WorldWideScience

Sample records for unusual orbit parameters

  1. A GIANT CONGENITAL ORBITAL TUMOR - AN UNUSUAL PRESENTATION OF RETINOBLASTOMA

    NARCIS (Netherlands)

    ZWAAN, CM; DEWAAL, FC; KOOLE, FD; MENKO, FH; VANDERVALK, P; SLATER, RM; SCHEFFER, H; VANWAVEREN, G; MOLL, AC; SCHOUTENVANMEETEREN, AYN; TAN, KEWP

    1994-01-01

    We report a case of an unusual giant congential tumor presenting in a newborn infant as a large exophytic mass emerging from the left orbit. After enucleation orbital recurrence developed within 14 days. No anti-tumor treatment was given and the child died at the age of 4 weeks. The

  2. Interaction between subdaily Earth rotation parameters and GPS orbits

    Science.gov (United States)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  3. Orbital parameters of extrasolar planets derived from polarimetry

    Science.gov (United States)

    Fluri, D. M.; Berdyugina, S. V.

    2010-03-01

    Context. Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Aims: Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We focus on the diagnostics of orbital parameters and the estimation of the scattering radius of the planet. Methods: We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer; and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars. Results: We discuss the influence of the inclination of the planetary orbit, the position angle of the ascending node, and the eccentricity on the linearly polarized light curves both in Stokes Q/I and U/I. We also analyze errors that arise from the assumption of a point-like star in numerical modeling of polarization as compared to consistent calculations accounting for the finite size of the host star. We find that errors due to the point-like star approximation are reduced with the size of the orbit, but still amount to about 5% for known hot Jupiters. Recovering orbital parameters from simulated data is shown to be very robust even for very noisy data because the polarization curves react

  4. A recent meteorite shower in Antarctica with an unusual orbital history

    Science.gov (United States)

    Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    The Antarctic meteorite collection has proved to be a source of many important discoveries, including a number of previously unknown or very rare meteorite types. A thermoluminescence (TL) survey of meteorite samples recovered by the 1988/89 European expedition and pre-1988 American expeditions to the Allan Hills Main blue ice field resulted in the discovery of 15 meteorites with very high TL levels (greater than 100 krad at 250 C in the glow curve). It is likely that these samples are fragments of a single meteoroid body which: (1) fell very recently and (2) experienced a decrease in orbital perihelia from greater than or equal to 1.1 AU to 1 AU within the last 10(exp 5) yr. Carbon-14 data for two of the samples confirm their young terrestrial age compared to most Antarctic meteorites. Studies of the cosmogenic isotopes in at least one non-Antarctic meteorite which also has very high natural TL, Jilin, indicate that the meteorite experienced a multi-stage irradiation history, the most recent stage being 0.4 Ma in duration following a major break-up of the object. These meteorites, and the few equivalent modern falls, are the only documented samples from bodies which were recently in Earth-approaching (Amor) orbits (i.e., with perihelion greater than 1.0 AU), as opposed to the Earth-crossing (Apollo) orbits which are the source of most other meteorites. Their rarity indicates that such rapid orbit changes are unusual for meteoroid bodies and may be the result of isolated, large break-up events.

  5. Referred pain to the ipsilateral forehead and orbit: An unusual phenomenon during bronchial artery embolization

    International Nuclear Information System (INIS)

    Ramakantan, Ravi; Ketkar, Manoj; Maddali, Krishna; Deshmukh, Hemant

    1999-01-01

    Purpose: We report an unusual pattern of referred pain to the ipsilateral forehead and orbit observed during bronchial artery embolization (BAE) for massive hemoptysis due to pulmonary tuberculosis (TB) and postulate possible neural mechanisms for its occurrence.Methods: Seven men, from a series of 194 patients (171 men, 23 women) undergoing BAE (right bronchial artery 4, left 3) with gelatin sponge for control of massive hemoptysis due to pulmonary TB form the subject of this report.Results: Embolization was successful in achieving control of hemoptysis in these patients and there were no complications following the embolization. Transient, moderately severe, ipsilateral supraorbital and/or retroorbital pain occurred only during the injection of the gelatin sponge contrast mixture into the bronchial artery. The pain did not occur during the injection of heparinized saline or ionic contrast medium.Conclusions: Referred pain during BAE is an unusual phenomenon. Acute vessel distension triggering visceral sensations is probably the causative mechanism. Sympathetic afferents from the bronchi coursing through the posterior pulmonary plexus eventually pass to the trigeminal ganglion via the carotid sympathetic chain. The ophthalmic and maxillary divisions of the trigeminal nerve then mediate pain sensation to the ipsilateral forehead and orbit. Similarly, parasympathetic afferents from the pulmonary plexus crossing the nucleus of the spinal tract of the trigeminal nerve may be responsible for interexchange of impulses to the neurons in this nucleus. Sensory fibers of the ophthalmic and maxillary nerves relaying in this nucleus are then involved in this pain being referred to the forehead and orbit.

  6. Periodic orbits of hybrid systems and parameter estimation via AD

    International Nuclear Information System (INIS)

    Guckenheimer, John; Phipps, Eric Todd; Casey, Richard

    2004-01-01

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method (GM00, Phi03). Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance

  7. Unusual intraconal localization of orbital giant cell angiofibroma.

    Science.gov (United States)

    Ekin, Meryem Altin; Ugurlu, Seyda Karadeniz; Cakalagaoglu, Fulya

    2018-01-01

    Giant cell angiofibroma (GCA) is a recently reported rare soft-tissue tumor that can develop in various sites including orbit. Orbital GCAs were mainly located in the eyelid or extraconal regions such as lacrimal gland and conjunctiva. We report an atypical case of a GCA arising in the intraconal area of the orbit in a 65-year-old male patient. The tumor was excised in total by lateral orbitotomy. Histological and immunohistochemical features were consistent with the diagnosis of GCA. No recurrence was observed during the follow-up of over 2 years. GCA is a rare tumor that should be considered in the differential diagnosis of intraconal orbital tumors. Complete surgical removal is the current optimal treatment option.

  8. Unusual intraconal localization of orbital giant cell angiofibroma

    Directory of Open Access Journals (Sweden)

    Meryem Altin Ekin

    2018-01-01

    Full Text Available Giant cell angiofibroma (GCA is a recently reported rare soft-tissue tumor that can develop in various sites including orbit. Orbital GCAs were mainly located in the eyelid or extraconal regions such as lacrimal gland and conjunctiva. We report an atypical case of a GCA arising in the intraconal area of the orbit in a 65-year-old male patient. The tumor was excised in total by lateral orbitotomy. Histological and immunohistochemical features were consistent with the diagnosis of GCA. No recurrence was observed during the follow-up of over 2 years. GCA is a rare tumor that should be considered in the differential diagnosis of intraconal orbital tumors. Complete surgical removal is the current optimal treatment option.

  9. Orbital parameters of the multiple system EM Boo

    Science.gov (United States)

    Özkardeş, B.; Bakış, H.; Bakış, V.

    2018-02-01

    EM Boo is a relatively bright (V = 8.98 mag.) and short orbital period (P⁓2.45 days) binary star member of the multiple system WDS J14485+2445AB. There is neither photometric nor spectroscopic study of the system in the literature. In this work, we obtained spectroscopic orbital parameters of the system from new high resolution spectroscopic observations made with échelle spectrograph attached to UBT60 telescope of Akdeniz University. The spectroscopic solution yielded the values K1 = 100.7±2.6 km/s, K2 = 120.1±2.6 km/s and Vγ = -14.6±3.1 km/s, and thus the mass ratio of the system q = 0.838±0.064.

  10. Orbital frustration induced unusual ordering in semiconductor alloys

    Science.gov (United States)

    Liu, Kai; Yin, Wanjian; Chen, Shiyou; Gong, Xingao; Wei, Suhuai; Xiang, Hongjun

    It is well known that ternary zinc-blende semiconductors are always more stable in the chalcopyrite (CH) structure than the Cu-Au (CA) structure because CH structure has large Coulomb interaction and reduced strain energy. Surprisingly, an experimental study showed that ZnFeSe2 alloy takes the CA order as the ground state structure, which is consistent with our density function theory (DFT) calculations showing that the CA order has lower energy than the CH order for ZnFeSe2. We reveal that the orbital degree of freedom of high-spin Fe2+ ion (d6) in the tetrahedral crystal field plays a key role in stabilizing the CA order. First, the spin-minority d electron of the Fe2+ ion tends to occupy the dx2-y 2 -like orbital instead of the d3z2 -r2 -like orbital because of its large negative Coulomb energy. Second, for a nearest-neighboring Fe2+ pair, two spin-minority d electrons with occupied dx2-y 2 -like orbitals in the plane containing the Fe-Fe bond has lower electronic kinetic energy. Both conditions can be satisfied in the CA ordered ZnFeSe2 alloy, while there is an orbital frustration in the CH structure. Our results suggest that orbital degree of freedom provides a new way to manipulate the structure and properties of alloys. Work at Fudan was supported by NSFC (11374056), the Special Funds for Major State Basic Research (2012CB921400, 2015CB921700), Program for Professor of Special Appointment (Eastern Scholar), and Fok Ying Tung Education Foundation.

  11. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    Science.gov (United States)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be

  12. The spectroscopic orbits and physical parameters of GG Carinae

    Science.gov (United States)

    Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.

    2012-04-01

    Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of

  13. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2013-12-01

    Full Text Available In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR observations for the International Laser Ranging Service (ILRS associate analysis center (AAC. Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD and finding solutions of a terrestrial reference frame (TRF and Earth orientation parameters (EOPs. For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS 08 C04 results, shows that standard deviations of polar motion Xp and Yp are 0.754 milliarcseconds (mas and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  14. Infective Endocarditis Presenting as Bilateral Orbital Cellulitis: An Unusual Case

    OpenAIRE

    Asif, Talal; Hasan, Badar; Ukani, Rehman; Pauly, Rebecca R

    2017-01-01

    Orbital cellulitis is a severe and sight-threatening infection of orbital tissues posterior to the orbital septum. The most common causes of orbital cellulitis are rhinosinusitis, orbital trauma, and surgery. Infective endocarditis (IE) is a systemic infection that begins on cardiac valves and spreads by means of the bloodstream to peripheral organs. Septic emboli can spread to any organ including the eyes and can cause focal or diffuse ophthalmic infection. Ocular complications of IE classic...

  15. Vortices in spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.

    2011-01-01

    Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.

  16. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  17. Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions

    Energy Technology Data Exchange (ETDEWEB)

    Lecler, Augustin [Fondation Ophtalmologique Adolphe de Rothschild, Department of Radiology, Paris (France); Cardiovascular Research Centre - PARCC, Universite Paris Descartes Sorbonne Paris Cite, INSERM UMR-S970, Paris (France); Savatovsky, Julien; Sadik, Jean-Claude; Charbonneau, Frederique; Berges, Olivier [Fondation Ophtalmologique Adolphe de Rothschild, Department of Radiology, Paris (France); Balvay, Daniel [Cardiovascular Research Centre - PARCC, Universite Paris Descartes Sorbonne Paris Cite, INSERM UMR-S970, Paris (France); Zmuda, Mathieu; Galatoire, Olivier [Fondation Ophtalmologique Adolphe de Rothschild, Department of Orbitopalpebral Surgery, Paris (France); Picard, Herve [Fondation Ophtalmologique Adolphe de Rothschild, Clinical Research Unit, Paris (France); Fournier, Laure [Cardiovascular Research Centre - PARCC, Universite Paris Descartes Sorbonne Paris Cite, INSERM UMR-S970, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Radiology Department, Paris (France)

    2017-12-15

    To evaluate repeatability of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) parameters in the orbit. From December 2015 to March 2016, 22 patients were scanned twice using an IVIM sequence with 15b values (0-2,000 s/mm{sup 2}) at 3.0T. Two readers independently delineated regions of interest in an orbital mass and in different intra-orbital and extra-orbital structures. Short-term test-retest repeatability and inter-observer agreement were assessed using the intra-class correlation coefficient (ICC), the coefficient of variation (CV) and Bland-Altman limits of agreements (BA-LA). Test-retest repeatability of IVIM parameters in the orbital mass was satisfactory for ADC and D (mean CV 12% and 14%, ICC 95% and 93%), poor for f and D*(means CV 43% and 110%, ICC 90% and 65%). Inter-observer repeatability agreement was almost perfect in the orbital mass for all the IVIM parameters (ICC = 95%, 93%, 94% and 90% for ADC, D, f and D*, respectively). IVIM appeared to be a robust tool to measure D in orbital lesions with good repeatability, but this approach showed a poor repeatability of f and D*. (orig.)

  18. Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions

    International Nuclear Information System (INIS)

    Lecler, Augustin; Savatovsky, Julien; Sadik, Jean-Claude; Charbonneau, Frederique; Berges, Olivier; Balvay, Daniel; Zmuda, Mathieu; Galatoire, Olivier; Picard, Herve; Fournier, Laure

    2017-01-01

    To evaluate repeatability of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) parameters in the orbit. From December 2015 to March 2016, 22 patients were scanned twice using an IVIM sequence with 15b values (0-2,000 s/mm 2 ) at 3.0T. Two readers independently delineated regions of interest in an orbital mass and in different intra-orbital and extra-orbital structures. Short-term test-retest repeatability and inter-observer agreement were assessed using the intra-class correlation coefficient (ICC), the coefficient of variation (CV) and Bland-Altman limits of agreements (BA-LA). Test-retest repeatability of IVIM parameters in the orbital mass was satisfactory for ADC and D (mean CV 12% and 14%, ICC 95% and 93%), poor for f and D*(means CV 43% and 110%, ICC 90% and 65%). Inter-observer repeatability agreement was almost perfect in the orbital mass for all the IVIM parameters (ICC = 95%, 93%, 94% and 90% for ADC, D, f and D*, respectively). IVIM appeared to be a robust tool to measure D in orbital lesions with good repeatability, but this approach showed a poor repeatability of f and D*. (orig.)

  19. Localization of periodic orbits of the Roessler system under variation of its parameters

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.; Starkov, Konstantin K.

    2007-01-01

    The localization problem of compact invariant sets of the Roessler system is considered in this paper. The main interest is attracted to a localization of periodic orbits. We establish a number of algebraic conditions imposed on parameters under which the Roessler system has no compact invariant sets contained in half-spaces z > 0; z < 0 and in some others. We prove that if parameters (a, b, c) of the Roessler system are such that this system has no equilibrium points then it has no periodic orbits as well. In addition, we give localization conditions of compact invariant sets by using linear functions and one quadratic function

  20. Localization of periodic orbits of the Roessler system under variation of its parameters

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)]. E-mail: konst@citedi.mx; Starkov, Konstantin K. [UABC - Campus Tijuana, Facultad de Ciencias Quimicas e Ingenieria, Calzada Tecnologico, Mesa de Otay, Tijuana, BC (Mexico)

    2007-08-15

    The localization problem of compact invariant sets of the Roessler system is considered in this paper. The main interest is attracted to a localization of periodic orbits. We establish a number of algebraic conditions imposed on parameters under which the Roessler system has no compact invariant sets contained in half-spaces z > 0; z < 0 and in some others. We prove that if parameters (a, b, c) of the Roessler system are such that this system has no equilibrium points then it has no periodic orbits as well. In addition, we give localization conditions of compact invariant sets by using linear functions and one quadratic function.

  1. The TERMS Project: Improved Orbital Parameters and Photometry of HD168443 and the Photometry Pipeline

    Science.gov (United States)

    Pilyavsky, Genady; Mahadevan, S.; Kane, S. R.; Howard, A. W.; Ciardi, D. R.; de Pree, C.; Dragomir, D.; Fischer, D.; Henry, G. W.; Jensen, E. L. N.; Laughlin, G.; Marlowe, H.; Rabus, M.; von Braun, K.; Wright, J. T.; Wang, X.

    2012-01-01

    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) project focuses on updating the ephemerides of known exoplanets, put tighter constraints on the orbital parameters and shrink the large errors on the predicted transit windows, enabling photometric monitoring to search for a transit signature. Here, we present the revised orbital parameters and the photometric coverage during a predicted transit window of HD168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a-priori transit probability (3.7%) from what is expected for a circular orbit (2.5%). The transit ephemeris was updated using refined orbital parameters from additional Keck-HIRES radial velocities. The photometry obtained at the 1 m telescope in Cerro Tololo Inter-American Observatory (CTIO) and the T8 0.8 m Automated Photometric Telescope (APT) at Fairborn Observatory achieved the necessary millimag precision. The expected change in flux (0.5%) for HD168443 was not observed during the predicted transit window, thus allowing us to rule out the transit and put tighter constrains on the orbital inclination of HD168443b. Additionally, we present the software used to analyze the CTIO data. Developed by the TERMS team, this IDL based package is a fast, precise, and easy to use program which has eliminated the need for external software and command line prompts by utilizing the functionality of a graphical user interface (GUI).

  2. Bilateral enlargement of the orbital muscles: first manifestation of renal adenocarcinoma

    International Nuclear Information System (INIS)

    Wolosker, Angela M. Borri; Bekhor, Daniel; Goes, Paulo; Attie, Greicie Cristina Gerra

    2000-01-01

    The authors present an unusual case of a patient with orbital metastases from renal carcinoma involving the extra ocular muscles bilaterally. The importance of computed tomography for the differential diagnosis with other orbital lesions is emphasized. (author)

  3. Improved treatment of global positioning system force parameters in precise orbit determination applications

    Science.gov (United States)

    Vigue, Y.; Lichten, S. M.; Muellerschoen, R. J.; Blewitt, G.; Heflin, M. B.

    1993-01-01

    Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure.

  4. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    Science.gov (United States)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  5. Hashimoto's thyroiditis, Sjogren's syndrome and orbital lymphoma.

    OpenAIRE

    Ko, G. T.; Chow, C. C.; Yeung, V. T.; Chan, H.; Cockram, C. S.

    1994-01-01

    A 69 year old Chinese housewife presented with periorbital puffiness, and dry eyes and mouth. Subsequent investigations confirmed the presence of Hashimoto's thyroiditis, Sjogren's syndrome and orbital lymphoma. This unusual combination is discussed with reference to previous publications.

  6. M2 ocean tide parameters and the deceleration of the moon's mean longitude from satellite orbit data

    Science.gov (United States)

    Felsentreger, T. L.; Marsh, J. G.; Williamson, R. G.

    1979-01-01

    An estimation is made of the principal long-period spherical harmonic parameters in the representation of the M2 ocean tide from the orbital histories of the three satellites 1967-92A, Starlette, and GEOS 3. The data used are primarily the evolution of the orbital inclinations of the satellites in conjunction with the longitude of the ascending node from GEOS 3. Analysis procedure and analytic formulation, as well as ocean tidal parameter estimation and deceleration of the lunar mean longitude are outlined. The credibility of the M2 ocean tide solution is further enhanced by the close accord between the computed value for the deceleration of the lunar mean longitude and other recently reported estimates. It is evident from the results presented that studies of close earth satellite orbits are able to provide important information about the tidal forces acting on the earth.

  7. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-04-22

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  8. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-01-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  9. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    Science.gov (United States)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50

  10. Sickle cell disease with orbital infarction and epidural hematoma

    International Nuclear Information System (INIS)

    Naran, A.D.; Fontana, L.

    2001-01-01

    Although bone infarction is a common feature in sickle cell disease, the involvement of the orbit is an unusual complication. Intracranial bleeding is another uncommon and serious complication. Few cases of orbital infarction alone have been reported. We report imaging findings (CT, bone scan, MRI) in a 16-year-old boy with sickle cell disease with orbital infarction and epidural hematoma. The precise cause of epidural hematoma is not well known, but it is probably related to vaso-occlusive episodes and the tearing of small vessels. (orig.)

  11. Optimal parameters determination of the orbital weld technique using microstructural and chemical properties of welded joint

    International Nuclear Information System (INIS)

    Miranda, A.; Echevarria, J.F.; Rondon, S.; Leiva, P.; Sendoya, F.A.; Amalfi, J.; Lopez, M.; Dominguez, H.

    1999-01-01

    The paper deals with the study of the main parameters of thermal cycle in Orbital Automatic Weld, as a particular process of the GTAW Weld technique. Also is concerned with the investigation of microstructural and mechanical properties of welded joints made with Orbital Technique in SA 210 Steel, a particular alloy widely use during the construction of Economizers of Power Plants. A number of PC software were used in this sense in order to anticipate the main mechanical and structural characteristics of Weld metal and the Heat Affected Zone (HAZ). The papers also might be of great value during selection of optimal Weld parameters to produce sound and high quality Welds during the construction / assembling of structural components in high requirements industrial sectors and also to make a reliable prediction of weld properties

  12. Mapping magnetized geologic structures from space: The effect of orbital and body parameters

    Science.gov (United States)

    Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.

    1984-01-01

    When comparing previous satellite magnetometer missions (such as MAGSAT) with proposed new programs (for example, Geopotential Research Mission, GRM) it is important to quantify the difference in scientific information obtained. The ability to resolve separate magnetic blocks (simulating geological units) is used as a parameter for evaluating the expected geologic information from each mission. The effect of satellite orbital altitude on the ability to resolve two magnetic blocks with varying separations is evaluated and quantified. A systematic, nonlinear, relationship exists between resolution and distance between magnetic blocks as a function of orbital altitude. The proposed GRM would provide an order-of-magnitude greater anomaly resolution than the earlier MAGSAT mission for widely separated bodies. The resolution achieved at any particular altitude varies depending on the location of the bodies and orientation.

  13. A retrograde object near Jupiter's orbit

    Science.gov (United States)

    Connors, M.; Wiegert, P.

    2018-02-01

    Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.

  14. VizieR Online Data Catalog: Orbital parameters of Kuiper Belt objects (Volk+, 2017)

    Science.gov (United States)

    Volk, K.; Malhotra, R.

    2017-11-01

    Our starting point is the list of minor planets in the outer solar system cataloged in the database of the Minor Planet Center (http://www.minorplanetcenter.net/iau/lists/t_centaurs.html and http://www.minorplanetcenter.net/iau/lists/t_tnos.html) as of 2016 October 20. The complete listing of our sample, including best-fit orbital parameters and sky locations, is provided in Table1. (1 data file).

  15. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    Science.gov (United States)

    Huang, S. X.; Chen, Fei; Kang, Jian; Zang, Jiadong; Shu, G. J.; Chou, F. C.; Chien, C. L.

    2016-06-01

    The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii-Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin-orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase.

  16. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    International Nuclear Information System (INIS)

    Huang, S X; Chen, Fei; Zang, Jiadong; Chien, C L; Kang, Jian; Shu, G J; Chou, F C

    2016-01-01

    The B20 chiral magnets with broken inversion symmetry and C 4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii–Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe 0.85 Co 0.15 Si that directly reveals the broken C 4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin–orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase. (paper)

  17. On the atmospheric drag in orbit determination for low Earth orbit

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    2012-07-01

    The atmosphere model is always a major limitation for low Earth orbit (LEO) in orbit prediction and determination. The accelerometer can work around the non-gravitational perturbations in orbit determination, but it helps little to improve the atmosphere model or to predict the orbit. For certain satellites, there may be some specific software to handle the orbit problem. This solution can improve the orbit accuracy for both prediction and determination, yet it always contains empirical terms and is exclusive for certain satellites. This report introduces a simple way to handle the atmosphere drag for LEO, which does not depend on instantaneous atmosphere conditions and improves accuracy of predicted orbit. This approach, which is based on mean atmospheric density, is supported by two reasons. One is that although instantaneous atmospheric density is very complicated with time and height, the major pattern is determined by the exponential variation caused by hydrostatic equilibrium and periodic variation caused by solar radiation. The mean density can include the major variations while neglect other minor details. The other reason is that the predicted orbit is mathematically the result from integral and the really determinant factor is the mean density instead of instantaneous density for every time and spot. Using the mean atmospheric density, which is mainly determined by F10.7 solar flux and geomagnetic index, can be combined into an overall parameter B^{*} = C_{D}(S/m)ρ_{p_{0}}. The combined parameter contains several less accurate parameters and can be corrected during orbit determination. This approach has been confirmed in various LEO computations and an example is given below using Tiangong-1 spacecraft. Precise orbit determination (POD) is done using one-day GPS positioning data without any accurate a-priori knowledge on spacecraft or atmosphere conditions. Using the corrected initial state vector of the spacecraft and the parameter B^* from POD, the

  18. Third cranial nerve palsy (ptosis, diplopia accompanied by orbital swelling: case report of unusual clinical presentation of giant cell arteritis associated with polymyalgia rheumatica

    Directory of Open Access Journals (Sweden)

    Prassede Bravi

    2012-12-01

    Full Text Available IntroductionGiant cell arteritis (GCA is the most common systemic vasculitis in older individuals, characterized by granulomatosus inflammation of the wall of large and medium-sized arteries. The wide spectrum of arterial sites involved leads to ischemia of different organs resulting in a wide range of clinical signs and symptoms. Temporal artery is commonly involved (temporal arteritis. Unusual patterns of presentation, such as extraocular motility disorders and orbital swelling, may be early and transient manifestations of GCA and precede the permanent visual loss due to ischemic optic neuropathy.Case reportWe describe a patient with uncommon manifestations of GCA consisting of transient recurrent diplopia, ptosis, orbital swelling together with more typical clinical features of the disease such as musculoskeletal manifestations (polymyalgia rheumatica and facial pain: all signs and symptoms promptly resolved under corticosteroid therapy without relapse.Conclusions A high level of suspicion of GCA in individuals over the age of 50 years is needed to prevent the development of severe complications. Clinicians should be aware of uncommon manifestations of the disease such as head–neck swelling and ophthalmoplegia: management guidelines have stated that prompt administration of adequate dose of corticosteroids as soon as ocular manifestations of GCA are noted may almost totally prevent blindness.

  19. [1012.5676] The Exoplanet Orbit Database

    Science.gov (United States)

    : The Exoplanet Orbit Database Authors: Jason T Wright, Onsi Fakhouri, Geoffrey W. Marcy, Eunkyu Han present a database of well determined orbital parameters of exoplanets. This database comprises parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets

  20. A SEARCH FOR THE TRANSIT OF HD 168443b: IMPROVED ORBITAL PARAMETERS AND PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Pilyavsky, Genady; Mahadevan, Suvrath; Wright, Jason T.; Wang, Xuesong X. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Kane, Stephen R.; Ciardi, David R.; Dragomir, Diana; Von Braun, Kaspar [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Howard, Andrew W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); De Pree, Chris; Marlowe, Hannah [Department of Physics and Astronomy, Agnes Scott College, 141 East College Avenue, Decatur, GA 30030 (United States); Fischer, Debra [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Jensen, Eric L. N. [Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081 (United States); Laughlin, Gregory [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Rabus, Markus, E-mail: gcp5017@psu.edu, E-mail: suvrath@astro.psu.edu [Departamento de Astonomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)

    2011-12-20

    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work we present the search for transits of HD 168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a priori transit probability beyond that expected for a circular orbit, making HD 168443 a candidate for our ongoing Transit Ephemeris Refinement and Monitoring Survey. Using additional radial velocities from Keck High Resolution Echelle Spectrometer, we refined the orbital parameters of this multi-planet system and derived a new transit ephemeris for HD 168443b. The reduced uncertainties in the transit window make a photometric transit search practicable. Photometric observations acquired during predicted transit windows were obtained on three nights. Cerro Tololo Inter-American Observatory 1.0 m photometry acquired on 2010 September 7 had the required precision to detect a transit but fell just outside of our final transit window. Nightly photometry from the T8 0.8 m automated photometric telescope at Fairborn Observatory, acquired over a span of 109 nights, demonstrates that HD 168443 is constant on a timescale of weeks. Higher-cadence photometry on 2011 April 28 and June 25 shows no evidence of a transit. We are able to rule out a non-grazing transit of HD 168443b.

  1. A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry

    Science.gov (United States)

    Pilyavsky, Genady; Mahadevan, Suvrath; Kane, Stephen R.; Howard, Andrew W.; Ciardi, David R.; de Pree, Chris; Dragomir, Diana; Fischer, Debra; Henry, Gregory W.; Jensen, Eric L. N.; Laughlin, Gregory; Marlowe, Hannah; Rabus, Markus; von Braun, Kaspar; Wright, Jason T.; Wang, Xuesong X.

    2011-12-01

    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work we present the search for transits of HD 168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a priori transit probability beyond that expected for a circular orbit, making HD 168443 a candidate for our ongoing Transit Ephemeris Refinement and Monitoring Survey. Using additional radial velocities from Keck High Resolution Echelle Spectrometer, we refined the orbital parameters of this multi-planet system and derived a new transit ephemeris for HD 168443b. The reduced uncertainties in the transit window make a photometric transit search practicable. Photometric observations acquired during predicted transit windows were obtained on three nights. Cerro Tololo Inter-American Observatory 1.0 m photometry acquired on 2010 September 7 had the required precision to detect a transit but fell just outside of our final transit window. Nightly photometry from the T8 0.8 m automated photometric telescope at Fairborn Observatory, acquired over a span of 109 nights, demonstrates that HD 168443 is constant on a timescale of weeks. Higher-cadence photometry on 2011 April 28 and June 25 shows no evidence of a transit. We are able to rule out a non-grazing transit of HD 168443b.

  2. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Science.gov (United States)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  3. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    Science.gov (United States)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  4. Orbital wall infarction mimicking periorbital cellulitis in a patient with sickle cell disease

    International Nuclear Information System (INIS)

    Ozkavukcu, Esra; Fitoz, Suat; Erden, Ilhan; Yagmurlu, Banu; Ciftci, Ergin; Ertem, Mehmet

    2007-01-01

    Orbital wall infarction and subperiosteal haematomas are unusual manifestations of sickling disorders. Here we report an 11-year-old girl with sickle cell anaemia having multiple skull infarctions including the orbital bony structures associated with subperiosteal haematomas. The diagnosis was made by MRI, which showed bone marrow changes and associated haemorrhagic collections. The patient was successfully managed without surgical intervention. (orig.)

  5. Unusual solvation through both p-orbital lobes of a carbene carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, C. Z., E-mail: cacier.hadad@udea.edu.co [Grupo de Química-Física Teórica, Instituto de Química, Universidad de Antioquia, A. A. 1226 Medellín (Colombia); Jenkins, Samantha [College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Flórez, Elizabeth [Departamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30-65, Medellín (Colombia)

    2015-03-07

    As a result of a configurational space search done to explain the experimental evidence of transient specific solvation of singlet fluorocarbene amide with tetrahydrofuran, we found that the most stable structures consist in a group in which each oxygen of two tetrahydrofuran molecules act as electron donor to its respective empty p-orbital lobe of the carbene carbon atom, located at each side of the carbene molecular plane. This kind of species, which to our knowledge has not been reported before, explains very well the particular experimental characteristics observed for the transient solvation of this system. We postulate that the simultaneous interaction to both p-orbital lobes seems to confer a special stability to the solvation complexes, because this situation moves away the systems from the proximity of the corresponding transition states for the ylide products. Additionally, we present an analysis of other solvation complexes and a study of the nature of the involved interactions.

  6. Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122

    Science.gov (United States)

    González-Galán, A.; Negueruela, I.; Castro, N.; Simón-Díaz, S.; Lorenzo, J.; Vilardell, F.

    2014-06-01

    Context. BD + 60° 73 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. Aims: We aim to characterise the binary system IGR J00370+6122 by deriving its orbital and physical parameters. Methods: We obtained high-resolution spectra of BD + 60° 73 at different epochs. We used the fastwind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. Results: BD + 60° 73 is a BN0.7 Ib low-luminosity supergiant located at a distance ~3.1 kpc, in the Cas OB4 association. We derive Teff = 24 000 K and log gc = 3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1-σ level with a mass M∗ ≈ 15 M⊙. The recurrence time of the X-ray flares is the orbital period of the system. The neutron star is in a high-eccentricity (e = 0.56 ± 0.07) orbit, and the X-ray emission is strongly peaked around orbital phase φ = 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. Conclusions: The X-ray behaviour of IGR J00370+6122 is reminiscent of "intermediate" supergiant X-ray transients, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which when combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will very likely evolve towards a persistent

  7. Unusual imaging characteristics of complicated hydatid disease

    International Nuclear Information System (INIS)

    Turgut, Ahmet Tuncay; Altin, Levent; Topcu, Salih; Kilicoglu, Buelent; Altinok, Tamer; Kaptanoglu, Erkan; Karademir, Alp; Kosar, Ugur

    2007-01-01

    Hydatid disease, a worldwide zoonosis, is caused by the larval stage of the Echinococcus tapeworm. Although the liver and the lungs are the most frequently involved organs in the body, hydatid cysts of other organs are unusual. Radiologically, they usually demonstrate typical imaging findings, but unusual imaging characteristics of complicated cyst of hydatid disease, associated with high morbidity and mortality, are rarely described in the literature. The purpose of this study is to review the general features of hydatidosis and to discuss atypical imaging characteristics of the complicated hydatid disease in the human, with an emphasis on structure and rupture of the cystic lesion as well as ultrasonography (USG), computed tomography (CT), and magnetic resonance imaging (MRI) features of the disease. In our study, the available literature and images of the cases with complicated hydatidosis involving liver, lung, brain, spine and orbit were reviewed retrospectively. In hydatid disease, there are many potential local and systemic complications due to secondary involvement in almost any anatomic location in humans. Radiologically, in addition to the presence of atypical findings such as perifocal edema, non-homogenous contrast enhancement, multiplicity or septations and calcification, various unusual manifestations due to rupture or infection of the cyst have been observed in our cases with complicated hydatid disease. To prevent subsequent acute catastrophic results and the development of recurrences in various organs, it should be kept in mind that complicated hydatid cysts can cause unusual USG, CT, and MRI findings, in addition to typical ones, in endemic areas. Therefore, familiarity with atypical radiological appearances of complicated hydatid disease may be valuable in making a correct diagnosis and treatment

  8. Unusual imaging characteristics of complicated hydatid disease

    Energy Technology Data Exchange (ETDEWEB)

    Turgut, Ahmet Tuncay [Department of Radiology, Ankara Training and Research Hospital, Ankara (Turkey)]. E-mail: ahmettuncayturgut@yahoo.com; Altin, Levent [Department of Radiology, Numune Training and Research Hospital, Ankara (Turkey); Topcu, Salih [Department of Thoracic Surgery, Faculty of Medicine, Kocaeli University, Izmit (Turkey); Kilicoglu, Buelent [Department of 4th General Surgery, Ankara Training and Research Hospital, Ankara (Turkey); Altinok, Tamer [Department of Thoracic Surgery, Meram Faculty of Medicine, Selcuk University, Konya (Turkey); Kaptanoglu, Erkan [Department of Neurosurgery, Numune Training and Research Hospital, Ankara (Turkey); Karademir, Alp [Department of Radiology, Numune Training and Research Hospital, Ankara (Turkey); Kosar, Ugur [Department of Radiology, Ankara Training and Research Hospital, Ankara (Turkey)

    2007-07-15

    Hydatid disease, a worldwide zoonosis, is caused by the larval stage of the Echinococcus tapeworm. Although the liver and the lungs are the most frequently involved organs in the body, hydatid cysts of other organs are unusual. Radiologically, they usually demonstrate typical imaging findings, but unusual imaging characteristics of complicated cyst of hydatid disease, associated with high morbidity and mortality, are rarely described in the literature. The purpose of this study is to review the general features of hydatidosis and to discuss atypical imaging characteristics of the complicated hydatid disease in the human, with an emphasis on structure and rupture of the cystic lesion as well as ultrasonography (USG), computed tomography (CT), and magnetic resonance imaging (MRI) features of the disease. In our study, the available literature and images of the cases with complicated hydatidosis involving liver, lung, brain, spine and orbit were reviewed retrospectively. In hydatid disease, there are many potential local and systemic complications due to secondary involvement in almost any anatomic location in humans. Radiologically, in addition to the presence of atypical findings such as perifocal edema, non-homogenous contrast enhancement, multiplicity or septations and calcification, various unusual manifestations due to rupture or infection of the cyst have been observed in our cases with complicated hydatid disease. To prevent subsequent acute catastrophic results and the development of recurrences in various organs, it should be kept in mind that complicated hydatid cysts can cause unusual USG, CT, and MRI findings, in addition to typical ones, in endemic areas. Therefore, familiarity with atypical radiological appearances of complicated hydatid disease may be valuable in making a correct diagnosis and treatment.

  9. Orbital lymphomatoid granulomatosis - a rare cause of proptosis

    Energy Technology Data Exchange (ETDEWEB)

    Du Toit, Jacqueline; Kilborn, Tracy [Department of Radiology, Red Cross Children' s Hospital, Rondebosch (South Africa); Eyssen, Ann van [Department of Oncology, Red Cross Children' s Hospital, Rondebosch (South Africa); Pillay, Komala [Department of Pathology, Red Cross Children' s Hospital, Rondebosch (South Africa)

    2015-07-15

    A 1-year-old girl with unilateral proptosis was found to have primary orbital lymphomatoid granulomatosis - a condition rarely occurring in children. This multisystem angiocentric, angiodestructive, lymphoproliferative disease typically involves the lungs, with ocular involvement being extremely uncommon. Our case serves to illustrate the imaging findings of this unusual condition and highlight a rare cause of proptosis. (orig.)

  10. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    Science.gov (United States)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  11. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    to weeks. The unusual shape of the slurry flow curves was not an artifact of the rheometric measurement. Adjusting the user-specified parameters in the rheometer measurement jobs can alter the shape of the flow curve of these time dependent samples, but this was not causing the unusual behavior. Variations in the measurement parameters caused the time dependence of a given slurry to manifest at different rates. The premise of the controlled shear rate flow curve measurement is that the dynamic response of the sample to a change in shear rate is nearly instantaneous. When this is the case, the data can be fitted to a time independent rheological equation, such as the Bingham plastic model. In those cases where this does not happen, interpretation of the data is difficult. Fitting time dependent data to time independent rheological equations, such as the Bingham plastic model, is also not appropriate

  12. Effects of spin-orbit activated interchannel coupling on dipole photoelectron angular distribution asymmetry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 70125 (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2004-02-28

    The effects of spin-orbit induced interchannel coupling on the dipole photoelectron angular asymmetry parameter {beta}{sub 3d} for Xe, Cs and Ba are explored using a modified version of the spin-polarized random phase approximation with exchange (SPRPAE) methodology. For Xe, {beta}{sub 3d{sub 5/2}} is modified somewhat by the interchannel coupling in the vicinity of the 3d{sub 3/2} {yields} {epsilon}f shape resonance, and this effect is significantly more pronounced in Cs where the resonance is larger. In Ba, however, where f-wave orbital collapse has occurred, the shape resonance has moved below threshold and the effect of interchannel coupling on {beta}{sub 3d{sub 5/2}} above the 3d{sub 3/2} threshold is negligible. But below the 3d{sub 3/2} threshold, {beta}{sub 3d{sub 5/2}} is dominated by the huge broad 3d{sub 3/2} {yields} 4f resonance.

  13. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  14. Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal

    Directory of Open Access Journals (Sweden)

    Ha–Yeon Choi

    2015-12-01

    Full Text Available Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK® Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK® Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.

  15. Controlling electron quantum dot qubits by spin-orbit interactions

    International Nuclear Information System (INIS)

    Stano, P.

    2007-01-01

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  16. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  17. Orbital lymphoma masquerading as thyroid ophthalmopathy.

