WorldWideScience

Sample records for unloaded dimensional stability

  1. Continuous bulk unloader versus grab unloader: a comparison of ship unloading systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepling, M

    1985-02-01

    Most of the major bulk cargoes (coal, ores, phosphate, limestone, etc.) have poor flow characteristics and are, generally speaking, difficult to handle and unload. Grab- type cranes (either portal or gantry) have hitherto been the traditional means of unloading these cargoes because of their excellent digging/grabbing performance. However they do possess a number of serious disadvantages, such as low efficiency, which limit their economic viability for some operations. Increasing interest has developed, therefore, in alternative continuous unloading methods. The KONE Corporation, Finland, has developed its own bucket wheel continuous unloader, and installed both a grab unloader and a continuous unloader at the Enstedvaerket coal transshipment centre near Aabenraa in Denmark; both systems are described and the operational benefits of each are compared and contrasted.

  2. Dimensional stability of natural fibers

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Mark S. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 (United States); Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 and Sustainable Construction Management and Engineering, SUNY-ESF (United States); Larsen, L. Scott [New York State Energy Research and Development Authority (NYSERDA), 17 Columbia Circle, Albany, NY 12203 (United States)

    2013-04-19

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  3. Dimensional stability of natural fibers

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott

    2013-01-01

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  4. Effects of phosphoramides on wood dimensional stability

    Science.gov (United States)

    Hong-Lin. Lee; George C. Chen; Roger M. Rowell

    2000-01-01

    To evaluate the dimensional stability of phosphoramide-reacted wood, wood was reacted with a mixture which was derived from compounding phosphorus pentoxide and each of 12 amines including alkyl, halophenyl, and phenyl amines in N,N-dimethylformamide. Dimensional stability of such reacted wood was analyzed by antishrink efficiency (ASE) using the water-soak method....

  5. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  6. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M.; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R.; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H.

    2016-01-01

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  7. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na

    2016-02-03

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  8. Unloading performances and stabilizing practices for columnar jointed basalt: A case study of Baihetan hydropower station

    Directory of Open Access Journals (Sweden)

    Qixiang Fan

    2017-12-01

    Full Text Available The columnar jointed rock mass (CJR, composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes. Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.

  9. Pathway of phloem unloading in tobacco sink leaves

    International Nuclear Information System (INIS)

    Turgeon, R.

    1987-01-01

    Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Source leaves were labeled with 14 CO 2 and experimental treatments were begun approximately 1 h later when label had entered the sink leaves. Autoradiographs were prepared from rapidly frozen, lyophilized sink tissue at the beginning and end of the treatments and the amount of label in veins and in surrounding cells was determined by microdensitometry. Photoassimilate unloaded from third order and larger, but not smaller, veins. Long-distance import and unloading did not respond the same way to all experimental treatments. Import was completely inhibited by cold, anaerobiosis or steam girdling the sink leaf petiole. Unloading was inhibited by cold but continued in an anaerobic atmosphere and after steam girdling. Uptake of exogenous [ 14 C]sucrose was inhibited by anaerobiosis. Since an apoplastic pathway of phloem unloading would involve solute uptake from the apoplast the results are most consistent with passive symplastic unloading of photoassimilates from phloem to surrounding cells

  10. Linear Dimensional Stability of Irreversible Hydrocolloid Materials Over Time.

    Science.gov (United States)

    Garrofé, Analía B; Ferrari, Beatriz A; Picca, Mariana; Kaplan, Andrea E

    2015-12-01

    The aim of this study was to evaluate the linear dimensional stability of different irreversible hydrocolloid materials over time. A metal mold was designed with custom trays made of thermoplastic sheets (Sabilex, sheets 0.125 mm thick). Perforations were made in order to improve retention of the material. Five impressions were taken with each of the following: Kromopan 100 (LASCOD) [AlKr], which has dimensional stability of 100 hours, and Phase Plus (ZHERMACK) [AlPh], which has dimensional stability of 48 hours. Standardized digital photographs were taken at different time intervals (0, 15, 30, 45, 60, 120 minutes; 12, 24 and 96 hours), using an "ad-hoc" device. The images were analyzed with software (UTHSCSA Image Tool) by measuring the distance between intersection of the lines previously made at the top of the mold. The results were analyzed by ANOVA for repeated measures. Initial and final values were (mean and standard deviation): AlKr: 16.44 (0.22) and 16.34 (0.11), AlPh: 16.40 (0.06) and 16.18 (0.06). Statistical evaluation showed significant effect of material and time factors. Under the conditions in this study, time significantly affects the linear dimensional stability of irreversible hydrocolloid materials. Sociedad Argentina de Investigación Odontológica.

