been called multi-modal. Analysis shows that the multi-modal EAS that have been detected by Horizon-T have the following properties: 1. Multi-modal EAS have energy above ∼1017 eV. 2. Pulses with several modes are located at large distances from the EAS axis. An overview of the collected data will be provided. General comments about the unusual structure of the multi-modal EAS will be presented.

  1. Hydromorphological pattern in middle upper segment of the Arroyo Ventana (Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Belén García Martínez

    2017-01-01

    Full Text Available The fluvial pattern of the Ventana creek is determined, through hydrological and geomorphologic features in the middle upper segment of the watercourse. A Digital Terrain Model of the middle and upper basin of the course was generated based on the contours of the 1:50,000 Tornquist topographic map. The geomorphological mapping of the course was made from photogrammetric flight (1981 at 1:20,000. Three cross sections of the channel were surveyed. Two different river patterns were identified: a braided type, in the upper segment of the course, and another meandering type in the middle segment of the course. Current river dynamics shows a tendency of incision in the course.

  2. Structure of the crust and upper mantle beneath the Balearic Islands (Western Mediterranean)

    Science.gov (United States)

    Banda, E.; Ansorge, J.; Boloix, M.; Córdoba, D.

    1980-09-01

    Data are presented from deep seismic sounding along the strike of the Balearic Islands carried out in 1976. The interpretation of the data gives the following results: A sedimentary cover of 4 km around Ibiza to 7 km under Mallorca overlies the crystalline basement. This basement with a P-wave velocity of 6.0 km/s at the top reaches a depth of at least 15 km under Ibiza and 17 km under Mallorca with an increase to 6.1 km/s at these depths. The crust-mantle boundary lies at a depth of 20 km and 25 km, respectively. A well documented upper-mantle velocity of 7.7 km/s is found along the entire profile. The Moho rises to a depth of 20 km about 30 km north of Mallorca and probably continues rising towards the center of the North Balearic Sea. The newly deduced crustal structure together with previously determined velocity-depth sections in the North Balearic Sea as well as heat flow and aeromagnetic data can be interpreted as an extended rift structure caused by large-scale tensional processes in the upper mantle. The available data suggest that the entire zone from the eastern Alboran Sea to the area north of the Balearic Islands represents the southeastern flank of this rift system. In this model the provinces of Spain along the east coast would represent the northwestern rift flank.

  3. Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites

    Directory of Open Access Journals (Sweden)

    F. Madonna

    2014-11-01

    Full Text Available The potential for measurement redundancy to reduce uncertainty in atmospheric variables has not been investigated comprehensively for climate observations. We evaluated the usefulness of entropy and mutual correlation concepts, as defined in information theory, for quantifying random uncertainty and redundancy in time series of the integrated water vapour (IWV and water vapour mixing ratio profiles provided by five highly instrumented GRUAN (GCOS, Global Climate Observing System, Reference Upper-Air Network stations in 2010–2012. Results show that the random uncertainties on the IWV measured with radiosondes, global positioning system, microwave and infrared radiometers, and Raman lidar measurements differed by less than 8%. Comparisons of time series of IWV content from ground-based remote sensing instruments with in situ soundings showed that microwave radiometers have the highest redundancy with the IWV time series measured by radiosondes and therefore the highest potential to reduce the random uncertainty of the radiosondes time series. Moreover, the random uncertainty of a time series from one instrument can be reduced by ~ 60% by constraining the measurements with those from another instrument. The best reduction of random uncertainty is achieved by conditioning Raman lidar measurements with microwave radiometer measurements. Specific instruments are recommended for atmospheric water vapour measurements at GRUAN sites. This approach can be applied to the study of redundant measurements for other climate variables.

  4. Induced activity in accelerator structures, air and water

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport front the activation region to the release point. (18 refs).

  5. Induced activity in accelerator structures, air and water

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport from the activation region to the release point. (author)

  6. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.

    Science.gov (United States)

    Xiao, Feiyun; Gao, Yongsheng; Wang, Yong; Zhu, Yanhe; Zhao, Jie

    2017-07-20

    Many countries, including Japan, Italy, and China are experiencing demographic shifts as their populations age. Some basic activities of daily living (ADLs) are difficult for elderly people to complete independently due to declines in motor function. In this paper, a 6-DOF wearable cable-driven upper limb exoskeleton (CABexo) based on epicyclic gear trains structure is proposed. The main structure of the exoskeleton system is composed of three epicyclic gear train sections. This new exoskeleton has a parallel mechanical structure to the traditional serial structure, but is stiffer and has a stronger carrying capacity. The traditional gear transmission structure is replaced with a cable transmission system, which is quieter, and has higher accuracy and smoother transmission. The static workspace of the exoskeleton is large enough to meet the demand of assisting aged and disabled individuals in completing most of their activities of daily living (ADLs).

  7. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure.

    Science.gov (United States)

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-10-17

    This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms -1 ), a high velocity measurement limit (45ms -1 ) and a rapid response time (0.53 s).

  8. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    Science.gov (United States)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  9. Spacesuit Soft Upper Torso Sizing Systems

    Science.gov (United States)

    Graziosi, David; Splawn, Keith

    2011-01-01

    The passive sizing system consists of a series of low-profile pulleys attached to the front and back of the shoulder bearings on a spacesuit soft upper torso (SUT), textile cord or stainless steel cable, and a modified commercial ratchet mechanism. The cord/cable is routed through the pulleys and attached to the ratchet mechanism mounted on the front of the spacesuit within reach of the suited subject. Upon actuating the ratchet mechanism, the shoulder bearing breadth is changed, providing variable upper torso sizing. The active system consists of a series of pressurizable nastic cells embedded into the fabric layers of a spacesuit SUT. These cells are integrated to the front and back of the SUT and are connected to an air source with a variable regulator. When inflated, the nastic cells provide a change in the overall shoulder bearing breadth of the spacesuit and thus, torso sizing. The research focused on the development of a high-performance sizing and actuation system. This technology has application as a suit-sizing mechanism to allow easier suit entry and more accurate suit fit with fewer torso sizes than the existing EMU (Extravehicular Mobility Unit) suit system. This advanced SUT will support NASA s Advanced EMU Evolutionary Concept of a two-sizes-fit-all upper torso for replacement of the current EMU hard upper torso (HUT). Both the passive and nastic sizing system approaches provide astronauts with real-time upper torso sizing, which translates into a more comfortable suit, providing enhanced fit resulting in improved crewmember performance during extravehicular activity. These systems will also benefit NASA by reducing flight logistics as well as overall suit system cost. The nastic sizing system approach provides additional structural redundancy over existing SUT designs by embedding additional coated fabric and uncoated fabric layers. Two sizing systems were selected to build into a prototype SUT: one active and one passive. From manned testing, it

  10. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    Directory of Open Access Journals (Sweden)

    Che-Ming Chiang

    2007-10-01

    Full Text Available This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms-1, a high velocity measurement limit (45ms-1 and a rapid response time (0.53 s.

  11. Air Pollution and Environmental Justice Awareness

    Science.gov (United States)

    Bouvier-Brown, N. C.

    2014-12-01

    Air pollution is not equally dispersed in all neighborhoods and this raises many social concerns, such as environmental justice. "Real world" data, whether extracted from online databases or collected in the field, can be used to demonstrate air quality patterns. When students explore these trends, they not only learn about atmospheric chemistry, but they also become socially aware of any inequities. This presentation outlines specific ways to link air pollution and environmental justice suitable for an undergraduate upper division Air Pollution or Atmospheric Chemistry course.

  12. Fine Structure of a Laser-Plasma Filament in Air

    International Nuclear Information System (INIS)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-01-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ∼3 orders of magnitude decrease from the peak density level

  13. Fine Structure of a Laser-Plasma Filament in Air

    Science.gov (United States)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.

  14. Dosimetric impact of gastrointestinal air column in radiation treatment of pancreatic cancer.

    Science.gov (United States)

    Estabrook, Neil C; Corn, Jonathan B; Ewing, Marvene M; Cardenes, Higinia R; Das, Indra J

    2018-02-01

    Dosimetric evaluation of air column in gastrointestinal (GI) structures in intensity modulated radiation therapy (IMRT) of pancreatic cancer. Nine sequential patients were retrospectively chosen for dosimetric analysis of air column in the GI apparatus in pancreatic cancer using cone beam CT (CBCT). The four-dimensional CT (4DCT) was used for target and organs at risk (OARs) and non-coplanar IMRT was used for treatment. Once a week, these patients underwent CBCT for air filling, isocentre verification and dose calculations retrospectively. Abdominal air column variation was as great as ±80% between weekly CBCT and 4DCT. Even with such a large air column in the treatment path for pancreatic cancer, changes in anteroposterior dimension were minimal (2.8%). Using IMRT, variations in air column did not correlate dosimetrically with large changes in target volume. An average dosimetric deviation of mere -3.3% and a maximum of -5.5% was observed. CBCT revealed large air column in GI structures; however, its impact is minimal for target coverage. Because of the inherent advantage of segmentation in IMRT, where only a small fraction of a given beam passes through the air column, this technique might have an advantage over 3DCRT in treating upper GI malignancies where the daily air column can have significant impact. Advances in knowledge: Radiation treatment of pancreatic cancer has significant challenges due to positioning, imaging of soft tissues and variability of air column in bowels. The dosimetric impact of variable air column is retrospectively studied using CBCT. Even though, the volume of air column changes by ± 80%, its dosimetric impact in IMRT is minimum.

  15. Conceptual study on air ingress mitigation for VHTRs

    International Nuclear Information System (INIS)

    Oh, Chang H.; Kim, Eung Soo

    2012-01-01

    Highlights: ► Important factors that affect air-ingress process in the VHTRs were investigated and identified. ► Two air ingress mitigation concepts were developed using a root-cause analysis. ► These concepts were validated using computational fluid dynamic method. ► In-vessel helium injection and ex-vessel enclosure concept will mitigate air-ingress effectively. - Abstract: An air ingress accident following a postulated pipe break is considered a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that air will enter the core through the break leading to oxidation of the in-core graphite structures. Under extreme circumstances and without mitigation features this accident may lead to exothermic chemical reactions between graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances (beyond design basis), a loss of structural integrity may occur in some core structures and lead to elevated release of radiological inventory for the fuel matrix. This paper discusses various air ingress mitigation concepts applicable for the VHTRs that would prevent core damage even in the most extreme scenarios. The study begins with identifying important factors (or phenomena) associated with the air ingress accident using root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air ingress mitigation ideas were conceived and developed. Among them, two concepts were finally evaluated as effective candidates. One concept is to inject helium directly into the lower plenum (direct in-vessel injection); the other concept is to enclose the reactor with a non-pressure boundary with an opening at the bottom (ex-vessel enclosure). Computational fluid dynamics (CFD) methods were used to evaluate these concepts for proof of these principles. Results indicate that both concepts can effectively suppress air

  16. Conceptual study on air ingress mitigation for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang H., E-mail: Chang.Oh@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3870 (United States); Kim, Eung Soo [Department of Nuclear Engineering, Seoul National University, 559 Gwanak-ro, Gwanak-gu, Seoul (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Important factors that affect air-ingress process in the VHTRs were investigated and identified. Black-Right-Pointing-Pointer Two air ingress mitigation concepts were developed using a root-cause analysis. Black-Right-Pointing-Pointer These concepts were validated using computational fluid dynamic method. Black-Right-Pointing-Pointer In-vessel helium injection and ex-vessel enclosure concept will mitigate air-ingress effectively. - Abstract: An air ingress accident following a postulated pipe break is considered a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that air will enter the core through the break leading to oxidation of the in-core graphite structures. Under extreme circumstances and without mitigation features this accident may lead to exothermic chemical reactions between graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances (beyond design basis), a loss of structural integrity may occur in some core structures and lead to elevated release of radiological inventory for the fuel matrix. This paper discusses various air ingress mitigation concepts applicable for the VHTRs that would prevent core damage even in the most extreme scenarios. The study begins with identifying important factors (or phenomena) associated with the air ingress accident using root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air ingress mitigation ideas were conceived and developed. Among them, two concepts were finally evaluated as effective candidates. One concept is to inject helium directly into the lower plenum (direct in-vessel injection); the other concept is to enclose the reactor with a non-pressure boundary with an opening at the bottom (ex-vessel enclosure). Computational fluid dynamics (CFD) methods were used to evaluate these concepts

  17. Using spatial context to support prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Finnerty, Dannielle; Remington, Roger W

    2011-12-01

    The aim was to examine whether prospective memory error and response costs to ongoing tasks in an air traffic control simulation could be reduced by providing spatial context. Prospective memory refers to remembering to perform an intended action at an appropriate point in the future. Failures of prospective memory can occur in air traffic control. For this study, three conditions of participants performed an air traffic control task that required them to accept and hand off aircraft and to prevent conflicts. The prospective memory task required participants to remember to press an alternative key rather than the routine key when accepting target aircraft. A red line separated the display into upper and lower regions. Participants in the context condition were told that the prospective memory instruction would apply only to aircraft approaching from one region (upper or lower). Those in the standard condition were not provided this information. In the control condition, participants did not have to perform the prospective memory task. In the context condition, participants made fewer prospective memory errors than did those in the standard condition and made faster acceptance decisions for aircraft approaching from irrelevant compared with relevant regions. Costs to hand-off decision time were also reduced in the context condition. Spatial context provided no benefit to conflict detection. Participants could partially localize their allocation of attentional resources to the prospective memory task to relevant display regions. The findings are potentially applicable to air traffic control, whereby regularities in airspace structure and standard traffic flows allow controllers to anticipate the location of specific air traffic events.

  18. Upper respiratory tract (image)

    Science.gov (United States)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  19. Upper airway evaluation

    International Nuclear Information System (INIS)

    Hoffman, E.A.; Gefter, W.B.; Schnall, M.; Nordberg, J.; Listerud, J.; Lenkinski, R.E.

    1988-01-01

    The authors are evaluating upper-airway sleep disorders with magnetic resonance (MR) imaging and x-ray cine computed tomography (CT). Fixed structural anatomy is visualized with multisection spin-echo MR imaging, the dynamic component with cine CT. Unique aspects of the study are described in this paper

  20. Experimental investigation of flow dynamics in the SNR-upper-core structure

    International Nuclear Information System (INIS)

    Meyer, L.

    1985-03-01

    This report describes the results of a simulant-material experimental investigation of flow dynamics in the upper-core (UCS) during a HCDA of a LMFBR. The experiments were designed to verify some of the thermal-hydraulic models in SIMMER-II. Four different liquids were used to simulate the flashing U0 2 ; and numerous parameter variations were made regarding initial pressure, temperature, and configurations of the test apparatus. The experiments showed the large effect of the heat transfer in the UCS and the relatively small effect of friction. The reduction in final kinetic energy by the presence of the UCS is shown as a function of the initial pressure and the temperature difference between core and UCS. Calculations with SIMMER-II for the wide range of experiments produced results for the kinetic energy within a factor of 2 of the experimental results without changing the crucial input parameters. The minimum droplet size during the flashing process and the structure-side heat transfer coefficient were determined to be the crucial and most sensitive parameters. This reflects deficiencies in modeling of both the flashing process and the transient heat conduction in the structure. (orig./HP) [de

  1. Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography

    Science.gov (United States)

    Yoshizawa, K.; Ekström, G.

    2008-12-01

    The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.

  2. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    .... Since ground truth of the sea surface is still widely missing, a better understanding of the physics of these upper meter processes is of very important for the study of air-sea gas and momentum...

  3. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1989-01-01

    This patent describes, in a reconstitutable control assembly for use with a nuclear fuel assembly, the control assembly including a spider structure and at least one control rod, an attachment joint for detachable fastening the control rod to the spider structure. The attachment joint comprising: a hollow connecting finger on the spider structure; and an elongated detachable split upper end plug on the control rod having a pair of separate upper and lower plug portions, the upper plug portion having integrally-connected tandemly- arranged upper, middle and lower sections. The lower plug portion having integrally-connected tandemly-arranged upper, middle and lower segments

  4. Air condensation plants

    International Nuclear Information System (INIS)

    Kelp, F.; Pohl, H.H.

    1978-01-01

    In this plant the steam is distributed by a ventilator from the bottom to symmetrically fixed, inclined cooling elements with tubes. The upper part of the current side of the cooling elements as well as the bottom part of the outflow side can be covered by cover plates via a control circuit. This way, part of the air amount is deviated and in case of unfavourable atmospheric conditions (cold) the air is heated. This heating is enough to prevent freezing of the condensate on the cooling tubes. (DG) [de

  5. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    Science.gov (United States)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  6. Experimental system description for air-water CCFL tests of the 161-rod FLECHT-SEASET test vessel upper plenum

    International Nuclear Information System (INIS)

    Fogdall, S.P.; Anderson, J.L.

    1983-01-01

    A series of countercurrent flow limiting (CCFL) experiments has been performed by EG and G Idaho, Inc. in the Steam-Air-Water (SAW) test facility at the Idaho National Engineering Laboratory on behalf of the US Nuclear Regulatory Commission (NRC). Tests were performed in a mockup of the vessel for the 161-Rod Systems Effects Test (SET) facility of the FLECHT-SEASET program, conducted by the Westinghouse Electric Corporation. Westinghouse and the NRC will use the test results to provide a CCFL correlation to predict the flooding behavior in the upper plenum of the SET vessel. This paper presents a description of the experimental system and the test conduct, including data validation and uncertainty analysis. The test objectives centered on experimentally obtaining coefficients in the Wallis correlation for flooding with the specific vessel geometry. The test conditions and vessel configuration are described and the design of the test loop, instrumentation, and data acquisition are discussed. The establishment of a test point and the resultant data are described

  7. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  8. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  9. Construction and testing of a blower-door assembly for regulation of air pressure within structures

    International Nuclear Information System (INIS)

    Steele, W.D.

    1987-09-01

    The Technical Measurements Center is evaluating several methods to decrease the time required to determine an annual average radon-daughter concentration in structures. One method involves stabilizing the air pressure within the structure at a constant pressure with reference to external atmospheric or soil-gas pressure. This report describes the construction and preliminary testing of a blower-door system to maintain a constant differential air pressure within a structure. The blower-door assembly includes a collapsible frame and a large fan to occlude a doorway, a damper with an actuator to control air flow, a controller to drive the damper actuator, and a pressure transducer to measure the differential pressure. Preliminary testing of the system indicates that pressure within the structure in the range of 1 to 20 Pascals can be held to within approximately +-1 Pa of the set point. Further testing of the blower-door system is planned to provide data on the applicability of this method to short-duration tests for annual average radon-daughter concentration estimates. 13 figs., 1 tab

  10. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun; Wei, Zhongbao

    2014-01-01

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  11. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    Science.gov (United States)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  12. Software structure for tritium-in-air monitoring in classified locations

    International Nuclear Information System (INIS)

    Ionete, Eusebiu Ilarian; Benchea, Dumitru

    2009-01-01

    Full text: In the working areas of heavy water detritiation facilities, were hydrogen gas is generated, the risk of air-hydrogen explosive mixture production is present. This paper gives the description of a software architecture solution for a fixed area tritium-in-air monitoring system suitable to be used in such hazardous locations. Tritium-in-air monitoring system was designed as a distributed system containing a number of fixed tritium in air monitoring units, each of them being composed of an ionisation chamber flow-through type and a fix sampling unit with a number of sample lines and one additional blow line. For each unit, software and hardware architecture structure enable independent performance with a fail-safe concept, remote control operation and data storage in a DCS-DCU module. This software architecture secures the setting possibility of alarm levels for tritium concentration, graphical visualisation and acoustic alarm in the case of level overtaking. The afferent software architecture contains applications in connection with hardware architecture and with a hydrogen detection system: RU-1 software application for control sampling; RU-2 software application for measured values display; RU-3 software application for remote data display; RU-4 software application for SQL conversion server; RU-5 software application for OPC standard conversion. The interconnection of all hardware components, between each PLC and each display unit, between tritium-in-air monitoring units and PLC sampling units will be internally carried out using interfaces. The interconnection between PLCs and tritium-in-air monitoring DCU will be made using a communication network, for instance Ethernet Profibus or RS 485. (authors)

  13. Thermohaline structure and circulation in the upper layers of the southern Bay of Bengal during BOBMEX-Pilot (October-November 1998)

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Murty, V.S.N.; Rao, L.V.G.; Prabhu, C.V.; Tilvi, V.

    Hydrographic data collected on board ORV Sagar Kanya in the southern Bay of Bengal during the BOBMEX-Pilot programme (October -- November 1998) have been used to describe the thermohaline structure and circulation in the upper 200m water column...

  14. Spatial variability of the structure of the lower troposphere over north western Indian Ocean during 1983 summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sadhuram, Y.; Michael, G.S.; Rao, L.V.G.

    The spatial variability of the structure of the lower troposphere over the north western Indian Ocean during the period 12th July to 2nd September, 1983 has been studied using the upper air data collected during the first scientific cruise of @i...

  15. Influence of ventilation structure on air flow distribution of large turbo-generator

    Science.gov (United States)

    Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo

    2018-04-01

    For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.

  16. Tube structural integrity evaluation of Palo Verde Unit 1 steam generators for axial upper-bundle cracking

    International Nuclear Information System (INIS)

    Woodman, B.W.; Begley, J.A.; Brown, S.D.; Sweeney, K.; Radspinner, M.; Melton, M.

    1995-01-01

    The analysis of the issue of upper bundle axial ODSCC as it apples to steam generator tube structural integrity in Unit 1 at the Palo Verde Nuclear generating Station is presented in this study. Based on past inspection results for Units 2 and 3 at Palo Verde, the detection of secondary side stress corrosion cracks in the upper bundle region of Unit 1 may occur at some future date. The following discussion provides a description and analysis of the probability of axial ODSCC in Unit 1 leading to the exceedance of Regulatory Guide 1.121 structural limits. The probabilities of structural limit exceedance are estimated as function of run time using a conservative approach. The chosen approach models the historical development of cracks, crack growth, detection of cracks and subsequent removal from service and the initiation and growth of new cracks during a given cycle of operation. Past performance of all Palo Verde Units as well as the historical performance of other steam generators was considered in the development of cracking statistics for application to Unit 1. Data in the literature and Unit 2 pulled tube examination results were used to construct probability of detection curves for the detection of axial IGSCC/IGA using an MRPC (multi-frequency rotating panake coil) eddy current probe. Crack growth rates were estimated from Unit 2 eddy current inspection data combined with pulled tube examination results and data in the literature. A Monte-Carlo probabilistic model is developed to provide an overall assessment of the risk of Regulatory Guide exceedance during plant operation

  17. Thermomechanical simulation of WEST actively cooled upper divertor

    International Nuclear Information System (INIS)

    Batal, T.; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-01-01

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m 2 . This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m 2 , and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m 2 . The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  18. Thermomechanical simulation of WEST actively cooled upper divertor

    Energy Technology Data Exchange (ETDEWEB)

    Batal, T., E-mail: tristan.batal@cea.fr; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-11-15

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m{sup 2}. This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m{sup 2}, and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m{sup 2}. The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  19. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    Science.gov (United States)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  20. Acoustic explorations of the upper ocean boundary layer

    Science.gov (United States)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  1. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    Science.gov (United States)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied

  2. Micro-structure and Air-tightness of Squeeze Casting Motor housing for New Energy Vehicle

    Science.gov (United States)

    Jiang, Y. F.; Kang, Z. Q.; Jiang, W. F.; Wang, K. W.; Sha, D. L.; Li, M. L.; Sun, J.

    2018-05-01

    In order to improve the performance of automobile parts, the influence of squeeze casting process parameters on casting defects, material structure and air-tightness of aluminum alloy motor housing for new energy vehicle was studied. The results show that the density of the castings increases with the increase in pressure and mold temperature. With increase in pouring temperature, it increases first and then decreases. Pressure has the greatest influence on the density of the castings. Under a certain pressure, with moderate increase in casting temperature and mold temperature, the grain growth begins to increase; the dendrites become less, the new α - Al grains are spherical and granular, the micro-structure is uniform. Also, with increase in pressure, this effect is more pronounced, the air-tightness of castings improve. In conclusion, when the pressure is 110MPa, pouring temperature is 680° C, mold temperature is 280° C, pressure holding for 30s, and punch speed of 0.1m/s, there is no clear shrinkage in the casting, the structure is uniform, the qualified rate of air-tightness of production reaches 86%, and the performance is excellent.

  3. Investigation of intra-esophageal air kinetics and esophageal sphincters in patients with total laryngectomy during esophageal speech.

    Science.gov (United States)

    Bozan, Aykut; Vardar, Rukiye; Akyildiz, Serdar; Kirazli, Tayfun; Ogut, Fatih; Yildirim, Esra; Bor, Serhat

    2015-08-01

    The purpose of this study was to evaluate the air kinetics of well- and poor-speaking patients and their upper (UES) and lower (LES) esophageal sphincter pressures . The esophageal speech capability of 23 total laryngectomy patients was assessed with the Wepman scale. LES and UES points and pressures were measured, and air kinetics were compared. All patients were male, with an average age of 58 years. Both the LES and UES pressures were not statistically different between good-speaking and poor-speaking patients (p > 0.05). The ability to speak was estimated only by looking at tracings. Good speakers are able to retain air successfully and on a long-term basis between the upper and lower esophageal sphincters. During short and/or rapid speech, these patients are able to rapidly suck and then expel the air from their upper esophagus. During long speeches, after sucking the air into their distal esophagus, they used the air in the upper part of the esophagus during the speech, only later seeming to fill the lower esophagus with the air as a possible reserve in the stomach. It has been shown that the basic requirement for speaking is the capacity to suck and store the air within the esophagus. For successful speech, the air should be stored inside the esophagus. MII technology contributes to our understanding of speech kinetics and occupies an important place in patient training as a biofeedback technique.

  4. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  5. Cecal perforation with an ascending colon cancer caused by upper gastrointestinal endoscopy

    Directory of Open Access Journals (Sweden)

    Hiroyuki Miyatani

    2009-04-01

    Full Text Available Hiroyuki Miyatani1, Yukio Yoshida1, Hirokazu Kiyozaki21Department of Gastroenterology, Jichi Medical University, Saitama Medical Center, Saitama, Japan; 2Department of Surgery, Jichi Medical University, Saitama Medical Center, Saitama, JapanAbstract: Colonic perforation caused by upper gastrointestinal (GI endoscopy is extremely rare. A 69-year-old woman was referred to our hospital because of abdominal fullness. Colonoscopy could be performed only up to the hepatic flexure due to an elongated colon and residual stools. Because her symptoms improved, upper GI endoscopy was performed 11 days later. The patient developed severe abdominal pain two hours after the examination. Abdominal X-ray and computed tomography showed massive free air. Immediate laparotomy was performed for the intestinal perforation. After removal of stool, a perforation site was detected in the cecum with an invasive ascending colon cancer. Therefore, a right hemicolectomy, ileostomy, and transverse colostomy were performed. Although she developed postoperative septicemia, the patient was discharged 38 days after admission. Seven months postoperatively, the patient died of lung, liver, and brain metastases. Even in cases with a lesion that is not completely obstructed, it is important to note that air insufflations during upper GI endoscopy can perforate the intestinal wall in patients with advanced colon cancer.Keywords: colonic perforation, colon cancer, upper gastrointestinal endoscopy, fecal peritonitis

  6. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models

    DEFF Research Database (Denmark)

    Cammarano, Fabio; Tackley, Paul J.; Boschi, Lapo

    2011-01-01

    Mapping the thermal and compositional structure of the upper mantle requires a combined interpretation of geophysical and petrological observations. Based on current knowledge of material properties, we interpret available global seismic models for temperature assuming end-member compositional...... structures. In particular, we test the effects of modelling a depleted lithosphere, which accounts for petrological constraints on continents. Differences between seismicmodels translate into large temperature and density variations, respectively, up to 400K and 0.06 g cm-3 at 150 km depth. Introducing...... lateral compositional variations does not change significantly the thermal interpretation of seismic models, but gives a more realistic density structure. Modelling a petrological lithosphere gives cratonic temperatures at 150 km depth that are only 100 K hotter than those obtained assuming pyrolite...

  7. Three-dimensional structure of the Upper Scorpius association with the Gaia first data release

    Science.gov (United States)

    Galli, Phillip A. B.; Joncour, Isabelle; Moraux, Estelle

    2018-06-01

    Using new proper motion data from recently published catalogues, we revisit the membership of previously identified members of the Upper Scorpius association. We confirmed 750 of them as cluster members based on the convergent point method, compute their kinematic parallaxes, and combined them with Gaia parallaxes to investigate the 3D structure and geometry of the association using a robust covariance method. We find a mean distance of 146 ± 3 ± 6 pc and show that the morphology of the association defined by the brightest (and most massive) stars yields a prolate ellipsoid with dimensions of 74 × 38 × 32 pc3, while the faintest cluster members define a more elongated structure with dimensions of 98 × 24 × 18 pc3. We suggest that the different properties of both populations are an imprint of the star formation history in this region.

  8. Assessing Upper-Level Winds on Day-of-Launch

    Science.gov (United States)

    Bauman, William H., III; Wheeler, Mark M.

    2012-01-01

    On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.

  9. Finite element analysis of an inflatable torus considering air mass structural element

    Science.gov (United States)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  10. Experimental evaluation of the buckling phenomena in the new joint design for upper deck structure of a bridge

    Directory of Open Access Journals (Sweden)

    Solazzi L.

    2010-06-01

    Full Text Available This paper is concerned with the experimental mechanical analysis of a new design of a joint for a main components of a upper deck of a road bridge. These components are subject to the compression state stress induced by the weight and the load acting on the road. Each upper deck of a bridge (positioned on each side of the bridge is composed by four tubular structures that must be joint each together. The joint must to take in to account many aspects, for example that the length of each component is not the same (because, obviously, there is a mechanical tolerance. This phenomena induce different compression stress on each component and so is very important non only the critical buckling load but also the post buckling behaviour of the structure. It is very important that if a single tubular structure reaches the critical load of instability, it still has load capacity . This is to avoid that, in the case where a column reaches the instability, the entire load acting on a column increase the load on the remaining three. For this purpose many different geometrical solutions have been designed (elaborated by fem analyses and successively tested experimentally. This work reports the main experimental results on the best joint solution and how this increase the load capacity and the displacement respect to the solution without this flange.

  11. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  12. Intraoperative air leak measured after lobectomy is associated with postoperative duration of air leak.

