WorldWideScience

Sample records for unsaturated heterogeneous permeability

  1. Viscous fingering with permeability heterogeneity

    International Nuclear Information System (INIS)

    Tan, C.; Homsy, G.M.

    1992-01-01

    Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale

  2. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  3. Upscaling of Constitutive Relations In Unsaturated Heterogeneous Porous Media

    International Nuclear Information System (INIS)

    Liu, H. H.; Bodvarsson, G. S.

    2001-01-01

    When numerical model are used for modeling field scale flow and transport processes in the subsurface, the problem of ''upscaling'' arises. Typical scales, corresponding to spatial resolutions of subsurface heterogeneity in numerical models, are generally much larger than the measurement scale of the parameters and physical processes involved. The upscaling problems is, then, one of assigning parameters to gridblock scale based on parameter values measured on small scales. The focus of this study is to develop an approach to determine large-scale (upscaled) constitutive relations (relationships among relative permeability, capillary pressure and saturation) from small-scale measurements for porous media for a range of air entry values that are typical for the tuff matrix in the unsaturated zone of Yucca Mountain. For porous media with large air entry values, capillary forces play a key role in determining spatial water distribution at large-scales. Therefore, a relatively uniform capillary pressure approximately exists even for a large gridblock scale under steady state flow conditions. Based on these reasoning, we developed formulations that relate upscaled constitutive relations to ones measured at core-scale. Numerical experiments with stochastically generated heterogeneous porous media were used to evaluate the upscaling formulations

  4. Dispersivity in heterogeneous permeable media

    International Nuclear Information System (INIS)

    Chesnut, D.A.

    1994-01-01

    When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. For continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the, clinical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects. of this behavior on radionuclide or other contaminant migration

  5. Dispersivity in heterogeneous permeable media

    International Nuclear Information System (INIS)

    Chesnut, D.A.

    1994-01-01

    When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage (typically 80%) of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. Alternatively, for continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the classical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects of this behavior on radionuclide or other contaminant migration

  6. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-01-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass

  7. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  8. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  9. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  10. Modeling studies of unsaturated flow with long-term permeability change at Yucca Mountain

    International Nuclear Information System (INIS)

    Zhang Chengyuan; Liu Xiaoyan; Liu Quansheng

    2008-01-01

    The amount of water seeping into the waste emplacement drifts is crucial for the performance of underground nuclear waste repository, since it controls the corrosion rates of waste packages and the mobilization rate of radionuclides. It is limited by water flow through drift vicinity. In the present work we study the potential rates of water flow around drifts as a function of predicted long-term change of permeability at Yucca Mountain, based on a dual-continuum model of the unsaturated flow in fractured rock mass. For stage of DECOVALEX Ⅳ, we used a simplified practical model on unsaturated flow in Yucca Mountain case simulation. These models contain main physical processes that should be considered, including thermal expansion, thermal radiation, water-rock coupling and stress-induced change of permeability. Comparative study with other DECOVALEX team's results shows that they are both good enough and flexible enough to include more physical processes. We can draw the conclusion that it is necessary to model stress-induced changes in permeability and relative processes in future studies, because there are obvious differences (in water saturation and water flux) between simulation cases with and without variable permeability, especially in areas very close to the drift. (authors)

  11. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    Science.gov (United States)

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  13. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  14. Stochastic description of heterogeneities of permeability within groundwater flow models

    International Nuclear Information System (INIS)

    Cacas, M.C.; Lachassagne, P.; Ledoux, E.; Marsily, G. de

    1991-01-01

    In order to model radionuclide migration in the geosphere realistically at the field scale, the hydrogeologist needs to be able to simulate groundwater flow in heterogeneous media. Heterogeneity of the medium can be described using a stochastic approach, that affects the way in which a flow model is formulated. In this paper, we discuss the problems that we have encountered in modelling both continuous and fractured media. The stochastic approach leads to a methodology that enables local measurements of permeability to be integrated into a model which gives a good prediction of groundwater flow on a regional scale. 5 Figs.; 8 Refs

  15. The Biot coefficient for a low permeability heterogeneous limestone

    Science.gov (United States)

    Selvadurai, A. P. S.

    2018-04-01

    This paper presents the experimental and theoretical developments used to estimate the Biot coefficient for the heterogeneous Cobourg Limestone, which is characterized by its very low permeability. The coefficient forms an important component of the Biot poroelastic model that is used to examine coupled hydro-mechanical and thermo-hydro-mechanical processes in the fluid-saturated Cobourg Limestone. The constraints imposed by both the heterogeneous fabric and its extremely low intact permeability [K \\in (10^{-23},10^{-20}) m2 ] require the development of alternative approaches to estimate the Biot coefficient. Large specimen bench-scale triaxial tests (150 mm diameter and 300 mm long) that account for the scale of the heterogeneous fabric are complemented by results for the volume fraction-based mineralogical composition derived from XRD measurements. The compressibility of the solid phase is based on theoretical developments proposed in the mechanics of multi-phasic elastic materials. An appeal to the theory of multi-phasic elastic solids is the only feasible approach for examining the compressibility of the solid phase. The presence of a number of mineral species necessitates the use of the theories of Voigt, Reuss and Hill along with the theories proposed by Hashin and Shtrikman for developing bounds for the compressibility of the multi-phasic geologic material composing the skeletal fabric. The analytical estimates for the Biot coefficient for the Cobourg Limestone are compared with results for similar low permeability rocks reported in the literature.

  16. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  17. Evaluation of permeability of compacted bentonite ground considering heterogeneity by geostatistics

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko; Kudo, Kohji; Hironaga, Michihiko; Nakagami, Motonori; Niwase, Kazuhito; Komatsu, Shin-ichi

    2007-01-01

    The permeability of the bentonite ground as an engineered barrier is possibly designed to the value which is lower than that determined in terms of required performance because of heterogeneous distribution of permeability in the ground, which might be considerable when the ground is created by the compaction method. The effect of heterogeneity in the ground on the permeability of the bentonite ground should be evaluated by overall permeability of the ground, whereas in practice, the effect is evaluated by the distribution of permeability in the ground. Thus, in this study, overall permeability of the bentonite ground is evaluated from the permeability of the bentonite ground is evaluated from the permeability distribution determined using the geostatistical method with the dry density data as well as permeability data of the undisturbed sample recovered from the bentonite ground. Consequently, it was proved through this study that possibility of overestimation of permeability of the bentonite ground can be reduced if the overall permeability is used. (author)

  18. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    Science.gov (United States)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  19. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    International Nuclear Information System (INIS)

    Rockhold, M.L.

    1993-02-01

    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a ''blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration

  20. Heterogeneity of brain blood flow and permeability during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Heistad, D.D.

    1985-01-01

    The purpose of this study was to examine regional autoregulation of blood flow in the brain during acute hypertension. In anesthetized cats severe hypertension increased blood flow more in cerebrum (159%) and cerebellum (106%) than brain stem (58%). In contrast to the heterogeneous autoregulatory response, hypocapnia produced uniform vasoconstriction in the brain. The authors also compared vasodilatation during severe hypertension with vasodilatation during hypercapnia. During hypercapnia, blood flow increased as much in brain stem, as in cerebrum and cerebellum. Thus, regional differences in autoregulation appear to be specific for autoregulatory stimulus and are not secondary to nonspecific differences in vasoconstrictor or vasodilator capacity. To determine whether the blood-brain barrier is more susceptible to hypertensive disruption in regions with less effective autoregulation, permeability of the barrier was quantitated with 125 I-albumin. Severe hypertension produced disruption of the barrier in cerebrum but not in brain stem. Thus, there are parallel differences in effectiveness of autoregulation and susceptibility to disruption of the blood-brain barrier in different regions of the brain

  1. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  2. Development of models for fast fluid pathways through unsaturated heterogeneous porous media

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-11-01

    The pre-waste-emplacement ground water travel time requirement is a regulatory criterion that specifies ground water travel time to the accessible environment shall be greater than 1,000 years. Satisfying the ground water travel time criterion for the potential repository at Yucca Mountain requires the study of fast travel path formation in the unsaturated zone and development of models that simulate the formation of fast paths. Conceptual models for unsaturated flow that have been used for total-systems performance assessment generally fall into the categories of composite-porosity or fracture models. The actual hydrologic conditions at Yucca Mountain are thought to lie somewhere between the extremes of these two types of models. The current study considers the effects of heterogeneities on composite-porosity models and seeks to develop numerical methods (and models) that can produce locally saturated zones where fracture flow can occur. The credibility of the model and numerical methods is investigated by using test data from the INTRAVAL project (Swedish Nuclear Inspectorate, 1992) to attempt to predict in-situ volumetric water content at specific locations in Yucca Mountain. Work based on the numerical methods presented in this study is eventually intended to allow the calculation of ground water travel times in heterogeneous media. 60 refs

  3. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity

    OpenAIRE

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-01-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, mono-esterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeab...

  4. A hybrid method for the simulation of radionuclide contaminant plumes in heterogeneous, unsaturated formations

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, T.J.; Souto, H.P. Amaral; Francisco, A.S.

    2009-01-01

    The decision concerning the location of sites for nuclear waste repositories in the subsurface depends upon the long-term containment capabilities of hydrogeological environments. The numerical simulation of the multiphase flow and contaminant transport that take place in this problem is an important tool to help engineers and scientists in selecting appropriate sites. In this paper, we employ a hybrid strategy that combines an Eulerian approximation scheme for the underlying two-phase flow problem with a locally conservative Lagrangian method to approximate the transport of radionuclide. This Lagrangian scheme is computationally efficient and virtually free of numerical diffusion. In order to face unsaturated and heterogeneous problems, four extensions in the Lagrangian scheme are implemented. To show the effectiveness of the improved version we perform a grid refinement study. (author)

  5. Hydro-mechanical coupling and permeability of an unsaturated swelling clay under hydrous and thermal stress: sorption curve and water permeability

    International Nuclear Information System (INIS)

    Olchitzky, E.

    2002-02-01

    The use of swelling clay for engineered safety barriers of radioactive waste disposal require the understanding of its thermal-hydro-mechanical behaviour. This work concerns particularly the characterization and the modelling of the behaviour of one of these clays: the FoCa7 clay. The characteristics of the studied material are: the sorption (desorption) curve and the water permeability. For each of them, new experiments have allowed to acquire data in fields still few explored: in temperature (between 20 and 80 C) for the sorption curve and in the unsaturated field for the water permeability. The analysis of these results and of bibliographic data has allowed in one hand to estimate the importance of the hysteresis phenomenon and the temperature influence on the sorption curve and in another hand, to establish the requirement to introduce in the modelling of the sorption curve, a plastic parameter due to the irreversible deformations occurring during the compaction. Moreover, the tests carried out for data acquirement have been used too to give validation elements to the non linear behaviour laws proposed by O. Coussy and P. Dangla for the non saturated porous media. The particularity of these laws is to suppose the existence of an effective constraint in the non saturated field, this shows the importance of the validation elements presented here. (O.M.)

  6. OBSERVATION AND ANALYSIS OF A PRONOUNCED PERMEABILITY AND POROSITY SCALE-EFFECT IN UNSATURATED FRACTURED TUFF

    Energy Technology Data Exchange (ETDEWEB)

    V. VESSELINOV; ET AL

    2001-01-01

    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  7. Oxidation of volatile organic compound vapours by potassium permanganate in a horizontal permeable reactive barrier under unsaturated conditions: experiments and modeling

    NARCIS (Netherlands)

    Ghareh Mahmoodlu, Mojtaba|info:eu-repo/dai/nl/357287746

    2014-01-01

    In this research we evaluated the potential of using solid potassium permanganate to create a horizontal permeable reactive barrier (HPRB) for oxidizing VOC vapours in the unsaturated zone. We have performed batch experiments, short column, and long column experiments, and have fully analyzed the

  8. Stochastic estimation and simulation of heterogeneities important for transport of contaminants in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Kitteroed, Nils-Otto

    1997-12-31

    The background for this thesis was the increasing risk of contamination of water resources and the requirement of groundwater protection. Specifically, the thesis implements procedures to estimate and simulate observed heterogeneities in the unsaturated zone and evaluates what impact the heterogeneities may have on the water flow. The broad goal was to establish a reference model with high spatial resolution within a small area and to condition the model using spatially frequent field observations, and the Moreppen site at Oslo`s new major airport was used for this purpose. An approach is presented for the use of ground penetrating radar in which indicator kriging is used to estimate continuous stratigraphical architecture. Kriging is also used to obtain 3D images of soil moisture. A simulation algorithm based on the Karhunen-Loeve expansion is evaluated and a modification of the Karhunen-Loeve simulation is suggested that makes it possible to increase the size of the simulation lattice. This is obtained by kriging interpolation of the eigenfunctions. 250 refs., 40 figs., 7 tabs.

  9. Upscaling of permeability heterogeneities in reservoir rocks; an integrated approach

    NARCIS (Netherlands)

    Mikes, D.

    2002-01-01

    This thesis presents a hierarchical and geologically constrained deterministic approach to incorporate small-scale heterogeneities into reservoir flow simulators. We use a hierarchical structure to encompass all scales from laminae to an entire depositional system. For the geological models under

  10. Numerical Simulation of Hydraulic Fracturing in Low-/High-Permeability, Quasi-Brittle and Heterogeneous Rocks

    Science.gov (United States)

    Pakzad, R.; Wang, S. Y.; Sloan, S. W.

    2018-04-01

    In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of

  11. Unsaturated hydraulic behaviour of a permeable pavement: Laboratory investigation and numerical analysis by using the HYDRUS-2D model

    Science.gov (United States)

    Turco, Michele; Kodešová, Radka; Brunetti, Giuseppe; Nikodem, Antonín; Fér, Miroslav; Piro, Patrizia

    2017-11-01

    An adequate hydrological description of water flow in permeable pavement systems relies heavily on the knowledge of the unsaturated hydraulic properties of the construction materials. Although several modeling tools and many laboratory methods already exist in the literature to determine the hydraulic properties of soils, the importance of an accurate materials hydraulic description of the permeable pavement system, is increasingly recognized in the fields of urban hydrology. Thus, the aim of this study is to propose techniques/procedures on how to interpret water flow through the construction system using the HYDRUS model. The overall analysis includes experimental and mathematical procedures for model calibration and validation to assess the suitability of the HYDRUS-2D model to interpret the hydraulic behaviour of a lab-scale permeable pavement system. The system consists of three porous materials: a wear layer of porous concrete blocks, a bedding layers of fine gravel, and a sub-base layer of coarse gravel. The water regime in this system, i.e. outflow at the bottom and water contents in the middle of the bedding layer, was monitored during ten irrigation events of various durations and intensities. The hydraulic properties of porous concrete blocks and fine gravel described by the van Genuchten functions were measured using the clay tank and the multistep outflow experiments, respectively. Coarse gravel properties were set at literature values. In addition, some of the parameters (Ks of the concrete blocks layer, and α, n and Ks of the bedding layer) were optimized with the HYDRUS-2D model from water fluxes and soil water contents measured during irrigation events. The measured and modeled hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index (varied between 0.95 and 0.99) while the coefficient of determination R2 was used to assess the measured water content versus the modelled water content in the bedding layer (R2 = 0.81 ÷ 0.87) . The

  12. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical

  13. Genetic Manipulation of Outer Membrane Permeability: Generating Porous Heterogeneous Catalyst Analogs in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Patel, TN; Park, AHA; Bantat, S

    2014-12-01

    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilities (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.

  14. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    International Nuclear Information System (INIS)

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs

  15. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  16. Bayesian inference for heterogeneous caprock permeability based on above zone pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Namhata, Argha; Small, Mitchell J.; Dilmore, Robert M.; Nakles, David V.; King, Seth

    2017-02-01

    The presence of faults/ fractures or highly permeable zones in the primary sealing caprock of a CO2 storage reservoir can result in leakage of CO2. Monitoring of leakage requires the capability to detect and resolve the onset, location, and volume of leakage in a systematic and timely manner. Pressure-based monitoring possesses such capabilities. This study demonstrates a basis for monitoring network design based on the characterization of CO2 leakage scenarios through an assessment of the integrity and permeability of the caprock inferred from above zone pressure measurements. Four representative heterogeneous fractured seal types are characterized to demonstrate seal permeability ranging from highly permeable to impermeable. Based on Bayesian classification theory, the probability of each fractured caprock scenario given above zone pressure measurements with measurement error is inferred. The sensitivity to injection rate and caprock thickness is also evaluated and the probability of proper classification is calculated. The time required to distinguish between above zone pressure outcomes and the associated leakage scenarios is also computed.

  17. Systematic Analysis of the Effect of Small Scale Permeability Heterogeneity on Hyporheic Exchange Flux and Residence Times

    Science.gov (United States)

    Laube, G.; Schmidt, C.; Fleckenstein, J. H.

    2014-12-01

    The hyporheic zone (HZ) contributes significantly to whole stream biogeochemical cycling. Biogeochemical reactions within the HZ are often transport limited, thus, understanding these reactions requires knowledge about the magnitude of hyporheic fluxes (HF) and the residence time (RT) of these fluxes within the HZ. While the hydraulics of HF are relatively well understood, studies addressing the influence of permeability heterogeneity lack systematic analysis and have even produced contradictory results (e.g. [1] vs. [2]). In order to close this gap, this study uses a statistical numerical approach to elucidate the influence of permeability heterogeneity on HF and RT. We simulated and evaluated 3750 2D-scenarios of sediment heterogeneity by means of Gaussian random fields with focus on total HF and RT distribution. The scenarios were based on ten realizations of each of all possible combinations of 15 different correlation lengths, 5 dipping angles and 5 permeability variances. Roughly 500 hyporheic stream traces were analyzed per simulation, for a total of almost two million stream traces analyzed for correlations between permeability heterogeneity, HF, and RT. Total HF and the RT variance positively correlated with permeability variance while the mean RT negatively correlated with permeability variance. In contrast, changes in correlation lengths and dipping angles had little effect on the examined properties RT and HF. These results provide a possible explanation of the seemingly contradictory conclusions of recent studies, given that the permeability variances in these studies differ by several orders of magnitude. [1] Bardini, L., Boano, F., Cardenas, M.B, Sawyer, A.H, Revelli, R. and Ridolfi, L. "Small-Scale Permeability Heterogeneity Has Negligible Effects on Nutrient Cycling in Streambeds." Geophysical Research Letters, 2013. doi:10.1002/grl.50224. [2] Zhou, Y., Ritzi, R. W., Soltanian, M. R. and Dominic, D. F. "The Influence of Streambed Heterogeneity on

  18. Continuous-flow hydration–condensation reaction: Synthesis of α,β-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2011-12-01

    Full Text Available A simple, practical and efficient continuous-flow hydration–condensation protocol was developed for the synthesis of α,β-unsaturated ketones starting from alkynes and aldehydes by employing a heterogeneous catalyst in a flow microwave. The procedure presents a straightforward and convenient access to valuable differently substituted chalcones and can be applied on multigram scale.

  19. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Nabovati, Aydin; Hinebaugh, James; Bazylak, Aimy; Amon, Cristina H.

    2014-02-01

    In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120™ GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher cross-plane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage.

  20. Impact of bimodal textural heterogeneity and connectivity on flow and transport through unsaturated mine waste rock

    Science.gov (United States)

    Appels, Willemijn M.; Ireson, Andrew M.; Barbour, S. Lee

    2018-02-01

    Mine waste rock dumps have highly variable flowpaths caused by contrasting textures and geometry of materials laid down during the 'plug dumping' process. Numerical experiments were conducted to investigate how these characteristics control unsaturated zone flow and transport. Hypothetical profiles of inner-lift structure were generated with multiple point statistics and populated with hydraulic parameters of a finer and coarser material. Early arrival of water and solutes at the bottom of the lifts was observed after spring snowmelt. The leaching efficiency, a measure of the proportion of a resident solute that is flushed out of the rock via infiltrating snowmelt or rainfall, was consistently high, but modified by the structure and texture of the lift. Under high rates of net percolation during snowmelt, preferential flow was generated in coarse textured part of the rock, and solutes in the fine textured parts of the rock remained stagnant. Under lower rates of net percolation during the summer and fall, finer materialswere flushed too, and the spatial variability of solute concentration in the lift was reduced. Layering of lifts leads to lower flow rates at depth, minimizing preferential flow and increased leaching of resident solutes. These findings highlight the limited role of large scale connected geometries on focusing flow and transport under dynamic surface net percolation conditions. As such, our findings agree with recent numerical results from soil studies with Gaussian connected geometries as well as recent experimental findings, emphasizing the dominant role of matrix flow and high leaching efficiency in large waste rock dumps.

  1. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    International Nuclear Information System (INIS)

    Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F.; Neuman, S.P.

    1996-03-01

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45 degree to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence

  2. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self

  3. Solute transport with time-variable flow paths during upward and downward flux in a heterogeneous unsaturated porous medium

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2014-05-01

    To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are

  4. Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media

    KAUST Repository

    Saad, Ali S.; Saad, Bilal Mohammed; Saad, Mazen

    2016-01-01

    We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.

  5. Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media

    KAUST Repository

    Saad, Ali S.

    2016-01-02

    We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.

  6. Effect of heterogeneity on the characterization of cell membrane compartments: I. Uniform size and permeability.

    Science.gov (United States)

    Hall, Damien

    2010-03-15

    Observations of the motion of individual molecules in the membrane of a number of different cell types have led to the suggestion that the outer membrane of many eukaryotic cells may be effectively partitioned into microdomains. A major cause of this suggested partitioning is believed to be due to the direct/indirect association of the cytosolic face of the cell membrane with the cortical cytoskeleton. Such intimate association is thought to introduce effective hydrodynamic barriers into the membrane that are capable of frustrating molecular Brownian motion over distance scales greater than the average size of the compartment. To date, the standard analytical method for deducing compartment characteristics has relied on observing the random walk behavior of a labeled lipid or protein at various temporal frequencies and different total lengths of time. Simple theoretical arguments suggest that the presence of restrictive barriers imparts a characteristic turnover to a plot of mean squared displacement versus sampling period that can be interpreted to yield the average dimensions of the compartment expressed as the respective side lengths of a rectangle. In the following series of articles, we used computer simulation methods to investigate how well the conventional analytical strategy coped with heterogeneity in size, shape, and barrier permeability of the cell membrane compartments. We also explored questions relating to the necessary extent of sampling required (with regard to both the recorded time of a single trajectory and the number of trajectories included in the measurement bin) for faithful representation of the actual distribution of compartment sizes found using the SPT technique. In the current investigation, we turned our attention to the analytical characterization of diffusion through cell membrane compartments having both a uniform size and permeability. For this ideal case, we found that (i) an optimum sampling time interval existed for the analysis

  7. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    Science.gov (United States)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai

    2018-02-01

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.

  8. CT Identification and Fractal Characterization of 3-D Propagation and Distribution of Hydrofracturing Cracks in Low-Permeability Heterogeneous Rocks

    Science.gov (United States)

    Liu, Peng; Ju, Yang; Gao, Feng; Ranjith, Pathegama G.; Zhang, Qianbing

    2018-03-01

    Understanding and characterization of the three-dimensional (3-D) propagation and distribution of hydrofracturing cracks in heterogeneous rock are key for enhancing the stimulation of low-permeability petroleum reservoirs. In this study, we investigated the propagation and distribution characteristics of hydrofracturing cracks, by conducting true triaxial hydrofracturing tests and computed tomography on artificial heterogeneous rock specimens. Silica sand, Portland cement, and aedelforsite were mixed to create artificial heterogeneous rock specimens using the data of mineral compositions, coarse gravel distribution, and mechanical properties that were measured from the natural heterogeneous glutenite cores. To probe the effects of material heterogeneity on hydrofracturing cracks, the artificial homogenous specimens were created using the identical matrix compositions of the heterogeneous rock specimens and then fractured for comparison. The effects of horizontal geostress ratio on the 3-D growth and distribution of cracks during hydrofracturing were examined. A fractal-based method was proposed to characterize the complexity of fractures and the efficiency of hydrofracturing stimulation of heterogeneous media. The material heterogeneity and horizontal geostress ratio were found to significantly influence the 3-D morphology, growth, and distribution of hydrofracturing cracks. A horizontal geostress ratio of 1.7 appears to be the upper limit for the occurrence of multiple cracks, and higher ratios cause a single crack perpendicular to the minimum horizontal geostress component. The fracturing efficiency is associated with not only the fractured volume but also the complexity of the crack network.

  9. Heterogeneous porous media permeability field characterization from fluid displacement data; Integration de donnees de deplacements de fluides dans la caracterisation de milieux poreux heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Kretz, V.

    2002-11-01

    The prediction of oil recovery or pollutant dispersion requires an accurate knowledge of the permeability field distribution. Available data are usually measurements in well bores, and, since a few years, 4D-seismic data (seismic mappings repeated in time). Such measurements allow to evaluate fluids displacements fronts evolution. The purpose of the thesis is to evaluate the possibility to determinate permeability fields from fluid displacement measurements in heterogeneous porous media. At the laboratory scale, experimental studies are made on a model and on numerical simulations. The system uses blocks of granular materials whose individual geometries and permeabilities are controlled. The fluids displacements are detected with an acoustical. The key parameters of the study are the size and spatial correlation of the permeability heterogeneity distribution, and the influence of viscosity and gravity contrasts between the injected ant displaced fluid. Then the inverse problem - evaluating the permeability field from concentration fronts evolution - is approached. At the reservoir scale, the work will mainly be focused on the integration of 4D-seismic data into inversion programs on a 3D synthetic case. A particular importance will be given to the calculation of gradients, in order to obtain a complementary information about the sensitivity of data. The information provided by 4D-seismic data consists in maps showing the vertical average of oil saturation or the presence of gas. The purpose is to integrate this qualitative information in the inversion process and to evaluate the impact on the reservoir characterization. Comparative studies - with or without 4D-seismic data - will be realized on a synthetic case. (author)

  10. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment

    Science.gov (United States)

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross

    2017-01-01

    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  11. Analysis of heterogeneous characteristics in a geothermal area with low permeability and high temperature

    Directory of Open Access Journals (Sweden)

    Alfonso Aragón-Aguilar

    2017-09-01

    Full Text Available An analytical methodology for reservoir characterization was applied in the central and southwestern zones of Los Humeros geothermal field (LHGF. This study involves analysis of temperature, pressure, enthalpy and permeability in wells and their distribution along the area. The wells located in the central western side of the geothermal field are productive, whereas those located at the central-eastern side are non-productive. Through temperature profiles, determined at steady state in the analyzed wells, it was observed that at bottom conditions (approximately 2300 m depth, temperatures vary between 280 and 360 °C. The temperatures are higher at the eastern side of central zone of LHGF. A review of transient pressure tests, laboratory measurements of core samples, and correlation of circulation losses during drilling suggest that permeability of the formation is low. The enthalpy behavior in productive wells shows a tendency of increase in the steam fraction. It was found that productivity behavior has inverse relation with permeability of rock formation. Further, it is observed that an imbalance exists between exploitation and recharge. It is concluded from the results that the wells located at central-eastern area have low permeability and high temperature, which indicates possibility of heat storage.

  12. Heterogeneous hydrogenation of unsaturated compounds with catalyst P-2-Ni with turnover numbers up to 90,000

    Energy Technology Data Exchange (ETDEWEB)

    Strohmeier, W; Pfoehler, M; Steigerwald, H [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Physikalische Chemie

    1977-12-01

    Unsaturated compounds are very rapidly hydrogenated with nickel-boride catalyst P-2-Ni without solvent under mild conditions (70-85/sup 0/C and 10 bar). Turnover numbers UZ up to 90,000 and space-time-yields of 7.440 mmol product per l and 1 mgA Nickel in one hour with a mean catalyst activity a = 124 were observed. This hydrogenation catalyst has a power, which is in the same magnitude of very active noble metal catalysts.

  13. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    Science.gov (United States)

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across

  14. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken

    2007-09-30

    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on

  15. The Role of Horizontal Wells when Developing Low-Permeable, Heterogeneous Reservoirs

    Directory of Open Access Journals (Sweden)

    M.P. Yurova

    2017-09-01

    Full Text Available The widespread use of horizontal drilling in recent years has shown that horizontal wells can be successfully used both at the initial and late stages of development. This is due to the fact that horizontal wells, in contrast to vertical wells, contact a larger area of ​​the productive formation, while the surface of drainage of the oil-saturated layer, productivity of the wells due to the formation of cracks, and also the influence on thin layers increases. One of the methods of impact on the reservoir is the steam-thermal method. The main advantage of the use of the heat wave method in horizontal wells is a significant increase in the well production rate, a decrease in the water cut of the reservoir, a decrease in the oil viscosity, an increase in the injectivity of the injection well, and an increase in the inflow in producing wells. As a result of the total effect, a significant increase in production is obtained throughout the entire deposit. Enhanced oil recovery from the injection of steam is achieved by reducing the viscosity of oil, covering the reservoir with steam, distilling oil and extracting with a solvent. All this increases the displacement coefficient. One of the most effective ways to increase oil recovery at a late stage of field operation is sidetracking in emergency, highly watered and low-productive wells. This leads to the development of residual reserves in weakly drained zones of reservoirs with a substantial increase in well productivity in low-permeable reservoirs. This approach assumes that the initial drilling of wells is a ‘pilot’ stage, which precedes the development of oil reserves in the late stages of deposit development. In the fields of Western Siberia, multiple hydraulic fracturing of the reservoir has been improved due to a special stinger in the liner hanger of multi-packer installation, which excludes the influence of high pressures on the production column under the multiple hydraulic fracturing

  16. Measurement and modeling of flow through unsaturated heterogeneous rock in the context of geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sagar, B.; Bagtzoglou, A.C.; Green, R.T.; Stothoff, S.A.