  11. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour

    2018-03-27

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.

  12. Measurements of noise from rotary coal unloading operations

    International Nuclear Information System (INIS)

    Adams, T.S.; Bilello, M.A.

    1991-01-01

    In the licensing effort for a coal-fired power plant in the northeast United States, noise related to delivery and unloading of coal by train was identified as a significant concern to the nearby community. Specific issues included locomotive noise, the banging noises caused by railcar couplings during the start and stop cycles of the unloading operation, wheel squeal in the curves of the rail loop, and rotary coal unloader noises. This paper reports that a literature review provided adequate information on idling locomotive noise but very little on the other noise sources. Coupling impact noise was well documented for railcars actually being coupled at various speeds but not for coupled trains during start and stop operations. Wheel squeal was well documented by subway trains travelling at normal speeds, but nothing could be found for wheel squeal during very slow train movement as occurs during unloading. Similarly, adequate information was available for unenclosed rotary unloaders but not for enclosed unloaders. Consequently, actual noise measurements of a similar enclosed facility, and the associated train movements, were undertaken to obtain data more directly applicable to the planned facility

  13. Spinal Health during Unloading and Reloading Associated with Spaceflight

    Directory of Open Access Journals (Sweden)

    David A. Green

    2018-01-01

    Full Text Available Spinal elongation and back pain are recognized effects of exposure to microgravity, however, spinal health has received relatively little attention. This changed with the report of an increased risk of post-flight intervertebral disc (IVD herniation and subsequent identification of spinal pathophysiology in some astronauts post-flight. Ground-based analogs, particularly bed rest, suggest that a loss of spinal curvature and IVD swelling may be factors contributing to unloading-induced spinal elongation. In flight, trunk muscle atrophy, in particular multifidus, may precipitate lumbar curvature loss and reduced spinal stability, but in-flight (ultrasound and pre- and post-flight (MRI imaging have yet to detect significant IVD changes. Current International Space Station missions involve short periods of moderate-to-high spinal (axial loading during running and resistance exercise, superimposed upon a background of prolonged unloading (microgravity. Axial loading acting on a dysfunctional spine, weakened by anatomical changes and local muscle atrophy, might increase the risk of damage/injury. Alternatively, regular loading may be beneficial. Spinal pathology has been identified in-flight, but there are few contemporary reports of in-flight back injury and no recent studies of post-flight back injury incidence. Accurate routine in-flight stature measurements, in- and post-flight imaging, and tracking of pain and injury (herniation for at least 2 years post-flight is thus warranted. These should be complemented by ground-based studies, in particular hyper buoyancy floatation (HBF a novel analog of spinal unloading, in order to elucidate the mechanisms and risk of spinal injury, and to evaluate countermeasures for exploration where injury could be mission critical.

  14. Hydrogen peroxide stabilization in one-dimensional flow columns

    Science.gov (United States)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  15. Analytical Prediction of Three Dimensional Chatter Stability in Milling

    Science.gov (United States)

    Altintas, Yusuf

    The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.

  16. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour; Oppelstrup, Jesper

    2018-01-01

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary

  17. Higher-Dimensional Solitons Stabilized by Opposite Charge

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).

  18. Glucocorticoids and inhibition of bone formation induced by skeletal unloading

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Cone, C.M.; Morey-Holton, E.