    Science.gov (United States)

    Boyce, P J

    1998-10-01

    Lymphoid tumors are known to originate within the lacrimal gland and orbital fat. Ocular findings commonly seen are a palpable mass with proptosis and downward displacement of the globe. Graves' ophthalmopathy is the most common orbital pathology occurring in the general population. Signs and symptoms of Graves' ophthalmopathy, such as unilateral or bilateral proptosis, double vision, limitation of movement of the extraocular muscles, are not specific for this condition. A 57-year-old man came to us with a chief symptom of "eye swelling" for the last 3 years. He had been diagnosed with hyperthyroidism and had received three surgical procedures for orbital decompression. Clinical findings included limitation of upward and downward gaze, exophthalmometry readings of 30 1/2 mm O.D. and 31 mm O.S. (with a base of 112), and profound proptosis with fatty tissue prolapse. Subsequent thyroid testing revealed euthyroid status and computed tomography scan revealed orbital lymphoma. Orbital involvement from a malignant nodular histiocytic lymphoma resulted in a proptosis similar to that observed in Graves' ophthalmopathy. This very unusual presentation of orbital lymphoma mimicked Graves' disease so closely that the true cause was overlooked. This case emphasizes the need to include space-occupying lesions in the differential diagnosis of proptosis and gaze restrictions. The disease process and controversial management strategies are discussed.

  18. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  19. Frequentist and Bayesian Orbital Parameter Estimaton from Radial Velocity Data Using RVLIN, BOOTTRAN, and RUN DMC

    Science.gov (United States)

    Nelson, Benjamin Earl; Wright, Jason Thomas; Wang, Sharon

    2015-08-01

    For this hack session, we will present three tools used in analyses of radial velocity exoplanet systems. RVLIN is a set of IDL routines used to quickly fit an arbitrary number of Keplerian curves to radial velocity data to find adequate parameter point estimates. BOOTTRAN is an IDL-based extension of RVLIN to provide orbital parameter uncertainties using bootstrap based on a Keplerian model. RUN DMC is a highly parallelized Markov chain Monte Carlo algorithm that employs an n-body model, primarily used for dynamically complex or poorly constrained exoplanet systems. We will compare the performance of these tools and their applications to various exoplanet systems.

  20. A rare and an unusually delayed presentation of orbital actinomycosis following avulsion injury of the scalp

    Directory of Open Access Journals (Sweden)

    Hegde Vidya

    2010-01-01

    Full Text Available We report a rare case of orbital swelling presenting one year after head trauma. An initial fine needle aspiration cytology revealed it to be an infected organizing hematoma. However, broad-spectrum antibiotics did not resolve the infection and the orbital lesion continued to grow in size, as evaluated by magnetic resonance imaging. Incisional biopsies were done, which were reported as orbital actinomycosis. Patient has responded well to treatment with penicillin. This case is of interest due to the delayed presentation of an orbital complication of head trauma and the rare infection with actinomyces. It also highlights the importance of using appropriate antibiotics, as well as the need for long-term treatment.

  1. Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.

    Science.gov (United States)

    Rybkin, Artem G; Rybkina, Anna A; Otrokov, Mikhail M; Vilkov, Oleg Yu; Klimovskikh, Ilya I; Petukhov, Anatoly E; Filianina, Maria V; Voroshnin, Vladimir Yu; Rusinov, Igor P; Ernst, Arthur; Arnau, Andrés; Chulkov, Evgueni V; Shikin, Alexander M

    2018-03-14

    A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.

  2. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  3. Mean-field study of correlation-induced antisymmetric spin-orbit coupling in a two-orbital honeycomb model

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-05-01

    We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.

  4. On the Evaluation Overlap Integrals with the Same and Different Screening Parameters Over Slater Type Orbitals via the Fourier-Transform Method

    International Nuclear Information System (INIS)

    Yavuz, M.; Yuekcue, N.; Oeztekin, E.; Yilmaz, H.; Doenduer, S.

    2005-01-01

    In this paper, derivation of analytical expressions for overlap integrals with the same and different screening parameters of Slater type orbitals (STOs) via the Fourier-transform method is presented. Consequently, it is relatively easy to express the Fourier integral representations of the overlap integrals with same and different screening parameters mentioned as finite sums of Gegenbauer, Gaunt, binomial coefficients, and STOs.

  5. Thermoluminescence of meteorites and their orbits

    International Nuclear Information System (INIS)

    Melcher, C.L.

    1981-01-01

    The thermolunimescence (TL) levels of 45 ordinary chondrites were measured to obtain information about the meteorite orbits. The low-temperature TL reaches equilibrium while the meteorite is in space and reflects the temperature of the meteorite at perihelion. Samples of Pribram, Lost City, and Innisfree, whose orbits are accurately known, were used as control samples. The TL levels in 40 out of 42 meteorites are similar to the three control samples, indicating that the vast majority of ordinary chondrites that survive atmospheric entry have perihelia similar to three known orbits, i.e., in the range 0.8-1 AU. The effects of albedo and rotation are also considered. A simple model indicates that temperature gradients of 1-2 0 K/cm are possible in slowly rotating meteoroids and such a temperature gradient is consistent with the unusually large TL gradient measured in the Farmville meteorite. Since slow rotation rates are improbable, other possibilities are examined but no satisfactory explanation has been found. The TL level measured in the Malakal meteorite is two orders of magnitude lower than control samples and is best explained by thermal draining due to solar heating in an orbit with a small perihelion distance. The perihelion is estimated to be approx. 0.5-0.6 AU. (orig.)

  6. Toward the Distribution of Orbital Parameters of Nearby Major Galaxy Mergers

    Science.gov (United States)

    Mortazavi, S. Alireza

    2016-01-01

    In this thesis project our goal is to measure the initial conditions of a sample of ~20 local disk-disk major galaxy mergers. Measuring the orbital parameters is possible by findingthe most similar galaxy merger simulation to the morphology and kinematics of the data.We have developed an automated modeling method based on the Identikit software package,which also estimates the uncertainty of the measured initial conditions. We tested our modeling method using an independent set of GADGET simulations, and we acquired reliable results onprograde merger systems. We observed the Hα kinematics of our sample using SparsePak IFU on the WIYN telescope at KPNO, and DIS on the 3.5m telescope at APO. For the few merger systems in our sample with archival HI data available, we compare the use of HI vs Hα as the kinematic tracer. This work lays the ground-work for the analysis of larger statistical samples of mergers from on-going IFU galaxy survey such as MaNGA.

  7. An unusual combination of Unilateral Orbital Plexiform Neurofibroma in a patient with oculocutaneous albinism

    Directory of Open Access Journals (Sweden)

    J Saravanan

    2014-01-01

    Full Text Available A 70-year-old female patient presented with proptosis of right eye for the past 15 days and defective vision in both eyes since birth. She was found to have eccentric painful proptosis of right eye along with features of oculocutaneous albinism. Eccentric proptosis was due to an orbital mass which proved to be a plexiform neurofibroma by histopathological examination. The case is presented for its rarity, as an isolated orbital plexiform neurofibroma without the systemic features of neurofibromatosis is rare and its coincidental presentation with oculocutaneous albinism is yet rare and has not been reported so far.

  8. Satellite laser ranging to low Earth orbiters: orbit and network validation

    Science.gov (United States)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  9. The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo

    Science.gov (United States)

    Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn

    2016-10-01

    We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.

  10. SATELLITE CONSTELLATION DESIGN PARAMETER

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. SATELLITE CONSTELLATION DESIGN PARAMETER. 1. ORBIT CHARACTERISTICS. ORBITAL HEIGHT >= 20,000 KM. LONGER VISIBILITY; ORBITAL PERIOD. PERTURBATIONS(MINIMUM). SOLAR RADIATION PRESSURE (IMPACTS ECCENTRICITY); LUNI ...

  11. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    Science.gov (United States)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  12. Spin-orbit excitations and electronic structure of the putative Kitaev magnet $\\alpha$-RuCl$_3$

    OpenAIRE

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, Kemp W.; Kee, Hae-Young; Kim, Young-June; Burch, Kenneth S.

    2015-01-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $\\alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations i...

  13. E-Orbit Functions

    Directory of Open Access Journals (Sweden)

    Jiri Patera

    2008-01-01

    Full Text Available We review and further develop the theory of $E$-orbit functions. They are functions on the Euclidean space $E_n$ obtained from the multivariate exponential function by symmetrization by means of an even part $W_{e}$ of a Weyl group $W$, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. They are closely related to symmetric and antisymmetric orbit functions which are received from exponential functions by symmetrization and antisymmetrization procedure by means of a Weyl group $W$. The $E$-orbit functions, determined by integral parameters, are invariant withrespect to even part $W^{aff}_{e}$ of the affine Weyl group corresponding to $W$. The $E$-orbit functions determine a symmetrized Fourier transform, where these functions serve as a kernel of the transform. They also determine a transform on a finite set of points of the fundamental domain $F^{e}$ of the group $W^{aff}_{e}$ (the discrete $E$-orbit function transform.

  14. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  15. Solitonic natural orbitals

    Science.gov (United States)

    Cioslowski, Jerzy

    2018-04-01

    The dependence of the natural amplitudes of the harmonium atom in its ground state on the confinement strength ω is thoroughly investigated. A combination of rigorous analysis and extensive, highly accurate numerical calculations reveals the presence of only one positive-valued natural amplitude ("the normal sign pattern") for all ω ≥1/2 . More importantly, it is shown that unusual, weakly occupied natural orbitals (NOs) corresponding to additional positive-valued natural amplitudes emerge upon sufficient weakening of the confinement. These solitonic NOs, whose shapes remain almost invariant as their radial positions drift toward infinity upon the critical values of ω being approached from below, exhibit strong radial localization. Their asymptotic properties are extracted from the numerical data and their relevance to calculations on fully Coulombic systems is discussed.

  16. Stellar orbits around Sgr A*

    International Nuclear Information System (INIS)

    Trippe, S; Gillessen, S; Ott, T; Eisenhauer, F; Paumard, T; Martins, F; Genzel, R; Schoedel, R; Eckart, A; Alexander, T

    2006-01-01

    In this article we present and discuss the latest results from the observations of stars (''S-stars'') orbiting Sgr A* . With improving data quality the number of observed S-stars has increased substantially in the last years. The combination of radial velocity and proper motion information allows an ever more precise determination of orbital parameters and of the mass of and the distance to the supermassive black hole in the centre of the Milky Way. Additionally, the orbital solutions allow us to verify an agreement between the NIR source Sgr A* and the dynamical centre of the stellar orbits to within 2 mas

  17. Glial Heterotopia of the orbit: A rare presentation

    Science.gov (United States)

    2011-01-01

    Background Glial heterotopias are rare, benign, congenital, midline, non-teratomatous extracranial glial tissue. They may masquerade as encephalocoele or dermoid cyst and mostly present in nose. Herein, we present an unusual case of glial heterotopia of the orbit with unilateral blindness. Case presentation A 6 year-old-boy presented with a progressive painless mass over the nose and medial aspect of the left eye noticed since birth. On examination, the globe was displaced laterally by a firm, regular, mobile, non-pulsatile and non-tender medial mass. The affected eye had profound loss of vision. Computed tomography scan showed a large hypodense mass in the extraconal space with no intracranial connectivity and bony erosion. The child underwent total surgical excision of the mass and histopathological examination confirmed glial heterotopia of the orbit. Conclusion Though the incidence of this condition is rare, the need of appropriate diagnosis and management of such mass to prevent the visual and cosmetic deterioration is warranted. To our knowledge this is the first reported case of Glial heterotopia of orbit causing unilateral blindness. PMID:22088230

  18. Glial Heterotopia of the orbit: A rare presentation

    Directory of Open Access Journals (Sweden)

    Sitaula Ranju

    2011-11-01

    Full Text Available Abstract Background Glial heterotopias are rare, benign, congenital, midline, non-teratomatous extracranial glial tissue. They may masquerade as encephalocoele or dermoid cyst and mostly present in nose. Herein, we present an unusual case of glial heterotopia of the orbit with unilateral blindness. Case presentation A 6 year-old-boy presented with a progressive painless mass over the nose and medial aspect of the left eye noticed since birth. On examination, the globe was displaced laterally by a firm, regular, mobile, non-pulsatile and non-tender medial mass. The affected eye had profound loss of vision. Computed tomography scan showed a large hypodense mass in the extraconal space with no intracranial connectivity and bony erosion. The child underwent total surgical excision of the mass and histopathological examination confirmed glial heterotopia of the orbit. Conclusion Though the incidence of this condition is rare, the need of appropriate diagnosis and management of such mass to prevent the visual and cosmetic deterioration is warranted. To our knowledge this is the first reported case of Glial heterotopia of orbit causing unilateral blindness.

  19. An unusual case of total ophthalmoplegia

    Directory of Open Access Journals (Sweden)

    Chowdhury Ravindra

    2009-01-01

    Full Text Available An eight-year-old male child presented with drooping of the left eyelid with a history of penetrating injury of hard palate by an iron spoon seven days ago, which had already been removed by the neurosurgeon as the computed tomography scan revealed a spoon in the left posterior ethmoid and sphenoid bone penetrating into the middle cranial fossa. On examination, visual acuity was 20/20 in each eye and left eye showed total ophthalmoplegia. Oral cavity revealed a hole in the left lateral part of the hard palate. We managed the case with tapering dose of systemic prednisolone. The total ophthalmoplegia was markedly improved in one month. Cases of foreign bodies in the orbit with intracranial extension are not unusual, but the path this foreign body traveled through the hard palate without affecting the optic nerve, internal carotid artery or cavernous sinus makes an interesting variation.

  20. Tumor orbitário como primeira manifestação clínica de mieloma múltiplo: relato de caso Orbital tumor as the first clinical manifestation of multiple myeloma: case report

    Directory of Open Access Journals (Sweden)

    Aline Ruilowa de Pinho

    2009-02-01

    Full Text Available O acometimento da órbita pelo mieloma múltiplo é raro. Neste estudo, os autores descrevem um caso infrequente de proptose como primeiro sinal clínico do mieloma múltiplo. A presença de lesão orbitária expansiva associada a destruição do rebordo superior da órbita, notáveis à tomografia computadorizada, fez com que a diagnóstico de mieloma múltiplo fosse considerado. Aspectos diagnósticos e terapêuticos são discutidos.Orbital involvement by multiple myeloma is rare. In this study, the authors report an unusual case of proptosis as the first clinical sign of multiple myeloma. The presence of an orbital lesion expanding and destroying the superior orbital rim, disclosed by computed tomography, lead us to consider multiple myeloma. Diagnostic and therapeutic aspects are discussed.

  1. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    Science.gov (United States)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  2. Thermoluminescence of meteorites and their orbits

    Science.gov (United States)

    Melcher, C. L.

    1981-01-01

    The thermoluminescence levels of 45 ordinary chondrites are measured in order to provide information on the orbital characteristics of the meteorites before impact. Glow curves of the photon emission response of powdered samples of the meteorites to temperatures up to 550 C in the natural state and following irradiation by a laboratory test dose of 110,000 rad were obtained as functions of terrestrial age and compared to those of samples of the Pribram, Lost City and Innisfree meteorites, for which accurate orbital data is available. The thermoluminescence levels in 40 out of 42 meteorites are found to be similar to those of the three control samples, indicating that the vast majority of ordinary chondrites that survive atmospheric entry have perihelia in the range 0.8-1 AU. Of the remaining two, Farmville is observed to exhibit an unusually large gradient in thermoluminescence levels with sample depth, which may be a result of a temperature gradient arising in a slowly rotating meteorite. Finally, the thermoluminescence measured in the Malakal meteorite is found to be two orders of magnitude lower than control samples, which is best explained by thermal draining by solar heating in an orbit with a perihelion distance of 0.5 to 0.6 AU.

  3. Isolated Medial Orbital Wall Fracture Associated with Enophthalmos in a Paediatric Patient: An Unusual Presentation

    Directory of Open Access Journals (Sweden)

    Panagiotis Giannakouras

    2018-02-01

    Full Text Available Purpose: To report a case of isolated medial orbital wall fracture with enophthalmos in a paediatric patient and describe the clinical presentation and findings by means of computed tomography (CT of the head and eyes. Methods: We looked at the patient’s medical and ophthalmologic history, and an ophthalmologic examination and a CT of the head were performed at baseline. Results: A 14-year-old boy was admitted to the emergency department of our institution with ecchymosis of his right eyelids secondary to a sport accident. Physical examination revealed a moderate limitation of upgaze without diplopia. CT showed a medial orbital wall fracture without haemorrhage and a gross accumulation of air in the right eyelid with pressure exertion over the right globe and enophthalmos. The patient was treated conservatively with oral antibiotics and steroids showing dramatic improvement within 1 week. Enophthalmos and periorbital emphysema were completely resolved within 3 months after the accident as indicated by CT. Conclusions: We conclude that surgical intervention and intravenous treatment are not warranted in similar cases of medial orbital wall fracture. Medical history, clinical and paraclinical evaluations, and a regular follow-up, including CT, are needed though to avoid complications such as painful abduction, horizontal diplopia, pseudo sixth nerve paresis, or pseudo Duane.

  4. Robustness analysis method for orbit control

    Science.gov (United States)

    Zhang, Jingrui; Yang, Keying; Qi, Rui; Zhao, Shuge; Li, Yanyan

    2017-08-01

    Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the satellite. In this paper, first, the orbital dynamic model is formulated by Gauss' form of the planetary equation using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into consideration in this model. Second, an impulsive control strategy employing the differential correction algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination error and thrust error into account.

  5. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  6. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model

    Science.gov (United States)

    Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi

    2018-03-01

    This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.

  7. NPP unusual events: data, analysis and application

    International Nuclear Information System (INIS)

    Tolstykh, V.

    1990-01-01

    Subject of the paper are the IAEA cooperative patterns of unusual events data treatment and utilization of the operating safety experience feedback. The Incident Reporting System (IRS) and the Analysis of Safety Significant Event Team (ASSET) are discussed. The IRS methodology in collection, handling, assessment and dissemination of data on NPP unusual events (deviations, incidents and accidents) occurring during operations, surveillance and maintenance is outlined by the reports gathering and issuing practice, the experts assessment procedures and the parameters of the system. After 7 years of existence the IAEA-IRS contains over 1000 reports and receives 1.5-4% of the total information on unusual events. The author considers the reports only as detailed technical 'records' of events requiring assessment. The ASSET approaches implying an in-depth occurrences analysis directed towards level-1 PSA utilization are commented on. The experts evaluated root causes for the reported events and some trends are presented. Generally, internal events due to unexpected paths of water in the nuclear installations, occurrences related to the integrity of the primary heat transport systems, events associated with the engineered safety systems and events involving human factor represent the large groups deserving close attention. Personal recommendations on how to use the events related information use for NPP safety improvement are given. 2 tabs (R.Ts)

  8. Using periodic orbits to compute chaotic transport rates between resonance zones

    Science.gov (United States)

    Sattari, Sulimon; Mitchell, Kevin A.

    2017-11-01

    Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.

  9. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    Science.gov (United States)

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  10. The Southern Argentina Agile Meteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    Science.gov (United States)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-01-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteoroid applications. The outcomes of this work show that, given SAAMERs location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  11. Estimating spacecraft attitude based on in-orbit sensor measurements

    DEFF Research Database (Denmark)

    Jakobsen, Britt; Lyn-Knudsen, Kevin; Mølgaard, Mathias

    2014-01-01

    of 2014/15. To better evaluate the performance of the payload, it is desirable to couple the payload data with the satellite's orientation. With AAUSAT3 already in orbit it is possible to collect data directly from space in order to evaluate the performance of the attitude estimation. An extended kalman...... filter (EKF) is used for quaternion-based attitude estimation. A Simulink simulation environment developed for AAUSAT3, containing a "truth model" of the satellite and the orbit environment, is used to test the performance The performance is tested using different sensor noise parameters obtained both...... from a controlled environment on Earth as well as in-orbit. By using sensor noise parameters obtained on Earth as the expected parameters in the attitude estimation, and simulating the environment using the sensor noise parameters from space, it is possible to assess whether the EKF can be designed...

  12. THE SOUTHERN ARGENTINA AGILE METEOR RADAR ORBITAL SYSTEM (SAAMER-OS): AN INITIAL SPORADIC METEOROID ORBITAL SURVEY IN THE SOUTHERN SKY

    Energy Technology Data Exchange (ETDEWEB)

    Janches, D.; Swarnalingam, N. [Space Weather Laboratory, Mail Code 674, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Close, S. [Space Environment and Satellite Systems Laboratory, Department of Aeronautics and Astronautics, Stanford University, Palo Alto, CA (United States); Hormaechea, J. L. [Estacion Astronomica Rio Grande, Rio Grande, Tierra del Fuego (Argentina); Murphy, A.; O’Connor, D.; Vandepeer, B.; Fuller, B. [Genesis Software Pty Ltd, Adelaide (Australia); Fritts, D. C. [GATS Inc., Boulder CO (United States); Brunini, C., E-mail: diego.janches@nasa.gov, E-mail: nimalan.swarnalingam@nasa.gov, E-mail: sigridc@stanford.edu, E-mail: jlhormaechea@untdf.edu.ar, E-mail: amurphy@gsoft.com.au, E-mail: doconnor@gsoft.com.au, E-mail: bvandepe@gsoft.com.au, E-mail: bfuller@gsoft.com.au, E-mail: dave@gats-inc.com, E-mail: claudiobrunini@yahoo.com [Departmento de Astronomia y Geofísica, Universidad Nacional de La Plata, La Plata (Argentina)

    2015-08-10

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  13. Unusual Case of Occult Brucella Osteomyelitis in the Skull Detected by Bone Scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee; Lim, Seok Tae; Jeong, Young Jin; Kim, Dong Wook; Jeong, Hwan Jeong; Lee, Chang Seob [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2010-06-15

    Brucellosis is a worldwide infectious disease of animals that can be transmitted to humans. Osteoarticular involvement is the most common complication of brucellosis. A 47-year-old man, who was a stock breeder, complained of myalgia with fever and chills for 2 weeks. The serology titers and blood cultures for brucellosis were positive. Bone scintigraphy demonstrated a focally increased uptake in the left supra orbital area. Plain radiographs showed an osteolytic lesion, and an MRI revealed signal abnormalities in the corresponding site. We present an unusual case of occult Brucella osteomyelitis in the frontal bone of the skull detected by done scintigraphy.

  14. Unusual Case of Occult Brucella Osteomyelitis in the Skull Detected by Bone Scintigraphy

    International Nuclear Information System (INIS)

    Sohn, Myung Hee; Lim, Seok Tae; Jeong, Young Jin; Kim, Dong Wook; Jeong, Hwan Jeong; Lee, Chang Seob

    2010-01-01

    Brucellosis is a worldwide infectious disease of animals that can be transmitted to humans. Osteoarticular involvement is the most common complication of brucellosis. A 47-year-old man, who was a stock breeder, complained of myalgia with fever and chills for 2 weeks. The serology titers and blood cultures for brucellosis were positive. Bone scintigraphy demonstrated a focally increased uptake in the left supra orbital area. Plain radiographs showed an osteolytic lesion, and an MRI revealed signal abnormalities in the corresponding site. We present an unusual case of occult Brucella osteomyelitis in the frontal bone of the skull detected by done scintigraphy.

  15. KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY

    International Nuclear Information System (INIS)

    Latham, David W.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Gilliland, Ronald L.; Howell, Steve B.; Marcy, Geoffrey W.; Monet, David G.

    2010-01-01

    We report on the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, M P = 0.43 M J , but the radius is 50% larger, R P = 1.48 R J . The resulting density, ρ P = 0.17 g cm -3 , is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, T eff = 6000 K. However, it is more massive and considerably larger than the Sun, M * = 1.35 M sun and R * = 1.84 R sun , and must be near the end of its life on the main sequence.

  16. Operational factors affecting microgravity levels in orbit

    Science.gov (United States)

    Olsen, R. E.; Mockovciak, J., Jr.

    1980-01-01

    Microgravity levels desired for proposed materials processing payloads are fundamental considerations in the design of future space platforms. Disturbance sources, such as aerodynamic drag, attitude control torques, crew motion and orbital dynamics, influence the microgravity levels attainable in orbit. The nature of these effects are assessed relative to platform design parameters such as orbital altitude and configuration geometry, and examples are presented for a representative spacecraft configuration. The possible applications of control techniques to provide extremely low acceleration levels are also discussed.

  17. Correlation between the 2-Dimensional Extent of Orbital Defects and the 3-Dimensional Volume of Herniated Orbital Content in Patients with Isolated Orbital Wall Fractures

    Directory of Open Access Journals (Sweden)

    Jong Hyun Cha

    2017-01-01

    Full Text Available BackgroundThe purpose of this study was to assess the correlation between the 2-dimensional (2D extent of orbital defects and the 3-dimensional (3D volume of herniated orbital content in patients with an orbital wall fracture.MethodsThis retrospective study was based on the medical records and radiologic data of 60 patients from January 2014 to June 2016 for a unilateral isolated orbital wall fracture. They were classified into 2 groups depending on whether the fracture involved the inferior wall (group I, n=30 or the medial wall (group M, n=30. The 2D area of the orbital defect was calculated using the conventional formula. The 2D extent of the orbital defect and the 3D volume of herniated orbital content were measured with 3D image processing software. Statistical analysis was performed to evaluate the correlations between the 2D and 3D parameters.ResultsVarying degrees of positive correlation were found between the 2D extent of the orbital defects and the 3D herniated orbital volume in both groups (Pearson correlation coefficient, 0.568−0.788; R2=32.2%−62.1%.ConclusionsBoth the calculated and measured 2D extent of the orbital defects showed a positive correlation with the 3D herniated orbital volume in orbital wall fractures. However, a relatively large volume of herniation (>0.9 cm3 occurred not infrequently despite the presence of a small orbital defect (<1.9 cm2. Therefore, estimating the 3D volume of the herniated content in addition to the 2D orbital defect would be helpful for determining whether surgery is indicated and ensuring adequate surgical outcomes.

  18. Exo-Milankovitch Cycles. I. Orbits and Rotation States

    Science.gov (United States)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn

    2018-02-01

    The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.

  19. Replicate periodic windows in the parameter space of driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.S., E-mail: esm@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Souza, S.L.T. de [Universidade Federal de Sao Joao del-Rei, Campus Alto Paraopeba, Minas Gerais (Brazil); Medrano-T, R.O. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo (Brazil); Caldas, I.L. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-11-15

    Highlights: > We apply a weak harmonic perturbation to control chaos in two driven oscillators. > We find replicate periodic windows in the driven oscillator parameter space. > We find that the periodic window replication is associated with the chaos control. - Abstract: In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

  20. Comparison of Ultra-Rapid Orbit Prediction Strategies for GPS, GLONASS, Galileo and BeiDou.

    Science.gov (United States)

    Geng, Tao; Zhang, Peng; Wang, Wei; Xie, Xin

    2018-02-06

    Currently, ultra-rapid orbits play an important role in the high-speed development of global navigation satellite system (GNSS) real-time applications. This contribution focuses on the impact of the fitting arc length of observed orbits and solar radiation pressure (SRP) on the orbit prediction performance for GPS, GLONASS, Galileo and BeiDou. One full year's precise ephemerides during 2015 were used as fitted observed orbits and then as references to be compared with predicted orbits, together with known earth rotation parameters. The full nine-parameter Empirical Center for Orbit Determination in Europe (CODE) Orbit Model (ECOM) and its reduced version were chosen in our study. The arc lengths of observed fitted orbits that showed the smallest weighted root mean squares (WRMSs) and medians of the orbit differences after a Helmert transformation fell between 40 and 45 h for GPS and GLONASS and between 42 and 48 h for Galileo, while the WRMS values and medians become flat after a 42 h arc length for BeiDou. The stability of the Helmert transformation and SRP parameters also confirmed the similar optimal arc lengths. The range around 42-45 h is suggested to be the optimal arc length interval of the fitted observed orbits for the multi-GNSS joint solution of ultra-rapid orbits.

  1. An optimized knife-edge method for on-orbit MTF estimation of optical sensors using powell parameter fitting

    Science.gov (United States)

    Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue

    2017-08-01

    On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.

  2. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    Science.gov (United States)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  3. Unusual manifestations of secondary urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Chaohui Lisa Zhao

    2016-03-01

    Full Text Available High-grade papillary urothelial carcinoma regularly invades the bladder wall, adjacent prostate, seminal vesicles, ureters, vagina, rectum, retroperitoneum, and regional lymph nodes. In advanced stages, it may disseminate to the liver, lungs, and bone marrow. On rare occasions, unusual metastatic foci like skin have been reported. The incidence of urothelial carcinoma has increased with associated rise in variants of urothelial carcinoma and unusual metastatic foci. It is imperative that urologists and pathologists are aware of the unusual variants and unusual metastatic locations to expedite the diagnostic process. Hereby we report an unusual case of secondary involvement of spinal nerve by conventional urothelial carcinoma. Also a second case of rhabdoid variant of urothelial carcinoma showing synchronous involvement of bladder and subcutaneous tissue of upper extremity is presented.

  4. Unusual headache syndromes.

    Science.gov (United States)

    Queiroz, Luiz P

    2013-01-01

    Some headache syndromes have few cases reported in the literature. Their clinical characteristics, pathogenesis, and treatment may have not been completely defined. They may not actually be uncommon but rather under-recognized and/or underreported. A literature review of unusual headache syndromes, searching PubMed and ISI Web of Knowledge, was performed. After deciding which disorders to study, relevant publications in scientific journals, including original articles, reviews, meeting abstracts, and letters or correspondences to the editors were searched. This paper reviewed the clinical characteristics, the pathogenesis, the diagnosis, and the treatment of five interesting and unusual headache syndromes: exploding head syndrome, red ear syndrome, neck-tongue syndrome, nummular headache, and cardiac cephalgia. Recognizing some unusual headaches, either primary or secondary, may be a challenge for many non-headache specialist physicians. It is important to study them because the correct diagnosis may result in specific treatments that may improve the quality of life of these patients, and this can even be life saving. © 2013 American Headache Society.

  5. Transperitoneal laparoscopic dismembered pyeloplasty in unusual circumstances--is the outcome comparable to that achieved in familiar pathologies?

    Science.gov (United States)

    Abraham, George P; Das, Krishanu; Ramaswami, Krishnamohan; Siddaiah, Avinash T; George, Datson P; Abraham, Jisha J; Thampan, Oppukeril S

    2012-05-01

    To compare the operative outcome, morbidity profile, and functional outcome after transperitoneal laparoscopic dismembered pyeloplasty for ureteropelvic junction obstruction in unusual circumstances (intrinsic pathology in anomalous kidneys or unusual extrinsic pathologies; group 1) to the outcome after this procedure in familiar pathologies (normally located kidneys with intrinsic dysfunctional segment or extrinsic compression due to a crossing vessel; group 2). The patients were evaluated in detail. All patients underwent transperitoneal laparoscopic dismembered pyeloplasty. The operative and postoperative parameters were recorded. Patients were followed up after the procedure on a 3-month protocol. Imaging was repeated at 1 year. No intervention during the follow-up period (ie, nephrostomy, ureteral stenting, or redo pyeloplasty) and improvement in the hydronephrosis grade and diuretic renogram parameters was interpreted as procedural success. The operative, postoperative, and follow-up parameters in the 2 groups were compared. Group 1 included 17 patients with intrinsic pathologic features and renal anomalies with ureteropelvic junction obstruction due to unusual extrinsic pathology. All procedures were successfully completed with the laparoscopic approach. A significant difference was noted in the mean operative duration (group 1, 196.9 ± 10.3 minutes; group 2, 125.44 minutes, P = .00). The other operative and postoperative parameters were comparable. No significant operative or postoperative events were noted. A total of 14 patients (group 1) completed the 1-year follow-up protocol. The success rate was 92.9% (13 of 14) in group 1 and 97.9% (44 of 45) in group 2 (P = .42). The procedural duration for laparoscopic dismembered pyeloplasty in unusual circumstances is longer than in familiar pathologies. However, the morbidity profile and functional outcome in these 2 scenarios were comparable. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Periodic orbits and non-integrability of Henon-Heiles systems

    International Nuclear Information System (INIS)

    Llibre, Jaume; Jimenez-Lara, Lidia

    2011-01-01

    We apply the averaging theory of second order to study the periodic orbits for a generalized Henon-Heiles system with two parameters, which contains the classical Henon-Heiles system. Two main results are shown. The first result provides sufficient conditions on the two parameters of these generalized systems, which guarantee that at any positive energy level, the Hamiltonian system has periodic orbits. These periodic orbits form in the whole phase space a continuous family of periodic orbits parameterized by the energy. The second result shows that for the non-integrable Henon-Heiles systems in the sense of Liouville-Arnol'd, which have the periodic orbits analytically found with averaging theory, cannot exist any second first integral of class C 1 . In particular, for any second first integral of class C 1 , we prove that the classical Henon-Heiles system and many generalizations of it are not integrable in the sense of Liouville-Arnol'd. Moreover, the tools we use for studying the periodic orbits and the non-Liouville-Arnol'd integrability can be applied to Hamiltonian systems with an arbitrary number of degrees of freedom.

  7. Solar Radiation Pressure Binning for the Geosynchronous Orbit

    Science.gov (United States)

    Hejduk, M. D.; Ghrist, R. W.

    2011-01-01

    Orbital maintenance parameters for individual satellites or groups of satellites have traditionally been set by examining orbital parameters alone, such as through apogee and perigee height binning; this approach ignored the other factors that governed an individual satellite's susceptibility to non-conservative forces. In the atmospheric drag regime, this problem has been addressed by the introduction of the "energy dissipation rate," a quantity that represents the amount of energy being removed from the orbit; such an approach is able to consider both atmospheric density and satellite frontal area characteristics and thus serve as a mechanism for binning satellites of similar behavior. The geo-synchronous orbit (of broader definition than the geostationary orbit -- here taken to be from 1300 to 1800 minutes in orbital period) is not affected by drag; rather, its principal non-conservative force is that of solar radiation pressure -- the momentum imparted to the satellite by solar radiometric energy. While this perturbation is solved for as part of the orbit determination update, no binning or division scheme, analogous to the drag regime, has been developed for the geo-synchronous orbit. The present analysis has begun such an effort by examining the behavior of geosynchronous rocket bodies and non-stabilized payloads as a function of solar radiation pressure susceptibility. A preliminary examination of binning techniques used in the drag regime gives initial guidance regarding the criteria for useful bin divisions. Applying these criteria to the object type, solar radiation pressure, and resultant state vector accuracy for the analyzed dataset, a single division of "large" satellites into two bins for the purposes of setting related sensor tasking and orbit determination (OD) controls is suggested. When an accompanying analysis of high area-to-mass objects is complete, a full set of binning recommendations for the geosynchronous orbit will be available.

  8. Orbital apex cyst: a rare cause of compressive optic neuropathy post-functional endoscopic sinus surgery

    Directory of Open Access Journals (Sweden)

    Koh YN

    2017-07-01

    Full Text Available Yi Ni Koh,1,2 Shu Fen Ho,2 Letchumanan Pathma,3 Harvinder Singh,3 Embong Zunaina1 1Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 2Department of Ophthalmology, 3Department of Otorhinolaryngology, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia Abstract: There are various causes that can lead to compressive optic neuropathy. We present here orbital apex cyst as an unusual cause of compressive optic neuropathy in a 49-year-old male. He presented with 2 weeks painless loss of vision in the left eye with left-sided headache. He had had left functional endoscopic sinus surgery for left nasal polyps 4 years earlier. Magnetic resonance imaging of brain and orbit revealed a left discrete orbital nodule, possibly orbital cyst or mucocele, which was compressing on the left optic nerve. Left eye vision improved markedly from hand movement to 6/36 pinhole 6/18 after initiation of intravenous dexamethasone. A subsequent endoscopic endonasal left optic nerve decompression found the orbital nodule lesion to be an orbital cyst. Marsupialization was performed instead of excision, as the cyst ruptured intraoperatively. Postoperative vision improved to 6/7.5 with normal optic nerve function postoperatively. Possible cause of orbital apex cyst is discussed. Keywords: orbital cyst, compressive optic neuropathy, functional endoscopic sinus surgery

  9. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.

    Science.gov (United States)

    Ren, Jiliang; Yuan, Ying; Wu, Yingwei; Tao, Xiaofeng

    2018-05-02

    The overlap of morphological feature and mean ADC value restricted clinical application of MRI in the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumor (IOIP). In this paper, we aimed to retrospectively evaluate the combined diagnostic value of conventional magnetic resonance imaging (MRI) and whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in the differentiation of the two lesions. In total, 18 patients with orbital lymphoma and 22 patients with IOIP were included, who underwent both conventional MRI and diffusion weighted imaging before treatment. Conventional MRI features and histogram parameters derived from ADC maps, including mean ADC (ADC mean ), median ADC (ADC median ), skewness, kurtosis, 10th, 25th, 75th and 90th percentiles of ADC (ADC 10 , ADC 25 , ADC 75 , ADC 90 ) were evaluated and compared between orbital lymphoma and IOIP. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating. Differential model was built upon the selected variables and receiver operating characteristic (ROC) analysis was also performed to determine the differential ability of the model. Multivariate logistic regression showed ADC 10 (P = 0.023) and involvement of orbit preseptal space (P = 0.029) were the most promising indexes in the discrimination of orbital lymphoma and IOIP. The logistic model defined by ADC 10 and involvement of orbit preseptal space was built, which achieved an AUC of 0.939, with sensitivity of 77.30% and specificity of 94.40%. Conventional MRI feature of involvement of orbit preseptal space and ADC histogram parameter of ADC 10 are valuable in differential diagnosis of orbital lymphoma and IOIP.

  10. The globe and orbit in Laron syndrome.

    Science.gov (United States)

    Kornreich, L; Konen, O; Lilos, P; Laron, Z

    2011-09-01

    Patients with LS have an inborn growth hormone resistance, resulting in failure to generate IGF-1. The purpose of this study was to evaluate the size of the eye and orbit in LS. We retrospectively reviewed the MR imaging of the brain in 9 patients with LS for the following parameters: axial diameter of the globe, interzygomatic distance, perpendicular distance from the interzygomatic line to margins of the globe, medial-to-lateral diameter of the orbit at the anterior orbital rim, distance from the anterior orbital rim to the anterior globe, maximal distance between the medial walls of the orbits, lateral orbital wall angle, lateral orbital wall length, and mediolateral thickness of the intraorbital fat in the most cranial image of the orbit. All measurements were made bilaterally. Twenty patients referred for MR imaging for unrelated reasons served as control subjects. Compared with the control group, the patients with LS had a significantly smaller maximal globe diameter and shallower but wider orbits due to a shorter lateral wall, a smaller medial distance between the orbits, and a larger angle of the orbit. The ratio between the most anterior orbital diameter and the globe was greater than that in controls. The position of the globe was more anterior in relation to the interzygomatic line. Shallow and wide orbits and small globes relative to orbital size are seen in LS and may be secondary to IGF-1 deficiency.