    1995-01-01

    Deep geologic disposal of high-level and transuranic waste is currently being pursued vigorously. Assessing long-term performance of such repositories involves laboratory and field measurements, and numerical modeling. There exist two primary characteristics, associated with assessing repository performance, that define problems of modeling and measurement of non-isothermal flow through geologic media exposed to variable boundary conditions (e.g., climatic changes). These are: (1) the large time scale (tens of thousands of years) and highly variable space scale (from one meter to 10 5 meters); and (2) the hierarchy of heterogeneities and discontinuities characterizing the medium. This paper provides an overview of recent work, conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA), related to laboratory experiments, consideration of similitude, and numerical modeling of flow through heterogeneous media under non-homogeneous boundary conditions. As discussed, there exist neither good methods of measuring flows at these scales nor are there adequate similitude analyses that would allow reasonable scaling up of laboratory-scale experiments. Reliable assessment of long-term geologic repositories will require sophisticated geostatistical models capable of addressing variables scales of heterogeneities conditioned with observed results from adequately sized field-scale experiments conducted for sufficiently long durations

  17. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  18. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  19. Investigation of oil production conditions and production operation by solution gas drive in low permeable heterogeneous limestones

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, W

    1966-04-01

    It was the purpose of this study to investigate the production of oil and gas from a low permeable heterogeneous limestone-reservoir by solution gas drive. The rock-samples were subjected to extensive petrolphysical analyses in order to characterize the pore structure of of the limestone material. Laboratory model flow tests were undertaken to outline in detail the production history during the pressure depletion process under reservoir conditions and by using original reservoir fluids. The experiments were carried out at different rates of pressure decline. It can be stated that the rate of pressure decline is the most important factor affecting the oil recovery and the development of the gas-oil-ratio in a model flow test. The present investigation leads to the following conclusion: It is posible to get reliable results which could be the base for a reservoir performance prediction only when the gas and oil phase are maintained at equilibrium conditions within the rock sample during the pressure decline. An additional calculation of the solution gas drive reservoir production history by the Tarner method shows a good agreement of the experimental and the calculated data. (40 refs.)

  20. Unsaturated zone flow modeling for GWTT-95

    International Nuclear Information System (INIS)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W.

    1995-01-01

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated

  1. Understanding Heterogeneity and Permeability of Brain Metastases in Murine Models of HER2-Positive Breast Cancer Through Magnetic Resonance Imaging: Implications for Detection and Therapy

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2015-06-01

    Full Text Available OBJECTIVES: Brain metastases due to breast cancer are increasing, and the prognosis is poor. Lack of effective therapy is attributed to heterogeneity of breast cancers and their resulting metastases, as well as impermeability of the blood–brain barrier (BBB, which hinders delivery of therapeutics to the brain. This work investigates three experimental models of HER2+ breast cancer brain metastasis to better understand the inherent heterogeneity of the disease. We use magnetic resonance imaging (MRI to quantify brain metastatic growth and explore its relationship with BBB permeability. DESIGN: Brain metastases due to breast cancer cells (SUM190-BR3, JIMT-1-BR3, or MDA-MB-231-BR-HER2 were imaged at 3 T using balanced steady-state free precession and contrast-enhanced T1-weighted spin echo sequences. The histology and immunohistochemistry corresponding to MRI were also analyzed. RESULTS: There were differences in metastatic tumor appearance by MRI, histology, and immunohistochemistry (Ki67, CD31, CD105 across the three models. The mean volume of an MDA-MB-231-BR-HER2 tumor was significantly larger compared to other models (F2,12 = 5.845, P < .05; interestingly, this model also had a significantly higher proportion of Gd-impermeable tumors (F2,12 = 22.18, P < .0001. Ki67 staining indicated that Gd-impermeable tumors had significantly more proliferative nuclei compared to Gd-permeable tumors (t[24] = 2.389, P < .05 in the MDA-MB-231-BR-HER2 model. CD31 and CD105 staining suggested no difference in new vasculature patterns between permeable and impermeable tumors in any model. CONCLUSION: Significant heterogeneity is present in these models of brain metastases from HER2+ breast cancer. Understanding this heterogeneity, especially as it relates to BBB permeability, is important for improvement in brain metastasis detection and treatment delivery.

  2. Drift Scale Modeling: Study of Unsaturated Flow into a Drift Using a Stochastic Continuum Model

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Tsang, C.F.; Tsang, Y.W.; Wang, J.S

    1996-01-01

    Unsaturated flow in heterogeneous fractured porous rock was simulated using a stochastic continuum model (SCM). In this model, both the more conductive fractures and the less permeable matrix are generated within the framework of a single continuum stochastic approach, based on non-parametric indicator statistics. High-permeable fracture zones are distinguished from low-permeable matrix zones in that they have assigned a long range correlation structure in prescribed directions. The SCM was applied to study small-scale flow in the vicinity of an access tunnel, which is currently being drilled in the unsaturated fractured tuff formations at Yucca Mountain, Nevada. Extensive underground testing is underway in this tunnel to investigate the suitability of Yucca Mountain as an underground nuclear waste repository. Different flow scenarios were studied in the present paper, considering the flow conditions before and after the tunnel emplacement, and assuming steady-state net infiltration as well as episodic pulse infiltration. Although the capability of the stochastic continuum model has not yet been fully explored, it has been demonstrated that the SCM is a good alternative model feasible of describing heterogeneous flow processes in unsaturated fractured tuff at Yucca Mountain

  3. Rules for Flight Paths and Time of Flight for Flows in Porous Media with Heterogeneous Permeability and Porosity

    Directory of Open Access Journals (Sweden)

    Lihua Zuo

    2017-01-01

    Full Text Available Porous media like hydrocarbon reservoirs may be composed of a wide variety of rocks with different porosity and permeability. Our study shows in algorithms and in synthetic numerical simulations that the flow pattern of any particular porous medium, assuming constant fluid properties and standardized boundary and initial conditions, is not affected by any spatial porosity changes but will vary only according to spatial permeability changes. In contrast, the time of flight along the streamline will be affected by both the permeability and porosity, albeit in opposite directions. A theoretical framework is presented with evidence from flow visualizations. A series of strategically chosen streamline simulations, including systematic spatial variations of porosity and permeability, visualizes the respective effects on the flight path and time of flight. Two practical rules are formulated. Rule  1 states that an increase in permeability decreases the time of flight, whereas an increase in porosity increases the time of flight. Rule  2 states that the permeability uniquely controls the flight path of fluid flow in porous media; local porosity variations do not affect the streamline path. The two rules are essential for understanding fluid transport mechanisms, and their rigorous validation therefore is merited.

  4. Hydro-mechanical coupling and permeability of an unsaturated swelling clay under hydrous and thermal stress: sorption curve and water permeability; Couplage hydromecanique et permeabilite d'une argile gonflante non saturee sous sollicitations hydriques et thermiques: courbe de sorption et permeabilite a l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Olchitzky, E

    2002-02-15

    The use of swelling clay for engineered safety barriers of radioactive waste disposal require the understanding of its thermal-hydro-mechanical behaviour. This work concerns particularly the characterization and the modelling of the behaviour of one of these clays: the FoCa7 clay. The characteristics of the studied material are: the sorption (desorption) curve and the water permeability. For each of them, new experiments have allowed to acquire data in fields still few explored: in temperature (between 20 and 80 C) for the sorption curve and in the unsaturated field for the water permeability. The analysis of these results and of bibliographic data has allowed in one hand to estimate the importance of the hysteresis phenomenon and the temperature influence on the sorption curve and in another hand, to establish the requirement to introduce in the modelling of the sorption curve, a plastic parameter due to the irreversible deformations occurring during the compaction. Moreover, the tests carried out for data acquirement have been used too to give validation elements to the non linear behaviour laws proposed by O. Coussy and P. Dangla for the non saturated porous media. The particularity of these laws is to suppose the existence of an effective constraint in the non saturated field, this shows the importance of the validation elements presented here. (O.M.)

  5. Long-term flow/chemistry feedback in a porous medium with heterogenous permeability: Kinetic control of dissolution and precipitation

    International Nuclear Information System (INIS)

    Bolton, E.W.; Lasaga, A.C.; Rye, D.M.

    1999-01-01

    The kinetics of dissolution and precipitation is of central importance to understanding the long-term evolution of fluid flows in crustal environments, with implications for problems as diverse as nuclear waste disposal and crustal evolution. The authors examine the dynamics of such evolution for several geologically relevant permeability distributions (models for en-echelon cracks, an isolated sloping fractured zone, and two sloping high-permeability zones that are close enough together to interact). Although the focus is on a simple quartz matrix system, generic features emerge from this study that can aid in the broader goal of understanding the long-term feedback between flow and chemistry, where dissolution and precipitation is under kinetic control. Examples of thermal convection in a porous medium with spatially variable permeability reveal features of central importance to water-rock interaction. After a transient phase, an accelerated rate of change of porosity may be used with care to decrease computational time, as an alternative to the quasi-stationary state approximation (Lichtner, 1988). Kinetic effects produce features not expected by traditional assumptions made on the basis of equilibrium, for example, that cooling fluids are oversaturated and heating fluids are undersaturated with respect to silicic acid equilibrium. Indeed, the authors observe regions of downwelling oversaturated fluid experiencing heating and regions of upwelling, yet cooling, undersaturated fluid. When oscillatory convection is present, the amplitudes of oscillation generally increase with time in near-surface environments, whereas amplitudes tend to decrease over long times near the heated lower boundary. The authors examine the scaling behavior of characteristic length scales, of terms in the solute equation, and of the typical deviation from equilibrium, each as a function of the kinetic rate parameters

  6. Visualization of microscale phase displacement proceses in retention and outflow experiments: nonuniquensess of unsaturated flow properties

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Glass, R.J.; Hollenbeck, K.J.

    2001-01-01

    -scale heterogeneities. Because the mixture of these microscale processes yields macroscale effective behavior, measured unsaturated flow properties are also a function of these controls. Such results suggest limitations on the current definitions and uniqueness of unsaturated hydraulic properties....

  7. The Unsaturated Hydromechanical Coupling Model of Rock Slope Considering Rainfall Infiltration Using DDA

    Directory of Open Access Journals (Sweden)

    Xianshan Liu

    2017-01-01

    Full Text Available Water flow and hydromechanical coupling process in fractured rocks is more different from that in general porous media because of heterogeneous spatial fractures and possible fracture-dominated flow; a saturated-unsaturated hydromechanical coupling model using a discontinuous deformation analysis (DDA similar to FEM and DEM was employed to analyze water movement in saturated-unsaturated deformed rocks, in which the Van-Genuchten model differently treated the rock and fractures permeable properties to describe the constitutive relationships. The calibrating results for the dam foundation indicated the validation and feasibility of the proposed model and are also in good agreement with the calculations based on DEM still demonstrating its superiority. And then, the rainfall infiltration in a reservoir rock slope was detailedly investigated to describe the water pressure on the fault surface and inside the rocks, displacement, and stress distribution under hydromechanical coupling conditions and uncoupling conditions. It was observed that greater rainfall intensity and longer rainfall time resulted in lower stability of the rock slope, and larger difference was very obvious between the hydromechanical coupling condition and uncoupling condition, demonstrating that rainfall intensity, rainfall time, and hydromechanical coupling effect had great influence on the saturated-unsaturated water flow behavior and mechanical response of the fractured rock slopes.

  8. Numerical simulation of the impact of water-air fronts on radionuclides plumes in heterogeneous media

    International Nuclear Information System (INIS)

    Aquino, J.; Francisco, A.S.; Pereira, F.; Amaral Souto, H.P.

    2004-01-01

    The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both the water-air flow and the radionuclide transport. The water-air problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present the results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)

  9. Analysis of pumping-induced unsaturated regions beneath aperennial river

    Energy Technology Data Exchange (ETDEWEB)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  10. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repository is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%, as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, they have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  11. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  12. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  13. Modelling flow through unsaturated zones: Sensitivity to unsaturated ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    soil properties are studied by varying the unsaturated parameters α and n over a wide range. ... Keywords. Unsaturated zone; capillary fringe; finite element method. ... and radioactive wastes. Several .... The length (L) of the soil sample is 1 m.

  14. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  15. Infiltration in Unsaturated Soils

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin

    2011-01-01

    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  16. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  17. Validation studies for assessing unsaturated flow and transport through fractured rock

    International Nuclear Information System (INIS)

    Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F.

    1994-08-01

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed

  18. Validation studies for assessing unsaturated flow and transport through fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources

    1994-08-01

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed.

  19. Busted Butte Unsaturated Zone Transport Test: Fiscal Year 1998 Status Report Yucca Mountain Site Characterization Program Deliverable SPU85M4

    International Nuclear Information System (INIS)

    Bussod, G.Y.; Turin, H.J.; Lowry, W.E.

    1999-01-01

    This report describes the status of the Busted Butte Unsaturated Zone Transport Test (UZTT) and documents the progress of construction activities and site and laboratory characterization activities undertaken in fiscal year 1998. Also presented are predictive flow-and-transport simulations for Test Phases 1 and 2 of testing and the preliminary results and status of these test phases. Future anticipated results obtained from unsaturated-zone (UZ) transport testing in the Calico Hills Formation at Busted Butte are also discussed in view of their importance to performance assessment (PA) needs to build confidence in and reduce the uncertainty of site-scale flow-and-transport models and their abstractions for performance for license application. The principal objectives of the test are to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain, as identified by the PA working group in February 1997. These include but are not restricted to: (1) The effect of heterogeneities on flow and transport in unsaturated and partially saturated conditions in the Calico Hills Formation. In particular, the test aims to address issues relevant to fracture-matrix interactions and permeability contrast boundaries; (2) The migration behavior of colloids in fractured and unfractured Calico Hills rocks; (3) The validation through field testing of laboratory sorption experiments in unsaturated Calico Hills rocks; (4) The evaluation of the 3-D site-scale flow-and-transport process model (i.e., equivalent-continuum/dual-permeability/discrete-fracture-fault representations of flow and transport) used in the PA abstractions for license application; and (5) The effect of scaling from lab scale to field scale and site scale

  20. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity.

    Science.gov (United States)

    Schillaci, Odessa; Fontana, Simona; Monteleone, Francesca; Taverna, Simona; Di Bella, Maria Antonietta; Di Vizio, Dolores; Alessandro, Riccardo

    2017-07-05

    The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.

  1. Statistical Estimation of Heterogeneities: A New Frontier in Well Testing

    Science.gov (United States)

    Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.

    2001-12-01

    Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.

  2. A site-scale model for fluid and heat flow in the unsaturated zone of Yucca Mountain, Nevada

    Science.gov (United States)

    Wu, Yu-Shu; Haukwa, Charles; Bodvarsson, G. S.

    1999-05-01

    A three-dimensional unsaturated-zone numerical model has been developed to simulate flow and distribution of moisture, gas and heat at Yucca Mountain, Nevada, a potential repository site for high-level radioactive waste. The model takes into account the simultaneous flow dynamics of liquid water, vapor, air and heat in the highly heterogeneous, fractured porous rock in the unsaturated zone (UZ). This model is intended for use in the prediction of the current and future conditions in the UZ so as to aid in the assessment of the system performance of the proposed repository. The modeling approach is based on a mathematical formulation of coupled multiphase, multicomponent fluid and heat flow through porous and fractured rock. Fracture and matrix flow is treated using both dual-permeability and effective-continuum modeling approaches. The model domain covers a total area of approximately 43 km 2, and uses the land surface and the water table as its top and bottom boundaries. In addition, site-specific data, representative surface infiltration, and geothermal conditions are incorporated into the model. The reliability and accuracy of the model have been the subject of a comprehensive model calibration study, in which the model was calibrated against measured data, including liquid saturation, water potential and temperature. It has been found that the model is generally able to reproduce the overall system behavior at Yucca Mountain with respect to moisture profiles, pneumatic pressure variations in different geological units, and ambient geothermal conditions.

  3. Geostatistical and Stochastic Study of Flow and Tracer Transport in the Unsaturated Zone at Yucca Mountain

    International Nuclear Information System (INIS)

    Ye, Ming; Pan, Feng; Hu, Xiaolong; Zhu, Jianting

    2007-01-01

    Yucca Mountain has been proposed by the U.S. Department of Energy as the nation's long-term, permanent geologic repository for spent nuclear fuel or high-level radioactive waste. The potential repository would be located in Yucca Mountain's unsaturated zone (UZ), which acts as a critical natural barrier delaying arrival of radionuclides to the water table. Since radionuclide transport in groundwater can pose serious threats to human health and the environment, it is important to understand how much and how fast water and radionuclides travel through the UZ to groundwater. The UZ system consists of multiple hydrogeologic units whose hydraulic and geochemical properties exhibit systematic and random spatial variation, or heterogeneity, at multiple scales. Predictions of radionuclide transport under such complicated conditions are uncertain, and the uncertainty complicates decision making and risk analysis. This project aims at using geostatistical and stochastic methods to assess uncertainty of unsaturated flow and radionuclide transport in the UZ at Yucca Mountain. Focus of this study is parameter uncertainty of hydraulic and transport properties of the UZ. The parametric uncertainty arises since limited parameter measurements are unable to deterministically describe spatial variability of the parameters. In this project, matrix porosity, permeability and sorption coefficient of the reactive tracer (neptunium) of the UZ are treated as random variables. Corresponding propagation of parametric uncertainty is quantitatively measured using mean, variance, 5th and 95th percentiles of simulated state variables (e.g., saturation, capillary pressure, percolation flux, and travel time). These statistics are evaluated using a Monte Carlo method, in which a three-dimensional flow and transport model implemented using the TOUGH2 code is executed with multiple parameter realizations of the random model parameters. The project specifically studies uncertainty of unsaturated flow

  4. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  5. Maximum likelihood Bayesian averaging of airflow models in unsaturated fractured tuff using Occam and variance windows

    NARCIS (Netherlands)

    Morales-Casique, E.; Neuman, S.P.; Vesselinov, V.V.

    2010-01-01

    We use log permeability and porosity data obtained from single-hole pneumatic packer tests in six boreholes drilled into unsaturated fractured tuff near Superior, Arizona, to postulate, calibrate and compare five alternative variogram models (exponential, exponential with linear drift, power,

  6. Preferential flow occurs in unsaturated conditions

    Science.gov (United States)

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  7. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  8. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  9. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  10. Wetting phase permeability in a partially saturated horizontal fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1994-01-01

    Fractures within geologic media can dominate the hydraulic properties of the system. Therefore, conceptual models used to assess the potential for radio-nuclide migration in unsaturated fractured rock such as that composing Yucca Mountain, Nevada, must be consistent with flow processes in individual fractures. A major obstacle to the understanding and simulation of unsaturated fracture flow is the paucity of physical data on both fracture aperture structure and relative permeability. An experimental procedure is developed for collecting detailed data on aperture and phase structure from a transparent analog fracture. To facilitate understanding of basic processes and provide a basis for development of effective property models, the simplest possible rough-walled fracture is used. Stable phase structures of varying complexity are created within the horizontal analog fracture. Wetting phase permeability is measured under steady-state conditions. A process based model for wetting phase relative permeability is then explored. Contributions of the following processes to reduced wetting phase permeability under unsaturated conditions are considered: reduction in cross-sectional flow area, increased path length, localized flow restriction, and preferential occupation of large apertures by the non-wetting phase

  11. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  12. Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment

    Science.gov (United States)

    Flint, Lorraine E.; Buesch, David C.; Flint, Alan L.

    2006-01-01

    Characterization of the physical and unsaturated hydrologic properties of subsurface materials is necessary to calculate flow and transport for land use practices and to evaluate subsurface processes such as perched water or lateral diversion of water, which are influenced by features such as faults, fractures, and abrupt changes in lithology. Input for numerical flow models typically includes parameters that describe hydrologic properties and the initial and boundary conditions for all materials in the unsaturated zone, such as bulk density, porosity, and particle density, saturated hydraulic conductivity, moisture-retention characteristics, and field water content. We describe an approach for systematically evaluating the site features that contribute to water flow, using physical and hydraulic data collected at the laboratory scale, to provide a representative set of physical and hydraulic parameters for numerically calculating flow of water through the materials at a site. An example case study from analyses done for the heterogeneous, layered, volcanic rocks at Yucca Mountain is presented, but the general approach for parameterization could be applied at any site where depositional processes follow deterministic patterns. Hydrogeologic units at this site were defined using (i) a database developed from 5320 rock samples collected from the coring of 23 shallow (deep (500–1000 m) boreholes, (ii) lithostratigraphic boundaries and corresponding relations to porosity, (iii) transition zones with pronounced changes in properties over short vertical distances, (iv) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (v) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. Model parameters developed in this study, and the relation of flow properties to porosity, can be used to produce detailed and accurate

  13. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  14. Film Permeability Determination Using Static Permeability Cells

    Science.gov (United States)

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  15. Influence of rainfall intensity on infiltration and deformation of unsaturated soil slopes

    International Nuclear Information System (INIS)

    Garcia Aristizabal, Edwin Fabian; Riveros Jerez, Carlos Alberto; Builes Brand, Manuel Alonso

    2011-01-01

    In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behavior of unsaturated soil slopes, numerical 2D analyses are carried out by a three-phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

  16. TOUGH - a numerical model for nonisothermal unsaturated flow to study waste canister heating effects

    International Nuclear Information System (INIS)

    Pruess, K.; Wang, J.S.Y.

    1984-01-01

    The physical processes modeled and the mathematical and numerical methods employed in a simulator for non-isothermal flow of water, vapor, and air in permeable media are briefly summarized. The simulator has been applied to study thermohydrological conditions in the near vicinity of high-level nuclear waste packages emplaced in unsaturated rocks. The studies reported here specifically address the question whether or not the waste canister environment will dry up in the thermal phase. 13 references, 8 figures, 2 tables

  17. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability p...... significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas....

  18. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  19. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    International Nuclear Information System (INIS)

    Conca, J.

    2000-01-01

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion

  20. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    Science.gov (United States)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  1. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  2. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    Science.gov (United States)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences

  3. Evaluating sensitivity of unsaturated soil properties

    International Nuclear Information System (INIS)

    Abdel-Rahman, R.O.; El-Kamash, A.M.; Nagy, M.E.; Khalill, M.Y.

    2005-01-01

    The assessment of near surface disposal performance relay on numerical models of groundwater flow and contaminant transport. These models use the unsaturated soil properties as input parameters, which are subject to uncertainty due to measurements errors and the spatial variability in the subsurface environment. To ascertain how much the output of the model will depend on the unsaturated soil properties the parametric sensitivity analysis is used. In this paper, a parametric sensitivity analysis of the Van Genuchten moisture retention characteristic (VGMRC) model will be presented and conducted to evaluate the relative importance of the unsaturated soil properties under different pressure head values that represent various dry and wet conditions. (author)

  4. The unsaturated bistable stochastic resonance system.

    Science.gov (United States)

    Zhao, Wenli; Wang, Juan; Wang, Linze

    2013-09-01

    We investigated the characteristics of the output saturation of the classical continuous bistable system (saturation bistable system) and its impact on stochastic resonance (SR). We further proposed a piecewise bistable SR system (unsaturated bistable system) and developed the expression of signal-to-noise ratio (SNR) using the adiabatic approximation theory. Compared with the saturation bistable system, the SNR is significantly improved in our unsaturated bistable SR system. The numerical simulation showed that the unsaturated bistable system performed better in extracting weak signals from strong background noise than the saturation bistable system.

  5. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    Science.gov (United States)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    unsaturated zones [Pruess, 1999]. Lewis, M.A., H.K. Jones, D.M.J. Macdonald, M. Price, J.A. Barker, T.R. Shearer, A.J. Wesselink, and D.J. Evans (1993), Groundwater storage in British aquifers--Chalk, National Rivers Authority R&D Note, 169, Bristol, UK. Nimmo, J.R. (2010), Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow, Vadose Zone Journal, 9(2), 295-306, doi:10.2136/vzj2009.0085. Price, M., R.G. Low, and C. McCann (2000), Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer, Journal of Hydrology, 233(1-4), 54-71. Pruess, K. (1999), A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability, Water Resources Research, 35(4), 1039-1051.

  6. Permeability of porour rhyolite

    Science.gov (United States)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.

    2003-04-01

    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  7. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed

  8. Soils - Mean Permeability

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  9. Hydrogen permeability through metals

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tsvetkov, I.V.; Marenkov, E.D.; Yarko, S.S.

    2011-01-01

    The mechanisms of hydrogen permeability through one-layer and multi-layer membranes are considered. The effect of surface roughness, crystal defects, cracks and pores is described. Mathematical description of the processes is given [ru

  10. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  11. Principles of Physical Modelling of Unsaturated Soils

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc

    2014-01-01

    Centrifuge modelling has been widely used to simulate the performance of a variety of geotechnical works, most of them focusing on saturated clays or dry sands. On the other hand, the performance of some geotechnical works depends on the behaviour of shallow layers in the soil deposit where it is frequently unsaturated. Centrifuge modelling could be a powerful tool to study the performance of shallow geotechnical works. However all the experimental complexities related to unsaturated soils, w...

  12. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  13. An evaluation of the active fracture concept with modeling unsaturated flow and transport in a fractured meter-sized block of rock

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Kneafsey, Timothy J.; Ito, Kazumasa

    2003-01-01

    Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a two-dimensional discrete-fracture-network model (DFNM) and a one-dimensional dual continuum model (DCM). The DFNM was used as a surrogate for a natural block to produce synthetic breakthrough curves of water and tracer concentration under transient or balanced-state conditions. The DCM is the approach typically used for the Yucca Mountain Project because of its computational efficiency. The AFC was incorporated into the DCM to capture heterogeneous flow patterns that occur in unsaturated fractured rocks. The simulation results from the DCM were compared with the results from the DFNM to determine whether the DCM could predict the water flow and tracer transport observed in the DFNM at the scale of the experiment. It was found that implementing the AFC in the DCM improved the prediction of unsaturated flow and that the flow and transport experiments with low injection rates in the DFNM were compared better with the AFC implemented DCM at the meter scale. However, the estimated AFC parameter varied from 0.38 to 1.0 with different flow conditions, suggesting that the AFC parameter was not a sufficient to fully capture the complexity of the flow processes in a one meter sized discrete fracture network

  14. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    Science.gov (United States)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  15. Hydrodynamics in Evaporate-Bearing Fine-Grained Successions Investigated through an Interdisciplinary Approach: A Test Study in Southern Italy—Hydrogeological Behaviour of Heterogeneous Low-Permeability Media

    Directory of Open Access Journals (Sweden)

    E. Petrella

    2018-01-01

    Full Text Available Messinian evaporates are widely distributed in the Mediterranean Sea as outcropping sediments in small marginal basins and in marine cores. Progressive filling of subbasins led to the formation of complex aquifer systems in different regions where hypersaline and fresh water coexist and interact in different manner. It also generates a significant diversification of groundwater hydrochemical signature and different microbial communities. In the case study, the hydrogeology and hydrochemistry of the whole system are influenced by good hydraulic connection between the shallower pyroclastic horizon and the underlying evaporate-bearing fine-grained Messinian succession. This is demonstrated by the merge of hydrogeological, chemical, isotopic, and microbiological data. No mixing with deep ascending waters has been observed. As shown by geophysical, hydraulic, and microbiological investigations, the hydraulic heterogeneity of the Messinian bedrock, mainly due to karstified evaporitic interstrata/lenses, causes the hydraulic head to significantly vary with depth. Somewhere, the head increases with the depth’s increase and artesian flow conditions are locally observed. Moreover, the metagenomic investigations demonstrated the existence of a poor hydraulic connection within the evaporate-bearing fine-grained succession at metric and decametric scales, therefore leading to a patchwork of geochemical (and microbiological subenvironments.

  16. Homogeneously catalysed hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols

    NARCIS (Netherlands)

    Stouthamer, B.; Vlugter, J.C.

    1965-01-01

    The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the

  17. TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin.

    Science.gov (United States)

    Kanda, Yusuke; Yamasaki, Youhei; Sasaki-Yamaguchi, Yoshie; Ida-Koga, Noriko; Kamisuki, Shinji; Sugawara, Fumio; Nagumo, Yoko; Usui, Takeo

    2018-02-02

    The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca 2+ influx, we first screened the compounds that induce Ca 2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca 2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.

  18. Determination of Transport Properties From Flowing Fluid Temperature Logging In Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-01-01

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper (Mukhopadhyay et al., 2008), we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks

  19. An analytical model for cumulative infiltration into a dual-permeability media

    Science.gov (United States)

    Peyrard, Xavier; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Simunek, Jiri

    2010-05-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model assumes that flow is governed by Richards equation in both porous regions (matrix and fractures). Water can be exchanged between the two regions following a first-order rate law. A previous study showed that the influence of the hydraulic conductivity of the matrix/macropore interface had a little influence on cumulative infiltration at the soil surface. As a result, one could consider the surface infiltration for a specific case of no water exchange between the fracture and matrix regions (a case of zero interfacial hydraulic conductivity). In such a case, water infiltration can be considered to be the sum of the cumulative infiltrations into the matrix and the fractures. On the basis of analytical models for each sub domain (matrix and fractures), an analytical model is proposed for the entire dual-porosity system. A sensitivity analysis is performed to characterize the influence of several factors, such as the saturated hydraulic conductivity ratio, the water pressure scale parameter ratio, and the saturated volumetric water content scale ratio, on the total cumulative infiltration. Such an analysis greatly helps in quantifying the impact of macroporosity and fractures on water infiltration, which can be of great interest for hydrological models.

  20. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  1. Electrokinetic extraction of chromate from unsaturated soils

    International Nuclear Information System (INIS)

    Mattson, E.D.; Lindgren, E.R.

    1993-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode

  2. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  3. TOUGH: a numerical model for nonisothermal unsaturated flow to study waste canister heating effects

    International Nuclear Information System (INIS)

    Pruess, K.; Wang, J.S.Y.