    1988-01-01

    Skeletal unloading or loss of normal weight bearing in the growing animal inhibits bone formation and reduces bone calcium. To determine whether the inhibition of bone formation induced by skeletal unloading is a consequence of an increase in plasma glucocorticoids and/or an increase in bone sensitivity to glucocorticoids, the authors measured plasma corticosterone throughout the day in unloaded and normally loaded rats (hindlimb elevation model) and examined the effect of adrenalectomy on the response of bone to skeletal unloading. Plasma corticosterone levels were similar in normally loaded and unloaded rats at all times. Skeletal unloading in sham-adrenalectomized animals reduced tibial and vertebral calcium by 11.5 and 11.1%, respectively, and in adrenalectomized animals by 15.3 and 20.3%, respectively. Uptake of 45 Ca and [ 3 H]proline in the tibia was reduced by 8 and 14%, respectively, in the sham-adrenalectomized animals and by 13 and 19% in the adrenalectomized animals. Bone formation and apposition rates were reduced to the same level in sham- and adrenalectomized animals. These results suggest that the inhibition of bone formation induced by skeletal unloading is not a consequence of increased plasma glucocorticoids or an increase in bone sensitivity to the glucocorticoids but, rather, point to a local mediator in bone that senses mechanical load and transmits that information to the bone-forming cells directly

  19. On 3-Dimensional Stability of Reshaping Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Frigaard, Peter

    1989-01-01

    The paper deals with the 3-dimensional stability of the type of rubble mound breakwaters where reshaping of the mound due to wave action is foreseen in the design. Such breakwaters are commonly named sacrificial types and berm types. The latter is due to the relatively large volume of armour stones...

  20. Crystal Plasticity Finite Element Analysis of Loading-Unloading Behaviour in Magnesium Alloy Sheet

    International Nuclear Information System (INIS)

    Hama, Takayuki; Fujimoto, Hitoshi; Takuda, Hirohiko

    2010-01-01

    Magnesium alloy sheets exhibit strong inelastic response during unloading. In this study crystal plasticity finite element analysis of loading-unloading behaviour during uniaxial tension in a rolled magnesium alloy sheet was carried out, and the mechanism of this inelastic response was examined in detail in terms of macroscopic and mesoscopic deformations. The unloading behaviour obtained by the simulation was in good agreement with the experiment in terms of variation with stress of instantaneous tangent modulus during unloading. Variations of activities of each family of slip systems during the deformation showed that the activation of basal slip systems is the largest during unloading, and the slip direction during unloading is opposite from during loading. These results indicated that one of the factors of the inelastic behaviour during unloading is the fact that the basal slip systems are easily activated during unloading because of their low strengths.

  1. Phloem unloading and cell expansion in pea stems

    International Nuclear Information System (INIS)

    Schmalstig, J.G.; Cosgrove, D.J.

    1989-01-01

    Phloem unloading into elongating stems of dark-grown pea seedlings was greater in regions with higher relative growth rates. Phloem transport was monitored over 1 h by measuring accumulation of radiolabel from 14 C-sucrose added between the cotyledons. The apical hook and plumule and 8 mm of the growing region of an intact plant were sealed in a pressure chamber and the pressure was raised to stop elongation. Phloem unloading was inhibited in the pressurized zone of elongation and accelerated in the apical hook and plumule, with the result that the magnitude of phloem transport into the stem was unchanged. The results demonstrate a coupling between cell expansion and phloem unloading

  2. Assimilate unloading from maize (Zea mays L.) pedicel tissues

    International Nuclear Information System (INIS)

    Porter, G.A.; Knievel, D.P.; Shannon, J.C.

    1987-01-01

    Sugar and 14 C-assimilate release from the pedicel tissue of attached maize (Zea mays L.) kernels was studied following treatment with solute concentrations of up to 800 millimolal. Exposure and collection times ranged from 3 to 6 hours. Sugar and 14 C-assimilate unloading and collection in agar traps was reduced by 25 and 43%, respectively, following exposure to 800 millimolal mannitol. Inhibition of unloading was not specific to mannitol, since similar concentrations of glucose, fructose, or equimolar glucose plus fructose resulted in comparable inhibition. Ethylene glycol, a rapidly permeating solute which should not greatly influence cell turgor, did not inhibit 14 C-assimilate unloading. Based on these results, they suggest that inhibition of unloading by high concentrations of sugar or mannitol was due to reduced pedicel cell turgor. Changes in pedicel cell turgor may play a role in the regulation of assimilate transfer within the maize kernel