  11. Comparison of Ultra-Rapid Orbit Prediction Strategies for GPS, GLONASS, Galileo and BeiDou

    Directory of Open Access Journals (Sweden)

    Tao Geng

    2018-02-01

    Full Text Available Currently, ultra-rapid orbits play an important role in the high-speed development of global navigation satellite system (GNSS real-time applications. This contribution focuses on the impact of the fitting arc length of observed orbits and solar radiation pressure (SRP on the orbit prediction performance for GPS, GLONASS, Galileo and BeiDou. One full year’s precise ephemerides during 2015 were used as fitted observed orbits and then as references to be compared with predicted orbits, together with known earth rotation parameters. The full nine-parameter Empirical Center for Orbit Determination in Europe (CODE Orbit Model (ECOM and its reduced version were chosen in our study. The arc lengths of observed fitted orbits that showed the smallest weighted root mean squares (WRMSs and medians of the orbit differences after a Helmert transformation fell between 40 and 45 h for GPS and GLONASS and between 42 and 48 h for Galileo, while the WRMS values and medians become flat after a 42 h arc length for BeiDou. The stability of the Helmert transformation and SRP parameters also confirmed the similar optimal arc lengths. The range around 42–45 h is suggested to be the optimal arc length interval of the fitted observed orbits for the multi-GNSS joint solution of ultra-rapid orbits.

  12. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  13. 48 CFR 32.114 - Unusual contract financing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Unusual contract financing... CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 32.114 Unusual contract financing. Any contract financing arrangement that deviates from this part is unusual contract financing...

  14. SYSTEMATIC BIASES IN THE OBSERVED DISTRIBUTION OF KUIPER BELT OBJECT ORBITS

    International Nuclear Information System (INIS)

    Jones, R. L.; Parker, J. Wm.; Bieryla, A.; Marsden, B. G.; Gladman, B.; Kavelaars, JJ.; Petit, J.-M.

    2010-01-01

    The orbital distribution of Kuiper Belt objects (KBOs) provides important tests of solar system evolution models. However, our understanding of this orbital distribution can be affected by many observational biases. An important but difficult to quantify bias results from tracking selection effects; KBOs are recovered or lost depending on assumptions made about their orbital elements when fitting the initial (short) observational arc. Quantitatively studying the effects and significance of this bias is generally difficult, because only the objects where the assumptions were correct are recovered and thus available to study 'the problem', and because different observers use different assumptions and methods. We have used a sample of 38 KBOs that were discovered and tracked, bias-free, as part of the Canada-France Ecliptic Plane Survey to evaluate the potential for losing objects based on the two most common orbit and ephemeris prediction sources: the Minor Planet Center (MPC) and the Bernstein and Khushalani (BK) orbit fitting code. In both cases, we use early discovery and recovery astrometric measurements of the objects to generate ephemeris predictions that we then compare to later positional measurements; objects that have large differences between the predicted and actual positions would be unlikely to be recovered and are thus considered 'lost'. We find systematic differences in the orbit distributions which would result from using the two orbit-fitting procedures. In our sample, the MPC-derived orbit solutions lost slightly fewer objects (five out of 38) due to large ephemeris errors at one year recovery, but the objects which were lost belonged to more 'unusual' orbits such as scattering disk objects or objects with semimajor axes interior to the 3:2 resonance. Using the BK code, more objects (seven out of 38) would have been lost due to ephemeris errors, but the lost objects came from a range of orbital regions, primarily the classical belt region. We also

  15. 48 CFR 432.114 - Unusual contract financing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Unusual contract financing... CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 432.114 Unusual contract financing. The HCA is authorized to approve unusual contract financing. The signed determination and finding...

  16. 48 CFR 1332.114 - Unusual contract financing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Unusual contract financing... CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 1332.114 Unusual contract financing. The designee authorized to approve unusual contract financing arrangements is set forth in CAM...

  17. Quantitative Assessment of Orbital Implant Position--A Proof of Concept.

    Directory of Open Access Journals (Sweden)

    Ruud Schreurs

    Full Text Available In orbital reconstruction, the optimal location of a predefined implant can be planned preoperatively. Surgical results can be assessed intraoperatively or postoperatively. A novel method for quantifying orbital implant position is introduced. The method measures predictability of implant placement: transformation parameters between planned and resulting implant position are quantified.The method was tested on 3 human specimen heads. Computed Tomography scans were acquired at baseline with intact orbits (t0, after creation of the defect (t1 and postoperatively after reconstruction of the defect using a preformed implant (t2. Prior to reconstruction, the optimal implant position was planned on the t0 and t1 scans. Postoperatively, the planned and realized implant position were compared. The t0 and t2 scans were fused using iPlan software and the resulting implant was segmented in the fused t2 scan. An implant reference frame was created (Orbital Implant Positioning Frame; the planned implant was transformed to the reference position using an Iterative Closest Point approach. The segmentation of the resulting implant was also registered on the reference position, yielding rotational (pitch, yaw, roll as well as translational parameters of implant position.Measurement with the Orbital Implant Positioning Frame proved feasible on all three specimen. The positional outcome provided more thorough and accurate insight in resulting implant position than could be gathered from distance measurements alone. Observer-related errors were abolished from the process, since the method is largely automatic.A novel method of quantifying surgical outcome in orbital reconstructive surgery was presented. The presented Orbital Implant Positioning Frame assessed all parameters involved in implant displacement. The method proved to be viable on three human specimen heads. Clinically, the method could provide direct feedback intraoperatively and could improve

  18. Evaluation of parameters of Black Hole, stellar cluster and dark matter distribution from bright star orbits in the Galactic Center

    Science.gov (United States)

    Zakharov, Alexander

    It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).

  19. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  20. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  1. Calculation of precision satellite orbits with nonsingular elements /VOP formulation/

    Science.gov (United States)

    Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.

    1974-01-01

    Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.

  2. Orbital Dynamics of Exomoons During Planet–Planet Scattering

    Science.gov (United States)

    Hong, Yu-Cian; Lunine, Jonathan I.; Nicholson, Philip; Raymond, Sean N.

    2018-04-01

    Planet–planet scattering is the leading mechanism to explain the broad eccentricity distribution of observed giant exoplanets. Here we study the orbital stability of primordial giant planet moons in this scenario. We use N-body simulations including realistic oblateness and evolving spin evolution for the giant planets. We find that the vast majority (~80%–90% across all our simulations) of orbital parameter space for moons is destabilized. There is a strong radial dependence, as moons past are systematically removed. Closer-in moons on Galilean-moon-like orbits (system, be captured by another planet, be ejected but still orbiting its free-floating host planet, or survive on heliocentric orbits as "planets." The survival rate of moons increases with the host planet mass but is independent of the planet's final (post-scattering) orbits. Based on our simulations, we predict the existence of an abundant galactic population of free-floating (former) moons.

  3. Sticky orbits of a kicked harmonic oscillator

    International Nuclear Information System (INIS)

    Lowenstein, J H

    2005-01-01

    We study a Hamiltonian dynamical system consisting of a one-dimensional harmonic oscillator kicked impulsively in 4:1 resonance with its natural frequency, with the amplitude of the kick proportional to a sawtooth function of position. For special values of the coupling parameter, the dynamical map W relating the phase-space coordinates just prior to each kick acts locally as a piecewise affine map K on a square with rational rotation number p/q. For λ = 2cos2πp/q a quadratic irrational, a recursive return-map structure allows us to completely characterize the orbits of the map K. The aperiodic orbits of this system are sticky in the sense that they spend all of their time wandering pseudo-chaotically (with strictly zero Lyapunov exponent) in the vicinity of self-similar archipelagos of periodic islands. The same recursive structure used locally for K gives us the asymptotic scaling features of long orbits of W on the infinite plane. For some coupling parameters the orbits remain bounded, but for others the distance from the origin increases as a logarithm or power of the time. In the latter case, we find examples of sub-diffusive, diffusive, super-diffusive, and ballistic power-law behavior

  4. PSR J1618-3921: a recycled pulsar in an eccentric orbit

    Science.gov (United States)

    Octau, F.; Cognard, I.; Guillemot, L.; Tauris, T. M.; Freire, P. C. C.; Desvignes, G.; Theureau, G.

    2018-04-01

    Context. The 11.99 ms pulsar PSR J1618-3921 orbits a He white dwarf companion of probably low mass with a period of 22.7 d. The pulsar was discovered in a survey of the intermediate Galactic latitudes at 1400 MHz that was conducted with the Parkes radio telescope in the late 1990s. Although PSR J1618-3921 was discovered more than 15 years ago, only limited information has been published about this pulsar, which has a surprisingly high orbital eccentricity (e ≃ 0.027) considering its high spin frequency and the likely low mass of the companion. Aims: The focus of this work is a precise measurement of the spin and the astrometric and orbital characteristics of PSR J1618-3921. This was done with timing observations made at the Nançay Radio Telescope from 2009 to 2017. Methods: We analyzed the timing data recorded at the Nançay Radio Telescope over several years to characterize the properties of PSR J1618-3921. A rotation ephemeris for this pulsar was obtained by analyzing the arrival times of the radio pulses at the telescope. Results: We confirm the unusual eccentricity of PSR J1618-3921 and discuss several hypotheses regarding its formation in the context of other discoveries of recycled pulsars in eccentric orbits.

  5. Calculation Of Multicenter Electric Field Integrals Over Slater Type Orbitals

    International Nuclear Information System (INIS)

    Zaim, N.

    2010-01-01

    Using the properties of complete orthonormal sets of Ψ α -exponential type orbitals (α1,0,-1,-2, ...) and the relations for overlap integrals, the calculations for the multicenter electric field integrals of Slater type orbitals are performed. The results of computer calculations are presented. The convergence of the series is tested by calculating concrete cases for the arbitrary values of quantum numbers, orbital parameters and internuclear distances.

  6. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    Science.gov (United States)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  7. Experimental investigation of the EPR parameters and molecular orbital bonding coefficients for VO{sup 2+} ion in NaH{sub 2}PO{sub 4}·2H{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kalfaoğlu, Emel [Ondokuz Mayıs University, Faculty of Sciences, Department of Physics, 55139 Kurupelit-Samsun (Turkey); Karabulut, Bünyamin, E-mail: bbulut@omu.edu.tr [Ondokuz Mayıs University, Faculty of Engineering, Department of Computer Engineering, 55139 Kurupelit-Samsun (Turkey)

    2016-09-15

    Electron paramagnetic resonance (EPR) spectra of VO{sup 2+} ions in NaH{sub 2}PO{sub 4}·2H{sub 2}O single crystal have been studied. The spin-Hamiltonian parameters and molecular orbital bonding coefficients were calculated. The angular variation of the EPR spectra shows two different VO{sup 2+} complexes. These are located in different chemical environment and each environment contains four magnetically inequivalent VO{sup 2+} sites. The crystal field around VO{sup 2+} ion is approximately axially symmetric since a strong V=O bond distorts the crystal lattice. Spin Hamiltonian parameters and molecular orbital bonding coefficients were calculated from the EPR data and the nature of bonding in the complex was discussed together.

  8. Orbitally limited pair-density-wave phase of multilayer superconductors

    Science.gov (United States)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  9. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  10. Global optimum spacecraft orbit control subject to bounded thrust in presence of nonlinear and random disturbances in a low earth orbit

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2012-06-01

    Full Text Available The primary objective of this work is to develop an effective spacecraft orbit control algorithm suitable for spacecraft orbital maneuver and/or rendezvous. The actual governing equation of a spacecraft orbiting the earth is merely nonlinear. Disturbance forces resulting from aerodynamic drag, oblateness of the earth till the fourth order (i.e. J4, and random disturbances are modeled for the initial and target orbits. These disturbances increase the complexity of nonlinear governing equations. Global optimum solutions of the control algorithm parameters are determined throughout real coded genetic algorithms such that the steady state difference between the actual and desired trajectories is minimized. The resulting solutions are constrained to avoid spacecraft collision with the surface of the earth taking into account limited thrust budget.

  11. Reconstruction of Orbital Floor With Auricular Concha.

    Science.gov (United States)

    Seven, Ergin; Tellioglu, Ali Teoman; Inozu, Emre; Ozakpinar, Hulda Rifat; Horoz, Ugur; Eryilmaz, Avni Tolga; Karamursel, Sebat

    2017-10-01

    Orbital floor fractures of varying sizes commonly occur after orbital injuries and remain a serious challenge. Serious complications of such fractures include enopthalmos, restriction of extraocular movement, and diplopia. There is a dearth of literature that can be applied widely, easily, and successfully in all such situations, and therefore there is no consensus on the treatment protocol of this pathology yet. Autogenous grafts and alloplastic and allogenic materials with a wide variety of advantages and disadvantages have been discussed. The value of preoperative and postoperative ophthalmological examination should be standard of care in all orbital fracture patients. An ideal reconstructed orbital floor fracture should accelerate the restoration of orbital function with acceptable cosmetic results. Management parameters of orbital fractures such as timing of surgery, incision type, and implant materials, though widely discussed, remain controversial. In this study, 55 patients with orbital floor fractures surgically reconstructed with conchal cartilage grafts between 2008 and 2014 were retrospectively evaluated. Complications and long-time follow-up visit results have been reported with clinical and radiographic findings. The aim of this study was to present the authors' clinical experiences of reconstruction of blow-out fractures with auricular conchal graft and to evaluate the other materials available for use.

  12. NanoSail - D Orbital and Attitude Dynamics

    Science.gov (United States)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  13. Measurement of the ionization probability of the 1s sigma molecular orbital in half a collision at zero impact parameter

    International Nuclear Information System (INIS)

    Chemin, J.F.; Andriamonje, S.; Guezet, D.; Thibaud, J.P.; Aguer, P.; Hannachi, F.; Bruandet, J.F.

    1984-01-01

    We have measured, for the first time, the ionization probability Psub(1s sigma) of the 1s sigma molecular orbital in the way into a nuclear reaction (in half a collision at zero impact parameter) in a near symmetric collision 58 Ni + 54 Fe at 230 MeV leads to a compound nucleus of 112 Xe highly excited which decays first by sequential emission of charged particles and then by sequential emission of gamma rays. The determination of Psub(1s sigma) is based on the coincidence measurement between X-rays and γ-rays and the Doppler shift method is used to discrimine the ''atomic'' and ''nuclear'' X-rays

  14. Schmidt-Kalman Filter with Polynomial Chaos Expansion for Orbit Determination of Space Objects

    Science.gov (United States)

    Yang, Y.; Cai, H.; Zhang, K.

    2016-09-01

    Parameter errors in orbital models can result in poor orbit determination (OD) using a traditional Kalman filter. One approach to account for these errors is to consider them in the so-called Schmidt-Kalman filter (SKF), by augmenting the state covariance matrix (CM) with additional parameter covariance rather than additively estimating these so-called "consider" parameters. This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF). The PCE approach has been proved to be more efficient than Monte Carlo method for propagating the input uncertainties onto the system response without experiencing any constraints of linear dynamics, or Gaussian distributions of the uncertainty sources. The state and covariance needed in the orbit prediction step are propagated using PCE. An inclined geosynchronous orbit scenario is set up to test the proposed PCE-SKF based OD algorithm. The satellite orbit is propagated based on numerical integration, with the uncertain coefficient of solar radiation pressure considered. The PCE-SKF solutions are compared with extended Kalman filter (EKF), SKF and PCE-EKF (EKF with PCE) solutions. It is implied that the covariance propagation using PCE leads to more precise OD solutions in comparison with those based on linear propagation of covariance.

  15. ARPES and NMTO Wannier Orbital Theory of Li{sub 0.9}Mo{sub 6}O{sub 17}

    Energy Technology Data Exchange (ETDEWEB)

    Dudy, L. [Physikalisches Institut, Universitaet Wuerzburg, D- 97074 Wuerzburg (Germany); Allen, J.W. [University of Michigan, Ann Arbor, MI (United States); Denlinger, J.D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); He, J. [Clemson University, Clemson, SC (United States); Greenblatt, M. [Rutgers University, Piscataway, NJ (United States); Haverkort, M.W. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Andersen, O.K.; Nohara, Y. [Max-Planck-Institut fuer Festkoerperphysik, Stuttgart (Germany)

    2015-07-01

    Li{sub 0.9}Mo{sub 6}O{sub 17} displays theoretically interesting metallic quasi-one dimensional (1D) behavior that is unusually robust against 3D crossover with decreasing temperature, and is characterized by a large value of anomalous exponent α∼ 0.6. We present very high resolution, low temperature (T=6K-30K) angle resolved photoemission spectroscopy (ARPES) of its band structure and Fermi surface (FS), analyzed with N-th order muffin tin orbital (NMTO) Wannier function band theory. We confirm a previous conclusion that LDA band theory is unusually successful, implying a small Hubbard U, and find in ARPES the dispersion and FS warping and splitting expected for predicted small and long range hoppings (t {sub perpendicular} {sub to} ∼ 10-15 meV) between chains.

  16. Sticky orbits in a kicked-oscillator model

    CERN Document Server

    Lowenstein, J H; Vivaldi, F

    2005-01-01

    We study a 4-fold symmetric kicked-oscillator map with sawtooth kick function. For the values of the kick amplitude $\\lambda=2\\cos(2\\pi p/q)$ with rational $p/q$, the dynamics is known to be pseudochaotic, with no stochastic web of non-zero Lebesgue measure. We show that this system can be represented as a piecewise affine map of the unit square ---the so-called local map--- driving a lattice map. We develop a framework for the study of long-time behaviour of the orbits, in the case in which the local map features exact scaling. We apply this method to several quadratic irrational values of $\\lambda$, for which the local map possesses a full Legesgue measure of periodic orbits; these are promoted to either periodic orbits or accelerator modes of the kicked-oscillator map. By constrast, the aperiodic orbits of the local map can generate various asymptotic behaviours. For some parameter values the orbits remain bounded, while others have excursions which grow logarithmically or as a power of the time. In the po...

  17. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V. [NASU, Institute for Nuclear Research (Ukraine); Arita, K. [Nagoya Institute of Technology, Department of Physics (Japan)

    2016-11-15

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of the oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.

  18. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    Science.gov (United States)

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  19. Unusual Fears in Children with Autism

    Science.gov (United States)

    Mayes, Susan Dickerson; Calhoun, Susan L.; Aggarwal, Richa; Baker, Courtney; Mathapati, Santosh; Molitoris, Sarah; Mayes, Rebecca D.

    2013-01-01

    Unusual fears have long been recognized as common in autism, but little research exists. In our sample of 1033 children with autism, unusual fears were reported by parents of 421 (41%) of the children, representing 92 different fears. Many additional children had common childhood fears (e.g., dogs, bugs, and the dark). More than half of children…

  20. Unusual radiological findings of adult-onset pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Lee, Yong Chul; Lee, Jong Beum; Kim, Sue Hyun

    1987-01-01

    Usual chest radiographic findings in pulmonary tuberculosis are well described in radiologic literatures for both primary and postprimary phases of disease. During the last decade, many authors have enumerated the unusual manifestations of pulmonary tuberculosis in adult population. These unusual findings usually have been involved in the frequent failure of both radiologist and clinician to recognize that tuberculosis could be the cause of a abnormal chest radiograph in patients who are finally and surprisingly proven to have tuberculosis. Authors have evaluated 249 patients who were admitted and newly proven to have adult-onset pulmonary tuberculosis at Chung-Ang University Hospital from January, 1985 to December, 1986. Unusual findings were noted in 76 (30.5%) of the 249 patients with adult-onset pulmonary tuberculosis. These unusual findings most frequently could be seen in 3rd decades and showed no sex difference in incidence. A broad spectrum of abnormal findings including usual and unusual abnormalities were procedure by adult-onset pulmonary tuberculosis. The unusual radiographic findings were arbitrarily classified. Pleural effusion without parenchymal disease (10.0%), unusual location of infiltrate (5.6%) and atelectasis (3.2%) were relatively common. Hilar and / or mediastinal lymphnode enlargement (1.6%), cavity without parenchymal infiltrates (1.6%), septic lung-like infiltrates (1.6%), completely clear lungs (1.2%), miliary infiltrates (1.2%), fibrocalcific scar-like infiltrates (1.2%), masslike density (1.2%) and rheumatoid lung-like infiltrates (1.2%) were occasionally noted. Pneumothorax without parenchymal disease (0.4%) and bron chocutaneous fistula (0.4%) are. The recognition of these unusual findings could further improve the detection and diagnosis of adult-onset pulmonary tuberculosis

  1. Myasthenia Gravis: Unusual Presentations and Diagnostic Pitfalls.

    Science.gov (United States)

    Rodolico, Carmelo; Parisi, Daniela; Portaro, Simona; Biasini, Fiammetta; Sinicropi, Stefano; Ciranni, Annamaria; Toscano, Antonio; Messina, Sonia; Musumeci, Olimpia; Vita, Giuseppe; Girlanda, Paolo

    2016-08-30

    Myasthenia gravis (MG) is an autoimmune disorder presenting with fluctuating, fatigable muscle weakness. Initial symptoms classically involve ocular and proximal limb muscles. Rarely, MG may onset with unusual features, so it can be misdiagnosed with other neuromuscular diseases. To describe unusual and atypical presentations of MG in a large cohort of patients, considering and discussing diagnostic difficulties and pitfalls. We report on 21 out of 508 MG patients, coming to our department in the last 27 years and presenting with atypical or unusual features. The diagnosis was achieved performing a careful clinical examination, a proper neurophysiological assessment, the neostigmine test, the AChR and MuSK antibodies assay and chest CT-scan. Patients with atypical/unusual MG onset were the 4.4% of all MG patients population. We describe seven different clinical categories: asymmetric distal upper limbs weakness, foot drop, isolated triceps brachii weakness and foot drop, post exertional axial weakness with dropped head, acute facial dyplegia, limb-girdle MG and MG with sudden lower limbs weakness and recurrent falls. Atypical and unusual presentations may increase the risk to misdiagnose or delay MG diagnosis. Isolated limb-girdle presentation is the most frequent atypical form in our series.

  2. The orbital record in stratigraphy

    Science.gov (United States)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity

  3. Using a Neural Network Approach to Find Unusual Butterfly Pitch Angle Distribution Shapes

    Science.gov (United States)

    Medeiros, C.; Sibeck, D. G.; Souza, V. M. C. E. S.; Vieira, L.; Alves, L. R.; Da Silva, L. A.; Kanekal, S. G.; Baker, D. N.

    2017-12-01

    A special kind of neural network referred to as a Self-Organizing Map (SOM) was previously adopted to identify, in pitch angle-resolved relativistic electron flux data provided by the REPT instrument onboard the Van Allen Probes, three major types of electron pitch angle distributions (PADs), namely 90o-peaked, butterfly and flattop (Souza et al., 2016), following the classification scheme employed by Gannon et al. (2007). Previous studies show that butterfly distribution can be found in more than one shape. They usually exhibit an intense decrease near 90° pitch angles compared to the peaks usually around 30° and 150°. Sometimes unusual butterfly PAD shapes with peaks near 45° and 135° pitch angles can be observed. These could be correlated with different physical processes that govern the production and loss of energetic particles in the Van Allen radiation belt. A neural network approach allows the distinction of different kinds of butterfly PADs which were not analyzed in detail by Souza et al. (2016). This study uses SOM methodology to find these unusual butterfly PAD shape during the interval between January 1, 2014 and October 1, 2015, during which Van Allen Probes orbit covered all MLT. The spatial and temporal occurrence of these events were investigated as well as their solar wind and magnetospheric drivers.

  4. A novel orbiter mission concept for venus with the EnVision proposal

    Science.gov (United States)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard

    2018-07-01

    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  5. Using heteroclinic orbits to quantify topological entropy in fluid flows

    International Nuclear Information System (INIS)

    Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.

    2016-01-01

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.

  6. 48 CFR 632.114 - Unusual contract financing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Unusual contract financing. 632.114 Section 632.114 Federal Acquisition Regulations System DEPARTMENT OF STATE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 632.114 Unusual contract financing. The...

  7. 48 CFR 2432.114 - Unusual contract financing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Unusual contract financing... DEVELOPMENT GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Non-Commercial Item Purchase Financing 2432.114 Unusual contract financing. The Senior Procurement Executive is the agency head for the purpose of...

  8. Lunar Phase Function at 1064 Nm from Lunar Orbiter Laser Altimeter Passive and Active Radiometry

    Science.gov (United States)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-01-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Al- timeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be approximately 5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2 ), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at approximately 300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its

  9. The solar neighborhood. XXXI. Discovery of an unusual red+white dwarf binary at ∼25 pc via astrometry and UV imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jao, Wei-Chun; Henry, Todd J.; Winters, Jennifer G.; Gies, Douglas R. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Subasavage, John P. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Riedel, Adric R. [Department of Physics and Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065 (United States); Ianna, Philip A., E-mail: jao@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: winters@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jsubasavage@nofs.navy.mil, E-mail: ar494@hunter.cuny.edu, E-mail: philianna3@gmail.com [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2014-01-01

    We report the discovery of a nearby M5.0V dwarf at 24.6 pc, SCR 1848–6855, that is orbited by an unusual companion causing an astrometric perturbation of more than 200 mas. This is by far the largest perturbation found to date among more than 700 targets observed during our long-term astrometry/photometry program at the CTIO 0.9 m telescope. We present here a suite of astrometric, photometric, and spectroscopic observations of this high proper motion (∼1.''3 yr{sup –1}) system in an effort to reveal the nature of this unusual binary. The measured near-UV and optical U band fluxes exceed those expected for comparable M5.0V stars, and excess flux is also detected in the spectral range 4000-7000 Å. The elusive companion has been detected in HST-STIS+MAMA images at 1820 Å and 2700 Å, and our analysis shows that it is probably a rare, cool, white dwarf with T = 4600-5500 K. Given the long-term astrometric coverage, the prospects for an accurate mass determination are excellent, although as yet we can only provide limits on the unusual companion's mass.

  10. Excitation of neutron star oscillations by an orbiting mass

    International Nuclear Information System (INIS)

    Ruoff, J.

    2001-01-01

    In this contribution, I present results from a numerical study of the even-parity gravitational radiation generated from a particle orbiting a neutron star. The investigation is focused on those conditions on the orbital parameters that favor the excitation of w-modes. It is found that, for astrophysically realistic conditions, there is practically no w-mode contribution to the emitted radiation. Only for particles with ultra-relativistic orbital speeds ≥ 0.9c, the w-mode does significantly contribute to the total emitted gravitational energy. To obtain reliable results, a way is presented to construct consistent initial data which contain as little as possible initial radiation. (author)

  11. Unusual event report from Oskarshamn

    International Nuclear Information System (INIS)

    1996-01-01

    The title of the report was intended to reflect the cause of the shutdown and the report to be regarded as a summary of the deficiencies that had been revealed and remedied. No single deficiency was regarded as reportable as an unusual event, but taken together the identified deficiencies deviated from the assumed safety level to the extent that it should be reported. The unusual event report refers to two main documents presenting measures taken to return to reported safety level, one concerning technical and one organizational measures

  12. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  13. The parameters of the free ions Mn5+ and Fe6+

    International Nuclear Information System (INIS)

    Andreici, E L; Gruia, A S; Avram, N M

    2012-01-01

    The analysis of the behavior of iron-group ions in crystals, using a free-ion Hamiltonian that involves terms with only three parameters (B, C and ξ), seems to be erroneous since it is incapable of correctly predicting the levels of even a free ion. Such calculations may lead to erroneous conclusions concerning the crystal-field effects and the electron-phonon interaction. In this paper, we present the results of the most exact calculation of the parameters for free ions and the energy levels of Mn 5+ and Fe 6+ with 3d 2 configuration. In the single-configuration approximation, the effective Hamiltonian of the free ions takes into account not only the electrostatic and the spin-orbit interactions, but also the relativistic ones (spin-spin, orbit-orbit and spin-other-orbit) and the linear correlation effect. For both free ions we have calculated the semi-empirical parameters included in the interaction Hamiltonian and the energy level scheme. The values of these parameters are obtained by fitting experimental data with the minimum value of rms errors. The final results are discussed.

  14. Optic pathway glioma associated with orbital rhabdomyosarcoma and bilateral optic nerve sheath dural ectasia in a child with neurofibromatosis-1

    International Nuclear Information System (INIS)

    Nikas, Ioannis; Theofanopoulou, Maria; Lampropoulou, Penelope; Hadjigeorgi, Christiana; Pourtsidis, Apostolos; Kosmidis, Helen

    2006-01-01

    Neurofibromatosis-1 (NF-1) is a multisystem disorder presenting with a variety of clinical and imaging manifestations. Neural and non-neural tumours, and unusual benign miscellaneous conditions, separately or combined, are encountered in variable locations. We present a 21/2-year-old boy with NF-1 who demonstrated coexisting optic pathway glioma with involvement of the chiasm and optic nerve, orbital alveolar rhabdomyosarcoma and bilateral optic nerve sheath dural ectasia. (orig.)

  15. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  16. Hydrogen atom in a magnetic field: Ghost orbits, catastrophes, and uniform semiclassical approximations

    International Nuclear Information System (INIS)

    Main, J.; Wunner, G.

    1997-01-01

    Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society

  17. The Orbital and Physical Parameters, and the Distance of the Eclipsing Binary System OGLE-LMC-ECL-25658 in the Large Magellanic Cloud

    Science.gov (United States)

    Elgueta, S. S.; Graczyk, D.; Gieren, W.; Pietrzyński, G.; Thompson, I. B.; Konorski, P.; Pilecki, B.; Villanova, S.; Udalski, A.; Soszyński, I.; Suchomska, K.; Karczmarek, P.; Górski, M.; Wielgórski, P.

    2016-08-01

    We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud (LMC). The system consists of two late G-type giant stars on an eccentric orbit with an orbital period of ˜200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson-Devinney code. We derived orbital and physical parameters of the binary with a high precision of \\lt 1%. The masses and surface metallicities of the components are virtually the same and equal to 2.23+/- 0.02 {M}⊙ and [{Fe}/{{H}}]\\=\\-0.63+/- 0.10 dex. However, their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M)\\=\\18.452+/- 0.023 (statistical) ± 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter, we applied a geometrical correction for its position in the LMC disk using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is {d}{{LMC}}\\=\\50.30+/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzyński et al.

  18. 48 CFR 2832.114 - Unusual contract financing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Unusual contract financing... Contracting Requirements CONTRACT FINANCING Non-Commercial Item Purchase Financing 2832.114 Unusual contract financing. The HCA, or designee at a level not lower than the BPC, is the official authorized to approve...

  19. Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions

    Science.gov (United States)

    Zeebe, R. E.

    2017-12-01

    Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.

  20. Tracking variable sedimentation rates in orbitally forced paleoclimate proxy series

    Science.gov (United States)

    Li, M.; Kump, L. R.; Hinnov, L.

    2017-12-01

    This study addresses two fundamental issues in cyclostratigraphy: quantitative testing of orbital forcing in cyclic sedimentary sequences and tracking variable sedimentation rates. The methodology proposed here addresses these issues as an inverse problem, and estimates the product-moment correlation coefficient between the frequency spectra of orbital solutions and paleoclimate proxy series over a range of "test" sedimentation rates. It is inspired by the ASM method (1). The number of orbital parameters involved in the estimation is also considered. The method relies on the hypothesis that orbital forcing had a significant impact on the paleoclimate proxy variations, and thus is also tested. The null hypothesis of no astronomical forcing is evaluated using the Beta distribution, for which the shape parameters are estimated using a Monte Carlo simulation approach. We introduce a metric to estimate the most likely sedimentation rate using the product-moment correlation coefficient, H0 significance level, and the number of contributing orbital parameters, i.e., the CHO value. The CHO metric is applied with a sliding window to track variable sedimentation rates along the paleoclimate proxy series. Two forward models with uniform and variable sedimentation rates are evaluated to demonstrate the robustness of the method. The CHO method is applied to the classical Late Triassic Newark depth rank series; the estimated sedimentation rates match closely with previously published sedimentation rates and provide a more highly time-resolved estimate (2,3). References: (1) Meyers, S.R., Sageman, B.B., Amer. J. Sci., 307, 773-792, 2007; (2) Kent, D.V., Olsen, P.E., Muttoni, G., Earth-Sci. Rev.166, 153-180, 2017; (3) Li, M., Zhang, Y., Huang, C., Ogg, J., Hinnov, L., Wang, Y., Zou, Z., Li, L., 2017. Earth Plant. Sc. Lett. doi:10.1016/j.epsl.2017.07.015

  1. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    Science.gov (United States)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  2. Glial heterotopia of the orbit: a rare cause of proptosis.

    Science.gov (United States)

    Bakhti, Souad; Terkmani, Fella; Tighilt, Nabila; Benmouma, Youcef; Boumehdi, Nazim; Djennas, Mohamed

    2016-11-01

    Glial heterotopia is defined as presence of normal glial tissue in an unusual location without connection with the brain. It is a very rare clinical entity occuring mostly in the head and neck region which is generally present at birth. Orbital location is very rare. We report a case of a 4-month-old girl presenting congenital proptosis with progressive increase. CT scan revealed an intraorbital mass without bony defect. The patient was operated, and resection was subtotal. Histologically, the tumor was composed of glial tissue with plexus choroid and pathologist concluded glial heterotopia. The child is under constant medical supervision because recurrences can be observed after incomplete resection; she had no new clinical signs at 18 months follow-up.

  3. Evaluation of Eyeball and Orbit in Relation to Gender and Age.

    Science.gov (United States)

    Özer, Cenk Murat; Öz, Ibrahim Ilker; Şerifoğlu, Ismail; Büyükuysal, Mustafa Çağatay; Barut, Çağatay

    2016-11-01

    The orbital aperture is the entrance to the orbit in which most important visual structures such as the eyeball and the optic nerve are found. It is vital not only for the visual system but also for the evaluation and recognition of the face. Eyeball volume is essential for diagnosing microphthalmos or buphthalmos in several eye disorders. Knowing the length of the optic nerve is necessary in selecting the right instruments for enucleation. Therefore, the aim of this study was to evaluate eyeball volume, orbital aperture, and optic nerve dimensions for a morphological description in a Turkish population sample according to gender and body side.Paranasal sinus computed tomography (CT) scans of 198 individuals (83 females, 115 males) aged between 5 and 74 years were evaluated retrospectively. The dimensions of orbital aperture, axial length and volume of eyeball, and diameter and length of the intraorbital part of the optic nerve were measured. Computed tomography examinations were performed on an Activion 16 CT Scanner (Toshiba Medical Systems, 2008 Japan). The CT measurements were calculated by using OsiriX software on a personal computer. All parameters were evaluated according to gender and right/left sides. A statistically significant difference between genders was found with respect to axial length of eyeball, optic nerve diameter, dimensions of orbital aperture on both sides, and right optic nerve length. Furthermore, certain statistically significant side differences were also found. There were statistically significant correlations between age and the axial length of the eyeball, optic nerve diameter, and the transverse length of the orbital aperture on both sides for the whole study group.In this study we determined certain morphometric parameters of the orbit. These outcomes may be helpful in developing a database to determine normal orbit values for the Turkish population so that quantitative assessment of orbital disease and orbital deformities will be

  4. Unusual raptor nests around the world

    Science.gov (United States)

    Ellis, D.H.; Craig, T.; Craig, E.; Postupalsky, S.; LaRue, C.T.; Nelson, R.W.; Anderson, D.W.; Henny, C.J.; Watson, J.; Millsap, B.A.; Dawson, J.W.; Cole, K.L.; Martin, E.M.; Margalida, A.; Kung, P.

    2009-01-01

    From surveys in many countries, we report raptors using unusual nesting materials (e.g., paper money, rags, metal, antlers, and large bones) and unusual nesting situations. For example, we documented nests of Steppe Eagles Aquila nipalensis and Upland Buzzards Buteo hemilasius on the ground beside well-traveled roads, Saker Falcon Falco cherrug eyries in attics and a cistern, and Osprey Pandion haliaetus nests on the masts of boats and on a suspended automobile. Other records include a Golden Eagle A. chrysaetos nest 7.0 m in height, believed to be the tallest nest ever described, and, for the same species, we report nesting in rudimentary nests. Some nest sites are within a few meters of known predators or competitors. These unusual observations may be important in revealing the plasticity of a species' behavioral repertoire. ?? 2009 The Raptor Research Foundation, Inc.

  5. The effect of orbital eccentricity on polarimetric binary diagnostics

    International Nuclear Information System (INIS)

    Aspin, C.; Brown, J.C.; Simmons, J.F.L.

    1980-01-01

    The polarimetric variation from a binary system with an eccentric orbit, thus non-corotating, are calculated and the effect on determining the system parameters is discussed, relative to the circular case. (Auth.)

  6. Orbital Instabilities in a Triaxial Cusp Potential

    Science.gov (United States)

    Adams, Fred C.; Bloch, Anthony M.; Butler, Suzanne C.; Druce, Jeffrey M.; Ketchum, Jacob A.

    2007-12-01

    This paper constructs an analytic form for a triaxial potential that describes the dynamics of a wide variety of astrophysical systems, including the inner portions of dark matter halos, the central regions of galactic bulges, and young embedded star clusters. Specifically, this potential results from a density profile of the form ρ(m)~m-1, where the radial coordinate is generalized to triaxial form so that m2=x2/a2+y2/b2+z2/c2. Using the resulting analytic form of the potential and the corresponding force laws, we construct orbit solutions and show that a robust orbit instability exists in these systems. For orbits initially confined to any of the three principal planes, the motion in the perpendicular direction can be unstable. We discuss the range of parameter space for which these orbits are unstable, find the growth rates and saturation levels of the instability, and develop a set of analytic model equations that elucidate the essential physics of the instability mechanism. This orbit instability has a large number of astrophysical implications and applications, including understanding the formation of dark matter halos, the structure of galactic bulges, the survival of tidal streams, and the early evolution of embedded star clusters.

  7. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  8. Orbital Motion of Young Binaries in Ophiuchus and Upper Centaurus–Lupus

    Science.gov (United States)

    Schaefer, G. H.; Prato, L.; Simon, M.

    2018-03-01

    We present measurements of the orbital positions and flux ratios of 17 binary and triple systems in the Ophiuchus star-forming region and the Upper Centaurus–Lupus cluster based on adaptive optics imaging at the Keck Observatory. We report the detection of visual companions in MML 50 and MML 53 for the first time, as well as the possible detection of a third component in WSB 21. For six systems in our sample, our measurements provide a second orbital position following their initial discoveries over a decade ago. For eight systems with sufficient orbital coverage, we analyze the range of orbital solutions that fit the data. Ultimately, these observations will help provide the groundwork toward measuring precise masses for these pre-main-sequence stars and understanding the distribution of orbital parameters in young multiple systems.

  9. Mean Orbital Elements for Geosynchronous Orbit - II - Orbital inclination, longitude of ascending node, mean longitude

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1990-06-01

    Full Text Available The osculating orbital elements include the mean, secular, long period, and short period terms. The iterative algorithm used for conversion of osculating orbital elements to mean orbital elements is described. The mean orbital elements of Wc, Ws, and L are obtained.

  10. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    Science.gov (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  11. An advanced analysis method of initial orbit determination with too short arc data

    Science.gov (United States)

    Li, Binzhe; Fang, Li

    2018-02-01

    This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.

  12. ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61)

    International Nuclear Information System (INIS)

    Ragozzine, D.; Brown, M. E.

    2009-01-01

    Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully interacting three-point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the nonspherical primary (described by J 2 ). The nearly coplanar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inclination point to an intriguing tidal history of significant semimajor axis evolution through satellite mean-motion resonances. The orbital solution indicates that Namaka and Haumea are currently undergoing mutual events and that the mutual event season will last for next several years.

  13. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    Science.gov (United States)

    Li, Feng-Guo; Ai, Bao-Quan

    2011-06-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise.