    1983-12-01

    The physical processes modeled and the mathematical and numerical methods employed in a simulator for non-isothermal flow of water, vapor, and air in permeable media are briefly summarized. The simulator has been applied to study thermo-hydrological conditions in the near vicinity of high-level nuclear waste packages emplaced in unsaturated rocks. The studies reported here specifically address the question whether or not the waste canister environment will dry up in the thermal phase. 13 references, 8 figures, 2 tables

  4. The Parabolic Variational Inequalities for Variably Saturated Water Flow in Heterogeneous Fracture Networks

    Directory of Open Access Journals (Sweden)

    Zuyang Ye

    2018-01-01

    Full Text Available Fractures are ubiquitous in geological formations and have a substantial influence on water seepage flow in unsaturated fractured rocks. While the matrix permeability is small enough to be ignored during the partially saturated flow process, water seepage in heterogeneous fracture systems may occur in a non-volume-average manner as distinguished from a macroscale continuum model. This paper presents a systematic numerical method which aims to provide a better understanding of the effect of fracture distribution on the water seepage behavior in such media. Based on the partial differential equation (PDE formulations with a Signorini-type complementary condition on the variably saturated water flow in heterogeneous fracture networks, the equivalent parabolic variational inequality (PVI formulations are proposed and the related numerical algorithm in the context of the finite element scheme is established. With the application to the continuum porous media, the results of the numerical simulation for one-dimensional infiltration fracture are compared to the analytical solutions and good agreements are obtained. From the application to intricate fracture systems, it is found that water seepage flow can move rapidly along preferential pathways in a nonuniform fashion and the variably saturated seepage behavior is intimately related to the geometrical characteristics orientation of fractures.

  5. Vertical hydrochemical profiles in the unsaturated zone of louga ...

    African Journals Online (AJOL)

    Solutions chemistry of the rainwater and the unsaturated zone interstitial water of Louga (Northern Senegal) local aquifer provide valuable ... together with chemical analysis of the interstitial water carried out through the entire unsaturated ...

  6. Waste package performance in unsaturated rock

    International Nuclear Information System (INIS)

    Pigford, T.H.; Lee, W.W.-L.

    1989-03-01

    The unsaturated rock and near-atmospheric pressure of the potential nuclear waste repository at Yucca Mountain present new problems of predicting waste package performance. In this paper we present some illustrations of predictions of waste package performance and discuss important data needs. 11 refs., 9 figs., 1 tab

  7. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Unknown

    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate. 431. Table 1. Competitive oxygenation of tetralin and cyclooctene with sodium periodate catalyzed by different manga- .... Teacher Education University. My grateful thanks also extend to Dr D Mohajer for his useful sugges- tions. References. 1.

  8. Movement of radionuclides through unsaturated soils

    International Nuclear Information System (INIS)

    de Sousa, F.N.C.

    1985-01-01

    The advantages of the disposal of low-level radioactive wastes in the unsaturated zone above the fluctuations of the water table have been recognized for some time. However, most the numerical models used to simulate the environmental impact of a shallow land burial site assume that the soils surrounding the waste forms are saturated; this assumption may lead, in many cases, to unrealistic large leach and water flow rates. The main purpose of this study was the development of a procedure which could give a reliable prediction on the movement of radionuclides from shallow land burial sites located in the unsaturated zone. In order to accomplish this objective three different soils having different sand, silt, and clay fractions were selected and characterized. These soils were then used to fill a number of flow columns that were used in tests designed to provide input data for the flow and transport models. A one-dimensional finite element model was developed in order to simulate the water flow and radionuclide transport through unsaturated soils. The results obtained showed that the model accurately described the transport of radionuclides through saturated-unsaturated soils. Simulations were done, for all three soils, involving different degrees of soil saturation, and the results showed that assuming the soils are always saturated may lead to nuclide transport times which are orders of magnitude larger than the real ones, depending on the clay percentage present in the soil

  9. A free boundary problem describing the saturated-unsaturated flow in a porous medium

    Directory of Open Access Journals (Sweden)

    Gabriela Marinoschi

    2004-01-01

    Full Text Available This paper presents a functional approach to a nonlinear model describing the complete physical process of water infiltration into an unsaturated soil, including the saturation occurrence and the advance of the wetting front. The model introduced in this paper involves a multivalued operator covering the simultaneous saturated and unsaturated flow behaviors and enhances the study of the displacement of the free boundary between these two flow regimes. The model resides in Richards' equation written in pressure form with an initial condition and boundary conditions which in this work express the inflow due to the rain on the soil surface on the one hand, and characterize a certain permeability corresponding to the underground boundary, on the other hand. Existence, uniqueness, and regularity results for the transformed model in diffusive form, that is, for the moisture of the soil, and the existence of the weak solution for the pressure form are proved in the 3D case. The main part of the paper focuses on the existence of the free boundary between the saturated and unsaturated parts of the soil, and this is proved, in the 1D case, for certain stronger assumptions on the initial data and boundary conditions.

  10. Continuum model for water movement in an unsaturated fractured rock mass

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  11. Investigation into reaction of heterogenous isotopic exchange with gaseoUs tritium in solution for preparation labelled lipid compounds

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1983-01-01

    The applicability of the method of heterogeneous catalytic isotopic exchange with gaseous tritium in the solution for the production of labelled lipide preparations is studied. Labelled saturated and unsaturated aliphatic acids, prostaglandins, phospholipides and sphingolipides are prepared

  12. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  13. Involvement of membrane lipids in radiation damage to potassium-ion permeability of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S [Tokyo Univ. (Japan). Inst. for Medical Science; Akamatsu, Y

    1978-02-01

    Radiation damage to K/sup +/ permeability of an unsaturated fatty acid auxotroph of E.coli grown with oleate or linolenate was investigated at different temperatures. A remarkable effect of radiation was observed at 0/sup 0/C with cells that had been grown in linolenate at 42/sup 0/C. This indicates that, besides protein, membrane lipids at least are involved in the radiation damage. The damage also seems to be affected by the fluidity of membrane lipids.

  14. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  15. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    Science.gov (United States)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas

  16. Hydrochemical investigations in characterizing the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Rattray, G.W.; Ferarese, J.S.; Yu, P.; Ryan, J.N.

    1998-01-01

    Hydrochemical and isotopic investigations of ground water at Yucca Mountain, Nevada, site of a potential permanent national nuclear-waste repository, demonstrate that younger rocks are dominated by calcium-sulfate or calcium-chloride water and that older rocks contain sodium-carbonate or sodium-bicarbonate water. Furthermore, unsaturated-zone pore water has significantly larger concentrations of major ions and dissolved solids than does the saturated-zone water. Recharge of perched or saturated-zone water, therefore, requires rapid flow through fractures or permeable regions in the unsaturated zone to avoid mixing with the chemically concentrated water in the unsaturated zone. This conceptual model is consistent with observations of rapidly moved post-bomb (post-1954) tritium and chlorine-36 in the deep unsaturated zone at Yucca Mountain. Presence of post-bomb tritium in matrix water away from fracture zones further indicates that parts of the fast-flow water that moves through fractures have been diverted laterally into nonwelded units. Experimental data show that different lithologic units require specific water-extraction methods for stable-isotope analyses of hydrogen and oxygen to ensure accurate characterization. Vacuum-distillation and compression-extraction methods both can yield accurate data but must be used with specific lithologies. Column experiments demonstrate that percolating water can exchange with pore water of the core as well as water held in zeolite minerals in the core. Exchange rates range from days to months. Pore-water samples from core, therefore, reflect the most recently infiltrated water but do not reflect percolating water of the distant past

  17. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  18. Chloride Transport in Heterogeneous Formation

    Science.gov (United States)

    Mukherjee, A.; Holt, R. M.

    2017-12-01

    The chloride mass balance (CMB) is a commonly-used method for estimating groundwater recharge. Observations of the vertical distribution of pore-water chloride are related to the groundwater infiltration rates (i.e. recharge rates). In CMB method, the chloride distribution is attributed mainly to the assumption of one dimensional piston flow. In many places, however, the vertical distribution of chloride will be influenced by heterogeneity, leading to horizontal movement of infiltrating waters. The impact of heterogeneity will be particularly important when recharge is locally focused. When recharge is focused in an area, horizontal movement of chloride-bearing waters, coupled with upward movement driven by evapotranspiration, may lead to chloride bulges that could be misinterpreted if the CMB method is used to estimate recharge. We numerically simulate chloride transport and evaluate the validity of the CMB method in highly heterogeneous systems. This simulation is conducted for the unsaturated zone of Ogallala, Antlers, and Gatuna (OAG) formations in Andrews County, Texas. A two dimensional finite element model will show the movement of chloride through heterogeneous systems. We expect to see chloride bulges not only close to the surface but also at depths characterized by horizontal or upward movement. A comparative study of focused recharge estimates in this study with available recharge data will be presented.

  19. The Role of Surface Infiltration in Hydromechanical Coupling Effects in an Unsaturated Porous Medium of Semi-Infinite Extent

    Directory of Open Access Journals (Sweden)

    L. Z. Wu

    2017-01-01

    Full Text Available Rainfall infiltration into an unsaturated region of the earth’s surface is a pervasive natural phenomenon. During the rainfall-induced seepage process, the soil skeleton can deform and the permeability can change with the water content in the unsaturated porous medium. A coupled water infiltration and deformation formulation is used to examine a problem related to the mechanics of a two-dimensional region of semi-infinite extent. The van Genuchten model is used to represent the soil-water characteristic curve. The model, incorporating coupled infiltration and deformation, was developed to resolve the coupled problem in a semi-infinite domain based on numerical methods. The numerical solution is verified by the analytical solution when the coupled effects in an unsaturated medium of semi-infinite extent are considered. The computational results show that a numerical procedure can be employed to examine the semi-infinite unsaturated seepage incorporating coupled water infiltration and deformation. The analysis indicates that the coupling effect is significantly influenced by the boundary conditions of the problem and varies with the duration of water infiltration.

  20. Experimental study on the soil structure and permeability in aerated zone at CIRP's field test site

    International Nuclear Information System (INIS)

    Du Zhongde; Zhao Yingjie; Guo Zhiming

    2000-01-01

    Measurement of soil grain and pore size distribution, observation of soil microstructure and permeability test are used to study soil structure and permeability. The results show that soil heterogeneity in vertical soil profile is much great. The mean heterogeneity coefficient is 14.7. The eccentric rate of saturated permeability coefficient in vertical and horizontal direction is from 0.65 to 1.00. The mean coefficient is 0.93. So the soil can be considered to be isotropic from the view point of the groundwater dynamics. The permeability coefficient has more difference in different soil layers. In vertical profile, the saturated permeability coefficient is relatively great in upper and under layers. It is relatively small in middle layers

  1. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  2. Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2002-01-01

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences

  3. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Science.gov (United States)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  4. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  5. Pollutant transport in clayey sands: reactive flows in saturated porous media and unsaturated flows

    International Nuclear Information System (INIS)

    Cadalen, Sebastien

    2008-01-01

    In the context of nuclear risk control associated to nuclear waste storage, the french nuclear agency plays an increasing role in terms of research and development in the area of subsurface contamination. This study focuses on an homogeneous porous media constituted of Fontainebleau sand and clay grains (illite) presenting sorption capacities. The modeling of the complex geometry and physical phenomena at different scales enables us to describe the average transport at Darcy's scale. The two main axes developed are the impact of an heterogeneous sorption on transport phenomena and the dispersivity of an unsaturated porous media. (author) [fr

  6. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    International Nuclear Information System (INIS)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods

  7. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  8. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  9. Inert Carbon Nanoparticles for the Assessment of Preferential Flow in Saturated Dual-Permeability Porous Media

    KAUST Repository

    Yao, Chuanjin

    2017-06-07

    Knowledge of preferential flow in heterogeneous environments is essential for enhanced hydrocarbon recovery, geothermal energy extraction, and successful sequestration of chemical waste and carbon dioxide. Dual tracer tests using nanoparticles with a chemical tracer could indicate the preferential flow. A dual-permeability model with a high permeable core channel surrounded by a low permeable annulus was constructed and used to determine the viability of an inert carbon nanoparticle tracer for this application. A series of column experiments were conducted to demonstrate how this nanoparticle tracer can be used to implement the dual tracer tests in heterogeneous environments. The results indicate that, with the injection rate selected and controlled appropriately, nanoparticles together with a chemical tracer can assess the preferential flow in heterogeneous environments. The results also implement the dual tracer tests in heterogeneous environments by simultaneously injecting chemical and nanoparticle tracers.

  10. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  11. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  12. Review and selection of unsaturated flow models

    International Nuclear Information System (INIS)

    Reeves, M.; Baker, N.A.; Duguid, J.O.

    1994-01-01

    Since the 1960's, ground-water flow models have been used for analysis of water resources problems. In the 1970's, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970's and well into the 1980's focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M ampersand O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M ampersand O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing

  13. Barriers to bacterial motility on unsaturated surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also...... and their isogenic mutants unable to express various type of motility we aimed to quantify the physical limits of bacterial motility. Our results demonstrate how hydration controls bacterial motility under unsaturated conditions. They can form the base of improved biodegradation models that include microbial...

  14. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    International Nuclear Information System (INIS)

    Norton, D.L.; Glass, R.J.

    1993-01-01

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media

  15. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    Science.gov (United States)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  16. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  17. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  18. Effect of permeability enhancers on paracellular permeability of acyclovir.

    Science.gov (United States)

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  19. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Pruess, Karsten

    2001-01-01

    Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO 3 solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO 3 solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO 3 solutions into a new TOUGH2 equation-of-state module EWASG-NaNO 3 , which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary pressure and tortuosity. The

  20. Estimate of dispersion in an unsaturated aquifer

    Science.gov (United States)

    Stephenson, D.; De Jesus, A. S. M.

    1985-10-01

    The Nuclear Development Corporation of South Africa (Pty) Ltd. (NUCOR) is constructing a low-level radioactive waste disposal site near Springbok in Namaqualand, an arid region to the west of South Africa. A groundwater model was developed which required site-specific data and this work describes procedures developed to assess the dispersivity of the soil in the vicinity of the proposed site. Preliminary laboratory tests, carried out using a sodium chloride solution, indicated the order of magnitude of the dispersivity for saturated soil at various levels. This enabled site tests to be designed. The site tests were done by injecting a pulse of scandium-46 into a hole and monitoring the displacement of the radioactive cloud as it moved down under gravity and spread laterally. A mathematical model was developed to predict the behaviour of the cloud and calibration of the model yielded vertical and horizontal dispersivities. The dispersion of radioactivity at the cloud front was assumed to occur in unsaturated medium while the continuously injected water behind the radioactivity was assumed to disperse in a saturated medium. Thus monitoring the concentration of both yielded approximate values for the effective dispersivities in unsaturated and saturated media.

  1. NaturAnalogs for the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.

  2. Natural Analogs for the Unsaturated Zone

    International Nuclear Information System (INIS)

    Simmons, A.; Unger, A.; Murrell, M.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model

  3. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    Science.gov (United States)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to

  4. Heterogeneous Gossip

    Science.gov (United States)

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  5. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  6. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  7. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  8. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  9. Increase of radiation damage to potassium-ion permeability in E. coli cells with decrease in membrane fluidity

    International Nuclear Information System (INIS)

    Suzuki, S.

    1980-01-01

    Membrane lipids of an auxotroph of E. coli requiring unsaturated fatty acid were manipulated by supplementing the growth medium with unsaturated fatty acids of different chain lengths and/or configurations, and the radiation damage to K + -permeability of the resulting modified cells was investigated in relation with factors influencing membrane fluidity, such as temperature and procaine. Radiation had greater effects on membranes supplemented with unsaturated fatty acids of the trans configuration with a longer chain than on those of the cis configuration with a shorter chain. Radiation damage also increased with decrease in temperature. Furthermore, procaine-treated membranes showed increased resistance to radiation. All these results indicate that the damage was affected by the physical character of membrane lipids and that it was greater in membranes with decreased fluidity. (author)

  10. Deuterium labelling studies with unsaturated acids and nitriles

    International Nuclear Information System (INIS)

    Desai, U.V.; Mane, R.B.

    1986-01-01

    α-Deuteriated α,β-unsaturated acids have been prepared by Knoevenagel condensation of aldehydes with deuteriated malonic acid. The decarboxylation of α,β-unsaturated cyano acid with pyridine/D 2 O yields α- and γ-labelled nitriles. The deuterium incorporation is studied by pmr spectroscopy. (author). 8 refs

  11. TOUGH, Unsaturated Groundwater Transport and Heat Transport Simulation

    International Nuclear Information System (INIS)

    Pruess, K.A.; Cooper, C.; Osnes, J.D.

    1992-01-01

    1 - Description of program or function: A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO 2 ; water, air; water, air with vapour pressure lowering, and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH (Transport of Unsaturated Groundwater and Heat) is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent transitions between liquid and vapor. TOUGH takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy's law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase absorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat. 2 - Method of solution: All

  12. Transient Point Infiltration In The Unsaturated Zone

    Science.gov (United States)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  13. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  14. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    Science.gov (United States)

    Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  15. Nuclear-waste isolation in the unsaturated zone of arid regions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1982-05-01

    The vadose zone in arid regions is considered as a possible environment for geologic isolation of nuclear waste. There are several topographic and lithologic combinations in the vadose zone of arid regions that may lend themselves to waste isolation considerations. In some cases, topographic highs such as mesas and interbasin ranges - comprised of several rock types, may contain essentially dry or partially saturated conditions favorable for isolation. The adjacent basins, especially in the far western and southwestern US, may have no surface or subsurface hydrologic connections with systems ultimately leading to the ocean. Some rock types may have the favorable characteristics of very low permeability and contain appropriate minerals for the strong chemical retardation of radionuclides. Environments exhibiting these hydrologic and geochemical attributes are the areas underlain by tuffaceous rocks, relatively common in the Basin and Range geomorphic province. Adjacent valley areas, where tuffaceous debris makes up a significant component of valley fill alluvium, may also contain thick zones of unsaturated material, and as such also lend themselves to strong consideration as respository environments. This paper summarizes the aspects of nuclear waste isolation in unsaturated regimes in alluvial-filled valleys and tuffaceous rocks of the Basin and Range province

  16. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    Science.gov (United States)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  17. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  18. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  19. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  20. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  1. A statistical approach for water movement in the unsaturated zone

    International Nuclear Information System (INIS)

    Tielin Zang.

    1991-01-01

    This thesis presents a statistical approach for estimating and analyzing the downward transport pattern and distribution of soil water by the use of pattern analysis of space-time correlation structures. This approach, called the Space-time-Correlation Field, is mainly based on the analyses of correlation functions simultaneously in the space and time domain. The overall purpose of this work is to derive an alternative statistical procedure in soil moisture analysis without involving detailed information on hydraulic parameters and to visualize the dynamics of soil water variability in the space and time domains. A numerical model using method of characteristics is employed to provide hypothetical time series to use in the statistical method, which is, after the verification and calibration, applied to the field measured time series. The results of the application show that the space-time correlation fields reveal effects of soil layers with different hydraulic properties and boundaries between them. It is concluded that the approach poses special advantages when visualizing time and space dependent properties simultaneously. It can be used to investigate the hydrological response of soil water dynamics and characteristics in different dimensions (space and time) and scales. This approach can be used to identify the dominant component in unsaturated flow systems. It is possible to estimate the pattern and the propagation rate downwards of moisture movement in the soil profile. Small-scale soil heterogeneities can be identified by the correlation field. Since the correlation field technique give a statistical measure of the dependent property that varies within the space-time field, it is possible to interpolate the fields to points where observations are not available, estimating spatial or temporal averages from discrete observations. (au)

  2. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01

    The spatial variability of layer-scale hydrogeologic properties of the unsaturated zone (UZ) at Yucca Mountain, Nevada, is investigated using inverse modeling. The thick UZ is grouped into five hydrostratigraphic units and further into 35 hydrogeologic layers. For each layer, lateral variability is represented by the variations in calibrated values of layer-scale properties at different individual deep boreholes. In the calibration model, matrix and fracture properties are calibrated for the one-dimensional vertical column at each individual borehole using the ITOUGH2 code. The objective function is the summation of the weighted misfits between the ambient unsaturated flow (represented by measured state variables: water saturation, water potential, and pneumatic pressure) and the simulated one in the one-dimensional flow system. The objective function also includes the weighted misfits between the calibrated properties and their prior information. Layer-scale state variables and prior rock properties are obtained from their core-scale measurements. Because of limited data, the lateral variability of three most sensitive properties (matrix permeability, matrix of the van Genuchten characterization, and fracture permeability) is calibrated, while all other properties are fixed at their calibrated layer-averaged values. Considerable lateral variability of hydrogeologic properties is obtained. For example, the lateral variability of is two to three orders of magnitude and that of and is one order of magnitude. The effect of lateral variability on site-scale flow and transport will be investigated in a future study

  3. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  4. The biofiltration permeable reactive barrier: Practical experience from Synthesia

    Energy Technology Data Exchange (ETDEWEB)

    Vesela, L.; Nemecek, J.; Siglova, M.; Kubal, M. [DEKONTA, Prague (Czech Republic)

    2006-10-15

    The paper refers to utilization of biological elements within permeable reactive barriers. The concept of a biofiltration permeable barrier has been tested in the laboratory and in pilot-scale. Oxyhumolite (oxidized young lignite) was examined as an absorption material and a biofilm carrier. Laboratory tests performed before the pilot verification confirmed that oxyhumolite adsorbs organic pollutants at a minimum value, but that it can be used for biofilm attachment. An experimental barrier was built on premises of a chemical factory contaminated mainly by various organic pollutants (benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorobenzenes, naphthalene, nitro-derivatives, phenols, trichloroethylene (TCE), and total petroleum hydrocarbon (TPH)). Before the barrier was installed, a preliminary survey of the unsaturated zone, hydrogeological investigation, and a microbiological survey had been performed. The barrier was designed as a trench-and-gate system with an in situ bioreactor. During the year 2004, measurements of groundwater flux and retention time under current hydrological conditions, together with chemical and microbiological monitoring, were carried out on the site. The results showed high effectiveness of organic contamination removal. Average elimination varied from 57.3% (naphthalene) to 99.9% (nitro-derivatives, BTEX); microbial density in the bioreactor was approx. 10{sup 5} CFU mL{sup -1}.

  5. A quantitative geologic study of heterogeneity

    International Nuclear Information System (INIS)

    Davis, J.M.; Phillips, F.M.

    1990-01-01

    Spatial variation of hydraulic conductivity has been generally recognized as the dominant medium-dependent control on the transport and dispersion of contaminants in ground water. An empirical study focusing on the relationship between patters of sedimentology and patterns of permeability is being conducted at an outcrop of the Pliocene/Pleistocene Sierra Ladrones formation, central New Mexico. Methods of geostatistics and sedimentary basin analysis are employed to study the problem of aquifer heterogeneity. An air permeameter provides a means of obtaining extensive field measurements of air-flow rates through the sediments. These flow rates are subsequently used to characterize the permeability distribution of the outcrop. Both the geologic information and the air-flow rate data provide the basis for analysis of aquifer heterogeneity. Preliminary geologic mapping indicates that the sediments in the study area are the products of an arid fluvial/interfluvial depositional environment. Probability distribution analysis of the air-flow rate data suggests that the permeability of these sediments is log-normally distributed. The air permeability data are used to estimate variograms and correlation lengths in both the horizontal and vertical directions. At the scale of 10's of centimeters, the horizontal variograms exhibit exponential variogram behaviour . When two distinct lithologies are present, the correlation structure appears to be a nested exponential. Variogram analysis of estimated mean permeability at the scale of meters also shows evidence of a nested correlation structure in the horizontal direction and a periodic correlation structure in the vertical direction. Results of this study suggest that there is a direct connection between observable geologic structure and permeability statistics. (Author) (35 refs., 10 figs., 5 tabs.)

  6. Using chloride to trace water movement in the unsaturated zone at Yucca Mountain

    International Nuclear Information System (INIS)

    Fabryka-Martin, J.T.; Winters, S.T.; Wolfsberg, A.V.; Wolfsberg, L.E.; Roach, J.L.

    1998-01-01

    The nonwelded Paintbrush Tuff (PTn) hydrogeologic unit is postulated as playing a critical role in the redistribution of moisture in the unsaturated zone at Yucca Mountain, Nevada. Fracture-dominated flow in the overlying low-permeability, highly fractured Tiva Canyon welded (TCw) unit is expected to transition to matrix-dominated flow in the high-permeability, comparatively unfractured PTn. The transition process from fracture to matrix flow in the PTn, as well as the transition from low to high matrix storage capacity, is expected to damp out most of the seasonal, decadal, and secular variability in surface infiltration. This process should also result in the homogenization of the variable geochemical and isotopic characteristics of pore water entering the top of the PTn. In contrast, fault zones that provide continuous fracture pathways through the PTn may damp climatic and geochemical variability only slightly and may provide fast paths from the surface to the sampled depths, whether within the PTn or in underlying welded tuffs. Chloride (Cl) content and other geochemical data obtained from PTn pore-water samples can be used to independently derive infiltration rates for comparison with surface infiltration estimates, to evaluate the role of structural features as fast paths, and to assess the prevalence and extent to which water may be laterally diverted in the PTn due to contrasting hydrologic properties of its subunits

  7. Electrokinetic coupling in unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthai, S.; Finsterle, S.

    2007-02-27

    We consider a charged porous material that is saturated bytwo fluid phases that are immiscible and continuous on the scale of arepresentative elementary volume. The wetting phase for the grains iswater and the nonwetting phase is assumed to be an electricallyinsulating viscous fluid. We use a volume-averaging approach to derivethe linear constitutive equations for the electrical current density aswell as the seepage velocities of the wetting and nonwetting phases onthe scale of a representative elementary volume. These macroscopicconstitutive equations are obtained by volume-averaging Ampere's lawtogether with the Nernst Planck equation and the Stokes equations. Thematerial properties entering the macroscopic constitutive equations areexplicitly described as functions of the saturation of the water phase,the electrical formation factor, and parameters that describe thecapillary pressure function, the relative permeability function, and thevariation of electrical conductivity with saturation. New equations arederived for the streaming potential and electro-osmosis couplingcoefficients. A primary drainage and imbibition experiment is simulatednumerically to demonstrate that the relative streaming potential couplingcoefficient depends not only on the water saturation, but also on thematerial properties of the sample, as well as the saturation history. Wealso compare the predicted streaming potential coupling coefficients withexperimental data from four dolomite core samples. Measurements on thesesamples include electrical conductivity, capillary pressure, thestreaming potential coupling coefficient at various level of saturation,and the permeability at saturation of the rock samples. We found verygood agreement between these experimental data and the modelpredictions.

  8. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  9. Boundary integral methods for unsaturated flow

    International Nuclear Information System (INIS)

    Martinez, M.J.; McTigue, D.F.

    1990-01-01

    Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if αD > 4, where α is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on αD. 11 refs., 4 figs.,

  10. Thermal conductivity of unsaturated clay-rocks

    Directory of Open Access Journals (Sweden)

    D. Jougnot

    2010-01-01

    Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.

  11. Virus movement in soil during saturated and unsaturated flow.

    Science.gov (United States)

    Lance, J C; Gerba, C P

    1984-02-01

    Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.

  12. Unsaturated carbone and allenylidene ruthenium complexes from alkynes

    International Nuclear Information System (INIS)

    Bozek, Yu.L.; Diznev, P.A.

    1995-01-01

    The author's studies aimed at activation of terminal alkynes by metal complexes, reactivity patterns and selective preparations of unsaturated carbene, allenylidene and cumulenylidene derivatives of (arene)ruthenium complexes are reviewed. 48 refs

  13. Synthesis and study of novel silicon-based unsaturated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jibing [Iowa State Univ., Ames, IA (United States)

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  14. Modeling Raw Sewage Leakage and Transport in the Unsaturated Zone of Carbonate Aquifer Using Carbamazepine as an Indicator

    Science.gov (United States)

    Yakirevich, A.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Dvory, N. Z.

    2016-12-01

    Fast contamination of groundwater in karstic aquifers can be caused due to leaky sewers, for example, or overflow from sewer networks. When flowing through a karst system, wastewater has the potential to reach the aquifer in a relatively short time. The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused raw sewage to leak into the creek located in the study area. The subsequent infiltration of sewage through the thick ( 100 m) fractured/karst unsaturated zone led to a sharp increase in contaminant concentrations in the groundwater, which was monitored in a well located 29 meters from the center of the creek. Carbamazepine (CBZ) was used as an indicator for the presence of untreated raw sewage and its quantification in groundwater. The ultimate research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the fractured-porous unsaturated zone and karstified groundwater system. A quasi-3D dual permeability numerical model, representing the 'vadose zone - aquifer' system, was developed by a series of 1D equations solved in variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The 1D and 3D equations were coupled at the moving phreatic surface. The model was calibrated and applied to a simulated water flow scenario and CBZ transport during and after the observed sewage leakage event. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to elevated CBZ concentrations in the groundwater in the vicinity of the creek and tens of meters downstream. The resumption of autumn rains enhanced flushing of CBZ from the unsaturated zone and led to an increase in

  15. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  16. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  17. Effective permeability in micropores from molecular simulations

    International Nuclear Information System (INIS)

    Botan, A.; Vermorel, R.; Brochard, L.; Hantal, G.; Pellenq, R.