    Science.gov (United States)

    Brunelli, Alessandro; Salati, Michele; Pompili, Cecilia; Gentili, Paolo; Sabbatini, Armando

    2017-11-01

    To verify the association between the air leak objectively measured intraoperatively (IAL) using the ventilator and the air leak duration after pulmonary lobectomy. Prospective analysis on 111 patients submitted to pulmonary lobectomy (33 by video-assisted thoracic surgery). After resection, objective assessment of air leak (in milliliter per minute) was performed before closure of the chest by measuring the difference between a fixed inspired and expired volume, using a tidal volume of 8 ml/kg, a respiratory rate of 10 and a positive-end expiratory pressure of 5 cmH2O. A multivariable analysis was performed for identifying factors associated with duration of postoperative air leak. Average IAL was 158 ml/min (range 0-1500 ml/min). The best cut-off (receiver-operating characteristics analysis) associated with air leak longer than 5 days was 500 ml/min. Nine patients had IAL >500 ml/min (8%). They had a longer duration of postoperative air leak compared with those with a lower IAL (mean values, 10.1 days, SD 8.8 vs 1.5 days, SD 4.9 P leak duration after multivariable regression: left side resection (P = 0.018), upper site resection (P = 0.031) and IAL >500 ml/min (P leak duration was generated: 1.7 + 2.4 × left side + 2.2 × upper site + 8.8 × IAL >500. The air leak measurement using the ventilator parameters after lung resection may assist in estimating the risk of postoperative prolonged air leak. An IAL > 500 ml/min may warrant the use of intraoperative preventative measures, particularly after video-assisted thoracic surgery lobectomy where a submersion test is often unreliable. © 2017 European Society of Cardiology and European Atherosclerosis Association. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    Directory of Open Access Journals (Sweden)

    Guoliang Zhou

    2017-08-01

    Full Text Available Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  14. Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution

    OpenAIRE

    Shen, Yu-Sheng; Lung, Shih-Chun Candice

    2017-01-01

    Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, ...

  15. Relationship between the position of upper and lower incisors and the internal structure of symphysis

    International Nuclear Information System (INIS)

    Suzuki, Kayou; Nishide, Masashi; Ishii, Yasumasa; Enomoto, Yutaka; Kawamura, Akira; Kasai, Kazutaka

    2002-01-01

    The aim of this study was to investigate the relationship between the position of the upper and lower incisors and cortical bone thickness and CT value of mandibular symphysis obtained by CT images and cephalograms. The specimens were 24 dry skulls of mordern Japanese males (mean age 29 years) without marked crowding and missing tooth, which had been preserved in the Tokyou University Museum. The data were transferred to a workstation, and CT value and thickness of cortical bone were measured. The dentofacial morphology was investigated with a lateral cephalogram. The results were as follows; The thickness of cortal bone was more thicker in order of basal, lingual and labial cortical bone. The CT value showed the same tendency as cortical bone thickness. Significant correlation coefficients were found between cortical bone thickness and CT value in 30, 60, 90, 120 degree areas. The inclination of upper incisors was negatively related to the CT value in basal and lingual region of symphysis. The inclination of lower incisors was positively related to the CT value in basal and lingual region of symphysis. The interincisor angle was positively related to the CT value in basal region of symphysis. In conclusion, the results of this study suggested that the labio-lingual inclination of the upper and lower incisors was associated with the CT value of basal region of sysphysis. It is suggested that the internal structures of symphysis which relate to the occlusion types of incisors are affected by function of masticatory muscles. (author)

  16. Three-dimensional P velocity structure of the crust and upper mantle under Beijing region

    Energy Technology Data Exchange (ETDEWEB)

    Quan, A.; Liu, F.; Sun, Y.

    1980-04-01

    By use of the teleseismic P arrival times at 15 stations of the Beijing network for 120 events distributed over various azimuths, we studied the three-dimensional P velocity structure under the Beijing region. In calculating the theoretic travel time, we adopted the source parameters given in BISC, and used the J-B model as the standard model of earth. On inversion, we adopted singular value decomposition as a generalized inversion package, which can be used for solving very large over-determined systems of equations Gm = t without resorting to normal equations G/sup T/Gm = G/sup T/t. The results are that within the crust and upper mantle under the Beijing region there are clear lateral differences. In the results obtained by use of data from 1972 to 1975, it can be seen that there are three different zones of P-velocity. In the southeast Beijing region, P velocity is lower than that of the normal model by 10 to 14% within the crust, and by 8 to 9% within the upper mantle. The northwest Beijing region is a higher-velocity zone, within which the average P-velocity is faster than that of the normal model by about 9%. It disappears after entering into the upper mantle. The central part of this region is a normal zone. On the surface, the distribution of these P velocity variations corresponds approximately to the distribution of the over-burden. But in the deeper region, the distribution of velocity variation agrees with the distribution of seismicity. It is interesting to note that the hypocenters of several major earthquakes in this region, e.g., the Sanhe-Pinggu earthquake (1679, M = 8), the Shacheng earthquake (1730, M = 6-3/4) and the Tangshan earthquake (1976, M = 7.8), are all located very close to this boundary of these P-velocity variation zones.

  17. Confirmatory Survey Results for the Reactor Building Dome Upper Structural Surfaces, Rancho Saco Nuclear Generating Station, Herald, California

    International Nuclear Information System (INIS)

    Wade C. Adams

    2006-01-01

    Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006

  18. A fast vibro-acoustic response analysis method for double wall structures including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Grooteman, F.P.

    2000-01-01

    The damping behaviour of a thin air layer between two flexible panels can be used to reduce sound radiation of structural excited panels. The numerical model of the double wall panels takes into account full acousto-elastic interaction and viscothermal wave propagation in the air layer. This means

  19. Structural and dynamic characterization of the upper part of the HIV-1 cTAR DNA hairpin

    OpenAIRE

    Zargarian, Loussin?; Kanevsky, Igor; Bazzi, Ali; Boynard, Jonathan; Chaminade, Fran?oise; Foss?, Philippe; Mauffret, Olivier

    2009-01-01

    First strand transfer is essential for HIV-1 reverse transcription. During this step, the TAR RNA hairpin anneals to the cTAR DNA hairpin; this annealing reaction is promoted by the nucleocapsid protein and involves an initial loop?loop interaction between the apical loops of TAR and cTAR. Using NMR and probing methods, we investigated the structural and dynamic properties of the top half of the cTAR DNA (mini-cTAR). We show that the upper stem located between the apical and the internal loop...

  20. The deep thermal field of the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2017-01-01

    The Upper Rhine Graben has a significant socioeconomic relevance as it provides a great potential for geothermal energy production. The key for the utilisation of this energy resource is to understand the controlling factors of the thermal field in this area. We have therefore built a data-based lithospheric-scale 3D structural model of the Upper Rhine Graben and its adjacent areas. In addition, 3D gravity modelling was performed to constrain the internal structure of the crystalline crust consistent with seismic information. Based on this lithosphere scale 3D structural model the present-day conductive thermal field was calculated and compared to measured temperatures. Our results show that the regional thermal field is mainly controlled by the configuration of the upper crust, which has different thermal properties characteristic for the Variscan and Alpine domains. Temperature maxima are predicted for the Upper Rhine Graben where thick insulating Cenozoic sediments cause a thermal blanketing effect and where the underlying crustal units are characterised by high radiogenic heat production. The comparison of calculated and measured temperatures overall shows a reasonable fit, while locally occuring model deviations indicate where a larger influence of groundwater flow may be expected.

  1. A calibration facility to provide traceable calibration to upper air humidity measuring sensors

    Science.gov (United States)

    Cuccaro, Rugiada; Rosso, Lucia; Smorgon, Denis; Beltramino, Giulio; Fernicola, Vito

    2017-04-01

    Accurate knowledge and high quality measurement of the upper air humidity and of its profile in atmosphere is essential in many areas of the atmospheric research, for example in weather forecasting, environmental pollution studies and research in meteorology and climatology. Moving from the troposphere to the stratosphere, the water vapour amount varies between some percent to few part per million. For this reason, through the years, several methods and instruments have been developed for the measurement of the humidity in atmosphere. Among the instruments used for atmospheric sounding, radiosondes, airborne and balloon-borne chilled mirror hygrometer (CMH) and tunable diode laser absorption spectrometers (TDLAS) play a key role. To avoid the presence of unknown biases and systematic errors and to obtain accurate and reliable humidity measurements, these instruments need a SI-traceable calibration, preferably carried out in conditions similar to those expected in the field. To satisfy such a need, a new calibration facility has been developed at INRIM. The facility is based on a thermodynamic-based frost-point generator designed to achieve a complete saturation of the carrier gas with a single passage through an isothermal saturator. The humidity generator covers the frost point temperature range between -98 °C and -20 °C and is able to work at any controlled pressure between 200 hPa and 1000 hPa (corresponding to a barometric altitude between ground level and approximately 12000 m). The paper reports the work carried out to test the generator performances, discusses the results and presents the evaluation of the measurement uncertainty. The present work was carried out within the European Joint Research Project "MeteoMet 2 - Metrology for Essential Climate Variables" co-funded by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  2. Ultraviolet air disinfection for protection against influenza

    International Nuclear Information System (INIS)

    Riley, R.L.

    1977-01-01

    Three converging lines of evidence support the belief that it may be possible, under appropriate circumstances, to interrupt the airborne transmission of influenza by ultraviolet (UV) air disinfection. These lines of evidence are: (a) that influenza is airborne; (b) that UV irradiation of the upper air of a room can provide safe and effective disinfection of air in the lower part of the room; and (c) that epidemic spread of airborne viral infections in humans can be prevented if the population under consideration remains in the UV-protected environment

  3. Interpretation of massive sandstones in ephemeral fluvial settings: A case study from the Upper Candelária Sequence (Upper Triassic, Paraná Basin, Brazil)

    Science.gov (United States)

    Horn, Bruno Ludovico Dihl; Goldberg, Karin; Schultz, Cesar Leandro

    2018-01-01

    Ephemeral rivers display a wide range of upper- and lower-flow regime structures due to great flow-velocity changes during the floods. The development of flow structures in these setting is yet to be understood, especially in the formation of thick, massive sandstones. The Upper Triassic of Southern Gondwana was marked by a climate with great seasonal changes, yet there is no description of river systems with seasonal characteristics in Southern Gondwana. This work aims to characterize a ephemeral alluvial system of the Upper Triassic of the Paraná Basin. The characteristics of the deposits are discussed in terms of depositional processes through comparison with similar deposits from literature, flow characteristics and depositional signatures compared to flume experiments. The alluvial system is divided in four facies associations: (1) channels with wanning fill, characterized by low width/thickness ratio, tabular bodies, scour-and-fill structures with upper- and lower-flow regime bedforms; (2) channels with massive fill, characterized by low w/t ratio, sheet-like bodies, scour-and-fill structures with massive sandstones; (3) proximal sheetfloods, characterized by moderate w/t ratio, sheet-like bodies with upper- and lower-flow regime bedforms and (4) distal sheetfloods, characterized by high w/t ratio, sheet-like bodies with lower-flow regime bedforms. Evidence for the seasonal reactivation of the riverine system includes the scarcity of well-developed macroforms and presence of in-channel mudstones, thick intraformational conglomerates, and the occurrence of well- and poorly-preserved vertebrate bones in the same beds. The predominantly massive sandstones indicate deposition from a hyperconcentrated flow during abrupt changes in flow speed, caused by de-confinement or channel avulsion, whereas turbulent portions of the flow formed the upper- and lower-flow regime bedforms after the deposition of the massive layers. The upper portion of the Candelária Sequence

  4. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman III Ballistic Missiles at Vandenberg Air Force Base

    Science.gov (United States)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The AMU determined the theoretical distributions that best fit the maximum wind speed and maximum wind shear datasets and applied this information when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition, the AMU included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on the day of launch. The AMU developed an interactive graphical user interface (GUI) in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for

  5. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    Science.gov (United States)

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  6. A case of luftsichel sign for left upper lobe collapse

    Directory of Open Access Journals (Sweden)

    Erden Erol Ünlüer

    2015-01-01

    Full Text Available The differential diagnosis of dyspnea in Emergency Department (ED patients is broad and atelectasis is one of the differentials among these. We present a 29-year-old women presented to our ED for evaluation of shortness of breath. On her chest examination, air entry and breath sounds were diminished on the left side but normal on the right. A posteroanterior chest radiograph showed radioluscent area in the upper zone of the left lung, around the aortic arch and also hyperdens area neighbouring this, like covered by a veil. Luftsichel sign together with this hiperdensity were consistent with the diagnose of left lung upper lobe collapse. The Luftsichel sign represents the hyperexpanded superior segment of the left lower lobe interposed between the atelectatic left upper lobe and aortic arch. Patient was discharged to home with chest physiotherapy and breathing exercises together with analgesic prescreption.

  7. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  8. CFD SIMULATION OF INTER-FLAT AIR CROSS-CONTAMINATION—A POSSIBLE TRANSMISSION PATH OF INFECTIOUS DISEASES

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Gao, Naiping

    2007-01-01

    The objective of this study is to investigate the possible transmission mechanism of inter-flat air cross-contamination under the condition of singlesided natural ventilation. In high-rise residential building with flush windows on the same side, the air pollutants can diffuse from lower flat...... (RNG) based k − ε model, together with Carbon dioxide (CO2) used as a tracer, is chosen to reveal this air crosscontamination. Different effects of contamination spread into upper room were evaluated through kinds of cases performed in various conditions. The numerical results demonstrate this possible...... to adjacent upper flat in the vertical direction related to the interflat air flow through open windows caused by the temperature difference between the indoor air and the air outside of the windows. Based on the validation of CFD models with experimental data given by Heiselberg, the renormalization group...

  9. The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures

    Directory of Open Access Journals (Sweden)

    Xiaohui Zeng

    2016-03-01

    Full Text Available Dual-chamber air springs are used as a key component for vibration isolation in some industrial applications. The working principle of the dual-chamber air spring device as applied to motion suppression of marine structures is similar to that of the traditional air spring, but they differ in their specific characteristics. The stiffness and damping of the dual-chamber air spring device determine the extent of motion suppression. In this article, we investigate the stiffness and damping characteristics of a dual-chamber air spring device applied to marine structure motion suppression using orthogonal analysis and an experimental method. We measure the effects of volume ratio, orifice ratio, excitation amplitude, and frequency on the stiffness and damping of the dual-chamber vibration absorber. Based on the experimental results, a higher-order non-linear regression method is obtained. We achieve a rapid calculation model for dual-chamber air spring stiffness and damping, which can provide guidance to project design.

  10. HTS microstrip disk resonator with an upper dielectric layer for 4GHz

    International Nuclear Information System (INIS)

    Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru

    2006-01-01

    We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power

  11. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.

    Science.gov (United States)

    Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong

    2017-09-21

    Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  12. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Directory of Open Access Journals (Sweden)

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  13. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  14. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets

    Directory of Open Access Journals (Sweden)

    Y. Brugnara

    2013-07-01

    Full Text Available Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU. The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010, which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.

  15. Effects of air blast on power plant structures and components

    International Nuclear Information System (INIS)

    Kot, C.A.; Valentin, R.A.; McLennan, D.A.; Turula, P.

    1978-10-01

    The effects of air blast from high explosives detonation on selected power plant structures and components are investigated analytically. Relying on a synthesis of state of the art methods estimates of structural response are obtained. Similarly blast loadings are determined from compilations of experimental data reported in the literature. Plastic-yield line analysis is employed to determine the response of both concrete and steel flat walls (plates) under impulsive loading. Linear elastic theory is used to investigate the spalling of concrete walls and mode analysis methods predict the deflection of piping. The specific problems considered are: the gross deformation of reinforced concrete shield and containment structures due to blast impulse, the spalling of concrete walls, the interaction or impact of concrete debris with steel containments and liners, and the response of exposed piping to blast impulse. It is found that for sufficiently close-in detonations and/or large explosive charge weights severe damage or destruction will result. This is particularly true for structures or components directly exposed to blast impulse

  16. Analysis of chosen urban bioclimatic conditions in Upper Silesian Industrial Region, Poland

    Science.gov (United States)

    Zimnol, Jan

    2013-04-01

    Due to the increasing urbanization, people spend more and more time in cities. Because of that fact during the last century the human bioclimatological approach had an important influence on the applied urban bioclimatology. The aim of the study was to analyze chosen thermal bioclimatic conditions in urban area of Upper Silesian Industrial Region in connection with the atmospheric circulation and air masses. The study was focused on the thermal conditions that are important for the bioclimatological research on human thermal comfort. They were the basis for making study on how to show the influence of the air masses and circulations types on frequency and variability of the chosen bioclimate indexes. That research was based on data (2004 - 2008) acquired by the Silesian University (Faculty of Earth Sciences) meteorological station located in the city of Sosnowiec (50°17'N, 19°08'E, h=263 m a.s.l.). The temperature measurements were made automatically every 10 minutes on the 2 meters above the ground level. Previous research showed that the station is a good representation of the local urban climate conditions in Upper Silesian Industrial Region. In the study the following air temperatures were taken into consideration: average day temperature, maximum day temperature, minimum day temperature and the average air temperature at 12 UTC. They were associated with atmospheric circulation types and masses typical for the region. Using the data mentioned above I conducted a classification to divide days into following objective categories: cool, cold, comfortable, hot, warm and very hot in the seasonal depiction. The final stage of the work was to find the answer to the following question: "When and how do the strong air masses and air circulations types modify bioclimatic conditions in the study area?" Answer to that question together with further results of the research will be presented on my poster.

  17. Structural evaluation of FHX for PGSFR at steady state condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Hyun; Lee, S. Y.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Liquid sodium flows inside the heat transfer tubes and atmospheric air flows over the finned tubes. The configuration and overall shape of the unit are shown in Figure 1. The unit is placed in the upper region of the reactor building and has function of dumping the system heat load into the final heat sink, i.e., the atmosphere. Heat is transmitted from the primary cold sodium pool into the ADHRS sodium loop via DHX (Decay Heat Exchanger), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX tube wall. Cold atmospheric air is introduced into the air inlet duct at the lower part of the unit by using an electrically operated air blower or by the natural circulation force. Air flows across the finned tube bank rising upward direction to make uniform air flow with perfect mixing across the tubes. The finned tube bundle is placed inside a well-insulated casing. The air heated at the tube bank region is collected at the top of the unit and then is discharged through the air stack above the unit. Although a blower supplies atmospheric cooling air into the FHX unit, a tall air stack of 30 m in height is also provided to secure natural draft head of natural circulation air flow against a loss of power supply. The structural analysis of a FHX are carried out and its structural integrity under the given service levels is evaluated per ASME Code rule. The design loads according to design condition and normal operating steady condition are classified and stresses calculated from stress analyses are linearized and summarized in their stress components.

  18. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  19. Emerging Threats, Force Structures, and the Role of Air Power in Korea

    Science.gov (United States)

    2000-01-01

    Young Ho. 1996. " Anatomy of the North Korean Military: Structure of Threat." Junlyak nonchong [Strategic Journal]. Vol. 4, No. 2. (in Korean...effects of mass without having to mass is a big part of the essence of air power’s new leverage. This means that the day of the classic " gorilla " force

  20. Bayesian inversion of surface wave data for discontinuities and velocity structure in the upper mantle using Neural Networks. Geologica Ultraiectina (287)

    NARCIS (Netherlands)

    Meier, U.

    2008-01-01

    We present a neural network approach to invert surface wave data for discontinuities and velocity structure in the upper mantle. We show how such a neural network can be trained on a set of random samples to give a continuous approximation to the inverse relation in a compact and computationally

  1. The role of open-air inhalatoria in the air quality improvement in spa towns.

    Science.gov (United States)

    Burkowska-But, Aleksandra; Kalwasińska, Agnieszka; Brzezinska, Maria Swiontek

    2014-08-01

    The present study was aimed at evaluating microbiological contamination of air in Ciechocinek and Inowrocław - Polish lowland spa towns. Additionally, the impact of open-air inhalatoria on the quality of air was evaluated. Air samples were collected seasonally in the urban areas, in the recreation areas and in the vicinity of inhalatoria in both towns using impaction. The numbers of mesophilic bacteria, staphylococci, hemolytic bacteria and actinomycetes were determined on media according to the Polish Standard PN-86/Z-04111/02. The number of moulds was determined on media according to the Polish Standard PN-86/Z-04111/03. While the highest numbers of microorganisms were noted at the sites located in the urban areas, the lowest numbers were noted in the vicinity of the open-air inhalatoria. In all the investigated air samples the values of bioaerosol concentrations were below the recommended TLVs (≤ 5000 CFU×m(-3) for both bacteria and fungi in outdoor environments). Location of the sampling site was invariably a decisive factor in determining the number of microorganisms in the air. The aerosol which is formed in the open-air inhalatoria has a positive influence on microbiological air quality. Owing to a unique microclimate and low air contamination, Ciechocinek and Inowrocław comply with all necessary requirements set for health resorts specializing in treating upper respiratory tract infections.

  2. FIV Estimation for the Reactor Internal Structure of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Jeong, K. H.; Park, J. S.; Lee, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    It is necessary to confirm the possibility of flow- induced vibration of upper ICI guide tubes and CRA extension guide tubes, since they are exposed to the cross flow of the coolant. This study will provide an estimation of the flow- induced vibration owing to the vortex shedding by carrying out a free-vibration analysis of the structures, not only in air but also in water using a commercial finite element analysis code, ANSYS, and also by comparison with the vortex shedding frequency.

  3. Distributions of air pollutants associated with oil and natural gas development measured in the Upper Green River Basin of Wyoming

    Directory of Open Access Journals (Sweden)

    R.A. Field

    2015-10-01

    Full Text Available Abstract Diffusive sampler monitoring techniques were employed during wintertime studies from 2009 to 2012 to assess the spatial distribution of air pollutants associated with the Pinedale Anticline and Jonah Field oil and natural gas (O&NG developments in the Upper Green River Basin, Wyoming. Diffusive sampling identified both the extent of wintertime ozone (O3 episodes and the distributions of oxides of nitrogen (NOx, and a suite of 13 C5+ volatile organic compounds (VOC, including BTEX (benzene, toluene, ethylbenzene and xylene isomers, allowing the influence of different O&NG emission sources to be determined. Concentration isopleth mapping of both diffusive sampler and continuous O3 measurements show the importance of localized production and advective transport. As for O3, BTEX and NOx mixing ratios within O&NG development areas were elevated compared to background levels, with localized hotspots also evident. One BTEX hotspot was related to an area with intensive production activities, while a second was located in an area influenced by emissions from a water treatment and recycling facility. Contrastingly, NOx hotspots were at major road intersections with relatively high traffic flows, indicating influence from vehicular emissions. Comparisons of observed selected VOC species ratios at a roadside site in the town of Pinedale with those measured in O&NG development areas show that traffic emissions contribute minimally to VOCs in these latter areas. The spatial distributions of pollutant concentrations identified by diffusive sampling techniques have potential utility for validation of emission inventories that are combined with air quality modeling.

  4. Cancers of the lung, head and neck on the rise: perspectives on the genotoxicity of air pollution

    Science.gov (United States)

    Wong, Ian Chi Kei; Ng, Yuen-Keng; Lui, Vivian Wai Yan

    2014-01-01

    Outdoor air pollution has been recently classified as a class I human carcinogen by the World Health Organization (WHO). Cumulative evidence from across the globe shows that polluted air is associated with increased risk of lung, head and neck, and nasopharyngeal cancers—all of which affect the upper aerodigestive tract. Importantly, these cancers have been previously linked to smoking. In this article, we review epidemiologic and experimental evidence of the genotoxic and mutagenic effects of air pollution on DNA, purportedly a key mechanism for cancer development. The alarming increase in cancers of the upper aerodigestive tract in Asia suggests a need to focus government efforts and research on reducing air pollution, promoting clean energy, and investigating the carcinogenic effects of air pollution on humans. PMID:25011457

  5. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    Science.gov (United States)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  6. Geophysical Investigations of Crustal and Upper Mantle Structure of Oceanic Intraplate Volcanoes (OIVs)

    Science.gov (United States)

    Robinson, A. H.; Peirce, C.; Funnell, M.; Watts, A. B.; Grevemeyer, I.

    2016-12-01

    Oceanic intraplate volcanoes (OIVs) represent a record of the modification of the oceanic crust by volcanism related to a range of processes including hot-spots, small scale mantle convection, and localised lithospheric extension. Geophysical studies of OIVs show a diversity in crustal and upper mantle structures, proposed to exist on a spectrum between two end-members where the main control is the age of the lithosphere at the time of volcanism. This hypothesis states that where the lithosphere is older, colder, and thicker it is more resistant to vertical magmatism than younger, hotter, thinner lithosphere. It is suggested that the Moho acts as a density filter, permitting relatively buoyant magma to vertically intrude the crust, but preventing denser magma from ascending to shallow levels. A key control may therefore be the melting depth, known to affect magma composition, and itself related to lithosphere age. Combined geophysical approaches allow us to develop robust models for OIV crustal structures with quantifiable resolution and uncertainty. As a case study, we present results from a multi-approach geophysical experiment at the Louisville Ridge Seamount Chain, believed to have formed on young (travel-time modelling of picked arrivals, is tested against reflection and gravity data. We compare our observations with studies of other OIVs to test whether lithospheric age controls OIV structure. Comparisons are limited by the temporal and spatial distribution of lithosphere and volcano ages, but suggest the hypothesis does not hold for all OIV features. While age may be the main control on OIV structure, as it determines lithosphere thermal and mechanical properties, other factors such as thermal rejuvenation, mechanical weakening, and volcano load size and distribution, may also come into play.

  7. Active vibration control of a cylindrical structure using flexible piezoactuators: experimental work in air and water environments

    International Nuclear Information System (INIS)

    Sohn, Jung Woo; Choi, Seung-Bok

    2014-01-01

    In the present work, the modal characteristics and vibration control performance of a cylindrical structure in air and water are experimentally investigated, and the results are presented in time and frequency domains. In order to achieve this goal, an end-capped cylindrical shell structure is considered as a host structure, and MFC (macro fiber composite) actuators, which are flexible, are bonded on the surface of the structure. After manufacturing a cylindrical shell structure with aluminum, a modal test is carried out, and the natural frequencies of the proposed structure are obtained and analyzed. To verify the modal test results, a finite element analysis is also performed, and the results are compared with the modal test results. By using the experimentally obtained modal characteristics, a state space control model is established. An optimal controller is then designed in order to control the unwanted vibration and is experimentally realized. It has been shown that the structural vibration can be effectively decreased with the optimal control methodology in both air and water environmental conditions. (technical note)

  8. A Compact UWB Band-Pass Filter Using Embedded Circular Slot Structures for Improved Upper Stop-band Performance

    DEFF Research Database (Denmark)

    Shen, Ming; Ren, Jian; Mikkelsen, Jan Hvolgaard

    2016-01-01

    structures into the ring resonator. This is different from conventional designs using cascaded bandstop/low-pass filters for stop-band response suppression, which usually leads to big circuit sizes. And hence the proposed approach can reduce the circuit size significantly. A prototype filter with a compact...... size (13.6 mm×6.75 mm) has been implemented for experimental validation. The measured results show a −3 dB frequency band from 3.4 GHz to 11.7 GHz and > 20 dB upper stop-band suppression from 12.5 GHz to 20GHz....

  9. Recognition of upper airway and surrounding structures at MRI in pediatric PCOS and OSAS

    Science.gov (United States)

    Tong, Yubing; Udupa, J. K.; Odhner, D.; Sin, Sanghun; Arens, Raanan

    2013-03-01

    Obstructive Sleep Apnea Syndrome (OSAS) is common in obese children with risk being 4.5 fold compared to normal control subjects. Polycystic Ovary Syndrome (PCOS) has recently been shown to be associated with OSAS that may further lead to significant cardiovascular and neuro-cognitive deficits. We are investigating image-based biomarkers to understand the architectural and dynamic changes in the upper airway and the surrounding hard and soft tissue structures via MRI in obese teenage children to study OSAS. At the previous SPIE conferences, we presented methods underlying Fuzzy Object Models (FOMs) for Automatic Anatomy Recognition (AAR) based on CT images of the thorax and the abdomen. The purpose of this paper is to demonstrate that the AAR approach is applicable to a different body region and image modality combination, namely in the study of upper airway structures via MRI. FOMs were built hierarchically, the smaller sub-objects forming the offspring of larger parent objects. FOMs encode the uncertainty and variability present in the form and relationships among the objects over a study population. Totally 11 basic objects (17 including composite) were modeled. Automatic recognition for the best pose of FOMs in a given image was implemented by using four methods - a one-shot method that does not require search, another three searching methods that include Fisher Linear Discriminate (FLD), a b-scale energy optimization strategy, and optimum threshold recognition method. In all, 30 multi-fold cross validation experiments based on 15 patient MRI data sets were carried out to assess the accuracy of recognition. The results indicate that the objects can be recognized with an average location error of less than 5 mm or 2-3 voxels. Then the iterative relative fuzzy connectedness (IRFC) algorithm was adopted for delineation of the target organs based on the recognized results. The delineation results showed an overall FP and TP volume fraction of 0.02 and 0.93.

  10. Seasonal changes of peroxidase and catalase activities in leaves of several arborescent species subject to different industrial air pollutions in Upper Silesia

    Energy Technology Data Exchange (ETDEWEB)

    Raczek, E.; Stolarek, J.

    1979-01-01

    Year-round investigations of seasonal patterns of peroxidase and catalase activities in leaves of several deciduous and coniferous arborescent species in forests of Upper Silesia subjected to various amounts of industrial gases and dusts were carried out. The samples of leaves of Betula verrucosa EHRH, Quercus robur L., Q. rubra L., Pinus nigra ARNOLD, and P. silvestris L. were collected at different distances from an iron smelting plant. It was found that raising level of the pollution enhances peroxidase activity in leaves and needles. The induction of peroxidase activity by pollutants exhibited seasonal changes specific for the species and was subjected to the effect of temperature of the environment and was also related to the natural resistivity of a given species. In contrast to peroxidase, the patterns of catalase activity changes did not appear to be specifically influenced by industrial air pollutants. 22 references, 5 figures, 4 tables.

  11. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'JOYO'. Recovery of MARICO-2 sample part

    International Nuclear Information System (INIS)

    Ashida, Takashi; Ito, Hideaki

    2015-01-01

    At Joyo reactor MK-III core in May 2007, due to the design deficiencies of the disconnect mechanism of the holding part and the sample part of the experimental apparatus with instrumentation lines (MARICO-2), a disconnect failure incident occurred in the sample part after irradiation test. The deformation of the sample part due to this failure incurred its interference with the lower surface of reactor core upper structure and the holddown axis body. By this, the operating range of the rotary plug was restricted, leading to the partial inhibition of the fuel exchange function that precluded the access to 1/4 of the assemblies of the reactor core. In face of restoration work, the preparation for restoration such the exchange of upper core structure, and the recovery of MARICO-2 sample part are under way. The following items are introduced here: (1) summary of restoration work and overall process of restoration work, (2) recovery operation of MARICO-2 sample part, (3) exchange of the upper core structure that was conducted this year, and (4) results of recovery of MARIKO-2 sample part. (A.O.)