  3. Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port

    Science.gov (United States)

    Mustakim, Achmad; Hadi, Firmanto

    2018-03-01

    The condition of loading and unloading process of livestock in a number of Indonesian ports doesn’t meet the principle of animal welfare, which makes cattle lose weight and injury when unloaded. Livestock loading and unloading is done by throwing cattle into the sea one by one, tying cattle hung with a sling strap and push the cattle to the berth directly. This process is against PP. 82 year 2000 on Article 47 and 55 about animal welfare. Innovation of loading and unloading tools design offered are loading and unloading design with garbarata. In the design of loading and unloading tools with garbarata, apply the concept of semi-horizontal hydraulic ladder that connects the ship and truck directly. This livestock unloading equipment design innovation is a combination of fire extinguisher truck design and bridge equipped with weightlifting equipment. In 10 years of planning garbarata, requires a total cost of IDR 321,142,921; gets benefits IDR 923,352,333; and BCR (Benefit-Cost Ratio) Value worth 2.88. BCR value >1 means the tool is feasible applied. The designs of this loading and unloading tools are estimated up to 1 hour faster than existing way. It can also minimize risks such as injury and also weight reduction livestock agencies significantly.

  4. On the Stability of Three-Dimensional Boundary Layers. Part 1; Linear and Nonlinear Stability

    Science.gov (United States)

    Janke, Erik; Balakumar, Ponnampalam

    1999-01-01

    The primary stability of incompressible three-dimensional boundary layers is investigated using the Parabolized Stability Equations (PSE). We compute the evolution of stationary and traveling disturbances in the linear and nonlinear region prior to transition. As model problems, we choose Swept Hiemenz Flow and the DLR Transition Experiment. The primary stability results for Swept Hiemenz Flow agree very well with computations by Malik et al. For the DLR Experiment, the mean flow profiles are obtained by solving the boundary layer equations for the measured pressure distribution. Both linear and nonlinear results show very good agreement with the experiment.

  5. Radiographic film cassette unloading apparatus

    International Nuclear Information System (INIS)

    Stievenart, E.F.; Plessers, H.S.; Neujens, G.J.

    1980-01-01

    Apparatus for unloading cassettes, containing exposed radiographic films, has means for unfastening the cassettes, an inclined pathway for gravity feeding and rotating feed members (rollers or belts) to propel the films into the processor. (UK)

  6. Moduli stabilization in higher dimensional brane models

    International Nuclear Information System (INIS)

    Flachi, Antonino; Pujolas, Oriol; Garriga, Jaume; Tanaka, Takahiro

    2003-01-01

    We consider a class of warped higher dimensional brane models with topology M x Σ x S 1 /Z 2 , where Σ is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space Σ line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of Σ at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space Σ is flat. (author)

  7. Moduli stabilization in higher dimensional brane models

    Energy Technology Data Exchange (ETDEWEB)

    Flachi, Antonino; Pujolas, Oriol [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain)]. E-mail: pujolas@ifae.es; Garriga, Jaume [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Tanaka, Takahiro [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford MA 02155 (United States); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2003-08-01

    We consider a class of warped higher dimensional brane models with topology M x {sigma} x S{sup 1}/Z{sub 2}, where {sigma} is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space {sigma} line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of {sigma} at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space {sigma} is flat. (author)

  8. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Sung Soo

    2010-01-01

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack

  9. Dimensional Stability of Two Polyvinyl Siloxane Impression Materials in Different Time Intervals

    Directory of Open Access Journals (Sweden)