  14. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    International Nuclear Information System (INIS)

    Li Fengguo; Ai Baoquan

    2011-01-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise. (general)

  15. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. PyORBIT: A Python Shell For ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  17. PyORBIT: A Python Shell For ORBIT

    International Nuclear Information System (INIS)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-01-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability

  18. Atmospheric interaction with nanosatellites from observed orbital decay

    Science.gov (United States)

    Macario-Rojas, A.; Smith, K. L.; Crisp, N. H.; Roberts, P. C. E.

    2018-06-01

    Nanosatellites have gained considerable presence in low Earth orbits wherein the atmospheric interaction with exposed surfaces plays a fundamental role in the evolution of motion. These aspects become relevant with the increasing applicability of nanosatellites to a broader range of missions objectives. This investigation sets out to determine distinctive drag coefficient development and attributes of atmospheric gas-surface interactions in nanosatellites in the common form of standard 3U CubeSats from observed orbital decay. As orbital decay can be measured with relative accuracy, and its mechanism broken down into its constituent sources, the value of drag-related coefficients can be inferred by fitting modelled orbit predictions to observed data wherein the coefficient of interest is the adjusted parameter. The analysis uses the data of ten historical missions with documented passive attitude stabilisation strategies to reduce uncertainties. Findings indicate that it is possible to estimate fitted drag coefficients in CubeSats with physical representativeness. Assessment of atomic oxygen surface coverage derived from the fitted drag coefficients is broadly consistent with theoretical trends. The proposed methodology opens the possibility to assess atmospheric interaction characteristics by using the unprecedented opportunity arising from the numerous observed orbital decay of nanosatellites.

  19. Th-Based Endohedral Metallofullerenes: Anomalous Metal Position and Significant Metal-Cage Covalent Interactions with the Involvement of Th 5f Orbitals.

    Science.gov (United States)

    Li, Ying; Yang, Le; Liu, Chang; Hou, Qinghua; Jin, Peng; Lu, Xing

    2018-05-29

    Endohedral metallofullerenes (EMFs) containing actinides are rather intriguing due to potential 5f-orbital participation in the metal-metal or metal-cage bonding. In this work, density functional theory calculations first characterized the structure of recently synthesized ThC 74 as Th@ D 3 h (14246)-C 74 . We found that the thorium atom adopts an unusual off-axis position inside cage due to small metal ion size and the requirement of large coordination number, which phenomenon was further extended to other Th-based EMFs. Significantly, besides the strong metal-cage electrostatic attractions, topological and orbital analysis revealed that all the investigated Th-based EMFs exhibit obvious covalent interactions between metal and cage with substantial contribution from the Th 5f orbitals. The encapsulation by fullerenes is thus proposed as a practical pathway toward the f-orbital covalency for thorium. Interestingly, the anomalous internal position of Th led to a novel three-dimensional metal trajectory at elevated temperatures in the D 3 h -C 74 cavity, as elucidated by the static computations and molecular dynamic simulations.

  20. Spectroscopic orbit for HDE 245770 A0535+26

    International Nuclear Information System (INIS)

    Hutchings, J.B.

    1984-01-01

    Optical spectroscopic data are examined using the X-ray intensity period of 111 days. Optical and X-ray pulse-timing orbit parameters agree well and indicate an eccentricity of approximately 0.3. Masses of the stars and periastron effects are discussed. 6 references

  1. Orbital express capture system: concept to reality

    Science.gov (United States)

    Stamm, Shane; Motaghedi, Pejmun

    2004-08-01

    The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the

  2. Task-driven orbit design and implementation on a robotic C-arm system for cone-beam CT

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-03-01

    Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the fz-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (fy, fz) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the fz-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of

  3. An Unusual Bone Loss Around Implants

    Directory of Open Access Journals (Sweden)

    Amirreza Rokn

    2013-01-01

    Full Text Available AbstractPre-implant disease is an inflammatory process, which can affect the surrounding tissues of a functional Osseointegrated implant that is usually as a result of a disequilibrium between the micro-flora and the body defense system.This case reports a 57 years old male with unusual bone loss around dental implants.This was an unusual case of peri-implantitis which occurred only in the implants on one side of the mouth although they all were unloaded implants.

  4. Orbit selection of nanosatellite formation in term of fuel consumption

    Science.gov (United States)

    Pimnoo, Ammarin; Hiraki, Koju

    In nanosatellite formation mission design, orbit selection is a necessary factor. Fuel consumption is also necessary to maintain the orbit. Therefore, the best orbit should be the one of minimum fuel consumption for nanosatellite formation. The purpose of this paper is to provide a convenient way to estimate fuel consumption for a nanosatellite to keep formation flying. The formation is disturbed by J _{2} perturbation and other perturbing accelerations. Firstly, the Hill-Clohessy-Wiltshire equations are used in the analysis. Gaussian variation of parameters is included into the Hill’s equation to analyze the variation of Kaplerian orbital elements. The J _{2} perturbation and other perturbing accelerations such as atmospheric drag, solar-radiation pressure and third-body perturbations are considered. Thus, a linear model based on Hill’s equation is established to estimate fuel consumption. Finally, an example of the best orbit for formation flying with minimum fuel consumption shall be presented.

  5. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis

    Directory of Open Access Journals (Sweden)

    Sumeet Jain

    2016-01-01

    Full Text Available Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  6. Space tether dynamics: an introduction

    Science.gov (United States)

    Denny, Mark

    2018-05-01

    The dynamics of orbiting tethers (space elevators and skyhooks) is developed from an unusual direction: Lagrangian rather than Newtonian mechanics. These basic results are derived among others: space elevator required length with and without counterweight, location and magnitude of maximum tether tension, skyhook orbital parameters and tether tension. These conceptual devices are being increasingly discussed as technologically feasible; here they make an interesting pedagogical application of Lagrangian mechanics suitable for undergraduate physics students.

  7. CODE's new solar radiation pressure model for GNSS orbit determination

    Science.gov (United States)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  8. Competition of multiplet and spin-orbit splitting in open-shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich (Germany)

    2016-07-01

    To study the trends in the spectra of open-shells across the periodic table, we perform density functional calculations for atoms and ions. We collect the Slater-Condon and spin-orbit parameters from the resulting self-consistent radial wave functions and potentials. To make these easily accessible, we provide a simple least squares fitting formula in the spirit of Slater's rules. Given these parameters we calculate the many-body spectra in LS-, intermediate-, and jj-coupling. To assess the relative importance of Coulomb and spin-orbit interactions, we estimate the width of the spectra by calculating the eigen-energy variance of the corresponding Hamiltonian using a simple formula that does not require diagonalizing a complicated many-body Hamiltonian.

  9. ORBITAL INJURIES

    Directory of Open Access Journals (Sweden)

    Andrej Kansky

    2002-12-01

    Full Text Available Background. Orbit is involved in 40% of all facial fractures. There is considerable variety in severity, ranging from simple nondisplaced to complex comminuted fractures. Complex comminuted fractures (up to 20% are responsible for the majority of complications and unfavorable results. Orbital fractures are classified as internal orbital fractures, zygomatico-orbital fractures, naso-orbito-ethmoidal fractures and combined fractures. The ophtalmic sequelae of midfacial fractures are usually edema and ecchymosis of the soft tissues, subconjuctival hemorrhage, diplopia, iritis, retinal edema, ptosis, enophthalmos, ocular muscle paresis, mechanical restriction of ocular movement and nasolacrimal disturbances. More severe injuries such as optic nerve trauma and retinal detachments have also been reported. Within the wide range of orbital fractures small group of complex fractures causes most of the sequelae. Therefore identification of severe injuries and adequate treatment is of major importance. The introduction of craniofacial techniques made possible a wide exposure even of large orbital wall defects and their reconstruction by bone grafts. In spite of significant progress, repair of complex orbital wall defects remains a problem even for the experienced surgeons.Results. In 1999 121 facial injuries were treated at our department (Clinical Centre Ljubljana Dept. Of Maxillofacial and Oral Surgery. Orbit was involved in 65% of cases. Isolated inner orbital fractures presented 4% of all fractures. 17 (14% complex cases were treated, 5 of them being NOE, 5 orbital (frame and inner walls, 3 zygomatico-orbital, 2 FNO and 2 maxillo-orbital fractures.Conclusions. Final result of the surgical treatment depends on severity of maxillofacial trauma. Complex comminuted fractures are responsable for most of the unfavorable results and ocular function is often permanently damaged (up to 75% in these fractures.

  10. Orbital

    OpenAIRE

    Yourshaw, Matthew Stephen

    2017-01-01

    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  11. Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2006-01-01

    Full Text Available In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space E_n are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space E_n. Orbit functions are solutions of the corresponding Laplace equation in E_n, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  12. Evaluation of use of MPAD trajectory tape and number of orbit points for orbiter mission thermal predictions

    Science.gov (United States)

    Vogt, R. A.

    1979-01-01

    The application of using the mission planning and analysis division (MPAD) common format trajectory data tape to predict temperatures for preflight and post flight mission analysis is presented and evaluated. All of the analyses utilized the latest Space Transportation System 1 flight (STS-1) MPAD trajectory tape, and the simplified '136 note' midsection/payload bay thermal math model. For the first 6.7 hours of the STS-1 flight profile, transient temperatures are presented for selected nodal locations with the current standard method, and the trajectory tape method. Whether the differences are considered significant or not depends upon the view point. Other transient temperature predictions are also presented. These results were obtained to investigate an initial concern that perhaps the predicted temperature differences between the two methods would not only be caused by the inaccuracies of the current method's assumed nominal attitude profile but also be affected by a lack of a sufficient number of orbit points in the current method. Comparison between 6, 12, and 24 orbit point parameters showed a surprising insensitivity to the number of orbit points.

  13. Total-energy global optimizations using nonorthogonal localized orbitals

    International Nuclear Information System (INIS)

    Kim, J.; Mauri, F.; Galli, G.

    1995-01-01

    An energy functional for orbital-based O(N) calculations is proposed, which depends on a number of nonorthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground-state energy, without being trapped at local minima. The present approach overcomes the multiple-minima problem present within the original formulation of orbital-based O(N) methods; it therefore makes it possible to perform O(N) calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wave functions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground-state energy, and the energy conservation during a molecular dynamics run. Several numerical examples for surfaces, bulk systems, and clusters are presented and discussed

  14. Diffusion-weighted MR imaging in benign and malignant orbital masses

    International Nuclear Information System (INIS)

    Guo Jian; Wang Zhenchang; Xian Junfang; Niu Yantao; Zhao Bo; Yan Fei; Liu Zhonglin; Yang Bentao

    2007-01-01

    Objective: To analyse the characteristics of orbital benign and malignant masses on diffusion weighted imaging in combination with conventional MR imaging and evaluate the diagnostic value of apparent diffusion coefficient in distinguishing benign and malignant orbital lesions. Methods: Seventy- seven cases with orbital masses, including fifty-five benign lesions and twenty-two malignant tumors, who underwent conventional MRI and diffusion imaging scanning were studied with use of a 1.5 T magnetic resonance system. Quantitative ADC measurements of masses (ADCM) and of the white matter of contralateral temporal lobe (ADC w ) were made with two different b-values of 0 and 1000 s/mm 2 . The ADC ratio (ADCR) of the lesion to the control was calculated. The receiver operating characteristic curves(ROC) were constructed using various cut points of ADCM and ADCR for different parameters to differentiate between benign and malignant masses. The area under the ROC curve for each parameter was also calculated. Results: All cases were proved by histopathology. The mean ADCM and ADCR of benign orbital masses were (1.56 ± 0.75) x 10 -3 mm 2 /s and 1.85 ± 0.91, respectively. The mean ADCM and ADCR of malignant orbital masses were (1.09 ± 0.42) x 10 -3 mm 2 /s and 1.28 ± 0.53, respectively. There were significant difference both between ADCM and ADCR of benign and malignant masses (t=2.803, 2.735, P -3 mm 2 /s for ADC M of the tumor, the sensitivity, specificity and accuracy were 59.1%, 78.2% and 72.7%, respectively. And by using cut point of 1.24 for ADCR, the sensitivity, specificity and accuracy were 59.1%, 76.4%, 71.4%, respectively. Conclusion: Diffusion MR imaging and ADC value could provide additional information for conventional magnetic resonance imaging in distinguishing benign and malignant orbital masses. (authors)

  15. Directing orbits of chaotic systems by particle swarm optimization

    International Nuclear Information System (INIS)

    Liu Bo; Wang Ling; Jin Yihui; Tang Fang; Huang Dexian

    2006-01-01

    This paper applies a novel evolutionary computation algorithm named particle swarm optimization (PSO) to direct the orbits of discrete chaotic dynamical systems towards desired target region within a short time by adding only small bounded perturbations, which could be formulated as a multi-modal numerical optimization problem with high dimension. Moreover, the synchronization of chaotic systems is also studied, which can be dealt with as an online problem of directing orbits. Numerical simulations based on Henon Map demonstrate the effectiveness and efficiency of PSO, and the effects of some parameters are also investigated

  16. Osteosarcoma of the spheno-temporo-orbital bone: Imaging aspects of such unusual location

    Directory of Open Access Journals (Sweden)

    ABDEL ILAH RAYAN ALAOUI BOUARRAQUI

    2018-05-01

    Full Text Available Osteosarcoma of the spheno-temporo-orbital bone is a very rare tumor. Despite the fact that primary osteogenic sarcomas are the most common bone neoplasm, their location in the skull bone is uncommon representing less than 2% of all skull tumors. We report the case of a 41-year-old woman, who has experienced periorbital pain with exophthalmos and left eye vision loss. Neuroimaging analysis including both brain computed tomography (CT-scan and Magnetic resonance imaging (MRI were performed. Although radiographic features of skull bone osteosarcomas are not specific, the combination of several radiographic features could lead to this diagnosis in such rare location. The final diagnosis was established by a trans-temporal biopsy with immunohistochemical study. Neurosurgical resection of the primary tumor was not possible given the important extent of the tumor and the involvement of adjacent structures, so the patient underwent conformational radiotherapy. The evolution was marked by local and metastatic progression. The patient received palliative chemotherapy and died few months later. The purpose of presenting this case is not only to report an uncommon malignancy of the skull bone, but also to provide imaging aspects of this rare location and to raise awareness among radiologists in order to consider this radiological entity as a differential diagnosis when a skull bone process is identified.

  17. Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system

    Science.gov (United States)

    Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo

    2018-01-01

    We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.

  18. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  19. Orbit effects on impurity transport in a rotating tokamak plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-05-01

    Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs

  20. Spin-orbit coupling effects in indium antimonide quantum well structures

    Science.gov (United States)

    Dedigama, Aruna Ruwan

    Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.

  1. Innocent Bystanders: Orbital Dynamics of Exomoons During Planet–Planet Scattering

    Science.gov (United States)

    Hong, Yu-Cian; Raymond, Sean N.; Nicholson, Philip D.; Lunine, Jonathan I.

    2018-01-01

    Planet–planet scattering is the leading mechanism to explain the broad eccentricity distribution of observed giant exoplanets. Here we study the orbital stability of primordial giant planet moons in this scenario. We use N-body simulations including realistic oblateness and evolving spin evolution for the giant planets. We find that the vast majority (∼80%–90% across all our simulations) of orbital parameter space for moons is destabilized. There is a strong radial dependence, as moons past ∼ 0.1 {R}{Hill} are systematically removed. Closer-in moons on Galilean-moon-like orbits (<0.04 R Hill) have a good (∼20%–40%) chance of survival. Destabilized moons may undergo a collision with the star or a planet, be ejected from the system, be captured by another planet, be ejected but still orbiting its free-floating host planet, or survive on heliocentric orbits as “planets.” The survival rate of moons increases with the host planet mass but is independent of the planet’s final (post-scattering) orbits. Based on our simulations, we predict the existence of an abundant galactic population of free-floating (former) moons.

  2. Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters

    Directory of Open Access Journals (Sweden)

    Fabian Andres Lara-Molina

    Full Text Available Abstract The components of flexible rotors are subjected to uncertainties. The main sources of uncertainties include the variation of mechanical properties. This contribution aims at analyzing the dynamics of flexible rotors under uncertain parameters modeled as fuzzy and fuzzy random variables. The uncertainty analysis encompasses the modeling of uncertain parameters and the numerical simulation of the corresponding flexible rotor model by using an approach based on fuzzy dynamic analysis. The numerical simulation is accomplished by mapping the fuzzy parameters of the deterministic flexible rotor model. Thereby, the flexible rotor is modeled by using both the Fuzzy Finite Element Method and the Fuzzy Stochastic Finite Element Method. Numerical simulations illustrate the methodology conveyed in terms of orbits and frequency response functions subject to uncertain parameters.

  3. Orbital period changes in RW CrA, DX Vel and V0646 Cen

    Science.gov (United States)

    Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.

    2017-06-01

    We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.

  4. Unusual hardening behaviour in heavily cryo-rolled Cu-Al-Zn alloys during annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.L. [Faculty of Science, Kunming University of Science and Technology, Kunming 650500 (China); Ren, S.Y. [Ningbo Powerway Alloy Material Co., Ltd, Ningbo 315135 (China); Zeng, S.D. [Yunnan Institute of Measuring and Testing Technology, Kunming 650228 (China); Zhu, X.K., E-mail: xk_zhu@hotmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China)

    2016-04-06

    Three nanostructured Cu-Al-Zn alloys were produced via rolling at the liquid nitrogen temperature. The deformed Cu alloys were then annealed at 150–300 °C for 1 h. The two alloys with high solute content and thus with low stacking fault energy exhibit unusual annealing hardening, namely, an increase in hardness and strength and a decrease in tensile elongation after annealing at 150 and 200 °C. From X-ray diffraction (XRD) analysis and microstructural observations by transmission electron microscopy (TEM), it is found that microstrain and dislocation density decrease after annealing at 200 °C because of the recovery of dislocations and the lattice parameter decreases due to solute segregation. Meanwhile, the twin density of the two Cu alloys increases and grain size remains basically unchanged. It is shown that the formation of annealing twins and stacking faults and the segregation of solute atoms may be the main causes of unusual annealing hardening.

  5. Unusual radiological characteristics of teratoid/rhabdoid brain tumor ...

    African Journals Online (AJOL)

    We report a case of atypical teratoid rhabdoid brain tumor for 4 months old male child, who presented with unusual radiological findings, that can be confused with other brain tumors ,so we high light these unusual imaging features to aid in making correct diagnosis. Keywords: atypical teratoid–rhabdoid tumor, brain tumor, ...

  6. The testis: the unusual, the rare and the bizarre

    International Nuclear Information System (INIS)

    Stewart, V.R.; Sidhu, P.S.

    2007-01-01

    Ultrasound is the preferred technique when imaging the scrotal contents. Although appearances of many of the more common abnormalities present the examiner with no diagnostic difficulty, the more unusual conditions may present a considerable challenge. Many normal variants, unusual and rare abnormalities may be instantly recognized once seen. The current review highlights the more unusual and rare conditions affecting the scrotal contents in order to allow the reader the opportunity to gain knowledge of their existence and to aid future interpretation of the difficult examination

  7. Orbital motions as gradiometers for post-Newtonian tidal effects

    Directory of Open Access Journals (Sweden)

    Lorenzo eIorio

    2014-08-01

    Full Text Available The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency nb an astronomical body of mass M which, in turn, slowly revolves around a distantobject of mass M with orbital frequency nb'<< □ nb is considered. The characteristic frequenciesof the non-Keplerian orbital variations of m and of M itself are assumed to be negligible withrespect to both nb and nb'. General expressions for the resulting Newtonian and post-Newtoniantidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercuryand Ganymede, respectively, are considered in view of a possible detection. The largest effects,of the order of □ 0:1 □□ 0:5 milliarcseconds per year (mas yr□□1, occur for the Ganymede orbiterof the JUICE mission. Although future improvements in spacecraft tracking and orbit determina14tion might, perhaps, reach the required sensitivity, the systematic bias represented by the otherknown orbital perturbations of both Newtonian and post-Newtonian origin would be overwhel16ming. The realization of a dedicated artificial mini-planetary system to be carried onboard andEarth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as1 □□ 102 mas yr□□1 could be obtained, but the quite larger Newtonian tidal effects would be amajor source of systematic bias because of the present-day percent uncertainty in the product of the Earth’s mass times the Newtonian gravitational parameter.

  8. Orbital motions as gradiometers for post-Newtonian tidal effects

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it [Ministero dell' Istruzione, dell' Università e della Ricerca, Istruzione, Bari (Italy)

    2014-08-14

    The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency n{sub b} an astronomical body of mass M which, in turn, slowly revolves around a distant object of mass M′ with orbital frequency n{sub b}′ « n{sub b} is considered. The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself are assumed to be negligible with respect to both n{sub b} and n{sub b}′. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of ≈ 0.1-0.5 milliarcseconds per year (mas yr{sup −1}), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as ≈ 1−10{sup 2} mas yr{sup −1} could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.

  9. 48 CFR 235.070 - Indemnification against unusually hazardous risks.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Indemnification against unusually hazardous risks. 235.070 Section 235.070 Federal Acquisition Regulations System DEFENSE... DEVELOPMENT CONTRACTING 235.070 Indemnification against unusually hazardous risks. ...

  10. Orbit Display's Use of the Physics Application Framework

    International Nuclear Information System (INIS)

    Zelazny, Michael

    2009-01-01

    At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) is developing a physics application framework based on the Java(tm) programming language developed by Sun Microsystems. This paper will discuss the first application developed using this approach: a new Orbit Display. The software is being developed by several individuals in reusable Java packages. It relies on the Experimental Physics and Industrial Control System (EPICS) toolkit for data collection and XAL - A Java based Hierarchy for Application Programming for model parameters. The Orbit Display tracks and displays electron paths through the Linac Coherent Light Source (LCLS) in both a graphical, beam line plot, and tabular format. It contains many features that may be unique to SLAC and is meant to be used both in the control room and by individuals in their offices or at home. Unique features include BSA Beam Synchronous Acquisition (BSA), Orbit Fitting, and Buffered Acquisition.

  11. Orbital evolution and origin of the Martian satellites

    International Nuclear Information System (INIS)

    Szeto, A.M.K.

    1983-01-01

    The orbital evolution of the Martian satellites is considered from a dynamical point of view. Celestial mechanics relevant to the calculation of satellite orbital evolution is introduced and the physical parameters to be incorporated in the modeling of tidal dissipation are discussed. Results of extrapolating the satellite orbits backward and forward in time are presented and compared with those of other published work. Collision probability calculations and results for the Martian satellite system are presented and discussed. The implications of these calculations for the origin scenarios of the satellites are assessed. It is concluded that Deimos in its present form could not have been captured, for if it had been, it would have collided with Phobos at some point. An accretion model is therefore preferred over capture, although such a model consistent with the likely carbonaceous chondritic composition of the satellites has yet to be established. 91 references

  12. Sensitivity of the Eocene climate to CO2 and orbital variability

    Science.gov (United States)

    Keery, John S.; Holden, Philip B.; Edwards, Neil R.

    2018-02-01

    The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the Earth's climate system to anthropogenic fossil fuel burning. In this study, we present an ensemble of 50 Earth system model runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth's orbital parameters. Relationships between simple summary metrics of model outputs and the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical-polar temperature difference, ocean-land temperature contrast, Asian, African and South (S.) American monsoon rains, and climate sensitivity. Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence important components of the ocean-atmosphere system in a greenhouse Earth. In our ensemble, atmospheric CO2 spans the range 280-3000 ppm, and this variation accounts for over 90 % of the effects on mean air temperature, southern winter high-latitude ocean-land temperature contrast and northern winter tropical-polar temperature difference. However, the variation of precession accounts for over 80 % of the influence of the forcing parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65 % of the effects on winter ocean-land temperature contrast in high northern latitudes and northern summer tropical-polar temperature difference. Our results indicate a bimodal climate sensitivity, with values of 4.36 and 2.54 °C, dependent on low or high states of atmospheric CO2 concentration, respectively, with a threshold at approximately 1000 ppm in this model, and due to a saturated vegetation-albedo feedback. Our method gives a quantitative ranking of the influence of each of the

  13. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  14. Filter Strategies for Mars Science Laboratory Orbit Determination

    Science.gov (United States)

    Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.

    2013-01-01

    The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.

  15. Unusual computed tomography findings and complications in acute appendicitis

    International Nuclear Information System (INIS)

    Palacio, Glaucia Andrade e Silva; D'Ippolito, Giuseppe

    2003-01-01

    The objective of this article is to describe and illustrate unusual computed tomography (CT) findings in patients with acute appendicitis. We reviewed the charts of 200 patients with clinical suspicion of acute appendicitis who were submitted to abdominal CT before surgery. Patients with unusual presentation or complications were selected for illustrating the main CT findings. Unusual complications of acute appendicitis were related to anomalous position of the appendix, contiguity to intraperitoneal organs such as the liver, gall bladder, annexes and the bladder and continuous use of anti inflammatory or antibiotics during the diagnostic process. We concluded that CT is a useful diagnostic tool in patients with complicated or unusual presentation acute appendicitis. The first step towards diagnosis in these cases i to have in mind the hypothesis of appendicitis in patients with acute abdominal pain. (author)

  16. A Typical Presentation of Orbital Pseudotumor Mimicking Orbital Cellulitis

    Directory of Open Access Journals (Sweden)

    J. Ayatollahi

    2013-10-01

    Full Text Available Introduction: Orbital pseudotumor, also known as idiopathic orbital inflammatory syndrome (IOIS, is a benign, non- infective inflammatory condition of the orbit without identifiable local or systemic causes. The disease may mimics a variety of pathologic conditions. We pre-sent a case of pseudotumor observed in a patient admitted under the name of orbital celluli-ties. Case Report: A 26-year-old woman reffered to our hospital with the history of left ocular pain and headache 2 days before her visit.. Ophthalmological examination of the patient was normal except for the redness and lid edema, mild chemosis and conjunctival injection. Gen-eral assessment was normal but a low grade fever was observed. She was hospitalized as an orbital cellulitis patient. She was treated with intravenous antibiotics. On the third day , sud-denly diplopia, proptosis in her left eye and ocular pain in her right side appeared. MRI re-vealed bilateral enlargement of extraocular muscles. Diagnosis of orbital pseudotumor was made and the patient was treated with oral steroid.She responded promptly to the treatment. Antibiotics were discontinued and steroid was tapered in one month period under close fol-low up. Conclusion: The clinical features of orbital pseudotumor vary widely . Orbital pseudotumor and orbital cellulitis can occasionally demonstrate overlapping features.. Despite complete physical examination and appropriate imaging, sometimes correct diagnosis of the disease would be difficult (Sci J Hamadan Univ Med Sci 2013; 20 (3:256-259

  17. Deadly Sunflower Orbits

    Science.gov (United States)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  18. Assessing variability in Orbiting Carbon Observatory-2 (OCO-2) XCO2 using high spatial resolution color slices and other retrieval parameters

    Science.gov (United States)

    Merrelli, A. J.; Taylor, T.; O'Dell, C.; Cronk, H. Q.; Eldering, A.; Crisp, D.

    2017-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) measures reflected sunlight in the Oxygen A-band (0.76 μm), Weak CO2 band (1.61 μm) and Strong CO2 band (2.06 μm) with resolving powers 18,000, 19,500 and 19,500, respectively. Soundings are collected at 3Hz, yielding 8 contiguous cities, the variability of XCO2 over small scales, e.g., tens of kilometers, is expected to be less than 1 ppm. However, deviations on the order of +/- 2 ppm, or more, are often observed in the production Version 7 (B7) data product. We hypothesize that most of this variability is spurious, with contributions from both retrieval errors and undetected cloud and aerosol contamination. The contiguous nature of the OCO-2 spatial sampling allows for analysis of the variability in XCO2 and correlation with variables, such as the full spatial resolution "color slices" and other retrieved parameters. Color slices avoid the on-board averaging across the detector focal plane array, providing increased spatial information compared to the nominal spectra. This work explores the new B8 production data set using MODIS visible imagery from the CSU Vistool to provide visual context to the OCO-2 parameters. The large volume of data that has been collected since September 2014 allows for statistical analysis of parameters in relation to XCO2 variability. Some detailed case studies are presented.

  19. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  20. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  1. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  2. A Method for Calculating the Mean Orbits of Meteor Streams

    Science.gov (United States)

    Voloshchuk, Yu. I.; Kashcheev, B. L.

    An examination of the published catalogs of orbits of meteor streams and of a large number of works devoted to the selection of streams, their analysis and interpretation, showed that elements of stream orbits are calculated, as a rule, as arithmetical (sometimes, weighed) sample means. On the basis of these means, a search for parent bodies, a study of the evolution of swarms generating these streams, an analysis of one-dimensional and multidimensional distributions of these elements, etc., are performed. We show that systematic errors in the estimates of elements of the mean orbits are present in each of the catalogs. These errors are caused by the formal averaging of orbital elements over the sample, while ignoring the fact that they represent not only correlated, but dependent quantities, with nonlinear, in most cases, interrelations between them. Numerous examples are given of such inaccuracies, in particular, the cases where the "mean orbit of the stream" recorded by ground-based techniques does not cross the Earth's orbit. We suggest the computation algorithm, in which the averaging over the sample is carried out at the initial stage of the calculation of the mean orbit, and only for the variables required for subsequent calculations. After this, the known astrometric formulas are used to sequentially calculate all other parameters of the stream, considered now as a standard orbit. Variance analysis is used to estimate the errors in orbital elements of the streams, in the case that their orbits are obtained by averaging the orbital elements of meteoroids forming the stream, without taking into account their interdependence. The results obtained in this analysis indicate the behavior of systematic errors in the elements of orbits of meteor streams. As an example, the effect of the incorrect computation method on the distribution of elements of the stream orbits close to the orbits of asteroids of the Apollo, Aten, and Amor groups (AAA asteroids) is examined.

  3. Orbital Chondroma: A rare mesenchymal tumor of orbit

    Directory of Open Access Journals (Sweden)

    Ruchi S Kabra

    2015-01-01

    Full Text Available While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE. HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far.

  4. What limits production of unusual monoenoic fatty acids in transgenic plants?

    Science.gov (United States)

    Suh, Mi Chung; Schultz, David J; Ohlrogge, John B

    2002-08-01

    Unusual monounsaturated fatty acids are major constituents (greater than 80%) in seeds of Coriandrum sativum L. (coriander) and Thunbergia alata Bojer, as well as in glandular trichomes (greater than 80% derived products) of Pelargonium x hortorum (geranium). These diverged fatty acid structures are produced via distinct plastidial acyl-acyl carrier protein (ACP) desaturases. When expressed in Arabidopsis thaliana (L.) Heynh. under strong seed-specific promoters the unusual acyl-ACP desaturases resulted in accumulation of unusual monoene fatty acids at 1-15% of seed fatty acid mass. In this study, we have examined several factors that potentially limit higher production of unusual monoenes in transgenic oilseeds. (i) Immunoblots indicated that the introduced desaturases were expressed at levels equivalent to or higher than the endogenous delta9 18:0-ACP desaturase. However, the level of unusual fatty acid produced in transgenic plants was not correlated with the level of desaturase expression. (ii) The unusual desaturases were expressed in several backgrounds, including antisense 18:0-ACP desaturase plants, in fab1 mutants, and co-expressed with specialized ACP or ferredoxin isoforms. None of these experiments led to high production of expected products. (iii) No evidence was found for degradation of the unusual fatty acids during seed development. (iv) Petroselinic acid added to developing seeds was incorporated into triacylglycerol as readily as oleic acid, suggesting no major barriers to its metabolism by enzymes of glycerolipid assembly. (v) In vitro and in situ assay of acyl-ACP desaturases revealed a large discrepancy of activity when comparing unusual acyl-ACP desaturases with the endogenous delta9 18:0-ACP desaturase. The combined results, coupled with the sensitivity of acyl-ACP desaturase activity to centrifugation and low salt or detergent suggests low production of unusual monoenes in transgenic plants may be due to the lack of, or incorrect assemble of

  5. Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-04-01

    We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by

  6. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    Formiga, J K S; Prado, A F B A

    2013-01-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  7. Probing evolution of binaries influenced by the spin–orbit resonances

    International Nuclear Information System (INIS)

    Gupta, A; Gopakumar, A

    2014-01-01

    We evolve isolated comparable mass spinning compact binaries experiencing Schnittman’s post-Newtonian spin–orbit resonances in an inertial frame associated with j 0 , the initial direction of the total angular momentum. We argue that accurate gravitational wave (GW) measurements of the initial orientations of the two spins and orbital angular momentum from j 0 should allow us to distinguish between the two possible families of spin–orbit resonances. Therefore, these measurements have the potential to provide direct observational evidence of possible binary formation scenarios. The above statements should also apply for binaries that do not remain in a resonant plane when they become detectable by GW interferometers. The resonant plane, characterized by the vanishing scalar triple product involving the two spins and the orbital angular momentum, naturally appears in the one parameter family of equilibrium solutions, discovered by Schnittman. We develop a prescription to compute the time-domain inspiral templates for binaries residing in these resonant configurations and explore their preliminary data analysis consequences. (paper)

  8. Cleft lip and palate: series of unusual clinical cases.

    Science.gov (United States)

    Paranaíba, Lívia Máris Ribeiro; Miranda, Roseli Teixeira de; Martelli, Daniella Reis Barbosa; Bonan, Paulo Rogério Ferreti; Almeida, Hudson de; Orsi Júnior, Julian Miranda; Martelli Júnior, Hercílio

    2010-01-01

    Cleft lip and/or palate (CL/P) represent the most common congenital anomalies of the face, corresponding to approximately 65% of all malformations of the craniofacial region. to describe unusual clinical cases of non-syndromic CL/P (CL/PNS), diagnosed in a reference service in Minas Gerais, Brazil, and correlate these alterations with possible risk factors. we carried out a retrospective study, between the years of 1992 and the 1st half of 2009, from medical records. Among the 778 cases of CL/PNS diagnosed in the period of 17 years, 5 (0.64%) were unusual CL/PNS, and all patients were male. It was found that among the 5 patients, 2 had incomplete right cleft lip with incomplete cleft palate, 2 were affected by left incomplete cleft lip and incomplete cleft palate, and 1 had a cleft lip and palate associated with complete right cleft palate. Risk factors such as consanguinity, maternal smoking and alcohol consumption, medication usage during pregnancy, history of abortion and/or stillbirths and maternal diseases were not associated with unusual CL/PNS. This study described 5 unusual cases of CL/PNS in a Brazilian population; no associations with the risk factors analyzed were seen. It also confirmed the unusualness of the prevalence of such alterations.

  9. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Allen, B. [Leibniz Universität, Hannover, D-30167 Hannover (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H. [Max-Planck-Institut für Gravitationsphysik, Callinstr. 38, D-30167 Hannover (Germany); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Department of Astronomy and Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cardoso, F. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ferdman, R. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T., E-mail: benjamin.knispel@aei.mpg.de [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  10. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  11. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.

    2017-01-01

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  12. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný, J.

    2017-01-10

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  13. Unusual MRI findings in grey matter heteropia

    International Nuclear Information System (INIS)

    Soto Ares, G.; Hamon-Kerautret, M.; Leclerc, X.; Pruvo, J.P.; Houlette, C.; Godefroy, O.

    1998-01-01

    We report unusual MRI patterns in patients with grey matter heterotopia. Standard T1- and T2-weighted spin-echo and inversion-recovery sequences were used in 22 patients presenting with seizures or developmental delay. The images were reviewed for signal change surrounding white matter and for atypical size, morphology or topography. We found 10 cases of subependymal heterotopias 11 of focal subcortical heterotopia and of diffuse subcortical heterotopia. On clinical or MRI grounds, 8 cases were considered unusual: 2 of the subependymal type, 2 of focal subcortical heterotopia with white matter abnormalities, 2 of focal subcortical heterotopia with no clinicoradiological correlation 1 of extensive hemispheric subcortical heterotopia and 1 of diffuse subcortical heterotopia confined to the frontal lobe. The classical classification of heterotopia enables easy radiological diagnosis even in cases with unusual patterns. In some cases, heterogeneity and high signal in surrounding white matter can be found. Cortical dysplasia is the most frequent associated malformation. (orig.)

  14. An unusual recurrence of pruritic creeping eruption after treatment

    African Journals Online (AJOL)

    abp

    2015-08-13

    Aug 13, 2015 ... However, an unusual recurrence of the disease in a Ghanaian male after standard treatment was observed ... dog or cat hookworm is not an unusual disease. However ... mistaken for fungal infections or inflammatory skin disorders. Indeed .... drug include dizziness, nausea, vomiting and intestinal cramps.

  15. Unusual anatomy of maxillary central incisor with two roots

    Directory of Open Access Journals (Sweden)

    T S Ashwini Shivakumar

    2012-01-01

    Full Text Available Introduction: Knowledge of root canal morphology is essential for successful endodontic therapy. Failure to recognize unusual root canal anatomy may lead to unsuccessful endodontic treatment. Case Report: This case report describes the successful endodontic treatment of the maxillary central incisor with unusual anatomy of two roots and two root canals. A 23-year-old male patient was referred for dental consultation with discoloration of the maxillary right central incisor with periapical lesion, which revealed unusual anatomy of root on radiographic examination, and was confirmed upon exploration. Discussion: As described by Vertucci, the maxillary central incisor presents a single root and single root canal in 100% of the cases. However, few cases of maxillary central incisors with two canals were reported in the literature, most of which were associated with developmental anomalies like fusion, germination or dens invaginatus. Clinician should be aware of the unusual anatomical variations that should be detected by the different diagnostic resources available.

  16. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper

    2011-01-01

    's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual...

  17. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  18. Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites

    Directory of Open Access Journals (Sweden)

    Vivian M. Gomes

    2012-01-01

    Full Text Available This paper considers the problem of out of plane orbital maneuvers for station keeping of satellites. The main idea is to consider that a satellite is in an orbit around the Earth and that it has its orbit is disturbed by one or more forces. Then, it is necessary to perform a small amplitude orbital correction to return the satellite to its original orbit, to keep it performing its mission. A low thrust propulsion is used to complete this task. It is important to search for solutions that minimize the fuel consumption to increase the lifetime of the satellite. To solve this problem a hybrid optimal control approach is used. The accuracy of the satisfaction of the constraints is considered, in order to try to decrease the fuel expenditure by taking advantage of this freedom. This type of problem presents numerical difficulties and it is necessary to adjust parameters, as well as details of the algorithm, to get convergence. In this versions of the algorithm that works well for planar maneuvers are usually not adequate for the out of plane orbital corrections. In order to illustrate the method, some numerical results are presented.

  19. Orbital Kondo effect due to assisted hopping: Superconductivity, mass enhancement in Cooper oxides with apical oxygen

    International Nuclear Information System (INIS)

    Zawadowski, A.; Penc, K.; Zimanyi, G.

    1991-07-01

    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals with energy not very far from the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the conduction band orbital then orbital Kondo correlation occurs. The assisted hopping vertex is enhanced due to the Coulomb interaction between the heavy orbital and the conduction band. The enhanced hopping results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature is calculated. The models of this type can be applied to the high-T c superconductors where the non-bonding oxygen orbitals of the apical oxygens play the role of heavy orbitals. For an essential range of the parameters the T c obtained is about 100K. (author). 22 refs, 9 figs

  20. Use of regularization method in the determination of ring parameters and orbit correction

    International Nuclear Information System (INIS)

    Tang, Y.N.; Krinsky, S.