  12. Air-sea interactions during strong winter extratropical storms

    Science.gov (United States)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  13. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality

    Energy Technology Data Exchange (ETDEWEB)

    Rubes, J.; Selevan, S.G.; Evenson, D.P.; Zudova, D.; Vozdova, M.; Zudova, Z.; Robbins, W.A.; Perreault, S.D. [US EPA, Research Triangle Park, NC (United States)

    2005-10-01

    This study examined potential associations between exposure to episodes of air pollution and alterations in semen quality. The air pollution, resulting from combustion of coal for industry and home heating in the Teplice district of the Czech Republic, was much higher during the winter than at other times of year with peaks exceeding US air quality standards. Young men from Teplice were sampled up to seven times over 2 years allowing evaluation of semen quality after periods of exposure to both low and high air pollution. Routine semen analysis (sperm concentration, motility and morphology) and tests for sperm aneuploidy and chromatin integrity were performed, comparing measurements within each subject. Exposure was classified as high or low based on data from ambient air pollution monitoring. Using repeated measures analysis, a significant association was found between exposure to periods of high air pollution (at or above the upper limit of US air quality standards) and the percentage of sperm with DNA fragmentation according to sperm chromatin structure assay (SCSA). Other semen measures were not associated with air pollution. It is concluded that exposure to intermittent air pollution may result in sperm DNA damage and thereby increase the rates of male-mediated infertility, miscarriage, and other adverse reproductive outcomes.

  14. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1991-01-01

    This patent describes, for use in facilitating replacement of a neutron absorber control rod on a control assembly spider structure, an end plug. It comprises a pair of separate upper and lower plug portions; the upper section of the upper plug portion being configured for rigid attachment; the middle section of the upper plug portion having angularly displaced flat surfaces formed on the exterior

  15. Engineering issues on the diagnostic port integration in ITER upper port 18

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sunil, E-mail: paksunil@nfri.re.kr [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Bertalot, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Cheon, Mun Seong [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Giacomin, Thibaud [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Heemskerk, Cock J.M.; Koning, Jarich F. [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Lee, Hyeon Gon [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Nemtcev, Grigorii [Institution “PROJECT CENTER ITER”, Akademika Kurchatova sq., Moscow (Russian Federation); Ronden, Dennis M.S. [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Seon, Chang Rae [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Udintsev, Victor; Yukhnov, Nikolay [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Zvonkov, Alexander [Institution “PROJECT CENTER ITER”, Akademika Kurchatova sq., Moscow (Russian Federation)

    2016-11-01

    Highlights: • Diagnostic port integration in the upper port 18 of ITER is presented in order to house the three diagnostic systems. • Issue on the neutron shielding in the upper port 18 is addressed and the shut-down dose rate in the interspace is summarized. • The maintenance strategy in the upper port 18 is described. - Abstract: The upper port #18 (UP18) in ITER hosts three diagnostic systems: the neutron activation system, the Vacuum Ultra-Violet spectrometer system, and the vertical neutron camera. These diagnostics are integrated into three infrastructures in the port: the upper port plug, interspace support structure and port cell support structure. The port integration in UP18 is at the preliminary design stage and the current design of the infrastructure as well as the diagnostic integration is described here. The engineering issues related to neutron shielding and maintenance are addressed and the design approach is suggested.

  16. Coal mining activities change plant community structure due to air pollution and soil degradation.

    Science.gov (United States)

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  17. Structural and Lithological Controls upon Fluid Migration within the Chalk and Upper Greensand Aquifers in the Chilterns and Lambourn Downs

    OpenAIRE

    Thompson, Sally

    2002-01-01

    The influence of lithological heterogeneities, structural discontinuities and discontinuity surface mineralisation upon groundwater migration within the Chalk and the Upper Greensand of southern England has been investigated. Lithological heterogeneities in the Chalk succession include marl seams, hardgrounds, tabular flints and nodular flints. Each of these heterogeneities has a lower intrinsic porosity and permeability than in the calcite rich chalk. The influence that each of these ...

  18. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    Science.gov (United States)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  19. Smart nanogels at the air/water interface: structural studies by neutron reflectivity

    Science.gov (United States)

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina

    2016-02-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes

  20. The Role of Migration and Single Motherhood in Upper Secondary Education in Mexico

    Science.gov (United States)

    Creighton, Mathew J.; Park, Hyunjoon; Teruel, Graciela M.

    2009-01-01

    We investigated the link between migration, family structure, and the risk of dropping out of upper secondary school in Mexico. Using two waves of the Mexican Family Life Survey, which includes 1,080 upper secondary students, we longitudinally modeled the role of family structure in the subsequent risk of dropping out, focusing on the role of…

  1. [Relationship between sulfur dioxide pollution and upper respiratory outpatients in Jiangbei, Ningbo].

    Science.gov (United States)

    Wu, Yifeng; Zhao, Fengmin; Qian, Xujun; Xu, Guozhang; He, Tianfeng; Shen, Yueping; Cai, Yibiao

    2015-07-01

    To describe the daily average concentration of sulfur dioxide (SO2) in Ningbo, and to analysis the health impacts it caused in upper respiratory disease. With outpatients log and air pollutants monitoring data matched in 2011-2013, the distributed lag non-linear models were used to analysis the relative risk of the number of upper respiratory patients associated with SO2, and also excessive risk, and the inferred number of patients due to SO2 pollution. The daily average concentration of SO2 didn't exceed the limit value of second class area. The coefficient of upper respiratory outpatient number and daily average concentration of SO2 matched was 0.44,with the excessive risk was 10% to 18%, the lag of most SO2 concentrations was 4 to 6 days. It could be estimated that about 30% of total upper respiratory outpatients were caused by SO2 pollution. Although the daily average concentration of SO2 didn't exceed the standard in 3 years, the health impacts still be caused with lag effect.

  2. 3D structure and conductive thermal field of the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  3. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  4. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  5. Effect of scintillometer height on structure parameter of the refractive index of air measurements

    Science.gov (United States)

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

  6. Upper mantle velocity structure beneath Italy from direct and secondary P-wave teleseismic tomography

    Directory of Open Access Journals (Sweden)

    P. De Gori

    1997-06-01

    Full Text Available High-quality teleseismic data digitally recorded by the National Seismic Network during 1988-1995 have been analysed to tomographically reconstruct the aspherical velocity structure of the upper mantle beneath the Italian region. To improve the quality and the reliability of the tomographic images, both direct (P, PKPdf and secondary (pP,sP,PcP,PP,PKPbc,PKPab travel-time data were used in the inversion. Over 7000 relative residuals were computed with respect to the IASP91 Earth velocity model and inverted using a modified version of the ACH technique. Incorporation of data of secondary phases resulted in a significant improvement of the sampling of the target volume and of the spatial resolution of the heterogeneous zones. The tomographic images show that most of the lateral variations in the velocity field are confined in the first ~250 km of depth. Strong low velocity anomalies are found beneath the Po plain, Tuscany and Eastern Sicily in the depth range between 35 and 85 km. High velocity anomalies dominate the upper mantle beneath the Central-Western Alps, Northern-Central Apennines and Southern Tyrrhenian sea at lithospheric depths between 85 and 150 km. At greater depth, positive anomalies are still observed below the northernmost part of the Apenninic chain and Southern Tyrrhenian sea. Deeper anomalies present in the 3D velocity model computed by inverting only the first arrivals dataset, generally appear less pronounced in the new tomographic reconstructions. We interpret this as the result of the ray sampling improvement on the reduction of the vertical smearing effects.

  7. THE USE OF AIR LAYERS IN BUILDING ENVELOPES FOR ENERGY SAVING DURING AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available Since there are no large natural energy resources in Belarus, energy savings ought to be a point of the special attention. With this regard it is important to develop modern ways of savings during the process of air conditioning inside new buildings with an air layer in the enclosure, especially in translucent ones. The system of ventilation of air layers in the enclosure of a building has been introduced in which air movement is caused by the gravitational and aerodynamic forces. It makes it possible to arrange further ventilation – a natural, forced or a hybrid one. With the purpose of increasing and streamlining natural draught the partitions are used separating the different parts of air layers. For natural ventilation with the use of gravitational forces the holes in the upper and lower parts of the partitions between adjacent air layers are applied. Natural ventilation in the holes of the partitions is regulated by movable shutters, blinds or other adjusting devices. For combined or forced air exchange between adjacent zones of air layers fans are used pumping air from the air layer zones with a higher temperature to zones of air layers with lower temperature and vice versa. When air exchange is forced, in order to intensify the infiltration of air into zones of air layers jets are laid on a hard surface. In order to cool a multi-layered enclosure of a building, where the movement of air between the air layers (that have been formed by internal partitions is being fulfilled by a natural, forced or combined mode, a part of the air or the total air processed inside the building (i.e. conditioned or non-conditioned air cooler as compared with the outside one is being sent to these strata. Combined or forced flow of the air processed inside the building into the air layers is done through the ducts associated with the output channels of the air conditioners. The internal partitions are equipped with the air valve hole.

  8. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    Science.gov (United States)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  9. Microscopic modelling of air spring bellows. Automation in the lifetime estimation of air springs; Mikroskopische Balgmodellierung. Automatismen in der Lebensdauerabschaetzung von Luftfedern

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Tram Anh; Brueger, Thorsten [Vibracoustic GmbH und Co. KG, Hamburg (Germany); Rambacher, Christoph [Professur fuer Maschinenelemente und Produktentwicklung (MRP), Helmut-Schmidt-Univ., Hamburg (HSU) (Germany)

    2009-07-01

    Because of the many advantages of air springs over conventional springs, they are being increasingly fitted in upper and middle class automobiles. Generally air spring bellows, consisting of reinforcing cords and elastomer, can be simulated using the rebar technique. The following article introduces a method in which the boundary conditions derived from the model simulated with the rebar technique are applied in the air spring bellow ''microscopic model'' which is modelled automatically. The microscopic modelling enables a detailed analysis of stress and strain conditions in the elastomer. With the automated process this method can be applied for the widespread design process for air spring systems. Finally the validation of the method is demonstrated. (orig.)

  10. Technology & Mechanics Overview of Air-Inflated Fabric Structures

    National Research Council Canada - National Science Library

    Cavallaro, Paul V

    2006-01-01

    .... Examples include air ships, weather balloons, inflatable radomes, shelters, pneumatic muscles, inflatable boats, bridging, and energy absorbers such as automotive air bags and landing cushions for space vehicles...

  11. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air.

    Science.gov (United States)

    Jin, Yifei; Liu, Chengcheng; Chai, Wenxuan; Compaan, Ashley; Huang, Yong

    2017-05-24

    Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air. In the proposed printing approach, due to its yield-stress property, Laponite nanoclay can be easily extruded through a nozzle as a liquid and self-supported after extrusion as a solid. Its unique crystal structure with positive and negative charges enables it to be mixed with many chemically and physically cross-linked hydrogels, which makes it an ideal internal scaffold material for the fabrication of various hydrogel structures. By mixing Laponite nanoclay with various hydrogel precursors, the hydrogel composites retain their self-supporting capacity and can be printed into 3D structures directly in air and retain their shapes before cross-linking. Then, the whole structures are solidified in situ by applying suitable cross-linking stimuli. The addition of Laponite nanoclay can effectively improve the mechanical and biological properties of hydrogel composites. Specifically, the addition of Laponite nanoclay results in a significant increase in the Young's modulus of each hydrogel-Laponite composite: 1.9-fold increase for the poly(ethylene glycol) diacrylate (PEGDA)-Laponite composite, 7.4-fold increase for the alginate-Laponite composite, and 3.3-fold increase for the gelatin-Laponite composite.

  12. Aircraft measurements over Europe of an air pollution plume from Southeast Asia ? aerosol and chemical characterization

    OpenAIRE

    Stohl , A.; Forster , C.; Huntrieser , H.; Mannstein , H.; Mcmillan , W. W.; Petzold , A.; Schlager , H.; Weinzierl , B.

    2006-01-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24–25 March 2006. According to the model, the plume was exported from Southeast Asia only six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS sate...

  13. Rayleigh waves from correlation of seismic noise in Great Island of Tierra del Fuego, Argentina: Constraints on upper crustal structure

    Directory of Open Access Journals (Sweden)

    Carolina Buffoni

    2018-01-01

    Full Text Available In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego (TdF, Argentina, by the analysis of short-period Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5–16 s using a time-frequency analysis. Although ambient noise sources are distributed inhomogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise. The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained. According to the inversion results, the S-wave velocity ranges between 1.75 and 3.7 km/s in the first 10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region. It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.

  14. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  15. The upper mantle beneath the Gulf of California from surface wave dispersion. Geologica Ultraiectina (299)

    NARCIS (Netherlands)

    Zhang, X.

    2009-01-01

    This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for

  16. The Structure Characteristics and Air Permeability of PA and PES Plain and Plated Knits Influenced of Antimicrobial Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Agne MICKEVIČIENĖ

    2014-09-01

    Full Text Available Textile materials are usually exposed to thermal, physical and mechanical effects during treatment processes. These influence the changes of material dimensions. Designing knitted products it is important to predict direction and rate of dimensions change, because this can affect physical properties such as air permeability of knits. The objective of this research was to investigate the influence of antimicrobial treatment conditions on the structure characteristics, thickness and air permeability of plain and plaited knits. The investigations were carried out with two groups of plain and plated single jersey knits. The face yarns of these groups were cotton, bamboo viscose yarn and polyester (Dacron® thread. 10 tex × 2 textured polyamide (PA and 20 tex textured polyester (PES threads were used as the base threads in plated knits. Knitted samples were treated with antimicrobial material Isys AG and organic-inorganic binder Isys MTX (CHT, Germany. It was established that blank and antimicrobial treated knits changed structure parameters, thickness and air permeability. The changes of structure parameters, thickness and air permeability were more associated with conditions of treatment (temperature, treatment in solution, mechanical action rather than with antimicrobial and sol-gel substances used in treatment. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.3196

  17. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    Science.gov (United States)

    Parsons, T.; McCarthy, J.

    1996-01-01

    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part

  18. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  19. Damage Curves of a Nuclear Reactor Structure exposed to Air Blast Loading

    International Nuclear Information System (INIS)

    Brandys, I.; Ornai, D.; Ronen, Y.

    2014-01-01

    Nuclear Power Plant (NPP) radiological hazards due to accidental failure or deliberated attacks are of most concern due to their destructive and global consequences: large area contaminations, injuries, exposure to ionizing radiation (which can cause death or illness, depends on the levels of exposure), loss of lives of both humans and animals, and severe damage to the environment. Prevention of such consequences is of a global importance and it has led to the definition of safety & design guidelines, and regulations by various authorities such as IAEA, U.S. NRC, etc. The guidelines define general requirements for the integrity of a NPP’s physical barriers (such as protective walls) when challenged by external events, for example human induced explosion. A more specific relation to the design of a NPP is that its structures and equipment (reactor building, fuel building, safeguards building, diesel-generator building, pumping station, nuclear auxiliaries building, and effluent treatment building) must function properly: shutdown the reactor, removal of decayed heat, storage of spent fuel, and treatment and containment of radioactive effluents) under external explosion. It requires that the NPP’s structures and equipment resistance to external explosion should be analyzed and verified. The air blast loading created by external explosion, as well as its effects & consequences on different kinds of structures are described in the literature. Structural elements response to the air blast can be analyzed in general by a Single Degree of Freedom (SDOF) system that converts a distributed mass, loads, and resistance to concentrated mass, force, and stiffness located at a representative point of the structure's element where the displacements are the highest one. Proper shielding should be designed if the explosion blast effects are greater than the resistance capacity.External explosion effects should be considered within the Screening Distance Value (SDV) of the NPP

  20. Inhalation Exposure to Dioxins and dl-PCBs Depending on the Season in Upper Silesia, Poland: A Pilot Study.

    Science.gov (United States)

    Dziubanek, Grzegorz; Marchwińska, Ewa; Hajok, Ilona; Piekut, Agata

    2016-06-01

    The aim of this study was to investigate the seasonal fluctuation of PCDD/Fs and dl-PCBs levels in the ambient air of Upper Silesia in the aspect of human inhalation exposure as well as the estimation of health risk attributed to this exposure pathway to dioxins and dl-PCBs. In the study air samples were taken in five urban districts of Upper Silesia, Poland, where the houses are heated with coal. The same sampling points in summer and winter were analyzed for dioxins/furans and dl-PCBs. In addition, information was collected on awareness of the residents about the co-incineration of plastic waste and effects of this activity on human health. The results show that the average daily exposure of residents of Upper Silesia to TCDD and DLCs in the heating season was about 6.5.-fold higher than in summer. The risk assessment showed that expected excess of cancer cases per 1,000,000 people ranged from 4.5 to 13.2 in winter and from 0.9 to 2.1 in summer. The practice of mixing waste with coal for houses heating has been confirmed by investigated families, who do not associate it with the possibility of negative health effects. Air pollution can be a significant source of dioxin and dl-PCB for people during the winter season, as a result of co-burning coal and waste containing plastics. The dose of dioxins inhaled through the respiratory pathway in winter can be associated with the higher cancer risk in the population of Upper Silesia. Copyright© by the National Institute of Public Health, Prague 2015.

  1. Application of New MODIS-Based Aerosol Index for Air Pollution Severity Assessment and Mapping in Upper Northern Thailand

    Directory of Open Access Journals (Sweden)

    Chat Phayungwiwatthanakoon

    2014-06-01

    Full Text Available This paper reports capability of a newly-proposed index called the aerosol prediction index (API in the determination and mapping of near-ground PM10 concentrations (at spatial resolution of 500 x 500 m during the 2009 and 2010 burning seasons in upper northern Thailand. API is a normalized index defined based on the difference in the observed reflectance data at two spectral bands of the MODIS instrument aboard NASA�s Terra satellite; Band 3 (blue and Band 7 (mid-infrared. Initial analysis suggested that API had strong correlation with the corresponding MODIS-AOD and AERONET-AOD with coefficient of determination (R2 about 0.62 in both cases, and also with the reference PM10 data with R2 of 0.66. In terms of predictive performance, it exhibited low bias at low PM10 condition and achieved impressive prediction accuracy with relative error of 10.78 %. The near-ground PM10 concentration map yielded from the proposed index was proved very useful in the comprehensive assessment of aerosol pollution situation over entire area at fine spatial detail. This task could not be fulfilled from sole use of the ground-based measured data or standard MODIS-AOD product. These findings indicate that API should be a promising tool for the regular monitoring of air pollution severity over the concerned area.

  2. Interfacial structures of confined air-water two-phase bubbly flow

    International Nuclear Information System (INIS)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-01-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35

  3. Lessons Learned from Ares I Upper Stage Structures and Thermal Design

    Science.gov (United States)

    Ahmed, Rafiq

    2012-01-01

    The Ares 1 Upper Stage was part of the vehicle intended to succeed the Space Shuttle as the United States manned spaceflight vehicle. Although the Upper Stage project was cancelled, there were many lessons learned that are applicable to future vehicle design. Lessons learned that are briefly detailed in this Technical Memorandum are for specific technical areas such as tank design, common bulkhead design, thrust oscillation, control of flight and slosh loads, purge and hazardous gas system. In addition, lessons learned from a systems engineering and vehicle integration perspective are also included, such as computer aided design and engineering, scheduling, and data management. The need for detailed systems engineering in the early stages of a project is emphasized throughout this report. The intent is that future projects will be able to apply these lessons learned to keep costs down, schedules brief, and deliver products that perform to the expectations of their customers.

  4. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    Science.gov (United States)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  5. Upper Mantle Structure beneath Afar: inferences from surface waves.

    Science.gov (United States)

    Sicilia, D.; Montagner, J.; Debayle, E.; Lepine, J.; Leveque, J.; Cara, M.; Ataley, A.; Sholan, J.

    2001-12-01

    The Afar hotspot is related to one of the most important plume from a geodynamic point of view. It has been advocated to be the surface expression of the South-West African Superswell. Below the lithosphere, the Afar plume might feed other hotspots in central Africa (Hadiouche et al., 1989; Ebinger & Sleep, 1998). The processes of interaction between crust, lithosphere and plume are not well understood. In order to gain insight into the scientific issue, we have performed a surface-wave tomography covering the Horn of Africa. A data set of 1404 paths for Rayleigh waves and 473 paths for Love waves was selected in the period range 45-200s. They were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment, in Tanzania and Saudi Arabia. Other data come from the broadband stations deployed in Ethiopia and Yemen in the framework of the French INSU program ``Horn of Africa''. The results presented here come from a path average phase velocities obtained with a method based on a least-squares minimization (Beucler et al., 2000). The local phase velocity distribution and the azimuthal anisotropy were simultaneously retrieved by using the tomographic technique of Montagner (1986). A correction of the data is applied according to the crustal structure of the 3SMAC model (Nataf & Ricard, 1996). We find low velocities down to 200 km depth beneath the Red Sea, the Gulf of Aden, Afars, the Ethiopian Plateau and southern Arabia. High velocities are present in the eastern Arabia and the Tanzania Craton. The anisotropy beneath Afar seems to be complex, but enables to map the flow pattern at the interface lithosphere-asthenosphere. The results presented here are complementary to those obtained by Debayle et al. (2001) at upper-mantle transition zone depths using waveform inversion of higher Rayle igh modes.

  6. The Study of Anatomical Structure and Karyotype of West Sumatran Dioscorea bulbifora L

    Directory of Open Access Journals (Sweden)

    Sjahridal Dahlan

    2007-04-01

    Full Text Available Had been done from March 2005 to January 2006 in plant Structure and Development Laboratory of Biology Department, Faculty of Mathematic and Natural Science, Andalas University. In present study were used descriptives and quantitatives method by preparing semi-permanent and permanent slide. Anatomycal structures of green aerial stem were consisting of epidermal, cortex with endodermoid cells and sclerechima tissue centripetally. Vascular bundle can be rocognized in three distinct rings with amphycribal type. Transverse section of leave anatomical composed by both a layer epidermal on upper and lower leaf surface, palysade parechima, and spons parenchyma (dorsiventral type. The stomata were anomocytic type on both upper and lower surface of leaf (amphystomatic type. Idioblast of cell raphides crystals and tannin containing founded in leaf structure. In transverse section each of eight individual bundle surrounded by sclerenchyma. The root anatomical structures consist of epidermal, cortex, endodermal (U shape wall thickening, pericycle and pith (with three ring of vascular bundles centripetally. The air tuber lacking of starch grains containing of parenchyma cells. Idioblast cell expected contain of HCN distributed over all of tuber tissue. The somatic cell chromosome were diploid 2n=20 with basic chromosome number were x=10.

  7. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  8. Fatal paradoxical pulmonary air embolism complicating percutaneous computed tomography-guided needle biopsy of the lung

    International Nuclear Information System (INIS)

    Chakravarti, Rajesh; Singh, Virendra; Isaac, Rethish; John, Joseph

    2004-01-01

    A 63-year-old man with left upper zone haziness on chest X-ray and an infiltrative lesion with a pleural mass in the left upper lobe on CT scan was scheduled for CT-guided percutaneous trans-thoracic needle biopsy. During the procedure, the patient had massive haemoptysis and cardiorespiratory arrest and could not be revived. Post-mortem CT showed air in the right atrium, right ventricle, pulmonary artery and also in the left atrium and aorta. A discussion on paradoxical air embolism following percutaneous trans-thoracic needle biopsy is presented Copyright (2004) Blackwell Publishing Asia Pty Ltd

  9. Air and Weather Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 2.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of air and air pressure in students' everyday lives; (2) oxidation…

  10. North American Crust and Upper Mantle Structure Imaged Using an Adaptive Bayesian Inversion

    Science.gov (United States)

    Eilon, Z.; Fischer, K. M.; Dalton, C. A.

    2017-12-01

    We present a methodology for imaging upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing increased computing power alongside sophisticated data analysis, with the flexibility to include multiple datatypes with complementary resolution. Our new method has been designed to simultaneously fit P-s and S-p converted phases and Rayleigh wave phase velocities measured from ambient noise (periods 6-40 s) and earthquake sources (periods 30-170s). Careful processing of the body wave data isolates the signals from velocity gradients between the mid-crust and 250 km depth. We jointly invert the body and surface wave data to obtain detailed 1-D velocity models that include robustly imaged mantle discontinuities. Synthetic tests demonstrate that S-p phases are particularly important for resolving mantle structure, while surface waves capture absolute velocities with resolution better than 0.1 km/s. By treating data noise as an unknown parameter, and by generating posterior parameter distributions, model trade offs and uncertainties are fully captured by the inversion. We apply the method to stations across the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles and offering robust uncertainty estimates. In the tectonically active northwestern US, a strong velocity drop immediately beneath the Moho connotes thin (<70 km) lithosphere and a sharp lithosphere-asthenosphere transition; the asthenospheric velocity profile here matches observations at mid-ocean ridges. Within the Wyoming and Superior cratons, our models reveal mid-lithospheric velocity gradients indicative of thermochemical cratonic

  11. Survey of the upper Frasnian reefs: a priority exploratory operation in the Volgograd Oblast

    Energy Technology Data Exchange (ETDEWEB)

    Shakhnovskii, I.M.; Nikishin, A.G.; Lezhnev, V.M.

    1978-01-01

    A description is given of the first oil fields - the Kotov and Miroshnikov, identified in the upper Frasnian structures of reef origin in the western rim of the Umetov--Linev depression. An identification is made of survey criteria that can be used in the exploration of upper Devonian structures of reef origin. Substantiation is offered for further exploratory and survey operations in the Volgograd Oblast. 2 figures.

  12. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  13. A Rare Cause of Upper Airway Obstruction in a Child

    OpenAIRE

    Ahmed, H.; Ndiaye, C.; Barry, M. W.; Thiongane, Aliou; Mbaye, A.; Zemene, Y.; Ndiaye, I. C.

    2017-01-01

    Ventricular band cyst is a rare condition in children but can result in severe upper airway obstruction with laryngeal dyspnea or death. The diagnosis should be considered in any stridor in children with previous history of intubation or respiratory infections. We report a case of a 4-year-old girl, received in an array of severe respiratory distress, emergency endoscopy was done, and a large ventricular tape band cyst obstructing the air way was found. Complete excision was made, and postope...

  14. Flame Structure and Dynamics for an Array of Premixed Methane-Air Jets

    Science.gov (United States)

    Nigam, Siddharth P.; Lapointe, Caelan; Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Rieker, Gregory B.; Hamlington, Peter E.

    2017-11-01

    Premixed flames have been studied extensively, both experimentally and computationally, and their properties are reasonably well characterized for a range of conditions and configurations. However, the premixed combustion process is potentially much more difficult to predict when many such flames are arranged in a closely spaced array. These arrays must be better understood, in particular, for the design of industrial burners used in chemical and heat treatment processes. Here, the effects of geometric array parameters (e.g., angle and diameter of jet inlets, number of inlets and their respective orientation) and operating conditions (e.g., jet velocities, fuel-air ratio) on flame structure and dynamics are studied using large eddy simulations (LES). The simulations are performed in OpenFOAM using multi-step chemistry for a methane-air mixture, and temperature and chemical composition fields are characterized for a variety of configurations as functions of height above the array. Implications of these results for the design and operation of industrial burners are outlined.

  15. Structural Properties of the Brazilian Air Transportation Network.

    Science.gov (United States)

    Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício

    2015-09-01

    The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.

  16. Structural Properties of the Brazilian Air Transportation Network

    Directory of Open Access Journals (Sweden)

    GUILHERME S. COUTO

    2015-09-01

    Full Text Available The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.

  17. Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

    Science.gov (United States)

    Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi; Eken, Tuna; Lushetile, Bufelo

    2015-04-01

    We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood are related to the impact of asthenosphere-lithosphere interaction, (plume-related features), on the continental areas and the evolution of the continent-ocean transition that followed the break-up of Gondwana. This process is supposed to leave its imprint as distinct seismic signature in the upper mantle. Utilizing 3D sensitivity kernels, we invert traveltime residuals to image velocity perturbations in the upper mantle down to 1000 km depth. To test the robustness of our tomographic image we employed various resolution tests which allow us to evaluate the extent of smearing effects and help defining the optimum inversion parameters (i.e., damping and smoothness) used during the regularization of inversion process. Resolution assessment procedure includes also a detailed investigation of the effect of the crustal corrections on the final images, which strongly influenced the resolution for the mantle structures. We present detailed tomographic images of the oceanic and continental lithosphere beneath the study area. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. Relatively low velocity perturbations have been imaged within the orogenic Damara Belt down to a depth of ~150 km, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ~100 km was observed beneath the ocean

  18. Crustal structure and development of the SW Barents Sea and the adjacent continental margin

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Asbjoern Johan

    1998-12-31

    Because of its expected petroleum potential, the western Barents Sea has been extensively mapped and investigated. The present thesis deals with many aspects of the geological development of this area. The emphasis is on Late Paleozoic structuring, Late Mesozoic basin formation, and early Tertiary margin formation including geodynamical response to the late Cenozoic sedimentation. The thesis begins with a review of the literature on the Late Palaeozoic structural development of the south-western Barents Sea, Svalbard and eastern Greenland. A structural map is developed for the Upper Carboniferous rift system in the southwestern Barents Sea that shows the interference of the northeasterly and the northerly structural grain. A discussion of the Ottar Basin uses a combination of seismic interpretation and gravity modelling to investigate this important structural element of the Upper Palaeozoic rift system. Previous work on Late Mesozoic basin formation in the southwestern Barents Sea is extended by incorporating new seismic reflection data and gravity modelling. Finally, the focus is shifted from the Barents Sea shelf to the continental-ocean transition and the oceanic basin. Gridded free-air gravity data from the ERS-1 enables the construction of a Bouguer gravity map of unprecedented resolution. The relationship between isostacy and gravity was resolved by modelling the thermal structure across the margin. Admittance analysis of the relationship between bathymetry and free-air gravity indicates an elastic thickness of the oceanic Lithosphere of 15-20 km, which is compatible with the depth to the 450{sup o}C isotherm obtained from thermal modelling. It is concluded that the southwestern Barents Sea margin does not deviate in any significant respects from passive rifted margins, except for a very straight and narrow continent-ocean transition zone. 332 refs., 55 figs., 7 tabs.

  19. Using the characteristics of the structure of the upper Frasnian salt bearing formation in prospecting for oil deposits in the Pripyat depression

    Energy Technology Data Exchange (ETDEWEB)

    Yeroshina, D.M.; Kislik, V.Z.; Sinichka, A.M.; Vysotskiy, E.A.

    1984-01-01

    The possibility is shown of using the structure of the upper Frasnian salt bearing formation to establish ancient depressions and uplifts. A gradual wedge out of the lower strata of rock salt towards the domes of the ancient uplifts occurs. It is recommended that several reflecting levels be built up in the base of the salt bearing formation to record the behavior of these strata.

  20. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  1. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  2. Air Pollution and Human Health in Kolkata, India: A Case Study

    Directory of Open Access Journals (Sweden)

    Md. Senaul Haque

    2017-10-01

    Full Text Available Urban air quality in most megacities has been found to be critical and Kolkata Metropolitan City is no exception to this. An analysis of ambient air quality in Kolkata was done by applying the Exceedance Factor (EF method, where the presence of listed pollutants’ (RPM, SPM, NO2, and SO2 annual average concentration are classified into four different categories; namely critical, high, moderate, and low pollution. Out of a total of 17 ambient air quality monitoring stations operating in Kolkata, five fall under the critical category, and the remaining 12 locations fall under the high category of NO2 concentration, while for RPM, four record critical, and 13 come under the high pollution category. The causes towards the high concentration of pollutants in the form of NO2 and RPM have been identified in earlier studies as vehicular emission (51.4%, followed by industrial sources (24.5% and dust particles (21.1%. Later, a health assessment was undertaken with a structured questionnaire at some nearby dispensaries which fall under areas with different ambient air pollution levels. Three dispensaries have been surveyed with 100 participants. It shows that respondents with respiratory diseases (85.1% have outnumbered waterborne diseases (14.9% and include acute respiratory infections (ARI (60%, chronic obstructive pulmonary diseases (COPD (7.8%, upper track respiratory infection (UTRI (1.2%, Influenza (12.7%, and acid fast bacillus (AFB (3.4%. Although the pollution level has been recorded as critical, only 39.3% of the respondents have felt that outdoor (air pollution has affected their health.