    Aalaei Sh

    2015-12-01

    Full Text Available Statement of the Problem: Dental prosthesis is usually made indirectly; there- fore dimensional stability of the impression material is very important. Every few years, new impression materials with different manufacturers’ claims regarding their better properties are introduced to the dental markets which require more research to evaluate their true dimensional changes. Objectives: The aim of this study was to evaluate dimensional stability of additional silicone impression material (Panasil® and Affinis® in different time intervals. Materials and Methods: In this experimental study, using two additional silicones (Panasil® and Affinis®, we made sixty impressions of standard die in similar conditions of 23 °C and 59% relative humidity by a special tray. The die included three horizontal and two vertical lines that were parallel. The vertical line crossed the horizontal ones at a point that served as reference for measurement. All impressions were poured with high strength dental stone. The dimensions were measured by stereo-microscope by two examiners in three interval storage times (1, 24 and 168 hours.The data were statistically analyzed using t-test and ANOVA. Results: All of the stone casts were larger than the standard die. Dimensional changes of Panasil and Affinis were 0.07%, 0.24%, 0.27% and 0.02%, 0.07%, 0.16% after 1, 24 and 168 hours, respectively. Dimensional change for two impression materials wasn’t significant in the interval time, expect for Panasil after one week (p = 0.004. Conclusions: According to the limitations of this study, Affinis impressions were dimensionally more stable than Panasil ones, but it was not significant. Dimensional change of Panasil impression showed a statistically significant difference after one week. Dimensional changes of both impression materials were based on ADA standard limitation in all time intervals (< 0.5%; therefore, dimensional stability of this impression was accepted at least

  10. Biomechanical analysis of loading/unloading a ladder on a truck.

    Science.gov (United States)

    Moriguchi, Cristiane Shinohara; Carnaz, Leticia; de Miranda, Luiz Carlos; Marklin, Richard William; Coury, Helenice Jane Cote Gil

    2012-01-01

    Loading/unloading a ladder on vehicles are frequent tasks and involve overhead handling that may expose workers to risk factors of shoulder musculoskeletal disorders. The objective of the present study was to evaluate posture, forces required and perceived exertion when loading and unloading the ladder on a utility truck. Thirteen male overhead line workers from an electric utility in Brazil participated in this study. Shoulder elevation angle was measured using inclinometers. The required force to load/unload the ladder was measured by dynamometer. Subjective assessment of the perceived exertion was recorded to compare the exertion reported during the test conditions to the field conditions. The task of loading/unloading the ladder presented risks of shoulder musculoskeletal disorders (MSDs) to workers because it requires high levels of force (approximately 60% of the maximal force) combined with overhead posture of the shoulders (more than 100° from the neutral posture). Age and height presented to interfere in biomechanical risks presented in load/unload task. There was no significant difference between the subjective exertion during the test conditions and handling the ladder in the field. Ergonomic intervention is recommended to reduce these risks for shoulder MSDs.

  11. Comparison of two-dimensional and three-dimensional MHD equilibrium and stability codes

    International Nuclear Information System (INIS)

    Herrnegger, F.; Merkel, P.; Johnson, J.L.

    1986-02-01

    Stability results obtained with the fully three-dimensional magnetohydrodynamic code BETA, the helically invariant code HERA, and the asymptotic stellarator expansion code STEP agree well for a straight l = 2, M = 5 stellarator model. This good agreement between the BETA and STEP codes persists as toroidal curvature is introduced. This validation provides justification for confidence in work with these models. 20 refs., 11 figs

  12. Stability of yttria-stabilized zirconia during pyroprocessing tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr; Lee, Jeong; Lee, Sung-Jai; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Soo Haeng; Oh, Seung Chul; Jeon, Min Ku; Lee, Sang Kwon; Kang, Hyun Woo; Hur, Jin-Mok

    2016-07-15

    In this study, the feasibility of yttria-stabilized zirconia (YSZ) was investigated for use as a ceramic material, which can be commonly used for both electrolytic reduction and electrorefining. First, the stability of YSZ in salts for electrolytic reduction and electrorefining was examined. Then, its stability was demonstrated by a series of pyroprocessing tests, such as electrolytic reduction, LiCl distillation, electrorefining, and LiCl−KCl distillation, using a single stainless steel wire mesh basket containing fuel and YSZ. A single basket was used by its transportation from one test to subsequent tests without the requirements for unloading.