    2012-01-01

    Document available in extended abstract form only. Despite many years' efforts and a large numbers of proposed models, the description of transport properties in clays is still an open question. The reason for this is that structurally clay is an extremely heterogeneous material. The pore size varies from a few to 20 angstroms for interlayer (micro) porosity, from 20 A to 500 A for interparticle (meso) porosity, and 500 A to μm and more for natural (macro) fractures. One further problem with the description of the transport properties is the presence of adsorption/desorption processes onto clay particles, which are coupled with swelling/shrinkage of the particles. Any volumetric changes in the particles affect the meso-pore aperture, and thus, the total permeability of the system. The various processes affecting the permeability occur on different spatial and temporal scales, that requires a multi-scale modeling approach. The most complete model to date is a dual porosity mode. Here the total flow is often written as a sum of the macropore flow and micropore flow. The flow through macro-pores is generally considered to be laminar and obeys Darcy's law, whereas flow through the matrix (micropore flow) may be modeled using Fick's law. The micropore flow involves both Knudsen and surface diffusion mechanisms. An accurate accounting of adsorption-desorption processes or the consideration of binary mixture greatly complicate analytical description. The goal of this study is to improve macro-scale model, the dual porosity model, for the transport properties of fluids in micropores from molecular simulations. The main idea is that we reproduce an experimental set-up used for permeability measurements, as illustrated in Figure 1. High density and low density regions are settled at each end of the membrane that allows to attain a steady flow. The densities in these regions are controlled by Grand Canonical Monte Carlo simulation; the molecular motions are described by

  18. Application of TOUGH to hydrologic problems related to the unsaturated zone site investigation at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, E.M.; Healy, R.W. [Geological Survey, Lakewood, CO (United States); Bodvarsson, G.S. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-03-01

    To date, TOUGH and TOUGH2 have been the principal codes used by the U.S. Geological Survey in their investigation of the hydrology of the unsaturated zone at Yucca Mountain. Examples of some applications of the TOUGH and TOUGH2 codes to flow and transport problems related to the Yucca Mountain site investigation are presented, and the slight modifications made to the codes to implement them are discussed. These examples include: (1) The use of TOUGH in a simple fracture network model, with a discussion of an approach to calculate directional relative permeabilities at computational cells located at fracture intersections. These simulations illustrated that, under unsaturated conditions, the locations of dominant pathways for flow through fracture networks are sensitive to imposed boundary conditions; (2) The application of TOUGH to investigate the possible hydrothermal effects of waste-generated heat at Yucca Mountain using a dual-porosity, dual-permeability treatment to better characterize fracture-matrix interactions. Associated modifications to TOUGH for this application included implementation of a lookup table that can express relative permeabilities parallel and transverse to the fracture plane independently. These simulations support the continued use of an effective media approach in analyses of the hydrologic effects of waste-generated heat; and (3) An investigation of flow and tracer movement beneath a wash at Yucca Mountain in which a particle tracker was used as a post-processor. As part of this study, TOUGH2 was modified to calculate and output the x-,y- and z- sequence of tuffs overlying the potential repository site will result in the formation of capillary barriers that locally promote considerable lateral flow, thereby significantly decreasing the magnitude of fluxes form peak values at the ground surface and delaying the arrival of surface-derived moisture at the potential repository horizon.

  19. Unsaturated Zone Flow Patterns and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers

    2001-10-17

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses

  20. Unsaturated Zone Flow Patterns and Analysis

    International Nuclear Information System (INIS)

    Ahlers, C.

    2001-01-01

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M and O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be

  1. Synthesis of rearranged unsaturated drimane derivatives

    Directory of Open Access Journals (Sweden)

    Miranda Domingos S. de

    2001-01-01

    Full Text Available A full account to the preparation and application of three appropriately substituted vinylcyclohexenes (2,2-dimethyl-3-vinylcyclohex-3-en-1-ol, 2,2-dimethyl-3-vinylcyclohex-3-en-1-one and 3,3-dimethyl-2-vinylcyclohexene in thermal Diels-Alder reactions with alpha,beta-unsaturated esters (methyl tiglate and methyl angelate is given. This approach delivered the racemic synthesis of ten octalin derivatives bearing a rearranged drimane skeleton (4 diastereomers of 1-methoxycarbonyl-6-hydroxy-1,2,5,5-tetramethyl-1,2,3,5,6,7, 8,8a-octahydronaphthalene; 1-methoxycarbonyl-6-oxo-1,2,5,5-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalene; 2-methoxycarbonyl-6-oxo-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene; 3 diastereomers of 1-methoxycarbonyl-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene and 2-methoxycarbonyl-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene . Central synthetic features included preparation of enoltriflates by Stang's protocol and the successful palladium-catalyzed cross-coupling reaction (Stille reaction of the triflate with the tri-n-butylvinylstannane. The octalins relative stereochemistry was unequivocally ascertained by spectroscopic methods and/or X-ray crystallography and these data now stand as useful tools to support the correct assignment of related natural products usually isolated in minute amounts.

  2. Characterization of the permeability of the blast furnace lower part

    International Nuclear Information System (INIS)

    Negro, P.; Petit, C.; Urvoy, A.; Sert, D.; Pierret, H.

    2001-01-01

    In the context of high coal injection and high productivity operation, the coke behaviour inside the blast furnace hearth is the main parameter to control. Different and complementary investigations as radioactive and helium tracer injections, liquids and coke samplings, have been carried out at Sollac Fos BF1 using the tuyere probe to determine the hearth permeability and its evolutions as a function of the main control parameters, and to understand the hearth activity. The results of all these experiments give a very consistent picture of a heterogenous hearth with three concentric areas of various permeabilities to gas and liquids. A two concentric zones model has been built, which is in good agreement with the experimental results. It enables to evaluate the impact of the central zone on the liquids flow at the periphery. (author)

  3. Monte Carlo simulation of radioactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.; Zio, E.

    2005-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of artificial and natural geologic barriers. The complexity of the transport process in the barriers' heterogeneous media forces approximations to the classical analytical-numerical models, thus reducing their adherence to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov and Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under unsteady flow conditions. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content, which changes in space and time during the water infiltration process. The approach is verified with respect to a case of non-reactive transport under transient unsaturated field conditions by a comparison with a standard code based on the classical advection-dispersion equations. An application regarding linear reactive transport is then presented. (authors)

  4. Water infiltration and heat transfer in one dimensional unsaturated packed beds; Fuhowa ryushi sonai no ichijigen suibun nagare to dennetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, K; Akahori, M; Hattori, M [Nagaoka University of Technology, Niigata (Japan); Shiraishi, N [Toshiba Corp., Tokyo (Japan)

    1998-05-25

    Water and heat transport in unsaturated packed beds due to supplying hot water have been investigated experimentally and theoretically. Using various sizes of glass beads, capillary pressure and permeability in packed beds were measured in unsaturated beds. The distributions in water saturation and temperature were predicted for one dimensional packed bed, based on a model assuming local thermal equilibrium among water, gas and particles at any specific space. The predicted temperature distributions were compared with the experimental results obtained using various glass sizes. In layered packed beds, water saturation becomes discontinuous at the interface of two layers because of the difference of the water characteristics between two beds. Water penetrates faster in coarse-over fine-textured profile compared with in fine-over coarse-textured profile. Similarly, the temperature rises faster in former profile under the same supplied heat quantity. 11 refs., 13 figs., 1 tab.

  5. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  6. The origin of preferential flow and non-equilibrium transport in unsaturated heterogeneous porous systems

    NARCIS (Netherlands)

    Baviskar, S.M.

    2016-01-01

    Stabilization of waste bodies of landfill is achieved by treating the waste body using irrigation, recycling of leachate combined with landfill gas extraction and/or aeration. In order for the regulators and landfill operators to agree on a required level of after care, a quantitative estimation of

  7. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.

  8. Fingering in unsaturated zone flow: a qualitative review with laboratory experiments on heterogeneous systems

    CSIR Research Space (South Africa)

    Sililo, OTN

    2000-11-01

    Full Text Available of flow will be greatest where the fine-grained layer is thinnest; (5) surface depressions in an upper fine-grained layer will concentrate flow, with fingers forming below such areas; and (6) in systems where an upper fine-grained layer has macro pores...

  9. Soil and Waste Matrix Affects Spatial Heterogeneity of Bacteria Filtration during Unsaturated Flow

    Directory of Open Access Journals (Sweden)

    Adrian Unc

    2015-02-01

    Full Text Available Discontinuous flows resulting from discrete natural rain events induce temporal and spatial variability in the transport of bacteria from organic waste through soils in which the degree of saturation varies. Transport and continuity of associated pathways are dependent on structure and stability of the soil under conditions of variable moisture and ionic strength of the soil solution. Lysimeters containing undisturbed monoliths of clay, clay loam or sandy loam soils were used to investigate transport and pathway continuity for bacteria and hydrophobic fluorescent microspheres. Biosolids, to which the microspheres were added, were surface applied and followed by serial irrigation events. Microspheres, Escherichia coli, Enterococcus spp., Salmonella spp. and Clostridium perfringens were enumerated in drainage collected from 64 distinct collection areas through funnels installed in a grid pattern at the lower boundary of the monoliths. Bacteria-dependent filtration coefficients along pathways of increasing water flux were independent of flow volume, suggesting: (1 tracer or colloid dependent retention; and (2 transport depended on the total volume of contiguous pores accessible for bacteria transport. Management decisions, in this case resulting from the form of organic waste, induced changes in tortuosity and continuity of pores and modified the effective capacity of soil to retain bacteria. Surface application of liquid municipal biosolids had a negative impact on transport pathway continuity, relative to the solid municipal biosolids, enhancing retention under less favourable electrostatic conditions consistent with an initial increase in straining within inactive pores and subsequent by limited re-suspension from reactivated pores.

  10. Modeling of water flow and solute transport in unsaturated heterogeneous fields

    International Nuclear Information System (INIS)

    Bresler, E.; Dagan, G.

    1982-01-01

    A comprehensive model which considers dispersive solute transport, nonsteady moisture flow regimes and complex boundary conditions is described. The main assumptions are: vertical flow; spatial variability which is associated with the saturated hydraulic conductivity K/sub s/ occurs in the horizontal plane, but is constant in the profile, and has a lognormal probability distribution function (PDF); deterministic recharge and solute concentration are applied during infiltration; the soil is at uniform water content and salt concentration prior to infiltration. The problem is to solve, for arbitrary K/sub s/, the Richards' equation of flow simultaneously with the diffusion-convection equation for salt transport, with the boundary and initial conditions appropriate to infiltration-redistribution. Once this is achieved, the expectation and variance of various quantities of interest (solute concentration, moisture content) are obtained by using the statistical averaging procedure and the given PDF of K/sub s/. Since the solution of Richards' equation for the infiltration-redistribution cycle is extremely difficult (for a given K/sub s/), an approxiate solution is derived by using the concept of piston flow type wetting fronts. Similarly, accurate numerical solutions are used as input for the same statistical averaging procedure. The stochastic model is applied to two spatially variable soils by using both accurate numerical solutions and the simplified water and salt transport models. A comparison between the results shows that the approximate simplified models lead to quite accurate values of the expectations and variances of the flow variables for the entire field. It is suggested that in spatially variable fields, stochastic modeling represents the actual flow phenomena realistically, and provides the main statistical moments by using simplified flow models which can be used with confidence in applications

  11. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  12. Permeable Pavement Research - Edison, New Jersey

    Science.gov (United States)

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  13. Parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

    2001-01-01

    This paper presents the application of parallel computing techniques to large-scale modeling of fluid flow in the unsaturated zone (UZ) at Yucca Mountain, Nevada. In this study, parallel computing techniques, as implemented into the TOUGH2 code, are applied in large-scale numerical simulations on a distributed-memory parallel computer. The modeling study has been conducted using an over-one-million-cell three-dimensional numerical model, which incorporates a wide variety of field data for the highly heterogeneous fractured formation at Yucca Mountain. The objective of this study is to analyze the impact of various surface infiltration scenarios (under current and possible future climates) on flow through the UZ system, using various hydrogeological conceptual models with refined grids. The results indicate that the one-million-cell models produce better resolution results and reveal some flow patterns that cannot be obtained using coarse-grid modeling models

  14. Compilation of field-scale caisson data on solute transport in the unsaturated zone

    International Nuclear Information System (INIS)

    Polzer, W.L.; Essington, E.H.; Fuentes, H.R.; Nyhan, J.W.

    1986-11-01

    Los Alamos National Laboratory has conducted technical support studies to assess siting requirements mandated by Nuclear Regulatory Commission in 10 CFR Part 61. Field-scale transport studies were conducted under unsaturated moisture conditions and under steady and unsteady flow conditions in large caissons located and operated in a natural (field) environment. Moisture content, temperature, flow rate, base-line chemical, tracer influent, and tracer breakthrough data collected during tracer migration studies in the caisson are compiled in tables and graphs. Data suggest that the imposition of a period of drainage (influent solution flow was stopped) may cause an increase in tracer concentration in the soil solution at various sampling points in the caisson. Evaporation during drainage and diffusion of the tracers from immobile to mobile water are two phenomena that could explain the increase. Data also suggest that heterogeneity of sorption sites may increase the variability in transport of sorbing tracers compared with nonsorbing tracers

  15. Flow modelling and radionuclide transport research and development in saturated and unsaturated soils

    International Nuclear Information System (INIS)

    Carvalho Filho, Carlos Alberto de; Branco, Otavio Eurico de Aquino; Loureiro, Celso de Oliveira

    1996-01-01

    The Engenho Nogueira Hydrogeological Project, PROHBEN, was idealized with the goal of implementing an Experimental Hydrogeological basin within its limits, in order to permit the development of hydrogeological studies and techniques, mainly in the modeling of flow and transport of contaminants (radionuclides) in the saturated and unsaturated porous media. The PROHBEN is located in Belo Horizonte, Minas Gerais, amounting a 5 km 2 area. The local porous-granular, heterogeneous and anisotropic, water-table aquifer reaches 40 meters of thickness, and is compound mainly by alluvial deposits and alteration rocks products, with a sandy texture. The flow and transport modeling are being done using the Modflow and MT3D codes. Three master degree researches are being done in the PROHBEN area and one expects is that more researchers come to use this experimental site. (author)

  16. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  17. Unsaturated water flow and tracer transport modeling with Alliances

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, Alina, E-mail: alina.constantin@nuclear.ro [Institute for Nuclear Research, Campului Str, No. 1, PO Box 78, Postal Code 115400 Mioveni, Arges County (Romania); Genty, Alain, E-mail: alain.genty@cea.fr [CEA Saclay, DM2S/SFME/LSE, Gif-sur-Yvette 91191 cedex (France); Diaconu, Daniela; Bucur, Crina [Institute for Nuclear Research, Campului Str, No. 1, PO Box 78, Postal Code 115400 Mioveni, Arges County (Romania)

    2013-12-15

    Highlights: • Simulation of water flow and solute transport at Saligny site, Romania was done. • Computation was based on the available experimental data with Alliances platform. • Very good results were obtained for the saturation profile in steady state. • Close fit to experimental data for saturation profile at 3 m in transient state. • Large dispersivity coefficients were fitted to match tracer experiment. - Abstract: Understanding water flow and solute transport in porous media is of central importance in predicting the radionuclide fate in the geological environment, a topic of interest for the performance and safety assessment studies for nuclear waste disposal. However, it is not easy to predict transport properties in real systems because they are geologically heterogeneous from the pore scale upwards. This paper addresses the simulation of water flow and solute transport in the unsaturated zone of the Saligny site, the potential location for the Romanian low and intermediate level waste (LILW) disposal. Computation was based on the current available experimental data for this zone and was performed within Alliances, a software platform initially jointly developed by French organizations CEA, ANDRA and EDF. The output of the model developed was compared with the measured values in terms of saturation profile of the soil for water movement, in both steady and transient state. Very good results were obtained for the saturation profile in steady state and a close fit of the simulation over experimental data for the water saturation profile at a depth of 3 m in transient state. In order to obtain information regarding the solute migration in depth and the solute lateral dispersion, a tracer test was launched on site and dispersivity coefficients of the solute were fitted in order to match the experimental concentration determined on samples from different locations of the site. Results much close to the experiment were obtained for a longitudinal

  18. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.

    1987-01-01

    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  19. Stochastic analysis of radionuclide migration in saturated-unsaturated soils

    International Nuclear Information System (INIS)

    Kawanishi, Moto

    1988-01-01

    In Japan, LLRW (low level radioactive wastes) generated from nuclear power plants shall be started to store concentrically in the Shimokita site from 1990, and those could be transformed into land disposal if the positive safety is confirmed. Therefore, it is hoped that the safety assessment method shall be successed for the land disposal of LLRW. In this study, a stochastic model to analyze the radionuclide migration in saturated-unsaturated soils was constructed. The principal results are summarized as follows. 1) We presented a generalized idea for the modeling of the radionuclide migration in saturated-unsaturated soils as an advective-dispersion phenomena followed by the decay of radionuclides and those adsorption/desorption in soils. 2) Based on the radionuclide migration model mentioned above, we developed a stochastic analysis model on radionuclide migration in saturated-unsaturated soils. 3) From the comparison between the simulated results and the exact solution on a few simple one-dimensional advective-dispersion problems of radionuclides, the good validity of this model was confirmed. 4) From the comparison between the simulated results by this model and the experimental results of radionuclide migration in a one-dimensional unsaturated soil column with rainfall, the good applicability was shown. 5) As the stochastic model such as this has several advantages that it is easily able to represent the image of physical phenomena and has basically no numerical dissipation, this model should be more applicable to the analysis of the complicated radionuclide migration in saturated-unsaturated soils. (author)

  20. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  1. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  2. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  3. An experimental program for testing the validity of flow and transport models in unsaturated tuff: The Yucca Mountain Project

    International Nuclear Information System (INIS)

    Shephard, L.E.; Glass, R.J.; Siegel, M.D.; Tidwell, V.C.

    1990-01-01

    Groundwater flow and contaminant transport through the unsaturated zone are receiving increased attention as options for waste disposal in saturated media continue to be considered as a potential means for resolving the nation's waste management concerns. An experimental program is being developed to test the validity of conceptual flow and transport models that are being formulated to predict the long-term performance at Yucca Mountain. This program is in the developmental stage and will continue to evolve as information is acquired and knowledge is improved with reference to flow and transport in unsaturated fractured media. The general approach for directing the validation effort entails identifying those processes which may cause the site to fail relative to imposed regulatory requirements, evaluating the key assumptions underlying the conceptual models used or developed to describe these processes, and developing new conceptual models as needed. Emphasis is currently being placed in four general areas: flow and transport in unsaturated fractures; fracture-matrix interactions; infiltration flow instability; and evaluation of scale effects in heterogeneous fractured media. Preliminary results and plans or each of these areas for both the laboratory and field investigation components will be presented in the manuscript. 1 ref

  4. Effects of the hydraulic conductivity of the matrix/macropore interface on cumulative infiltrations into dual-permeability media

    Science.gov (United States)

    Lassabatere, L.; Peyrard, X.; Angulo-Jaramillo, R.; Simunek, J.

    2009-12-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model (referred to as the 2K model) assumes that flow is governed by Richards equation in both porous regions (matrix and macropores). Water can be exchanged between the two regions following a first-order rate law. Although several studies have dealt with such modeling, no study has evaluated the influence of the hydraulic conductivity of the matrix/macropore interface on water cumulative infiltration. And this is the focus of this study. An analytical scaling method reveals the role of the following main parameters for given boundary and initial conditions: the saturated hydraulic conductivity ratio (R_Ks), the water pressure scale parameter ratio (R_hg), the saturated volumetric water content ratio (R_θs), and the shape parameters of the water retention and hydraulic conductivity functions. The last essential parameter is related to the interfacial hydraulic conductivity (Ka) between the macropore and matrix regions. The scaled 2K flow equations were solved using HYDRUS-1D 4.09 for the specific case of water infiltrating into an initially uniform soil profile and a zero pressure head at the soil surface. A sensitivity of water infiltration was studied for different sets of scale parameters (R_Ks, R_hg, R_θs, and shape parameters) and the scaled interfacial conductivity (Ka). Numerical results illustrate two extreme behaviors. When the interfacial conductivity is zero (i.e., no water exchange), water infiltrates separately into matrix and macropore regions, producing a much deeper moisture front in the macropore domain. In the opposite case

  5. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    Science.gov (United States)

    Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.

    1999-01-01

    Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In

  6. Microstructure-based characterization of permeability using a random walk model

    International Nuclear Information System (INIS)

    Chen, F F; Yang, Y S

    2012-01-01

    Quantitative transport properties of materials are analysed using a random walk model, based on the microscopic compositional distribution of compositions in the materials. A material sample is defined on a simple-cubic lattice, with volume fractions specified for each composition on every volume pixel (voxel). The quantitative relation between bulk permeability and fine-scale anisotropy is investigated by assuming fully anisotropic and fully isotropic voxel morphology. Such a study has prompted an analytic approximate formulation to predict bulk permeability range for a heterogeneous multi-component system that lacks detailed microstructure information. The numerical approach is verified on synthetic structures with known permeability. The analysis technique is applied to a real-world rock sample, as illustrated by a case study detailed in this paper. The investigations show that the bulk permeability is affected significantly by fine length scale anisotropy. (paper)

  7. Characterization of the Infiltration Capacity of Porous Concrete Pavements with Low Constant Head Permeability Tests

    Directory of Open Access Journals (Sweden)

    Valerio C. Andres-Valeri

    2018-04-01

    Full Text Available Porous concrete (PC has been extensively used as a surface layer in permeable pavements. The effectiveness of this material in managing stormwater runoff depends not only on subsurface storage, but on infiltration capacity during rainfall events. A variety of tests have been traditionally used for assessing their infiltration capacity, however, there is still uncertainty about whether these tests produce representative performance results under real conditions. This study aims to propose a methodology based on saturated and unsaturated low constant head (LCH permeability tests, in order to characterize in detail the infiltration performance of PC materials during storm events and predict their infiltration behavior over time. To this end, three different infiltration tests were performed on PC specimens, both in newly built conditions and after being clogged. These experiments included unsaturated LCH, Laboratorio Caminos Santander (LCS (one falling head permeameter and saturated LCH tests. The results achieved were analyzed to describe the infiltration performance of the PC pavements tested. Finally, the correlation between the results obtained from on-site tests and laboratory scale devices was studied, providing the regression equations required to apply the infiltration models developed with easily measurable parameters. Consequently, the outputs of this research showed the suitability of the proposed methodology for assessing the infiltration behavior of PC pavements during storm events.

  8. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  9. Hydrogeological Characterization of Low-permeability Clayey Tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian

    The topic of this PhD thesis is an integrated investigation of sand lenses in glacial diamictons. Sand lenses indicate various deposition regimes and glaciotectonic deformation styles and are as such important features in studies of glacial sediments. In a hydrogeological framework, sand lenses......-dimensional realizations indicate clear channel networks, whereas only limited connectivity was found for the two-dimensional case. This is an important aspect because it emphasizes the need to collect data and to represent this type of heterogeneity in 3D. The physical response of sand lens heterogeneity was evaluated...... enhance the horizontal spreading of contaminants without a significant increase of the equivalent permeability in the till. Overall, sand lenses occur in all types of glacial sediments and with a broad range of shapes and hydraulic properties. Geometric characterization enabled classification of the most...

  10. A framework for the behaviour of unsaturated expansive clays

    International Nuclear Information System (INIS)

    Gens, A.; Alonso, E.E.

    1992-01-01

    The paper presents a framework for describing the mechanical behaviour of unsaturated expansive clays. It is an extension of an existing formulation developed for unsaturated soils of low activity. The extended framework is based on the distinction within the material of a microstructural level where the basic swelling of the active minerals takes place, and a macrostructural level responsible for major structural rearrangements. Bu adopting simple assumptions concerning the coupling between the two levels, it is possible to reproduce major features of the behaviour of unsaturated expansive clays. Some selected qualitative comparisons between model predictions and experimental results reported in the literature are presented. Despite the simplified hypotheses made, a very encouraging agreement is obtained

  11. Second European Conference on Unsaturated Soils, E-UNSAT 2012

    CERN Document Server

    Jommi, Cristina; D’Onza, Francesca; Unsaturated Soils: Research and Applications

    2012-01-01

    These volumes contain the contributions to the Second European Conference on Unsaturated Soils, E-UNSAT 2012, held in Napoli, Italy, in June 2012. The event is the second of a series of European conferences, and follows the first successful one, organised in Durham, UK, in 2008. The conference series is supported by Technical Committee 106 of the International Society of Soil Mechanics and Geotechnical Engineering on Unsaturated Soils. The published contributions were selected after a careful peer-review process. A collection of more than one hundred papers is included, addressing the three thematic areas experimental, including advances in testing techniques and soil behaviour, modelling, covering theoretical and constitutive issues together with numerical and physical modelling, and engineering, focusing on approaches, case histories and geo-environmental themes. The areas of application of the papers embrace most of the geotechnical problems related to unsaturated soils. Increasing interest in geo-environm...

  12. Effect of aggregate grain size distribution on properties of permeable ...

    African Journals Online (AJOL)

    ) ratio on the mechanical properties of permeable concrete is investigated. The aim of this study is to prepare permeable concrete mixture with optimum properties in terms of strength and permeability. For this purpose, five different permeable ...

  13. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    Science.gov (United States)

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  14. Analysis of unsaturated clayey materials hydration incorporating the effect of thermo-osmotic flow

    International Nuclear Information System (INIS)

    Sanchez, M.; Arson, C.

    2012-01-01

    past, for example Soler (2001) studied the impact of coupled phenomena on the long-term behavior of radioactive waste repositories in saturated argillaceous rock. Bing (2006) proposed an analytical solution in the half-space for the thermal consolidation of layered saturated soils, including the influences of thermo-osmosis and thermal filtration. Chen et al. (2009) recently proposed a coupled Thermo-Hydro-Mechanical (THM) formulation which accounts for the flow of water and air driven by temperature gradients. The aim of this work is to explore the impact of thermo-osmosis on the hydration of clayey soils and rocks generally used in the design of nuclear waste disposals. Both small scale experiments and large scale problems are analyzed. A coupled THM formulation has been extended to deal with thermal osmosis in porous media. Special emphasis is put on the study of thermo-osmotic flow in unsaturated low permeability clays. A simple model was implemented in Theta-Stock program to study thermo-osmotic effects in the performance of a nuclear waste repository. The thermo-osmotic conductivity K fT is assumed to be a scalar (k T ). The permeability of the liquid phase in the initial state is around 5*10-13 m.s -1 . The thermo-osmotic coefficient k T is taken 100 times higher than the typical permeability of the massif: k T = 5*10 -11 m.s -1 . Containers are assumed to be stored in a 100- meter depth horizontal gallery. The ground water is located at 500 meters depth. The initial saturation degree of the ground mass was 0.15. The response of the unsaturated tuff is studied over 1000 years. The material parameters, related to fluid and temperature effects, are taken from the data given by Pollock (1986). Up to 200 years of heating, the trends of the saturation degree are the same in both models. But the magnitudes are different around the heating source, between 80 meters and 140 meters deep. With the model accounting for thermo-osmotic effects, the saturation degree is

  15. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  16. Electrokinetic remediation of anionic contaminants from unsaturated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs

  17. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  18. Biofilm Effect on Flow Structure over a Permeable Bed

    Science.gov (United States)

    Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.

    2017-12-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  19. Permeability of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-12-01

    The object of the study was the water flow through the bentonite which is caused by hydraulic gradients. The study comprised laboratory tests and theoretical considerations. It was found that high bulk densities reduced the permeability to very low values. It was concluded that practically impervious conditions prevail when the gradients are low. Thus with a regional gradient of 10 -2 and a premeability of 10 -13 m/s the flow rate will not be higher than approximately 1 mm in 30 000 years. (G.B.)

  20. PHYSICAL AND CHEMICAL PROPERTIES IN RELATION WITH SOIL PERMEABILITY IN THE AREA OF VELIKA GORICA WELL FIELD

    Directory of Open Access Journals (Sweden)

    Zoran Kovač

    2018-01-01

    Full Text Available Hydraulic parameters affects behaviour of various ions in soils. The goal of this paper was to get better understanding of relationship between physical and chemical properties and soil permeability at the location of case study profile Velika Gorica, based on the physical and chemical data. Soil profile is situated in the Eutric Cambisol of the Zagreb aquifer, Croatia. Zagreb aquifer represents the only source of potable water for inhabitants of the City of Zagreb and Zagreb County. Based on the data obtained from particle size analysis, soil hydraulic parameters and measured water content, unsaturated hydraulic conductivity values were calculated for the estimation of soil profile permeability. Soil water retention curves and unsaturated hydraulic conductivities are very similar for all depths because soil content does not change significantly through the depth. Determination of anions and cations on soil samples was performed using the method of ion chromatography. Results showed decrease of ions concentrations after 0.6 m depth. SAR distribution in the soil profile shows that SAR values are not significantly changing at the soil profile. The highest CEC and EC values are determined in horizon Bw developed in 0.6 m depth which is consistent with highest SAR value and ions concentrations. All results suggest that physical and chemical properties of investigated profile are in relationship with soil permeability.

  1. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  2. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  3. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  4. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  5. Simulation of the degradation of a concrete/clay interface: influence of temperature, unsaturated conditions and porosity variations

    International Nuclear Information System (INIS)

    Burnol, A.; Dupros, F.; Spycher, N.; Xu, T.; Gaucher, E.C.

    2006-01-01

    For long-lived intermediate-level radioactive waste, the use of concrete as engineering barrier and Callovian-Oxfordian clay as geological barrier at a depth of 500 m is considered in the French disposal concept (ANDRA, 2005). Upon emplacement, initially unsaturated concrete is expected to experience coupled processes involving heating, re-saturation with groundwater from the clay formation, gas exchanges and geochemical reactions. After an early period of re-saturation, solute transport is supposed to be diffusion-controlled because of the extremely low permeability of the two media. These coupled processes may lead to changes in the porosity of the concrete or clay barriers. In the present paper, a fully coupled Thermo-Hydro-Chemical (THC) response of a two-phase (gas and solution) mass-transfer model was evaluated and tested by a sensitivity analysis. This study is an extension of a previous model applied to an isothermal and fully saturated concrete/clay interface (Burnol et al., 2005); it investigated the coupled effect of temperature and unsaturated conditions assuming no production of H2(g). The system was simulated for a 2000-year period, which covers the most predominant thermal perturbation

  6. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry.