  3. Sustainable freight infrastructure to meet climate and air quality goals.

    Science.gov (United States)

    2012-02-01

    This report examines the potential for freight modal shift from truck-to-rail in the upper Midwestern U.S. : to improve air quality and reduce CO2 emissions. Two scenarios were generated, one focusing on : intra-regional freight movements within the ...

  4. Students' Voices about Information and Communication Technology in Upper Secondary Schools

    Science.gov (United States)

    Olofsson, Anders D.; Lindberg, Ola J.; Fransson, Göran

    2018-01-01

    Purpose: The purpose of this paper is to explore upper secondary school students' voices on how information and communication technology (ICT) could structure and support their everyday activities and time at school. Design/methodology/approach: In all, 11 group interviews were conducted with a total of 46 students from three upper secondary…

  5. 78 FR 75334 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-12-11

    ... of the Air Force AGENCY: Director of Administration and Management, DoD. ACTION: Notice of advisory... requirements of 41 CFR 102-3.150(a) were not met. Accordingly, the Advisory Committee Management Officer for... are to (1) assess the advantages and disadvantages of contending approaches to the future structure of...

  6. The role of upper mantle mineral phase transitions on the current structure of large-scale Earth's mantle convection.

    Science.gov (United States)

    Thoraval, C.

    2017-12-01

    Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.

  7. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  8. Numerical study of hot-leg ECC injection into the upper plenum of a pressurized water reactor

    International Nuclear Information System (INIS)

    Daly, B.J.; Torrey, M.D.; Rivard, W.C.

    1981-01-01

    In certain pressurized water reactor (PWR) designs, emergency core coolant (ECC) is injected through the hot legs into the upper plenum. The condensation of steam on this subcooled liquid stream reduces the pressure in the hot legs and upper plenum and thereby affects flow conditions throughout the reactor. In the present study, we examine countercurrent steam-water flow in the hot leg to determine the deceleration of the ECC flow that results from an adverse pressure gradient and from momentum exchange from the steam by interfacial drag and condensation. For the parameters examined in the study, water flow reversal is observed for a pressure drop of 22 to 32 mBar over the 1.5 m hot leg. We have also performed a three-dimensional study of subcooled water injection into air and steam environments of the upper plenum. The ECC water is deflected by an array of cylindrical guide tubes in its passage through the upper plenum. Comparisons of the air-water results with data obtained in a full scale experiment shows reasonable agreement, but indicates that there may be too much resistance to horizontal flow about the columns because of the use of a stair-step representation of the cylindrical guide tube cross section. Calculations of flow past single columns of stair-step, square and circular cross section do indicate excessive water deeentrainment by the noncircular column. This has prompted the use of an arbitrary mesh computational procedure to more accuratey represent the circular cross-section guide tubes. 15 figures

  9. MICROTOUGH - calculation of characteristic upper shelf fracture toughness values from microstructural parameters for high strength structural steels with normalized or quenched and tempered microstructure

    International Nuclear Information System (INIS)

    Muenstermann, S.; Dahl, W.; Langenberg, P.; Deimel, P.; Sattler, E.

    2004-01-01

    In modern applications, high strength steels are often utilised to increase the load bearing capacity of components. For safe design it is also necessary that these steels have an adequate fracture toughness. The mechanical properties of high strength structural steels are a result of the production process. In consequence, they are strongly related to the microstructure. Therefore, the aim of the research work in the Microtough project is to develop and apply a new method of quantitative correlation between microstructural parameters and characteristic fracture toughness values. This correlation will on the one hand help for the design of new structural steels with high toughness. On the other hand, it shall allow to characterise the fracture toughness of steel without performing expensive fracture mechanics tests. The research work is carried out in the full temperature range from lower to upper shelf. As both RWTH Aachen University and MPA Uni Stuttgart concentrate on ductile fracture behaviour in their research work, the focus of the presentation lies in the upper shelf. (orig.)

  10. Airflow structures and nano-particle deposition in a human upper airway model

    Science.gov (United States)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle

  11. Measurement and prediction of indoor air quality using a breathing thermal manikin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method......The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...

  12. 3D velocity structure of upper crust beneath NW Bohemia/Vogtland

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mousavi, Sima; Korn, Michael; Sens-Schönfelder, Christoph; Bauer, Klaus; Rößler, Dirk

    2013-04-01

    The 3D structure of the upper crust beneath west Bohemia/Vogtland region, analyzed with travel time tomography and ambient noise surface wave tomography using existing data. This region is characterized by a series of phenomena like occurrence of repeated earthquake swarms, surface exhalation, CO2 enriched fluids, mofettes, mineral springs and enhanced heat flow, and has been proposed as an excellent location for an ICDP drilling project targeted to a better understanding of the crust in an active magmatic environment. We performed a 3D tomography using P-and S-wave travel times of local earthquakes and explosions. The data set were taken from permanent and temporary seismic networks in Germany and Czech Republic from 2000 to 2010, as well as active seismic experiments like Celebration 2000 and quarry blasts. After picking P and S wave arrival times, 399 events which were recorded by 9 or more stations and azimuthal gap<160° were selected for inversion. A simultaneous inversion of P and S wave 1D velocity models together with relocations of hypocenters and station corrections was performed. The obtained minimum 1D velocity model was used as starting model for the 3D Vp and Vp/Vs velocity models. P and S wave travel time tomography employs damped least-square method and ray tracing by pseudo-bending algorithm. For model parametrization different cell node spacings have been tested to evaluate the resolution in each node. Synthetic checkerboard tests have been done to check the structural resolution. Then Vp and Vp/Vs in the preferred 3D grid model have been determined. Earthquakes locations in iteration process change till the hypocenter adjustments and travel time residuals become smaller than the defined threshold criteria. Finally the analysis of the resolution depicts the well resolved features for interpretation. We observed lower Vp/Vs ratio in depth of 5-10 km close to the foci of earthquake swarms and higher Vp/Vs ratio is observed in Saxoturingian zone and

  13. An upper bound on Q-star masses

    International Nuclear Information System (INIS)

    Hochron, D.R.; Selipsky, S.B.

    1992-06-01

    Q-stars (the gravitational generalization of Q-balls, strongly bound bulk matter that an appear in field theories of strongly interacting hadrons) are the only known impact objects consistent with the known bulk structure of nuclei and chiral symmetry that evade the Rhoades-Ruffini upper bound of 3.2M circle-dot . Generic bounds are quite weak: M Q-star circle-dot . If, however, we assume that the 1.558 ms pulsar is a Q-star, equilibrium. A stability criteria of rotating fluids place a much stronger upper bound of M c ≤ 5.3M circle-dot on such models under certain special assumptions. This has important implications for heavy compact objects such as Cygnus X-1

  14. Accidental fatal lung injury by compressed air: a case report.

    Science.gov (United States)

    Rayamane, Anand Parashuram; Pradeepkumar, M V

    2015-03-01

    Compressed air is being used extensively as a source of energy at industries and in daily life. A variety of fatal injuries are caused by improper and ignorant use of compressed air equipments. Many types of injuries due to compressed air are reported in the literature such as colorectal injury, orbital injury, surgical emphysema, and so on. Most of these injuries are accidental in nature. It is documented that 40 pounds per square inch pressure causes fatal injuries to the ear, eyes, lungs, stomach, and intestine. Openings of body are vulnerable to injuries by compressed air. Death due to compressed air injuries is rarely reported. Many cases are treated successfully by conservative or surgical management. Extensive survey of literature revealed no reports of fatal injury to the upper respiratory tract and lungs caused by compressed air. Here, we are reporting a fatal event of accidental death after insertion of compressed air pipe into the mouth. The postmortem findings are corroborated with the history and discussed in detail.

  15. Nuclear fuel assembly incorporating primary and secondary structural support members

    International Nuclear Information System (INIS)

    Carlson, W.R.; Gjertsen, R.K.; Miller, J.V.

    1987-01-01

    A nuclear fuel assembly, comprising: (a) an upper end structure; (b) a lower end structure; (c) elongated primary structural members extending longitudinally between and rigidly interconnecting the upper and lower end structures, the upper and lower end structures and primary structural members together forming a rigid structural skeleton of the fuel assembly; (d) transverse grids supported on the primary structural members at axially spaced locations therealong between the upper and lower end structures; (e) fuel rods extending through and supported by the grids between the upper and lower end structures so as to extend in generally side-by-side spaced relation to one another and to the primary structural members; and (f) elongated secondary structural members extending longitudinally between but unconnected with the upper and lower end structures, the secondary structural members extending through and rigidly interconnected with the grids to extend in generally side-by-side spaced relation to one another, to the fuel rods and to the primary structural members so as to bolster the stiffness of the structural skeleton of the fuel assembly

  16. Which Air Force Civil Engineer Capabilities Can Complement USNORTHCOM’s Role in Defense Support to Civil Authorities (DSCA)?

    Science.gov (United States)

    2014-05-21

    PERSONNEL FROM STANDARD PRIME BEEF OR RED 4F9K4 PROVIDES FOLDED FIBERGLASS MATTING ( FFM ) FOR AIRFIELD DAMAGE REPAIR (ADR). PACKAGE CONSISTS OF THREE FFM ...SETS (54’ X 60’), ONE FFM SUPPORT TOOL KIT, UPPER BUSHINGS, ANCHOR BUSHINGS, ANCHOR BOLTS, AND TWO EA MC-7 AIR COMPRESSORS. EACH UTC WILL BE TASKED TO...OF 7 FOLDED FIBERGLASS MAT SETS (54 FT X 60 FT), 2 FFM SUPPORT TOOL KIT, UPPER BUSHINGS, ANCHOR BUSHINGS, ANCHOR BOLTS AND 4 X MC-7 AIR COMPRESSORS

  17. Heat up and potential failure of BWR upper internals during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.

  18. A randomized comparison of intraoperative PerfecTemp and forced-air warming during open abdominal surgery.

    Science.gov (United States)

    Egan, Cameron; Bernstein, Ethan; Reddy, Desigen; Ali, Madi; Paul, James; Yang, Dongsheng; Sessler, Daniel I

    2011-11-01

    The PerfecTemp is an underbody resistive warming system that combines servocontrolled underbody warming with viscoelastic foam pressure relief. Clinical efficacy of the system has yet to be formally evaluated. We therefore tested the hypothesis that intraoperative distal esophageal (core) temperatures with the PerfecTemp (underbody resistive) warming system are noninferior to upper-body forced-air warming in patients undergoing major open abdominal surgery under general anesthesia. Adults scheduled for elective major open abdominal surgery (liver, pancreas, gynecological, and colorectal surgery) under general anesthesia were enrolled at 2 centers. Patients were randomly assigned to underbody resistive or forced-air warming. Resistive heating started when patients were transferred to the operating room table; forced-air warming started after patients were draped. The primary outcome was noninferiority of intraoperative time-weighted average core temperature, adjusted for baseline characteristics and using a buffer of 0.5°C. Thirty-six patients were randomly assigned to underbody resistive heating and 34 to forced-air warming. Baseline and surgical characteristics were generally similar. We had sufficient evidence (P=0.018) to conclude that underbody resistive warming is not worse than (i.e., noninferior to) upper-body forced-air warming in the time-weighted average intraoperative temperature, with a mean difference of -0.12°C [95% confidence interval (CI) -0.37 to 0.14]. Core temperatures at the end of surgery averaged 36.3°C [95% CI 36 to 36.5] in the resistive warming patients and 36.6°C [95% CI 36.4 to 36.8] in those assigned to forced-air warming for a mean difference of -0.34°C [95% CI -0.69 to 0.01]. Mean intraoperative time-weighted average core temperatures were no different, and significantly noninferior, with underbody resistive heating in comparison with upper-body forced-air warming. Underbody resistive heating may be an alternative to forced-air

  19. A Climate Benchmark of Upper Air Temperature Observations from GNSS Radio Occultation

    Science.gov (United States)

    Ao, C. O.; Mannucci, A. J.; Leroy, S. S.; Verkhoglyadova, O. P.

    2017-12-01

    GPS (Global Positioning System), or more generally Global Navigation Satellite System (GNSS), radio occultation (RO) is a remote sensing technique that produces highly accurate temperature in the upper troposphere and lower stratosphere across the globe with fine vertical resolution. Its fundamental measurement is the time delay of the microwave signal as it travels from a GNSS satellite to the receiver in low Earth orbit. With a relatively simple physical retrieval, the uncertainty in the derived temperature can be traced rigorously through the retrieval chain back to the raw measurements. The high absolute accuracy of RO allows these observations to be assimilated without bias correction in numerical weather prediction models and provides an anchor for assimilating other types of observations. The high accuracy, coupled with long-term stability, makes RO valuable in detecting decadal temperature trends. In this presentation, we will summarize the current state of RO observations and show temperature trends derived from 15 years of RO data in the upper troposphere and lower stratosphere. We will discuss our recent efforts in developing retrieval algorithms that are more tailored towards climate applications. Despite the relatively robust "self-calibrating" nature of RO observations, disparity in receiver hardware and software may introduce subtle differences that need to be carefully addressed. While the historic RO data record came from relatively homogeneous hardware based largely on NASA/JPL design (e.g., CHAMP and COSMIC), the future data will likely be comprised of a diverse set of observations from Europe, China, and various commercial data providers. In addition, the use of non-GPS navigation systems will become more prevalent. We will discuss the challenges involved in establishing a long-term RO climate data record from a suite of research and operational weather satellites with changes in instrumentation and coverage.

  20. Fixation of CO2 in air: Synthesis and crystal structure of a µ3-CO3 ...

    Indian Academy of Sciences (India)

    Unknown

    Fixation of CO2 in air: Synthesis and crystal structure of a ... from the reaction between copper(I) complexes and dioxygen.2,6,7 ... and co-workers from the reaction of [(L2) ..... followed by water dissociation.13h,24 While fixation of CO2 by ...

  1. Variable structure TITO fuzzy-logic controller implementation for a solar air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Lygouras, J.N.; Pachidis, Th. [Laboratory of Electronics, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece); Kodogiannis, V.S. [Centre for Systems Analysis, School of Computer Science, University of Westminster, London HA1 3TP (United Kingdom); Tarchanidis, K.N. [Department of Petroleum Technology, Technological Education Institute of Kavala, GR-65404, Kavala (Greece); Koukourlis, C.S. [Laboratory of Telecommunications, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece)

    2008-04-15

    The design and implementation of a Two-Input/Two-Output (TITO) variable structure fuzzy-logic controller for a solar-powered air-conditioning system is described in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. The first affects the temperature in the generator of the solar air-conditioner, while the second, the pressure in the power loop. The difficulty of Multi-Input/Multi-Output (MIMO) systems control is how to overcome the coupling effects among each degree of freedom. First, a traditional fuzzy-controller has been designed, its output being one of the components of the control signal for each DC motor driver. Secondly, according to the characteristics of the system's dynamics coupling, an appropriate coupling fuzzy-controller (CFC) is incorporated into a traditional fuzzy-controller (TFC) to compensate for the dynamic coupling among each degree of freedom. This control strategy simplifies the implementation problem of fuzzy control, but can also improve the control performance. This mixed fuzzy controller (MFC) can effectively improve the coupling effects of the systems, and this control strategy is easy to design and implement. Experimental results from the implemented system are presented. (author)

  2. Numerical tool development of fluid-structure interactions for investigation of obstructive sleep apnea

    Science.gov (United States)

    Huang, Chien-Jung; White, Susan; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff

    2016-11-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the upper airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The ultimate goal of this research is the development of a versatile numerical tool for simulation of air-tissue interactions in the patient specific upper airway geometry. This tool is expected to capture several phenomena, including flow-induced vibration (snoring) and large deformations during airway collapse of the complex airway geometry in respiratory flow conditions. Here, we present our ongoing progress toward this goal. To avoid mesh regeneration, for flow model, a sharp-interface embedded boundary method is used on Cartesian grids for resolving the fluid-structure interface, while for the structural model, a cut-cell finite element method is used. Also, to properly resolve large displacements, non-linear elasticity model is used. The fluid and structure solvers are connected with the strongly coupled iterative algorithm. The parallel computation is achieved with the numerical library PETSc. Some two- and three- dimensional preliminary results are shown to demonstrate the ability of this tool.

  3. Environmental injustice and air pollution in coal affected communities, Hunter Valley, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Higginbotham, N.; Freeman, S.; Connor, L.; Albrecht, G. [University of Newcastle, Callaghan, NSW (Australia). School of Medicine & Public Health

    2010-03-15

    The authors describe environmental injustice from air pollution in the Upper Hunter, Australia, and analyse the inaction of state authorities in addressing residents' health concerns. Obstacles blocking a public-requested health study and air monitoring include: the interdependence of state government and corporations in reaping the economic benefits of coal production; lack of political will, regulatory inertia and procedural injustice; and study design and measurement issues. We analyse mining- and coal-related air pollution in a contested socio-political arena, where residents, civil society and local government groups struggle with corporations and state government over the burden of imposed health risk caused by air pollution.

  4. Urban structure and air pollution

    Science.gov (United States)

    Lyons, T. J.; Kenworthy, J. R.; Newman, P. W. G.

    Representative driving cycles across the Perth, Western Australia, metropolitan region illustrate a direct relationship to urban land use. Movement away from the central business district results in fewer traffic events, higher speeds, longer cruise periods and shorter stops. The consequent reduction in root mean square acceleration leads to a corresponding reduction in vehicle emission factors. Urban planning implications are pursued and highlight the importance of public transport as an option in reducing urban air pollution.

  5. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  6. Upper limit on the ultrahigh-energy photon flux from AGASA and Yakutsk data

    International Nuclear Information System (INIS)

    Rubtsov, G.I.; Dedenko, L.G.; Fedorova, G.F.; Fedunin, E.Yu.; Roganova, T.M.; Glushkov, A.V.; Makarov, I.T.; Pravdin, M.I.; Sleptsov, I.E.; Gorbunov, D.S.; Troitsky, S.V.

    2006-01-01

    We present the interpretation of the muon and scintillation signals of ultrahigh-energy air showers observed by AGASA and Yakutsk extensive air shower array experiments. We consider case-by-case ten highest-energy events with known muon content and conclude that at the 95% confidence level none of them was induced by a primary photon. Taking into account statistical fluctuations and differences in the energy estimation of proton and photon primaries, we derive an upper limit of 36% at a 95% confidence level on the fraction of primary photons in the cosmic-ray flux above 10 20 eV. This result disfavors the Z-burst and superheavy dark-matter solutions to the Greisen-Zatsepin-Kuzmin-cutoff problem

  7. Modifications in pine (Pinus silvestris) under the impact of industrial air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wolak, J

    1970-01-01

    Growth habit forms in pine which developed in the Upper Silesian Industrial Region in places where industrial air pollution is a dominant ecological factor are described. Juvenile pine individuals, when not growing in density, soon cease to grow in height and their lateral branches grow freely while creeping on ground. In contrast to lifted up branches which are invaded by pests, those creeping one are healthy, with great increment, healthy needles, and normally developed cones. Pine shrubs acquire the habit of mountain pine. In pine shrubs there is formed the plant association Pinus silvestris-Solanum dulcamara which is not to be found elsewhere. When air pollution reaches its threshold value, when pine trees have no lower verticils, then upper branches grow downward until they reach soil surface and creep on it similarly as in the former case. The phenomenon of the formation of genuine habit forms in pine is one of the symptoms of impairment of productive capacity of habitat under the impact of the industrial air pollution.

  8. Air pollution and emergency department visits for respiratory diseases: A multi-city case crossover study.

    Science.gov (United States)

    Szyszkowicz, Mieczysław; Kousha, Termeh; Castner, Jessica; Dales, Robert

    2018-05-01

    Increasing evidence suggests that ambient air pollution is a major risk factor for both acute and chronic respiratory disease exacerbations and emergencies. The objective of this study was to determine the association between ambient air pollutants and emergency department (ED) visits for respiratory conditions in nine districts across the province of Ontario in Canada. Health, air pollutant (PM 2.5 , NO 2 , O 3 , and SO 2 ), and meteorological data were retrieved from April 2004 to December 2011. Respiratory diseases were categorized as: chronic obstructive pulmonary disease (COPD, including bronchiectasis) and acute upper respiratory diseases. A case-crossover design was used to test the associations between ED visits and ambient air pollutants, stratified by sex and season. For COPD among males, positive results were observed for NO 2 with lags of 3-6 days, for PM 2.5 with lags 1-8, and for SO 2 with lags of 4-8 days. For COPD among females, positive results were observed for O 3 with lags 2-4 days, and for SO 2 among lags of 3-6 days. For upper respiratory disease emergencies among males, positive results were observed for NO 2 (lags 5-8 days), for O 3 , (lags 0-6 days), PM 2.5 (all lags), and SO 2 (lag 8), and among females, positive results were observed for NO 2 for lag 8 days, for O 3 , PM 2.5 among all lags. Our study provides evidence of the associations between short-term exposure to air pollution and increased risk of ED visits for upper and lower respiratory diseases in an environment where air pollutant concentrations are relatively low. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  9. Oncoplastic Surgery for Upper/Upper Inner Quadrant Breast Cancer.

    Science.gov (United States)

    Lin, Joseph; Chen, Dar-Ren; Wang, Yu-Fen; Lai, Hung-Wen

    2016-01-01

    Tumors located in the upper/upper inner quadrant of the breast warrant more attention. A small lesion relative to the size of breast in this location may be resolved by performing a level I oncoplastic technique. However, a wide excision may significantly reduce the overall quality of the breast shape by distorting the visible breast line. From June 2012 to April 2015, 36 patients with breast cancer located in the upper/upper inner quadrant underwent breast-conservation surgery with matrix rotation mammoplasty. According to the size and location of the tumor relative to the nipple-areola complex, 11 patients underwent matrix rotation with periareolar de-epithelialization (donut group) and the other 25 underwent matrix rotation only (non-donut group). The cosmetic results were self-assessed by questionnaires. The average weights of the excised breast lumps in the donut and non-donut groups were 104.1 and 84.5 g, respectively. During the 3-year follow-up period, local recurrence was observed in one case and was managed with nipple-sparing mastectomy followed by breast reconstruction with prosthetic implants. In total, 31 patients (88.6%) ranked their postoperative result as either acceptable or satisfactory. The treated breasts were also self-evaluated by 27 patients (77.1%) to be nearly identical to or just slightly different from the untreated side. Matrix rotation is an easy breast-preserving technique for treating breast cancer located in the upper/upper inner quadrant of the breast that requires a relatively wide excision. With this technique, a larger breast tumor could be removed without compromising the breast appearance.

  10. Preliminary stratigraphy and facies analysis of the Upper Cretaceous Kaguyak Formation, including a brief summary of newly discovered oil stain, upper Alaska Peninsula

    Science.gov (United States)

    Wartes, Marwan A.; Decker, Paul L.; Stanley, Richard G.; Herriott, Trystan M.; Helmold, Kenneth P.; Gillis, Robert J.

    2013-01-01

    The Alaska Division of Geological and Geophysical Surveys has an ongoing program aimed at evaluating the Mesozoic forearc stratigraphy, structure, and petroleum systems of lower Cook Inlet. Most of our field studies have focused on the Jurassic component of the petroleum system (this report). However, in late July and early August of 2012, we initiated a study of the stratigraphy and reservoir potential of the Upper Cretaceous Kaguyak Formation. The Kaguyak Formation is locally well exposed on the upper Alaska Peninsula (fig. 25) and was named by Keller and Reiser (1959) for a sequence of interbedded siltstone and sandstone of upper Campanian to Maastrichtian age that they estimated to be 1,450 m thick.Subsequent work by Detterman and Miller (1985) examined 900 m of section and interpreted the unit as the record of a prograding submarine fan.This interpretation of deep-water deposition contrasts with other Upper Cretaceous rocks exposed along the Alaska Peninsula and lower Cook Inlet that are generally described as nonmarine to shallow marine (Detterman and others, 1996; LePain and others, 2012).Based on foraminifera and palynomorphs from the COST No. 1 well, Magoon (1986) concluded that the Upper Cretaceous rocks were deposited in a variety of water depths and environments ranging from upper bathyal to nonmarine. During our recent fieldwork west and south of Fourpeaked Mountain, we similarly encountered markedly varying lithofacies in the Kaguyak Formation (fig. 25), and we also found oil-stained rocks that are consistent with the existence of an active petroleum system in Upper Cretaceous rocks on the upper Alaska Peninsula and in lower Cook Inlet. These field observations are summarized below.

  11. Air Dispersion Modeling for the INL Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emission Cap Component

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, Andrus Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The Department of Energy Idaho Operations Office (DOE-ID) is applying for a synthetic minor, Sitewide, air quality permit to construct (PTC) with a facility emission cap (FEC) component from the Idaho Department of Environmental Quality (DEQ) for Idaho National Laboratory (INL) to limit its potential to emit to less than major facility limits for criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) regulated under the Clean Air Act. This document is supplied as an appendix to the application, Idaho National Laboratory Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emissions Cap Component, hereafter referred to as “permit application” (DOE-ID 2015). Air dispersion modeling was performed as part of the permit application process to demonstrate pollutant emissions from the INL will not cause a violation of any ambient air quality standards. This report documents the modeling methodology and results for the air dispersion impact analysis. All CAPs regulated under Section 109 of the Clean Air Act were modeled with the exception of lead (Pb) and ozone, which are not required to be modeled by DEQ. Modeling was not performed for toxic air pollutants (TAPs) as uncontrolled emissions did not exceed screening emission levels for carcinogenic and non-carcinogenic TAPs. Modeling for CAPs was performed with the EPA approved AERMOD dispersion modeling system (Version 14134) (EPA 2004a) and five years (2000-2004) of meteorological data. The meteorological data set was produced with the companion AERMET model (Version 14134) (EPA 2004b) using surface data from the Idaho Falls airport, and upper-air data from Boise International Airport supplied by DEQ. Onsite meteorological data from the Grid 3 Mesonet tower located near the center of the INL (north of INTEC) and supplied by the local National Oceanic and Atmospheric Administration (NOAA) office was used for surface wind directions and wind speeds. Surface data (i

  12. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  13. Gradient porous electrode architectures for rechargeable metal-air batteries

    Science.gov (United States)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  14. Seismic Velocity Variation and Evolution of the Upper Oceanic Crust across the Mid-Atlantic Ridge at 1.3°S

    Science.gov (United States)

    Jian, H.; Singh, S. C.

    2017-12-01

    The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.

  15. Influence of air flow rate on structural and electrical properties of undoped indium oxide thin films

    International Nuclear Information System (INIS)

    Mirzapour, S.; Rozati, S.M.; Takwale, M.G.; Marathe, B.R.; Bhide, V.G.

    1993-01-01

    Using the spray pyrolysis technique thin films of indium oxide were prepared on Corning glass (7059) at a substrate temperature of 425 C at different flow rates. The electrical and structural properties of these films were studied. The Hall measurements at room temperature showed that the films prepared in an air flow rate of 7 litre min -1 have the highest mobility of 47 cm 2 V -1 s -1 and a minimum resistivity of 1.125 x 10 -3 Ω cm. The X-ray diffraction patterns showed that the films have a preferred orientation of [400] which peaks at the air flow rate of 7 litre min -1 . (orig.)

  16. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  17. The Compounds Responsible for Air Pollution

    Directory of Open Access Journals (Sweden)

    Magdalena Kostrz

    2017-12-01

    Full Text Available Air quality in Poland poses a serious threat for boththe society and the environment. According to the WHO research Poland is located on the 14th place as a country most contaminated by particulate matter (PM10. Equally health-threatening substances are ozone, PAH, nitrogen dioxide, sulfur oxide, carbon oxide and heavy metals. Long-lasting exposure to high concentrations of ozone and nitrogen dioxide may lead to many irreversible changes in lungs, pulmonary oedema and even death. The main PAH, which cumulates in the organism is benzopyrene. This substance has been described by the IARC as a the most cancerogenic factor. High concentration of sulfur oxide in the air may cause severe damage of upper respiratory tract, sulfur oxide contributes greatly also to the appearance of acid rain and is an ingredient of a London type smog. Heavy metals polluting the air are one of the most severe health threat for people, due to the ability to cumulate in the organism.

  18. Upper critical field of Mo-Ni heterostructures

    International Nuclear Information System (INIS)

    Uher, C.; Watson, W.J.; Cohn, J.L.; Schuller, I.K.

    1985-12-01

    Upper critical field and its anisotropy have been measured on two very short wavelength Mo-Ni heterostructures of different degrees of perfection, lambda = 13.8A (disordered structure) and lambda = 16.6A (layered structure). In both cases the parallel critical field has an unexpected temperature dependence, a large and temperature dependent anisotropy, and over 60% enhancement over the Clogston-Chandrasekhar limit. Data are fit to the Werthamer-Helfand-Hohenberg theory and the spin-orbit scattering times are found to be 1.79 x 10 -13 s and 2 x 10 -13 s, respectively

  19. Oncoplastic Surgery for Upper/Upper Inner Quadrant Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Joseph Lin

    Full Text Available Tumors located in the upper/upper inner quadrant of the breast warrant more attention. A small lesion relative to the size of breast in this location may be resolved by performing a level I oncoplastic technique. However, a wide excision may significantly reduce the overall quality of the breast shape by distorting the visible breast line. From June 2012 to April 2015, 36 patients with breast cancer located in the upper/upper inner quadrant underwent breast-conservation surgery with matrix rotation mammoplasty. According to the size and location of the tumor relative to the nipple-areola complex, 11 patients underwent matrix rotation with periareolar de-epithelialization (donut group and the other 25 underwent matrix rotation only (non-donut group. The cosmetic results were self-assessed by questionnaires. The average weights of the excised breast lumps in the donut and non-donut groups were 104.1 and 84.5 g, respectively. During the 3-year follow-up period, local recurrence was observed in one case and was managed with nipple-sparing mastectomy followed by breast reconstruction with prosthetic implants. In total, 31 patients (88.6% ranked their postoperative result as either acceptable or satisfactory. The treated breasts were also self-evaluated by 27 patients (77.1% to be nearly identical to or just slightly different from the untreated side. Matrix rotation is an easy breast-preserving technique for treating breast cancer located in the upper/upper inner quadrant of the breast that requires a relatively wide excision. With this technique, a larger breast tumor could be removed without compromising the breast appearance.