    1993-01-01

    We discuss applying the regularization method of Tikhonov to the solution of inverse problems arising in accelerator operations. This approach has been successfully used for orbit correction on the NSLS storage rings, and is presently being applied to the determination of betatron functions and phases from the measured response matrix. The inverse problem of differential equation often leads to a set of integral equations of the first kind which are ill-conditioned. The regularization method is used to combat the ill-posedness

  1. Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation

    Science.gov (United States)

    Castelli, Roberto; Gameiro, Marcio; Lessard, Jean-Philippe

    2018-04-01

    In this paper, we develop computer-assisted techniques for the analysis of periodic orbits of ill-posed partial differential equations. As a case study, our proposed method is applied to the Boussinesq equation, which has been investigated extensively because of its role in the theory of shallow water waves. The idea is to use the symmetry of the solutions and a Newton-Kantorovich type argument (the radii polynomial approach) to obtain rigorous proofs of existence of the periodic orbits in a weighted ℓ1 Banach space of space-time Fourier coefficients with exponential decay. We present several computer-assisted proofs of the existence of periodic orbits at different parameter values.

  2. Secular Orbit and Spin Variations of Asteroid (16) Psyche

    Science.gov (United States)

    Bills, B. G.; Park, R. S.; Scott, B.

    2016-12-01

    The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole

  3. Craniofacial mucormycosis following assault: an unusual presentation of an unusual disease

    International Nuclear Information System (INIS)

    Melsom, S.M.; Khangure, M.S.

    2000-01-01

    A case of craniofacial mucormycosis following assault is discussed. A female diabetic developed peri-orbital cellulitis adjacent to a scalp wound which progressed to a necrotizing fasciitis. This did not respond to treatment. Subsequently the patient developed a hemiparesis, with CT imaging showing peri-orbital and paranasal sinus inflammatory changes, evidence of cavernous sinus invasion and development of a middle cerebral artery territory infarction. The patient died shortly afterwards. The imaging findings and their relationship to the pathological spread of mucor infection are discussed. Copyright (1999) Blackwell Science Pty Ltd

  4. The Visual Orbit and Evolutionary State of 12 Bootes

    Science.gov (United States)

    Boden, A.; Creech-Eakman, M.; Queloz, D.

    1999-01-01

    Herein we report the determination of the 12 Boo visual orbit from near-infrared, long-baseline interferometric measurements taken with the Palomar Testbed Interferometer (PTI). We further add photometric and spectroscopic measurements in an attempt to understand the fundamental stellar parameters and evolution of the 12 Boo components.

  5. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  6. Mixing of t2 g-eg orbitals in 4 d and 5 d transition metal oxides

    Science.gov (United States)

    Stamokostas, Georgios L.; Fiete, Gregory A.

    2018-02-01

    Using exact diagonalization, we study the spin-orbit coupling and interaction-induced mixing between t2 g and egd -orbital states in a cubic crystalline environment, as commonly occurs in transition metal oxides. We make a direct comparison with the widely used t2 g-only or eg-only models, depending on electronic filling. We consider all electron fillings of the d shell and compute the total magnetic moment, the spin, the occupancy of each orbital, and the effective spin-orbit coupling strength (renormalized through interaction effects) in terms of the bare interaction parameters, spin-orbit coupling, and crystal-field splitting, focusing on the parameter ranges relevant to 4 d and 5 d transition metal oxides. In various limits, we provide perturbative results consistent with our numerical calculations. We find that the t2 g-eg mixing can be large, with up to 20% occupation of orbitals that are nominally "empty," which has experimental implications for the interpretation of the branching ratio in experiments, and can impact the effective local moment Hamiltonian used to study magnetic phases and magnetic excitations in transition metal oxides. Our results can aid the theoretical interpretation of experiments on these materials, which often fall in a regime of intermediate coupling with respect to electron-electron interactions.

  7. AGS - The ISR computer program for synchrotron design, orbit analysis and insertion matching

    International Nuclear Information System (INIS)

    Keil, E.; Marti, Y.; Montague, B.W.; Sudboe, A.

    1975-01-01

    This is a detailed guide to the use of the current version of a FORTRAN program for carrying out computations required in the design or modification of alternating-gradient synchrotrons and storage rings. The program, which runs on the CDC 7600 computer at CERN, computes linear transformation functions, and modifications of parameters to achieve specified properties; it tracks sets of particle trajectories, finds closed orbits when elements of the structure are displaced, computes the equilibrium orbit, designs closed-orbit bumps, tracks betatron functions through the structure, and matches insertions in the structure to specified betatron and dispersion functions. The report supersedes CERN 69-5 (AGS - The ISR computer system for synchrotron design and orbit analysis, by E. Keil and P. Strolin). (Author)

  8. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  9. Equatorial circular orbits in the Kerr-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Slany, Petr

    2004-01-01

    Equatorial motion of test particles in Kerr-de Sitter spacetimes is considered. Circular orbits are determined, their properties are discussed for both black-hole and naked-singularity spacetimes, and their relevance for thin accretion disks is established. The circular orbits constitute two families that coalesce at the so-called static radius. The orientation of the motion along the circular orbits is, in accordance with case of asymptotically flat Kerr spacetimes, defined by relating the motion to the locally nonrotating frames. The minus-family orbits are all counterrotating, while the plus-family orbits are usually corotating relative to these frames. However, the plus-family orbits become counterrotating in the vicinity of the static radius in all Kerr-de Sitter spacetimes, and they become counterrotating in the vicinity of the ring singularity in Kerr-de Sitter naked-singularity spacetimes with a low enough rotational parameter. In such spacetimes, the efficiency of the conversion of the rest energy into heat energy in the geometrically thin plus-family accretion disks can reach extremely high values exceeding the efficiency of the annihilation process. The transformation of a Kerr-de Sitter naked singularity into an extreme black hole due to accretion in the thin disks is briefly discussed for both the plus-family and minus-family disks. It is shown that such a conversion leads to an abrupt instability of the innermost parts of the plus-family accretion disks that can have strong observational consequences

  10. Oat cell carcinoma of the esophagus: Unusual radiological appearances

    Energy Technology Data Exchange (ETDEWEB)

    Bedi, D.G.; Shaw, M.T.

    1986-08-01

    Primary oat cell carcinoma of the esophagus is a very rare tumour. The radiographic appearance of the three cases described in this paper are unusual because they resemble benign lesions such as leiomyoma, fibrous polyp and candidiasis. It would be interesting to investigate whether such an unusual appearance is common for this neoplasm.

  11. An unusual oral habit presenting as Dentin Hypersensitivity | Afolabi ...

    African Journals Online (AJOL)

    We present the case of a 30-year-old man with an unusual oral habit- office pin chewing and filing of the front tooth which resulted in dentine hypersensitivity. Clinical relevance: The role of daily oral habits and techniques of cessation were suggested in the management of dentine hypersensitivity. Keywords: Unusual oral ...

  12. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  13. Application of the Constrained Admissible Region Multiple Hypothesis Filter to Initial Orbit Determination of a Break-up

    Science.gov (United States)

    Kelecy, Tom; Shoemaker, Michael; Jah, Moriba

    2013-08-01

    A break-up in Low Earth Orbit (LEO) is simulated for 10 objects having area-to-mass ratios (AMR's) ranging from 0.1-10.0 m2/kg. The Constrained Admissible Region Multiple Hypothesis Filter (CAR-MHF) is applied to determining and characterizing the orbit and atmospheric drag parameters (CdA/m) simultaneously for each of the 10 objects with no a priori orbit or drag information. The results indicate that CAR-MHF shows promise for accurate, unambiguous and autonomous determination of the orbit and drag states.

  14. CONGENITAL ORBITAL TERATOMA

    African Journals Online (AJOL)

    was done without contrast and 3mm/5mm/10mm slices were obtained to cover the orbit, skull base and brain. The findings included a soft tissue mass arising from the orbit. The left eye ball was extra orbital. There was no defect .... love's Short Practice of Surgery. 7 Edition,. Levis London, 1997; 45-64. 2. Orbital tumor Part 1, ...

  15. Oat cell carcinoma of the esophagus: Unusual radiological appearances

    International Nuclear Information System (INIS)

    Bedi, D.G.; Shaw, M.T.

    1986-01-01

    Primary oat cell carcinoma of the esophagus is a very rare tumour. The radiographic appearance of the three cases described in this paper are unusual because they resemble benign lesions such as leiomyoma, fibrous polyp and candidiasis. It would be interesting to investigate whether such an unusual appearance is common for this neoplasm. (orig.)

  16. Organic molecules with abnormal geometric parameters

    International Nuclear Information System (INIS)

    Komarov, Igor V

    2001-01-01

    Organic molecules, the structural parameters of which (carbon-carbon bond lengths, bond and torsion angles) differ appreciably from the typical most frequently encountered values, are discussed. Using many examples of 'record-breaking' molecules, the limits of structural distortions in carbon compounds and their unusual chemical properties are demonstrated. Particular attention is devoted to strained compounds not yet synthesised whose properties have been predicted using quantum-chemical calculations. Factors that ensure the stability of such compounds are outlined. The bibliography includes 358 references.

  17. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    Science.gov (United States)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  18. Radiovolumetry of the orbit

    International Nuclear Information System (INIS)

    Abujamra, S.

    1983-01-01

    The authors present a method called ''Radiovolumetry of the orbit'' that permits the evaluation of the orbital volume from anteroposterior skull X-Rays (CALDWELL 30 0 position). The research was based in the determination of the orbital volume with lead spheres, in 1010 orbits of 505 dry skulls of Anatomy Museums. After the dry skulls was X-rayed six frontal orbital diameters were made, with care to correct the radiographic amplification. PEARSON correlation coeficient test was applied between the mean orbital diameter and the orbital volume. The result was r = 0,8 with P [pt

  19. On protection of freedom's solar dynamic radiator from the orbital debris environment. Part 1

    International Nuclear Information System (INIS)

    Rhatigan, J.L.

    1992-01-01

    A great deal of experimentation and analysis has been performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration has been found to depend upon mission-specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density, and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. This paper describes the approach developed to assess on-orbit survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to Space Station Freedom requirements over the expected lifetime

  20. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    Science.gov (United States)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  1. Orbits for 18 Visual Binaries and Two Double-line Spectroscopic Binaries Observed with HRCAM on the CTIO SOAR 4 m Telescope, Using a New Bayesian Orbit Code Based on Markov Chain Monte Carlo

    Science.gov (United States)

    Mendez, Rene A.; Claveria, Ruben M.; Orchard, Marcos E.; Silva, Jorge F.

    2017-11-01

    We present orbital elements and mass sums for 18 visual binary stars of spectral types B to K (five of which are new orbits) with periods ranging from 20 to more than 500 yr. For two double-line spectroscopic binaries with no previous orbits, the individual component masses, using combined astrometric and radial velocity data, have a formal uncertainty of ˜ 0.1 {M}⊙ . Adopting published photometry and trigonometric parallaxes, plus our own measurements, we place these objects on an H-R diagram and discuss their evolutionary status. These objects are part of a survey to characterize the binary population of stars in the Southern Hemisphere using the SOAR 4 m telescope+HRCAM at CTIO. Orbital elements are computed using a newly developed Markov chain Monte Carlo (MCMC) algorithm that delivers maximum-likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate the uncertainty of our derived parameters in a robust way. For spectroscopic binaries, using our approach, it is possible to derive a self-consistent parallax for the system from the combined astrometric and radial velocity data (“orbital parallax”), which compares well with the trigonometric parallaxes. We also present a mathematical formalism that allows a dimensionality reduction of the feature space from seven to three search parameters (or from 10 to seven dimensions—including parallax—in the case of spectroscopic binaries with astrometric data), which makes it possible to explore a smaller number of parameters in each case, improving the computational efficiency of our MCMC code. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  2. Improved orbits of two periodic comets: Tsuchinshan 1 and Tsuchinshan 2

    International Nuclear Information System (INIS)

    Szutowicz, S.

    1986-01-01

    The observations made during four apparitions of two comets were collected and the orbits of the comets were improved; 86 observations of Comet Tsuchinshan 1 and 50 observations of Comet Tsuchinshan 2 made in the period 1965-1985 were used. The orbit of Comet Tsuchinshan 1 was improved taking into account nongravitational effects in its motion as well as a displacement of the photometric center from the center of mass. The following values of nongravitational parameters and of observational parameter D were obtained: A 1 = 0.75953 x 10 -8 , A 2 0.00375 x 10 -8 , D = 0.34698 x 10 -3 . To link all observations of Comet Tsuchinshan 2 by one system of elements it was sufficient to add observational effects as a displacement of the photometric center from the center of mass. The following value of parameter D was obtained: D = 1.00200 x 10 -3 . The equations of motion of both comets were integrated backwards and forwards till 1992. Ephemerides for their next returns were computed. 6 refs., 5 tabs. (author)

  3. FLUKA Calculation of the Neutron Albedo Encountered at Low Earth Orbits

    CERN Document Server

    Claret, Arnaud; Combier, Natacha; Ferrari, Alfredo; Laurent, Philippe

    2014-01-01

    This paper presents Monte-Carlo simulations based on the Fluka code aiming to calculate the contribution of the neutron albedo at a given date and altitude above the Earth chosen by the user. The main input parameters of our model are the solar modulation affecting the spectra of cosmic rays, and the date of the Earth’s geomagnetic fi eld. The results consist in a two-parameter distribution, the neutron energy and the angle to the tangent plane of the sphere containing the orbi t of interest, and are provided by geographical position above the E arth at the chosen altitude. This model can be used to predict the te mporal variation of the neutron fl ux encountered along the orbit, and thus constrain the determination of the instrumental backg round noise of space experiments in low earth orbit.

  4. MIRAS characterization and monitoring during the SMOS In-Orbit Commissioning Phase

    Science.gov (United States)

    Corbella, I.; Torres, F.; Martin-Neira, M.; Duffo, N.; González-Gambau, V.; Camps, A.; Vall-Llossera, M.

    2009-04-01

    1 Introduction The Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) is the single payload of the Soil Moisture and Ocean Salinity (SMOS) mission. The instrument was completed in early 2007 and thoroughly tested both in anechoic chamber and vacuum thermal chamber during 2007. It was integrated to the platform in early 2008 and re-tested, including compatibility, during 2008. At present, the whole satellite is stowed and waiting to be launched during 2009. In two weeks after launch, the satellite will be in the final orbit with all deployments completed. Then the In-Orbit Commissioning Phase will start, having an estimated duration of 5.5 months. During this phase, the instrument modes of operation will be systematically checked and the calibration parameters will be fully characterized in real conditions. Also, the first brightness temperature images will be obtained in order to assess the overall retrieval procedures including inversion. In the end, the objective of the In-Orbit Commissioning Phase is to provide verification that the payload meets the scientific requirements of the mission. The general design and planning of the In-Orbit Commissioning Phase is given in [1]. This abstract presents the foreseen activities to be performed during this phase by the UPC team. Just after the start of the In-Orbit Commissioning Phase, the instrument will be commanded to perform a sequence of operations oriented at providing a full characterization in terms of calibration parameters. The idea is to reproduce the results obtained during the tests carried out on ground [2]. In particular, the following issues will be covered: Thermal Stability: To provide understanding of both the intra-orbit and inter-orbit temperature variations. The instrument will be continuously operating during a number of orbits while all temperature sensors being monitored. Electrical Stability: To re-compute all internal calibration parameters (gains, offsets, receiver noise temperatures

  5. The role of Rashba spin-orbit coupling in valley-dependent transport of Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hasanirok, Kobra; Mohammadpour, Hakimeh

    2017-01-01

    At this work, spin- and valley-dependent electron transport through graphene and silicene layers are studied in the presence of Rashba spin- orbit coupling. We find that the transport properties of the related ferromagnetic/normal/ferromagnetic structure depend on the relevant parameters. A fully valley- and spin- polarized current is obtained. As another result, Rashba spin-orbit interaction plays important role in controlling the transmission characteristics.

  6. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  7. Enantioseparation of angiotensin II receptor type 1 blockers: evaluation of 6-substituted carbamoyl benzimidazoles on immobilized polysaccharide-based chiral stationary phases. Unusual temperature behavior.

    Science.gov (United States)

    Su, Ran; Hou, Zhun; Sang, Lihong; Zhou, Zhi-Ming; Fang, Hao; Yang, Xinying

    2017-09-15

    Enantioseparation of thirteen 6-substituted carbamoyl benzimidazoles by high-performance liquid chromatography (HPLC) was investigated using two immobilized polysaccharide-based chiral stationary phases (CSPs), Chiralpak IC and Chiralpak IA, in normal-phase mode. Most of the examined compounds were completely resolved. The effects of a polar alcohol modifier, analyte structure, and column temperature on the chiral recognition were investigated. Furthermore, the structure-retention relationship was evaluated, and thermodynamic parameters were calculated from plots of ln k' or ln α versus 1/T. The thermodynamic parameters indicated that the separations were enthalpy-driven. Moreover, nonlinear van't Hoff plots were obtained on Chiralpak IA. However, two unusual phenomena were observed: (1) an unusual increase in retention with increasing temperature with linear van't Hoff plots on Chiralpak IC and (2) an extremely high T iso value (i.e., several thousand degrees centigrade). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A hot Saturn on an eccentric orbit around the giant star K2-132

    Science.gov (United States)

    Jones, M. I.; Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Rabus, M.; Drass, H.; Zapata, A.; Soto, M. G.; Jenkins, J. S.; Vučković, M.; Ciceri, S.; Sarkis, P.

    2018-06-01

    Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type star companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot Jupiters orbiting solar-type stars. It has been theorized that the reason for this distinctive feature in the semimajor axis distribution is the result of the stellar evolution and/or that it is due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years a handful of transiting short-period planets (P ≲ 10 days) have been found around giant stars, thanks to the high-precision photometric data obtained initially by the Kepler mission, and later by its two-wheel extension K2. These new discoveries have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive substellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017, AJ, 154, 254). The host star has recently evolved to the giant phase, and has the following atmospheric parameters: Teff = 4878 ± 70 K, log g = 3.289 ± 0.004, and [Fe/H] = -0.11 ± 0.05 dex. The main orbital parameters of K2-132 b, obtained with all the available data for the system are: P = 9.1708 ± 0.0025 d, e = 0.290 ± 0.049, Mp = 0.495 ± 0.007 MJ and Rp = 1.089 ± 0.006 RJ. This is the fifth known planet orbiting any giant star with a K2-132 b a very interesting object. Tables of the photometry and of the radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  9. Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)

    2017-10-15

    The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)

  10. Improving GLONASS Precise Orbit Determination through Data Connection

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-12-01

    Full Text Available In order to improve the precision of GLONASS orbits, this paper presents a method to connect the data segments of a single station-satellite pair to increase the observation continuity and, consequently, the strength of the precise orbit determination (POD solution. In this method, for each GLONASS station-satellite pair, the wide-lane ambiguities derived from the Melbourne–Wübbena combination are statistically tested and corrected for phase integer offsets and then the same is carried out for the narrow-lane ambiguities calculated from the POD solution. An experimental validation was carried out using one-month GNSS data of a global network with 175 IGS stations. The result shows that, on average, 27.1% of the GLONASS station-satellite pairs with multiple data segments could be connected to a single long observation arc and, thus, only one ambiguity parameter was estimated. Using the connected data, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 19.2% in ideal cases with an averaged reduction of about 6.3%.

  11. Computed tomography of the temporal bone and orbit

    International Nuclear Information System (INIS)

    Zonneveld, F.W.

    1987-01-01

    The basis for this dissertation is the combination of the best set of high-resolution CT scanning parameters, on the one hand, and the technique of scanning perpendicular to the tissue interface, or parallel to an elongated anatomical structure (direct multiplanar CT technique) on the other. Although this technique yields better visualization of a number of anatomical details, the problem remains that the radiologist is as yet unfamiliar with these alternative cross-sectional planes. For this reason, a technique for cryosectioning fresh frozen specimens was selected and improved to create cross-sectional images that can be correlated with the direct multiplanar CT scans. The selection of special scan planes, the positioning, preparation and examination of the patient, and the CT and correlative anatomy are discussed separately for the temporal bone and the orbit. A few clinical applications are discussed. In the orbit, the value of high-resolution CT is demonstrated in the establishment of the relationship between space-occupying lesions and the optic nerve, and in the management of fractures of the orbital floor. 548 refs.; 253 figs.; 24 tabs

  12. Prominent Role of Spin-Orbit Coupling in FeSe Revealed by Inelastic Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Mingwei Ma

    2017-05-01

    Full Text Available In most existing theories for iron-based superconductors, spin-orbit coupling (SOC has been assumed to be insignificant. Here, we use spin-polarized inelastic neutron scattering to show that collective low-energy spin excitations in the orthorhombic (or “nematic” phase of FeSe possess nearly no in-plane component. Such spin-space anisotropy is present over an energy range greater than the superconducting gap 2Δ_{sc} and gets fully inherited in the superconducting state, resulting in a c-axis polarized “spin resonance” without any noticeable isotropic spectral-weight rearrangement related to the superconductivity, which is distinct from observations in the superconducting iron pnictides. The contrast between the strong suppression of long-range magnetic order in FeSe and the persisting large spin-space anisotropy, which cannot be explained microscopically by introducing single-ion anisotropy into local-moment spin models, demonstrates the importance of SOC in an itinerant-electron description of the low-energy spin excitations. Our result helps to elucidate the nearby magnetic instabilities and the debated interplay between spin and orbital degrees of freedom in FeSe. The prominent role of SOC also implies a possible unusual nature of the superconducting state.

  13. Unusual tumour ablations: report of difficult and interesting cases

    OpenAIRE

    Mauri, Giovanni; Nicosia, Luca; Varano, Gianluca Maria; Shyn, Paul; Sartori, Sergio; Tombesi, Paola; Di Vece, Francesca; Orsi, Franco; Solbiati, Luigi

    2017-01-01

    Image-guided ablations are nowadays applied in the treatment of a wide group of diseases and in different organs and regions, and every day interventional radiologists have to face more difficult and unusual cases of tumour ablation. In the present case review, we report four difficult and unusual cases, reporting some tips and tricks for a successful image-guided treatment.

  14. A New Orbit for the Eclipsing Binary V577 Oph

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, Elizabeth J. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Barnes, Thomas G. III; Montemayor, Thomas J. [The University of Texas at Austin, McDonald Observatory, 1 University Station, C1402, Austin, TX 78712-0259 (United States); Skillen, Ian, E-mail: ejjeffer@calpoly.edu, E-mail: tgb@astro.as.utexas.edu, E-mail: tm@astro.as.utexas.edu, E-mail: wji@ing.iac.es [Isaac Newton Group, Apartado de Correos 321, E-38700 Santa Cruz de La Palma, Canary Islands (Spain)

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  15. A New Orbit for the Eclipsing Binary V577 Oph

    Science.gov (United States)

    Jeffery, Elizabeth J.; Barnes, Thomas G., III; Skillen, Ian; Montemayor, Thomas J.

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by -2 km s-1 is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov & Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  16. Stability and evolution of orbits around the binary asteroid 175706 (1996 FG3): Implications for the MarcoPolo-R mission

    Science.gov (United States)

    Hussmann, Hauke; Oberst, Jürgen; Wickhusen, Kai; Shi, Xian; Damme, Friedrich; Lüdicke, Fabian; Lupovka, Valery; Bauer, Sven

    2012-09-01

    In support of the MarcoPolo-R mission, we have carried out numerical simulations of spacecraft trajectories about the binary asteroid 175706 (1996 FG3) under the influence of solar radiation pressure. We study the effects of (1) the asteroid's mass, shape, and rotational parameters, (2) the secondary's mass, shape, and orbit parameters, (3) the spacecraft's mass, surface area, and reflectivity, and (4) the time of arrival, and therefore the relative position to the sun and planets. We have considered distance regimes between 5 and 20 km, the typical range for a detailed characterization of the asteroids - primary and secondary - with imaging systems, spectrometers and by laser altimetry. With solar radiation pressure and gravity forces of the small asteroid competing, orbits are found to be unstable, in general. However, limited orbital stability can be found in the so-called Self-Stabilized Terminator Orbits (SSTO), where initial orbits are circular, orbital planes are oriented approximately perpendicular to the solar radiation pressure, and where the orbital plane of the spacecraft is shifted slightly (between 0.2 and 1 km) from the asteroid in the direction away from the sun. Under the effect of radiation pressure, the vector perpendicular to the orbit plane is observed to follow the sun direction. Shape and rotation parameters of the asteroid as well as gravitational perturbations by the secondary (not to mention sun and planets) were found not to affect the results. Such stable orbits may be suited for long radio tracking runs, which will allow for studying the gravity field. As the effect of the solar radiation pressure depends on the spacecraft mass, shape, and albedo, good knowledge of the spacecraft model and persistent monitoring of the spacecraft orientation are required.

  17. Attitude control analysis of tethered de-orbiting

    Science.gov (United States)

    Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.

    2018-05-01

    The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.

  18. OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km (OMMYDCLD) is a Level-2 orbital product that combines cloud parameters retrieved by the...

  19. Testing general relativity with compact-body orbits: a modified Einstein–Infeld–Hoffmann framework

    Science.gov (United States)

    Will, Clifford M.

    2018-04-01

    We describe a general framework for analyzing orbits of systems containing compact objects (neutron stars or black holes) in a class of Lagrangian-based alternative theories of gravity that also admit a global preferred reference frame. The framework is based on a modified Einstein–Infeld–Hoffmann (EIH) formalism developed by Eardley and by Will, generalized to include the possibility of Lorentz-violating, preferred-frame effects. It uses a post-Newtonian N-body Lagrangian with arbitrary parameters that depend on the theory of gravity and on ‘sensitivities’ that encode the effects of the bodies’ internal structure on their motion. We determine the modified EIH parameters for the Einstein-Æther and Khronometric vector-tensor theories of gravity. We find the effects of motion relative to a preferred universal frame on the orbital parameters of binary systems containing neutron stars, such as a class of ultra-circular pulsar-white dwarf binaries; the amplitudes of the effects depend upon ‘strong-field’ preferred-frame parameters \\hatα1 and \\hatα2 , which we relate to the fundamental modified EIH parameters. We also determine the amplitude of the ‘Nordtvedt effect’ in a triple system containing the pulsar J0337+1715 in terms of the modified EIH parameters.

  20. Charge-spin-orbital dynamics of one-dimensional two-orbital Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiroaki [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-01-15

    We study the real-time evolution of a charge-excited state in a one-dimensional e{sub g}-orbital degenerate Hubbard model, by a time-dependent density-matrix renormalization group method. Considering a chain along the z direction, electrons hop between adjacent 3z{sup 2}-r{sup 2} orbitals, while x{sup 2}-y{sup 2} orbitals are localized. For the charge-excited state, a holon-doublon pair is introduced into the ground state at quarter filling. At initial time, there is no electron in a holon site, while a pair of electrons occupies 3z{sup 2}-r{sup 2} orbital in a doublon site. As the time evolves, the holon motion is governed by the nearest-neighbor hopping, but the electron pair can transfer between 3z{sup 2}-r{sup 2} orbital and x{sup 2}-y{sup 2} orbital through the pair hopping in addition to the nearest-neighbor hopping. Thus holon and doublon propagate at different speed due to the pair hopping that is characteristic of multi-orbital systems.

  1. Charge-Orbital Ordering and Verwey Transition in Magnetite Measured by Resonant Soft X-Ray Scattering

    International Nuclear Information System (INIS)

    Huang, D.J.; Lin, H.-J.; Okamoto, J.; Hsu, C.-H.; Huang, C.-M.; Yang, C.S.; Chao, K.S.; Wu, W.B.; Jeng, H.-T.; Guo, G.Y.; Ling, D.C.; Chen, C.T.

    2006-01-01

    We report experimental evidence for the charge-orbital ordering in magnetite below the Verwey transition temperature T V . Measurements of O K-edge resonant x-ray scattering on magnetite reveal that the O 2p states in the vicinity of the Fermi level exhibit a charge-orbital ordering along the c axis with a spatial periodicity of the doubled lattice parameter of the undistorted cubic phase. Such a charge-orbital ordering vanishes abruptly above T V and exhibits a thermal hysteresis, correlating closely with the Verwey transition in magnetite

  2. Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters

    Science.gov (United States)

    Collier Cameron, Andrew; Jardine, Moira

    2018-05-01

    Transiting hot Jupiters occupy a wedge-shaped region in the mass ratio-orbital separation diagram. Its upper boundary is eroded by tidal spiral-in of massive, close-in planets and is sensitive to the stellar tidal dissipation parameter Q_s^'. We develop a simple generative model of the orbital separation distribution of the known population of transiting hot Jupiters, subject to tidal orbital decay, XUV-driven evaporation and observational selection bias. From the joint likelihood of the observed orbital separations of hot Jupiters discovered in ground-based wide-field transit surveys, measured with respect to the hyperparameters of the underlying population model, we recover narrow posterior probability distributions for Q_s^' in two different tidal forcing frequency regimes. We validate the method using mock samples of transiting planets with known tidal parameters. We find that Q_s^' and its temperature dependence are retrieved reliably over five orders of magnitude in Q_s^'. A large sample of hot Jupiters from small-aperture ground-based surveys yields log _{10} Q_s^' }=(8.26± 0.14) for 223 systems in the equilibrium-tide regime. We detect no significant dependence of Q_s^' on stellar effective temperature. A further 19 systems in the dynamical-tide regime yield log _{10} Q_s^' }=7.3± 0.4, indicating stronger coupling. Detection probabilities for transiting planets at a given orbital separation scale inversely with the increase in their tidal migration rates since birth. The resulting bias towards younger systems explains why the surface gravities of hot Jupiters correlate with their host stars' chromospheric emission fluxes. We predict departures from a linear transit-timing ephemeris of less than 4 s for WASP-18 over a 20-yr baseline.

  3. Statistical properties of spectra in harmonically trapped spin-orbit coupled systems

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We compute single-particle energy spectra for a one-body Hamiltonian consisting of a two-dimensional deformed harmonic oscillator potential, the Rashba spin-orbit coupling and the Zeeman term. To investigate the statistical properties of the obtained spectra as functions of deformation, spin......-orbit and Zeeman strengths we examine the distributions of the nearest neighbor spacings. We find that the shapes of these distributions depend strongly on the three potential parameters. We show that the obtained shapes in some cases can be well approximated with the standard Poisson, Brody and Wigner...... distributions. The Brody and Wigner distributions characterize irregular motion and help identify quantum chaotic systems. We present a special choices of deformation and spin-orbit strengths without the Zeeman term which provide a fair reproduction of the fourth-power repelling Wigner distribution. By adding...

  4. Effective stability around the Cassini state in the spin-orbit problem

    Science.gov (United States)

    Sansottera, Marco; Lhotka, Christoph; Lemaître, Anne

    2014-05-01

    We investigate the long-time stability in the neighborhood of the Cassini state in the conservative spin-orbit problem. Starting with an expansion of the Hamiltonian in the canonical Andoyer-Delaunay variables, we construct a high-order Birkhoff normal form and give an estimate of the effective stability time in the Nekhoroshev sense. By extensively using algebraic manipulations on a computer, we explicitly apply our method to the rotation of Titan. We obtain physical bounds of Titan's latitudinal and longitudinal librations, finding a stability time greatly exceeding the estimated age of the Universe. In addition, we study the dependence of the effective stability time on three relevant physical parameters: the orbital inclination, , the mean precession of the ascending node of Titan orbit, , and the polar moment of inertia,.

  5. Unusual radiological features in Paget's disease of bone

    International Nuclear Information System (INIS)

    Moore, T.E.; Kathol, M.H.; El-Khoury, G.Y.; Walker, C.W.; Gendall, P.W.; Whitten, C.G.

    1994-01-01

    The radiological diagnosis of Paget's disease of bone is usually straightforward because most cases conform to well-established classic descriptions. Diagnosis becomes more difficult, however, when radiological appearances are not typical or other disease processes mask or alter the behavior of Paget's disease. Examples are presented to illustrate four categories of unusual radiological presentation of Paget's disease; (1) unusual disease progression, (2) massive post-immobilization lysis, (3) metastatic spread to pagetic bone, and (4) vertebral end-plate destruction that mimics infection. (orig.)

  6. What can we learn from homoclinic orbits in chaotic dynamics

    International Nuclear Information System (INIS)

    Gaspard, P.; Nicolis, G.

    1983-01-01

    State diagrams of two model systems involving three variables are constructed. The parameter dependence of different forms of complex nonperiodic behavior, and particularly of homoclinic orbits, is analyzed. It is shown that the onset of homoclinicity is reflected by deep changes in the qualitative behavior of the system

  7. Unusual causes of pneumothorax

    Science.gov (United States)

    Ouellette, Daniel R.; Parrish, Scott; Browning, Robert F.; Turner, J. Francis; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Tsiouda, Theodora; Madesis, Athanasios; Karaiskos, Theodoros

    2014-01-01

    Pneumothorax is divided to primary and secondary. It is a situation that requires immediate treatment, otherwise it could have severe health consequences. Pneumothorax can be treated either by thoracic surgeons, or pulmonary physicians. In our current work, we will focus on unusual cases of pneumothorax. We will provide the etiology and treatment for each case, also a discussion will be made for each situation. PMID:25337394

  8. Spectral Gaps of Spin-orbit Coupled Particles in Deformed Traps

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2013-01-01

    the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary...... tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation implies that the few- and many-body physics of spin-orbit coupled systems can be manipulated by variation of these parameters....

  9. Integral parameters of crystal field for RE spectra

    International Nuclear Information System (INIS)

    Kustov, E.F.; Maketov, T.K.; Prgevudsky, A.K.; Steczko, G.

    1980-01-01

    The integral parameters of the crystal field are introduced for the interpretation of the spectra of RE ions in various crystals. The main formula of the method, the expression of the parameters for various states of Ce, Pr, Nd, Eu, Tb, Er, Tu, and Yb are determined. Integral parameters of A 2 , A 4 , A 6 and parameter of the spin-orbit interaction xi are calculated for 40 laser crystals with Nd, Er. An interpretation of the symmetry of the Eu 3+ centres of the NaBaZn silicate glass is given using integral parameters A 2 , A 4 . (author)

  10. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I. [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  11. Traumatic orbital CSF leak

    Science.gov (United States)

    Borumandi, Farzad

    2013-01-01

    Compared to the cerebrospinalfluid (CSF) leak through the nose and ear, the orbital CSF leak is a rare and underreported condition following head trauma. We present the case of a 49-year-old woman with oedematous eyelid swelling and ecchymosis after a seemingly trivial fall onto the right orbit. Apart from the above, she was clinically unremarkable. The CT scan revealed a minimally displaced fracture of the orbital roof with no emphysema or intracranial bleeding. The fractured orbital roof in combination with the oedematous eyelid swelling raised the suspicion for orbital CSF leak. The MRI of the neurocranium demonstrated a small-sized CSF fistula extending from the anterior cranial fossa to the right orbit. The patient was treated conservatively and the lid swelling resolved completely after 5 days. Although rare, orbital CSF leak needs to be included in the differential diagnosis of periorbital swelling following orbital trauma. PMID:24323381

  12. Orbit Display's Use of the Physics Application Framework

    Energy Technology Data Exchange (ETDEWEB)

    Zelazny, Michael; Chevtsov, Sergei; Chu, Chungming Paul; Fairley, Diane; Krejcik, Patrick; Natampalli, Partha; Rogind, Deborah; White, Greg; /SLAC

    2009-12-09

    At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) is developing a physics application framework based on the Java(tm) programming language developed by Sun Microsystems. This paper will discuss the first application developed using this approach: a new Orbit Display. The software is being developed by several individuals in reusable Java packages. It relies on the Experimental Physics and Industrial Control System (EPICS) toolkit for data collection and XAL - A Java based Hierarchy for Application Programming for model parameters. The Orbit Display tracks and displays electron paths through the Linac Coherent Light Source (LCLS) in both a graphical, beam line plot, and tabular format. It contains many features that may be unique to SLAC and is meant to be used both in the control room and by individuals in their offices or at home. Unique features include BSA Beam Synchronous Acquisition (BSA), Orbit Fitting, and Buffered Acquisition.

  13. Unusual causes of obstructive jaundice. Computed tomography

    International Nuclear Information System (INIS)

    Rodriguez, E.; Pombo, F.; Cao, I.; Fernandez, R.; Riba da, M.

    1998-01-01

    The purpose of this study is to present selected computed tomography (CT) images showing unusual causes of obstructive jaundice. We reviewed retrospectively the Ct findings of obstructive jaundice in 227 patients. The most common causes of biliary obstruction were adenocarcinoma of the pancreatic head (n=77) and cholangiocarcinoma (n=65). In 13 cases (5.7%), the etiology of obstructive jaundice was unusual or exceptional: tuberculous adenitis (n=3), obstruction of afferent loop (n=2)signet ring cell adenocarcinoma (n=3); in duodenum, gallbladder and papilla of Water), Mirizzi syndrome (n=1), adenocarcinoma of the hepatic flexure (n=1), choledochal cyst (n=1) and pancreatic lymphoma (n=1). (Author) 13 refs

  14. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    Science.gov (United States)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  15. Molecular orbitals for properties and spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Vincent [Laboratoire de Chimie Quantique, Institut de Chimie, Université de Strasbourg, 1 rue Blaise Pascal 67000 Strasbourg-France (France); Domingo, Alex [Quantum Chemistry and Physical Chemistry Celestijnenlaan 200f, 3001 Heverlee - Belgium (Belgium); Braunstein, Pierre; Danopoulos, Andreas; Monakhov, Kirill [Laboratoire de Chimie de Coordination, Institut de Chimie, Université de Strasbourg, 4 rue Blaise Pascal 67081 Strasbourg-France (France)

    2015-12-31

    The description and clarification of spectroscopies and properties goes through ab initio calculations. Wave function based calculations (CASSCF/CASPT2) are particularly appealing since they offer spectroscopic accuracy and means of interpretation. we performed such calculations to elucidate the origin of unusual structural changes and intramolecular electron transfer phenomenon. Based on optimized molecular orbitals and a reading of the multireference wave function, it is suggested that intimate interactions are likely to considerably modify the standard pictures. A so-called PIMA (polarization-induced metalâĹŠarene) interaction similar to the more familiar anion-π interaction is responsible for a significant deviation from sp{sup 3} geometry and an energetic stabilization of 50 kJ/mol in Cr(II) benzyl organometallic complexes. In a similar fashion, it is proposed that the energetic profile of the IVCT (inter valence charge transfer) exhibits strong similarities to the Marcus’ theory, suggesting a response behaviour of the ensemble of electrons as electron transfer occurs in Fe{sup 2+}/Fe{sup 3+} bimetallic compound. The electronic reorganization induced by the IVCT process accounts for 11.8 eV, a very large effect that reduces the transfer energy down to 0.89 eV, in very good agreement with experiments.

  16. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    Science.gov (United States)

    Holanda, N.; da Silva, J. R. P.

    2018-04-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.

  17. Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?