    Science.gov (United States)

    Stinson, Craig A; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.

  7. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.

  8. Challenging and improving conceptual models for isothermal flow in unsaturated, fractured rock through exploration of small-scale processes

    International Nuclear Information System (INIS)

    Glass, R.J.; Nicholl, M.J.; Tidwell, V.C.

    1996-01-01

    Over the past several years, the authors have performed experimental studies focused on understanding small-scale flow processes within discrete fractures and individual matrix blocks; much of the understanding gained in that time differs from that underlying the basic assumptions used in effective media representations. Here they synthesize the process level understanding gained from their laboratory studies to explore how such small-scale processes may influence the behavior of fluid flow in fracture networks and ensembles of matrix blocks at levels sufficient to impact the formulation of intermediate-scale effective media properties. They also explore, by means of a thought experiment, how these same small-scale processes could couple to produce a large-scale system response inconsistent with current conceptual models based on continuum representations of flow through unsaturated, fractured rock. Based on their findings, a number of modifications to existing dual permeability models are suggested that should allow them improved applicability; however, even with these modifications, it is likely that continuum representations of flow through unsaturated fractured rock will have limited validity and must therefore be applied with caution

  9. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. SYNTHESIS OF 2,3-UNSATURATED FURANIC HEX- AND PENT ...

    African Journals Online (AJOL)

    a

    [12] and reduction in two steps of 3-(2-furyl)-acrolein[13] in good yields. The reaction of alcohols 2a-e with glucal 1, carried out in presence of boron trifluoride [7]. (method A), ferric chloride [11] (method B) and CAN [10] (method C), afforded the corresponding 2,3-unsaturated glucopyranosides 3a-e (Table 1). Table 1.

  11. Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt

    Institute of Scientific and Technical Information of China (English)

    Guo Cheng YANG; Yan PAN; Jian GONG; Chang Lu SHAO; Shang Bin WEN; Chen SHAO; Lun Yu QU

    2004-01-01

    Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats.The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.

  12. Effect Of Intraruminal Infussion Of Saturated And Unsaturated Fatty ...

    African Journals Online (AJOL)

    This study describes the effect of intraruminal infusion of diferent proportions of palmitic (saturated fatty acid) and linolenic (unsaturated fatty acid) on rumen degradability of organic matter fraction of Pennisetium purpureum, total volatile fatty acid and total methane productions in West African Dwarf sheep. Five combination ...

  13. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  14. Review of Upscaling Methods for Describing Unsaturated Flow

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian D.

    2000-09-26

    Representing samll-scale features can be a challenge when one wants to model unsaturated flow in large domains. In this report, the various upscaling techniques are reviewed. The following upscaling methods have been identified from the literature: stochastic methods, renormalization methods, volume averaging and homogenization methods. In addition, a final technique, full resolution numerical modeling, is also discussed.

  15. Low temperature irradiation of vitrifiable mixtures of unsaturated monomers

    International Nuclear Information System (INIS)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1975-01-01

    A specific mixture containing at least one polymerizable unsaturated monomer which is not vitrifiable by itself can advantageously be polymerized by irradiating the mixture at a temperature not higher than 100 0 C above glass transition temperature of the mixture with an ionizing radiation and/or a light. 12 claims, 6 drawings, figures

  16. Numerical convergence improvements for porflow unsaturated flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.

  17. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  18. Movement of pentachlorophenol in unsaturated soil by electrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, M.; Sills, G. [Dept. of Engineering Science, Oxford (United Kingdom); Jackman, S. [Dept. of Engineering Science, Oxford (United Kingdom)]|[NERC Centre for Ecology and Hydrology, Oxford (United Kingdom); Thompson, I. [NERC Centre for Ecology and Hydrology, Oxford (United Kingdom)

    2001-07-01

    Electrokinetic experiments have been performed on unsaturated natural soil specimens artificially contaminated with pentachlorophenol. Movement of pentachlorophenol within the soil mass has been demonstrated, but no contaminant was discovered in any effluent fluids. The results indicate that it may be possible to improve the bioavailability of the pollutant to degradative microorganisms using electrokinetics, by moving the chemical and microbes relative to each others. (orig.)

  19. The synthesis of some unsaturated 4-substituted-g-lactones

    Directory of Open Access Journals (Sweden)

    SUREN HUSINEC

    2000-02-01

    Full Text Available The synthesis of conjugated and nonconjugated unsaturated 4-substituted lactones of type 1 and 2 are described. The type 1 lactone was prepared by a two step procedure employing Bredereck's reagent. The type 2 lactone was synthesised by combining the Claisen-Ireland rearrangement and selenolactonisation.

  20. Uncertainty analyses of unsaturated zone travel time at Yucca Mountain

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1993-01-01

    Uncertainty analysis method can be applied to numerical models of ground-water flow to estimate the relative importance of physical and hydrologic input variables with respect to ground-water travel time. Monte Carlo numerical simulations of unsaturated flow in the Calico Hills nonwelded zeolitic (CHnz) layer at Yucca Mountain, Nevada, indicate that variability in recharge, and to a lesser extent in matrix porosity, explains most of the variability in predictions of water travel time through the unsaturated zone. Variations in saturated hydraulic conductivity and unsaturated curve-fitting parameters were not statistically significant in explaining variability in water travel time through the unsaturated CHnz unit. The results of this study suggest that the large uncertainty associated with recharge rate estimates for the Yucca Mountain site is of concern because the performance of the potential repository would be more sensitive to uncertainty in recharge than to any other parameter evaluated. These results are not exhaustive because of the limited site characterization data available and because of the preliminary nature of this study, which is limited to a single stratigraphic unit, one dimension, and does not account for fracture flow or other potential fast pathways at Yucca Mountain

  1. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  2. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  3. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  5. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Science.gov (United States)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  6. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-01-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al

  7. Design of an intermediate-scale experiment to validate unsaturated- zone transport models

    International Nuclear Information System (INIS)

    Siegel, M.D.; Hopkins, P.L.; Glass, R.J.; Ward, D.B.

    1991-01-01

    An intermediate-scale experiment is being carried out to evaluate instrumentation and models that might be used for transport-model validation for the Yucca Mountain Site Characterization Project. The experimental test bed is a 6-m high x 3-m diameter caisson filled with quartz sand with a sorbing layer at an intermediate depth. The experiment involves the detection and prediction of the migration of fluid and tracers through an unsaturated porous medium. Pre-test design requires estimation of physical properties of the porous medium such as the relative permeability, saturation/pressure relations, porosity, and saturated hydraulic conductivity as well as geochemical properties such as surface complexation constants and empircial K d 'S. The pre-test characterization data will be used as input to several computer codes to predict the fluid flow and tracer migration. These include a coupled chemical-reaction/transport model, a stochastic model, and a deterministic model using retardation factors. The calculations will be completed prior to elution of the tracers, providing a basis for validation by comparing the predictions to observed moisture and tracer behavior

  8. Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data

    International Nuclear Information System (INIS)

    Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2002-01-01

    In this study, porewater chloride data from Yucca Mountain, Nevada, are analyzed and modeled by 3-D chemical transport simulations and analytical methods. The simulation modeling approach is based on a continuum formulation of coupled multiphase fluid flow and tracer transport processes through fractured porous rock, using a dual-continuum concept. Infiltration-rate calibrations were using the pore water chloride data. Model results of chloride distributions were improved in matching the observed data with the calibrated infiltration rates. Statistical analyses of the frequency distribution for overall percolation fluxes and chloride concentration in the unsaturated zone system demonstrate that the use of the calibrated infiltration rates had insignificant effect on the distribution of simulated percolation fluxes but significantly changed the predicated distribution of simulated chloride concentrations. An analytical method was also applied to model transient chloride transport. The method was verified by 3-D simulation results as able to capture major chemical transient behavior and trends. Effects of lateral flow in the Paintbrush nonwelded unit on percolation fluxes and chloride distribution were studied by 3-D simulations with increased horizontal permeability. The combined results from these model calibrations furnish important information for the UZ model studies, contributing to performance assessment of the potential repository

  9. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  10. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  11. Low Permeability Polyimide Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  12. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...

  13. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.......Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused...... on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16-m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analyzed values of essential soil properties. The subsurface of the site was highly layered...

  14. Numerical experiments on the probability of seepage into underground openings in heterogeneous fractured rock

    International Nuclear Information System (INIS)

    Birkholzer, J.; Li, G.; Tsang, C.F.; Tsang, Y.

    1998-01-01

    An important issue for the performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of this rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, because it is located in thick, unsaturated, fractured tuff formations. Underground opening in unsaturated media might act as capillary barriers, diverting water around them. In the present work, they study the potential rate of seepage into drifts as a function of the percolation flux at Yucca Mountain, based on a stochastic model of the fractured rock mass in the drift vicinity. A variety of flow scenarios are considered, assuming present-day and possible future climate conditions. They show that the heterogeneity in the flow domain is a key factor controlling seepage rates, since it causes channelized flow and local ponding in the unsaturated flow field

  15. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Science.gov (United States)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  16. Radioisotope albumin flux measurement of microvascular lung permeability: an independent parameter in acute respiratory failure?

    International Nuclear Information System (INIS)

    Hoegerle, S.; Nitzsche, E.U.; Reinhardt, M.J.; Moser, E.; Benzing, A.; Geiger, K.; Schulte Moenting, J.

    2001-01-01

    Aim: To evaluate the extent to which single measurements of microvascular lung permeability may be relevant as an additional parameter in a heterogenous clinical patient collective with Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Methods: In 36 patients with pneumonia (13), non pneumogenic sepsis (9) or trauma (14) meeting the consensus conference criteria of ALI or ARDS double-isotope protein flux measurements ( 51 Cr erythrocytes as intravascular tracer, Tc-99m human albumin as diffusible tracer) of microvascular lung permeability were performed using the Normalized Slope Index (NSI). The examination was to determine whether there is a relationship between the clinical diagnosis of ALI/ARDS, impaired permeability and clinical parameters, that is the underlying disease, oxygenation, duration of mechanical ventilation and mean pulmonary-artery pressure (PAP). Results: At the time of study, 25 patients presented with increased permeability (NSI > 1 x 10 -3 min -1 ) indicating an exudative stage of disease, and 11 patients with normal permeability. The permeability impairment correlated with the underlying disease (p > 0.05). With respect to survival, there was a negative correlation to PAP (p [de

  17. Modeling tritium transport through a deep unsaturated zone in an arid environment

    Science.gov (United States)

    Mayers, C.J.; Andraski, Brian J.; Cooper, C.A.; Wheatcraft, S.W.; Stonestrom, David A.; Michel, R.L.

    2005-01-01

    Understanding transport of tritium (3H) in unsaturated zones is critical to evaluating options for waste isolation. Tritium typically is a large component of low-level radioactive waste (LLRW). Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Nevada investigate 3H transport from a closed LLRW facility. Two boreholes are 100 and 160 m from the nearest waste trench and extend to the water table at 110 m. Soil-water vapor samples from the deep boreholes show elevated levels of 3H at all depths. The objectives of this study were to (i) test source thermal and gas-advection mechanisms driving 3H transport and (ii) evaluate model sensitivity to these mechanisms and to selected physical and hydraulic properties including porosity, tortuosity, and anisotropy. A two-dimensional numerical model incorporated a non-isothermal, heterogeneous domain of the unsaturated zone and instantaneous isotopic equilibrium. The TOUGH2 code was used; however, it required modification to account for temperature dependence of both the Henry's law equilibrium constant and isotopic fractionation with respect to tritiated water. Increases in source temperature, pressure, and porosity enhanced 3H migration, but failed to match measured 3H distributions. All anisotropic simulations with a source pressure component resembled, in shape, the upper portion of the 3H distribution of the nearest borehole. Isotopic equilibrium limited migration of 3H, while effects of radioactive decay were negligible. A 500 Pa pressure increase above ambient pressure in conjunction with a high degree of anisotropy (1:100) was necessary for simulated 3H transport to reach the nearest borehole.

  18. At the frontier between heterogeneous and homogeneous catalysis : hydrogenation of olefins and alkynes with soluble iron nanoparticles

    NARCIS (Netherlands)

    Rangheard, Claudine; Julián Fernández, César de; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; Vries, Johannes G. de

    2010-01-01

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C–C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl3 reduced by 3

  19. Investigating Unsaturated Zone Travel Times with Tritium and Stable Isotopes

    Science.gov (United States)

    Visser, A.; Thaw, M.; Van der Velde, Y.

    2017-12-01

    Travel times in the unsaturated zone are notoriously difficult to assess. Travel time tracers relying on the conservative transport of dissolved (noble) gases (tritium-helium, CFCs or SF6) are not applicable. Large water volume requirements of other cosmogenic radioactive isotopes (sulfur-35, sodium-22) preclude application in the unsaturated zone. Prior investigations have relied on models, introduced tracers, profiles of stable isotopes or tritium, or a combination of these techniques. Significant unsaturated zone travel times (UZTT) complicate the interpretation of stream water travel time tracers by ranked StorAge Selection (rSAS) functions. Close examination of rSAS functions in a sloping soil lysimeter[1] show the effect of the UZTT on the shape of the rSAS cumulative distribution function. We studied the UZTT at the Southern Sierra Critical Zone Observatory (SS-CZO) using profiles of tritium and stable isotopes (18O and 2H) in the unsaturated zone, supported by soil water content data. Tritium analyses require 100-500 mL of soil water and therefore large soil samples (1-5L), and elaborate laboratory procedures (oven drying, degassing and noble gas mass spectrometry). The high seasonal and interannual variability in precipitation of the Mediterranean climate, variable snow pack and high annual ET/P ratios lead to a dynamic hydrology in the deep unsaturated soils and regolith and highly variable travel time distributions. Variability of the tritium concentration in precipitation further complicates direct age estimates. Observed tritium profiles (>3 m deep) are interpreted in terms of advective and dispersive vertical transport of the input variability and radioactive decay of tritium. Significant unsaturated zone travel times corroborate previously observed low activities of short-lived cosmogenic radioactive nuclides in stream water. Under these conditions, incorporating the UZTT is critical to adequately reconstruct stream water travel time distributions. 1

  20. Integrated vacuum extraction/pneumatic soil fracturing system for remediation of low permeability soil

    International Nuclear Information System (INIS)

    Plaines, A.L.; Piniewski, R.J.; Yarbrough, G.D.

    1994-01-01

    There is wide use of vacuum extraction to remove volatile and semi-volatile organic compounds (VOCs) from unsaturated soil. At sites with soil of low permeability, VOC extraction rates may not be sufficient to meet soil clean-up objectives within the desired time frame. During vacuum extraction in low permeability soil, the diffusion rates of VOCs through the soil matrix may limit VOC removal rates. An increase in the number of subsurface paths for advective flow through the contaminated zone results in a larger mass of contaminant being removed in a shorter time frame, accelerating site remediation. One technique for increasing the number of subsurface flow paths is Terra Vac's process of pneumatic soil fracturing (PSF). In this process, pressurized air is injected into the subsurface, creating micro-fractures for the vacuum extraction system to withdraw contaminants. Similar to hydraulic fracturing techniques long used in the petroleum industry for increasing yield from oil and gas production wells, this technique has applications for soil remediation in low permeability conditions. Two case studies, one in Louisiana at a gasoline service station and one at a manufacturing plant in New York, are presented

  1. General hydroisotopic study of direct infiltration and evaporation process through the unsaturated zone in Damascus oasis, Syrian Arab Republic

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2001-01-01

    Damascus oasis plays an important economical and environmental role in the city life because it presents the surrounding green places and the groundwater is the main sources for irrigation. In this study we will focus on the unsaturated zone in Damascus oasis. Environmental isotopes as 18 O, 2 H and 3 H are considered one of the most important techniques that are used in unsaturated zone study in order to study the water movement mechanism, estimate the effective velocity, the rate and spatial variations of the direct infiltration through this zone.The Deuterium profile allow to estimate the direct evaporation rate, and it is observed that the evaporation in the eastern part of the studied area is 5-6.5 mm/y. The Tritium peak of profile that is belonging to the atmospheric nuclear tests at the beginning of the sixties indicates the effective infiltration velocity of 27.8 mm/y. The effective porosity was estimated about 6.5% and the permeability parameter is 0.6*10 -10 m/s. The direct infiltration rate was estimated by the chemical Chloride balance in the studied profiles in addition to their spatial distribution where it was distinguished between the eastern area where the direct infiltration is less than 2 mm/y characterized by very fine clay soils and western area where the direct infiltration rate is more than 2 mm/y with sandy soils. It is thought that the lower part of the unsaturated zone indicated the direct infiltration rate about 3.5 mm/y, under more wet climatic conditions where the rainfall was about 423 mm/y, this wet period was extended from about 432 y to more than 760y ago.The Nitrate concentration variation with depth indicated that unsaturated zone play important role as purification zone, and the groundwater which has more than 5 m depth is prevented from pollution, whereas the groundwater that has less than 5 m depth is more prone to pollution by high concentration of Nitrates. (author)

  2. Laboratory research program to aid in developing and testing the validity of conceptual models for flow and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    Glass, R.J.

    1991-01-01

    As part of the Yucca Mountain Project, a laboratory research program is being developed at Sandia National Laboratories that will integrate fundamental physical experimentation with conceptual model formulation and mathematical modeling and aid in subsequent model validation for unsaturated zone water and contaminant transport. Experimental systems are being developed to explore flow and transport processes and assumptions of fundamental importance to various conceptual models. Experimentation will run concurrently in two types of systems: fractured and nonfractured tuffaceous systems; and analogue systems having specific characteristics of the tuff systems but designed to maximize experimental control and resolution of data measurement. Areas in which experimentation currently is directed include infiltration flow instability, water and solute movement in unsaturated fractures, fracture-matrix interaction, and scaling laws to define effective large-scale properties for heterogeneous, fractured media. 16 refs

  3. Laboratory research program to aid in developing and testing the validity of conceptual models for flow and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    Glass, R.J.

    1990-01-01

    As part of the Yucca Mountain Project, a laboratory research program is being developed at Sandia National Laboratories that will integrate fundamental physical experimentation with conceptual formulation and mathematical modeling and aid in subsequent model validation for unsaturated zone water and contaminant transport. Experimental systems are being developed to explore flow and transport processes and assumptions of fundamental importance to various conceptual models. Experimentation will run concurrently in two types of systems: fractured and nonfractured tuffaceous systems; and analogue systems having specific characteristics of the tuff systems but designed to maximize experimental control and resolution of data measurement. Questions to which experimentation currently is directed include infiltration flow instability, water and solute movement in unsaturated fractures, fracture-matrix interaction, and the definition of effective large-scale properties for heterogeneous, fractured media. 16 refs

  4. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  5. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. However, an increase in the aquifer temperature might reduce permeability, and thereby increase production costs. An understanding of the factors that control permeability is required in order...... and the Klinkenberg procedure showed the expected correlation between the two measures, however, differences could be around one order of magnitude. In tight gas sandstones, permeability is often sensitive to net stress, which might change due to the pore pressure change in the Klinkenberg procedure. Besides...... affecting the Klinkenberg procedure, the combined effect of slip and changes in permeability would affect production during pressure depletion in tight gas sandstone reservoirs; therefore effects of gas slip and net stress on permeability were combined in a model based on the Klinkenberg equation. A lower...

  6. Microorganism Removal in Permeable Pavement Parking Lots ...

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  7. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2001-01-01

    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  8. Simulation of groundwater flows in unsaturated porous media

    International Nuclear Information System (INIS)

    Musy, A.

    1976-01-01

    Groundwater flow in unsaturated porous media is caused by a potential gradient where the total potential consists of the sum of a gravitational and a suction component. The partial differential equations which result from the general analysis of groundwater flow in unsaturated soil are solved by succesive approximations with the finite-element method. General boundary and initial conditions, linear or curvilinear shaped elements (isoparametric elements) and steady-state or transient flow can be introduced into the numerical computer program. The results of this mathematical model are compared with experimental data established in the laboratory with a physical groundwater model. This is a rectangular testing tank of dimension 3 x 1.5 x 0.15 m and contains a silty clay loam. The variation of the bulk density and the volumetric moisture of the soil as a function of time and space are measured by gamma absorption from a 137 Cs source with 300 mCi intensity

  9. Thermal conductivity measurements in unsaturated hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo

    2015-08-01

    Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.

  10. Electrokinetic remediation of anionic contamination from unsaturated soil: Field application

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1995-01-01

    Electrokinetic remediation is an in situ technique under development at Sandia National Laboratories for removal of ionic contaminants from soil. While to date most other studies of this technique have focused on saturated soils, usually clays, the work at Sandia has been to extend the process to unsaturated sandy soils typical of arid regions. The impetus for this study is a chromate plume located beneath an old Sandia chemical waste landfill. Working in unsaturated soils is complicated by moisture control requirements, both to prevent undesired hydraulic transport of contamination outside the treatment zone and to optimize soil properties for efficient electrokinetic remediation. Two field tests will be discussed. First, a field test in clean soil is in progress to demonstrate moisture control with the Sandia electrode system. The second field demonstration, planned to begin the Fall of 1995, involves chromate removal from a in a chemical waste landfill

  11. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    International Nuclear Information System (INIS)

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  12. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  13. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)

    2014-09-15

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  14. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  15. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  16. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  17. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  18. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  19. The transport and behaviour of isoproturon in unsaturated chalk cores

    Science.gov (United States)

    Besien, T. J.; Williams, R. J.; Johnson, A. C.

    2000-04-01

    A batch sorption study, a microcosm degradation study, and two separate column leaching studies were used to investigate the transport and fate of isoproturon in unsaturated chalk. The column leaching studies used undisturbed core material obtained from the field by dry percussion drilling. Each column leaching study used 25 cm long, 10 cm wide unsaturated chalk cores through which a pulse of isoproturon and bromide was eluted. The cores were set-up to simulate conditions in the unsaturated zone of the UK Chalk aquifer by applying a suction of 1 kPa (0.1 m H 2O) to the base of each column, and eluting at a rate corresponding to an average recharge rate through the unsaturated Chalk. A dye tracer indicated that the flow was through the matrix under these conditions. The results from the first column study showed high recovery rates for both isoproturon (73-92%) and bromide (93-96%), and that isoproturon was retarded by a factor of about 1.23 relative to bromide. In the second column study, two of the four columns were eluted with non-sterile groundwater in place of the sterile groundwater used on all other columns, and this study showed high recovery rates for bromide (85-92%) and lower recovery rates for isoproturon (66-79% — sterile groundwater, 48-61% — non-sterile groundwater). The enhanced degradation in the columns eluted with non-sterile groundwater indicated that groundwater microorganisms had increased the degradation rate within these columns. Overall, the reduced isoproturon recovery in the second column study was attributed to increased microbial degradation as a result of the longer study duration (162 vs. 105 days). The breakthrough curves (BTCs) for bromide had a characteristic convection-dispersion shape and were accurately simulated with the minimum of calibration using a simple convection-dispersion model (LEACHP). However, the isoproturon BTCs had an unusual shape and could not be accurately simulated.

  20. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  1. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  2. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    Science.gov (United States)

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  3. Growth of Synthrophomonas wolfei on unsaturated short chain fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. (Univ. of Oklahoma, Norman, OK (United States))

    1990-01-01

    The anaerobic fatty acid-degrading syntrophic bacterium, Syntrophomonas wolfei, was grown in pure culture with either trans-2-pentenoate, trans-2-hexenoate, trans-3-hexenoate, or trans, trans-2, 4-hexadienoate as the substrate. Trans-2-pentenoate was fermented to acetate, propionate, butyrate, and valerate. Acetate, butyrate and hexanoate were produced from the six-carbon mono- and di-unsaturated acids. Propionate was also product from the trans, trans-2, 4-hexadienoate which suggested that compound was degraded by another pathway in addition to [beta]-oxidation. The transient production of trans-2-hexenoate from trans-3-hexenoate suggested that the position of the double bound shifted from carbon-3 to carbon-2 prior to [beta]-oxidation. The specific growth rate decreased with increasing carbon length and degree of unsaturation. Molar growth yields ranged from 8.4 to 17.5 mg (dry wt.) per mmol and suggested that energy was conserved not only from substrate-level phosphorylation, but also from the reduction of unsaturated substrate.

  4. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  5. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  6. Role of unsaturated soil in a waste containment system

    Energy Technology Data Exchange (ETDEWEB)

    Lim, P.C.; Tay, J.H. [Nanyang Technological Univ. (Singapore)

    1996-12-31

    The role of the unsaturated properties of sand as a drainage layer in a composite liner system for landfills is investigated. The effect of the unsaturated properties of coarse-grained soil on contaminant migration was evaluated by means of a series of simulations using a one-dimensional model of a two- and a three-layer soil liner system for advection and diffusion, respectively. The results showed that under seepage conditions, the effect of an unsaturated sand layer on the advancement of the concentration front was quite insignificant. The arrival time of the C/C{sub o} = 0.5 concentration front increased from 651 days for the case with no sand layer to approximately 951 days for the case with a 1.0-m sand layer. A steady-state flow condition was ultimately established in the sand, and this fact suggests that the capillary action might not be effective. For diffusion, the arrival time of the concentration front increased nonlinearly with a decrease in the degree of saturation and linearly with increasing depths of the sand layer. At a residual degree of saturation, the arrival times of the C/C{sub o} = 0.01 and 0.5 concentration front at the base of the 1-m sand layer were 26.9 and 877.4 years as compared to 1.52 and 2.62 years by advection, respectively. 17 refs., 11 figs.

  7. Suitability of Torrent Permeability Tester to measure air-permeability of covercrete

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Gonzales-Gasca, C. [Institute of Construction Sciences ' Eduardo Torroja' , Madrid (Spain); Torrent, R. [Portland Cement Institute, (Argentina)

    2000-07-01

    Suitability of the Torrent Permeability Tester (TPT) to measure the permeability of covercrete to air, both in the laboratory and the field, is investigated, and test results obtained in laboratory studies are discussed. The tests performed included the determination of air permeability (TPT method), oxygen permeability (Cembureau method) and capillary suction, rapid chloride permeability test (ASTM C 1202), as well as a one-year carbonation depth test. Concrete specimens of various compositions and curing regimes were used in the tests; the gas-permeability tests were repeated on the same specimens after 28 days, than again at 6 months and 12 months. Test results confirmed the suitability of the TPT as a useful tool in the characterization of the quality the of concrete cover. It was found to be sensitive to changes in concrete quality; repeatable for sensitive properties such as gas permeability ; also, it was found to correlate well with other durability-related properties. 10 refs., 8 tabs., 8 figs.

  8. Effect of temperature on damage and permeability of clayey soils and rocks

    International Nuclear Information System (INIS)

    Monfared, M.

    2011-04-01

    Storage of exothermic radioactive waste in deep low permeability geological formations such as clayey rocks and plastic clays is a solution considered for long term repositories. However the excavation of underground galleries creates a damaged zone (EDZ). The effect of the damage zone on the transport properties of the geological barrier has been widely studied. Within the framework of the TIMODAZ European project, emphasis has been put on the effect of temperature. As a partner of this project, the current work is performed to investigate the coupling effect between temperature, damage and permeability on Boom clay and Opalinus clay through an experimental study. View to the experimental difficulties related to the low permeability materials, a new hollow cylinder triaxial cell with short drainage path specifically designed to study the thermo-hydro-mechanical behaviour of very low permeable materials is developed during this work. The tests and the numerical analysis show that the short sample drainage path reduces significantly the time needed to re-saturate an initially unsaturated sample and it also permits to achieve drained conditions (i.e. negligible excess pore pressure during testing) with a higher loading rate. For Boom clay, the effect of the pore water thermal pressurisation on a sample with a pre-existing shear band is investigated. The undrained heating under shear stress decreases the effective stress on the sample which leads to its failure. An existing failure plane in the sample behaves like a preferential weakness plane which can be reactivated by pore water thermal pressurisation. The estimated shearing resistance along the sheared plane is smaller than that of the intact material. For the Opalinus clay-stone, drained heating on a saturated sample shows that this clay-stone behaves like a slightly over consolidated material (thermo-elasto-plastic behaviour) with transition from expansion to contraction at 65 C. The decrease of the permeability

  9. Origin of Permeability and Structure of Flows in Fractured Media

    Science.gov (United States)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and

  10. Single-phase Near-well Permeability Upscaling and Productivity Index Calculation Methods

    Directory of Open Access Journals (Sweden)

    Seyed Shamsollah Noorbakhsh

    2014-10-01

    Full Text Available Reservoir models with many grid blocks suffer from long run time; it is hence important to deliberate a method to remedy this drawback. Usual upscaling methods are proved to fail to reproduce fine grid model behaviors in coarse grid models in well proximity. This is attributed to rapid pressure changes in the near-well region. Standard permeability upscaling methods are limited to systems with linear pressure changes; therefore, special near-well upscaling approaches based on the well index concept are proposed for these regions with non-linear pressure profile. No general rule is available to calculate the proper well index in different heterogeneity patterns and coarsening levels. In this paper, the available near-well upscaling methods are investigated for homogeneous and heterogeneous permeability models at different coarsening levels. It is observed that the existing well index methods have limited success in reproducing the well flow and pressure behavior of the reference fine grid models as the heterogeneity or coarsening level increases. Coarse-scale well indexes are determined such that fine and coarse scale results for pressure are in agreement. Both vertical and horizontal wells are investigated and, for the case of vertical homogeneous wells, a linear relationship between the default (Peaceman well index and the true (matched well index is obtained, which considerably reduces the error of the Peaceman well index. For the case of heterogeneous vertical wells, a multiplier remedies the error. Similar results are obtained for horizontal wells (both heterogeneous and homogeneous models.