  20. Role of the upper ocean structure in the response of ENSO-like SST variability to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France); Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea)

    2010-08-15

    The response of El Nino and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO{sub 2} concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Nino-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO

  1. BENTHIC MACROINVERTEBRATE COMMUNITY STRUCTURE IN THE UPPER HYDROGRAPHIC BASIN OF CERNA RIVER IN RELATION TO WATER QUALITY (WEST AND SOUTH-WESTERN ROMANIA

    Directory of Open Access Journals (Sweden)

    CORINA TUDORESCU

    2009-01-01

    Full Text Available The quality of an hydrographic basin may be reflected by the composition of benthic macroinvertebrates communities as they can be influenced by the quality degradations of physical and chemical water parameters. The structure of the benthic community in the upper basin of the Cerna river was characterized by the presence of 13 groups. Abundance and frequency values recorded for benthic communities varied according to the physical-chemical conditions specific to each sample collecting station. Plecoptera, Ephemeroptera, Trichoptera and Amphipoda were influenced by changes in water quality, changes that were reflected in the composition and structure of such communities with low levels of abundance, reaching extinction in some areas of the basin.

  2. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark A

    2013-03-01

    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

  3. Structural transformation of CsI thin film photocathodes under exposure to air and UV irradiation

    CERN Document Server

    Tremsin, A S; Siegmund, O H W

    2000-01-01

    Transmission electron microscopy has been employed to study the structure of polycrystalline CsI thin films and its transformation under exposure to humid air and UV irradiation. The catastrophic degradation of CsI thin film photocathode performance is shown to be associated with the film dissolving followed by its re-crystallization. This results in the formation of large lumps of CsI crystal on the substrate surface, so that the film becomes discontinuous and its performance as a photocathode is permanently degraded. No change in the surface morphology and the film crystalline structure was observed after the samples were UV irradiated.

  4. Structural analysis of porous rock reservoirs subjected to conditions of compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Friley, J.R.

    1980-01-01

    Investigations are described which were performed to assess the structural behavior of porous rock compressed air energy storage (CAES) reservoirs subjected to loading conditions of temperature and pressure felt to be typical of such an operation. Analyses performed addressed not only the nominal or mean reservoir response but also the cyclic response due to charge/discharge operation. The analyses were carried out by assuming various geometrical and material related parameters of a generic site. The objective of this study was to determine the gross response of a generic porous reservoir. The site geometry for this study assumed a cylindrical model 122 m in dia and 57 m high including thicknesses for the cap, porous, and base rock formations. The central portion of the porous zone was assumed to be at a depth of 518 m and at an initial temperature of 20/sup 0/C. Cyclic loading conditions of compressed air consisted of pressure values in the range of 4.5 to 5.2 MPa and temperature values between 143 and 204/sup 0/C.Various modes of structural behavior were studied. These response modes were analyzed using loading conditions of temperature and pressure (in the porous zone) corresponding to various operational states during the first year of simulated site operation. The results of the structural analyses performed indicate that the most severely stressed region will likely be in the wellbore vicinity and hence highly dependent on the length of and placement technique utilized in the well production length. Analyses to address this specific areas are currently being pursued.

  5. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Sun, X.; Kim, S.; Cheng, L.; Ishii, M.; Beus, S.G.

    2001-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions

  6. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  7. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  8. FLORISTIC AND STRUCTURAL CHARACTERIZATION OF GALLERY FOREST FRAGMENTS OF UPPER ARAGUAIA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Christian Dias Cabacinha

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814575The forests of upper Araguaia river basin are daily exposed to degradation agents due to intense agriculture practices. Twenty two fragments (of 10 until 169 ha were surveyed according to point-centered quarter method to characterize vegetation structure and to create a database to forest restoration. One hundred and nine (109 species, belonging to 78 genus and 42 families, were sampled where 73.4% revealed zoochorous dispersal pattern, and 69.7% were classified to initial sucessional category. Shannon index and Pielou equability index were 3.86 nats. ind-1 and 0.82, respectively. Density and total basal area estimated were 1,351 trees.ha-1 and 19.28 m2.ha-1. The areas showed lower richness, Shannon and Pielou heterogeneity indices, lower basal area, and high number of species of intermediate stage of ecological sucession and colonization of cerrado and cerradão species in disturbed areas, altering the original landscape. Such situation, added to the importance of those areas for the biodiversity conservation and ecological services (mainly relative to the water, demands protection actions and management that use the great regenerative potential of the area, given by the existence of a great number of initial secondary species and the prevalence of zoochoric species.

  9. Atmospheric Structure. Part 3. Upper Air and Surface Data: Stallion Site

    Science.gov (United States)

    1975-01-01

    1’, 0 in •••••••••••••• in ^ C(Ooooocc(\\iflO«(yiHH " I v ino »•••••»••••••• /) If) Cy0OO3OO(0OAIK) HHO A...x u o 2 < 2 < UJ 2 D 2 »-« 2 z CM CM(OOO)yOiOOlOlOɘCO^lOh<OOHlOa^\\DHlOOMO(y| HHO ^^•H^4 I I I I I •*»* <M * tO>0 vO KNh 4ɘ

  10. Clear-air lidar dark band

    Science.gov (United States)

    Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.

    2018-04-01

    This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.

  11. Bedrock morphology and structure, upper Santa Cruz Basin, south-central Arizona, with transient electromagnetic survey data

    Science.gov (United States)

    Bultman, Mark W.; Page, William R.

    2016-10-31

    The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic

  12. Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data

    Science.gov (United States)

    2012-09-01

    We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity data provide...relocation analysis. We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity...topographic relief this effect needs to be removed; thus, we converted free-air anomalies into Bouguer anomalies assuming a standard density for crustal rocks

  13. Effects of air pollution on plants

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, G.

    1965-01-01

    Weather, automobile exhaust, waste dumps and industrial activities are major factors in the creation of air pollution problems. The first indication of an air pollution problem is often the injury that appears on comparatively sensitive vegetation. Sulfur dioxide causes both acute and chronic plant injury. Plants especially sensitive to SO/sub 2/ are alfalfa, cosmos, sweet pea, bachelor's button, and blackberry. Fluoride causes characteristic injury on plants. Plants sensitive to fluoride injury are gladiolus, azalea, tulip, and young needles of pine. Ethylene damage to plants was initially noted in greenhouses using artificial gas for heating. Orchids and carnations are sensitive to ethylene. Ozone is highly reactive and causes typical spotting injury to the upper surface of leaves. PAN causes injury to vegetation, especially petunia and lettuce. Other pollutants also cause plant injury. Mercury vapor, chlorine gas, ammonia, H/sub 2/S, CO, and nitrogen oxides are minor hazards. Susceptibility of vegetation to air pollution depends on various things such as variety of plants, amount of moisture available to the plants, temperature, and amount of sunlight during the period of air pollution. 8 references.

  14. Nonvariceal upper gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Burke, Stephen J.; Weldon, Derik; Sun, Shiliang; Golzarian, Jafar

    2007-01-01

    Nonvariceal upper gastrointestinal bleeding (NUGB) remains a major medical problem even after advances in medical therapy with gastric acid suppression and cyclooxygenase (COX-2) inhibitors. Although the incidence of upper gastrointestinal bleeding presenting to the emergency room has slightly decreased, similar decreases in overall mortality and rebleeding rate have not been experienced over the last few decades. Many causes of upper gastrointestinal bleeding have been identified and will be reviewed. Endoscopic, radiographic and angiographic modalities continue to form the basis of the diagnosis of upper gastrointestinal bleeding with new research in the field of CT angiography to diagnose gastrointestinal bleeding. Endoscopic and angiographic treatment modalities will be highlighted, emphasizing a multi-modality treatment plan for upper gastrointestinal bleeding. (orig.)

  15. Nonvariceal upper gastrointestinal bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Stephen J.; Weldon, Derik; Sun, Shiliang [University of Iowa, Department of Radiology, Iowa, IA (United States); Golzarian, Jafar [University of Iowa, Department of Radiology, Iowa, IA (United States); University of Iowa, Department of Radiology, Carver College of Medicine, Iowa, IA (United States)

    2007-07-15

    Nonvariceal upper gastrointestinal bleeding (NUGB) remains a major medical problem even after advances in medical therapy with gastric acid suppression and cyclooxygenase (COX-2) inhibitors. Although the incidence of upper gastrointestinal bleeding presenting to the emergency room has slightly decreased, similar decreases in overall mortality and rebleeding rate have not been experienced over the last few decades. Many causes of upper gastrointestinal bleeding have been identified and will be reviewed. Endoscopic, radiographic and angiographic modalities continue to form the basis of the diagnosis of upper gastrointestinal bleeding with new research in the field of CT angiography to diagnose gastrointestinal bleeding. Endoscopic and angiographic treatment modalities will be highlighted, emphasizing a multi-modality treatment plan for upper gastrointestinal bleeding. (orig.)

  16. Literature review on wearable systems in upper extremity rehabilitation

    NARCIS (Netherlands)

    Wang, Q.; Chen, Wei; Markopoulos, P.

    2014-01-01

    This paper reports a structured literature survey of research in wearable technology for upper-extremity rehabilitation, e.g., after stroke, spinal cord injury, for multiple sclerosis patients or even children with cerebral palsy. A keyword based search returned 61 papers relating to this topic.

  17. Nasal congestion in relation to low air exchange rate in schools. Evaluation by acoustic rhinometry.

    Science.gov (United States)

    Wålinder, R; Norbäck, D; Wieslander, G; Smedje, G; Erwall, C

    1997-09-01

    Upper airway symptoms are common, but there is little information available on clinical findings in relation to indoor air pollution. This pilot study was conducted to test whether increased levels of indoor air pollutants in schools may correlate to a swelling of the nasal mucosa. The assumption was made that the degree of swelling could be related to the degree of decongestive effect of xylometazoline, and measured by acoustic rhinometry. The study was performed among 15 subjects in a school with low air exchange rate (0.6 air changes/h) and 12 subjects in a school with high air exchange rate (5.2 air changes/h). Hygienic measurements were performed in both schools. Acoustic rhinometry was performed for each individual under standardized forms. Cross-sectional areas and volumes of the nasal cavity were measured before and after decongestion with xylometazoline hydrochloride. Absolute values of the minimal cross-sectional area were lower in the school with poor ventilation. The decongestive effect of xylometazoline was significantly higher in the school with low air exchange, when correction for the influence of age was made. A diminished decongestive effect was seen with increasing age. The exposure measurements showed that indoor concentrations of volatile organic compounds, bacteria and moulds were higher in the school with low ventilation. In conclusion, raised levels of indoor air pollutants due to inadequate ventilation in schools may affect the upper airways and cause a swelling of the nasal mucosa, and acoustic rhinometry could be a useful objective method to measure human nasal reactions to the indoor environment.

  18. A Rare Cause of Upper Airway Obstruction in a Child

    Directory of Open Access Journals (Sweden)

    H. Ahmed

    2017-01-01

    Full Text Available Ventricular band cyst is a rare condition in children but can result in severe upper airway obstruction with laryngeal dyspnea or death. The diagnosis should be considered in any stridor in children with previous history of intubation or respiratory infections. We report a case of a 4-year-old girl, received in an array of severe respiratory distress, emergency endoscopy was done, and a large ventricular tape band cyst obstructing the air way was found. Complete excision was made, and postoperative prophylaxis tracheotomy was done. The postoperative course was uneventful with improvement of clinical and endoscopic signs.

  19. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  20. Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment

    Science.gov (United States)

    Steffen, H.; Kaufmann, G.; Lampe, R.

    2014-06-01

    During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2-7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric

  1. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure

    Directory of Open Access Journals (Sweden)

    Tyler Epp

    2018-03-01

    Full Text Available Structural Health Monitoring (SHM has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC structures.

  2. Unusually well preserved casts of halite crystals: A case from the Upper Frasnian of northern Lithuania

    Science.gov (United States)

    Rychliński, Tomasz; Jaglarz, Piotr; Uchman, Alfred; Vainorius, Julius

    2014-07-01

    Upper Frasnian carbonate-siliciclastics of the Stipinai Formation (northern Lithuania) comprise a bed of calcareous silty arenite with casts of halite crystals, including hopper crystals. Unusually well-preserved casts occur on the lower surface of the bed, while poorly-preserved casts are present on the upper bedding surface. The casts originated as the result of the dissolution of halite crystals which grew in the sediment. The dissolution took place during early stages of diagenesis, when host sediment was soft. Unstable cavities after crystal dissolution were filled by overlying sediment forming their casts. The collapsing sediment form sink-hole deformation structures which disturb wave-ripple cross lamination from the upper part of the bed. Dewatering pipe structures are also present. The casts and accompanying sink-hole and dewatering pipes are classified as the postdepositional deformation structures caused by haloturbation.

  3. Thermo-mechanical cyclic testing of carbon-carbon primary structure for an SSTO vehicle

    Science.gov (United States)

    Croop, Harold C.; Leger, Kenneth B.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1999-01-01

    An advanced carbon-carbon structural component is being experimentally evaluated for use as primary load carrying structure for future single-stage-to-orbit (SSTO) vehicles. The component is a wing torque box section featuring an advanced, three-spar design. This design features 3D-woven, angle-interlock skins, 3D integrally woven spar webs and caps, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The box spar caps are nested into the skins which, when processed together through the carbon-carbon processing cycle, resulted in monolithic box halves. The box half sections were then joined at the spar web intersections using ceramic matrix composite fasteners. This method of fabrication eliminated fasteners through both the upper and lower skins. Development of the carbon-carbon wing box structure was accomplished in a four phase design and fabrication effort, conducted by Boeing, Information, Space and Defense Systems, Seattle, WA, under contract to the Air Force Research Laboratory (AFRL). The box is now set up for testing and will soon begin cyclic loads testing in the AFRL Structural Test Facility at Wright-Patterson Air Force Base (WPAFB), OH. This paper discusses the latest test setup accomplishments and the results of the pre-cyclic loads testing performed to date.

  4. Solar collecting characteristics of regenerative solar air collector; Chikunetsushiki kuki shunetsuki no shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H; Takano, S; Kamitaira, T [Hachinohe Institute of Technology, Aomori (Japan)

    1997-11-25

    In order to develop a solar drying equipment for agricultural and marine products, a regenerative solar air collector was fabricated on a trial basis, which uses round stones as a heat storing material. Its heat collecting characteristics were discussed. The air heat collector was installed on a roof of the Hachinohe Engineering University facing due south. The inside of the air heat collector is lined with heat insulating material with a thickness of 30 mm, and black-painted round stones were laid as an heat insulating material on the floor and the north face. The collector is of a natural air circulating system in which outside air enters from an entrance open to atmosphere, and warmed air exits from upper exit. A selectively absorbing face plaque for accelerating the natural circulation was suspended on the upper part of the north face of the collector. An experiment was performed also on a case in which air is forcibly circulated by fan from the air exit hole. In the natural circulation system, high heat collecting efficiency is shown in the forenoon. However, heat loss increases as temperature in the equipment rises, and heat stored in the round stones during daytime was dissipated completely in the afternoon to night. In the case of the forced circulation system, heat collecting efficiency as high as about 90% was shown in sunny days. This is thought because of heat storage buffering action due to storage of heat in and its dissipation from the round stones, and because of suppression of heat dissipation from the glass surface. 1 ref., 9 figs.

  5. The remote handling compatibility analysis of the ITER generic upper port plug structure

    Energy Technology Data Exchange (ETDEWEB)

    Ronden, D.M.S., E-mail: d.m.s.ronden@differ.nl [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Dammann, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Elzendoorn, B. [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Giacomin, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Heemskerk, C. [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Loesser, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Maquet, P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Oosterhout, J. van [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2014-10-15

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements.

  6. The remote handling compatibility analysis of the ITER generic upper port plug structure

    International Nuclear Information System (INIS)

    Ronden, D.M.S.; Dammann, A.; Elzendoorn, B.; Giacomin, T.; Heemskerk, C.; Loesser, D.; Maquet, P.; Oosterhout, J. van; Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J.

    2014-01-01

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements

  7. Kinematics and Dynamics Analysis of a 3-DOF Upper-Limb Exoskeleton with an Internally Rotated Elbow Joint

    OpenAIRE

    Xin Wang; Qiuzhi Song; Xiaoguang Wang; Pengzhan Liu

    2018-01-01

    The contradiction between self-weight and load capacity of a power-assisted upper-limb exoskeleton for material hanging is unresolved. In this paper, a non-anthropomorphic 3-degree of freedom (DOF) upper-limb exoskeleton with an internally rotated elbow joint is proposed based on an anthropomorphic 5-DOF upper-limb exoskeleton for power-assisted activity. The proposed 3-DOF upper-limb exoskeleton contains a 2-DOF shoulder joint and a 1-DOF internally rotated elbow joint. The structural parame...

  8. Development of glass-fiber high-efficiency particulate air filters of high structural strength on the basis of the establishment of failure mechanisms

    International Nuclear Information System (INIS)

    Ruedinger, V.; Ricketts, C.I.; Wilhelm, J.G.; Alken, W.

    1987-01-01

    Practical experience from routine operation in nuclear installations as well as extensive bench and laboratory testing proved the structural limits of HEPA filters to be very low thus demonstrating the need for improvement of their structural strength. Detailed analysis of the courses and modes of filter failure under the challenge of dry air at high velocities and ambient temperature, together with additional measurements, allowed the establishment of the dominating mechanisms of filter failure. Based on this information, the following three options for effective and economical improvements in filter structural limits exist: (1) an increase in the tensile strength of the filter medium; (2) an increase in the stability of the pack to prevent the swelling of individual pleats; and (3) an increase in the area moment of inertia of the separators and a decrease in the sharpness of their edges. By using a reinforced glass fiber filter medium, the structural strength of standard size HEPA filters was increased to 31 kPa with dry air and beyond 10 kPa with air at high humidity. Prototype filters built with standard glass-fiber media and separators with inclined corrugations exhibited failure pressures of approximately 50 kPa under high velocity airflows. The combination of both types of improvements, together with other measures, will soon lead to even higher HEPA-filter structural strength

  9. A new simple three-dimensional method to characterize upper airway in orthognathic surgery patient

    DEFF Research Database (Denmark)

    Di Carlo, Gabriele; Fernandez Gurani, Sirwan; Pinholt, Else Marie

    2017-01-01

    .2% for cross-sectional measurements, and 0.3 to 2.5% for linear measurements. No systematic errors were detected. CONCLUSIONS: This new proposed definition of upper airway boundaries was shown to be technical feasible and tested to be reliable in measuring upper airway in patients undergoing orthognathic......OBJECTIVES: To develop and validate a new reproducible 3D upper airway analysis based on skeletal structures not involved in the modification, which occur during orthognathic surgery. METHODS: From retrospective cohort of orthognathic surgically treated patients, pre- and postsurgical CBCT...

  10. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide.

    Science.gov (United States)

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-07-08

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  11. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Anna Mainka

    2015-07-01

    Full Text Available Indoor air quality (IAQ in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2 levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children and of localization (urban or rural. To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  12. [Comparison of ability to humidification of inspired air through the nose and oral cavity using dew point hygrometer].

    Science.gov (United States)

    Paczesny, Daniel; Rapiejko, Piotr; Weremczuk, Jerzy; Jachowicz, Ryszard; Jurkiewicz, Dariusz

    2007-01-01

    Aim of this study was to check at the hospital the dew point hygrometer for fast measurement of air humidity in upper airways. The nose ability to humidification of inspired air and partially recover moisture from expired air was evaluated. Measurements from respiration through the nose and oral cavity were compared. The study was carried out in a group of 30 people (8 female and 22 male), age group 18 to 70 (mean age: 37 years old). In 22 of the participants there were no deviation from normal state in laryngologic examination, while in 4 participants nasal septum deviation without imaired nasal; oatency was found, in other 3--nasal vonchae hyperthrophy and in 1--nasal polips (grade I). The measurements of air humidity in upper air ways was done using specially designed and constructed measurement system. The air inspired through the nose and oral cavity is humidified. For typical external conditions (T = 22 degrees C i RH = 50%) the nose humidifies inspired air two times better then oral cavity (short time range of measurement approximately 1 min). Moisture from expired air through the nose is partially recovered (for patients with regular patency is 25% of the value of humidifying of inspired air). The oral cavity does not have ability to partially recovery moisture form expired air. The paper presented fast dew point hygrometer based on semiconductor microsystems for measurement humidity in inspired and expired air through the nose and oral cavity. Presented system can be a proper instrument for evaluation of nasal functions.

  13. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    Science.gov (United States)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  14. Defining the role of sensation, strength, and prehension for upper limb function in cervical spinal cord injury.

    Science.gov (United States)

    Kalsi-Ryan, Sukhvinder; Beaton, Dorcas; Curt, Armin; Duff, Susan; Jiang, Depeng; Popovic, Milos R; Rudhe, Claudia; Fehlings, Michael G; Verrier, Mary C

    2014-01-01

    Upper limb function plays a significant role in enhancing independence for individuals with tetraplegia. However, there is limited knowledge about the specific input of sensorimotor deficits on upper limb function. Thus the theoretical framework designed to develop the Graded Redefined Assessment of Strength Sensibility and Prehension (GRASSP) was used as a hypothetical model to analyze the impact of impairment on function. To define the association of impairment (sensation, strength, and prehension measured by the GRASSP) to upper limb function as defined by functional measures (Capabilities of Upper Extremity Questionnaire, Spinal Cord Independence Measure). A hypothetical model representing relationships by applying structural equation modeling was used to estimate the effect of the impairment domains in GRASSP on upper limb function. Data collected on 72 chronic individuals with tetraplegia was used to test the hypothetical model. Structural equation modeling confirmed strong associations between sensation, strength, and prehension with upper limb function, and determined 72% of the variance in "sensorimotor upper limb function" was explained by the model. Statistics of fit showed the data did fit the hypothesized model. Sensation and strength influence upper limb function directly and indirectly with prehension as the mediator. The GRASSP is a sensitive diagnostic tool in distinguishing the relative contribution of strength, sensation and prehension to function. Thus, the impact of interventions on specific domains of impairment and related contribution on clinical recovery of the upper limb can be detailed to optimize rehabilitation programs.

  15. CT arteriography of the upper abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Hasuo, K; Matsuura, K; Baba, H; Numaguchi, Y; Komaki, S [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1980-04-01

    The technique of CT arteriography was introduced, and CT images of the upper abdomen were explained. Very clear enhancement of parenchyma and vessels (especially portal vein) of the object organs could be obtained by CT arteriography of the upper abdomen, anatomical structures of organs were identified more easily by CT arteriography than by conventional CT, and the amount of information obtained was increased by using CT arteriography. However, the indication of CT arteriography must be limited, because of its complexity that CT arteriography is performed after angiography and involves the invasion of patients' bodies. As described in many reports, CT arteriography is useful for malignant tumors of the liver, and it is worthwhile, especially when surgery for hepatocellular carcinoma is considered. CT arteriography for organs except the liver has not been discussed sufficiently. Therefore, an application of this method for other organs must be decided after consideration of the balance of the amount of information obtained by CT arteriography with invasion to patients.

  16. Progress of the ECRH Upper Launcher design for ITER

    International Nuclear Information System (INIS)

    Strauss, D.; Aiello, G.; Bruschi, A.; Chavan, R.; Farina, D.; Figini, L.; Gagliardi, M.; Garcia, V.; Goodman, T.P.; Grossetti, G.; Heemskerk, C.; Henderson, M.A.; Kasparek, W.; Krause, A.; Landis, J.-D.; Meier, A.; Moro, A.; Platania, P.; Plaum, B.; Poli, E.

    2014-01-01

    The design of the ITER ECRH system provides 20 MW millimeter wave power for central plasma heating and MHD stabilization. The system consists of an array of 24 gyrotrons with power supplies coupled to a set of transmission lines guiding the beams to the four upper and the equatorial launcher. The front steering upper launcher design described herein has passed successfully the preliminary design review, and it is presently in the final design stage. The launcher consists of a millimeter wave system and steering mechanism with neutron shielding integrated into an upper port plug with the plasma facing blanket shield module (in-vessel) and a set of ex-vessel waveguides connecting the launcher to the transmission lines. Part of the transmission lines are the ultra-low loss CVD torus diamond windows and a shutter valve, a miter bend section and the feedthroughs integrated in the plug closure plate. These components are connected by corrugated waveguides and form together the first confinement system (FCS). In-vessel, the millimeter-wave system includes a quasi-optical beam propagation system including four mirror sets and a front steering mirror. The millimeter wave system is integrated into a specifically optimized upper port plug providing structural stability to withstand plasma disruption forces and the high heat load from the plasma side with a dedicated blanket shield module. A recent update in the ITER interface definition has resulted in the recession of the upper port plug first wall panels, which is now integrated into the design. Apart from the millimeter wave system the upper port plug houses also a set of shield blocks which provide neutron shielding. An overview of the actual ITER ECRH Upper Launcher is given together with some highlights of the design

  17. Actinide nuclides in environmental air and precipitation samples after the Chernobyl accident

    International Nuclear Information System (INIS)

    Rosner, G.; Hoetzl, H.; Winkler, R.

    1988-01-01

    The present paper describes the analysis of isotopes of uranium, neptunium, plutonium, americium and curium, in air and deposition samples taken at our laboratory site 10 km north of Munich, subsequent to the Chernobyl accident. Uranium-234, 237 U, 238 U, 239 Np, 238 Pu, 239+240 Pu and 242 Cm have been identified and upper limits of detection have been established for 241 Am and 244 Cm. Deposition and air concentration values are discussed. 12 refs., 1 fig., 2 tabs

  18. Intracuff buffered lidocaine versus saline or air – A comparative ...

    African Journals Online (AJOL)

    ... smoking or recently treated upper respiratory tract infections were randomly assigned into three groups (n = 25), based on the type of endotracheal tube cuff inflation, as follows: Group A (air), Group B (6 ml normal saline) and Group C (6 ml 2% lidocaine + 0.5 ml 7.5% sodium bicarbonate). A second, blinded anaesthetist, ...

  19. Survey of the respiratory health status of 10-year-old children exposed to air pollution in the Vaal Triangle priority area

    CSIR Research Space (South Africa)

    Mundackal, J

    2010-10-01

    Full Text Available found a relatively high prevalence of upper and lower respiratory diseases, especially in children. The sources of air pollution in the Vaal Triangle, together with the potential for exceedances of air quality guidelines, led to the area being declared...

  20. Assessing the Impact of Surface and Upper-Air Observations on the Forecast Skill of the ACCESS Numerical Weather Prediction Model over Australia

    Directory of Open Access Journals (Sweden)

    Sergei Soldatenko

    2018-01-01

    Full Text Available The impact of the Australian Bureau of Meteorology’s in situ observations (land and sea surface observations, upper air observations by radiosondes, pilot balloons, wind profilers, and aircraft observations on the short-term forecast skill provided by the ACCESS (Australian Community Climate and Earth-System Simulator global numerical weather prediction (NWP system is evaluated using an adjoint-based method. This technique makes use of the adjoint perturbation forecast model utilized within the 4D-Var assimilation system, and is able to calculate the individual impact of each assimilated observation in a cycling NWP system. The results obtained show that synoptic observations account for about 60% of the 24-h forecast error reduction, with the remainder accounted for by aircraft (12.8%, radiosondes (10.5%, wind profilers (3.9%, pilot balloons (2.8%, buoys (1.7% and ships (1.2%. In contrast, the largest impact per observation is from buoys and aircraft. Overall, all observation types have a positive impact on the 24-h forecast skill. Such results help to support the decision-making process regarding the evolution of the observing network, particularly at the national level. Consequently, this 4D-Var-based approach has great potential as a tool to assist the design and running of an efficient and effective observing network.

  1. Air Distribution in Rooms with a Fan-Driven Convector

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Bindels, Rob H.W.; Michalak, Lukasz

    2007-01-01

    the acceptable conditions for the supplyJlow rate and the temperature difference for the convector system. The paper shows that the air distribution from the convector results in comfortable velocity and temperature conditions with a heat load of 210 W. This is also confirmed by the draft ratings, which in all...... coming from the dijfuser is partly controlled by the momentum flow and partly from gravity forces, where the thermal load in the room and the temperature difference between room air and supply air affect the airflow from the convector. The convector system was tested in the same test room in which many......Experiments with a fan-driven convector used for both heating and cooling are de.scribed in this paper. Only the cooling situation is considered. The convector is positioned in the upper corner ofthe room, and from there the cold air is let out through the device along the ceiling. The airflow...

  2. Relationship between geohydrology and Upper Pleistocene-Holocene evolution of the eastern region of the Province of Buenos Aires, Argentina

    Science.gov (United States)

    Capítulo, Leandro Rodrigues; Kruse, Eduardo E.

    2017-07-01

    The Upper Pleistocene-Holocene geological evolution, which is characterized by its landscape-forming energy and is related to geological and geomorphological complexity, has an impact on the groundwater dynamics of coastal aquifers. The geological configuration of a sector of the east coast of the Province of Buenos Aires was analyzed, as well as its connection with the geological and geomorphological history of the region during the Late Pleistocene and Holocene, and its influence on the regional and local geohydrological behaviour. This analysis was based on the application of the concept of hydrofacies. Boreholes were drilled and sampled (with depths of up to 40 m), and vertical electrical sounding, electrical tomography and pumping tests were undertaken. The description of the cutting samples by means of a stereo microscope, the interpretation of satellite images, and the construction of lithological and hydrogeological profiles and flow charts were carried out in the laboratory, and then integrated in a GIS. The identification of the lithological units and their distribution in the area allowed the construction of an evolutionary geological model for the Late Pleistocene and Holocene. Three aquifer units can be recognized: one of Late Pleistocene age (hydrofacies E) and the other two of Holocene age (hydrofacies A and C); their hydraulic connection depends on the occurrence and thickness variation of the aquitard units (hydrofacies B and D). The approach adopted allows the examination of the possibilities for groundwater exploitation and constitutes an applied conceptual framework to be taken into consideration when developing conceptual and numerical models at the local and regional scales.

  3. Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish.

    Science.gov (United States)

    Belão, T C; Leite, C A C; Florindo, L H; Kalinin, A L; Rantin, F T

    2011-10-01

    The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f (R)) monitored and were subjected to normoxic water (PwO(2) = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f (R), confirming that this species is a facultative air-breather. Its aquatic O(2) uptake ([Formula: see text]) was maintained constant down to a critical PO(2) (PcO(2)) of 60 mmHg, below which [Formula: see text] declined linearly with further reductions of inspired O(2) tension (PiO(2)). Just above the PcO(2) the ventilatory tidal volume (V (T)) increased significantly along with gill ventilation ([Formula: see text]), while f (R) changed little. Consequently, the water convection requirement [Formula: see text] increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO(2) = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO(2) tensions below the PcO(2). Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.

  4. [The "window" surgical exposure strategy of the upper anterior cervical retropharyngeal approach for anterior decompression at upper cervical spine].