    International Nuclear Information System (INIS)

    Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Gidopoulos, Nikitas I.; Rubio, Angel

    2015-01-01

    Recently, an approximate theoretical framework was introduced, called local reduced density matrix functional theory (local-RDMFT), where functionals of the one-body reduced density matrix (1-RDM) are minimized under the additional condition that the optimal orbitals satisfy a single electron Schrödinger equation with a local potential. In the present work, we focus on the character of these optimal orbitals. In particular, we compare orbitals obtained by local-RDMFT with those obtained with the full minimization (without the extra condition) by contrasting them against the exact NOs and orbitals from a density functional calculation using the local density approximation (LDA). We find that the orbitals from local-RMDFT are very close to LDA orbitals, contrary to those of the full minimization that resemble the exact NOs. Since local RDMFT preserves the good quality of the description of strong static correlation, this finding opens the way to a mixed density/density matrix scheme, where Kohn-Sham orbitals obtain fractional occupations from a minimization of the occupation numbers using 1-RDM functionals. This will allow for a description of strong correlation at a cost only minimally higher than a density functional calculation

  18. On noncommutativity with bifermionic parameter

    International Nuclear Information System (INIS)

    Acatrinei, Ciprian Sorin

    2008-01-01

    Recently Gitman and Vassilevich proposed an interesting model of noncommutative (NC) scalar field theory, with a noncommutativity parameter assumed to be the product of two Grassmann variables. They showed in particular that the model possesses a local energy-momentum tensor. Since such a property is quite unusual for a NC model, we provide here an alternative picture, based on an operatorial formulation of NC field theory. It leads to complete locality of the degrees of freedom of the theory, a property in agreement with the termination of the star-product at the second term in its series. (author)

  19. Physical and geometrical parameters of VCBS XIII: HIP 105947

    Science.gov (United States)

    Gumaan Masda, Suhail; Al-Wardat, Mashhoor Ahmed; Pathan, Jiyaulla Khan Moula Khan

    2018-06-01

    The best physical and geometrical parameters of the main sequence close visual binary system (CVBS), HIP 105947, are presented. These parameters have been constructed conclusively using Al-Wardat’s complex method for analyzing CVBSs, which is a method for constructing a synthetic spectral energy distribution (SED) for the entire binary system using individual SEDs for each component star. The model atmospheres are in its turn built using the Kurucz (ATLAS9) line-blanketed plane-parallel models. At the same time, the orbital parameters for the system are calculated using Tokovinin’s dynamical method for constructing the best orbits of an interferometric binary system. Moreover, the mass-sum of the components, as well as the Δθ and Δρ residuals for the system, is introduced. The combination of Al-Wardat’s and Tokovinin’s methods yields the best estimations of the physical and geometrical parameters. The positions of the components in the system on the evolutionary tracks and isochrones are plotted and the formation and evolution of the system are discussed.

  20. CYCLIC VARIATIONS OF ORBITAL PERIOD AND LONG-TERM LUMINOSITY IN CLOSE BINARY RT ANDROMEDAE

    International Nuclear Information System (INIS)

    Manzoori, Davood

    2009-01-01

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ( O - C curve ) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency of the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.

  1. Applying KAM Theory to Highly Eccentric Orbits

    Science.gov (United States)

    2014-03-27

    tingly committing a couple blunders, Kepler published Astronomia Nova ΑΙΤΙΟΛΟΓΣΤΟΣ seu physica coelestis, tradita commentariis de motibus stellae...to explain that this parameter is typically determined by the size of mass ratios, which for the solar system dynamics can be relatively big when... super efficient, refined code and lots of run time. Even in this particular test case, there may be problems/limitations with the larger orbits. It

  2. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  3. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    Science.gov (United States)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi

  4. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  5. Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

    Directory of Open Access Journals (Sweden)

    Eunji Lee

    2017-09-01

    Full Text Available The deep space orbit determination software (DSODS is a part of a flight dynamic subsystem (FDS for the Korean Pathfinder Lunar Orbiter (KPLO, a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

  6. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  7. Interpretation of unusual events from CERN and DESY

    International Nuclear Information System (INIS)

    Hall, L.J.; Jaffee, R.L.; Rosner, J.L.

    1984-01-01

    Several classes of interesting and unusual events from the Sp-barpS and from PETRA are studied with two purposes in mind. Firstly, varieties of background within the standard SU(3)xSU(2)xU(1) model are described, together with estimates of the number of expected events. Secondly, a review of the recent explanations of the events involving new physics is given. Critical assessments of these proposals focus on the assumptions made, expected rates for the unusual events, and the ability to account for events of several categories

  8. Angles-only relative orbit determination in low earth orbit

    Science.gov (United States)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  9. Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling

    Science.gov (United States)

    Kammermeier, Michael; Wenk, Paul; Schliemann, John; Heedt, Sebastian; Gerster, Thomas; Schäpers, Thomas

    2017-12-01

    We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.

  10. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  11. Recurring waterbird mortalities and unusual etiologies

    Science.gov (United States)

    Cole, Rebecca A.; Franson, J. Christian; Boere, Gerard C.; Galbraith, Colin A.; Stroud, David A.

    2006-01-01

    Over the last decade, the National Wildlife Health Center of the United States Geological Survey has documented various largescale mortalities of birds caused by infectious and non-infectious disease agents. Some of these mortality events have unusual or unidentified etiologies and have been recurring. While some of the causes of mortalities have been elucidated, others remain in various stages of investigation and identification. Two examples are discussed: 1) Leyogonimus polyoon (Class: Trematoda), not found in the New World until 1999, causes severe enteritis and has killed over 15 000 American Coot Fulica americana in the upper mid-western United States. The geographic range of this parasite within North America is predicted to be limited to the Great Lakes Basin. 2) In the early 1990s, estimates of up to 6% of the North American population of the Eared Grebe Podiceps nigricollis died at Salton Sea, California, with smaller mortalities occurring throughout the 1990s. Birds were observed to have unusual preening behaviour, and to congregate at freshwater drains and move onto land. Suggested etiologies included interactions of contaminants, immuno-suppression, an unusual form of a bacterial disease, and an unknown biotoxin. During studies carried out from 2000 to 2003, Eared Grebe mortality did not approach the level seen in the early 1990s and, although bacteria were identified as minor factors, the principal cause of mortality remains undetermined. The potential population impact of these emerging and novel disease agents is currently unknown.

  12. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Science.gov (United States)

    Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; hide

    2009-01-01

    We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.

  13. The Kondo temperature of a two-dimensional electron gas with Rashba spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Liang; Lin, Hai-Qing; Sun, Jinhua; Tang, Ho-Kin

    2016-01-01

    We use the Hirsch–Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin–orbit coupling. We calculate the spin susceptibility for various values of spin–orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin–orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin–orbit coupling. These results demonstrate that, for single impurity problems in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin–orbit coupling. (paper)

  14. Robust Tracking Control for Rendezvous in Near-Circular Orbits

    Directory of Open Access Journals (Sweden)

    Neng Wan

    2013-01-01

    Full Text Available This paper investigates a robust guaranteed cost tracking control problem for thrust-limited spacecraft rendezvous in near-circular orbits. Relative motion model is established based on the two-body problem with noncircularity of the target orbit described as a parameter uncertainty. A guaranteed cost tracking controller with input saturation is designed via a linear matrix inequality (LMI method, and sufficient conditions for the existence of the robust tracking controller are derived, which is more concise and less conservative compared with the previous works. Numerical examples are provided for both time-invariant and time-variant reference signals to illustrate the effectiveness of the proposed control scheme when applied to the terminal rendezvous and other astronautic missions with scheduled states signal.

  15. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  16. Unusual anatomy of maxillary central incisor with two roots

    OpenAIRE

    T S Ashwini Shivakumar; Saleem Makandar; Ajay Kadam

    2012-01-01

    Introduction: Knowledge of root canal morphology is essential for successful endodontic therapy. Failure to recognize unusual root canal anatomy may lead to unsuccessful endodontic treatment. Case Report: This case report describes the successful endodontic treatment of the maxillary central incisor with unusual anatomy of two roots and two root canals. A 23-year-old male patient was referred for dental consultation with discoloration of the maxillary right central incisor with periapical les...

  17. Orbital transport

    International Nuclear Information System (INIS)

    Oertel, H. Jr.; Koerner, H.

    1993-01-01

    The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs

  18. Orbital apex syndrome associated with fractures of the inferomedial orbital wall

    Directory of Open Access Journals (Sweden)

    Sugamata A

    2013-03-01

    Full Text Available Akira SugamataDepartment of Plastic and Reconstructive Surgery, Tokyo Medical University Hachioji Medical Center, Tokyo, JapanAbstract: Although trauma is one of the main causes of orbital apex syndrome (OAS, reports of OAS associated with orbital fractures are relatively rare. We recently treated two patients who sustained severe visual impairment with damage to multiple cranial nerves (third to sixth associated with inferomedial orbital wall fractures. In these patients, posterior movement of the globe caused neuropathy of the cranial and optic nerves by posterior globe edema and hemorrhage, or direct impact between the globe and wall, which might then have induced OAS in the cases described in this report. Steroid therapy was unsuccessful for optic neuropathy due to the delay between injury and administration. When treating patients with inferomedial orbital blowout fractures due to globe-to-wall contact, it is necessary to routinely assess and monitor visual acuity since there may be a delay between the injury and OAS onset.Keywords: orbital apex syndrome, orbital fracture, blowout fracture, optic nerve, globe-to-wall contact mechanism

  19. Orbit Determination with Very Short Arcs: Admissible Regions

    Science.gov (United States)

    Gronchi, G. F.; Milani, A.; de'Michieli Vitturi, M.; Knezevic, Z.

    2004-05-01

    Contemporary observational surveys provide a huge number of detections of small solar system bodies, in particular of asteroids. These have to be reduced in real time in order to optimize the observational strategy and to select the targets for the follow-up and for the subsequent determination of an orbit. Typically, reported astrometry consists of few positions over a short time span, and this information is often not enough to compute a preliminary orbit and perform an identification. Classical methods for preliminary orbit determination based on three observations fail in such cases, and a new approach is necessary to cope with the problem. We introduce the concept of attributable, which is a vector composed by two angles and two angular velocities at a given time. It is then shown that the missing values (geocentric range and range rate), necessary for the computation of an orbit, can be constrained to a compact set that we call admissible region (AR). The latter is defined on the basis of requirements that the body belongs to the solar system, that it is not a satellite of the Earth, and that it is not a "shooting star" (very close and very small). A mathematical description of the AR is given, together with the proof of its topological properties: it turns out that the AR cannot have more than two connected components. A sampling of the AR can be performed by means of a Delaunay triangulation. A finite number of six-parameter sets of initial conditions are thus defined, with each node of triangulation representing a Virtual Asteroid for which it is possible to propagate the corresponding orbit and to predict ephemerides.

  20. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  1. Xanthogranulomatous endometritis: an unusual pathological entity ...

    African Journals Online (AJOL)

    Xanthogranulomatous endometritis is an unusual pathological entity mimicking endometrial carcinoma. This shows sheets of foamy histiocytes alongwith other inflammatory cells. We, hereby, report a case of 45 year multigravida female with irregular menstrual history, clinically diagnosed as carcinoma and ...

  2. Finite-temperature orbital-free DFT molecular dynamics: Coupling PROFESS and QUANTUM ESPRESSO

    Science.gov (United States)

    Karasiev, Valentin V.; Sjostrom, Travis; Trickey, S. B.

    2014-12-01

    Implementation of orbital-free free-energy functionals in the PROFESS code and the coupling of PROFESS with the QUANTUM ESPRESSO code are described. The combination enables orbital-free DFT to drive ab initio molecular dynamics simulations on the same footing (algorithms, thermostats, convergence parameters, etc.) as for Kohn-Sham (KS) DFT. All the non-interacting free-energy functionals implemented are single-point: the local density approximation (LDA; also known as finite-T Thomas-Fermi, ftTF), the second-order gradient approximation (SGA or finite-T gradient-corrected TF), and our recently introduced finite-T generalized gradient approximations (ftGGA). Elimination of the KS orbital bottleneck via orbital-free methodology enables high-T simulations on ordinary computers, whereas those simulations would be costly or even prohibitively time-consuming for KS molecular dynamics (MD) on very high-performance computer systems. Example MD simulations on H over a temperature range 2000 K ≤ T ≤4,000,000 K are reported, with timings on small clusters (16-128 cores) and even laptops. With respect to KS-driven calculations, the orbital-free calculations are between a few times through a few hundreds of times faster.

  3. Orbit error characteristic and distribution of TLE using CHAMP orbit data

    Science.gov (United States)

    Xu, Xiao-li; Xiong, Yong-qing

    2018-02-01

    Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.

  4. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  5. An unusual coexistence of Addison's disease and ...

    African Journals Online (AJOL)

    2013-07-17

    Jul 17, 2013 ... Case Study: An unusual coexistence of Addison's disease and phaeochromocytoma. 164 ... strongly positive. ... Department of Endocrinology and Metabolism, Ondokuz Mayis University Medical School, Samsun, Turkey.

  6. Orbital free molecular dynamics; Approche sans orbitale des plasmas denses

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, F

    2007-08-15

    The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)

  7. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  8. The Apparently Decaying Orbit of WASP-12b

    Science.gov (United States)

    Patra, Kishore C.; Winn, Joshua N.; Holman, Matthew J.; Yu, Liang; Deming, Drake; Dai, Fei

    2017-07-01

    We present new transit and occultation times for the hot Jupiter WASP-12b. The data are compatible with a constant period derivative: \\dot{P}=-29+/- 3 ms yr-1 and P/\\dot{P}=3.2 {Myr}. However, it is difficult to tell whether we have observed orbital decay or a portion of a 14-year apsidal precession cycle. If interpreted as decay, the star’s tidal quality parameter {Q}\\star is about 2× {10}5. If interpreted as precession, the planet’s Love number is 0.44 ± 0.10. Orbital decay appears to be the more parsimonious model: it is favored by {{Δ }}{χ }2=5.5 despite having two fewer free parameters than the precession model. The decay model implies that WASP-12 was discovered within the final ˜0.2% of its existence, which is an unlikely coincidence but harmonizes with independent evidence that the planet is nearing disruption. Precession does not invoke any temporal coincidence, but it does require some mechanism to maintain an eccentricity of ≈ 0.002 in the face of rapid tidal circularization. To distinguish unequivocally between decay and precession will probably require a few more years of monitoring. Particularly helpful will be occultation timing in 2019 and thereafter.

  9. TWO STARS TWO WAYS: CONFIRMING A MICROLENSING BINARY LENS SOLUTION WITH A SPECTROSCOPIC MEASUREMENT OF THE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason; Vanderburg, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Skowron, Jan [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, Andrew [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pineda, J. Sebastian [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew, E-mail: jyee@cfa.harvard.edu, E-mail: jjohnson@cfa.harvard.edu, E-mail: jason.eastman@cfa.harvard.edu, E-mail: avanderburg@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States)

    2016-04-20

    Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we present 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.

  10. GLONASS Orbits in Teqc: Methodology and Future Extension for Using SP3 Orbits

    Science.gov (United States)

    Estey, L.; Wier, S.

    2011-12-01

    UNAVCO's teqc software package provides translation of a wide variety of GNSS receiver formats, metadata editing (either during translation to RINEX or on existing RINEX files), time-windowing and epoch decimation editing, and quality check (qc) analysis. Teqc is used extensively in GNSS pre-processing, and is designed to handle mixed satellite constellations, such as GPS, GLONASS, Galileo, and SBAS. The latest release of teqc adds GLONASS orbit calculations using GLONASS broadcast navigation messages, read from RINEX file format, during qc. The ephemerides for each GLONASS SV have time and orbit position in Earth-centered, Earth-fixed x, y, and z coordinates. Following Schenewerk [2003], we use trigonometric interpolation, essentially a fit of a partial sum of the Fourier series for each time-varying cartesian orbital component, allowing estimates of orbit positions at most GLONASS observation times. Tests show the interpolated GLONASS orbits made from the broadcast messages diverge from final orbits little more than the same differences using GPS orbits computed from their broadcast messages. Since GLONASS ephemerides do not use Keplerian orbital elements, GLONASS SV orbits can only be interpolated using this method for time intervals when an adequate sequence of ephemerides are available. For typical daily navigation messages collected at a single sit, when a GLONASS SV is in view less than three hours, that SV's signals are generally not used by teqc due to less precise orbit positions. Teqc quality control including SV position can now use GPS alone, GLONASS alone, or the joint solution. Future work will extend teqc to use SP3 format files, such as the IGS final orbit files, and SBAS data, which have broadcast ephemerides with elements similar to GLONASS.

  11. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design

    Science.gov (United States)

    Anderson, B. J.; Justus, C. G.; Batts, G. W.

    2001-01-01

    Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.

  12. The rarity of "unusual" [corrected] dispositions of victim bodies: staging and posing.

    Science.gov (United States)

    Keppel, Robert D; Weis, Joseph G

    2004-11-01

    The act of leaving a victim's body in an unusual position is a conscious criminal action by an offender to thwart an investigation, shock the finder and investigators of the crime scene, or give perverted pleasure to the killer. The unusual position concepts of posing and staging a murder victim have been documented thoroughly and have been accepted by the courts as a definable phenomenon. One staging case and one posing case are outlined and reveal characteristics of those homicides. From the Washington State Attorney General's Homicide Investigation and Tracking System's database on murder covering the years 1981-2000 (a total of 5,224 cases), the relative frequency of unusual body dispositions is revealed as a very rare occurrence. Only 1.3% of victims are left in an unusual position, with 0.3% being posed and 0.1% being staged. The characteristics of these types of murders also set them apart: compared to all other murders, in staged murders the victims and killers are, on average, older. All victims and offenders in the staged murders are white, with victims being disproportionately white in murders with any kind of unusual body disposition. Likewise, females stand out as victims when the body is posed, staged, or left in other unusual positions. Whereas posed bodies are more likely to include sexual assault, often in serial murders, there is no evidence of either in the staged cases. Lastly, when a body is left in an unusual position, binding is more likely, as well as the use of more "hands on" means of killing the victim, such as stabbing or cutting weapons, bludgeons, ligatures, or hands and feet.

  13. Attitudes of Tourists about the Possibility of Development of Unusual Hotels in Serbia

    Directory of Open Access Journals (Sweden)

    Klisara Dubravka

    2015-01-01

    Full Text Available This paper deals with the problem of relatively young type of hotel that is increasingly attracting the attention of the modern tourist. Unusual hotels are very interesting phenomenon, not only for tourists and hospitality professionals, but also for people who are (currently out of the tourist flows. These are facilities with untypical architectural design, non-standard equipped or with services that are not common in the hospitality industry. They often contribute to the attractiveness of the area in which they are located. However, business sustainability of unusual hotels, as well as any other hotel, depends on guests, i.e. number of overnight stays.We present the results of research conducted among tourists in Serbia. The main task is to examined whether tourists are interested in the potential developing of unusual hotels. If so, which subtypes of unusual hotel would be best suited for the territory of Serbia. In order to compare experiences and operating results, parallel survey was conducted among owners of unusual hotels around the world. The results suggest a conclusion - with a favourable investment climate, unusual hotels should have a future in Serbia.

  14. Nontraumatic orbital roof encephalocele.

    Science.gov (United States)

    Hoang, Amber; Maugans, Todd; Ngo, Thang; Ikeda, Jamie

    2017-02-01

    Intraorbital meningoencephaloceles occur most commonly as a complication of traumatic orbital roof fractures. Nontraumatic congenital orbital meningoncephaloceles are very rare, with most secondary to destructive processes affecting the orbit and primary skull defects. Treatment for intraorbital meningoencephaloceles is surgical repair, involving the excision of herniated brain parenchyma and meninges and reconstruction of the osseous defect. Most congenital lesions present in infancy with obvious globe and orbital deformities; we report an orbital meningoencephalocele in a 3-year-old girl who presented with ptosis. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  15. An unusual foreign body of esophagus

    Directory of Open Access Journals (Sweden)

    Surinder K Singhal

    2010-07-01

    Full Text Available We report a rare case of an unusually long foreign body (Datun impacted in the esophagus of a 56 year-old gentleman. He was literate, without any psychiatric illness and had been using “Neem” (Azadirachta indica stick for cleaning his teeth for the past twenty years. Neem sticks are used for brushing teeth, perhaps one of the earliest and very effective dental care. On closer questioning he revealed his habit of passing the Neem stick into his throat with the aim of cleaning it too while cleaning his teeth. He presented to our emergency early in the morning with this strange long foreign body impacted in his esophagus which was removed successfully using a Jackson’s adult rigid oesophagoscope. We believe this to be the first case of such an unusually long foreign body to be reported in the literature.

  16. Detecting a Subsurface Ocean From Periodic Orbits at Enceladus

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Russell, R. P.; Lara, M.

    2008-12-01

    from the tiger- stripes. Near-circular, low altitude highly inclined orbits with arbitrary initial conditions will impact Enceladus if uncontrolled in about 1 to 2 days. To reduce risk and station-keeping requirements we choose periodic orbits in the Hill's plus non-spherical Enceladus model. Despite the instability, the repeat ground track solutions represent equilibria in the dominant terms of the dynamics and therefore extend the uncontrolled lifetimes to ~7 to ~10 days. Round-trip transfers between the two orbital phases is expected to conservatively cost between ~50 and ~100 m/s. We use orbits of different altitudes and inclinations to simulate Earth-based ranging to the orbiter and altimeter measurements to the surface of Enceladus. The simulations are made assuming different tidal responses by adopting different values of the Love numbers. The synthetic measurements are then inverted and the tidal parameters h2 and k2 estimated. Results will be presented in terms of sensitivity of detection of Love numbers to the different orbital geometries. Indications will thus be provided for optimized orbit planning of future exploration missions aimed at investigating the internal structure of the satellite and the detection of its putative subcrustal ocean.

  17. Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion

    Science.gov (United States)

    Butkevich, Alexey G.

    2018-06-01

    The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.

  18. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    Science.gov (United States)

    Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.

    2015-09-01

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.

  19. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlik, Z.; Pugliese, D.; Schee, J.; Kucakova, H. [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2015-09-15

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Horava quantum gravity, characterized by a dimensionless parameter ωM{sup 2}, combining the gravitational mass parameter M of the spacetime with the Horava parameter ω, reflecting the role of the quantum corrections. In dependence on the value of ωM{sup 2}, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an @gantigravity@h sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l = const. In the K-S naked singularity spacetimes with ωM{sup 2} > 0.2811, doubled tori with the same l = const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ωM{sup 2} < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics. (orig.)

  20. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  1. Stabilization of actinides and lanthanides in unusually high oxidation states

    International Nuclear Information System (INIS)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO 3 or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF 5 /HF solution or Pu(VII) in Li 5 PuO 6 ). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs

  2. Magnetism, spin-lattice-orbital coupling and exchange-correlation energy in oxide heterostructures: Nickelate, titanate, and ruthenate

    Science.gov (United States)

    Han, Myung-Joon

    Many interesting physical phenomena and material characteristics in transition-metal oxides (TMO) come out of the intriguing interplay between charge, spin, orbital, and lattice degrees of freedom. In the thin film and/or heterointerface form of TMO, this feature can be controlled and thus be utilized. Simultaneously, however, its detailed characteristic is more difficult to be identified experimentally. For this reason, the first-principles-based approach has been playing an important role in this field of research. In this talk, I will try to give an overview of current status of first-principles methodologies especially for the magnetism in the correlated oxide heterostructures or thin films. Nickelate, titanate, and ruthenate will be taken as representative examples to demonstrate the powerfulness of and the challenges to the current methodologies On the one hand, first-principles calculation provides the useful information, understanding and prediction which can hardly be obtained from other theoretical and experimental techniques. Nickelate-manganite superlattices (LaNiO3/LaMnO3 and LaNiO3/CaMnO3) are taken as examples. In this interface, the charge transfer can induce the ferromagnetism and it can be controlled by changing the stacking sequence and number of layers. The exchange-correlation (XC) functional dependence seems to give only quantitatively different answers in this case. On the other hand, for the other issues such as orbital polarization/order coupled with spin order, the limitation of current methodology can be critical. This point will be discussed with the case of tatinate superlattice (LaTiO3/LaAlO3) . For ruthenates (SrRuO3\\ and Sr2RuO4) , we found that the probably more fundamental issue could be involved. The unusually strong dependence on the XC functional parametrization is found to give a qualitatively different conclusion for the experimentally relevant parameter regions. This work was supported by National Research Foundation of

  3. Measurement of orbital volume by computed tomography. Especially on the growth of orbit

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Minoru [Fukushima Medical Coll. (Japan)

    2000-10-01

    Using reconstructed X-ray computed tomography (CT) images of serial coronal sections, we measured the orbital volume and studied its changes with age. The subjects consisted of 109 patients (74 males, 35 females) who had undergone X-ray CT. After the reproducibility of orbital volume measurements and laterality in individuals were confirmed, the relation between the orbital volume and the age, sex, weight, and interlateral orbital rim distance were examined. The difference between two measurements in the same patients was 0.4% for measured volume, which showed the reproducibility of this measurement to be good. The laterality in individuals was 0.06 cm{sup 3}: this difference was very small and not significant. The orbital volume showed no unbalance between the right and left at any stage of growth. Both the height and the interlateral orbital rim distance had a strong correlation with the orbital volume. Referring to the relation between age and orbital volume, a strong correlation with an almost identical approximate equation was obtained for both sexes under 12 years of age. Presumably, the rapid growth of the orbit comes to an end by 15 years of age in males and 11 years in females. This means that more than 95% growth of adults has already been completed in the first half of the teens. The mean orbital volume in adult Japanese is 23.6{+-}2.0 (mean{+-}standard deviation) cm{sup 3} in males and 20.9{+-}1.3 cm{sup 3} in females. (author)

  4. Measurement of orbital volume by computed tomography. Especially on the growth of orbit

    International Nuclear Information System (INIS)

    Furuta, Minoru

    2000-01-01

    Using reconstructed X-ray computed tomography (CT) images of serial coronal sections, we measured the orbital volume and studied its changes with age. The subjects consisted of 109 patients (74 males, 35 females) who had undergone X-ray CT. After the reproducibility of orbital volume measurements and laterality in individuals were confirmed, the relation between the orbital volume and the age, sex, weight, and interlateral orbital rim distance were examined. The difference between two measurements in the same patients was 0.4% for measured volume, which showed the reproducibility of this measurement to be good. The laterality in individuals was 0.06 cm 3 : this difference was very small and not significant. The orbital volume showed no unbalance between the right and left at any stage of growth. Both the height and the interlateral orbital rim distance had a strong correlation with the orbital volume. Referring to the relation between age and orbital volume, a strong correlation with an almost identical approximate equation was obtained for both sexes under 12 years of age. Presumably, the rapid growth of the orbit comes to an end by 15 years of age in males and 11 years in females. This means that more than 95% growth of adults has already been completed in the first half of the teens. The mean orbital volume in adult Japanese is 23.6±2.0 (mean±standard deviation) cm 3 in males and 20.9±1.3 cm 3 in females. (author)

  5. Phonon anharmonicity and Gruneisen parameters of alpha-plutonium

    International Nuclear Information System (INIS)

    Filanovich, A.N.; Povzner, A.A.

    2015-01-01

    A self-consistent thermodynamic model of alpha-phase of plutonium is constructed. The calculations of thermal and elastic properties of α-Pu, carried out within this model, demonstrate that anomalously strong temperature dependence of the bulk modulus and unusually high value of the coefficient of thermal expansion of α-Pu are caused by its strong lattice anharmonicity. The isothermal and isobaric Gruneisen parameters of α-Pu and δ-Pu Pu_0_._9_6Ga_0_._0_4 are calculated. It is shown that wide spread of the values of Gruneisen parameter of α-Pu, obtained previously from different experimental data, is explained by the dependence of Gruneisen parameter of α-Pu on temperature. - Highlights: • A self-consistent thermodynamic model of alpha-plutonium is developed. • Thermal and elastic properties of alpha-plutonium are calculated. • The reason of spread in the values of Gruneisen parameter of alpha-Pu is established. • Different types of phonon anharmonicity in alpha-Pu and delta-Pu are revealed.

  6. Low-Cost 3D Printing Orbital Implant Templates in Secondary Orbital Reconstructions.

    Science.gov (United States)

    Callahan, Alison B; Campbell, Ashley A; Petris, Carisa; Kazim, Michael

    Despite its increasing use in craniofacial reconstructions, three-dimensional (3D) printing of customized orbital implants has not been widely adopted. Limitations include the cost of 3D printers able to print in a biocompatible material suitable for implantation in the orbit and the breadth of available implant materials. The authors report the technique of low-cost 3D printing of orbital implant templates used in complex, often secondary, orbital reconstructions. A retrospective case series of 5 orbital reconstructions utilizing a technique of 3D printed orbital implant templates is presented. Each patient's Digital Imaging and Communications in Medicine data were uploaded and processed to create 3D renderings upon which a customized implant was designed and sent electronically to printers open for student use at our affiliated institutions. The mock implants were sterilized and used intraoperatively as a stencil and mold. The final implant material was chosen by the surgeons based on the requirements of the case. Five orbital reconstructions were performed with this technique: 3 tumor reconstructions and 2 orbital fractures. Four of the 5 cases were secondary reconstructions. Molded Medpor Titan (Stryker, Kalamazoo, MI) implants were used in 4 cases and titanium mesh in 1 case. The stenciled and molded implants were adjusted no more than 2 times before anchored in place (mean 1). No case underwent further revision. The technique and cases presented demonstrate 1) the feasibility and accessibility of low-cost, independent use of 3D printing technology to fashion patient-specific implants in orbital reconstructions, 2) the ability to apply this technology to the surgeon's preference of any routinely implantable material, and 3) the utility of this technique in complex, secondary reconstructions.

  7. Orbit Determination Using SLR Data for STSAT-2C:Short-arc Analysis

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2015-09-01

    Full Text Available In this study, we present the results of orbit determination (OD using satellite laser ranging (SLR data for the Science and Technology Satellite (STSAT-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 – 2014/04 of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.

  8. Probable Unusual Transmission of Zika Virus

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about the probable unusual transmission of Zika Virus Infection from a scientist to his wife, published in the May 2011 issue of Emerging Infectious Diseases. Dr. Brian Foy, Associate Professor at Colorado State University, shares details of this event.

  9. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    Science.gov (United States)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  10. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  11. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  12. The orbital inclination of A0620 - 00 measured polarimetrically

    International Nuclear Information System (INIS)

    Dolan, J.F.; Tapia, S.

    1989-01-01

    The mass of the degenerate primary in A0620 - 00 is inferred from its spectroscopic mass function to be not less than 3.2 solar masses, making it an excellent candidate for a black hole. The exact value of the mass depends on the orbital inclination. The inclination of a binary system can be determined from the shape of its Stokes parameter light curves if the linear polarization of the system varies as a function of orbital phase. A0620 - 00 over one 8-hour binary period was observed with the 4.5-m equivalent MMT. Its polarization in the visible is variable with orbital phase. The standard theory of Brown et al. (1978) was used to derive an orbital inclination of i = 57 deg (+20 deg, -50 deg), where the error is the 90-percent confidence interval. An inclination of i = 57 deg corresponds to a mass of the compact primary of 6.6 solar masses, but the large uncertainty in the measured value of the inclination allows the derived mass of A0620 - 00 to be as low as 3.8 solar masses. If this is taken to be the maximum mass of any degenerate configuration consistent with general relativity except a black hole, then the mass of A0620 - 00 is still not well enough determined to conclude that it must be a black hole. 21 refs

  13. Modeling Photodetachment from HO2- Using the pd Case of the Generalized Mixed Character Molecular Orbital Model

    Science.gov (United States)

    Blackstone, Christopher C.; Sanov, Andrei

    2016-06-01

    Using the generalized model for photodetachment of electrons from mixed-character molecular orbitals, we gain insight into the nature of the HOMO of HO2- by treating it as a coherent superpostion of one p- and one d-type atomic orbital. Fitting the pd model function to the ab initio calculated HOMO of HO2- yields a fractional d-character, γp, of 0.979. The modeled curve of the anisotropy parameter, β, as a function of electron kinetic energy for a pd-type mixed character orbital is matched to the experimental data.

  14. Unusual Presentation of Maydl's Hernia

    African Journals Online (AJOL)

    Nikhil NBA, Natarajan K, Mohanty A, et al. An. Unusual Case of Maydl's Hernia. Int J Cur Res Rev. 2013;5(6):22-5. 11. Ganesaratnam M. Maydl's hernia: Report of a Series of Seven Cases and Review of Literature. Brit J Surg. 1985;72:737-8. 12. Weledji EP, Mokake M, Ngowe MN. A Rare. Presentation of Maydl's Hernia.

  15. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  16. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

    Science.gov (United States)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.

    2017-09-01

    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.

  17. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  18. Supervoltage orbital radiotherapy for progressive Graves' ophthalmopathy

    International Nuclear Information System (INIS)

    Kriss, J.P.; McDougall, I.R.; Petersen, I.A.; Donaldson, S.S.

    1989-01-01

    Since 1968 we have employed supervoltage orbital radiation as treatment for severe progressive Graves' ophthalmopathy. A numerical ophthalmic index was used to asess pre- and post-treatment serverity. In the past 20 years we have treated 311 patients of whom 275 have been followed for ≤ 1 year or until any eye surgery was performed. An orbital radiation dosage of 2000 rads in 2 weeks was used for the majority of patients (Series I and III). Series II patients received an orbital dose of 3000 rads in 3 weeks. Demographic differences were observed between these series, thus mandating presentation of the results of each separately. Analyses excluded any result achieved by any post-radiation surgical procedure on the eyes. Post-theraphy worsening of ophtalmopathy occurred in only 29 of 1025 observations. Improvement or complete resolution was observed within each category of eye involvement, but lack of favorable response was also recorded in significant numbers. Improvement in proptosis occurred with the lowest frequency and magnitude. About 30% of the patients required eye muscle surgery to correct residual diplopia. Analysis of the data by step-wise linear regression analysis enabled us a. to derive formulae predicting the problable response to radiation therapy according to sign and severity, and b. identify parameters which diminished the likelihood or the extent of a favorable response. The latter included male sex, never thyrotoxic, age greater than 60 years, and requirement for concomitant treatment for hyperthyroidism. No long-term adverse reactions attributable to the radiotherapy have been observed. We conclude that supervoltage orbital radiotherapy, combined with later eye muscle surgery if necessary, is an effective treatment strategy for progressive Graves' ophthalmopathy. (author)

  19. Statistical U-Th dating results of speleothem from south Europe and the orbital-scale implication

    Science.gov (United States)

    Hu, H. M.

    2016-12-01

    Reconstructing of hydroclimate in the Mediterranean on an orbital time scale helps improve our understanding of interaction between orbital forcing and north hemisphere climate. We collected 180 speleothem subsamples from Observatoire Cave (Monaco), Prince Cave (south France), Chateaueuf Cave (South France), Arago Cave (South France), and Basura Cave (North Italy) during 2013 to 2015 C.E. Uranium-thorium dating were conducted in the High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), National Taiwan University. The results show that most of the speleothem formed during interglacial periods, particularly in marine isotope stage (MIS) 1, 5, and 11. However, only a few speleothem were dated between 180 to 250 thousand years ago (ka). The interval is approximately equivalent to MIS 7, which is a period with contrasting orbital parameters compared to MIS1, 5, and 11. Our statistical dating result implies that the orbital-scale humid/dry condition in southern Europe could be dominantly controlled by orbital forcing.

  20. Unusual lightning electric field waveforms observed in Kathmandu, Nepal, and Uppsala, Sweden

    Science.gov (United States)

    Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath; Rakov, Vladimir A.

    2017-11-01

    Unusual lightning events have been observed in Uppsala, Sweden, and Kathmandu, Nepal, using essentially the same electric field measuring system developed at Uppsala University. They occurred in the storms that also generated ;normal; lightning events. The unusual events recorded in Uppsala occurred on one thunderstorm day. Similar events were observed in Kathmandu on multiple thunderstorm days. The unusual events were analyzed in this study assuming them to be positive ground flashes (+CGs), although we cannot rule out the possibility that some or most of them were actually cloud discharges (ICs). The unusual events were each characterized by a relatively slow, negative (atmospheric electricity sign convention) electric field waveform preceded by a pronounced opposite-polarity pulse whose duration was some tens of microseconds. To the best of our knowledge, such unusual events have not been reported in the literature. The average amplitudes of the opposite-polarity pulses with respect to those of the following main waveform were found to be about 33% in Uppsala (N = 31) and about 38% in Kathmandu (N = 327). The average durations of the main waveform and the preceding opposite-polarity pulse in Uppsala were 8.24 ms and 57.1 μs, respectively, and their counterparts in Kathmandu were 421 μs and 39.7 μs. Electric field waveforms characteristic of negative ground flashes (-CGs) were also observed, and none of them exhibited an opposite-polarity pulse prior to the main waveform. Possible origins of the unusual field waveforms are discussed.

  1. Orbital dynamics of the Anderson--Brinkman--Morel phase of superfluid 3He

    International Nuclear Information System (INIS)

    Cross, M.C.

    1977-01-01

    The orbital dynamics of the Anderson--Brinkman--Morel (ABM) phase of helium 3 is studied in both the hydrodynamic and collisionless limits. The complete equations for the orbital motion in the hydrodynamic limit are written down and the important parameters are evaluated by simple arguments. In the collisionless limit the matrix kinetic equation, not including the dipole interaction or Fermi liquid corrections, is inverted exactly to give a form that explicitly displays the various collective modes possible. The existence of an intrinsic orbital angular momentum density of order rho/sub s/h (T/sub c//E/sub f/) 2 and the ''moment of intertia'' term suggested by Leggett and Takagi is confirmed, and a physical understanding of their origin is given. However, in both collisionless and hydrodynamic limits the interaction with the normal fluid dominates the motion except very near zero temperature

  2. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in [Physics Enclave, Plot No-664/4825, Lane-4A, Shree Vihar, Bhubaneswar-24, Odisha (India); Panda, S. K., E-mail: skp@iopb.res.in

    2016-05-06

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperature dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.

  3. Spin-orbit interaction driven dimerization in one dimensional frustrated magnets

    Science.gov (United States)

    Zhang, Shang-Shun; Batista, Cristian D.

    Spin nematic ordering has been proposed to emerge near the saturation of field of a class of frustrated magnets. The experimental observation of this novel phase is challenging for the traditional experimental probes. Nematic spin ordering is expected to induce a local quadrupolar electric moment via the spin-orbit coupling. However, a finite spin-orbit interaction explicitly breaks the U(1) symmetry of global spin rotations down to Z2, which renders the traditional nematic order no longer well-defined. In this work we investigate the relevant effect of spin-orbit interaction on the 1D frustrated J1 -J2 model. The real and the imaginary parts of the nematic order parameter belong to different representations of the discrete symmetry group of the new Hamiltonian. We demonstrate that spin-orbit coupling stabilizes the real component and simultaneously induces bond dimerization in most of the phase diagram. Such a bond dimerization can be observed with X-rays or nuclear magnetic resonance. In addition, an incommensurate bond-density wave (ICBDW) appears for smaller values of J2 / |J1 | . The experimental fingerprint of the ICBDW is a double-horn shape of the the NMR line. These conclusions can shed light on the experimental search of this novel phase.