  11. Temperature dependent heterogeneous rotational correlation in lipids.

    Science.gov (United States)

    Dadashvand, Neda; Othon, Christina M

    2016-11-15

    Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine  by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.

  12. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  13. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  14. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  15. Dealing with spatial heterogeneity

    Science.gov (United States)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  16. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    Science.gov (United States)

    Dessirier, B.; Frampton, A.; Fransson, À.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  17. Fluid flow in a porous medium with transverse permeability discontinuity

    Science.gov (United States)

    Pavlovskaya, Galina E.; Meersmann, Thomas; Jin, Chunyu; Rigby, Sean P.

    2018-04-01

    Magnetic resonance imaging (MRI) velocimetry methods are used to study fully developed axially symmetric fluid flow in a model porous medium of cylindrical symmetry with a transverse permeability discontinuity. Spatial mapping of fluid flow results in radial velocity profiles. High spatial resolution of these profiles allows estimating the slip in velocities at the boundary with a permeability discontinuity zone in a sample. The profiles are compared to theoretical velocity fields for a fully developed axially symmetric flow in a cylinder derived from the Beavers-Joseph [G. S. Beavers and D. D. Joseph, J. Fluid Mech. 30, 197 (1967), 10.1017/S0022112067001375] and Brinkman [H. C. Brinkman, Appl. Sci. Res. A 1, 27 (1947), 10.1007/BF02120313] models. Velocity fields are also computed using pore-scale lattice Boltzmann modeling (LBM) where the assumption about the boundary could be omitted. Both approaches give good agreement between theory and experiment, though LBM velocity fields follow the experiment more closely. This work shows great promise for MRI velocimetry methods in addressing the boundary behavior of fluids in opaque heterogeneous porous media.

  18. Permeability estimation from NMR diffusion measurements in reservoir rocks.

    Science.gov (United States)

    Balzarini, M; Brancolini, A; Gossenberg, P

    1998-01-01

    It is well known that in restricted geometries, such as in porous media, the apparent diffusion coefficient (D) of the fluid depends on the observation time. From the time dependence of D, interesting information can be derived to characterise geometrical features of the porous media that are relevant in oil industry applications. In particular, the permeability can be related to the surface-to-volume ratio (S/V), estimated from the short time behaviour of D(t), and to the connectivity of the pore space, which is probed by the long time behaviour of D(t). The stimulated spin-echo pulse sequence, with pulsed magnetic field gradients, has been used to measure the diffusion coefficients on various homogeneous and heterogeneous sandstone samples. It is shown that the petrophysical parameters obtained by our measurements are in good agreement with those yielded by conventional laboratory techniques (gas permeability and electrical conductivity). Although the diffusing time is limited by T1, eventually preventing an observation of the real asymptotic behaviour, and the surface-to-volume ratio measured by nuclear magnetic resonance is different from the value obtained by BET because of the different length scales probed, the measurement remains reliable and low-time consuming.

  19. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    Science.gov (United States)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  20. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    Science.gov (United States)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  1. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  2. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones

    Science.gov (United States)

    Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Lanzafame, Gabriele; Trias, F. Xavier; Arzilli, Fabio; Materazzi, Marco; Torrieri, Stefano

    2018-05-01

    In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.

  3. Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated With CO2-EOR

    Science.gov (United States)

    Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting

    2018-02-01

    Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.

  4. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  5. Octopus microvasculature: permeability to ferritin and carbon.

    Science.gov (United States)

    Browning, J

    1979-01-01

    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  6. Dentin Permeability of Carious Primary Teeth

    African Journals Online (AJOL)

    primary dental pulp make it difficult to determine which modality offers the best ... The most common pathology of the dentine is dental caries. ... to evaluate dentine permeability is to calculate its hydraulic conductance (Lp) using fluid filtration ...

  7. Permeability of gypsum samples dehydrated in air

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  8. Permeability After Impact Testing of Composite Laminates

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  9. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance of restorat......Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance...

  10. Negative permeability from random particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid, E-mail: shussain2@qinetiq.com

    2017-04-15

    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies. - Highlights: • Negative permeability from random particle composites is

  11. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Banitz, Thomas; Wick, Lukas Y.; Fetzer, Ingo; Frank, Karin; Harms, Hauke; Johst, Karin

    2011-01-01

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  12. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  13. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  14. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    International Nuclear Information System (INIS)

    Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2017-01-01

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO 2 -FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10 −2  M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  15. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Prédélus, Dieuseul; Lassabatere, Laurent, E-mail: laurent.lassabatere@entpe.fr [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France); Louis, Cédric; Gehan, Hélène [Nano-H S.A.S., 2 place de l’Europe, Bâtiment A, Parc d’activité VALAD (France); Brichart, Thomas [Université Lyon 1-CNRS, Institut Lumière Matière, UMR 5306 CNRS (France); Winiarski, Thierry; Angulo-Jaramillo, Rafael [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France)

    2017-03-15

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO{sub 2}-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10{sup −2} M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  16. Synthesis of porphyryl boronates with (un)saturated side-chains

    OpenAIRE

    SENGE, MATHIAS; SERGEEVA, NATALIA

    2008-01-01

    PUBLISHED Porphyrins with (un)saturated side?chains containing boron residues were developed as synthons for porphyrin functionalization. Porphyrins with mono and bis-substituted unsaturated boronyl residues were prepared in good yields (52?66 %) using a cross?metathesis approach in the presence of Grubbs I-generation catalysts. In all cases complete E?stereoselectivity (100 %) was observed. Furthermore, formal cross?metathesis products with ?,??unsaturated chains smoothly underwent additi...

  17. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  18. Defining clogging potential for permeable concrete.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J

    1991-08-01

    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  20. Cell permeability beyond the rule of 5.

    Science.gov (United States)

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan

    2016-06-01

    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hypolipidemic action of garlic unsaturated oils in irradiated mice

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1988-01-01

    Adult male Swiss albino mice were injected with 74 KBq g -1 body weight of radiocalcium 45 Ca in the presence and absence of unsaturated oils of garlic, and changes in the total lipids and triglycerides contents of liver were observed at various intervals from 1 to 14 days. The results obtained indic ate that the garlic oils prevented rapid increase in hepatic total lipids and triglycerides induced by radiocalcium and the values reached normal values earlier in garlic-treated than in irradiated animals. Possible mechanism(s) underlying hypolipidemic action of garlic oil have been discussed. (author). 22 refs

  3. NNWSI waste form test method for unsaturated disposal conditions

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-03-01

    A test method has been developed to measure the release of radionuclides from the waste package under simulated NNWSI repository conditions, and to provide information concerning materials interactions that may occur in the repository. Data are presented from Unsaturated testing of simulated Savannah River Laboratory 165 glass completed through 26 weeks. The relationship between these results and those from parametric and analog testing are described. The data indicate that the waste form test is capable of producing consistent, reproducible results that will be useful in evaluating the role of the waste package in the long-term performance of the repository. 6 refs., 7 figs., 5 tabs

  4. Processing of Unsaturated Organic Acid Aerosols by Ozone

    Science.gov (United States)

    Aloisio, S.; Donaldson, D. J.; Eliason, T. L.; Cziczo, D.; Vaida, V.

    2002-05-01

    We present results of in-situ studies of the oxidative "processing" of organic aerosols composed of unsaturated organic compounds. Aerosol samples of 2-octenoic acid and undecylenic acid were exposed to approx. 10 mbar ozone in a room temperature, atmospheric pressure flow tube reactor. In-situ spectroscopic probing of the reaction mixture, as well as GC-MS analysis of the flow tube effluent, shows evidence of efficient oxidation of double bonds in the organic species, with production of gas-phase and aerosol phase ozonolysis products.

  5. Estimating unsaturated hydraulic conductivity from soil moisture-tim function

    International Nuclear Information System (INIS)

    El Gendy, R.W.

    2002-01-01

    The unsaturated hydraulic conductivity for soil can be estimated from o(t) function, and the dimensionless soil water content parameter (Se)Se (β - βr)/ (φ - θ)), where θ, is the soil water content at any time (from soil moisture depletion curve l; θ is the residual water content and θ, is the total soil porosity (equals saturation point). Se can be represented as a time function (Se = a t b ), where t, is the measurement time and (a and b) are the regression constants. The recommended equation in this method is given by

  6. Study of transport in unsaturated sands using radioactive tracers

    International Nuclear Information System (INIS)

    Merritt, W.F.; Pickens, J.F.; Allison, G.B.

    1979-01-01

    A laboratory experiment was conducted to investigate the mixing that occurs as a series of labelled pulses of water are transported by gravity drainage down through a sand filled column having a water table imposed at the bottom. It also demonstrated the utility of gamma-ray emitting radioactive tracers in studying transport in unsaturated or saturated porous media. The motivation for pursuing this topic was developed from observing that the content of oxygen-18, deuterium and tritium in rainwater shows marked temporal variations whereas their concentrations below the water table in shallow ground water flow systems are generally found to show much less variation. (auth)

  7. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  8. Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, M D [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation)

    2013-07-31

    This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer. These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on W{sub 2}{sup m}-spaces, m element of (n/2,∞). Most of the results obtained apply also to W{sub 2}{sup μ}(R{sup n})-spaces with a hypoelliptic multiplier of smoothness μ. Bibliography: 6 titles.

  9. Effect of Structure Change on Radiation Crosslinking of Unsaturated Polyesters

    International Nuclear Information System (INIS)

    Ranogajec, F.

    2006-01-01

    During the course of crosslinking of unsaturated polyesters reacting system, that was liquid prior to reaction, gels, and becomes solid. Crosslinking reaction begins to be controlled by the change of the physical state of the system at an early stage of reaction. The kinetics can not be studied by the usual kinetical methods. In-source 60 C o gamma rays induced crosslinking of unsaturated polyester with styrene was followed directly and continuously by measuring electrical conductivity change. The results of extraction analysis proved good correlation between the change of electrical conductivity and the extent of curing. The gel content was inversely proportional to conductivity and free styrene content directly proportional to conductivity. DC-electrical conductivity has shown high sensitivity toward structural changes and enabled us to detect liquid-liquid transitions in unsaturated polyester. The upper liquid-liquid transition (T l ρ) is less known transition caused by a stepwise decrease of intramolecular short-range local order that remains above the glass and lower liquid-liquid transitions. The local order is based on secondary valent interactions and is enhanced by hydrogen bonding. The linear temperature dependence of the viscosity and dc electrical conductivity of unsaturated polyesters showed a change of slope caused by the (T l ρ). Those changes were the result of the diminishing of the local order (which includes several bond lengths) caused by breaking of the intramolecular interactions. The intramolecular nature of the (T l ρ) in the polyesters under consideration was proved by its insensitivity to crosslinking and dilution with solvents. In the corresponding temperature range, DSC thermograms shoved expected endothermic changes. The structure changes related to the (T l ρ) in the investigated polyesters were determined by 1 H NMR and NIR spectroscopy. The proton NMR indicated that the stepwise change in hydrogen bonding occurred in the

  10. Simulation of unsaturated flow and solute transport at the Las Cruces trench site using the PORFLO-3 computer code

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Wurstner, S.K.

    1991-03-01

    The objective of this work was to test the ability of the PORFLO-3 computer code to simulate water infiltration and solute transport in dry soils. Data from a field-scale unsaturated zone flow and transport experiment, conducted near Las Cruces, New Mexico, were used for model validation. A spatial moment analysis was used to provide a quantitative basis for comparing the mean simulated and observed flow behavior. The scope of this work was limited to two-dimensional simulations of the second experiment at the Las Cruces trench site. Three simulation cases are presented. The first case represents a uniform soil profile, with homogeneous, isotropic hydraulic and transport properties. The second and third cases represent single stochastic realizations of randomly heterogeneous hydraulic conductivity fields, generated from the cumulative probability distribution of the measured data. Two-dimensional simulations produced water content changes that matched the observed data reasonably well. Models that explicitly incorporated heterogeneous hydraulic conductivity fields reproduced the characteristics of the observed data somewhat better than a uniform, homogeneous model. Improved predictions of water content changes at specific spatial locations were obtained by adjusting the soil hydraulic properties. The results of this study should only be considered a qualitative validation of the PORFLO-3 code. However, the results of this study demonstrate the importance of site-specific data for model calibration. Applications of the code for waste management and remediation activities will require site-specific data for model calibration before defensible predictions of unsaturated flow and containment transport can be made. 23 refs., 16 figs., 3 tabs

  11. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    Science.gov (United States)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution

  12. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  13. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  14. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  15. Scaling behavior of gas permeability measurements in volcanic tuffs

    International Nuclear Information System (INIS)

    Tidwell, V.C.

    1994-01-01

    One of the critical issues facing the Yucca Mountain site characterization and performance assessment programs is the manner in which property scaling is addressed. Property scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another. A research program has been established to challenge current understanding of property scaling with the aim of developing and testing models that describe scaling behavior in a quantitative manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas-permeability data measured over a range of discrete scales. The approach is to systematically isolate those factors believed to influence property scaling and investigate their relative contributions to overall scaling behavior. Two blocks of tuff, each exhibiting differing heterogeneity structure, have recently been examined. Results of the investigation show very different scaling behavior, as exhibited by changes in the distribution functions and variograms, for the two tuff samples. Even for the relatively narrow range of measurement scales employed significant changes in the distribution functions, variograms, and summary statistics occurred. Because such data descriptors will likely play an important role in calculating effective media properties, these results demonstrate both the need to understand and accurately model scaling behavior

  16. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  17. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    Science.gov (United States)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  18. A New Mechanism of Canopy Effect in Unsaturated Freezing Soils

    Directory of Open Access Journals (Sweden)

    Teng Jidong

    2016-01-01

    Full Text Available Canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. Field observation reveals that canopy effect can take place in relatively dry soils where the groundwater table is deep and can lead to full saturation of the soil immediately underneath the impervious cover. On the other hand, numerical analysis based on existing theories of heat and mass transfer in unsaturated soils can only reproduce a minor amount of moisture accumulation due to an impervious cover, particularly when the groundwater table is relatively deep. In attempt to explain the observed canopy effect in field, this paper proposes a new mechanism of moisture accumulation in unsaturated freezing soils: vapour transfer in such a soil is accelerated by the process of vapour-ice desublimation. A new approach for modelling moisture and heat movements is proposed, in which the phase change of evaporation, condensation and de-sublimation of vapor flow are taken into account. The computed results show that the proposed model can indeed reproduce the unusual moisture accumulation observed in relatively dry soils. The results also demonstrate that soil freezing fed by vapour transfer can result in a water content close to full saturation. Since vapour transfer is seldom considered in geotechnical design, the canopy effect deserves more attention during construction and earth works in cold and arid regions.

  19. Quasi‐steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-01-01

    We have developed the quasi‐steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi‐steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  20. Quasi-steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-11-01

    We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  1. Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem

    Science.gov (United States)

    Man, J.; Li, W.; Zeng, L.; Wu, L.

    2015-12-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  2. Numerical study of damage in unsaturated Geological and Engineered barriers

    International Nuclear Information System (INIS)

    Arson, C.; Gatmiri, B.

    2011-01-01

    The theoretical framework of a damage model dedicated to non-isothermal unsaturated porous media is presented. The damage variable is a second-order tensor, and the model is formulated in independent state variables. The behavior laws are derived from a postulated expression of Helmholtz free energy. The damaged rigidities are computed by applying the Principle of Equivalent Elastic Energy (PEEE). Internal length parameters are introduced in the expressions of liquid water and vapor conductivities, to account for cracking effects on fluid flows. The damage model has been implemented in Θ-Stock Finite Element program. The mechanical aspect of the damage model is validated by simulating a triaxial compression test on a dry isothermal brittle material. Then, a sophisticated model of nuclear waste disposal, involving two non-isothermal unsaturated porous media, is reproduced. The results obtained in elasticity are in good agreement with the results presented in the corresponding reference article. A parametric study on initial damage is then performed to assess the influence of the Excavated Damaged Zone (EDZ) on the response of the nuclear waste repository during the heating phase. The trends meet the theoretical expectations. (authors)

  3. Unsaturated transport of inorganic cations in undisturbed soil columns

    International Nuclear Information System (INIS)

    Jardine, P.M.; Jacobs, G.K.

    1990-01-01

    The unsaturated transport of Sr, Co, and Ca were studied in undisturbed soil columns (14 x 40 cm) of saprolitic shale to evaluate the significance of time dependent mass transfer and multispecies competitive exchange during transport. Observed breakthrough curves (BTCs) for Sr and Co were delayed relative to nonreactive Br BTC indicating that the former tracers were adsorbed by the soil. Effluent concentrations of Sr and Co were modeled with the classical convective dispersive (CD) equation and nonequilibrium mass transfer considerations did not appear necessary. Cation exchange equilibria relationships obtained from both shake batch and miscible displacement methods adequately described the thermodynamic processes which were prevalent during transport. These results suggest that the preferential transport of a reactive tracer is negligible for the realistic unsaturated conditions used in the study, and that the massive saprolite within the soil is a chemically active constituent during transport of reactive solutes. The implications of these findings for modeling in-situ subsurface contaminant transport are discussed. 7 refs., 9 figs

  4. Review of Upscaling Methods for Describing Unsaturated Flow

    Energy Technology Data Exchange (ETDEWEB)

    BD Wood

    2000-09-26

    The representation of small-scale features can be a challenge when attempting to model unsaturated flow in large domains. Upscaling methods offer the possibility of reducing the amount of resolution required to adequately simulate such a problem. In this report, the various upscaling techniques that are discussed in the literature are reviewed. The following upscaling methods have been identified from the literature: (1) stochastic methods, (2) renormalization methods, and (3) volume averaging and homogenization methods; in addition, a final technique, full resolution numerical modeling, is also discussed. Each of these techniques has its advantages and disadvantages. The trade-off is a reduction in accuracy in favor of a method that is easier to employ. For practical applications, the most reasonable approach appears to be one in which any of the upscaling methods identified above maybe suitable for upscaling in regions where the variations in the parameter fields are small. For regions where the subsurface structure is more complex, only the homogenization and volume averaging methods are probably suitable. With the continual increases in computational capacity, fill-resolution numerical modeling may in many instances provide a tractable means of solving the flow problem in unsaturated systems.

  5. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  6. Colloid suspension stability and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media

  7. Accumulation of macular xanthophylls in unsaturated membrane domains.

    Science.gov (United States)

    Wisniewska, Anna; Subczynski, Witold K

    2006-05-15

    The distribution of macular xanthophylls, lutein and zeaxanthin, between domains formed in membranes made from an equimolar ternary mixture of dioleoylphosphatidylcholine/sphingomyelin/cholesterol, called a raft-forming mixture, was investigated. In these membranes, two domains are formed: the raft domain enriched in saturated lipids and cholesterol (detergent-resistant membranes, DRM), and the bulk domain enriched in unsaturated lipids (detergent-soluble membranes, DSM). These membrane domains have been separated using cold Triton X-100 extraction from membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that xanthophylls are substantially excluded from DRM and remain concentrated in DSM. Concentrations of xanthophylls in DRM and DSM calculated as the mole ratio of either xanthophyll to phospholipid were 0.005 and 0.03, respectively, and calculated as the mole ratio of either xanthophyll to total lipid (phospholipid + cholesterol) were 0.003 and 0.025, respectively. Thus, xanthophylls are over eight times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. It was also demonstrated using saturation-recovery EPR that at 1 mol%, neither lutein nor zeaxanthin affect the formation of membrane domains. The location of xanthophylls in domains formed from unsaturated lipids is ideal if they are to act as a lipid antioxidant, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular diseases.

  8. Neurobiological heterogeneity in ADHD

    NARCIS (Netherlands)

    de Zeeuw, P.

    2011-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heterogeneous disorder clinically. Symptoms take many forms, from subtle but pervasive attention problems or dreaminess up to disruptive and unpredictable behavior. Interestingly, early neuroscientific work on ADHD assumed either a

  9. Heterogeneous Calculation of {epsilon}

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf

    1961-02-15

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.

  10. Heterogeneous Calculation of ε

    International Nuclear Information System (INIS)

    Jonsson, Alf

    1961-02-01

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer

  11. Effect of desensitizing agents on dentin permeability.

    Science.gov (United States)

    Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).

  12. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  13. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0168 HETEROGENEOUS INTEGRATION TECHNOLOGY Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...Final September 1, 2016 – May 1, 2017 4. TITLE AND SUBTITLE HETEROGENEOUS INTEGRATION TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A...provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are

  14. Bioventing feasibility study of low permeability soils for remediation of petroleum contamination

    International Nuclear Information System (INIS)

    Brackney, K.M.

    1994-01-01

    A site characterization of leaking underground gasoline and diesel storage tanks at the University of Idaho, West Farm Operations Center, identified approximately 800 cubic yards of petroleum-contaminated soil exceedingly regulatory action limits of 100 ppm TPH. Bioventing, a combination of in situ soil vapor extraction and microbial degradation, was selected as a remedial alternative on the basis of the presumably unsaturated paleo-soil with a 45-foot depth to groundwater, and a microbial study which concluded that indigenous petroleum-degrading microorganisms existed throughout the contamination. Soil vapor extraction tests were conducted by applying a 60-inch water column vacuum to a soil vapor extraction well and monitoring pneumatic pressure drawdown in 12 adjacent pneumatic piezometers and vertically distributed piezometer clusters. Pressure drawdown vs time data plots indicated that air permeability is inadequate everywhere at the site except at 20 feet below ground surface. Low soil permeability creates conditions for a perched water table that was documented during the investigation, resulting in unsatisfactory conditions for in situ bioventing. 8 refs., 14 figs

  15. Serpentinization: Getting water into a low permeability peridotite

    Science.gov (United States)

    Ulven, Ole Ivar

    2017-04-01

    Fluid consuming rock transformation processes occur in a variety of settings in the Earth's crust. One such process is serpentinization, which involves hydration of ultramafic rock to form serpentine. With peridotite being one of the dominating rocks in the oceanic crust, this process changes physical and chemical properties of the crust at a large scale, increases the amount of water that enters subduction zones, and might even affect plate tectonics te{jamtveit}. A significant number of papers have studied serpentinization in different settings, from reaction fronts progressing over hundreds of meters te{rudge} to the interface scale fracture initiation te{pluemper}. However, the process represents a complicated multi-physics problem which couples external stress, mechanical deformation, volume change, fracture formation, fluid transport, the chemical reaction, heat production and heat flow. Even though it has been argued that fracture formation caused by the volume expansion allows fluid infiltration into the peridotite te{rudge}, it remains unclear how sufficient water can enter the initially low permeability peridotite to pervasively serpentinize the rock at kilometre scale. In this work, we study serpentinization numerically utilizing a thermo-hydro-mechanical model extended with a fluid consuming chemical reaction that increases the rock volume, reduces its density and strength, changes the permeability of the rock, and potentially induces fracture formation. The two-way coupled hydromechanical model is based on a discrete element model (DEM) previously used to study a volume expanding process te{ulven_1,ulven_2} combined with a fluid transport model based on poroelasticity te{ulven_sun}, which is here extended to include fluid unsaturated conditions. Finally, a new model for reactive heat production and heat flow is introduced, to make this probably the first ever fully coupled chemo-thermo-hydromechanical model describing serpentinization. With this model

  16. A mathematical model in charactering chloride diffusivity in unsaturated cementitious material

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as

  17. Sensitivity Analysis of Unsaturated Flow and Contaminant Transport with Correlated Parameters

    Science.gov (United States)

    Relative contributions from uncertainties in input parameters to the predictive uncertainties in unsaturated flow and contaminant transport are investigated in this study. The objectives are to: (1) examine the effects of input parameter correlations on the sensitivity of unsaturated flow and conta...

  18. Reactive distillation: an attractive alternative for the synthesis of unsaturated polyester

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.

    2011-01-01

    Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be

  19. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  20. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 μdarcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  1. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  2. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  3. Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur Kandola

    2015-02-01

    Full Text Available Novel blends of two furan resins with an unsaturated polyester have been prepared and cured by parallel free radical (for the unsaturated polyester and acid-catalysed crosslinking (for the furan resin to give co-cured composite materials. Although these materials have inferior physical properties, such as low Tg and low storage modulus compared with those of unsaturated polyester and furan resins alone, they show markedly improved flame retardance compared with that of the normally highly flammable unsaturated polyester. This increased flame retardance arises from a condensed phase mechanism in which the furanic component forms a semi-protective char, reducing rates of thermal degradation and total heat release and heat of combustion. The blends also burn with reduced smoke output compared with that from unsaturated polyester alone.

  4. Large-scale model of flow in heterogeneous and hierarchical porous media

    Science.gov (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  5. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  6. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...... groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8...

  7. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  8. In-situ permeability measurements with direct push techniques: Phase II topical report

    International Nuclear Information System (INIS)

    Lowry, W.; Mason, N.; Chipman, V.; Kisiel, K.; Stockton, J.

    1999-01-01

    This effort designed, fabricated, and field tested the engineering prototype of the Cone Permeametertrademark system. The integrated system includes the instrumented penetrometer probe, air and water pumps, flowrate controls, flow sensors, and a laptop-controlled data system. All of the equipment is portable and can be transported as luggage on airlines. The data system acquired and displays the process measurements (pressures, flows, and downhole temperature) in real time and calculates the resulting permeability. The measurement probe is a 2 inch diameter CPT rod section, incorporating a screened injection zone near the lower end of the rod and multiple sensitive absolute pressure sensors embedded in the probe at varying distances from the injection zone. Laboratory tests in a large test cell demonstrated the system's ability to measure nominally 1 Darcy permeability soil (30 to 40 Darcy material had been successfully measured in the Phase 1 effort). These tests also provided a shakedown of the system and identified minor instrument problems, which were resolved. Supplemental numerical modeling was conducted to evaluate the effects of layered permeability (heterogeneity) and anisotropy on the measurement system's performance. The general results of the analysis were that the Cone Permeameter could measure accurately, in heterogeneous media, the volume represented by the sample port radii if the outer pressure ports were used. Anisotropic permeability, while readily analyzed numerically, is more complicated to resolve with the simple analytical approach of the 1-D model, and will need further work to quantify. This phase culminated in field demonstrations at the DOE Savannah River Site. Saturated hydraulic conductivity measurements were completed at the D-Area Coal Pile Runoff Basin, and air permeability measurements were conducted at the M Area Integrated Demonstration Site and the 321 M area. The saturated hydraulic conductivity measurements were the most

  9. Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium

    Science.gov (United States)

    Pollock, David W.

    1986-01-01

    Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0.0003 m yr−1were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The alluvium near the repository experienced a cycle of drying and rewetting in both cases. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0.0003 m yr−1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves, that are often poorly known.

  10. Unsaturated flow modeling in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Birkholzer, Jens T.; Wu, Yu-Shu; Stein, Joshua S.; Houseworth, James E.

    2014-01-01

    This paper summarizes the progression of modeling efforts of infiltration, percolation, and seepage conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository in the unsaturated zone for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. Scientific understanding of infiltration in a desert environment, unsaturated percolation flux in fractures and matrix of the volcanic tuff, and seepage into an open drift in a thermally perturbed environment was initially lacking in 1984. As understanding of the Yucca Mountain disposal system increased through site characterization and in situ testing, modeling of infiltration, percolation, and seepage evolved from simple assumptions in a single model in 1984 to three modeling modules each based on several detailed process models in 2008. Uncertainty in percolation flux through Yucca Mountain was usually important in explaining the observed uncertainty in performance measures:cumulative release in assessments prior to 1995 and individual dose, thereafter. - Highlights: • Progression of modeling of infiltration, percolation, and seepage conducted is described for a geological repository at Yucca Mountain. • Progression from 1-D in single equivalent to 3-D model of percolation in dual permeability continuum is described. • Introduction of an infiltration boundary condition in 1998 and the refinement for evaluating uncertainty for the license application is described. • Introduction of a seepage module that included calibration to in-site measurements and separating uncertainty and variability is described

  11. Recent advances in the chemical modification of unsaturated polymers

    Science.gov (United States)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  12. Water repellent soils: the case for unsaturated soil mechanics

    Directory of Open Access Journals (Sweden)

    Beckett Christopher

    2016-01-01

    Full Text Available Water repellent (or “hydrophobic” or “non-wetting” soils have been studied by soil scientists for well over a century. These soils are typified by poor water infiltration, which leads to increased soil erosion and poor crop growth. However, the importance of water repellence on determining soil properties is now becoming recognised by geotechnical engineers. Water repellent soils may, for example, offer novel solutions for the design of cover systems overlying municipal or mine waste storage facilities. However, investigations into factors affecting their mechanical properties have only recently been initiated. This purpose of this paper is to introduce geotechnical engineers to the concept of water repellent soils and to discuss how their properties can be evaluated under an unsaturated soils framework. Scenarios in which water repellent properties might be relevant in geotechnical applications are presented and methods to quantify these properties in the laboratory and in the field examined.

  13. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schimschal, U.; Nelson, P.H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. The authors show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available

  14. Evolution of the unsaturated zone testing at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    The evaluation of the Yucca Mountain site has evolved from intensive surface based investigations in the early 1980s to current focus on testing in underground drifts. Different periods of site-characterization activities and prominent issues concerning the unsaturated zone are summarized. Data-collection activities have evolved from mapping of faults and fractures, to estimation of percolation through tuff layers, and to quantification of seepage into drifts. Evaluation of discrete flow paths in drifts has led to fracture-matrix interaction and matrix diffusion tests over different scales. The effects of tuff interfaces and local faults are evaluated in fractured-welded and porous-nonwelded units. Mobilization of matrix water and redistribution of moisture are measured in thermal tests. Lessons learned from underground tests are used to focus on processes needed for additional quantification. Migration through the drift shadow zone and liquid flow through faults are two important issues that have evolved from current knowledge

  15. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  16. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  17. Determination of hydraulic properties of unsaturated soil via inverse modeling

    International Nuclear Information System (INIS)

    Kodesova, R.