    Science.gov (United States)

    Wu, Xiang-Yang; Zhang, Zhe; Wu, Jian; Lü, Jun; Gu, Xiao-Hui

    2009-11-01

    To investigate the "window" surgical exposure strategy of the upper anterior cervical retropharyngeal approach for the exposure and decompression and instrumentation of the upper cervical spine. From Jan. 2000 to July 2008, 5 patients with upper cervical spinal injuries were treated by surgical operation included 4 males and 1 female with and average age of 35 years old ranging from 16 to 68 years. There were 2 cases of Hangman's fractures (type II ), 2 of C2.3 intervertebral disc displacement and 1 of C2 vertebral body tuberculosis. All patients underwent the upper cervical anterior retropharyngeal approach through the "window" between the hypoglossal nerve and the superior laryngeal nerve and pharynx and carotid artery. Two patients of Hangman's fractures underwent the C2,3 intervertebral disc discectomy, bone graft fusion and internal fixation. Two patients of C2,3 intervertebral disc displacement underwent the C2,3 intervertebral disc discectomy, decompression bone graft fusion and internal fixation. One patient of C2 vertebral body tuberculosis was dissected and resected and the focus and the cavity was filled by bone autografting. C1 anterior arch to C3 anterior vertebral body were successful exposed. Lesion resection or decompression and fusion were successful in all patients. All patients were followed-up for from 5 to 26 months (means 13.5 months). There was no important vascular and nerve injury and no wound infection. Neutral symptoms was improved and all patient got successful fusion. The "window" surgical exposure surgical technique of the upper cervical anterior retropharyngeal approach is a favorable strategy. This approach strategy can be performed with full exposure for C1-C3 anterior anatomical structure, and can get minimally invasive surgery results and few and far between wound complication, that is safe if corresponding experience is achieved.

  5. Visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy

    Directory of Open Access Journals (Sweden)

    Yasushi Mizukami

    2017-10-01

    Full Text Available Abstract Background Pulmonary visceral subpleural hematoma is rare. We report visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy. This very rare case was difficult to distinguish from thoracic abscess. Case presentation A 68-year-old man with hypertension had undergone video-assisted thoracoscopic left upper division segmentectomy for suspected lung carcinoma. Deep vein thrombosis of the lower leg was identified and edoxaban, a so-called novel oral anticoagulant, was started on postoperative day 7. The chest drainage tube was removed on postoperative day 12 because of persistent air leakage, but fever appeared the same day. Computed tomography revealed a cavity with mixed air and fluid, so antibiotics were started on suspicion of abscess. Computed tomography-guided drainage was attempted, but proved unsuccessful. Fever continued and surgical investigation was therefore performed. Visceral subpleural hematoma was identified under the diaphragmatic surface of the left basal lung. We excised the pleura, then performed drainage and applied running sutures. The parenchyma and visceral pleura were covered with polyglycolic acid sheet and fibrin glue. Edoxaban was restarted on postoperative day 12 of video-assisted thoracoscopic surgery and no recurrence of hematoma has been revealed. Conclusions Visceral subpleural hematoma after thoracic surgery is extremely rare. Furthermore, correct diagnosis was difficult and surgery offered a good diagnostic and therapeutic procedure.

  6. The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant.

    Science.gov (United States)

    Been, Ella; Hovers, Erella; Ekshtain, Ravid; Malinski-Buller, Ariel; Agha, Nuha; Barash, Alon; Mayer, Daniella E Bar-Yosef; Benazzi, Stefano; Hublin, Jean-Jacques; Levin, Lihi; Greenbaum, Noam; Mitki, Netta; Oxilia, Gregorio; Porat, Naomi; Roskin, Joel; Soudack, Michalle; Yeshurun, Reuven; Shahack-Gross, Ruth; Nir, Nadav; Stahlschmidt, Mareike C; Rak, Yoel; Barzilai, Omry

    2017-06-07

    The late Middle Palaeolithic (MP) settlement patterns in the Levant included the repeated use of caves and open landscape sites. The fossil record shows that two types of hominins occupied the region during this period-Neandertals and Homo sapiens. Until recently, diagnostic fossil remains were found only at cave sites. Because the two populations in this region left similar material cultural remains, it was impossible to attribute any open-air site to either species. In this study, we present newly discovered fossil remains from intact archaeological layers of the open-air site 'Ein Qashish, in northern Israel. The hominin remains represent three individuals: EQH1, a nondiagnostic skull fragment; EQH2, an upper right third molar (RM 3 ); and EQH3, lower limb bones of a young Neandertal male. EQH2 and EQH3 constitute the first diagnostic anatomical remains of Neandertals at an open-air site in the Levant. The optically stimulated luminescence ages suggest that Neandertals repeatedly visited 'Ein Qashish between 70 and 60 ka. The discovery of Neandertals at open-air sites during the late MP reinforces the view that Neandertals were a resilient population in the Levant shortly before Upper Palaeolithic Homo sapiens populated the region.

  7. Dispersal of Exhaled Air and Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter Vilhelm

    2002-01-01

    The influence of the human exhalation on flow fields, contaminant distributions, and personal exposures in displacement ventilated rooms is studied together with the effects of physical movement. Experiments are conducted in full-scale test rooms with life-sized breathing thermal manikins....... Numerical simulations support the experiments. Air exhaled through the mouth can lock in a thermally stratified layer, if the vertical temperature gradient in breathing zone height is sufficiently large. With exhalation through the nose, exhaled air flows to the upper part of the room. The exhalation flow...

  8. First detection of ammonia (NH3 in the Asian summer monsoon upper troposphere

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2016-11-01

    Full Text Available Ammonia (NH3 has been detected in the upper troposphere by the analysis of averaged MIPAS (Michelson Interferometer for Passive Atmospheric Sounding infrared limb-emission spectra. We have found enhanced amounts of NH3 within the region of the Asian summer monsoon at 12–15 km altitude. Three-monthly, 10° longitude  ×  10° latitude average profiles reaching maximum mixing ratios of around 30 pptv in this altitude range have been retrieved, with a vertical resolution of 3–8 km and estimated errors of about 5 pptv. These observations show that loss processes during transport from the boundary layer to the upper troposphere within the Asian monsoon do not deplete the air entirely of NH3. Thus, ammonia might contribute to the so-called Asian tropopause aerosol layer by the formation of ammonium aerosol particles. On a global scale, outside the monsoon area and during different seasons, we could not detect enhanced values of NH3 above the actual detection limit of about 3–5 pptv. This upper bound helps to constrain global model simulations.

  9. Joint inversion of ambient noise surface wave and gravity data to image the upper crustal structure of the Tanlu fault zone to the southeast of Hefei, China

    Science.gov (United States)

    Wang, K.; Gu, N.; Zhang, H.; Zhou, G.

    2017-12-01

    The Tanlu fault is a major fault located in the eastern China, which stretches 2400 km long from Tancheng in the north to Lujiang in the south. It is generally believed that the Tanlu fault zone was formed in Proterozoic era and underwent a series of complicated processes since then. To understand the upper crustal structure around the southern segment of the Tanlu fault zone, in 2017 we deployed 53 short period seismic stations around the fault zone to the southeast of Hefei, capital city of Anhui province. The temporary array continuously recorded the data for about one month from 17 March to 26 April 2017. The seismic array spans an area of about 30km x 30Km with an average station spacing of about 5-6km. The vertical component data were used for extracting Rayleigh wave phase and group velocity dispersion data for the period of 0.2 to 5 seconds. To improve imaging the upper crustal structure of the fault zone, we jointly inverted the surface wave dispersion data and the gravity data because they have complementary strengths. To combine surface wave dispersion data and gravity observations into a single inversion framework, we used an empirical relationship between seismic velocity and density of Maceira and Ammon (2009). By finding the optimal relative weighting between two data types, we are able to find a shear wave velocity (Vs) model that fits both data types. The joint inversion can resolve the upper crustal fault zone structure down to about 7 km in depth. The Vs model shows that in this region the Tanlu fault is associated with high velocity anomalies, corresponding well to the Feidong complex seen on the surface. This indicates that the Tanlu fault zone may provide a channel for the intrusion of hot materials.

  10. Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific

    Science.gov (United States)

    Zhang, Shuqin; Fu, Gang

    2018-06-01

    In this study, the structures and evolutions of moderate (MO) explosive cyclones (ECs) over the Northwestern Pacific (NWP) and Northeastern Pacific (NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons (October-April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development.

  11. A novel triple-actuating mechanism of an active air mount for vibration control of precision manufacturing machines: experimental work

    International Nuclear Information System (INIS)

    Kim, Hyung-Tae; Kim, Cheol-Ho; Choi, Seung-Bok; Moon, Seok-Jun; Song, Won-Gil

    2014-01-01

    With the goal of vibration control and isolation in a clean room, we propose a new type of air mount which consists of pneumatic, electromagnetic (EM), and magnetorheological (MR) actuators. The air mount is installed below a semiconductor manufacturing machine to reduce the adverse effects caused by unwanted vibration. The proposed mechanism integrates the forces in a parallel connection of the three actuators. The MR part is designed to operate in an air spring in which the EM part is installed. The control logic is developed with a classical method and a switching mode to avoid operational mismatch among the forces developed. Based on extended microprocessors, a portable, embedded controller is installed to execute both nonlinear logic and digital communication with the peripherals. The pneumatic forces constantly support the heavy weight of an upper structure and maintain the level of the air mount. The MR damper handles the transient response, while the EM controller reduces the resonance response, which is switched mutually with a threshold. Vibration is detected by laser displacement sensors which have submicron resolution. The impact test results of three tons load weight demonstrate practical feasibility by showing that the proposed triple-actuating mechanism can reduce the transient response as well as the resonance in the air mount, resulting in accurate motion of the semiconductor manufacturing machine. (technical note)

  12. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'Joyo'. 1. MARICO-2 subassembly retrieval work

    International Nuclear Information System (INIS)

    Naito, Hiroyuki; Ashida, Takashi; Ito, Hideaki

    2014-01-01

    At Joyo reactor MK-III core in May 2007, due to the design deficiencies of the disconnect mechanism of the holding part and the sample part of the experimental apparatus with instrumentation lines (MARICO-2), a disconnect failure incident occurred in the sample part after irradiation test. The deformation of the sample part due to this failure incurred its interference with the lower surface of reactor core upper structure and the holddown axis body. By this, the operating range of the rotary plug was restricted, leading to the partial inhibition of the fuel exchange function that precluded the access to 1/4 of the assemblies of the reactor core. In face of restoration work, the preparation for restoration such the exchange of upper core structure, and the recovery of MARICO-2 sample part are under way. This paper introduces the progress of restoration work and the future work plan, with a focus on the outline of overall restoration work, the method / problems / measures for MARICO-2 sample part recovery operations, and fabrication of sample part recovery device. (A.O.)

  13. Association between air pollution and general practitioner visits for respiratory diseases in Hong Kong

    OpenAIRE

    Wong, TW; Tam, W; Wun, YT; Wong, CM; Yu, ITS; Wong, AHS

    2006-01-01

    Background: Few studies have explored the relation between air pollution and general practitioner (GP) consultations in Asia. Clinic attendance data from a network of GPs were studied, and the relationship between daily GP consultations for upper respiratory tract infections (URTI) and non-URTI respiratory diseases and daily air pollutant concentrations measured in their respective districts was examined. Methods: A time series study was performed in 2000-2002 using data on daily patient cons...

  14. Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

    Directory of Open Access Journals (Sweden)

    Sargsyan Samvel Volodyaevich

    2014-09-01

    Full Text Available Fire-resistance testing laboratory for building products and constructions is a production room with a substantial excess heat (over 23 W/m . Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces. The laboratory room is considered as an object consisting of two control volumes (CV, in each of which there may be air intake and air removal, pollutant absorption or emission. In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room. General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory. Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area. In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work area. Exhaust air containing pollutants (combustion products, is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research process in a ventilated room more accurately and finding the air exchange in the lab room during the tests on a more reasonable basis, allowing to provide safe working conditions for the staff without

  15. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    Science.gov (United States)

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  16. Structural control of the upper plate on the down-dip segmentation of subduction dynamics

    Science.gov (United States)

    Shi, Q.; Barbot, S.; Karato, S. I.; Shibazaki, B.; Matsuzawa, T.; Tapponnier, P.

    2017-12-01

    -sip segmentation of the subduction dynamic is attributed to the upper plate structure that vary with depth. The high pore pressure, grain-size evolution and alternation of the rock physics may explain the existence and the periodicity of different slow earthquakes from shallow to deep regions in the subduction zone.

  17. Spatial and seasonal patterns in fish assemblage in Corrego Rico, upper Parana River basin

    Directory of Open Access Journals (Sweden)

    Erico L. H Takahashi

    Full Text Available The upper Paraná River basin drains areas of intensive industry and agriculture, suffering negative impacts. The Córrego Rico flows through sugar cane fields and receives urban wastewater. The aim of this work is to describe and to compare the fish assemblage structure in Córrego Rico. Six standardized bimonthly samples were collected between August 2008 and June 2009 in seven different stretches of Córrego Rico. Fishes were collected with an experimental seine and sieves, euthanized, fixed in formalin and preserved in ethanol for counting and identification. Data were recorded for water parameters, instream habitat and riparian features within each stretch. Non-metric multidimensional scaling, species richness and diversity analysis were performed to examine spatial and seasonal variation in assemblage structure. Fish assemblage structure was correlated with instream habitat and water parameters. The fish assemblage was divided in three groups: upper, middle and lower reaches. High values of richness and diversity were observed in the upper and lower stretches due to connectivity with a small lake and Mogi Guaçu River, respectively. Middle stretches showed low values of richness and diversity suggesting that a small dam in the middle stretch negatively impacts the fish assemblage. Seasonal differences in fish assemblage structure were observed only in the lower stretches.

  18. Human health effects of air pollution

    International Nuclear Information System (INIS)

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O 3 ), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed. - The effect of air pollutants on human health and underlying mechanisms of cellular action are discussed

  19. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery

    Directory of Open Access Journals (Sweden)

    Kah Chun Lau

    2015-01-01

    Full Text Available We describe a series of metastable Li2O2 crystal structures involving different orientations and displacements of the O22− peroxy ions based on the known Li2O2 crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li2O2 crystal structure (i.e., Föppl structure, all of these newly found metastable Li2O2 crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O22− O-O vibration mode (ω ~ 799–865 cm−1, which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O22− orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li2O2 powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li2O2 compounds that are grown electrochemically under the environment of Li-O2 cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li2O2 crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O22− vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li2O2 crystal structures, as all of them similarly share the similar O22− vibration mode. However considering that the discharge voltage in most Li-O2 cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li2O2 crystal structures appears to be thermodynamically feasible.

  20. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  1. Simulation of global oceanic upper layers forced at the surface by an optimal bulk formulation derived from multi-campaign measurements.

    Science.gov (United States)

    Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.

    2006-12-01

    order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.

  2. Improved Mars Upper Atmosphere Climatology

    Science.gov (United States)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the

  3. Upper GI Bleeding in Children

    Science.gov (United States)

    Upper GI Bleeding in Children What is upper GI Bleeding? Irritation and ulcers of the lining of the esophagus, stomach or duodenum can result in upper GI bleeding. When this occurs the child may vomit blood ...

  4. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  5. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    Science.gov (United States)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  6. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations

    Science.gov (United States)

    Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre

    2018-05-01

    Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.

  7. Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere

    Science.gov (United States)

    Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.; hide

    1998-01-01

    The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3, in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of 03 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day.This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.

  8. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  9. A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate

    Science.gov (United States)

    Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.

    2009-12-01

    We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in

  10. Progress Towards AIRS Science Team Version-7 at SRT

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Kouvaris, Louis

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing level-3 Climate Data Records (CDRs) from AIRS that have been proven useful to scientists in understanding climate processes. CDRs are gridded level-3 products which include all cases passing AIRS Climate QC. SRT has made significant further improvements to AIRS Version-6. At the last Science Team Meeting, we described results using SRT AIRS Version-6.22. SRT Version-6.22 is now an official build at JPL called 6.2.4. Version-6.22 results are significantly improved compared to Version-6, especially with regard to water vapor and ozone profiles. We have adapted AIRS Version-6.22 to run with CrIS/ATMS, at the Sounder SIPS which processed CrIS/ATMS data for August 2014. JPL AIRS Version-6.22 uses the Version-6 AIRS tuning coefficients. AIRS Version-6.22 has at least two limitations which must be improved before finalization of Version-7: Version-6.22 total O3 has spurious high values in the presence of Saharan dust over the ocean; and Version-6.22 retrieved upper stratospheric temperatures are very poor in polar winter. SRT Version-6.28 addresses the first concern. John Blaisdell ran the analog of AIRS Version-6.28 in his own sandbox at JPL for the 14th and 15th of every month in 2014 and all of July and October for 2014. AIRS Version-6.28a is hot off the presses and addresses the second concern.

  11. Heat exchanger for cooling a liquid metal with air, including panels of identical tubes

    International Nuclear Information System (INIS)

    Malaval, C.

    1985-01-01

    The heat exchanger includes panels of identical tubes, each one comprising two horizontal collectors situated at the vertical of each other and a group of vertical tubes for cooling arranged in a horizontal parallelepiped casing opened on two of its opposite sides. The air flows from the inlet to the outlet face of the casing. The panels of tubes are arranged side by side so that their outlet faces form a prismatic surface of which the height is vertical and the inner space communicates with a vertical axis chimney. Each one of the panels is hanging from a fixed structure by means of articulated fasteners, by means of its upper collector only. The invention applies, more particularly, for cooling the primary sodium of fast neutron reactors after they are stopped [fr

  12. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone

    Science.gov (United States)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia

    2016-04-01

    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  13. ''Anomalous'' air showers from point sources: Mass limits and light curves

    International Nuclear Information System (INIS)

    Domokos, G.; Elliott, B.; Kovesi-Domokos, S.

    1993-01-01

    We describe a method to obtain upper limits on the mass of the primaries of air showers associated with point sources. One also obtains the UHE pulse shape of a pulsar if its period is observed in the signal. As an example, we analyze the data obtained during a recent burst of Hercules-X1

  14. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  15. 29 CFR 1926.803 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... ventilated, and there shall be no pockets of dead air. Outlets may be required at intermediate points along the main low-pressure air supply line to the heading to eliminate such pockets of dead air... of structures of wood over or near shafts. (6) Tunnels shall be provided with a 2-inch minimum...

  16. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa

    Science.gov (United States)

    Bordy, Emese M.; Catuneanu, Octavian

    2001-08-01

    The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.

  17. Actinide nuclides in environmental air and precipitation samples after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Hoetzl, H.; Winkler, R. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (West Germany))

    1988-01-01

    The present paper describes the analysis of isotopes of uranium, neptunium, plutonium, americium and curium, in air and deposition samples taken at our laboratory site 10 km north of Munich, subsequent to the Chernobyl accident. Uranium-234, {sup 237}U, {sup 238}U, {sup 239}Np, {sup 238}Pu, {sup 239+240}Pu and {sup 242}Cm have been identified and upper limits of detection have been established for {sup 241}Am and {sup 244}Cm. Deposition and air concentration values are discussed. 12 refs., 1 fig., 2 tabs.

  18. A programmable air sampler with adsorption tubes

    International Nuclear Information System (INIS)

    Riesing, J.; Roetzer, H.; Hick, H.

    1997-01-01

    The Air Sampler AS3 was utilized for the European Tracer Experiment (ETEX) to measure the concentrations of the perfluorocarbon tracers. At thirty-two sampling points these devices were placed to collect the tracer substances in adsorption tubes for subsequent laboratory analysis in the Environment Institute of the JRC Ispra. The Air Sampler is also suitable for monitoring the environment, particularly of industrial emitters or landfills, by sampling of volatile substances. The Air Sampler AS3 is a portable, user-friendly instrument due to light weight, ruggedness and reliable operation. It is capable of fully automatic sampling of air and gas with 24 adsorption tubes and program-controlled gas flow. Collection times can be programmed freely between 1 sec and 8 days and waiting times between 1 sec and 30 days. Programming is possible via keyboard, memory card or serial interface. A protocol of sampling control data is stored on a memory card giving documentation of sampling conditions. On the memory card there is space for the storage of 10 sampling programs and 10 sets of sampling control data. Before the start of ETEX the AS3 was used in a measurement campaign to measure the background concentrations of the perfluorocarbon tracers in Austria. In the provinces of Upper Austria and Salzburg the Air Sampler is used by the departments for environmental protection for the monitoring of BTX-concentrations in air. (author)

  19. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    Science.gov (United States)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.

  20. Numerical investigation of upper-room UVGI disinfection efficacy in an environmental chamber with a ceiling fan.

    Science.gov (United States)

    Zhu, Shengwei; Srebric, Jelena; Rudnick, Stephen N; Vincent, Richard L; Nardell, Edward A

    2013-01-01

    This study investigated the disinfection efficacy of the upper-room ultraviolet germicidal irradiation (UR-UVGI) system with ceiling fans. The investigation used the steady-state computational fluid dynamics (CFD) simulations to solve the rotation of ceiling fan with a rotating reference frame. Two ambient air exchange rates, 2 and 6 air changes per hour (ACH), and four downward fan rotational speeds, 0, 80, 150 and 235 rpm were considered. In addition, the passive scalar concentration simulations incorporated ultraviolet (UV) dose by two methods: one based on the total exposure time and average UV fluence rate, and another based on SVE3* (New Scale for Ventilation Efficiency 3), originally defined to evaluate the mean age of the air from an air supply opening. Overall, the CFD results enabled the evaluation of UR-UVGI disinfection efficacy using different indices, including the fraction of remaining microorganisms, equivalent air exchange rate, UR-UVGI effectiveness and tuberculosis infection probability by the Wells-Riley equation. The results indicated that air exchange rate was the decisive factor for determining UR-UVGI performance in disinfecting indoor air. Using a ceiling fan could also improve the performance in general. Furthermore, the results clarified the mechanism for the ceiling fan to influence UR-UVGI disinfection efficacy. © 2013 The Authors Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  1. Dampak Perubahan Penggunaan Lahan terhadap Tingkat Kekritisan Air Sub-DAS Citarum Hulu

    Directory of Open Access Journals (Sweden)

    Tito Latif Indra

    2016-10-01

    Full Text Available ABSTRAK Sehubungan dengan pertumbuhan penduduk yang membutuhkan ruang untuk hidup telah mengubah pola penggunaan tanah khususnya di DAS Citarum Hulu yang juga merupakan salah satu DAS kritis di Indonesia. Perubahan penggunaan tanah tersebut akan berakibat pada berkurangnya sumberdaya air sehingga menjadikan tingkat kekritisan air semakin tinggi. Data yang digunakan dalam penelitian ini meliputi peta jaringan sungai, peta penggunaan lahan yang diperoleh dari Badan Pertanahan Nasional (BPN, data curah hujandan suhu Tahun 1975-2005, peta tanah, peta kemiringan lereng, tutupan vegetasi dan data kebutuhan air primer. Melalui metode GIS yang dipadukan pendekatan hidrologis telah menghasilkan wilayah-wilayah sub DAS yang mengalami kekurangan air dalam hal ini kekritisan air. ABSTRACT The population growth and the need for living space have changeq the patterns of land use especially in Upper Sub Citarum Watershed as one of the critical watersheds in Indonesia. The changes in land use will result in the reduction of water resources and make the higher level of water criticality. Data used in this research including river network map, landuse map obtained from Indonesian National Land Agency (BPN, precipitation and temperature data of 1975-2005, soil map, slope map, vegetation cover and primary water demand data. The critical level of watershed is deterimined based on the comparison of primary water demand and water availability in Upper Citarum Sub Watershed. Through GIS method combined with hydrological approach, the areas of sub watershed experiencing water shortage, in this case is water critical level can be determined. The combination of GIS method and a hydrological approach has resulted in sub-catchment areas experiencing water shortages in this case the critical water level.

  2. Fracture mechanics analysis approach to assess structural integrity of the first confinement boundaries in ITER Generic Upper Port Plug structure

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Julio, E-mail: julio@natec-ingenieros.com [Numerical Analysis Technologies S.L. (NATEC), Gijon (Spain); Iglesias, Silvia; Vacas, Christian; Udintsev, Victor [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Pak, Sunil [Diagnostic and Control Team, National Fusion Research Institute, Daejeon (Korea, Republic of); Maquet, Philippe [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Rodriguez, Eduardo; Roces, Jorge [Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon (Spain)

    2015-10-15

    Highlights: • A parametric submodel of the spot under study is developed. • The associated macro has the capability to successively re-build the submodel implementing the crack with the geometry of the updated crack front as a function of the predicted increments of length in the apexes of the crack from the calculated stress intensity factor at the crack front. • The analysis incorporates the crack behavior model to predict the evolution of the postulated defect under the application of the different transients. • The analysis is based on the Elasto-Plastic Fracture Mechanics (EPFM) theory to account for the ductility of the materials (316LN type stainless steel). - Abstract: This paper demonstrates structural integrity of the first confinement boundary in Generic Upper Port Plug structures against cracking during service. This constitutes part of the justification to demonstrate that the non-aggression to the confinement barrier requirement may be compatible with the absent of a specific in-service inspections (ISI) program in the trapezoidal section. Since the component will be subjected to 100% volumetric inspections it can be assumed that no defects below the threshold of applied Nondestructive Evaluation techniques will be present before its commissioning. Cracks during service would be associated to defects under Code acceptance limit. This limit can be reasonably taken as 2 mm. Using elastic–plastic fracture mechanics an initial defect is postulated at the worst location in terms of probability and impact on the confinement boundary. Its evolution is simulated through finite element analysis and final dimension at the end of service is estimated. Applying the procedures in RCC-MR 2007 (App-16) the stability of the crack is assessed. As relative high safety margin was achieved, a complementary assessment postulating an initial defect of 6 mm was also conducted. New margin calculated provides a more robust design.

  3. Local Model Checking of Weighted CTL with Upper-Bound Constraints

    DEFF Research Database (Denmark)

    Jensen, Jonas Finnemann; Larsen, Kim Guldstrand; Srba, Jiri

    2013-01-01

    We present a symbolic extension of dependency graphs by Liu and Smolka in order to model-check weighted Kripke structures against the logic CTL with upper-bound weight constraints. Our extension introduces a new type of edges into dependency graphs and lifts the computation of fixed-points from...

  4. Comment les aires protégées structurent les écosystèmes des ...

    African Journals Online (AJOL)

    1 mars 2009 ... Cette étude menée a pour but de montrer l'influence des aires protégées sur la structuration des écosystèmes périphériques. Pour cela, une étude diachronique par images satellitaires Landsat de 1985 à 2013 a été faite et une collecte de données de terrain a été réalisée dans les villages autour du Parc ...

  5. A numerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers

    International Nuclear Information System (INIS)

    Gu, Hongfang; Wang, Haijun; Gu, Yuqian; Yao, Jianan

    2016-01-01

    Highlights: • Numerical study on the optimization of windbreak structure for IDAC was conducted. • Windbreak wall is the most effective structure but is affected by wind direction. • The louver is next best and it can be flexibly adjusted at the windy conditions. • An optimal louver opening was obtained for achieving a good cooling performance. - Abstract: The heat transfer performance of indirect air-cooling (IDAC) towers in large power stations is sensitive to the ambient wind velocity. To ensure the economic and reliable operation of units under windy conditions, it is important to conduct research on the optimization of different wind-break structures. This paper uses computational fluid dynamics method (CFD) to simulate the heat transfer performance of a 1000 MW IDAC tower power stations with four different wind-break structures namely, cross walls, wind-break walls, cross line-screen, and louvers. The research results show that the order of the effective heat transfer improvement of four wind-break structures is the wind-break, cross wall, line-screen and louvers. The wind-break wall is the most optimal structure, but its performance is strictly influenced by the direction and velocity of the wind, and the cross walls and cross line-screen structure have similar limitation in the practice operation. The louver is installed in each sector, and it is the next best option for increasing the heat transfer performance. It can be flexibly adjusted based on the wind direction and velocity. With the decrease in the louver opening, k, there is a decrease in the heat transfer rate of the windward sectors, and a significant increase in the heat transfer rate of the leeward sectors. Thus the total heat transfer rate of the IDAC tower can be improved tremendously. Based on the analysis of heat transfer and air flow mechanisms, there is an optimal opening, k, which achieves the largest heat transfer performance in an IDAC tower at each wind velocity. This study

  6. Nuclear reactor, its cooling facility, nuclear power plant, and method of operating the same

    International Nuclear Information System (INIS)

    Tate, Hitoshi; Tominaga, Kenji; Fujii, Tadashi.

    1993-01-01

    The upper surface of inner structural materials in a container is partitioned by concrete structural walls to form an upper space portion. A pressure relief plate is disposed on the concrete structural walls. If an accident occurs, the pressure relief plate is operated to form a circulation path for a gas to return to the upper space portion again from the upper space portion. The temperature of cooling water in a pressure suppression chamber, that is, a wet well liquid phase portion is elevated by after heat of a reactor core. Evaporated steams transfer from the wet well gas phase portion to the upper space portion passing through pipelines and are mixed with N 2 gas present in the upper space portion. The mixed gas is cooled by a container inner wall cooled by air passing through an air cooling duct, flows downward by way of the pressure relief plate and reaches the wet well gas phase portion again. Since the gases in the upper space circulate by a driving force caused by the after heat, reliability of cooling performance can be improved upon occurrence of an accident without using an active driving force. (I.N.)

  7. The African upper mantle and its relationship to tectonics and surface geology

    Science.gov (United States)

    Priestley, Keith; McKenzie, Dan; Debayle, Eric; Pilidou, Sylvana

    2008-12-01

    This paper focuses on the upper-mantle velocity structure of the African continent and its relationship to the surface geology. The distribution of seismographs and earthquakes providing seismograms for this study results in good fundamental and higher mode path coverage by a large number of relatively short propagation paths, allowing us to image the SV-wave speed structure, with a horizontal resolution of several hundred kilometres and a vertical resolution of ~50 km, to a depth of about 400 km. The difference in mantle structure between the Archean and Pan-African terranes is apparent in our African upper-mantle shear wave model. High-velocity (4-7 per cent) roots exist beneath the cratons. Below the West African, Congo and Tanzanian Cratons, these extend to 225-250 km depth, but beneath the Kalahari Craton, the high wave speed root extends to only ~170 km. With the exception of the Damara Belt that separates the Congo and Kalahari Cratons, any high-speed upper-mantle lid below the Pan-African terranes is too thin to be resolved by our long-period surface wave technique. The Damara Belt is underlain by higher wave speeds, similar to those observed beneath the Kalahari Craton. Extremely low SV-wave speeds occur to the bottom of our model beneath the Afar region. The temperature of the African upper mantle is determined from the SV-wave speed model. Large temperature variations occur at 125 km depth with low temperatures beneath west Africa and all of southern Africa and warm mantle beneath the Pan-African terrane of northern Africa. At 175 km depth, cool upper mantle occurs below the West African, Congo, Tanzanian and Kalahari Cratons and anomalously warm mantle occurs below a zone in northcentral Africa and beneath the region surrounding the Red Sea. All of the African volcanic centres are located above regions of warm upper mantle. The temperature profiles were fit to a geotherm to determine the thickness of the African lithosphere. Thick lithosphere exists

  8. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    Science.gov (United States)

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  9. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone.

    Directory of Open Access Journals (Sweden)

    Arnaud Bertrand

    Full Text Available BACKGROUND: Oxygen minimum zones (OMZs are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. METHODOLOGY/PRINCIPAL FINDINGS: Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens. CONCLUSIONS/SIGNIFICANCE: This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change.