  4. Photometric Studies of GEO Orbital Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  5. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    Science.gov (United States)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  6. PATTERNS OF ORBITOFACIAL AND ORBITAL GROWTH AT PRENATAL STAGE DERIVED FROM FETAL AUTOPSY STUDIES. Patrones de crecimiento órbito-facial y orbital en la etapa prenatal derivados de los estudios de autopsias fetales

    Directory of Open Access Journals (Sweden)

    Tulika Gupta

    2016-03-01

    Full Text Available Objetivo: Las mediciones orbitofaciales y orbitales del feto pueden ser útiles para el diagnóstico precoz prenatal de malformaciones craneofaciales. La mayoría de los estudios anteriores se basan en la ecografía y sólo hay unos cuantos estudios basados en autopsias fetales. El Análisis detallado de los distintos parámetros puede proporcionar una base de datos útil para una rápida referencia. Métodos: En cincuenta fetos normales de edades gestacionales diferentes, se midieron los siguientes parámetros: las distancias cantales externa e interna, la longitud de la hendidura palpebral, la longitud oropalpebral, la profundidad y la anchura de la órbita y la distancia interorbital. Resultados: El análisis estadístico reveló una correlación positiva significativa de todos estos parámetros con la edad gestacional y con el diámetro biparietal. Los patrones de crecimiento de los pará-metros orbitales y orbitofacial también demostraron una correlación significativa entre sí. Conclusión: Nuestros resultados muestran que el aumento de las partes laterales de la cara y de la longitud facial vertical se produce a un ritmo más rápido en comparación con la parte media de la cara. Las desviaciones de los datos normativos generados para los parámetros orbitales y orbitofacial ayudarán en la detección precoz de síndromes genéticos específicos. Objective: Fetal orbitofacial and orbital measurements may be helpful in early prenatal diagnosis of craniofacial malformation. Most of the earlier studies are ultrasound based and there are only a few studies based on fetal autopsies. Comprehensive analysis of various parameters can provide useful database for easy reference. Methods: In fifty normal fetuses of different gestational ages, the following parameters were measured: outer and inner canthal distances, palpebral fissure length, oropalpebral length, depth and width of orbit and inter orbital distance. Results: Statistical analysis

  7. Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-06-01

    In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.

  8. Dynamical analysis of rendezvous and docking with very large space infrastructures in non-Keplerian orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2018-03-01

    A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.

  9. The Orbit of X Persei and Its Neutron Star Companion

    Science.gov (United States)

    Delgado-Martí, Hugo; Levine, Alan M.; Pfahl, Eric; Rappaport, Saul A.

    2001-01-01

    We have observed the Be/X-ray pulsar binary system X Per/4U 0352+30 on 61 occasions spanning an interval of 600 days with the PCA instrument on board the Rossi X-Ray Timing Explorer (RXTE). Pulse timing analyses of the 837 s pulsations yield strong evidence for the presence of orbital Doppler delays. We confirm the Doppler delays by using measurements made with the All Sky Monitor (ASM) on RXTE. We infer that the orbit is characterized by a period Porb=250 days, a projected semimajor axis of the neutron star axsini=454 lt-s, a mass function f(M)=1.61 Msolar, and a modest eccentricity e=0.11. The measured orbital parameters, together with the known properties of the classical Be star X Per, imply a semimajor axis a=1.8-2.2 AU and an orbital inclination i~26deg-33deg. We discuss the formation of the system in the context of the standard evolutionary scenario for Be/X-ray binaries. We find that the system most likely formed from a pair of massive progenitor stars and probably involved a quasi-stable and nearly conservative transfer of mass from the primary to the secondary. We find that the He star remnant of the primary most likely had a mass probability of a system like that of X Per forming with an orbital eccentricity e<~0.11. We speculate that there may be a substantial population of neutron stars formed with little or no kick. Finally, we discuss the connected topics of the wide orbit and accretion by the neutron star from a stellar wind.

  10. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  11. Extensive Air Showers with unusual structure

    Directory of Open Access Journals (Sweden)

    Beznosko Dmitriy

    2017-01-01

    Full Text Available A total of 23500 Extensive Air Showers (EAS with energies above ∼ 1016 eV have been detected during the ∼3500 hours of the Horizon-T (HT detectors system operations before Aug. 2016. Among these EAS, more than a thousand had an unusual spatial and temporary structure that showed pulses with several maxima (modals or modes from several detection points of the HT at the same time. These modes are separated in time from each other starting from tens to thousands of ns. These EAS have been called multi-modal. Analysis shows that the multi-modal EAS that have been detected by Horizon-T have the following properties: 1. Multi-modal EAS have energy above ∼1017 eV. 2. Pulses with several modes are located at large distances from the EAS axis. An overview of the collected data will be provided. General comments about the unusual structure of the multi-modal EAS will be presented.

  12. Congenital orbital teratoma

    OpenAIRE

    Aiyub, Shereen; Chan, Weng Onn; Szetu, John; Sullivan, Laurence J; Pater, John; Cooper, Peter; Selva, Dinesh

    2013-01-01

    We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The p...

  13. Unusual Cancers of the Head and Neck

    Science.gov (United States)

    ... more information). Unusual Cancers of the Head and Neck Nasopharyngeal Cancer See the PDQ summary on Childhood ... of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ ...

  14. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  15. DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions

    Science.gov (United States)

    Giorgini, Jon D.; Chamberlin, Alan B.

    2014-11-01

    A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.

  16. Unusual presentation of perirenal lung metastases

    International Nuclear Information System (INIS)

    D'Souza, D.L.; Heinze, S.B.; Dowling, R.J.

    2006-01-01

    Lung cancer is not commonly known to metastasise to the perirenal space, with only five such cases previously published. We present an unusual case of perirenal lung metastases manifesting as diffuse perinephric stranding which to our knowledge has not been described before Copyright (2006) Blackwell Publishing Asia Pty Ltd

  17. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Khalil M Al-Salem

    2014-01-01

    Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.

  18. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas

    2010-01-01

    Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris

  19. Comparison of clinical outcome parameters, the Patient Benefit Index (PBI-k) and patient satisfaction after ablative fractional laser treatment of peri-orbital rhytides.

    Science.gov (United States)

    Karsai, Syrus; Raulin, Christian

    2010-03-01

    Laser treatment of facial rhytides has evolved as a major modality of aesthetic surgery. Published results, while generally encouraging, feature highly diverse evaluation methods, which makes an evidence-based assessment of treatment efficacy and safety all but impossible. To compare the results of different instruments of measurement. Twenty-eight patients were enrolled and completed the entire study. They received a single ablative fractional treatment of the peri-orbital region. The evaluation included the Fitzpatrick wrinkle score, the profilometric measurement of wrinkle depth and the Patient Benefit Index (both before and 3 months after treatment) as well as the assessment of patient satisfaction (1, 3, 6 days and 3 months after treatment). All assessment instruments showed a significant, albeit moderate, improvement. The agreement between assessment methods was poor. Despite claiming to assess basically the same parameter, the Fitzpatrick wrinkle score and profilometry differed significantly, and neither assessment instrument showed any appreciable correlation with any other. The outcome assessment of rhytide therapy-regardless of the method used-shows substantial room for improvement. Strict methodological precautions ought to be applied for 'objective' evaluation methods like photographic scoring and profilometry. Subjective methods of assessment are essential and might serve as a main outcome parameter. Finally, critical reappraisal of published treatment results seems warranted to review the quality of their methodology.

  20. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    Science.gov (United States)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  1. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    International Nuclear Information System (INIS)

    Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.

    2011-01-01

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  2. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  3. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    Science.gov (United States)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  4. Update on orbital reconstruction.

    Science.gov (United States)

    Chen, Chien-Tzung; Chen, Yu-Ray

    2010-08-01

    Orbital trauma is common and frequently complicated by ocular injuries. The recent literature on orbital fracture is analyzed with emphasis on epidemiological data assessment, surgical timing, method of approach and reconstruction materials. Computed tomographic (CT) scan has become a routine evaluation tool for orbital trauma, and mobile CT can be applied intraoperatively if necessary. Concomitant serious ocular injury should be carefully evaluated preoperatively. Patients presenting with nonresolving oculocardiac reflex, 'white-eyed' blowout fracture, or diplopia with a positive forced duction test and CT evidence of orbital tissue entrapment require early surgical repair. Otherwise, enophthalmos can be corrected by late surgery with a similar outcome to early surgery. The use of an endoscope-assisted approach for orbital reconstruction continues to grow, offering an alternative method. Advances in alloplastic materials have improved surgical outcome and shortened operating time. In this review of modern orbital reconstruction, several controversial issues such as surgical indication, surgical timing, method of approach and choice of reconstruction material are discussed. Preoperative fine-cut CT image and thorough ophthalmologic examination are key elements to determine surgical indications. The choice of surgical approach and reconstruction materials much depends on the surgeon's experience and the reconstruction area. Prefabricated alloplastic implants together with image software and stereolithographic models are significant advances that help to more accurately reconstruct the traumatized orbit. The recent evolution of orbit reconstruction improves functional and aesthetic results and minimizes surgical complications.

  5. An unusual orbito-cranial foreign body

    Directory of Open Access Journals (Sweden)

    Misra Madhumati

    1992-01-01

    Full Text Available The rarity of orbito-cranial gun shot injury in both war and civilian practice has been reported. In a large series of 351 missile head injuries in the Vietnam war, orbital penetration was noted in 0.6% cases only. Review of literature shows that orbital injury was ipsilateral to the cerebral injury in most reported cases. We have previously reported a rare case of left parieto-occipital lobe injury due to gun shot wound of the contralateral (right orbit. The case reported here sustained a bullet injury to the left frontal bone but the missile was located below the contralateral (right optic canal. The rarity of the case prompted this report.

  6. salmonella typhi spondyutis: an unusual presentation

    African Journals Online (AJOL)

    It was relieved by lying flat. She had pre- viously been admitted to King Edward VIII Hospital in. May 1969 with a cough, chest and abdominal pain, ... foot and cranium may be the sites of skeletal involvement. Our case shows several unusual features. Sickle-cell anaemia and haemoglobinopathy were absent. Although.

  7. Unusual Cutaneous Manifestation of Tuberous Sclerosis

    Directory of Open Access Journals (Sweden)

    K C Shah

    1980-01-01

    Full Text Available Cutaneous manifestations are found in 60 to 70% cases of tuberous sclerosis and consist of adenoma sebaceum, periungual fibromatas, cafe au lait spots, shagreen patches and white macules. Our patient showed unusual skin manifestations like spotty pigmentation on the chest, back and abdomen and hyperkeratosis palmaris et plantaris.

  8. Orbital glass in HTSC

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  9. The Mars Reconnaissance Orbiter Mission: 10 Years of Exploration from Mars Orbit

    Science.gov (United States)

    Johnston, M. Daniel; Zurek, Richard W.

    2016-01-01

    The Mars Reconnaissance Orbiter ( MRO ) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low -altitude science orbit. The spacecraft has been on station in its 255 x 320 k m, sun -synchronous (approximately 3 am -pm ), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.

  10. Orbital Infarction due to Sickle Cell Disease without Orbital Pain

    Directory of Open Access Journals (Sweden)

    Cameron L. McBride

    2016-01-01

    Full Text Available Sickle cell disease is a hemoglobinopathy that results in paroxysmal arteriolar occlusion and tissue infarction that can manifest in a plurality of tissues. Rarely, these infarcted crises manifest in the bony orbit. Orbital infarction usually presents with acute onset of periorbital tenderness, swelling, erythema, and pain. Soft tissue swelling can result in proptosis and attenuation of extraocular movements. Expedient diagnosis of sickle cell orbital infarction is crucial because this is a potentially sight-threatening entity. Diagnosis can be delayed since the presentation has physical and radiographic findings mimicking various infectious and traumatic processes. We describe a patient who presented with sickle cell orbital crisis without pain. This case highlights the importance of maintaining a high index of suspicion in patients with known sickle cell disease or of African descent born outside the United States in a region where screening for hemoglobinopathy is not routine, even when the presentation is not classic.

  11. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho

    2014-01-01

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  12. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  13. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    International Nuclear Information System (INIS)

    Froning, H. D. Jr; Yang, Yang; Momota, H.; Burton, E.; Miley, G. H.; Luo, Nie

    2005-01-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines

  14. Eye and orbital cavity

    International Nuclear Information System (INIS)

    Panfilova, G.V.; Koval', G.Yu.

    1984-01-01

    Radioanatomy of eyes and orbit is described. Diseases of the orbit (developmental anomalies, inflammatory diseases, lacrimal apparatus deseases, toxoplasmosis, tumors and cysts et al.), methods of foreign body localization in the eye are considered. Roentgenograms of the orbit and calculation table for foreign body localization in spherical eyes of dissimilar diameter are presented

  15. Development of an Architecture of Sun-Synchronous Orbital Slots to Minimize Conjunctions

    Science.gov (United States)

    Weeden, B.

    Sun-synchronous orbit (SSO) satellites serve many important functions, primarily in the areas of Earth reconnaissance and weather. The orbital parameters of altitude, inclination and right ascension which allow for the unique utility of Sun-sync orbit limit these satellites to a very specific region of space. The popularity of these satellite missions combined with the use of similar engineering solutions has resulted in the majority of current Sun-sync satellites within this region having very similar inclinations and altitudes while also spaced around the Equator in right ascension, creating the opportunity for conjunctions at the polar crossing points and a serious safety issue that could endanger long-term sustainability of SSO. This paper outlines the development of a new architecture of SSO zoning to create specific slots separating SSO satellites in altitude, right ascension and time at all orbital intersections while minimizing the limitations on utility. A methodical approach for the development of the system is presented along with the work-to-date and a software tool for calculating repeating ground track orbits. The slot system is intended to allow for continued utility of and safe operation within SSO while greatly decreasing the chance of collisions at orbital intersections. This architecture is put forward as one possible element of a new Space Traffic Management (STM) system with the overall goal of maintaining the safe and continued used of space by all actors.

  16. Chronic Maxillary Sinusitis Associated with an Unusual Foreign Body: A Case Report

    Directory of Open Access Journals (Sweden)

    Yunus Feyyat Şahin

    2012-01-01

    Full Text Available Foreign bodies in maxillary sinuses are unusual clinical conditions, and they can cause chronic sinusitis by mucosal irritation. Most cases of foreign bodies in maxillary sinus are related to iatrogenic dental manipulation and only a few cases with non-dental origin are reported. Oroantral fistulas secondary to dental procedures are the most common way of insertion. Treatment is surgical removal of the foreign body either endoscopically or with a combined approach, with Caldwell-Luc procedure if endoscopic approach is inadequate for visualisation. In this case, we present a 24-year-old male patient with unilateral chronic maxillary sinusitis due to a wooden toothpick in left maxillary sinus. The patient had a history of upper second premolar tooth extraction. CT scan revealed sinus opacification with presence of a foreign body in left maxillary sinus extending from the floor of the sinus to the orbital base. The foreign body, a wooden toothpick, was removed with Caldwell-Luc procedure since it was impossible to remove the toothpick endoscopically. There was no obvious oroantral fistula in the time of surgery, but the position of the toothpick made us to think that it was inserted through a previously healed fistula, willingly or accidentally.

  17. OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km V003 (OMMYDCLD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km (OMMYDCLD) is a Level-2 orbital product that combines cloud parameters retrieved by the...

  18. Local orbit feedback

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section

  19. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    Science.gov (United States)

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  20. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    Science.gov (United States)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  1. Unusual causes of mechanical small bowel obstruction

    International Nuclear Information System (INIS)

    Shatnawi, Nawaf J.; Bani-Hani, Kamal E.

    2005-01-01

    We herein report our experience regarding unusual causes of bowel obstruction to increase the awareness of surgeons regarding this disease. From 1991 to 2003, we had experience at the University affiliated hospitals, northern Jordan with 24 patients with small bowel obstruction resulting from unusual causes. We retrospectively reviewed the medical records of these patients with regards to the mode of presentation, cause of obstruction, radiological and operative findings, management and outcome. We recorded 15 patients who underwent previous abdominal surgery. Preoperative diagnosis was correct in only one patient with an internal hernia, but the abdominal CT scan suggested the diagnosis in 5 of the 9 patients who had the scan. The final diagnosis was internal hernias in 11 patients, foreign bodies in 5, ischemic strictures in 3, carcinoid tumors in 2, endometriosis in 2, and metastatic deposit from interstitial bladder carcinoma in one patient. Nine of the 12 patients with recurrent obstruction had either short course or recurrence obstruction during the same hospital admission. W carried out bowel resections in 15 patients (5 resections were due to bowel strangulation). Post operative death occurred in 4 patients. Awareness of these rare causes of intestinal obstruction even in patients with previous abdominal operation might improve the outcome. The tentative diagnosis of adhesion obstruction in patients with unusual obstructive etiology might lead to a higher rate of gangrenous complications. Rigorous preoperative evaluation including careful history and early abdominal CT may show the obstructive cause. (author)

  2. Orbit Refinement of Asteroids and Comets Using a Robotic Telescope Network

    Science.gov (United States)

    Lantz Caughey, Austin; Brown, Johnny; Puckett, Andrew W.; Hoette, Vivian L.; Johnson, Michael; McCarty, Cameron B.; Whitmore, Kevin; UNC-Chapel Hill SKYNET Team

    2016-01-01

    We report on a multi-semester project to refine the orbits of asteroids and comets in our Solar System. One of the newest fields of research for undergraduate Astrophysics students at Columbus State University is that of asteroid astrometry. By measuring the positions of an asteroid in a set of images, we can reduce the overall uncertainty in the accepted orbital parameters of that object. These measurements, using our WestRock Observatory (WRO) and several other telescopes around the world, are being published through the Minor Planet Center (MPC) and benefit the global community.Three different methods are used to obtain these observations. First, we use our own 24-inch telescope at WRO, located in at CSU's Coca-Cola Space Science Center in downtown Columbus, Georgia . Second, we have access to data from the 20-inch telescope at Stone Edge Observatory in El Verano, California. Finally, we may request images remotely using Skynet, an online worldwide network of robotic telescopes. Our primary and long-time collaborator on Skynet has been the "41-inch" reflecting telescope at Yerkes Observatory in Williams Bay, Wisconsin. Thus far, we have used these various telescopes to refine the orbits of more than 15 asteroids and comets. We have also confirmed the resulting reduction in orbit-model uncertainties using Monte Carlo simulations and orbit visualizations, using Find_Orb and OrbitMaster software, respectively.Before any observatory site can be used for official orbit refinement projects, it must first become a trusted source of astrometry data for the MPC. We have therefore obtained Observatory Codes not only for our own WestRock Observatory (W22), but also for 3 Skynet telescopes that we may use in the future: Dark Sky Observatory in Boone, North Carolina (W38) Hume Observatory in Santa Rosa, California (U54) and Athabasca University Geophysical Observatory in Athabasca, Alberta, Canada (U96).

  3. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    Science.gov (United States)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and

  4. Magnetic vortex excitation as spin torque oscillator and its unusual trajectories

    Science.gov (United States)

    Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda

    2018-05-01

    We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.

  5. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    Science.gov (United States)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz

    2018-02-01

    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0, and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear

  6. Orbital preservation in a maxillectomy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Katsuhiko; Nishikawa, Hitomi; Kumagai, Masahiko; Dosaka, Yoshihiro; Kuroda, Toru; Atago, Yoshihiro; Nishio, Masamichi [Sapporo National Hospital (Japan)

    1999-07-01

    In the past 9 years, 38 patients of the maxillary cancer were treated by a combination of radiation and surgery. Sixteen patients showed the orbital involvement as confirmed by a CT scan and/or MRI. An orbital excenteration was necessary in 6 patients, due mainly to deep intraorbital invasion, while in 10, the orbital contents were preserved despite the involvement of the orbital capsule. The local rate of the orbital region in the latter patients evaluated at 48 months after the initial surgery was 44%. For the treatment of the recurrence at the orbital capsule. The application of gold grain (Au{sup 198}) thus appeared to be a useful tool for further preserving the eye. (author)

  7. Orbital preservation in a maxillectomy

    International Nuclear Information System (INIS)

    Tanaka, Katsuhiko; Nishikawa, Hitomi; Kumagai, Masahiko; Dosaka, Yoshihiro; Kuroda, Toru; Atago, Yoshihiro; Nishio, Masamichi

    1999-01-01

    In the past 9 years, 38 patients of the maxillary cancer were treated by a combination of radiation and surgery. Sixteen patients showed the orbital involvement as confirmed by a CT scan and/or MRI. An orbital excenteration was necessary in 6 patients, due mainly to deep intraorbital invasion, while in 10, the orbital contents were preserved despite the involvement of the orbital capsule. The local rate of the orbital region in the latter patients evaluated at 48 months after the initial surgery was 44%. For the treatment of the recurrence at the orbital capsule. The application of gold grain (Au 198 ) thus appeared to be a useful tool for further preserving the eye. (author)

  8. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Allende Prieto, Carlos; Cabrera-Lavers, Antonio [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Mukadam, Anjum S., E-mail: jjhermes@astro.as.utexas.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2012-10-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (- 9.8 {+-} 2.8) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.31 {+-} 0.09 ms yr{sup -1}). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M{sub 1} = 0.26 {+-} 0.04 M{sub Sun} and M{sub 2} = 0.50 {+-} 0.04 M{sub Sun }. General relativity predicts orbital decay due to gravitational wave radiation of (- 8.2 {+-} 1.7) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.26 {+-} 0.05 ms yr{sup -1}). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  9. No Laughing Matter: Gelastic Migraine and Other Unusual Headache Syndromes.

    Science.gov (United States)

    Mathew, Paul G; Robertson, Carrie E

    2016-05-01

    Primary and secondary headache disorders have established diagnostic criteria in the International Classification of Headache Disorders IIIb, as well as classic findings, which although not part of the formal criteria are often suggestive of a particular diagnosis. At times, headache disorders can involve unusual symptoms that lack an identifiable secondary cause. This review will discuss some of these unusual symptoms, including headache associated auditory and olfactory symptoms, as well as two case reports involving gelastic migraine and migrainous thoracalgia.

  10. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  11. Orbit of the HDE 245770 system

    International Nuclear Information System (INIS)

    Aab, O.E.

    1984-01-01

    Spectroscopic observations of HDE 245770, the optical counterpart of the X-ray source A0535 + 26, obtained at 350-700 nm with dispersion 9, 14, or 28 A/mm using a 600-mm-focal-length camera on the main stellar spectrograph of the 6-m telescope of the Special Astrophysical Observatory at Nizhni Arkhyz during 1979-1981 are reported. The data are used to calculate radial velocities and orbital parameters based on both absorption and emission lines, and the results are compared in tables and graphs. In absorption, the system is found to have best-fit parameters P = about 35 d, K = about 35 km/s, V0 = about -5 km/s, e = 0.2, and f(M) = 0.15 solar mass. For P = 35 d, the emission-line velocities lead to unrealistic mass functions and e values of 0.6 for H-beta and 0.7 for H-alpha, indicating that these velocities are not associated with the (Be) optical component of the system. 15 references

  12. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current; Description semiclassique de l`effet tunnel resonant: bifurcations et orbites periodiques dans le courant resonant

    Energy Technology Data Exchange (ETDEWEB)

    Rouben, D C

    1997-11-28

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.) 70 refs.

  13. Combined spacecraft orbit and attitude control through extended Kalman filtering of magnetometer, gyro, and GPS measurements

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2014-06-01

    Full Text Available The main goal of this research is to establish spacecraft orbit and attitude control algorithms based on extended Kalman filter which provides estimates of spacecraft orbital and attitude states. The control and estimation algorithms must be capable of dealing with the spacecraft conditions during the detumbling and attitude acquisition modes of operation. These conditions are characterized by nonlinearities represented by large initial attitude angles, large initial angular velocities, large initial attitude estimation error, and large initial position estimation error. All of the developed estimation and control algorithms are suitable for application to the next Egyptian scientific satellite, EGYPTSAT-2. The parameters of the case-study spacecraft are similar but not identical to the former Egyptian satellite EGYPTSAT-1. This is done because the parameters of EGYPTSAT-2 satellite have not been consolidated yet. The sensors utilized are gyro, magnetometer, and GPS. Gyro and magnetometer are utilized to provide measurements for the estimates of spacecraft attitude state vector where as magnetometer and GPS are utilized to provide measurements for the estimates of spacecraft orbital state vector.

  14. The Coupled Orbit-Attitude Dynamics and Control of Electric Sail in Displaced Solar Orbits

    Directory of Open Access Journals (Sweden)

    Mingying Huo

    2017-01-01

    Full Text Available Displaced solar orbits for spacecraft propelled by electric sails are investigated. Since the propulsive thrust is induced by the sail attitude, the orbital and attitude dynamics of electric-sail-based spacecraft are coupled and required to be investigated together. However, the coupled dynamics and control of electric sails have not been discussed in most published literatures. In this paper, the equilibrium point of the coupled dynamical system in displaced orbit is obtained, and its stability is analyzed through a linearization. The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit system. Numerical simulations show that the proposed strategy can control the coupled system and a small torque can stabilize both the attitude and orbit. In order to generate the control force and torque, the voltage distribution problem is studied in an optimal framework. The numerical results show that the control force and torque of electric sail can be realized by adjusting the voltage distribution of charged tethers.

  15. Application of orbital strong magnet in the extraction of deep orbital magnetic foreign bodies

    Directory of Open Access Journals (Sweden)

    Jin-Chen Jia

    2017-12-01

    Full Text Available AIM: To investigate the surgical method and efficacy of extraction of deep orbital magnetic foreign bodies by mean of an orbital strong magnet. METHODS: A retrospective analysis of clinical data of patients with deep orbital magnetic foreign bodies(OMFBin Hebei Eye Hospital from June 2014 to May 2017 was processed. A total of 23 eyes were enrolled, among them, 14 eyes of extraorbital OMFB, 9 eyes of intraorbital OMFB. The rate of extraction of foreign bodies and the postoperative complications were observed. RESULTS: All eyes of intraorbital foreign bodies were successfully extracted with 100% success rate. Twelve of 14 eyes of extraorbital foreign bodies were extracted with 86% success rate. Mild orbital hemorrhage were found in 2 eyes. There was no other obvious complication such as visual loss, orbital massive hemorrhage or limited ocular movement. CONCLUSION: It's an ideal surgical method to extract the deep orbital magnetic foreign bodies by mean of an orbital strong magnet, with mini-injury, high success rate, short duration and few complications.

  16. The relationship between orbital, earth-based, and sample data for lunar landing sites

    Science.gov (United States)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  17. Transverse and Longitudinal Doppler Effects of the Sunbeam Spectra and Earth-Self Rotation and Orbital Velocities, the Mass of the Sun and Others

    OpenAIRE

    Nam, Sang Boo

    2009-01-01

    The transverse and longitudinal Doppler effects of the sunbeam spectra are shown to result in the earth parameters such as the earth-self rotation and revolution velocities, the earth orbit semi-major axis, the earth orbital angular momentum, the earth axial tilt, the earth orbit eccentricity, the local latitude and the mass of the sun. The sunbeam global positioning scheme is realized, including the earth orbital position. PACS numbers: 91.10.Fc, 95.10.Km, 91.10.Da, 91.10.Jf.

  18. Unusual Metastases in Renal Cell Carcinoma: A Single Institution Experience and Review of Literature

    Science.gov (United States)

    Villarreal-Garza, Cynthia; Perez-Alvarez, Sandra I.; Gonzalez-Espinoza, Ivan R.; Leon-Rodriguez, Eucario

    2010-01-01

    Background To report location and management of atypical metastases from renal cell carcinoma (RCC) in the Instituto Nacional de Ciencias Medicas e Investigacion Salvador Zubiran (INCMNSZ) in Mexico City. Methods Between 1987 to 2009, 545 patients with RCC were retrospectively identified at the INCMNSZ. Patients with unusual metastases confirmed by histopathology were analyzed. Epidemiological, clinical, diagnosis, treatment and outcome data were reviewed. Results Sixty patients developed 98 unusual metastases secondary to RCC. The group was comprised of 35 men (58.3%), with a median age of 60 years at diagnosis. Metachronous unusual metastases with primary renal cancer were observed in 37 individuals (61.7%). Median time from primary RCC diagnosis to the first unusual metastasis was 16.5 months. Median survival from diagnosis of the first unusual metastasis to death was 5.0 months (CI 95%: 2.8-7.2 months). Patients with an initial solitary metastatic lesion in an unusual site (28.3%) had a better survival compared to patients who primarily presented with multiple metastases, 17.0 (CI 95%: 6.1-27.9) Vs 3.0 months (CI 95%: 0.9-5.1), p = 0.001. Unusual metastasis resection (21 patients) improved survival, 25.0 (CI 95%: 5.1-44.9) Vs 3.0 months (CI 95%: 0.8-5.2), p < 0.0001. No survival difference was observed between localization of unsual metastases (p = 0.72). Conclusions In patients with advanced RCC we suggest an individual diagnostic and surgical approach to achieve complete resection with disease-free margins, even in the presence of unusual metastatic sites, multifocality, or history of metastasectomy. These strategy might provide not only palliation for symptoms, but an opportunity for meaningful disease free and overall survival. PMID:29147198

  19. Congenital orbital teratoma.

    Science.gov (United States)

    Aiyub, Shereen; Chan, Wengonn; Szetu, John; Sullivan, Laurence J; Pater, John; Cooper, Peter; Selva, Dinesh

    2013-12-01

    We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  20. Congenital orbital teratoma

    Directory of Open Access Journals (Sweden)

    Shereen Aiyub

    2013-01-01

    Full Text Available We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  1. Normothermic thyroid storm: an unusual presentation

    Science.gov (United States)

    Sabir, Anas Ahmad; Sada, Kabiru; Yusuf, Bashir O.; Aliyu, Idris

    2016-01-01

    Thyroid storm is a rare life-threatening emergency due to thyrotoxicosis. A 30-year-old female presented with restlessness, tachycardia and vomiting but with normothermia which is an unusual presentation. There is the need for clinicians to be aware of atypical clinical features that can make the diagnosis of thyroid storm difficult. PMID:27540465

  2. Pyrene Molecular Orbital Shuffle-Controlling Excited State and Redox Properties by Changing the Nature of the Frontier Orbitals.

    Science.gov (United States)

    Merz, Julia; Fink, Julian; Friedrich, Alexandra; Krummenacher, Ivo; Al Mamari, Hamad H; Lorenzen, Sabine; Haehnel, Martin; Eichhorn, Antonius; Moos, Michael; Holzapfel, Marco; Braunschweig, Holger; Lambert, Christoph; Steffen, Andreas; Ji, Lei; Marder, Todd B

    2017-09-21

    We show that by judicious choice of substituents at the 2- and 7-positions of pyrene, the frontier orbital order of pyrene can be modified, giving enhanced control over the nature and properties of the photoexcited states and the redox potentials. Specifically, we introduced a julolidine-like moiety and Bmes 2 (mes=2,4,6-Me 3 C 6 H 2 ) as very strong donor (D) and acceptor (A), respectively, giving 2,7-D-π-D- and unsymmetric 2,7-D-π-A-pyrene derivatives, in which the donor destabilizes the HOMO-1 and the acceptor stabilizes the LUMO+1 of the pyrene core. Consequently, for 2,7-substituted pyrene derivatives, unusual properties are obtained. For example, very large bathochromic shifts were observed for all of our compounds, and unprecedented green light emission occurs for the D/D system. In addition, very high radiative rate constants in solution and in the solid state were recorded for the D-π-D- and D-π-A-substituted compounds. All compounds show reversible one-electron oxidations, and Jul 2 Pyr exhibits a second oxidation, with the largest potential splitting (ΔE=440 mV) thus far reported for 2,7-substituted pyrenes. Spectroelectrochemical measurements confirm an unexpectedly strong coupling between the 2,7-substituents in our pyrene derivatives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Calculation of photoionization differential cross sections using complex Gauss-type orbitals.

    Science.gov (United States)

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-09-05

    Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Relative size of the eye and orbit: an evolutionary and craniofacial constraint model for examining the etiology and disparate incidence of juvenile-onset myopia in humans.

    Science.gov (United States)

    Masters, Michael P

    2012-05-01

    The principal aim of this research is to provide a new model for investigating myopia in humans, and contribute to an understanding of the degree to which modern variation and evolutionary change in orbital and overall craniofacial morphology may help explain the common eye form association with this condition. Recent research into long and short-term evolution of the human orbit reveals a number of changes in this feature, and particularly since the Upper Paleolithic. These include a reduction in orbital depth, a decrease in anterior projection of the upper and lower orbital margins, and most notably, a reduction in orbital volume since the Holocene in East Asia. Reduced orbital volume in this geographic region could exacerbate an existing trend in recent hominin evolution toward larger eyes in smaller orbits, and may help explain the unusually high frequency of myopia in East Asian populations. The objective of the current study is to test a null hypothesis of no relationship between a ratio of orbit to eye volume and spherical equivalent refractive error (SER) in a sample of Chinese adults, and examine how relative size of the eye within the orbit relates to SER between the sexes and across the sample population. Analysis of the orbit, eye, and SER reveals a strong relationship between relative size of the eye within the orbit and the severity of myopic refractive error. An orbit/eye ratio of 3 for females and 3.5 for males (or an eye that occupies approximately 34% and 29% of the orbit, respectively), designates a clear threshold at which myopia develops, and becomes progressively worse as the eye continues to occupy a greater proportion of the orbital cavity. These results indicate that relative size of the eye within the orbit is an important factor in the development of myopia, and suggests that individuals with large eyes in small orbits lack space for adequate development of ocular tissues, leading to compression and distortion of the lithesome globe

  5. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking

  6. An Orbital Stability Study of the Proposed Companions of SW Lyncis

    Directory of Open Access Journals (Sweden)

    T. C. Hinse

    2014-09-01

    Full Text Available We have investigated the dynamical stability of the proposed companions orbiting the Algol type short-period eclipsing binary SW Lyncis (Kim et al. 2010. The two candidate companions are of stellar to substellar nature, and were inferred from timing measurements of the system’s primary and secondary eclipses. We applied well-tested numerical techniques to accurately integrate the orbits of the two companions and to test for chaotic dynamical behavior. We carried out the stability analysis within a systematic parameter survey varying both the geometries and orientation of the orbits of the companions, as well as their masses. In all our numerical integrations we found that the proposed SW Lyn multi-body system is highly unstable on time-scales on the order of 1000 years. Our results cast doubt on the interpretation that the timing variations are caused by two companions. This work demonstrates that a straightforward dynamical analysis can help to test whether a best-fit companion-based model is a physically viable explanation for measured eclipse timing variations. We conclude that dynamical considerations reveal that the proposed SW Lyncis multi-body system most likely does not exist or the companions have significantly different orbital properties from those conjectured in Kim et al. (2010.

  7. Indexes and parameters of activity in solar-terrestrial physics

    International Nuclear Information System (INIS)

    Minasyants, G.S.; Minasyants, T.M.

    2005-01-01

    The daily variation of different indexes and parameters of the solar-terrestrial physics at the 23 cycle were considered to find the most important from them for the forecast of geomagnetic activity. The validity of application of the Wolf numbers in quality of the characteristic of solar activity at sunspots is confirmed. The best geo-effective parameter in the arrival of the interplanetary shock from coronal mass ejection to an orbit of the Earth. (author)

  8. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    Science.gov (United States)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.

  9. The unusual practices within some Neo-Pentecostal churches in South Africa: Reflections and recommendations

    Directory of Open Access Journals (Sweden)

    Mookgo S. Kgatle

    2017-09-01

    Full Text Available This article reflects and makes recommendations on the recent unusual practices within some Neo-Pentecostal churches in South Africa. Neo-Pentecostal churches in South Africa refer to churches that have crossed denominational boundaries. These churches idolise the miraculous, healing, deliverance and enactment of bizarre church performances often performed by charismatic and highly influential spiritual leaders. There have been unusual practices within some Neo-Pentecostal churches that include, among others, the eating of grass, eating of snakes, drinking of petrol, spraying of Doom on the congregants and other experiences. There are many possible theological, psychological and socio-economic explanations for these unusual practices. Given the facts that many South Africans experience various socio-economic challenges, it is argued here that the socio-economic factor is the main explanation for the support of these unusual practices. The unusual practices within some Neo-Pentecostal churches in South Africa are critically unpacked by looking at various churches where the incidents happened. The possible theological, psychological and socio-economic explanations for such practices are outlined in detail. Recommendations are made based on the scientific findings on the unusual practices.

  10. Monitoring Mars LOD Variations from a High Altitude Circular Equatorial Orbit: Theory and Simulation

    Science.gov (United States)

    Barriot, J.; Dehant, V.; Duron, J.

    2003-12-01

    We compute the perturbations of a high altitude circular equatorial orbit of a martian probe under the influence of an annual variation of the martian lenght of day. For this purpose, we use the first order perturbations of the newtonian equations of motion, where the small parameter is given from the hourglass model of Chao and Rubincam, which allow a simple computation of CO2 exchanges during the martian year. We are able to demonstrate that the perturbations contains two components: the first one is a sine/cosine modulation at the orbit frequency, the second one is composed of terms of the form exp(t)*sin(t), so the orbit may not stable in the long term (several martian years), with perturbations growing exponentially. We give the full theory and numbers.

  11. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    Science.gov (United States)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  12. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    Science.gov (United States)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  13. Giant seborrheic keratosis of the face – an unusual presentation

    Directory of Open Access Journals (Sweden)

    Koh Khai Luen

    2016-04-01

    Full Text Available Seborrheic keratosis is the most common benign epidermal lesion in the world, especially among the elderly. Its inherent benign nature has precluded the need to remove it for medical reasons. Most of the concerns presented to dermatologists or plastic surgeons are of cosmetic reasons, besides some unusual appearances that necessitate cutaneous malignancy evaluation. Unusually large sizes of seborrheic keratosis are rarely reported, and its clinical significance is largely unknown. It has been proven by recent molecular studies that seborrheic keratosis is true neoplasia rather than a mere epidermal hyperplasia, and various authors have reported several cases of concomitant malignancy arising from seborrheic keratosis. Plastic surgeon expertise is often required when faced with an extensive lesion, requiring reconstructive procedures to preserve good aesthetic and functional outcomes. The purpose of this review is to report a case of an unusually large seborrheic keratosis on the face, highlighting its clinical relevance and surgical management.

  14. Rigor mortis in an unusual position: Forensic considerations.

    Science.gov (United States)

    D'Souza, Deepak H; Harish, S; Rajesh, M; Kiran, J

    2011-07-01

    We report a case in which the dead body was found with rigor mortis in an unusual position. The dead body was lying on its back with limbs raised, defying gravity. Direction of the salivary stains on the face was also defying the gravity. We opined that the scene of occurrence of crime is unlikely to be the final place where the dead body was found. The clues were revealing a homicidal offence and an attempt to destroy the evidence. The forensic use of 'rigor mortis in an unusual position' is in furthering the investigations, and the scientific confirmation of two facts - the scene of death (occurrence) is different from the scene of disposal of dead body, and time gap between the two places.

  15. Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-01-01

    Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.

  16. Radiology of orbital trauma

    International Nuclear Information System (INIS)

    Kelly, J.K.; Lazo, A.; Metes, J.J.

    1988-01-01

    Computed tomography has become the gold standard against which to measure orbital imaging modalities. The simultaneous display of bone, soft tissues, paranasal sinuses, and intracranial structures is a unique advantage. Radiation dose and cost have been cited as disadvantages. These would suggest that CT be reserved for the patient with significant orbital injury or difficult diagnostic problems. Magnetic resonance is limited in the investigation of orbital trauma

  17. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    Directory of Open Access Journals (Sweden)

    Shuang Wang

    2015-12-01

    Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  18. Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

    Directory of Open Access Journals (Sweden)

    Hyung-Chul Lim

    2016-09-01

    Full Text Available Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover, and an experimental orbiter (referred to as a lunar pathfinder. Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

  19. Radiation heredity: unusual structural-phase states and metallic crystals properties

    International Nuclear Information System (INIS)

    Melikhov, V.D.; Skakov, M.K.