    2004-01-01

    The method for determining the hydraulic properties of unsaturated soil with inverse modeling is presented. A modified cone penetrometer has been designed to inject water into the soil through a screen, and measure the progress of the wetting front with two tensiometer rings positioned above the screen. Cumulative inflow and pressure head readings are analyzed to obtain estimates of the hydraulic parameters describing K(h) and θ(h). Optimization results for tests at one side are used to demonstrate the possibility to evaluate either the wetting branches of the soil hydraulic properties, or the wetting and drying curves simultaneously, via analysis of different parts of the experiment. The optimization results are compared to the results of standard laboratory and field methods. (author)

  18. Laboratory experiments to characterize radiochloride diffusion in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, D.; Fernandez-Torrent, R.; Rauret, G.; Vidal, M. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rigol, A. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)], E-mail: annarigol@ub.edu

    2010-03-15

    Diffusion transport of {sup 36}Cl was examined in seven soils under unsaturated conditions in tubes packed with two portions of each soil having different {sup 36}Cl activity concentrations. Apparent diffusion coefficients (D{sub a}) derived from diffusion profiles varied within a narrow range (from 3x10{sup -10} to 7x10{sup -10} m{sup 2} s{sup -1}) confirming the minor effect of soil properties on the diffusion of a non-reactive radionuclide like {sup 36}Cl. Instead, packing conditions had a major effect. Solid-liquid distribution coefficients (K{sub d}) derived from D{sub a} (0.02-0.2 L kg{sup -1}) were systematically lower than those obtained from batch experiments (0.6-1.0 L kg{sup -1}), but with a similar variation pattern among soils. The low values of K{sub d} (Cl) confirmed an almost negligible radiochloride-soil interaction.

  19. The unsaturated flow in porous media with dynamic capillary pressure

    Science.gov (United States)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  20. Unsaturated flow and transport research questions and priorities

    International Nuclear Information System (INIS)

    Chery, D.L.

    1993-01-01

    A little over two years ago, a similar meeting (Workshop IV - Flow and Transport through Unsaturated Fractured Rock; Related to High-Level Radioactive Waste Disposal) was held her in Tucson, Arizona, to discuss the same issues discussed here the past 4 days. This presentation revisits what was said 2 years ago, reviews research needs that have been articulated by the licensing staff of the Division of High-Level Waste Management, Nuclear Regulatory Commission, and presents some of the thoughts on research needs resulting from the deliberations of a special committee of the National Research Council. After considering these aspects the questions of what has been accomplished in the past 2 years and where attention and energies should be focused in the coming few years, can be asked. 3 refs

  1. Field research program for unsaturated flow and transport experimentation

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Rautman, C.A.; Glass, R.J.

    1992-01-01

    As part of the Yucca Mountain Site Characterization Project, a field research program has been developed to refine and validate models for flow and transport through unsaturated fractured rock. Validation of these models within the range of their application for performance assessment requires a more sophisticated understanding of the processes that govern flow and transport within fractured porous media than currently exists. In particular, our research is prioritized according to understanding and modeling processes that, if not accurately incorporated into performance assessment models, would adversely impact the project's ability to evaluate repository performance. For this reason, we have oriented our field program toward enhancing our understanding of scaling processes as they relate to effective media property modeling, as well as to the conceptual modeling of complex flow and transport phenomena

  2. Influence of the molecular structure on hydrolysability of unsaturated polyesters

    International Nuclear Information System (INIS)

    Pays, M.F.; Denis, V.

    1993-09-01

    EDF has decided to replace conventional materials by glass reinforced plastics for certain PWR water distribution systems (raw water system, essential service water system, firefighting water distribution system, etc...). Since steel corrodes rapidly in these pipings, introducing composite materials will be economically beneficial if the long-term resistance of these materials can be guaranteed. However, due to hydrolysis of the resin or of the fiber-matrix interface, composite materials deteriorations may occur during service life. This paper reports on the hydrolysis resistance of polyester and vinylester resins. - Model monomers were studied to relate the molecular structure to the hydrolysis resistance. Two ester categories were determined, the diacids and the diols. For the diacids, we obtained the following classification in increasing order of resistance: < maleates < ethoxysuccinates < succinates < fumerates < terephtalates < orthophtalates < isophtalates and for the diols: trioxyethylene glycol << butane diol ∼ ethylene glycol < neopentyl glycol < bisphenol A. The positions obtained for neopentyl glycol and isophtalic acid on this scale justify their inclusion in the formulation of hydrolysis-resistant resins. Since aliphatic unsaturated esters are highly sensitive to hydrolysis, the cross linking procedures for these materials, notably the post-cure stages, must be the subject of particular care. - The hydrolytic degradation of cross linked materials was studied. It was shown that hydrolysis could be monitored by a simple gravimetric method. Used in association with accelerated aging tests, it predicts the time lapse to initiation of the phenomenon. The better hydrolysis resistance of vinylester resins as compared with unsaturated polyesters has been demonstrated. However, forecasting over a 30-year life span is difficult to guarantee in that this involves indicating in the resin specifications the in-service stress which it will be required to

  3. Experimental Determination of Hydraulic Properties of Unsaturated Calcarenites

    Science.gov (United States)

    Turturro, Antonietta Celeste; Andriani, Gioacchino Francesco; Clementina Caputo, Maria; Maggi, Sabino

    2013-04-01

    Understanding hydraulic properties is essential in the modeling of flow and solute transport through the vadose zone, to which problems of soil and groundwater pollution are related. The vadose zone, in fact, is of great importance in controlling groundwater recharge and transport of contaminants into and through the subsoil. The aim of this work is to determine experimentally in laboratory the hydraulic properties of unsaturated calcarenites using an approach including petrophysical determinations and methods for measuring water retention. For this purpose, samples of calcarenites belonging to the Calcarenite di Gravina Fm.(Pliocene-early Pleistocene), came from two different quarry districts located in Southern Italy (Canosa di Puglia and Massafra), were utilized. The water retention function, θ(h), which binds the water content, θ, to water potential, h, was determined in the laboratory by means two different experimental methods: the WP4-T psychrometer and the suction table. At last, a simple mathematical equation represented by van Genuchten's model is fitted to the experimental data and the unknown empirical parameters of this model are determined. Textural analysis on thin sections using optical petrographic microscopy and evaluation of total and effective porosity by means of standard geotechnical laboratory tests, mercury intrusion porosimetry and image analysis were also performed. In particular, a comparison between mercury porosimetry data and results of photomicrograph computer analysis through the methods of quantitative stereology was employed for providing pore size distributions. The results of this study identify the relationship between the hydraulic behavior, described by the water retention function, and pore size distribution for the calcarenites that are not easy to hydraulically characterize. This relationship could represent a useful tool to infer the unsaturated hydraulic properties of calcarenites and in general this approach could be

  4. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L

    2010-10-04

    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that

  5. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  6. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible

  7. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane ...

  8. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  9. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  10. The Permeability of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Williams, A.F.; Burcharth, H. F.; Adel, H. den

    1992-01-01

    . A new series of tests designed to test for deviations from the Forchheimer equation and investigate the effects of material shape are described. While no evidence can be found to indicate a deviation from the Forchheimer equation a dependency of permeability and the surface roughness the material...

  11. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao

    2015-01-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observ...

  12. Programs for the calculi of blocks permeabilities

    International Nuclear Information System (INIS)

    Gomez Hernandez, J.J.; Sovero Sovero, H.F.

    1993-01-01

    This report studies the stochastic analysis of radionuclide transport. The permeability values of blocks are necessary to do a numeric model for the flux and transport problems in ground soils. The determination of block value by function on grill value is the objective of this program

  13. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  14. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  15. Cancer heterogeneity and imaging.

    Science.gov (United States)

    O'Connor, James P B

    2017-04-01

    There is interest in identifying and quantifying tumor heterogeneity at the genomic, tissue pathology and clinical imaging scales, as this may help better understand tumor biology and may yield useful biomarkers for guiding therapy-based decision making. This review focuses on the role and value of using x-ray, CT, MRI and PET based imaging methods that identify, measure and map tumor heterogeneity. In particular we highlight the potential value of these techniques and the key challenges required to validate and qualify these biomarkers for clinical use. Copyright © 2016. Published by Elsevier Ltd.

  16. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  17. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types

    Science.gov (United States)

    Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.

    2001-01-01

    The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.

  18. Studies of permittivity and permeability of dielectric matrix with cuboid metallic inclusions in different orientations

    Directory of Open Access Journals (Sweden)

    W. M. Wu

    2014-10-01

    Full Text Available In this paper, we investigate the possibility of using the heterogeneous materials, with cuboid metallic inclusions inside a dielectric substrate (host to control the effective permittivity. We find that in the gigahertz range, such a material demonstrates a significantly larger permittivity compared to the pure dielectric substrate. Three principal orientations of microscale cuboid inclusions have been taken into account in this study. The highest permittivity is observed when the orientation provides the largest polarization (electric dipole moment. The detrimental side effect of the metallic inclusion, which leads to the decrease of the effective magnetic permeability, can be suppressed by the proper choice of shape and orientation of the inclusions. This choice can in fact reduce the induced current and hence maximize the permeability. The dissipative losses are shown to be negligible in the relevant range of frequencies and cuboid dimensions.

  19. In situ permeable flow sensors at the Savannah River Integrated Demonstration: Phase 2 results

    International Nuclear Information System (INIS)

    Ballard, S.

    1994-08-01

    A suite of In Situ Permeable Flow Sensors was deployed at the site of the Savannah River Integrated Demonstration to monitor the interaction between the groundwater flow regime and air injected into the saturated subsurface through a horizontal well. One of the goals of the experiment was to determine if a groundwater circulation system was induced by the air injection process. The data suggest that no such circulation system was established, perhaps due to the heterogeneous nature of the sediments through which the injected gas has to travel. The steady state and transient groundwater flow patterns observed suggest that the injected air followed high permeability pathways from the injection well to the water table. The preferential pathways through the essentially horizontal impermeable layers appear to have been created by drilling activities at the site

  20. Radionuclide transport from near-surface repository for radioactive waste - The unsaturated zone approach

    Energy Technology Data Exchange (ETDEWEB)

    Jakimaviciute-Maseliene, V. [Vilnius University (Lithuania); Mazeika, J. [Nature Research Centre (Lithuania); Motiejunas, S. [Radioactive Waste Management Agency (Lithuania)

    2014-07-01

    About 100 000 m{sup 3} of solid conditioned Low and Intermediate Level Waste (LILW), generated during operation and decommissioning of the Ignalina nuclear power plant (INPP), are to be disposed of in a near-surface repository (NSR) - a 'hill'-type repository with reinforced concrete vaults and with engineered and natural barriers. The northeastern Lithuania and the environment of the INPP in particular were recognized as the areas most suitable for a near-surface repository (Stabatiske Site). The engineered barriers of the repository consist of concrete cells surrounded by clay-based material of low permeability with about the same isolating capacity in all directions. The clay materials must be effectively compactable so that required hydraulic conductivity is reached. The Lithuanian Triassic clay turned out to be sufficiently rich in smectites and was proposed as main candidate for sealing of the repository. When the concrete vaults are filled, the repository cover will be constructed. The surface of the mound will be planted with grass. In this study a computer code FEFLOW 5.0 was applied for simulating the transport of the most mobile radionuclides ({sup 3}H, {sup 14}C, {sup 59}Ni and {sup 94}Nb) with moisture through an unsaturated vault of the near-surface repository in Stabatiske Site. The HYDRUS-1D analysis was used to assess the radionuclide transport in the repository and to estimate initial activity concentrations of radionuclides transported from the cemented waste matrix. Radionuclide release from the vault in the unsaturated conditions after closure of the repository and consequent contaminant plume transport has been assessed taking into account site-specific natural and engineering conditions and based on a normal evolution scenario. The highest peak radionuclide activity concentrations were estimated applying the FEFLOW code. The highest value of {sup 14}C activity concentration(about 1.3x10{sup 8} Bq/m{sup 3}) at the groundwater table

  1. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales

    International Nuclear Information System (INIS)

    Limousin, G.

    2006-10-01

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10 -4 mol.L -1 , cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10 -6 mol.L -1 , cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements at equilibrium do

  2. A Modeling Study of Flow Diversion and Focusing in unsaturated Fractured Rocks

    International Nuclear Information System (INIS)

    Pan, Lehua; Wu, Yu-Shu; Zhang, Keni

    2002-01-01

    This study presents a systematic approach to analyze the flow diversion and flow focusing caused by the natural flow-barrier system in the unsaturated zone (UZ) of Yucca Mountain, Nevada, under ambient steady-state flow conditions. An existing analytical solution for analyzing capillary barrier in porous media has been extended to apply to the fractured porous rock. The new analytical solutions are used to identify the critical layers and to provide the guidance for generation of a proper three-dimensional (3-D), site-scale numerical grid. A large-scale 3-D numerical model (with more than a million grid blocks) has been developed with site-specific data to analyze the major flow patterns in the mountain. Our analyses show that large-scale lateral flow could take place in the UZ under ambient conditions, as a result of capillary barriers formed at the contacts of heterogeneous rock layers. This lateral flow runs generally toward the east (in the southern part) or southeast (in the northern part), which is consistent with the dip of the layer contacts. About 90 percent of the total lateral flow is found to be conducted by only a few critical rock layers. Faults that penetrate these rock layers act as vertical capillary barriers that stop the lateral flow. The combined effect of horizontal and vertical capillary barriers resulted in reduced percolation flow through repository horizon in general but focused downward flow along those penetrating faults. The model results were found to be consistent with the field water saturation. The findings of this study are consistent with a previously published two-dimensional (2-D) analysis and recent published modeling results using field-observed Cl-data

  3. Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity

    Science.gov (United States)

    Ford, R. M.; Wang, M.; Liu, J.; Long, T.

    2008-12-01

    Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.

  4. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    Science.gov (United States)

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  5. Heterogeneity and Networks

    OpenAIRE

    Goyal, S.

    2018-01-01

    This chapter shows that networks can have large and differentiated effects on behavior and then argues that social and economic pressures facilitate the formation of heterogenous networks. Thus networks can play an important role in understanding the wide diversity in human behaviour and in economic outcomes.

  6. Heterogeneous Computing in Economics

    DEFF Research Database (Denmark)

    Dziubinski, M.P.; Grassi, S.

    2014-01-01

    This paper shows the potential of heterogeneous computing in solving dynamic equilibrium models in economics. We illustrate the power and simplicity of C++ Accelerated Massive Parallelism (C++ AMP) recently introduced by Microsoft. Starting from the same exercise as Aldrich et al. (J Econ Dyn...

  7. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  8. in Heterogeneous Media

    Directory of Open Access Journals (Sweden)

    Saeed Balouchi

    2013-01-01

    Full Text Available Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modeling. Recently, simulated annealing (SA has been applied to generate stochastic realizations of spatially correlated fracture networks by assuming that the elastic energy of fractures follows Boltzmann distribution. Although SA honors local variability, the objective function of geometrical fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA and the derivation of the energy function, a novel technique is presented to adjust the model with highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir properties. The original SA algorithm is also modified by being constrained in different directions and weighting the energy function to make it appropriate for heterogeneous conditions. The simulation results of the presented approach are in good agreement with the observed field data.

  9. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  10. Why does heterogeneity matter?

    Science.gov (United States)

    K.B. Pierce

    2007-01-01

    This is a review of the book "Ecosystem function in heterogeneous landscapes" published in 2005. The authors are G. Lovett, C. Jones, M.G. Turner, and K.C. Weathers. It was published by Springer, New York. The book is a synthesis of the 10th Gary conference held at the Institute of Ecosystem Studies in Millbrook, New York, in 2003.

  11. Heterogeneity and option pricing

    NARCIS (Netherlands)

    Benninga, Simon; Mayshar, Joram

    2000-01-01

    An economy with agents having constant yet heterogeneous degrees of relative risk aversion prices assets as though there were a single decreasing relative risk aversion pricing representative agent. The pricing kernel has fat tails and option prices do not conform to the Black-Scholes formula.

  12. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    This report evaluates the significance of transverse dispersion processes for solute transport in a single fracture. Transverse dispersion is a potentially significant process because it increases the fracture surface area available for sorptive and diffusive properties, and has the potential to transport solute between what would otherwise be distinctive, streamline pathways. Transverse dispersion processes are generally ignored in one-dimensional repository performance assessment approaches. This report provides an initial assessment of the magnitude of transverse dispersion effect in a single heterogeneous fracture on repository safety assessment. This study builds on a previous report which considered the network effects on transport dispersion including streamline routing and mixing at fracture intersections. The project uses FracMan software. This platform has been extensively used by SKB in other projects. FracMan software is designed to generate and analyze DFN's as well as to compute fluid flow in DFN's with the MAFIC Finite element method (FEM) code. Solute transport was modeled using the particle tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and the 1-D Laplace Transform approach designed to replicate FARF31 inside GoldSim.The study reported here focuses on a single, 20-meter scale discrete fracture, with simplified boundary conditions intended to represent the position of this fracture within a fracture network. The range of assumptions made regarding fracture heterogeneity were as follows: Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m. Case 1a, Homogeneous fracture, transmissivity = 10 -7 m 2 /s. Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 5 m. Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field. Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced. Case 5, Simple channelized

  13. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    International Nuclear Information System (INIS)

    Arnold, B.W.; Altman, S.J.; Robey, T.H.

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission's GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE's Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated

  14. Seismic response of earth dams considering dynamic properties of unsaturated zone

    Directory of Open Access Journals (Sweden)

    Ariyan M.

    2016-01-01

    Full Text Available It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC. Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models.

  15. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones.

    Science.gov (United States)

    Yoshii, Daichi; Jin, Xiongjie; Yatabe, Takafumi; Hasegawa, Jun-Ya; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-12-06

    In the presence of Au nanoparticles supported on manganese oxide OMS-2 (Au/OMS-2), various kinds of β-heteroatom-substituted α,β-unsaturated ketones (heteroatom = N, O, S) can be synthesized through α,β-dehydrogenation of the corresponding saturated ketones using O 2 (in air) as the oxidant. The catalysis of Au/OMS-2 is truly heterogeneous, and the catalyst can be reused.

  16. Heterogeneous Materials I and Heterogeneous Materials II

    International Nuclear Information System (INIS)

    Knowles, K M

    2004-01-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field of materials science interested in comparing predictions of properties with experimental results may well find the mathematical level quite daunting initially, as it is apparent that the author assumes a level of mathematics consistent with that taught in final year undergraduate and graduate theoretical physics courses. However, for such readers it is well worth persevering because of the in-depth coverage to which the various models are subjected, and also because of the extensive reference lists at the back of both volumes which direct readers to the various source references in the scientific literature. Thus, for the wider materials science scientific community the two volumes will be a valuable library resource. While I would have liked to see more comparison with experimental data on both ideal and 'real' heterogeneous materials than is provided by the author and a discussion of how to model strong nonlinear current--voltage behaviour in systems such as zinc oxide varistors, my overall

  17. A study on in-situ measuring method and modeling technique of an unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Hisashi [Hazama Corp., Tsukuba, Ibaraki (Japan). Technical Research Inst.; Amemiya, Kiyoshi; Nishida, Kaoru; Lin, Weiren; Lei, Xinglin

    1997-03-01

    It is generally considered that an unsaturated zone is generated in the vicinity of a drift after excavation. In such a zone, invasion of air containing oxygen possibly changes geochemical environment (redox condition) of the rock mass. However, no measurement technique for quantitative understanding of this unsaturated zone is currently available. This study has been started to develop the measuring method in the several years. This year, fundamental information has been obtained through analysis, laboratory experiments using homogeneous rock samples and field measurement described below. (1) experiments on the mechanism of undersaturation in rock. (2) experiments on the measuring method of the extend of unsaturated zone. (author)

  18. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    Science.gov (United States)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  19. Solubility and Permeability Studies of Aceclofenac in Different Oils

    African Journals Online (AJOL)

    The solubility and permeability of aceclofenac were compared with the hydroalcoholic solution of ... the use of lipid based systems such as micro- or .... carriers/vehicles for enhanced solubility and permeability ... modifications: A recent review.

  20. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    Science.gov (United States)

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary...

  1. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  2. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  3. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium

    International Nuclear Information System (INIS)

    Hoch, A.R.; Jackson, C.P.; Todman, S.

    1998-01-01

    For many of the rocks that are, or have been, under investigation as potential host rocks for a radioactive waste repository, groundwater flow is considered to take place predominantly through discontinuities such as fractures. Although models of networks of discrete features (DFN models) would be the most realistic models for such rocks, calculations on large length scales would not be computationally practicable. A possible approach would be to use heterogeneous continuum porous-medium (CPM) models in which each block has an effective permeability appropriate to represent the network of features within the block. In order to build confidence in this approach, it is necessary to demonstrate that the approach is self-consistent, in the sense that if the effective permeability on a large length scale is derived using the CPM model, the result is close to the value derived directly from the underlying network model. It is also desirable to demonstrate self-consistency for the use of stochastic heterogeneous CPM models that are built as follows. The correlation structure of the effective permeability on the scale of the blocks is inferred by analysis of the effective permeabilities obtained from the underlying DFN model. Then realizations of the effective permeability within the domain of interest are generated on the basis of the correlation structure, rather than being obtained directly from the underlying DFN model. A study of self-consistency is presented for two very different underlying DFN models: one based on the properties of the Borrowdale Volcanic Group at Sellafield, and one based on the properties of the granite at Aespoe in Sweden. It is shown that, in both cases, the use of heterogeneous CPM models based directly on the DFN model is self-consistent, provided that care is taken in the evaluation of the effective permeability for the DFN models. It is also shown that the use of stochastic heterogeneous CPM models based on the correlation structure of the

  4. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15

    movement accompanying dissolution in the unconsolidated media. The resultant movement changes the anticipated findings for pore and throat size distributions. For column S3, with cancrinite precipitation accompanying quartz dissolution, the precitiation halts much of the grain movement and more systematic distributions are obtained. Column S4, which was sealed with caustic solution acted as a control sample to study reactive effects during periods when columns S1 and S3 were sealed between flow experiments. No significant changes are observed in S4 with time. At Princeton, the imaging and analysis work focused on the effects of mineral precipitation and advancing our understanding of the impacts of these reactions on reactive transport in subsurface sediments. These findings are described in detail below, and have been published in L.E. Crandell, C.A. Peters, W. Um, K.W. Jones, W.B. Lindquist, 2012. “Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.” Journal of Contaminant Hydrology 131 (2012) 89–99. 3) Multi-Scale Modeling and Up-Scaling. Using an array of modeling approaches, we examined pore-scale variations in physical and mineralogical properties, flow velocities, and (for unsaturated conditions) wetting fluid/grain surface areas, and permeability evolution. Results and Key Findings: To predict the column permeability and estimate the impact of mineral precipitation, pore network models were informed using the pore and throat-size distributions from the imaging analyses. As a comparison, supplemental analyses were performed on Viking sandstone specimens from the Alberta sedimentary basin. In another part of this study we sought to understand how carbonate rocks in contact with CO2-rich brines change due to the precipitation or dissolution of fast-reacting minerals such as calcite and dolomite. Using a newly developed reactive-transport pore-network model we were able to identify the conditions that lead to

  5. Long-term Metal Performance of Three Permeable Pavements

    Science.gov (United States)

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  6. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  7. The kinetics of denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.

    2013-01-01

    Permeable sediments comprise the majority of shelf sediments, yet the rates of denitrification remain highly uncertain in these environments. Computational models are increasingly being used to understand the dynamics of denitrification in permeable sediments, which are complex environments...... on sediments taken from six shallow coastal sites in Port Phillip Bay, Victoria, Australia. The results showed that denitrification commenced rapidly (within 30 min) after the onset of anoxia and the kinetics could be well described by Michaelis-Menten kinetics with half saturation constants (apparent K...... in cohesive sediments despite organic carbon contents one order of magnitude lower for the sediments studied here. The ratio of sediment O-2 consumption to V-max was in the range of 0.02-0.09, and was on average much lower than the theoretical ratio of 0.8. As a consequence, models implemented...

  8. The international INTRAVAL project. Phase 2, working group 1 report. Flow and tracer experiments in unsaturated tuff and soil. Las Cruces trench and Apache Leap tuff studies

    International Nuclear Information System (INIS)

    Nicholson, T.J.; Guzman-Guzman, A.; Hills, R.; Rasmussen, T.C.

    1997-01-01

    The Working Group 1 final report summaries two test case studies, the Las Cruces Trench (LCT), and Apache Leap Tuff Site (ALTS) experiments. The objectives of these two field studies were to evaluate models for water flow and contaminant transport in unsaturated, heterogeneous soils and fractured tuff. The LCT experiments were specifically designed to test various deterministic and stochastic models of water flow and solute transport in heterogeneous, unsaturated soils. Experimental data from the first tow LCT experiments, and detailed field characterisation studies provided information for developing and calibrating the models. Experimental results from the third experiment were held confidential from the modellers, and were used for model comparison. Comparative analyses included: point comparisons of water content; predicted mean behavior for water flow; point comparisons of solute concentrations; and predicted mean behavior for tritium transport. These analyses indicated that no model, whether uniform or heterogeneous, proved superior. Since the INTRAVAL study, however, a new method has been developed for conditioning the hydraulic properties used for flow and transport modelling based on the initial field-measured water content distributions and a set of scale-mean hydraulic parameters. Very good matches between the observed and simulated flow and transport behavior were obtained using the conditioning procedure, without model calibration. The ALTS experiments were designed to evaluate characterisation methods and their associated conceptual models for coupled matrix-fracture continua over a range of scales (i.e., 2.5 centimeter rock samples; 10 centimeter cores; 1 meter block; and 30 meter boreholes). Within these spatial scales, laboratory and field tests were conducted for estimating pneumatic, thermal, hydraulic, and transport property values for different conceptual models. The analyses included testing of current conceptual, mathematical and physical

  9. Nonequilibrium gas absorption in rotating permeable media

    Science.gov (United States)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  10. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Directory of Open Access Journals (Sweden)

    Hubert M. Quinn

    2014-01-01

    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  11. Generic evolution of mixing in heterogeneous media

    Science.gov (United States)

    De Dreuzy, J.; Carrera, J.; Dentz, M.; Le Borgne, T.

    2011-12-01

    Mixing in heterogeneous media results from the competition bewteen flow fluctuations and local scale diffusion. Flow fluctuations quickly create concentration contrasts and thus heterogeneity of the concentration field, which is slowly homogenized by local scale diffusion. Mixing first deviates from Gaussian mixing, which represents the potential mixing induced by spreading before approaching it. This deviation fundamentally expresses the evolution of the interaction between spreading and local scale diffusion. We characterize it by the ratio γ of the non-Gaussian to the Gaussian mixing states. We define the Gaussian mixing state as the integrated squared concentration of the Gaussian plume that has the same longitudinal dispersion as the real plume. The non-Gaussian mixing state is the difference between the overall mixing state defined as the integrated squared concentration and the Gaussian mixing state. The main advantage of this definition is to use the full knowledge previously acquired on dispersion for characterizing mixing even when the solute concentration field is highly non Gaussian. Using high precision numerical simulations, we show that γ quickly increases, peaks and slowly decreases. γ can be derived from two scales characterizing spreading and local mixing, at least for large flux-weighted solute injection conditions into classically log-normal Gaussian correlated permeability fields. The spreading scale is directly related to the longitudinal dispersion. The local mixing scale is the largest scale over which solute concentrations can be considered locally uniform. More generally, beyond the characteristics of its maximum, γ turns out to have a highly generic scaling form. Its fast increase and slow decrease depend neither on the heterogeneity level, nor on the ratio of diffusion to advection, nor on the injection conditions. They might even not depend on the particularities of the flow fields as the same generic features also prevail for

  12. Atrial natriuretic factor increases vascular permeability

    International Nuclear Information System (INIS)

    Lockette, W.; Brennaman, B.

    1990-01-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness

  13. Ammonia gas permeability of meat packaging materials.

    Science.gov (United States)

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  14. Endothelial cell permeability to water and antipyrine

    International Nuclear Information System (INIS)

    Garrick, R.A.

    1986-01-01

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water ( 3 HHO) and 14 C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for 3 HHO through the packed cells (D), the intracellular material (D 2 ), and the extracellular material (D 1 ) were 0.682, 0.932 and 2.45 x 10 -5 cm 2 s -1 and for AP were 0.273, 0.355 and 1.13 x 10 -5 cm 2 s -1 respectively. The permeability coefficient calculated by the series-parallel pathway model for 3 HHO was higher than that for AP and for both 3 HHO and AP were lower than those calculated for isolated lung cells and erythrocytes

  15. Permeable treatment wall design and cost analysis

    International Nuclear Information System (INIS)

    Manz, C.; Quinn, K.