  10. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  11. Soil-structure interaction analysis by Green function

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Kobayashi, Toshio; Nakahara, Mitsuharu.

    1985-01-01

    Using the method of discretized Green function which had been suggested by the authors, the parametric study of the effects of base mat foundation thickness and soil stiffness were conducted. There was no upper structure effects from the response and reaction stress of the soil by employing different base mat foundation thicknesses. However, the response stress of base mat itself had considerable effect on the base mat foundation stress. The harder the soil, became larger accelerations, and smaller displacements on the upper structure. The upper structure lines of force were directed onto the soil. In the case of soft soil, the reaction soil stress were distributed evenly over the entire reactor building area. Common characteristics of all cases, in-plane shear deformation of the upper floor occured and in-plane acceleration and displacement at the center of the structure become larger. Also, the soil stresses around the shield wall of the base mat foundation became large cecause of the effect of the shield wall bending. (Kubozono, M.)

  12. Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Buzheng; Liu, Huaiqing [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Ren, Guobin, E-mail: gbren@bjtu.edu.cn [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Yang, Yuguang; Ye, Shen; Pei, Li; Jian, Shuisheng [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2017-01-23

    Highlights: • The EIT and slow light effect are achieved by our novel graphene based structure. • Excellent tunability of wide wavelength range can be obtained only by a small change in Fermi energy level. • The group velocity of incident light is reduced to more than 1/600 of that in vacuum. • Position control is realized by designing a graded period grating. - Abstract: A broad band tunable graphene based silicon–air grating structure is proposed. Electromagnetically-induced-transparency (EIT) window can be successfully tuned by virtually setting the desired Fermi energy levels on graphene sheets. Carrier mobility plays an important role in modulating the resonant depth. Furthermore, by changing the grating periods, light can be trapped at corresponding resonant positions where slow down factor is relatively larger than in the previous works. This structure can be used as a highly tunable optoelectronic device such as optical filter, broad-band modulator, plasmonic switches and buffers.

  13. Site Study Plan for meteorology/air quality, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-06-01

    The Meteorological/Air Quality Site Study Plan describes a field program consisting of continuous measurements of surface (10-meter) wind speed and direction, temperature, humidity, dew point, pressure, and sensible heat flux (vertical). Air quality measurements will be limited to suspended particulate matter. After the first year of measurements, a 60-meter tower will be added to incorporate measurements needed for later modeling and dose calculations; these will include upper level winds, vertical temperature structure, and vertical wind speed. All of these measurements will be made at a site located within the 9-mi 2 site area but remote from the ESF. A second site, located near and downwind from the ESF, will monitor only particulate matter. The SSP describes the need for each study; its design and design rationale; analysis, management, and use of data, schedule of field activities, organization of field personnel and sample management, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from the Salt Repository Project Requirements Document. 38 refs., 8 figs., 3 tabs

  14. Comparisons of Upper Tropospheric Humidity Retrievals from TOVS and METEOSAT

    Science.gov (United States)

    Escoffier, C.; Bates, J.; Chedin, A.; Rossow, W. B.; Schmetz, J.

    1999-01-01

    Two different methods for retrieving Upper Tropospheric Humidities (UTH) from the TOVS (TIROS Operational Vertical Sounder) instruments aboard NOAA polar orbiting satellites are presented and compared. The first one, from the Environmental Technology Laboratory, computed by J. Bates and D. Jackson (hereafter BJ method), estimates UTH from a simplified radiative transfer analysis of the upper tropospheric infrared water vapor channel at wavelength measured by HIRS (6.3 micrometer). The second one results from a neural network analysis of the TOVS (HIRS and MSU) data developed at, the Laboratoire de Meteorologie Dynamique (hereafter the 3I (Improved Initialization Inversion) method). Although the two methods give very similar retrievals in temperate regions (30-60 N and S), an absolute bias up to 16% appears in the convective zone of the tropics. The two datasets have also been compared with UTH retrievals from infrared radiance measurements in the 6.3 micrometer channel from the geostationary satellite METEOSAT (hereafter MET method). The METEOSAT retrievals are systematically drier than the TOVS-based results by an absolute bias between 5 and 25%. Despite the biases, the spatial and temporal correlations are very good. The purpose of this study is to explain the deviations observed between the three datasets. The sensitivity of UTH to air temperature and humidity profiles is analysed as are the clouds effects. Overall, the comparison of the three retrievals gives an assessment of the current uncertainties in water vapor amounts in the upper troposphere as determined from NOAA and METEOSAT satellites.

  15. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S. [Finnish Meteorological Inst., Helsinki (Finland)

    1995-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  16. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  17. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Leyte, R.; Zamora-Mata, J.M.; Torres-Aldaco, A. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, San Rafael Atlixco 186, Col Vicentina 09340, Iztapalapa, Mexico, D.F. (Mexico); Toledo-Velazquez, M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, Unidad Profesional Adolfo Lopez Mateos, Edificio 5, 3er piso SEPI-ESIME, C.P. 07738, Col. Lindavista, Mexico D.F. (Mexico); Salazar-Pereyra, M. [Tecnologico de Estudios Superiores de Ecatepec, Division de Ingenieria Mecatronica e Industrial, Posgrado en Ciencias en Ingenieria Mecatronica, Av. Tecnologico s/n, Col. Valle de Anahuac, C.P. 55210, Ecatepec de Morelos, Estado de Mexico (Mexico)

    2010-02-15

    This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment. (author)

  18. Experimental and Numerical Investigation of Effect of Air Stability on Exhaled Air Dispersion

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter Vilhelm

    2014-01-01

    studies. As the thermal stratification under displacement ventilation blocks the vertical movement of exhaled air, the exhaled contaminant may be trapped between temperature stratifications. As the dispersion of contaminant is closely related to the health of human indoors, the temperature structure...... was used for experimental study, and a numerical person was built to simulate the manikin. The velocity, temperature and concentration of tracer gas in exhaled air are affected by air stability to different degrees. The similarity of this effect among these parameters can also be observed through numerical...

  19. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  20. Field controlled experiments of mercury accumulation in crops from air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhenchuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Xiaoshan, E-mail: zhangxsh@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wang Zhangwei, E-mail: wangzhw@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Ci Zhijia [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-10-15

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation. - Highlights: > Hg accumulation in crop organs was studied by OTCs and soil Hg enriched experiments. > Hg accumulation in foliages and roots was mainly from air and soil, respectively. > Air Hg had stronger influence than soil Hg on stem Hg accumulation. > Foliar Hg concentrations showed the trend of increase over growth stages. - Capsule Mercury accumulated in the aboveground organs of crop was mainly from the air.

  1. CFD heat transfer simulation of the human upper respiratory tract for oronasal breathing condition

    Directory of Open Access Journals (Sweden)

    Kambiz Farahmand

    2012-01-01

    Full Text Available Injuries due to inhalation of hot gas are commonly encountered when dealing with fire and combustible material, which is harmful and threatens human life. In the literature, various studies have been conducted to investigate heat and mass transfer characteristics in the human respiratory tract (HRT. This study focuses on assessing the injury taking place in the upper human respiratory tract and identifying acute tissue damage, based on level of exposure. A three-dimensional heat transfer simulation is performed using Computational Fluid Dynamics (CFD software to study the temperature profile through the upper HRT consisting of the nasal cavity, oral cavity, trachea, and the first two generations of bronchi. The model developed is for the simultaneous oronasal breathing during the inspiration phase with a high volumetric flow rate of 90 liters/minute and the inspired air temperature of 100 degrees Celsius. The geometric model depicting the upper HRT is generated based on the data available and literature cited. The results of the simulation give the temperature distribution along the center and the surface tissue of the respiratory tract. This temperature distribution will help to assess the level of damage induced in the upper respiratory tract and appropriate treatment for the damage. A comparison of nasal breathing, oral breathing, and oronasal breathing is performed. Temperature distribution can be utilized in the design of the respirator systems where inlet temperature is regulated favoring the human body conditions.

  2. Contested minorities – the case of Upper Silesia

    Directory of Open Access Journals (Sweden)

    Gierczak Dariusz

    2015-06-01

    Full Text Available Upper Silesia in terms of ethnicity is a typical example of a historical region in Europe, but in fact, one of the few exceptions in contemporary Poland, where its mixed ethnic and religious structures have at least partly survived until today. While their existence had been denied by Nazi Germany (1933-1945 as well as by the Polish People's Republic (1945-1989, the emancipation of the German and Silesian minorities after the democratic changes of 1989 have evoked strong emotions in the ethnically almost uniform country. Nonetheless, the recent situation of minorities has improved as never before. Minority organisations has been officially recognized and German finally has become the second language in some municipalities of Upper Silesia, but the largest ethnic group in the whole country, the Silesians, have still experienced no formal recognition as a national minority. This article deals with the demographic aspects of the ethnic groups in Upper Silesia since the 19th century until recent times. The census results concerning the ethnic minorities or languages in Upper Silesia have been contested since the first records of that kind have been taken. The outcomes of the both last censuses of 2002 and 2011 concerning the minority question reflected for the first time a much more realistic picture of the status quo. Furthermore, they showed that the idea of Silesian identification found an unexpected high number of supporters. This fact indicates an emerging meaning of regional identification amid significant changes of cultural values in Polish society.

  3. An upper limit to the photon fraction in cosmic rays above 10**19-eV from the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J.C.; /Centro Atomico Bariloche /Buenos Aires, CONICET /La Plata U. /Pierre Auger Observ. /CNEA, San Martin /Adelaide U. /Catholic U. of Bolivia, La Paz /Bolivia U. /Sao Paulo U. /Campinas State U. /UEFS, Feira de Santana

    2006-06-01

    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10{sup 19} eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favored.

  4. Air/fuel supply system for use in a gas turbine engine

    Science.gov (United States)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  5. Bacterial community structure of a full-scale biofilter treating pig house exhaust air

    DEFF Research Database (Denmark)

    Kristiansen, Anja; Pedersen, Kristina Hadulla; Nielsen, Per Halkjær

    2011-01-01

    Biological air filters represent a promising tool for treating emissions of ammonia and odor from pig facilities. Quantitative fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing were used to investigate the bacterial community structure and diversity in a full-scale biofilter ...... consisting of two consecutive compartments (front and back filter). The analysis revealed a highly specialized bacterial community of limited diversity, dominated by a few groups of Betaproteobacteria (especially Comamonas) and diverse Bacteroidetes. Actinobacteria, Gammaproteobacteria......, and betaproteobacterial ammoniaoxidizers (Nitrosomonas eutropha/Nitrosococcus mobilis-lineage) were also quantitatively important. Only a few quantitative differences existed between the two filter compartments at the group level, with a lower relative abundance of Actinobacteria and a higher relative abundance...

  6. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.

    Science.gov (United States)

    Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole

    2012-04-01

    The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Detonation of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Knystautas, R.; Benedick, W.B.

    1983-01-01

    The detonation of a hydrogen-air cloud subsequent to an accidental release of hydrogen into ambient surroundings cannot be totally ruled out in view of the relative sensitivity of the hydrogen-air system. The present paper investigates the key parameters involved in hydrogen-air detonations and attempts to establish quantitative correlations between those that have important practical implications. Thus, for example, the characteristic length scale lambda describing the cellular structure of a detonation front is measured for a broad range of hydrogen-air mixtures and is quantitatively correlated with the key dynamic detonation properties such as detonability, transmission and initiation

  8. Investigation of air pollutants in rural nursery school - a case study

    Science.gov (United States)

    Mainka, Anna; Zajusz-Zubek, Elwira; Kozielska, Barbara; Brągoszewska, Ewa

    2018-01-01

    Children's exposure to air pollutants is an important public health challenge. Indoor air quality (IAQ) in nursery school is believed to be different from elementary school. Moreover, younger children are more vulnerable to air pollution than higher grade children because they spend more time indoors, and their immune systems and bodies are less mature. The purpose of this study was to evaluate the indoor air quality (IAQ) at naturally ventilated rural nursery schools located in Upper Silesia, Poland. We investigated the concentrations of volatile organic compounds (VOCs), particulate matter (PM), bacterial and fungal bioaerosols, as well as carbon dioxide (CO2) concentrations in younger and older children's classrooms during the winter and spring seasons. The concentration of the investigated pollutants in indoor environments was higher than those in outdoor air. The results indicate the problem of elevated concentrations of PM2.5 and PM10 inside the examined classrooms, as well as that of high levels of CO2 exceeding 1,000 ppm in relation to outdoor air. The characteristics of PM and CO2 levels were significantly different, both in terms of classroom occupation (younger or older children) and of season (winter or spring).

  9. Complex Sensory Corpuscles in the Upper Jaw of Horsfield’s Tortoise (Testudo horsfieldii

    Directory of Open Access Journals (Sweden)

    Marcela Buchtová

    2009-01-01

    Full Text Available The sensory corpuscles of Testudo horsfieldii in the skin of the upper lip and face were studied with light and electron microscopy. The sensory corpuscles were situated under epidermis; in the corium and also between the upper jaw bone tissues in the rostral part of oral cavity. The skin sensory corpuscles with a ramified inner core were grouped in clusters. Within the corpuscle there were several simple inner cores embedded within a common superficial capsule. The complex corpuscles have a novel structure in comparison to what has been described for sensory nerve endings in turtle. The complex sensory corpuscles probably function as mechanoreceptors important for monitoring the movement of the keratinized ridges and the most rostral part of the upper jaw, the rhamphotheci.

  10. Upper gastrointestinal bleeding.

    Science.gov (United States)

    Feinman, Marcie; Haut, Elliott R

    2014-02-01

    Upper gastrointestinal (GI) bleeding remains a commonly encountered diagnosis for acute care surgeons. Initial stabilization and resuscitation of patients is imperative. Stable patients can have initiation of medical therapy and localization of the bleeding, whereas persistently unstable patients require emergent endoscopic or operative intervention. Minimally invasive techniques have surpassed surgery as the treatment of choice for most upper GI bleeding. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Development of Mechanical Structure Design Technology for LMR

    International Nuclear Information System (INIS)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon

    2007-03-01

    Structural integrity and design simplifications were secured on reactor core support system, upper internal structure and core catcher of KALIMER-600. The evaluation on the suitability of high temperature and seismic design of reactor structures, and the structural integrity evaluation on reactor components and high temperature pipings are performed. The interfaces between the components and ISI accessibility are checked. Lightening of reactor building by 7%, the seismic design for 0.3g seismic loads and improvement of reactor structural design concept for KALIMER-600 have been carried out. Remote inspection technique using ultrasonic wave guide sensor was acquired as a visualization method for reactor internals under opaque sodium environments. The basic guideline on high temperature structure assessment as an assessment procedure on high temperature inelastic behaviour has been completed. In high temperature creep-fatigue test, totally 500 cycles (totally 700 hold time) were carried on cylindrical test and IHTS co-axial pipe test models. The behaviors of creep-fatigue damage and creep-fatigue crack behaviour were investigated, and the DB on the structural test were established. The seismic response tests on 19-sub assembly validation test model in air and in water were carried out, and its multi-purpose characteristics and reliability on the SAC-CORE3.0 code developed for core seismic response analysis were validated

  12. Lipoestructura y relleno del polo superior de la mama frente a implantes Structural fat graft and lipofilling of mammary upper pole versus mammary implants

    Directory of Open Access Journals (Sweden)

    J.M. Cervilla Lozano

    2012-09-01

    Full Text Available La lipoestructura mamaria ofrece nuevas alternativas de tratamiento en la cirugía estética de aumento mamario, cumpliendo en algunos casos las expectativas esperadas y en otros no. Analizamos este hecho en 4 tipos de aplicación de lipoestructura mamaria que hemos venido realizando en los últimos años, centrándonos en un aspecto importante de esta cirugía que es el relleno del polo superior de la mama. Los tipos de aplicación empleados son: aumento mamario simple mediante lipoestructura en comparación con implantes; pexia más lipoestructura frente a pexia más implantes mamarios; reconstrucción de mama tuberosa mediante lipoestructura o implantes y finalmente, relleno periprotésico mediante lipoestructura en mamas sometidas a cirugía de aumento mamario con implantes. En definitiva, podríamos resumir este trabajo en una frase diciendo que la lipoestructura mamaria, a nuestro juicio, no sirve si lo que prima es conseguir el relleno del polo superior de la mama, siendo en este caso de elección la colocación de implantes mamarios. No obstante, en alguno de los casos señalados no solo es una alternativa, sino que obtiene resultados superiores a los logrados sólamente con implantes.The mammary structural fat graft offers news treatment options in breast augmentation cosmetic surgery, but it sometimes meets expectations and sometimes doesn´t. We analyze 4 different types of lipostructure mammary applications that we have been using in the last years, focused in an important aspect of this surgery as it´s the filling of the upper mammary pole. These applications are: mammary augmentation by simple structural fat compared with the use of mammary implants; structural fat graft and mastopexy versus implants and mastopexy; tuberous breast reconstruction using structural fat graft or implants and finally, periprosthetic filling in breast augmentation with mammary implants using structural fat graft. In short, we could summarize this paper

  13. Multi-media communication system: Upper layers in the OSI reference model

    NARCIS (Netherlands)

    Zafirovic-Vukotic, M.; Niemegeers, I.G.M.M.

    1992-01-01

    The structuring, services, and major protocol functions that are required in the upper layers of the OSI reference model in order to support end-to-end multimedia communication, assuming a simple transport service, are examined. It is assumed that variable-bit-rate (VBR) coding techniques will be

  14. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  15. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    Science.gov (United States)

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  16. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    International Nuclear Information System (INIS)

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D.; Xue, Ming

    2014-01-01

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O 3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess

  17. Playing piano can improve upper extremity function after stroke: case studies.

    Science.gov (United States)

    Villeneuve, Myriam; Lamontagne, Anouk

    2013-01-01

    Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3), prior to (week6) and after the intervention (week9), and at 3-week follow-up (week12). Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test) and gross (box and block test) manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test). Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke.

  18. Playing Piano Can Improve Upper Extremity Function after Stroke: Case Studies

    Directory of Open Access Journals (Sweden)

    Myriam Villeneuve

    2013-01-01

    Full Text Available Music-supported therapy (MST is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3, prior to (week6 and after the intervention (week9, and at 3-week follow-up (week12. Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test and gross (box and block test manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test. Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke.

  19. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'Joyo'. 2-2

    International Nuclear Information System (INIS)

    Okuda, Eiji; Ito, Hiromichi; Yoshihara, Shizuya

    2014-01-01

    An accident occurred in experimental fast reactor 'Joyo' in 2007 which is obstruction of fuel change equipment caused by contacting rotating plug and MARICO-2. In addition, we confirmed two happenings in the reactor vessel that (1) Deformation of MARICO-2 subassembly on the in vessel storage rack together with a transfer pot, (2) Deformation of the Upper core structure of 'Joyo' caused by contacting MARICO-2 subassembly and the UCS. We do the restoration work for restoring it. This time, we describe current status of Replacement work of the UCS. (author)

  20. Climate change - the contribution from air travel

    International Nuclear Information System (INIS)

    Beesley, Colin

    2000-01-01

    The paper discusses the Intergovernment Panel on Climate Change (IPCC) report on Aviation and the Global Atmosphere (published in 1999). It was considered necessary to treat air transport on its own since aircraft are unique in delivering emissions into the upper atmosphere rather than at ground level. The study was commissioned at the request of the International Civil Aviation Organisation and the Montreal Protocol. More than 300 experts contributed and the report has quantified the effect of aviation on the atmosphere on a world wide basis and highlighted areas where improved data are required. (UK)

  1. [Kinematics Modeling and Analysis of Central-driven Robot for Upper Limb Rehabilitation after Stroke].

    Science.gov (United States)

    Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping

    2015-12-01

    The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation.

  2. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    Science.gov (United States)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  3. Upper temperature limits of tropical marine ectotherms: global warming implications.

    Directory of Open Access Journals (Sweden)

    Khanh Dung T Nguyen

    Full Text Available Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1, the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  4. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    Content-Type text/plain; charset=UTF-8 202 Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep... will undertake either regional, reconnaissance or detail gravity surveys. We generally deal with free air gravity anomalies in oceans. The free air gravity anomalies mostly mimic the seabed configuration and at times, the deviation observed in the free air...

  5. Pulmonary sequestrations of the upper lobe in children: Three presentations

    International Nuclear Information System (INIS)

    Hoeffel, J.C.; Bernard, C.; Didier, F.; Bretagne, M.C.; Gautry, P.; Olive, D.; Prevot, J.; Pernot, C.; Hopital des Enfants, 54 - Vandoeuvre-les-Nancy; Hopital des Enfants, 54 - Vandoeuvre-les-Nancy; Hopital des Enfants, 54 - Vandoeuvre-les-Nancy

    1986-01-01

    Pulmonary sequestrations are congenital abnormalities where nonfunctioning lung tissue receives its vascular supply from the systemic circulation (thoracic or abdominal aorta). It is necessary to establish the diagnosis in childhood when the lesions are uncomplicated. The authors present three cases of sequestration of the apex (2 extralobar and 1 atypical) with the main clinical and radiological features. Sequestrations in the upper lobe are rare, and the usual site is the left lower lobe. Plain X-rays show a dense opacity, sometimes with an air-fluid level: angiography is currently the best mean for definitive diagnosis; however, computed tomography will probably be very useful in the future. Differential diagnosis includes tumours of the superior mediastinum (neurogenic tumours, digestive duplication, bronchogenic cysts, pheochromocytoma and hydatid cysts). (orig.) [de

  6. On the use of dorsiventral reflectance asymmetry of hornbeam (Carpinus betulus L.) leaves in air pollution estimation.

    Science.gov (United States)

    Brackx, Melanka; Verhelst, Jolien; Scheunders, Paul; Samson, Roeland

    2017-08-25

    This study examines the role of dorsiventral leaf measurements in reflectance-based air quality estimation. The dorsiventral asymmetry is used to describe the difference between the upper (adaxial) and lower (abaxial) leaf side. Spectral characteristics of dorsiventral asymmetry and both adaxial and abaxial leaf reflectance are investigated for a typical dicotyledonous species Carpinus betulus used in an urban environment. The link with traffic-related air pollution is established and the potential for monitoring of air quality is evaluated. We conclude that dorsiventral reflectance asymmetry is a factor that should not be ignored in canopy measurements and modeling. On the other hand, the benefits of dorsiventral asymmetry indices as a tool for reflectance-based air quality seem limited.

  7. Developments in the Curriculum and Structures of Upper-Secondary Education in Australia: The Last Decade.

    Science.gov (United States)

    McKinnon, Ken

    1988-01-01

    Examines the recent influences on and development of upper-secondary Australian education. These influences include youth unemployment, rapid technological and social change, immigration, increasing federal role, and limited entry to tertiary education. Changes include broader curriculum planning to include all students, and improvement of the…

  8. Accretion in Radiative Equipartition (AiRE) Disks

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada)

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  9. Upper Airway Injury in Dogs Secondary to Trauma: 10 Dogs (2000-2011).

    Science.gov (United States)

    Basdani, Eleni; Papazoglou, Lysimachos G; Patsikas, Michail N; Kazakos, Georgios M; Adamama-Moraitou, Katerina K; Tsokataridis, Ioannis

    2016-01-01

    Ten dogs that presented with trauma-induced upper airway rupture or stenosis were reviewed. Tracheal rupture was seen in seven dogs, tracheal stenosis in one dog, and laryngeal rupture in two dogs. Clinical abnormalities included respiratory distress in five dogs, subcutaneous emphysema in eight, air leakage through the cervical wound in seven, stridor in three dogs, pneumomediastinum in four and pneumothorax in one dog. Reconstruction with simple interrupted sutures was performed in four dogs, tracheal resection and end-to-end anastomosis in five dogs, and one dog was euthanized intraoperatively. Complications were seen in three dogs including aspiration pneumonia in one and vocalization alterations in two dogs.

  10. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 1: January

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of January. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Mean density standard deviation (all for 13 levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  11. Field controlled experiments of mercury accumulation in crops from air and soil

    International Nuclear Information System (INIS)

    Niu Zhenchuan; Zhang Xiaoshan; Wang Zhangwei; Ci Zhijia

    2011-01-01

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation. - Highlights: → Hg accumulation in crop organs was studied by OTCs and soil Hg enriched experiments. → Hg accumulation in foliages and roots was mainly from air and soil, respectively. → Air Hg had stronger influence than soil Hg on stem Hg accumulation. → Foliar Hg concentrations showed the trend of increase over growth stages. - Capsule Mercury accumulated in the aboveground organs of crop was mainly from the air.

  12. Composites for Exploration Upper Stage

    Science.gov (United States)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  13. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    Science.gov (United States)

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  14. Kinematics and Dynamics Analysis of a 3-DOF Upper-Limb Exoskeleton with an Internally Rotated Elbow Joint

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2018-03-01

    Full Text Available The contradiction between self-weight and load capacity of a power-assisted upper-limb exoskeleton for material hanging is unresolved. In this paper, a non-anthropomorphic 3-degree of freedom (DOF upper-limb exoskeleton with an internally rotated elbow joint is proposed based on an anthropomorphic 5-DOF upper-limb exoskeleton for power-assisted activity. The proposed 3-DOF upper-limb exoskeleton contains a 2-DOF shoulder joint and a 1-DOF internally rotated elbow joint. The structural parameters of the 3-DOF upper-limb exoskeleton were determined, and the differences and singularities of the two exoskeletons were analyzed. The workspace, the joint torques and the power consumption of two exoskeletons were analyzed by kinematics and dynamics, and an exoskeleton prototype experiment was performed. The results showed that, compared with a typical anthropomorphic upper-limb exoskeleton, the non-anthropomorphic 3-DOF upper-limb exoskeleton had the same actual workspace; eliminated singularities within the workspace; improved the elbow joint force situation; and the maximum elbow joint torque, elbow external-flexion/internal-extension and shoulder flexion/extension power consumption were significantly reduced. The proposed non-anthropomorphic 3-DOF upper-limb exoskeleton can be applied to a power-assisted upper-limb exoskeleton in industrial settings.

  15. Using aerogravity and seismic data to model the bathymetry and upper crustal structure beneath the Pine Island Glacier ice shelf, West Antarctica

    Science.gov (United States)

    Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.

    2013-12-01

    Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.

  16. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    Science.gov (United States)

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  17. A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Antonio Frisoli

    2009-01-01

    Full Text Available This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR. The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02

  18. Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

    KAUST Repository

    Wu, Sin-Mei

    2017-10-03

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh-wave seismic signals between 1-10 Hz utilizing non-diffusive seismic waves excited by nearby active hydrothermal features with the following results. 1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, 2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and 3) resolving a relatively shallow (10-60 m) and large reservoir located ~100 m southwest of Old Faithful geyser.

  19. Upper-mantle fabrics beneath the Northern Apennines revealed by seismic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Munzarová, Helena; Plomerová, Jaroslava; Babuška, Vladislav; Vecsey, Luděk

    2013-01-01

    Roč. 14, č. 4 (2013), s. 1156-1181 ISSN 1525-2027 R&D Projects: GA AV ČR IAA300120709; GA ČR GAP210/12/2381 Institutional support: RVO:67985530 Keywords : body-wave anisotropy * Northern Apennines * upper mantle Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.054, year: 2013

  20. Relevance of the EU Structural Funds’ Allocation to the Needs of Combating Air Pollution in Poland. Analysis of the Operational Programmes of Regions Threatened With Critical Air Pollution from Distributed Energy Sources

    Science.gov (United States)

    Włodarski, Marcin; Martyniuk-Pęczek, Justyna

    2017-10-01

    Recent years, the European Environmental Agency, has been reporting air quality parameters in Poland, as the poorest among all the EU countries. Despite of adoption of the EU legislation on energy efficiency and energy performance of buildings, existing legal solutions occur insufficient in reducing air pollution in Polish regions. Lack of an effective schemes supporting complex thermal renovation of buildings, exchange of inefficient boilers, developing district heating based on clean and renewable fuels results in severe health problems and 40 000 of premature deaths related to air pollution. Availability of the EU structural funds may become a tremendous opportunity, especially for the residential sector, to conduct a massive scale modernization. Nevertheless, lack of a coordinated action involving all levels of governance may put the opportunity at risk. The article aims to answer the question on the readiness of the regional governments to effectively implement energy efficiency measures mitigating the problem of air pollution. Second objective is to analyse whether the Regional Operational Programmes allocating the ERDF funds to support specific development needs of the regions, have been constructed in a way that properly addresses the problems related to energy performance of residential buildings.

  1. Secondary structure of spiralin in solution, at the air/water interface, and in interaction with lipid monolayers.

    Science.gov (United States)

    Castano, Sabine; Blaudez, Daniel; Desbat, Bernard; Dufourcq, Jean; Wróblewski, Henri

    2002-05-03

    The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at

  2. Numerical Analysis of Flow Distribution in a Sodium Chamber of a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seokkwon; Kim, Hyungmo; Eoh, Jaehyuk; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    DHR systems consist of two diverse heat removal loops such as passive and active DHR systems, and the heat load imposed on the primary sodium pool is safely rejected into the environment through different kinds of sodium-to-air heat exchangers, e.g. M-shape and helical-coil type air-coolers. The former is called as an FHX(Forced-draft sodium-to-air Heat Exchanger) and the latter is simply called as an AHX(natural-draft sodium-to-Air Heat Exchanger). In a general sodium-to-air heat exchanger design, convection resistance in a shell-side air flow path becomes dominant factor affecting the mechanism of conjugate heat transfer from the sodium flow inside the tube to the air path across the sodium tube wall. Hence verification of the flow and heat transfer characteristics is one of the most important tasks to demonstrate decay heat removal performance. To confirm a kind of ultimate heat sink heat exchanger, a medium-scale Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air Heat exchanger (here after called the SELFA) has been designed and is recently being constructed at KAERI site. The introduction of the flow baffle inside the upper sodium chamber of the model FHX unit in the SELFA facility is briefly proposed and discussed as well. The present study aims at introducing a flow baffle design inside the upper sodium chamber to make more equalized flowrates flowing into each heat transfer tube of the model FHX unit. In the cases without the flow baffle geometry, it was observed lager discrepancies in flowrates at the heat transfer tubes. However it was also found that those kinds of discrepancies could be definitely decreased at around 1/10 by employing a flow baffle.

  3. Association between polymorphic markers of IL-10 gene and chronic diseases of the upper respiratory tract in children living under technogenic pressure

    Directory of Open Access Journals (Sweden)

    Lyudmila Borisovna Masnavieva

    2015-03-01

    Full Text Available Respiratory diseases are among the leading causes of infant morbidity. Disturbances of functioning of the immune system play an important role in their development. Interleukin-10 (IL-10 is a key regulator of the immune response. Mononucleotide substitutions at positions (-1082, (-819 and (-592 of IL-10 gene results in low level of the protein production. Our purpose was to study the associations between polymorphic markers of IL-10 gene and chronic respiratory diseases in children living under conditions of anthropogenic pressure. 189 adolescents living in a city with high levels of air pollution and 82 from a city with a moderate level of contamination were examined. Children with chronic upper airway pathology in remission were identified. Blood samples from all children were tested for allelic variants -1082G / A, -592C / A, -819C / T of IL-10 gene in. Analysis of associations between polymorphic variants and the presence of chronic respiratory diseases was conducted. The -592C allele of IL-10 gene was less common among children with chronic diseases of the respiratory tract living in conditions of moderate air pollution than in the healthy comparison group. Similar association has not been established in thr group of children living in conditions of high air pollution. Thus, the C allele of the polymorphic -592C/A locus marks resistance to the development of a chronic disease of the upper respiratory tract in children living in conditions of moderate air pollution, while in conditions of high level of pollution contribution of genetic factors in its development is leveled.