    1998-01-01

    Some experimental results allowing to judge about possibilities of unusual structural phase states formation during use irradiation and high temperature treatment of metallic crystals are considered. During study of pure (99.99 %) and especially pure (99.999 %) aluminium it was established, that after heating of preliminary irradiated samples in reactor, and non-irradiated ones up to temperatures above melting point (660 deg C), but not higher than 820 deg C, and cooling an microstructure and substructure of both irradiated and non-irradiated metals have been essentially distinguished with each other. If first of them had typically polycrystal construction, that second one was monocrystal with good developed initial substructure. Radiation effects have been preserved even in liquid metal if it was not overheated higher critical point, which is determined by phase transition from quasi-liquid state to true liquid one. During study of irradiation and postradiation treatment of structure and properties of intermetallides Fe 3 Al it was revealed, that in initially irradiated regulated alloys the radiation effect is preserving at heating of above 0.85 T melt (that essentially exceed order-disorder transition temperature) (550 deg C) in non-irradiated alloys of prolonged exposure and hardening. At that, irradiated-hardened alloy distinguishing from not hardened one by lattice parameter (on 0.1 %), by configuration of nearest surrounding of iron atoms in elementary cell, by regulating extent of different kind of atoms in lattice knocks. It was revealed, that at fluence (5·10 24 n·m 2 ) an appearance of new phases, distinguishing from matrix by component content. It was shown, that irradiation and post-radiation treatment are methods for creation unusual structural-phase states and attach to metals and alloys new properties

  20. The shortest-known-period star orbiting our Galaxy's supermassive black hole.

    Science.gov (United States)

    Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K

    2012-10-05

    Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

  1. Doubly unusual 3D lattice honeycomb displaying simultaneous negative and zero Poisson’s ratio properties

    Science.gov (United States)

    Chen, Yu; Zheng, Bin-Bin; Fu, Ming-Hui; Lan, Lin-Hua; Zhang, Wen-Zhi

    2018-04-01

    In this paper, a novel three-dimensional (3D) lattice honeycomb is developed based on a two-dimensional (2D) accordion-like honeycomb. A combination of theoretical and numerical analysis is carried out to gain a deeper understanding of the elastic behavior of the new honeycomb and its dependence on the geometric parameters. The results show that the proposed new honeycomb can simultaneously achieve an in-plane negative Poisson’s ratio (NPR) effect and an out-of-plane zero Poisson’s ratio (ZPR) effect. This unique property may be very promising in some important fields, like aerospace, piezoelectric sensors and biomedicine engineering. The results also show that the geometric parameters, such as the slant angle, the strut thickness and the relative density, have a significant effect on the mechanical properties. Additionally, different dominant deformation models of the new honeycomb when compressed along the x (or y) and z directions are identified. This work provides a new concept for the design of honeycombs with a doubly unusual performance.

  2. Double perovskites with strong spin-orbit coupling

    Science.gov (United States)

    Cook, Ashley M.

    account for the neutron data as well as the measured frustration parameters of these materials, while the uniaxial Ising anisotropy does not. Our findings highlight how even seemingly conventional magnetic orders in oxide materials containing heavy transition metal ions may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling. Motivated by experiments on the double perovskites La2ZnIrO 6 and La2MgIrO6, we lastly study the magnetism of spin-orbit coupled jeff =1/2 iridium moments on the three-dimensional, geometrically frustrated, facecentered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear AII type antiferromagnetism, stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures.

  3. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: Implications for the enzyme mechanism‡

    Science.gov (United States)

    Ogura, Hiroshi; Evans, John P.; Peng, Dungeng; Satterlee, James D.; de Montellano, Paul R. Ortiz; Mar, Gerd N. La

    2009-01-01

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase-1, (hHO) has been investigated by 1H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. 2D 1H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts, that places the lone iron π-spin in the dxz orbital, rather than the dyz orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy and magnetic susceptibilities argues for a low-spin, (dxy)2(dyz,dxz)3, ground state in both azide and cyanide complexes. The switch from singly-occupied dyz for the cyanide to dxz for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide π-plane in the latter complex, which is ∼90° in-plane rotated from that of the imidazole π-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicate that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 → Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed. PMID:19243105

  4. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  5. Manipulation and application of orbital ordering

    International Nuclear Information System (INIS)

    Sheng Zhigao; Sun Yuping

    2014-01-01

    Under certain conditions, the orbits of the outmost shell electrons in strong correlated materials can be localized in order, which gives birth to so-called orbital ordering. During the construction or destruction of the orbital ordering, strongly correlated materials show fruitful quantum critical phenomena with great potential for future applications. We first present the mechanism for the construction of orbital ordering. Then, some physical properties associated with orbits are discussed. Finally, we emphasize the key points and progress in the research of orbital ordering controlling. (authors)

  6. Pediatric sciatic neuropathies due to unusual vascular causes

    NARCIS (Netherlands)

    Srinivasan, Jayashri; Escolar, Diane; Ryan, Monique; Darras, Basil; Jones, H. Royden

    Four cases of pediatric sciatic neuropathies due to unusual vascular mechanisms are reported. Pediatric sciatic neuropathies were seen after umbilical artery catheterization, embolization of arteriovenous malformation, meningococcemia, and hypereosinophilic vasculitis. Electrophysiologic studies

  7. Chiral-like tunneling of electrons in two-dimensional semiconductors with Rashba spin-orbit coupling.

    Science.gov (United States)

    Ang, Yee Sin; Ma, Zhongshui; Zhang, C

    2014-01-21

    The unusual tunneling effects of massless chiral fermions (mCF) and massive chiral fermions (MCF) in a single layer graphene and bilayer graphene represent some of the most bizarre quantum transport phenomena in condensed matter system. Here we show that in a two-dimensional semiconductor with Rashba spin-orbit coupling (R2DEG), the real-spin chiral-like tunneling of electrons at normal incidence simultaneously exhibits features of mCF and MCF. The parabolic branch of opposite spin in R2DEG crosses at a Dirac-like point and has a band turning point. These features generate transport properties not found in usual two-dimensional electron gas. Albeit its π Berry phase, electron backscattering is present in R2DEG. An electron mimics mCF if its energy is in the vicinity of the subband crossing point or it mimics MCF if its energy is near the subband minima.

  8. Pictorial essay: Orbital tuberculosis

    International Nuclear Information System (INIS)

    Narula, Mahender K; Chaudhary, Vikas; Baruah, Dhiraj; Kathuria, Manoj; Anand, Rama

    2010-01-01

    Tuberculosis of the orbit is rare, even in places where tuberculosis is endemic. The disease may involve soft tissue, the lacrimal gland, or the periosteum or bones of the orbital wall. Intracranial extension, in the form of extradural abscess, and infratemporal fossa extension has been described. This pictorial essay illustrates the imaging findings of nine histopathologically confirmed cases of orbital tuberculosis. All these patients responded to antituberculous treatment

  9. Traumatic orbital encephalocele: Presentation and imaging.

    Science.gov (United States)

    Wei, Leslie A; Kennedy, Tabassum A; Paul, Sean; Wells, Timothy S; Griepentrog, Greg J; Lucarelli, Mark J

    2016-01-01

    Traumatic orbital encephalocele is a rare but severe complication of orbital roof fractures. We describe 3 cases of orbital encephalocele due to trauma in children. Retrospective case series from the University of Wisconsin - Madison and Medical College of Wisconsin. Three cases of traumatic orbital encephalocele in pediatric patients were found. The mechanism of injury was motor vehicle accident in 2 patients and accidental self-inflicted gunshot wound in 1 patient. All 3 patients sustained orbital roof fractures (4 mm to 19 mm in width) and frontal lobe contusions with high intracranial pressure. A key finding in all 3 cases was progression of proptosis and globe displacement 4 to 11 days after initial injury. On initial CT, all were diagnosed with extraconal hemorrhage adjacent to the roof fractures, with subsequent enlargement of the mass and eventual diagnosis of encephalocele. Orbital encephalocele is a severe and sight-threatening complication of orbital roof fractures. Post-traumatic orbital encephalocele can be challenging to diagnose on CT as patients with this condition often have associated orbital and intracranial hematoma, which can be difficult to distinguish from herniated brain tissue. When there is a high index of suspicion for encephalocele, an MRI of the orbits and brain with contrast should be obtained for additional characterization. Imaging signs that should raise suspicion for traumatic orbital encephalocele include an enlarging heterogeneous orbital mass in conjunction with a roof fracture and/or widening fracture segments.

  10. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  11. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Jørgensen, U. G. [Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Prester, D. Dominis [Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka (Croatia); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8020 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Chote, P.; Harris, P. [School of Chemical and Physical Sciences, Victoria University, Wellington (New Zealand); Fukui, A., E-mail: furusawa@stelab.nagoya-u.ac.jp, E-mail: liweih@astro.ucla.edu, E-mail: tim.natusch@aut.ac.nz, E-mail: rzellem@lpl.arizona.edu [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; MiNDSTEp Consortium; RoboNet Collaboration; PLANET Collaboration; and others

    2013-12-20

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M {sub h} = 0.11 ± 0.01 M {sub ☉} and M {sub p} = 9.2 ± 2.2 M {sub ⊕}, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D {sub L} = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.

  12. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    International Nuclear Information System (INIS)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y.; Udalski, A.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Gould, A.; Jørgensen, U. G.; Snodgrass, C.; Prester, D. Dominis; Albrow, M. D.; Botzler, C. S.; Freeman, M.; Chote, P.; Harris, P.; Fukui, A.

    2013-01-01

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M h = 0.11 ± 0.01 M ☉ and M p = 9.2 ± 2.2 M ⊕ , corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D L = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions

  13. The Relationship between Clinical Presentation and Unusual Sensory Interests in Autism Spectrum Disorders: A Preliminary Investigation

    Science.gov (United States)

    Zachor, Ditza A.; Ben-Itzchak, Esther

    2014-01-01

    Unusual responses to sensory stimuli have been described in autism spectrum disorder (ASD).The study examined the frequencies of "unusual sensory interests" and "negative sensory responses" and their relation to functioning in a large ASD population (n = 679). Having "unusual sensory interests" was reported in 70.4%…

  14. Unusual presentation of cutaneous leiomyoma

    Directory of Open Access Journals (Sweden)

    Sapnashree Bhaskar

    2014-01-01

    Full Text Available Herein, we report a case of leiomyoma cutis because of its rarity and unusual presentation. The case presented with a solitary leiomyoma lesion which was painless. However, the adjacent normal appearing area was tender. A biopsy of the lesion as well as of a portion of the adjacent normal appearing area was taken, which confirmed the diagnosis of cutaneous leiomyoma. This may suggest the dormant nature of the disease which has not yet become apparent.

  15. A 12 MINUTE ORBITAL PERIOD DETACHED WHITE DWARF ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kenyon, Scott J.; Hermes, J. J.; Winget, D. E.; Prieto, Carlos Allende

    2011-01-01

    We have discovered a detached pair of white dwarfs (WDs) with a 12.75 minute orbital period and a 1315 km s -1 radial velocity amplitude. We measure the full orbital parameters of the system using its light curve, which shows ellipsoidal variations, Doppler boosting, and primary and secondary eclipses. The primary is a 0.25 M sun tidally distorted helium WD, only the second tidally distorted WD known. The unseen secondary is a 0.55 M sun carbon-oxygen WD. The two WDs will come into contact in 0.9 Myr due to loss of energy and angular momentum via gravitational wave radiation. Upon contact the systems may merge (yielding a rapidly spinning massive WD), form a stable interacting binary, or possibly explode as an underluminous Type Ia supernova. The system currently has a gravitational wave strain of 10 -22 , about 10,000 times larger than the Hulse-Taylor pulsar; this system would be detected by the proposed Laser Interferometer Space Antenna gravitational wave mission in the first week of operation. This system's rapid change in orbital period will provide a fundamental test of general relativity.

  16. Rashba spin–orbit coupling effects on a current-induced domain wall motion

    International Nuclear Information System (INIS)

    Ryu, Jisu; Seo, Soo-Man; Lee, Kyung-Jin; Lee, Hyun-Woo

    2012-01-01

    A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.

  17. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    International Nuclear Information System (INIS)

    Hermes, J. J.; Winget, D. E.; Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J.; Brown, Warren R.; Allende Prieto, Carlos; Cabrera-Lavers, Antonio; Mukadam, Anjum S.

    2012-01-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (– 9.8 ± 2.8) × 10 –12 s s –1 (or –0.31 ± 0.09 ms yr –1 ). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M 1 = 0.26 ± 0.04 M ☉ and M 2 = 0.50 ± 0.04 M ☉ . General relativity predicts orbital decay due to gravitational wave radiation of (– 8.2 ± 1.7) × 10 –12 s s –1 (or –0.26 ± 0.05 ms yr –1 ). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  18. Unusual skeletal metastases from myxoid liposarcoma only detectable by MR imaging

    International Nuclear Information System (INIS)

    Ishii, T.; Ueda, T.; Myoui, A.; Tamai, N.; Hosono, N.; Yoshikawa, H.

    2003-01-01

    We present two cases of skeletal metastases from myxoid liposarcoma, occurring several years after treatment of the primary tumors in the lower limb. The present two case reports have unusual radiological features only detectable by MR imaging and not by plain radiographs or bone scans. From the present two cases, we found that a negative plain radiograph of the spine or a negative bone scan could not exclude skeletal metastases from myxoid liposarcoma, and MRI was a more sensitive screening procedure for their detection, especially in T1-weighted images. Unusual radiological features of skeletal metastases from myxoid liposarcoma are not well documented and only a few cases have been previously reported. Our aim is to document two more patients exhibiting the unusual radiological features of skeletal metastases from myxoid liposarcoma to improve their early detection and management. (orig.)

  19. Several unusual cases of child abuse.

    Science.gov (United States)

    Palmer, H; Weston, J T

    1976-10-01

    All childhood deaths which occurred in New Mexico during 1974 and 1975 were reviewed. Nine fatal instances of abuse were identified representing the entire spectrum of physical abuse: neglect, abuse in a single episode of injury, repetitive abuse, or sexual abuse. Several cases are summarized. These are unusual either in the distribution of pathologic findings or in the problems encountered in court presentation.

  20. Unusual signal intensity of congenital pulmonary airway malformation on fetal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Owada, Keiho; Miyazaki, Osamu; Nosaka, Shunsuke [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Matsuoka, Kentaro [National Center for Child Health and Development, Department of Pathology, Tokyo (Japan); Sago, Haruhiko [National Center for Child Health and Development, Department of Perinatal Medicine and Maternal Care, Tokyo (Japan)

    2015-05-01

    Congenital pulmonary airway malformation (CPAM) is classified into pathologically different types. These types are sometimes distinguishable by fetal lung MRI and are usually observed as higher-signal lesions on T2-weighted images than normal lung. We describe a case of unusual CPAM resembling neoplasms, with a lower signal than is found in normal lung. Histopathology showed a large number of mucogenic cells but found no evidence that could explain this feature on fetal MRI. An unusual low-signal mass associated with a pulmonary cyst in fetal lung on MRI may suggest an unusual type 1 CPAM. (orig.)

  1. Unusual signal intensity of congenital pulmonary airway malformation on fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Owada, Keiho; Miyazaki, Osamu; Nosaka, Shunsuke; Matsuoka, Kentaro; Sago, Haruhiko

    2015-01-01

    Congenital pulmonary airway malformation (CPAM) is classified into pathologically different types. These types are sometimes distinguishable by fetal lung MRI and are usually observed as higher-signal lesions on T2-weighted images than normal lung. We describe a case of unusual CPAM resembling neoplasms, with a lower signal than is found in normal lung. Histopathology showed a large number of mucogenic cells but found no evidence that could explain this feature on fetal MRI. An unusual low-signal mass associated with a pulmonary cyst in fetal lung on MRI may suggest an unusual type 1 CPAM. (orig.)

  2. An accelerated test design for use with synchronous orbit. [on Ni-Cd cell degradation behavior

    Science.gov (United States)

    Mcdermott, P. P.; Vasanth, K. L.

    1980-01-01

    The Naval Weapons Support Center at Crane, Indiana has conducted a large scale accelerated test of 6.0 Ah Ni-Cd cells. Data from the Crane test have been used to develop an equation for the description of Ni-Cd cell behavior in geosynchronous orbit. This equation relates the anticipated time to failure for a cell in synchronous orbit to temperature and overcharge rate sustained by the cell during the light period. A test design is suggested which uses this equation for setting test parameters for future accelerated testing.

  3. Case Report: Unusual computed tomographic features of ...

    African Journals Online (AJOL)

    A case report of a 57-year old woman who presented with signs and symptoms of intracranial mass. Computed tomographic (CT) and clinical features were unusual and suggestive of a parasaggital Meningioma. However an accurate diagnosis of a tuberculoma was made at surgery and histopathological examination.

  4. Use of Orbital Conformer to Improve Speech in Patients with Confluent Maxillectomy and Orbital Defects

    Science.gov (United States)

    Colebeck, Amanda C.; Kase, Michael T.; Nichols, Cindy B.; Golden, Marjorie; Huryn, Joseph M.

    2016-01-01

    The basic objective in prosthetic restoration of confluent maxillary and orbital defects is to achieve a comfortable, cosmetically acceptable prosthesis that restores speech, deglutition, and mastication. It is a challenging task complicated by the size and shape of the defects. The maxillary obturator prosthesis often satisfies the objective of adequate deglutition; however, orbital defects that are not obturated in the medial septal or posterior walls allow air to escape, negatively impacting phonation. This article describes a technique to achieve favorable prosthetic rehabilitation in a patient with a maxillectomy and ipsilateral orbital exenteration. The prosthetic components include maxillary obturator, orbital conformer, and orbital prosthesis connected using rigid magnetic attachments. PMID:25953143

  5. Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements

    International Nuclear Information System (INIS)

    Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun

    2013-01-01

    The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field

  6. Peroneal Arteriovenous Fistula and Pseudoaneurysm: An Unusual Presentation

    Directory of Open Access Journals (Sweden)

    Kevin C. Ching

    2014-01-01

    Full Text Available Peroneal artery arteriovenous fistulas and pseudoaneurysms are extremely rare with the majority of reported cases due to penetrating, orthopedic, or iatrogenic trauma. Failure to diagnose this unusual vascular pathology may lead to massive hemorrhage or limb threatening ischemia. We report an interesting case of a 14-year-old male who presented with acute musculoskeletal pain of his lower extremity. Initial radiographs were negative. Further imaging workup revealed a peroneal arteriovenous fistula with a large pseudoaneurysm. After initial endovascular intervention was unsuccessful, the vessels were surgically ligated in the operating room. Pathology revealed papillary endothelial hyperplasia consistent with an aneurysm and later genetic testing was consistent with Ehlers-Danlos syndrome Type IV. This case illustrates an unusual cause of acute atraumatic musculoskeletal pain and uncommon presentation of Ehlers-Danlos syndrome.

  7. An unusual case of calcineurine inhibitor pain syndrome.

    Science.gov (United States)

    Nickavar, Azar; Mehrazma, Mitra; Hallaji, Farideh

    2014-09-01

    Cyclosporine induced pain syndrome (CIPS) is a newly diagnosed complication of calcineurine inhibitors, mainly observed in solid organ and hematopoetic transplantations. The present case is a male child with steroid resistant nephrotic syndrome on low therapeutic level cyclosporine treatment. He presented with intractable and debilitating leg pain, with no reported history of previous injury or trauma. The pain was reluctant to antimicrobial and sedative treatment. MRI revealed bone marrow and soft tissue edema in the mid shaft of patient's right leg. Inspite of unusual manifestations, CIPS was suggested and cyclosporine discontinued. However, the pain did not improve and was resistant to calcium blocker. Subsequently, core decompression was performed as an unusual treatment of CIPS, revealing normal bone morphology. The pain improved rapidly and the patient was discharged a few days later.

  8. Cutaneous sporotrichosis: Unusual clinical presentations

    Directory of Open Access Journals (Sweden)

    Mahajan Vikram

    2010-01-01

    Full Text Available Three unusual clinical forms of sporotrichosis described in this paper will be a primer for the clinicians for an early diagnosis and treatment, especially in its unusual presentations. Case 1, a 52-year-old man, developed sporotrichosis over pre-existing facial nodulo-ulcerative basal cell carcinoma of seven-year duration, due to its contamination perhaps from topical herbal pastes and lymphocutaneous sporotrichosis over right hand/forearm from facial lesion/herbal paste. Case 2, a 25-year-old woman, presented with disseminated systemic-cutaneous, osteoarticular and possibly pleural (effusion sporotrichosis. There was no laboratory evidence of tuberculosis and treatment with anti-tuberculosis drugs (ATT did not benefit. Both these cases were diagnosed by histopathology/culture of S. schenckii from tissue specimens. Case 3, a 20-year-old girl, had multiple intensely pruritic, nodular lesions over/around left knee of two-year duration. She was diagnosed clinically as a case of prurigo nodularis and histologically as cutaneous tuberculosis, albeit, other laboratory investigations and treatment with ATT did not support the diagnosis. All the three patients responded well to saturated solution of potassium iodide (SSKI therapy. A high clinical suspicion is important in early diagnosis and treatment to prevent chronicity and morbidity in these patients. SSKI is fairly safe and effective when itraconazole is not affordable/ available.

  9. Orbiter OMS and RCS technology

    Science.gov (United States)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  10. Ground motion optimized orbit feedback design for the future linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Pfingstner, J., E-mail: juergen.pfingstner@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Vienna University of Technology, Karlsplatz 13, 1040 Wien (Austria); Snuverink, J. [CERN, Geneva 23, CH-1211 (Switzerland); John Adams Institute at Royal Holloway, University of London, Surrey (United Kingdom); Schulte, D. [CERN, Geneva 23, CH-1211 (Switzerland)

    2013-03-01

    The future linear collider has strong stability requirements on the position of the beam along the accelerator and at the interaction point (IP). The beam position will be sensitive to dynamic imperfections in particular ground motion. A number of mitigation techniques have been proposed to be deployed in parallel: active and passive quadrupole stabilization and positioning as well as orbit and IP feedback. This paper presents a novel design of the orbit controller in the main linac and beam delivery system. One global feedback controller is proposed based on an SVD-controller (Singular Value Decomposition) that decouples the large multi-input multi-output system into many independent single-input single-output systems. A semi-automatic procedure is proposed for the controller design of the independent systems by exploiting numerical models of ground motion and measurement noise to minimize a target parameter, e.g. luminosity loss. The novel design for the orbit controller is studied for the case of the Compact Linear Collider (CLIC) in integrated simulations, which include all proposed mitigation methods. The impact of the ground motion on the luminosity performance is examined in detail. It is shown that with the proposed orbit controller the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed. The orbit controller design is robust and allows for a relaxed BPM resolution, while still maintaining a strong ground motion suppression performance compared to traditional methods. We believe that the described method could easily be applied to other accelerators and light sources.

  11. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Science.gov (United States)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  12. [Secondary orbital lymphoma].

    Science.gov (United States)

    Basanta, I; Sevillano, C; Álvarez, M D

    2015-09-01

    A case is presented of an 85 year-old Caucasian female with lymphoma that recurred in the orbit (secondary ocular adnexal lymphoma). The orbital tumour was a diffuse large B-cell lymphoma according to the REAL classification (Revised European-American Lymphoma Classification). Orbital lymphomas are predominantly B-cell proliferations of a variety of histological types, and most are low-grade tumours. Patients are usually middle-aged or elderly, and it is slightly more common in women. A palpable mass, proptosis and blepharoptosis are the most common signs of presentation. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  13. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  14. Unusual motions of a vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2003-10-01

    The actual motions of a sinusoidally driven vibrating string can be very complex due to nonlinear effects resulting from varying tension and longitudinal motion not included in simple linear theory. Commonly observed effects are: generation of motion perpendicular to the driving force, sudden jumps in amplitude, hysteresis, and generation of higher harmonics. In addition, these effects are profoundly influenced by wire asymmetries which in a brass harpsichord wire can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%), each associated with transverse motion along two orthogonal characteristic wire axes. Some unusual resulting patterns of complex motions of a point on the wire are exhibited on videotape. Examples include: sudden changes of harmonic content, generation of subharmonics, and motion which appears nearly chaotic but which has a pattern period of over 10 s. Another unusual phenomenon due to entirely different causes can occur when a violin string is bowed with a higher than normal force resulting in sounds ranging from about a musical third to a twelfth lower than the sound produced when the string is plucked.

  15. Periodic orbits and 10 cases of unbounded dynamics for one Hamiltonian system defined by the conformally coupled field

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E., E-mail: kstarkov@ipn.mx

    2015-07-03

    In this paper we study invariant domains with unbounded dynamics for one cosmological Hamiltonian system which is formed by the conformally coupled field; this system was introduced by Maciejewski et al. (2007). We find a few groups of conditions imposed on parameters of this system for which all trajectories are unbounded in both of time directions. Further, we present a few groups of other conditions imposed on system parameters under which we localize the invariant domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe one group of conditions when our system possesses two periodic orbits found explicitly. In some of rest cases we get localization bounds for compact invariant sets. - Highlights: • Equations for periodic orbits are got for many level sets. • Domains with unbounded dynamics are localized. • Localizations for compact invariant sets are obtained.

  16. Unusual complication and successful high-dose chemotherapy ...

    African Journals Online (AJOL)

    ... treated with high-dose chemotherapy in our institution, complicated by unusual bilateral renal vein tumour thrombi and tumour lysis syndrome. We believe this unique case highlights the need for early recognition of current and potential complications on staging computed tomography imaging, as well as successful use of ...

  17. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    Science.gov (United States)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  18. Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice

    Science.gov (United States)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2017-07-01

    The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.

  19. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  20. Unusual headaches in the elderly.

    Science.gov (United States)

    Bamford, Cynthia C; Mays, MaryAnn; Tepper, Stewart J

    2011-08-01

    Prevalence of headache lowers with age, and headaches of elderly adults tend to be different than those of the younger population. Secondary headaches, such as headaches associated with vascular disease, head trauma, and neoplasm, are more common. Also, certain headache types tend to be geriatric disorders, such as primary cough headache, hypnic headache, typical aura without headache, exploding head syndrome, and giant cell arteritis. This review provides an overview of some of the major and unusual geriatric headaches, both primary and secondary.

  1. Time: A Critical Parameter in Satellite Navigation and Positioning ...

    African Journals Online (AJOL)

    The applications of space-borne satellites are increasing in many aspects of human endeavours; the most among them being the provision of guaranteed access to users of precise time and location services. An investigation was therefore carried out through a review process mechanism to determine the orbit parameter ...

  2. Orbits in weak and strong bars

    CERN Document Server

    Contopoulos, George

    1980-01-01

    The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs).

  3. Extreme orbital evolution from hierarchical secular coupling of two giant planets

    International Nuclear Information System (INIS)

    Teyssandier, Jean; Naoz, Smadar; Lizarraga, Ian; Rasio, Frederic A.

    2013-01-01

    Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital periods of a few days, the so-called 'hot Jupiters'. Recent measurements using the Rossiter-McLaughlin effect have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations consisting of a star-planet inner pair with another giant planet, or brown dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet's orbit can flip back and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a more massive planetary companion (>2 M J ) within ∼140 AU of the inner system, with mutual inclination >50° and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are much less likely to occur. The constraints we derive can be used to guide future observations and, in particular, searches for more distant companions in systems containing a hot Jupiter.

  4. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  5. GLONASS orbit/clock combination in VNIIFTRI

    Science.gov (United States)

    Bezmenov, I.; Pasynok, S.

    2015-08-01

    An algorithm and a program for GLONASS satellites orbit/clock combination based on daily precise orbits submitted by several Analytic Centers were developed. Some theoretical estimates for combine orbit positions RMS were derived. It was shown that under condition that RMS of satellite orbits provided by the Analytic Centers during a long time interval are commensurable the RMS of combine orbit positions is no greater than RMS of other satellite positions estimated by any of the Analytic Centers.

  6. DIRECT IMAGING IN THE HABITABLE ZONE AND THE PROBLEM OF ORBITAL MOTION

    International Nuclear Information System (INIS)

    Males, Jared R.; Skemer, Andrew J.; Close, Laird M.

    2013-01-01

    High contrast imaging searches for exoplanets have been conducted on 2.4-10 m telescopes, typically at H band (1.6 μm) and used exposure times of ∼1 hr to search for planets with semi-major axes of ∼> 10 AU. We are beginning to plan for surveys using extreme-AO systems on the next generation of 30 m class telescopes, where we hope to begin probing the habitable zones (HZs) of nearby stars. Here we highlight a heretofore ignorable problem in direct imaging: planets orbit their stars. Under the parameters of current surveys, orbital motion is negligible over the duration of a typical observation. However, this motion is not negligible when using large diameter telescopes to observe at relatively close stellar distances (1-10 pc), over the long exposure times (10-20 hr) necessary for direct detection of older planets in the HZ. We show that this motion will limit our achievable signal-to-noise ratio and degrade observational completeness. Even on current 8 m class telescopes, orbital motion will need to be accounted for in an attempt to detect HZ planets around the nearest Sun-like stars α Cen A and B, a binary system now known to harbor at least one planet. Here we derive some basic tools for analyzing this problem, and ultimately show that the prospects are good for de-orbiting a series of shorter exposures to correct for orbital motion.

  7. Experience from unusual occurrences in HWP (Tuticorin) (Paper No. 4.8)

    International Nuclear Information System (INIS)

    Kanthiah, W.S.A.; Vaidyan, P.A.O.; Bhowmick, S.C.

    1992-01-01

    During the operation of heavy water plants a number of unusual incidents do occur which are hurdles to the smooth operation of the system. An attempt has been made to give a detailed study of a few cases of unusual occurrences such as rupture of ammonia cracker tubes, water entry in cable junction box through nitrogen line, potassium amide splash on maintenance personnel, booster compressor trip explosion in effluent system, etc. in Heavy Water Plant, Tuticorin. (author). 5 figs

  8. Probable Unusual Transmission of Zika Virus

    Centers for Disease Control (CDC) Podcasts

    2011-05-23

    This podcast discusses a study about the probable unusual transmission of Zika Virus Infection from a scientist to his wife, published in the May 2011 issue of Emerging Infectious Diseases. Dr. Brian Foy, Associate Professor at Colorado State University, shares details of this event.  Created: 5/23/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/25/2011.

  9. Dynamics and stability of a tethered centrifuge in low earth orbit

    Science.gov (United States)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  10. Emphysematous cystitis: An unusual lower urinary tract infection ...

    African Journals Online (AJOL)

    Emphysematous cystitis: An unusual lower urinary tract infection. MA Lakmichi, M Boukhar, F Barjani, O Saghir, T Hanich, B Wakrim, M Gabsi, A Elhauos, N Charif Idrissi Genouni, N Ousehal, Z Dahami, SM Moudouni, I Sarf ...

  11. Nucleon molecular orbitals and the transition mechanism between molecular orbitals in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Misono, S.; von Oertzen, W.; Voit, H.

    1988-08-01

    The molecular orbitals of the nucleon(s) in nucleus-nucleus collisions are dynamically defined as a linear combination of nucleon single-particle orbits (LCNO) in a rotating frame by using the coupled-reaction-channel (CRC) theory. Nucleon molecular orbitals and the promotions of nucleon, - especially due to the Landau-Zener radial coupling are discussed with the method above mentioned. (author)

  12. Unusual dengue virus 3 epidemic in Nicaragua, 2009.

    Directory of Open Access Journals (Sweden)

    Gamaliel Gutierrez

    2011-11-01

    Full Text Available The four dengue virus serotypes (DENV1-4 cause the most prevalent mosquito-borne viral disease affecting humans worldwide. In 2009, Nicaragua experienced the largest dengue epidemic in over a decade, marked by unusual clinical presentation, as observed in two prospective studies of pediatric dengue in Managua. From August 2009-January 2010, 212 dengue cases were confirmed among 396 study participants at the National Pediatric Reference Hospital. In our parallel community-based cohort study, 170 dengue cases were recorded in 2009-10, compared to 13-65 cases in 2004-9. In both studies, significantly more patients experienced "compensated shock" (poor capillary refill plus cold extremities, tachycardia, tachypnea, and/or weak pulse in 2009-10 than in previous years (42.5% [90/212] vs. 24.7% [82/332] in the hospital study (p<0.001 and 17% [29/170] vs. 2.2% [4/181] in the cohort study (p<0.001. Signs of poor peripheral perfusion presented significantly earlier (1-2 days in 2009-10 than in previous years according to Kaplan-Meier survival analysis. In the hospital study, 19.8% of subjects were transferred to intensive care, compared to 7.1% in previous years - similar to the cohort study. DENV-3 predominated in 2008-9, 2009-10, and 2010-11, and full-length sequencing revealed no major genetic changes from 2008-9 to 2010-11. In 2008-9 and 2010-11, typical dengue was observed; only in 2009-10 was unusual presentation noted. Multivariate analysis revealed only "2009-10" as a significant risk factor for Dengue Fever with Compensated Shock. Interestingly, circulation of pandemic influenza A-H1N1 2009 in Managua was shifted such that it overlapped with the dengue epidemic. We hypothesize that prior influenza A H1N1 2009 infection may have modulated subsequent DENV infection, and initial results of an ongoing study suggest increased risk of shock among children with anti-H1N1-2009 antibodies. This study demonstrates that parameters other than serotype, viral

  13. An unusual case of the Capgras syndrome.

    Science.gov (United States)

    Fialkov, M J; Robins, A H

    1978-04-01

    A variant of the Capgras syndrome is described in a 43-year-old woman who had vitiligo and multinodular goitre. The unusual feature of the case was that the patient not only misidentified members of her own family but also claimed that she herself had been replaced by a double.

  14. Unusual Market Activity Announcements: A Study of Price Manipulation on the Indonesian Stock Exchange

    Directory of Open Access Journals (Sweden)

    Mamduh M. Hanafi

    2010-05-01

    Full Text Available We investigate stocks involved in the Unusual Market Activity (UMA Announcements. The Indonesian Stock Exchange occasionally issues UMA announcements when it suspects that there are unusual price increases (positive UMAs or price decreases (negative UMAs, as well as unusual increases in trading volumes. We believe that UMA announcements signal a high probability that stocks are being manipulated. We find no differences in fundamentals and trading variables between stocks in the UMA announcements and those not in the UMA announcements. Any stock is vulnerable to market manipulation. Stocks in the UMA announcements do not exhibit reversal patterns, suggesting that price effect is permanent. UMAs seem to convey relevant information, which is most likely in the form of insider type of information. Keywords: emerging market; price manipulation; unusual market activity announcement.

  15. A case report of orbital Langerhans cell histiocytosis presenting as a orbital cellulitis.

    Science.gov (United States)

    Albert-Fort, M; González-Candial, M

    2018-04-08

    A 10-year-old girl was seen with a 3-week history of right upper lid swelling and with no other symptoms or fever. There was no recent history of sinusitis, trauma, or previous infection involving the periorbital area, or response to oral antibiotic treatment. Orbital computed tomography showed a lesion involving the upper margin of the orbit, and bone destruction at the orbital roof. Biopsy performed revealed the presence of Langerhans cell Histiocytosis. The lesion was surgically debulked and corticosteroids were used intra-operatively. The lesion responded to treatment. The orbital involvement of Langerhans cell histiocytosis, despite its low incidence, should be considered in the examination of acute peri-orbital swelling. It usually presents as an osteolytic lesion, and it is confirmed with a histological examination and immunohistochemical techniques for CD1a and S100. An interdisciplinary approach is recommended to rule out multifocal or multisystemic diseases, as well as to develop an appropriate treatment strategy. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. [111In-DTPA-D-Phe1] octreotide scintigraphy in thyroidal and orbital Graves' disease: a parameter for disease activity?

    NARCIS (Netherlands)

    Postema, P. T.; Krenning, E. P.; Wijngaarde, R.; Kooy, P. P.; Oei, H. Y.; van den Bosch, W. A.; Reubi, J. C.; Wiersinga, W. M.; Hooijkaas, H.; van der Loos, T.

    1994-01-01

    Visualization of malignant lymphomas and granulomatous disease is possible by [111In-DTPA-D-Phe1]octreotide scintigraphy through binding of the radioligand to somatostatin receptors on activated leukocytes. Because thyroidal and orbital tissues are infiltrated by activated leukocytes in Graves'

  17. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne Hong

    2016-01-01

    tuning analysis of the EKF. The study shows that the closed Earth orbit for XNAV performance is reliant on the orbit semi-major axis and eccentricity as well as orbit inclination. These parameters are the primary drivers of pulsar measurement availability and significantly influence the natural spacecraft orbit dynamics. Sensitivity to initial orbit determination error growth due to the scarcity of XNAV measurements within an orbital period require appropriate timing of initial XNAV measurements. The orbit angles of argument of perigee and right ascension of the ascending node, alongside the other orbit parameters, complete the initial cadence of XNAV measurements. The performance of initial XNAV measurements then propagates throughout the experimental period. The study provides a basis to missions who wish to consider XNAV as a potential navigation source in a closed Earth orbit design. It provides a family of orbit trajectories as well as other modeling considerations needed to effectively evaluate if XNAV is an effective navigation source for a potential mission. As an EKF is sensitive to a linearized estimated state, this study has a direct benefit of providing effective XNAV measurements to maintain spacecraft tracking, independent of other navigation sources. In the particular use case of the SEXTANT mission, it also provides a novel scheduling algorithm which addresses the need to prioritize and manage pulsar observations for effective navigation.

  18. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    Directory of Open Access Journals (Sweden)

    Masato Ohnishi

    2015-04-01

    Full Text Available When a radial strain is applied to a carbon nanotube (CNT, the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  19. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  20. Similarity in Bilateral Isolated Internal Orbital Fractures.

    Science.gov (United States)

    Chen, Hung-Chang; Cox, Jacob T; Sanyal, Abanti; Mahoney, Nicholas R

    2018-04-13

    In evaluating patients sustaining bilateral isolated internal orbital fractures, the authors have observed both similar fracture locations and also similar expansion of orbital volumes. In this study, we aim to investigate if there is a propensity for the 2 orbits to fracture in symmetrically similar patterns when sustaining similar trauma. A retrospective chart review was performed studying all cases at our institution of bilateral isolated internal orbital fractures involving the medial wall and/or the floor at the time of presentation. The similarity of the bilateral fracture locations was evaluated using the Fisher's exact test. The bilateral expanded orbital volumes were analyzed using the Wilcoxon signed-rank test to assess for orbital volume similarity. Twenty-four patients with bilateral internal orbital fractures were analyzed for fracture location similarity. Seventeen patients (70.8%) had 100% concordance in the orbital subregion fractured, and the association between the right and the left orbital fracture subregion locations was statistically significant (P < 0.0001). Fifteen patients were analyzed for orbital volume similarity. The average orbital cavity volume was 31.2 ± 3.8 cm on the right and 32.0 ± 3.7 cm on the left. There was a statistically significant difference between right and left orbital cavity volumes (P = 0.0026). The data from this study suggest that an individual who suffers isolated bilateral internal orbital fractures has a statistically significant similarity in the location of their orbital fractures. However, there does not appear to be statistically significant similarity in the expansion of the orbital volumes in these patients.