    1997-01-01

    A permeable treatment wall utilizing the funnel and gate technology has been chosen as the final remedial solution for one industrial site, and is being considered at other contaminated sites, such as a closed municipal landfill. Reactive iron gates will be utilized for treatment of chlorinated VOCs identified in the groundwater. Alternatives for the final remedial solution at each site were evaluated to achieve site closure in the most cost effective manner. This paper presents the remedial alternatives and cost analyses for each site. Several options are available at most sites for the design of a permeable treatment wall. Our analysis demonstrates that the major cost factor's for this technology are the design concept, length, thickness, location and construction methods for the reactive wall. Minimizing the amount of iron by placement in the most effective area and construction by the lowest cost method is critical to achieving a low cost alternative. These costs dictate the design of a permeable treatment wall, including selection of a variety of alternatives (e.g., a continuous wall versus a funnel and gate system, fully penetrating gates versus partially penetrating gates, etc.). Selection of the appropriate construction methods and materials for the site can reduce the overall cost of the wall

  16. Permeability of different size waste particles

    Directory of Open Access Journals (Sweden)

    Sabina Gavelytė

    2015-10-01

    Full Text Available The world and life style is changing, but the most popular disposal route for waste is landfill globally until now. We have to think about waste prevention and preparing for re-use or recycling firstly, according to the waste disposal hierarchy. Disposed waste to the landfill must be the last opportunity. In a landfill, during waste degradation processes leachate is formed that can potentially cause clogging of bottom drainage layers. To ensure stability of a landfill construction, the physical properties of its components have to be controlled. The hydrology of precipitation, evaporation, runoff and the hydraulic performance of the capping and liner materials are important controls of the moisture content. The water balance depends also on the waste characteristics and waste particle size distribution. The aim of this paper is to determine the hydraulic permeability in a landfill depending on the particle size distribution of municipal solid waste disposed. The lab experiment results were compared with the results calculated with DEGAS model. Samples were taken from a landfill operated for five years. The samples particle sizes are: >100 mm, 80 mm, 60 mm, 40 mm, 20 mm, 0.01 mm and <0.01 mm. The permeability test was conducted using the column test. The paper presents the results of experiment and DEGAS model water permeability with waste particle size.

  17. Two-dimensional steady unsaturated flow through embedded elliptical layers

    Science.gov (United States)

    Bakker, Mark; Nieber, John L.

    2004-12-01

    New analytic element solutions are presented for unsaturated, two-dimensional steady flow in vertical planes that include nonoverlapping impermeable elliptical layers and elliptical inhomogeneities. The hydraulic conductivity, which is represented by an exponential function of the pressure head, differs between the inside and outside of an elliptical inhomogeneity; both the saturated hydraulic conductivity and water retention parameters are allowed to differ between the inside and outside. The Richards equation is transformed, through the Kirchhoff transformation and a second standard transformation, into the modified Helmholtz equation. Analytic element solutions are obtained through separation of variables in elliptical coordinates. The resulting equations for the Kirchhoff potential consist of infinite sums of products of exponentials and modified Mathieu functions. In practical applications the series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately but up to machine accuracy, provided that enough terms are used. The pressure head, saturation, and flow may be computed analytically at any point in the vadose zone. Examples are given of the shadowing effect of an impermeable elliptical layer in a uniform flow field and funnel-type flow between two elliptical inhomogeneities. The presented solutions may be applied to study transport processes in vadose zones containing many impermeable elliptical layers or elliptical inhomogeneities.

  18. Disposal of vitrified waste in an unsaturated environment

    International Nuclear Information System (INIS)

    Bates, J.K.

    1991-01-01

    An experimental program is described wherein the effect of important independent variables on glass reaction under conditions that may exist for unsaturated storage is examined. The effect of radioactive vs. simulated glasses is being examined in a set of simple and integrated tests. Results through 140 days show that no major differences exist between the two glass types although some trends are being established that need further examination. The effect of SA/V was examined in preliminary tests done at 10, 50, and 100 m -1 . Analysis of the reacted glass structure indicated that as the SA/V changed, the assemblage of crystalline phases that formed on the reacted glass varied and the process by which the glass structure reacted changed. Finally, the effect of radiation on glass reactivity is being studied. For each variable studied, tests are in progress that will provide information to support startup of the glass processing facilities and licensing of a repository. 16 refs., 2 figs., 3 tabs

  19. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  20. Parametric effects on glass reaction in the unsaturated test method

    International Nuclear Information System (INIS)

    Woodland, A.B.; Bates, J.K.; Gerding, T.J.

    1991-12-01

    The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur

  1. {alpha},{beta}-Unsaturated Fischer carbene complexes as chemical multitalents

    Energy Technology Data Exchange (ETDEWEB)

    Meijere, A. de [Institut fuer Organische Chemie der George-August-Universitaet Goettingen (Germany)

    1995-12-31

    The well established reaction of {alpha},{beta}-unsaturated Fischer carbenechromium complexes 6(R{sup 1} = H) with alkynes normally proceeds with carbonyl insertion to yield 4-alkoxyphenols 9. Led by the incidental formation of a cyclopentadiene 3 from certain {beta}-aminosubstituted complexes 6(X = NR{sub 2}{sup 3}, R{sup 1} = cPr) the authors have studied the influences of the nature of substituents (R{sup 1}, X on 6; R{sub L}, R{sub S} in the alkyne; R{sup 3} in the amino group), solvents, and temperature on the outcome of the reaction. Imino substitution on complexes 6 leads to 2H-pyrroles 1, a free primary amino group (X = NH{sub 2}) to pyridines 5, and bulky substituents R{sup 1} to cyclopenta[b]pyrans 8 with double insertion of an alkyne. Eventually, appropriate conditions have been developed which permit to selectively prepare either 3-alkoxy-5-(dialkylamino)cyclopentadienes 3 (as synthetic equivalents of cyclopentenones 4), 5-(dialkylaminomethylene)cyclopent-2-enones 7, 3-alkoxy-2-(1{prime}-morpholino-1{prime}-alkenyl)cyclopent-2-enones 10, and 2-acyl-3-(dialkylamino)cyclopent-2-enones 11 from easily accessible carbene complexes 6 (X = NR{sub 2}{sup 3}) in high yields. Mechanistic aspects and implications of these novel transformations will be discussed.

  2. Network modelling of fluid retention behaviour in unsaturated soils

    Directory of Open Access Journals (Sweden)

    Athanasiadis Ignatios

    2016-01-01

    Full Text Available The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE, suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone.

  3. Radiation polymerizable coating composition containing an unsaturated phosphoric ester

    International Nuclear Information System (INIS)

    Dickie, R.A.; Cassatta, J.C.

    1976-01-01

    A radiation polymerizable protective coating composition or paint consists essentially of a binder solution of: (1) between about 90 and about 10 parts of a saturated, thermoplastic vinyl polymer prepared from at least about 85 weight percent of monofunctional vinyl monomers; (2) between about 10 and about 90 parts of vinyl solvent monomers for the vinyl polymer, at least about 10 weight percent, preferably at least about 30 weight percent, of the solvent monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures of these; and (3) between about 1.0 and about 15.0 parts per 100 parts of the total of the thermoplastic vinyl polymer and the vinyl solvent monomers of a triester of phosphoric acid bearing one or more sites of vinyl unsaturation. The composition exhibits excellent quality and good adhesion to a variety of substrates, in particular metals, including vapor deposited metals. Preferred articles bearing such a coating are prepared by applying a base coat to a substrate and curing the same; vapor depositing a coating of metal over the surface of the base coat; and applying to and curing on the surface of the deposited metal the radiation polymerizable topcoat, preferably with little or no pigment contained therein. 7 claims, no drawings

  4. Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow

    Science.gov (United States)

    Zhuang, Luwen; Hassanizadeh, S. Majid; Qin, Chao-Zhong; de Waal, Arjen

    2017-11-01

    The difference between average pressures of two immiscible fluids is commonly assumed to be the same as macroscopic capillary pressure, which is considered to be a function of saturation only. However, under transient conditions, a dependence of this pressure difference on the time rate of saturation change has been observed by many researchers. This is commonly referred to as dynamic capillarity effect. As a first-order approximation, the dynamic term is assumed to be linearly dependent on the time rate of change of saturation, through a material coefficient denoted by τ. In this study, a series of laboratory experiments were carried out to quantify the dynamic capillarity effect in an unsaturated sandy soil. Primary, main, and scanning drainage experiments, under both static and dynamic conditions, were performed on a sandy soil in a small cell. The value of the dynamic capillarity coefficient τ was calculated from the air-water pressure differences and average saturation values during static and dynamic drainage experiments. We found a dependence of τ on saturation, which showed a similar trend for all drainage conditions. However, at any given saturation, the value of τ for primary drainage was larger than the value for main drainage and that was in turn larger than the value for scanning drainage. Each data set was fit a simple log-linear equation, with different values of fitting parameters. This nonuniqueness of the relationship between τ and saturation and possible causes is discussed.

  5. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  6. Soil-atmosphere interaction in unsaturated cut slopes

    Directory of Open Access Journals (Sweden)

    Tsiampousi Aikaterini

    2016-01-01

    Full Text Available Interaction between atmosphere and soil has only recently attracted significant interest. Soil-atmosphere interaction takes place under dynamic climatic conditions, which vary throughout the year and are expected to suffer considerable alterations due to climate change. However, Geotechnical Analysis has traditionally been limited to simplistic approaches, where winter and summer pore water pressure profiles are prescribed. Geotechnical Structures, such as cut slopes, are known to be prone to large irreversible displacements under the combined effect of water uptake by a complex vegetation root system and precipitation. If such processes take place in an unsaturated material the complexity of the problem renders the use of numerical analysis essential. In this paper soil-atmosphere interaction in cut slopes is studied using advanced, fully coupled partially saturated finite element analyses. The effect of rainfall and evapotranspiration is modelled through sophisticated boundary conditions, applying actual meteorological data on a monthly basis. Stages of low and high water demand vegetation are considered for a period of several years, before simulating the effect of vegetation removal. The analysis results are presented with regard to the serviceability and stability of the cut slope.

  7. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  8. Leaching experiment of cement solidified waste form under unsaturated condition

    International Nuclear Information System (INIS)

    Wang Zhiming; Yao Laigen; Li Shushen; Zhao Yingjie; Cai Yun; Li Dan; Han Xinsheng; An Yongfeng

    2003-01-01

    A device for unsaturated leaching experiments was designed and built up. 8 different sizes, ranging from 40.2 cm 3 to 16945.5 cm 3 , of solidified waste form were tested in the experiment. 5 different water contents, from 0.15 to 0.40, were used for the experiment. The results show that the cumulative leaching fraction increases with water content when the sizes of the forms are equal to and less than 4586.7 cm 3 , for example, the ratios of the cumulative leaching fractions are between 1.24-1.41 under water content of 0.35 and 0.15 on 360 day of Teaching. It can also be seen that the cumulative leaching fraction under higher water content is close to that under saturated condition. The cumulative leaching fraction decreases with size of the form. Maximum leached depth of the solidified waste forms is about 2.25 cm after one year Teaching. Moreover, it has no clear effect on cumulative leaching fraction that sampling or non-sampling during the experiment

  9. Simulation of heat transfer in the unsaturated zone

    International Nuclear Information System (INIS)

    Zyvoloski, G.

    1990-01-01

    Heat transfer can play an important role in fluid flow near the emplacement site of high-level nuclear waste. The effects on far- field flow can be important in understanding net moisture fluxes above the repository zone. The convection in the unsaturated zone at the Yucca Mountain site was responsible for this movement. If this is so, then the convection could provide a mechanism for drying the rock above the repository zone and thus provide a buffer for heavy rainfall events. In addition, the convection would increase the movement of gaseous radionuclides such as 14 CO 2 , tritiated water vapor, and 129 I (Weeks, 1987). Because of the complexity of the problem, numerical models were required to calculate gas flow and vapor transport at the site. Kipp previously modeled this problem using the code HST3D. This code represents the flow of a single-phase fluid with both heat- and mass-transfer effects included. Water density and partial pressure effects are accounted for by the virtual temperature method. In this paper, the problem was simulated using the code FEHMN, a finite-element heat- and mass-transfer code being developed for the Yucca Mountain Project. The work described in this paper was done in preparation of the upcoming problem to be formulated for the Performance Assessment Calculation Exercise. 5 refs., 9 figs., 1 tab

  10. Radionuclide transport as vapor through unsaturated fractured rock

    International Nuclear Information System (INIS)

    Green, R.T.

    1986-01-01

    The objective of this study is to identify and examine potential mechanisms of radionuclide transport as vapor at a high-level radioactive waste repository located in unsaturated fractured rock. Transport mechanisms and processes have been investigated near the repository and at larger distances. Transport mechanisms potentially important at larger distances include ordinary diffusion, viscous flow and free convection. Ordinary diffusion includes self and binary diffusion, Knudsen flow and surface diffusion. Pressure flow and slip flow comprise viscous flow. Free convective flow results from a gas density contrast. Transport mechanisms or processes dominant near the repository include ordinary diffusion, viscous flow plus several mechanisms whose driving forces arise from the non-isothermal, radioactive nature of high-level waste. The additional mechanisms include forced diffusion, aerosol transport, thermal diffusion and thermophoresis. Near a repository vapor transport mechanisms and processes can provide a significant means of transport from a failed canister to the geologic medium from which other processes can transport radionuclides to the accessible environment. These issues are believed to be important factors that must be addressed in the assessment of specific engineering designs and site selection of any proposed HLW repository

  11. TSPA Model for the Yucca Mountain Unsaturated Zone

    International Nuclear Information System (INIS)

    M.L. Wilson; C.K. Ho

    2001-01-01

    Yucca Mountain, Nevada, is being considered as a potential site for a repository for spent nuclear fuel and high-level radioactive waste. Total-system performance-assessment (TSPA) calculations are performed to evaluate the safety of the site. Such calculations require submodels for all important engineered and natural components of the disposal system. There are five submodels related to the unsaturated zone: climate, infiltration, mountain-scale flow of water, seepage into emplacement drifts, and radionuclide transport. For each of these areas, models have been developed and implemented for use in TSPA. The climate model is very simple (a set of climate states have been deduced from paleoclimate data, and the times when climate changes occur in the future have been estimated), but the other four models make use of complex process models involving time-consuming computer runs. An important goal is to evaluate the impact of uncertainties (e.g., incomplete knowledge of the site) on the estimates of potential repository performance, so particular attention is given to the key uncertainties for each area. Uncertainties in climate, infiltration, and mountain-scale flow are represented in TSPA simulations by means of discrete high, medium, and low cases, Uncertainties in seepage and radionuclide transport are represented by means of continuous probability distributions for several key parameters

  12. Effective media models for unsaturated fractured rock: A field experiment

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1995-01-01

    A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock

  13. Evaluation of probabilistic flow in two unsaturated soils

    Science.gov (United States)

    Boateng, Samuel

    2001-11-01

    A variably saturated flow model is coupled to a first-order reliability algorithm to simulate unsaturated flow in two soils. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Thus, each simulation constitutes an unsaturated probability flow event. Sensitivities of the uncertain variables are estimated for each event. The unsaturated hydraulic properties of a fine-textured soil and a coarse-textured soil are used. The properties are based on the van Genuchten model. The flow domain has a recharge surface, a seepage boundary along the bottom, and a no-flow boundary along the sides. The uncertain variables are saturated water content, residual water content, van Genuchten model parameters alpha (α) and n, and saturated hydraulic conductivity. The objective is to evaluate the significance of each uncertain variable to the probabilistic flow. Under wet conditions, saturated water content and residual water content are the most significant uncertain variables in the sand. For dry conditions in the sand, however, the van Genuchten model parameters α and n are the most significant. Model parameter n and saturated hydraulic conductivity are the most significant for the wet clay loam. Saturated water content is most significant for the dry clay loam. Résumé. Un modèle d'écoulement variable en milieu saturé est couplé à un algorithme d'exactitude de premier ordre pour simuler les écoulements en milieu non saturé dans deux sols. Les propriétés des sols non saturés sont considérés comme des variables incertaines avec des moyennes, des écarts-types et des distributions de probabilité marginale. Ainsi chaque simulation constitue un événement d'écoulement non saturé probable. La sensibilité des variables incertaines est estimée pour chaque événement. Les propriétés hydrauliques non saturées d'un sol à texture fine et d'un sol à texture grossière sont utilis

  14. Information and Heterogeneous Beliefs

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Qin, Zhenjiang

    2014-01-01

    In an incomplete market with heterogeneous prior beliefs, we show public information can have a substantial impact on the ex ante cost of capital, trading volume, and investor welfare. The Pareto effcient public information system is the system enjoying the maximum ex ante cost of capital...... and the maximum expected abnormal trading volume. Imperfect public information increases the gains-to-trade based on heterogeneously updated posterior beliefs. In an exchange economy, this leads to higher growth in the investors' certainty equivalents and, thus, a higher equilibrium interest rate, whereas the ex...... ante risk premium is unaffected by the informativeness of the public information system. Similar results are obtained in a production economy, but the impact on the ex ante cost of capital is dampened compared to the exchange economy due to welfare improving reductions in real investments to smooth...

  15. Production of highly unsaturated fatty acids using agro-processing by-products

    CSIR Research Space (South Africa)

    Jacobs, A

    2008-11-01

    Full Text Available The South African agro-processing industry generates millions of tons of cereal derived by-products annually. The by-products from biofuel production are expected to increase these volumes dramatically. Highly unsaturated fatty acids (HUFA...

  16. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  17. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  18. Study on the concentration of unsaturated fatty acid methyl esters by urea complexation

    International Nuclear Information System (INIS)

    Jiang, B.; Liu, Y.

    2014-01-01

    This study was done to obtain concentrated unsaturated fatty acid methyl esters (FAME) by urea complexation from soybean derived FAME. Effects of urea-to-FAME ratio, 95% ethanol-to-FAME ratio, crystallization temperature and time on the purification of unsaturated FAME were investigated through single factor experiments. Optimum conditions to obtain maximum FAME yield of NUCF with the purity of unsaturated FAME greater than 98% were established using Box-Behnken design (BBD) method and response surface methodology (RSM). Under optimal conditions, the FAME yield was 58.08%, and the purity of unsaturated FAME was 98% at a urea-to-FAME ratio of 1.23, 95% ethanol-to-FAME ratio of 7 and crystallization temperature of 0 degree C. Verification results revealed that the predicted values were reasonably close to experimentally observed values of 56.93% and 98.01%. (author)

  19. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.

    Science.gov (United States)

    Rigoli, Jared W; Moyer, Sara A; Pearce, Simon D; Schomaker, Jennifer M

    2012-03-07

    A convenient synthesis of α,β-unsaturated imines requiring only an allylic alcohol, an amine and a Ru catalyst has been developed. The use of large excesses of oxidant and the purification of sensitive intermediates can be avoided.

  20. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  1. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Stable and radioactive isotopes in the study of the unsaturated soil zone

    International Nuclear Information System (INIS)

    1985-11-01

    This publication brings together the main results with conclusions and recommendations on the usefulness of studies of the oxygen 18, deuterium and tritium in water in the unsaturated zone. A separate abstract was prepared for each of the 9 papers

  3. Modelling the effects of pore-water chemistry on the behaviour of unsaturated clays

    Directory of Open Access Journals (Sweden)

    Lei Xiaoqin

    2016-01-01

    Full Text Available Due to their various applications in geo-environmental engineering, such as in landfill and nuclear waste disposals, the coupled chemo-hydro-mechanical analysis of expansive soils has gained more and more attention recently. These expansive soils are usually unsaturated under field conditions; therefore the capillary effects need to be taken into account appropriately. For this purpose, based on a rigorous thermodynamic framework (Lei et al., 2014, the authors have extended the chemo-mechanical model of Loret el al. (2002 for saturated homoionic expansive soils to the unsaturated case (Lei, 2015. In this paper, this chemo-mechanical unsaturated model is adopted to simulate the chemo-elastic-plastic consolidation process of an unsaturated expansive soil layer. Logical tendencies of changes in the chemical, mechanical and hydraulic field quantities are obtained.

  4. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources : Enzymatic Synthesis, Characterization, and Properties

    NARCIS (Netherlands)

    Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja

    2014-01-01

    Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic

  5. Micromechanics of heterogeneous materials

    CERN Document Server

    Buryachenko, Valeriy

    2007-01-01

    Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.

  6. Percolation in Heterogeneous Media

    International Nuclear Information System (INIS)

    Vocka, Radim

    1999-01-01

    This work is a theoretical reflection on the problematic of the modeling of heterogeneous media, that is on the way of their simple representation conserving their characteristic features. Two particular problems are addressed in this thesis. Firstly, we study the transport in porous media, that is in a heterogeneous media which structure is quenched. A pore space is represented in a simple way - a pore is symbolized as a tube of a given length and a given diameter. The fact that the correlations in the distribution of pore sizes are taken into account by a construction of a hierarchical network makes possible the modeling of porous media with a porosity distributed over several length scales. The transport in the hierarchical network shows qualitatively different phenomena from those observed in simpler models. A comparison of numerical results with experimental data shows that the hierarchical network gives a good qualitative representation of the structure of real porous media. Secondly, we study a problem of the transport in a heterogeneous media which structure is evolving during the time. The models where the evolution of the structure is not influenced by the transport are studied in detail. These models present a phase transition of the same nature as that observed on the percolation networks. We propose a new theoretical description of this transition, and we express critical exponents describing the evolution of the conductivity as a function of fundamental exponents of percolation theory. (author) [fr

  7. Back Analysis of the Permeability Coefficient of a High Core Rockfill Dam Based on a RBF Neural Network Optimized Using the PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Shichun Chi

    2015-01-01

    Full Text Available It is important to determine the seepage field parameters of a high core rockfill dam using the seepage data obtained during operation. For the Nuozhadu high core rockfill dam, a back analysis model is proposed using the radial basis function neural network optimized using a particle swarm optimization algorithm (PSO-RBFNN and the technology of finite element analysis for solving the saturated-unsaturated seepage field. The recorded osmotic pressure curves of osmometers, which are distributed in the maximum cross section, are applied to this back analysis. The permeability coefficients of the dam materials are retrieved using the measured seepage pressure values while the steady state seepage condition exists; that is, the water lever remains unchanged. Meanwhile, the parameters are tested using the unstable saturated-unsaturated seepage field while the water level rises. The results show that the permeability coefficients are reasonable and can be used to study the real behavior of a seepage field of a high core rockfill dam during its operation period.

  8. Determination of Polybutadiene Unsaturation Content in Thermal and Thermo-Oxidative Degradation Processes by NMR

    Directory of Open Access Journals (Sweden)

    Farshid Ziaee

    2013-01-01

    Full Text Available The unsaturation content of various polybutadiene (PBD types of 1,4-cis, 1,4-trans and 1,2-vinyl isomers with different molecular weights was investigated. An important parameter for unsaturation content of polybutadiene would be the determination of olefnic and aliphatic contents for three types of isomers. For this purpose, proton and carbon nuclear magnetic resonance spectroscopy methods were employed for determination of 1,4-cis, 1,4-trans and 1,2-vinyl contents. A change of adjustable parameter of NMR software was made for accurate integrals giving better results. The accuracy in calculation of low molecular weight PBD, surface area of chain end group decreased in aliphatic region. Furthermore, the changing of unsaturation content versus time was considered for 1,2-PBD and 1,4-PBD in thermal degradation conditions at 250°C. NMR results showed that during heating, the unsaturation content decreased for 1,2-PBD and was not changed for 1,4-PBD. In fact, the basic factor responsible for changing of unsaturation content in thermal degradation of PBD may be due to the presence of 1,2-vinyl isomer. Finally, changing in unsaturation content versus time was observed for 1,2-PBD and 1,4-PBD in thermo-oxidative degradation conditions at 100°C. The NMR results showed that at extended time, the unsaturation content decreased for 1,4-PBD and was not changed for 1,2-PBD. Moreover, the basic factor for changes in unsaturation content in thermo-oxidative degradation of PBD is due to the presence of 1,4-cis and 1,4-trans isomers.

  9. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    OpenAIRE

    Tourchi, Saeed; Hamidi, Amir

    2015-01-01

    A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rul...

  10. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  11. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    International Nuclear Information System (INIS)

    B. Bullard

    1999-01-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4

  12. Enhanced Attenuation of Unsaturated Chlorinated Solvent Source Zones using Direct Hydrogen Delivery

    Science.gov (United States)

    2013-01-01

    solvents. This approach for bioremediation of unsaturated soils containing chlorinated solvents was originally proposed in a patent by Hughes et al...have been conducted on the use of hydrogen as an electron donor for the anaerobic bioremediation of saturated and unsaturated porous media (Evans and...proven to be very effective in remediating releases of petroleum products including gasoline, jet fuels, kerosene, and diesel fuel. Several field

  13. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    OpenAIRE

    Gofar Nurly; Rahardjo Harianto

    2017-01-01

    This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–...

  14. Application of Stochastic Unsaturated Flow Theory, Numerical Simulations, and Comparisons to Field Observations

    DEFF Research Database (Denmark)

    Jensen, Karsten Høgh; Mantoglou, Aristotelis

    1992-01-01

    unsaturated flow equation representing the mean system behavior is solved using a finite difference numerical solution technique. The effective parameters are evaluated from the stochastic theory formulas before entering them into the numerical solution for each iteration. The stochastic model is applied...... seems to offer a rational framework for modeling large-scale unsaturated flow and estimating areal averages of soil-hydrological processes in spatially variable soils....

  15. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    Science.gov (United States)

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  16. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    or no fixed heterogeneity influences this trait. We propose that dynamic heterogeneity provides a 'neutral' model for assessing the possible role of unobserved 'quality' differences between individuals. We discuss fitness for dynamic life histories, and the implications of dynamic heterogeneity...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...... distributions of lifetime reproductive success. Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate variation between life histories. We show by an example that observed distributions of lifetime reproductive success are often consistent with the claim that little...

  17. Evolution of permeability in diatomaceous rocks mediated by pressure solution

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Kishida, Kiyoshi

    2007-01-01

    A conceptual model is presented to follow the evolution of permeability in diatomaceous rocks mediated by pressure solution. The progress of compaction and the evolution of permeability may be followed with time. Specifically, the main minerals of diatomaceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective stresses of 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increase of the dissolution rate constants. Ultimate permeabilities reduce to the order of 90% at the completion of dissolution-mediated compaction. (author)

  18. EDZ and permeability in clayey rocks

    International Nuclear Information System (INIS)

    Levasseur, Severine; Collin, Frederic; Charlier, Robert; Besuelle, Pierre; Chambon, Rene; Viggiani, Cino

    2010-01-01

    Document available in extended abstract form only. Deep geological layers are being considered as potential host rocks for the high level radioactivity waste disposals. During drilling in host rocks, an excavated damaged zone - EDZ is created. The fluid transmissivity may be modified in this damaged zone. This paper deals with the permeability evolution in relation with diffuse and/or localized crack propagation in the material. We mainly focus on argillaceous rocks and on some underground laboratories: Mol URL in Boom clay, Bure URL in Callovo-Oxfordian clay and Mont-Terri URL in Opalinus clay. First, observations of damage around galleries are summarized. Structure of damage in localized zone or in fracture has been observed at underground gallery scale within the excavation damaged zone (EDZ). The first challenge for a correct understanding of all the processes occurring within the EDZ is the characterization at the laboratory scale of the damage and localization processes. The observation of the initiation and propagation of the localized zones needs for advanced techniques. X-ray tomography is a non-destructive imaging technique that allows quantification of internal features of an object in 3D. If mechanical loading of a specimen is applied inside a X-ray CT apparatus, successive 3D images at different loading steps show the evolution of the specimen. However, in general volumetric strain in a shear band is small compared to the shear strain and, unfortunately, in tomographic images grey level is mainly sensitive to the local mass density field. Such a limitation has been recently overcome by complementing X-ray tomography with 3D Volumetric Digital Image Correlation (V-DIC) which allows the determination of the full strain tensor field. Then it is possible to further explore the progression of localized deformation in the specimen. The second challenge is the robust modelling of the strain localized process. In fact, modelling the damage process with finite

  19. Modeling erosion of unsaturated compacted bentonite by groundwater flow; pinhole erosion test case

    International Nuclear Information System (INIS)

    Laurila, T.; Sane, P.; Olin, M.; Koskinen, K.

    2012-01-01

    swelling rate to erosion rate. Expressing eroded mass as a function of time as M(t) ∝ tβ. we note that for non-swelling material the wall shear -based erosion model gives β = 0,5. We find this limit in our model by suppressing swelling, and we observe that β increases when ratio of swelling to erosion increases, approaching values β ≅ 1 for strong swelling. It follows that the long term erosion of backfill and buffer materials are expected to differ, with erosion rates in the more compact buffer dropping slower. The result also suggests that the lower the initial erosion, the longer one can expect that rate to be maintained. We solve the model in cylindrically symmetric coordinates using COMSOL Multiphysics software, and fit parameters to match pinhole experiments on MX-80 bentonite with different salinities of the water inflow. Significant scatter within the experimental data makes it difficult to definitively validate models. Figure 1 shows erosion behavior in the model at the limit of vanishing swelling, and contrasts it to the highly-swelling case. Observations from the pinhole experiments, as well as from down-scaled piping erosion tests, show that erosion rates in buffer material don't drop significantly in time, suggesting a consistent with high swelling. In the larger piping erosion tests a seemingly steady state in the erosion rate is reached for an extended amount of time. The effects of scatter are reduced using statistical analysis of this state. An important experimental finding of unsaturated erosion is that larger salinities lead to larger erosion rates, in contrast to saturated erosion where the opposite has been observed. We expect this effect to be due to the processes of saturation, suction and permeability. Future work aims to model the dominant processes in this effect, as pertains to Posiva reference conditions for the Olkiluoto site, without going to the full complexity of (T)HM modeling, such as the Barcelona expansible model

  20. Degradation behavior of polymer blend of isotactic polypropylenes with and without unsaturated chain end group

    International Nuclear Information System (INIS)

    Nakatani, Hisayuki; Kurniawan, Dodik; Taniike, Toshiaki; Terano, Minoru

    2008-01-01

    In this work, the relationship between the unsaturated chain end group content and the thermal oxidative degradation rate was systematically studied with binary polymer blends of isotactic polypropylene (iPP) with and without the unsaturated chain end group. The iPPs with and without the unsaturated chain end group were synthesized by a metallocene catalyst in the absence of hydrogen and by a Ziegler catalyst in th