  4. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    Science.gov (United States)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes

  5. YOGYAKARTA AIR BORNE QUALITY BASED ON THE LEAD PARTICULATE CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zaenal Abidin

    2010-06-01

    Full Text Available Analysis of Yogyakarta air quality based on concentration of lead particulate using Fast Neutron Activation Analysis (FNAA method has been done. The sample was taken 3 times in 16 strategic locations of Yogyakarta city using Hi-Vol air sampler that equipped with cellulose filter TFA 2133. The sample irradiated for 30 min with 14 MeV fast neutron and then counted using gamma spectroscopy (AccuSpec. The result indicated that concentration of Pb-208 along Diponegoro street up to Janti street respectively are minimally (0.689 - 0.775 mg/m3, and maximally:  (1.598 - 1.785 mg/m3. According to DIY governor decree No. 153/2002 about the limited toxicity ambient on Yogyakarta area it is concentration that Pb. The concentration of Pb-208 are still below the permitted value of 2 mg/m3, but in certain areas, the Pb concentration is almost equal to upper limit of permitted concentration of Pb.   Keywords: air borne, neutron generator, FNAA

  6. Air tamponade of the heart.

    Science.gov (United States)

    Gołota, Janusz J; Orłowski, Tadeusz; Iwanowicz, Katarzyna; Snarska, Jadwiga

    2016-06-01

    Pneumopericardium is a rare disease defined as the presence of air or gas in the pericardial sac. Among the etiological factors, the following stand out: chest trauma, barotrauma, air-containing fistulas between the pericardium and the surrounding structures, secondary gas production by microorganisms growing in the pericardial sac, and iatrogenic factors. Until now, spontaneous pneumopericardium has been considered a harmless and temporary state, but a review of clinical cases indicates that the presence of air in the pericardium can lead to cardiac tamponade and life-threatening hemodynamic disturbances. We present the case of an 80-year-old patient with a chronic bronchopericardial fistula, who suffered from a cardiac arrest due to air tamponade of the heart.

  7. On some fundamental properties of structural topology optimization problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2010-01-01

    We study some fundamental mathematical properties of discretized structural topology optimization problems. Either compliance is minimized with an upper bound on the volume of the structure, or volume is minimized with an upper bound on the compliance. The design variables are either continuous o....... The presented examples can be used as teaching material in graduate and undergraduate courses on structural topology optimization....

  8. Population Structure and Abundance of Arsenite-Oxidizing Bacteria along an Arsenic Pollution Gradient in Waters of the Upper Isle River Basin, France▿ †

    Science.gov (United States)

    Quéméneur, Marianne; Cébron, Aurélie; Billard, Patrick; Battaglia-Brunet, Fabienne; Garrido, Francis; Leyval, Corinne; Joulian, Catherine

    2010-01-01

    Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and Eh levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters. PMID:20453153

  9. Bacterial and fungal endophthalmitis in upper Egypt: related species and risk factors.

    Science.gov (United States)

    Gharamah, A A; Moharram, A M; Ismail, M A; Al-Hussaini, A K

    2012-08-01

    To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  10. Factor Structure of the Air Force Officer Qualifying Test: Analysis and Comparison

    National Research Council Canada - National Science Library

    Carreta, Thomas

    1998-01-01

    The Air Force Officer Qualifying Test (AFOQT) is used to qualify men and women for commissions in the Air Force, classify them for pilot and navigator jobs, and award Reserve Officer Training Corps (ROTC) scholarships...

  11. Ignition phase and steady-state structures of a non-thermal air plasma

    CERN Document Server

    Lu Xin Pei

    2003-01-01

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.

  12. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 2: February

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-09-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of February. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  13. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 7: July

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of July. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  14. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 4: April

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of April. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  15. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 3: March

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-11-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of March. Included are global analyses of: (1) Mean Temperature Standard Deviation; (2) Mean Geopotential Height Standard Deviation; (3) Mean Density Standard Deviation; (4) Height and Vector Standard Deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean Dew Point Standard Deviation for levels 1000 through 30 mb; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  16. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 10: October

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of October. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point/standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  17. Saving energy by using underfloor-air-distribution (UFAD) system in commercial buildings

    International Nuclear Information System (INIS)

    Alajmi, Ali; El-Amer, Wid

    2010-01-01

    The number of attempts by researchers to reduce building energy consumption has increased, ever since global warming became a serious issue. In this trend, a relatively new approach of air distribution, underfloor-air-distribution system (UFAD), has been widely used in new commercial buildings. This technique is simply accomplished by supplying air through a raised floor using different types of distribution configurations and outlets. In UFAD, the air is directly supplied to the occupants' area (occupied zone) causing occupants plumes and zone heat load stratify to the upper layer of the zone (unoccupied zone), which are later extracted from return points at high level. This flow pattern gives UFAD the advantage of using less energy than a conventional air-distribution system, ceiling-based air distribution (CBAD) due to lower pressure drop and lower air flow rate. This paper investigates the effectiveness of UFAD systems in commercial buildings for various types of application and at different air supply temperatures in a hot climate (The State of Kuwait). The findings show that UFAD has a significant saving of energy compared to CBAD (∼30%); in particular with high ceiling building types, as well as providing satisfactory comfort conditions for the occupants. Ultimately, more investigations should be done on conventional building heights (offices) to optimize the utilization of thermal stratification at design and operation stages.

  18. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    KAUST Repository

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pö rtner, Hans-Otto; Giomi, Folco

    2016-01-01

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  19. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    KAUST Repository

    Fusi, Marco

    2016-01-13

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism\\'s thermal niche are equivalent to the upper limits of the organism\\'s functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab\\'s aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  20. Analysis of flexible fabric structures for large-scale subsea compressed air energy storage

    International Nuclear Information System (INIS)

    Pimm, A; Garvey, S

    2009-01-01

    The idea of storing compressed air in submerged flexible fabric structures anchored to the seabed is being investigated for its potential to be a clean, economically-attractive means of energy storage which could integrate well with offshore renewable energy conversion. In this paper a simple axisymmetric model of an inextensional pressurised bag is presented, along with its implementation in a constrained multidimensional optimization used to minimise the cost of the bag materials per unit of stored energy. Base pressure difference and circumferential stress are included in the optimization, and the effect of hanging ballast masses from the inside of the bag is also considered. Results are given for a zero pressure natural shape bag, a zero pressure bag with circumferential stress and hanging masses, and a nonzero pressure bag with circumferential stress and hanging masses.

  1. Operation and extension of the Bavarian state air-hygienic monitoring system and the radioactive nuisance measuring grid in northern Bavaria

    International Nuclear Information System (INIS)

    Munzert, K.

    1994-01-01

    The measuring grid of the Bavarian state air-hygienic monitoring system with, currently, 71 measuring points (Upper and Lower Palatine, Upper, Middle and Lower Franconia) in 35 sites measures nuisances in northern Bavaria. 14 of the sites are also used for measuring radioactivity. The measuring stations are situated above all in areas with a high industrial or residential density (established areas of investigation); but also in areas near the border receiving heavy pollutant freights because of long-range pollutant transport (smog areas in the urban and rural district of Hof, rural district of Wundsiedel) and in areas far afield from industrial zones, measurements are carried out.- At each station, the air-analytical, meteorological and radiological readings are continuously processed by computer into half-hourly, hourly or three-hourly means. (orig./HP) [de

  2. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  3. Air Travel Safety in Postoperative Breast Cancer Patients: A Systematic Review.

    Science.gov (United States)

    Co, Michael; Ng, Judy; Kwong, Ava

    2018-05-17

    Air travel has long been a dilemma in post-breast cancer surgery patients. Anecdotal reports have described adverse outcomes on surgical wound, implants, and lymphedema during air travel. This review aims to evaluate the best evidence from the literature concerning the air travel safety in breast cancer patients. A comprehensive review was performed of the Medline, Embase, CINAHL, and Cochrane databases using a predefined strategy. Retrieved studies were independently screened and rated for relevance. Data were extracted by 2 researchers. We reviewed the best evidence on air travel safety in postoperative breast cancer patients. Evidence was limited in the current literature to suggest adverse effects on postoperative mastectomy wounds and drains by high-altitude travel. Similarly, adverse effects on breast implants were limited to case reports and ex vivo experiments. A systematic review of 12 studies concluded that air travel is not associated with upper limb lymphedema after breast cancer surgery. Deep-vein thrombosis (DVT) is a known complication after air travel; in addition, malignancy itself is a known risk factor for DVT. Evidence of safety to continue tamoxifen during the period of air travel is lacking in the literature. Evidence to support the use of systemic DVT prophylaxis in general postoperative breast cancer patients is also limited. Best evidence from a large retrospective study suggested that mechanical antiembolism devices and early mobilization are the only measures required. Air travel is generally safe in patients after breast cancer surgery. Copyright © 2018. Published by Elsevier Inc.

  4. Volumetric MR imaging of the upper airway in obstructive sleep apnea syndrome

    International Nuclear Information System (INIS)

    Gefter, W.B.; Nordberg, J.E.; Hoffman, E.A.

    1989-01-01

    Structural abnormalities in the upper airway and surrounding soft tissues may contribute to the obstructive sleep apnea syndrome (OSAS). The authors have utilized MR imaging (3-mm contiguous T1-weighted sagittal images obtained with a local coil at 1.5 T) combined with a computer graphics-based analysis of three-dimensional geometry to study the upper airways of 10 awake, supine normal subjects (29--50 years-old), seven patients with OSAS (34--54 years old), and a nonapneic snorer (24 years old). Upper-airway anatomic segments were compared with regard to regional volumes, minimum cross-sectional areas, and pharyngeal wall thickness. Results to date show a smaller retropalatial airway volume in the patients with OSAS (1.8 cm 3 ± 0.8 [SEM]) and a smaller minimum cross-sectional retropalatal area in patients with OSAS (0.45 cm 2 ) than in the nonapneic snorer (0.9 cm 2 ) and the normal subjects (2.5 cm 2 ± 0.2)

  5. Global warming-induced upper-ocean freshening and the intensification of super typhoons.

    Science.gov (United States)

    Balaguru, Karthik; Foltz, Gregory R; Leung, L Ruby; Emanuel, Kerry A

    2016-11-25

    Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.

  6. A study of building structural features associated with high indoor air concentrations of organochlorine termiticides.

    Science.gov (United States)

    Pisaniello, D L; Gun, R T; Tkaczuk, M N; Hann, C; Crea, J

    1993-09-01

    As part of a two-year study of post-treatment residential exposure to the termiticide, aldrin, the building structural features of ten houses with crawl-space-type floors were assessed by an independent inspector. Building attributes recorded on a checklist included the age of the dwelling, room characteristics, floor details and the nature of subfloor ventilation. At the end of each inspection, the inspector, who was blinded to data on airborne aldrin concentrations, provided a rating of expected indoor air contamination. Several of the building attributes, including the age of the house, the area of exterior subfloor vents, as well as the inspector's rating, were significantly correlated with airborne aldrin values. No single building variable, however, was highly correlated with every measure of aldrin concentration over a 12-month period. The observed data are consistent with poor subfloor ventilation and a 'leaky' floor being important contributors to indoor air pollution. It is recommended that pest control companies advise householders about any obvious floor and ventilation deficiencies before soil treatment work is undertaken. Pesticide exposure (by analogy with geological radon exposure) may be reduced by sealing gaps in floors and/or by improving subfloor ventilation.

  7. Respiratory tract pathology and cytokine imbalance in clinically healthy children chronically and sequentially exposed to air pollutants.

    Science.gov (United States)

    Calderón-Garcidueñas, L; Devlin, R B; Miller, F J

    2000-11-01

    Chronic exposure of children to a complex mixture of air pollutants leads to recurrent episodes of upper and lower respiratory tract injury. An altered nasal mucociliary apparatus leaves the distal acinar airways more vulnerable to reactive gases and particulate matter (PM). The heterogeneity of structure in the human lung can impart significant variability in the distribution of ozone dose and particle deposition; this, in turn, influences the extent of epithelial injury and repair in chronically exposed children. Cytokines are low-molecular-weight proteins that act as intercellular mediators of inflammatory reactions, including lung injury of various etiologies. Cytokines are involved in generating inflammatory responses that contribute to injury at the lung epithelial and endothelial barriers. Mexico City is a 20-million-person megacity with severe air pollution problems. Southwest Metropolitan Mexico City (SWMMC) atmosphere is characterized by a complex mixture of air pollutants, including ozone, PM, and aldehydes. There is radiological evidence that significant lower respiratory tract damage is taking place in clinically healthy children chronically and sequentially exposed to air pollutants while growing up in SWMMC. We hypothesize that there is an imbalanced and dysregulated cytokine network in SWMMC children with overproduction of proinflammatory cytokines and cytokines involved in lung tissue repair and fibrosis. The nature of the sustained imbalance among the different cytokines ultimately determines the final lung histopathology, which would include subchronic inflammation, emphysema, and fibrosis. Cytokines likely would reach the systemic circulation and produce systemic effects. Individuals with an underlying respiratory or cardiovascular disease are less able to maintain equilibrium of the precarious cytokine networks.

  8. Generation of layering in the upper arctic troposphere away from the jet stream

    Directory of Open Access Journals (Sweden)

    A. Karpetchko

    Full Text Available Ozone sounding databases for two stations, So-dankylä (67° N, 27° E and Ny-Ålesund (79° N, 12° E were used in order to investigate the generation of layering in the upper and middle troposphere of the Arctic. We concentrated on dry, ozone-rich and stable layers observed below the thermal tropopause under light wind conditions. This condition ensures that the observed layer is not a tropopause fold, a well-known phenomenon that develops within frontal zones near the jet stream. Selection criteria for ozone, humidity and stability anomalies of the tropopause fold detection algorithm were used here to pick out for detailed studies the most pronounced examples of laminae. For all these cases the meteorological situations were investigated in order to establish the origin of the observed layers. We found that layers could be classified into two groups. Laminae of the first group were observed equatorward of the jet stream and those of a second group were observed poleward of the jet. The meteorological situation for the first group resembles that for equatorward stratospheric streamer propagation. It was found that this group accounts for only a small fraction of the layers observed at Sodankylä and for none of those observed at Ny-Ålesund during the period investigated. A large case-to-case variability in the synoptic situation was observed for the second group of laminae, which were detected northward of the jet stream. Nevertheless, in about half of the cases, streamers of tropospheric air were found in the vicinity of the stations on the isentropic surfaces just above the detected stratospheric layers. Back trajectory analyses showed that these layers originated in the vicinity of the polar jet stream. We suppose that laminae-like structures in the troposphere were caused, in both groups, by equatorward (poleward advection of the stratospheric (tropospheric air, together with differential vertical shear. Forward-trajectory calculations

  9. Generation of layering in the upper arctic troposphere away from the jet stream

    Directory of Open Access Journals (Sweden)

    A. Karpetchko

    2003-07-01

    Full Text Available Ozone sounding databases for two stations, So-dankylä (67° N, 27° E and Ny-Ålesund (79° N, 12° E were used in order to investigate the generation of layering in the upper and middle troposphere of the Arctic. We concentrated on dry, ozone-rich and stable layers observed below the thermal tropopause under light wind conditions. This condition ensures that the observed layer is not a tropopause fold, a well-known phenomenon that develops within frontal zones near the jet stream. Selection criteria for ozone, humidity and stability anomalies of the tropopause fold detection algorithm were used here to pick out for detailed studies the most pronounced examples of laminae. For all these cases the meteorological situations were investigated in order to establish the origin of the observed layers. We found that layers could be classified into two groups. Laminae of the first group were observed equatorward of the jet stream and those of a second group were observed poleward of the jet. The meteorological situation for the first group resembles that for equatorward stratospheric streamer propagation. It was found that this group accounts for only a small fraction of the layers observed at Sodankylä and for none of those observed at Ny-Ålesund during the period investigated. A large case-to-case variability in the synoptic situation was observed for the second group of laminae, which were detected northward of the jet stream. Nevertheless, in about half of the cases, streamers of tropospheric air were found in the vicinity of the stations on the isentropic surfaces just above the detected stratospheric layers. Back trajectory analyses showed that these layers originated in the vicinity of the polar jet stream. We suppose that laminae-like structures in the troposphere were caused, in both groups, by equatorward (poleward advection of the stratospheric (tropospheric air, together with differential vertical shear. Forward-trajectory calculations

  10. Pediatric and staff dose evaluation in fluoroscopy upper gastrointestinal series

    Energy Technology Data Exchange (ETDEWEB)

    Filipov, Danielle; Nascimento, Eduarda X. do; Lacerda, Camila M., E-mail: diilipov@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UFTPR), Curitiba, PR (Brazil); Schelin, Hugo R.; Ledesma, Jorge A.; Denyak, Valeriy; Legnani, Adriano, E-mail: ledesmajorgealberto@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2014-07-01

    Fluoroscopy upper GI series are widely used for the diagnosis of gastroesophageal reflux disease in children. Pediatric radiological procedures bring concern due to the high life expectancy and radiosensitivity on children, as well as the risks to the exposed staff Important studies present the mean KAP values on patients and the European Commission (EC) recommends specific techniques for these procedures. For the occupational expositions, staffs doses must be within the annual limit, according to the CNEN 3.01. Based on those data, the aims of the current study are: analyzing the upper GI procedure; determining the KAP on the patient and estimating the annual equivalent dose on the staff's crystalline. LiF :Mg,Ti TLDs were positioned on the patient upper chest center, so that the entrance surface air kerma could be determined. The field size on the patient s surface and the kerma were multiplied so that the KAP was obtained. LiF:Mg,Cu,P dosimeters were used to estimate the equivalent dose on the staff s crystalline. The results showed discrepancy in the kVp range and in the exposure time when compared to the EC data. The mean KAP values for the 0-1,1-3 and 3-10 years old patients were, respectively: 102 ± 19 cGy.cm2, 142 ± 25 cGy.cm2 and 323 ± 39 cGy.cm2; which are higher than the KAPs presented in the studies used for comparison. The estimated annual equivalent dose in the staff s crystalline would be approximately 85% higher than the limit set by the CNEN. Analyzing the data, it becomes clear that an optimization implementation is necessary in order to reduce the radiation levels. (author)

  11. Pediatric and staff dose evaluation in fluoroscopy upper gastrointestinal series

    International Nuclear Information System (INIS)

    Filipov, Danielle; Nascimento, Eduarda X. do; Lacerda, Camila M.; Schelin, Hugo R.; Ledesma, Jorge A.; Denyak, Valeriy; Legnani, Adriano

    2014-01-01

    Fluoroscopy upper GI series are widely used for the diagnosis of gastroesophageal reflux disease in children. Pediatric radiological procedures bring concern due to the high life expectancy and radiosensitivity on children, as well as the risks to the exposed staff Important studies present the mean KAP values on patients and the European Commission (EC) recommends specific techniques for these procedures. For the occupational expositions, staffs doses must be within the annual limit, according to the CNEN 3.01. Based on those data, the aims of the current study are: analyzing the upper GI procedure; determining the KAP on the patient and estimating the annual equivalent dose on the staff's crystalline. LiF :Mg,Ti TLDs were positioned on the patient upper chest center, so that the entrance surface air kerma could be determined. The field size on the patient s surface and the kerma were multiplied so that the KAP was obtained. LiF:Mg,Cu,P dosimeters were used to estimate the equivalent dose on the staff s crystalline. The results showed discrepancy in the kVp range and in the exposure time when compared to the EC data. The mean KAP values for the 0-1,1-3 and 3-10 years old patients were, respectively: 102 ± 19 cGy.cm2, 142 ± 25 cGy.cm2 and 323 ± 39 cGy.cm2; which are higher than the KAPs presented in the studies used for comparison. The estimated annual equivalent dose in the staff s crystalline would be approximately 85% higher than the limit set by the CNEN. Analyzing the data, it becomes clear that an optimization implementation is necessary in order to reduce the radiation levels. (author)

  12. Creep/Stress Rupture Behavior and Failure Mechanisms of Full CVI and Full PIP SiC/SiC Composites at Elevated Temperatures in Air

    Science.gov (United States)

    Bhatt, R. T.; Kiser, J. D.

    2017-01-01

    SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.

  13. Observational evidence for aerosols increasing upper tropospheric humidity

    Directory of Open Access Journals (Sweden)

    L. Riuttanen

    2016-11-01

    Full Text Available Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.

  14. Uptake of SO/sub 2/ and NO/sub 2/ by the isolated upper airways

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, E

    1968-01-01

    SO/sub 2/ and NO/sub 2/ concentrations were measured above and below isolated tracheas of 2 dogs and 3 rabbits. Air--gas mixtures were pumped through nose to upper trachea for 10 to 15 min at rates of 3.5 and 0.75 liters/min, respectively. Gas concentrations ranged from 7 to 87 ppM SO/sub 2/ and from 4 to 41 ppM NO/sub 2/. The rate of uptake for the isolated airways was a generally constant 93.7% for SO/sub 2/ and 42.1% for NO/sub 2/, a significant difference.

  15. Upper gastrointestinal bleeding in patients with CKD.

    Science.gov (United States)

    Liang, Chih-Chia; Wang, Su-Ming; Kuo, Huey-Liang; Chang, Chiz-Tzung; Liu, Jiung-Hsiun; Lin, Hsin-Hung; Wang, I-Kuan; Yang, Ya-Fei; Lu, Yueh-Ju; Chou, Che-Yi; Huang, Chiu-Ching

    2014-08-07

    Patients with CKD receiving maintenance dialysis are at risk for upper gastrointestinal bleeding. However, the risk of upper gastrointestinal bleeding in patients with early CKD who are not receiving dialysis is unknown. The hypothesis was that their risk of upper gastrointestinal bleeding is negatively linked to renal function. To test this hypothesis, the association between eGFR and risk of upper gastrointestinal bleeding in patients with stages 3-5 CKD who were not receiving dialysis was analyzed. Patients with stages 3-5 CKD in the CKD program from 2003 to 2009 were enrolled and prospectively followed until December of 2012 to monitor the development of upper gastrointestinal bleeding. The risk of upper gastrointestinal bleeding was analyzed using competing-risks regression with time-varying covariates. In total, 2968 patients with stages 3-5 CKD who were not receiving dialysis were followed for a median of 1.9 years. The incidence of upper gastrointestinal bleeding per 100 patient-years was 3.7 (95% confidence interval, 3.5 to 3.9) in patients with stage 3 CKD, 5.0 (95% confidence interval, 4.8 to 5.3) in patients with stage 4 CKD, and 13.9 (95% confidence interval, 13.1 to 14.8) in patients with stage 5 CKD. Higher eGFR was associated with a lower risk of upper gastrointestinal bleeding (P=0.03), with a subdistribution hazard ratio of 0.93 (95% confidence interval, 0.87 to 0.99) for every 5 ml/min per 1.73 m(2) higher eGFR. A history of upper gastrointestinal bleeding (Pupper gastrointestinal bleeding risk. In patients with CKD who are not receiving dialysis, lower renal function is associated with higher risk for upper gastrointestinal bleeding. The risk is higher in patients with previous upper gastrointestinal bleeding history and low serum albumin. Copyright © 2014 by the American Society of Nephrology.

  16. Experiment on performance of upper head injection system with ROSA-II

    International Nuclear Information System (INIS)

    1976-09-01

    Thermo-hydraulic behavior in the primary cooling system of a pressurized water reactor with an upper head injection system (UHI) in a postulated loss-of-coolant accident (LOCA) has been studied with ROSA-II test facility. Simulated UHI and internal structures of the pressure vessel were installed to the facility for the experiment. Nine maximum-sized double-ended break tests and one medium-sized split break test were performed for the cold-leg break condition. The results are as follows: (1) Fluid mixing in the upper head is not perfect. (2) Cold water injection into the steam or two-phase fluid causes violent depressurization due to the condensation. Flow pattern in the primary cooling system is largely influenced by the above two. (auth.)

  17. Right upper quadrant pain

    International Nuclear Information System (INIS)

    Ralls, P.W.; Colletti, P.M.; Boswell, W.D. Jr.; Halls, J.M.

    1984-01-01

    Historically, assessment of acute right upper quadrant abdominal pain has been a considerable clinical challenge. While clinical findings and laboratory data frequently narrow the differential diagnosis, symptom overlap generally precludes definitive diagnosis among the various diseases causing acute right upper quadrant pain. Fortunately, the advent of newer diagnostic imaging modalities has greatly improved the rapidity and reliability of diagnosis in these patients. An additional challenge to the physician, with increased awareness of the importance of cost effectiveness in medicine, is to select appropriate diagnostic schema that rapidly establish accurate diagnoses in the most economical fashion possible. The dual goals of this discussion are to assess not only the accuracy of techniques used to evaluate patients with acute right upper quadrant pain, but also to seek out cost-effective, coordinated imaging techniques to achieve this goal

  18. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure.

    Science.gov (United States)

    Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V

    2014-06-24

    Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single surfactants. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single surfactants. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary surfactant systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing nature of the surfactant hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.

  19. The Benefits of Departmentalization in Upper Elementary Grades for Students and Teachers

    Science.gov (United States)

    Johnson, Malissa Lee

    2013-01-01

    This study addressed the benefits of departmentalization in upper elementary grades for students and teachers. The variables of gender and classroom structure (departmentalized versus self-contained) were considered for student participants (n = 125). Results for students were evaluated on pre-test and post-test data using the following measures:…

  20. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  1. The influence of air-filled structures on wave propagation and beam formation of a pygmy sperm whale (Kogia breviceps) in horizontal and vertical planes.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen

    2017-10-01

    The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.

  2. An energy/emissions/economic analysis resource for north Moravia, upper Silesia, and Kisuca

    Energy Technology Data Exchange (ETDEWEB)

    Walder, V.

    1995-12-31

    The United States Agency for International Development (USAID) is sponsoring the Technology Transfer Network (TTN) which is centered in Ostrava, Czech Republic. The primary objective of the TTN is to provide a resource for municipalities, industries, and companies interested in reducing air pollution, improving energy efficiency, and implementing projects in North Moravia, Upper Silesia, and Kisuca. The TTN is providing a communications network (newsletters, mailings, and other media), seminars, workshops, software, access to past and ongoing studies, and a database of U.S. vendors supporting the region. Seminars and major communication material of the TTN will be provided in Czech/Slovak, Polish, and English as appropriate.

  3. Garnet Signatures in Geophysical and Geochemical Observations: Insights into the Thermo-Petrological Structure of Oceanic Upper Mantle

    Science.gov (United States)

    Grose, C. J.; Afonso, J. C.

    2013-12-01

    We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.

  4. Effects of air pollutants on epicuticular wax chemical composition

    International Nuclear Information System (INIS)

    Percy, K.E.; McQuattie, C.J.; Rebbeck, J.A.

    1994-01-01

    There are numerous reports in the literature of modifications to epicuticular wax structure as a consequence of exposure to air pollutants. Most authors have used scanning electron microscopy (SEM) to describe changes in wax crystallite morphology or distribution. ''Erosion'' or ''weathering'' of crystalline structure into an amorphous state is the most common observation, particularly in the case of conifer needles having the characteristic tube crystallites comprised of nonacosan-10-ol. Wax structure is largely determined by its chemical composition. Therefore, many of the reported changes in wax structure due to air pollutants probably arise from direct interactions between pollutants such as ozone and wax biosynthesis. The literature describing changes in wax composition due to pollutants is briefly reviewed. New evidence is introduced in support of the hypothesis for a direct interaction between air pollutants and epicuticular wax Biosynthesis. (orig.)

  5. Air and blood fluid dynamics: at the interface between engineering and medicine

    International Nuclear Information System (INIS)

    Pollard, A; Secretain, F; Milne, B

    2014-01-01

    The flows in the human upper airway and human heart during open heart surgery are considered. Beginning with idealized models of the human upper airway, current methods to extract realistic airway geometries using a novel implementation of optical coherent tomography modality are introduced. Complementary direct numerical simulations are considered that will assist in pre-surgery planning for obstructive sleep apnea. Cardiac air bubbles often arise during open heart surgery. These bubbles are potential emboli that can cause neurological impairment and even death. An experimental programme is outlined that uses acoustic sound to instil bubble surface oscillations that result in bubble breakup. A novel algorithm is introduced that enables a surgical team to obtain real-time in-vivo bubble data to aid cardiac de-airation procedures.

  6. An Investigation On Air and Thermal Transmission Through Knitted Fabric Structures Using the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Ghosh Anindya

    2017-06-01

    Full Text Available Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.

  7. Upper plenum mixing in a BWR

    International Nuclear Information System (INIS)

    Alamgir, M.; Andersen, J.G.M.; Parameswaran, V.

    1984-01-01

    A model for the emergency core cooling injection into the upper plenum of a boiling water reactor has been formulated and implemented into the TRACB02 computer program. The model consists of a spray model and a submerged jet model. The submerged jet model is used when the spray nozzles are covered by a two-phase mixture, and the spray model is used when the nozzles are uncovered. The upper plenum model has been assessed by comparison to an upper plenum mixing test in the Steam Sector Test Facility. It is found that the model accurately predicts the phenomena in the upper plenum of a boiling water reactor

  8. Indoor air and allergic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, G.; Rudolph, R.; Muckelmann, R.

    1982-01-01

    Allergies may be the source of a variety of clinical symptoms. With regard to indoor air, however, the subject will be limited to inhalative allergies. These are diseases which are caused and supported by allergens entering the human organism via the respiratory pathway. The fundamentals of the origin of inhalative allergies are briefly discussed as well as the antigen-antibody reaction and the differentiation between different allergic reactions (Types I and II). In addition, the importance of repetitive infections of the upper respiratory tract for the occurrence of allergies of the respiratory system is pointed out. The most common allergies develop at the mucosae of the nose (allergic rhinitis) and of the bronchiale (allergic asthma bronchiale). Their symptomatology is discussed. Out of the allergologically interesting components of indoor air the following are to be considered primarily: house dust, components of house dust (house dust mite, trogoderma angustum, tenebrio molitor), epithelia of animals, animal feeds, mildew and occupational substances. Unspecific irritants (chemico-physical irritations) which are not acting as allergens, have to be clearly separated from these most frequent allergens. As a possibility of treatment for the therapeutist and the patient, there is the allergen prophylaxis, i.e. an extensive sanitation of the patient's environment including elimination of the allergens and, in addition, an amelioration of the quality of the air with regard to unspecific irritants. To conclude, some socio-medical aspects of respiratory diseases are discussed.

  9. Structural Response of Submerged Air-Backed Plates by Experimental and Numerica