  13. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  14. Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction

    International Nuclear Information System (INIS)

    Mihalache, Dumitru; Mazilu, Dumitru; Malomed, Boris A.; Lederer, Falk

    2006-01-01

    We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ('pancake-shaped') trapped Bose-Einstein condensate with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S=1 are stable in a third of their existence region, 0 max (S=1) , where N is the number of atoms, and N max (S=1) is the corresponding collapse threshold. Stable vortices easily self-trap from arbitrary initial configurations with embedded vorticity. In an adjacent interval, (1/3)N max (S=1) max (S=1) , the unstable vortex periodically splits in two fragments and recombines. At N>0.43N max (S=1) , the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full three-dimensional (3D) Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio √(10), the stability interval of the S=1 vortices occupies ≅40% of their existence region, hence the two-dimensional (2D) limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S≥2 are unstable

  15. Double loading and unloading plant for EHB containers

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, H.; Kalle, N.; Miebach, K.

    1986-04-01

    An integrated haulage system was installed for the shafts of the 'Eschweiler Bergwerksverein', Emil Mayrisch colliery and Anna colliery for the purpose of cost reduction. Transport problems resulting from different floor levels and track gauges were solved by means of a double loading and unloading plant for EHB containers at the 860 m level of Anna mine. The mode of operation, the hydraulic system, and the control system of the loading and unloading plant are described.

  16. Phloem unloading in tomato fruit

    International Nuclear Information System (INIS)

    Damon, S.; Hewitt, J.; Bennett, A.B.

    1986-01-01

    To begin to identify those processes that contribute to the regulation of photosynthate partitioning in tomato fruit the path of phloem unloading in this tissue has been characterized. Assymetrically labelled sucrose ( 3 H-fructosyl sucrose) was applied to source leaves. Following translocation to the fruit the apoplast was sampled. The appearance of assymetric sucrose and 3 H-fructose in the apoplast indicates that phloem unloading is apoplastic and that extracellular invertase is active. Estimation of sucrose, glucose, and fructose concentrations in the apoplast were 1 mM, 40 mM, and 40 mM, respectively. Rates of uptake of sucrose, 1-fluorosucrose, glucose, and fructose across the plasma membrane were similar and non-saturating at physiological concentrations. These results suggest that, although extracellular invertase is present, sucrose hydrolysis is not required for uptake into tomato fruit pericarp cells. 1-fluorosucrose is used to investigate the role of sucrose synthase in hydrolysis of imported photosynthate

  17. Design guidelines for high dimensional stability of CFRP optical bench

    Science.gov (United States)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  18. Dimensional stability of Ti--6Al--6V--2Sn

    International Nuclear Information System (INIS)

    Rack, H.J.

    1978-08-01

    The dimensional stability of Ti-6Al-6V-2Sn has been examined. It is shown that in the duplex annealed condition Ti-6Al-6V-2Sn is dimensionally stable at temperatures up to 448 0 K for 512 hrs. Solution treated Ti-6Al-6V-2Sn undergoes large dimensional changes during both initial aging between 673 and 973 0 K and subsequent exposure to low temperatures ( 0 K). These results indicate that if close dimensional tolerances must be maintained, duplex annealed Ti-6Al-6V-2Sn should be selected. Selection of treated and aged Ti-6Al-6V-2Sn should only be considered if accompanied by full scale environmental testing

  19. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  20. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    Science.gov (United States)

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  1. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Science.gov (United States)

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  2. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  3. Two-dimensional simulation of the MHD stability, (1)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.

    1976-03-01

    The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)

  4. Ultraviolet stability of three-dimensional lattice pure gauge field theories

    International Nuclear Information System (INIS)

    Balaban, T.

    1985-01-01

    We prove the ultraviolet stability for three-dimensional lattice gauge field theories. We consider only the Wilson lattice approximation for pure Yang-Mills field theories. The proof is based on results of the previous papers on renormalization group method for lattice gauge theories. (orig.)

  5. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    Science.gov (United States)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  6. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Conformity of documents and unloading... REGULATIONS EXPORT CLEARANCE REQUIREMENTS § 758.5 Conformity of documents and unloading of items. (a) Purpose... country other than that of the ultimate consignee as stated on the export license. (b) Conformity of...

  7. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating

    Science.gov (United States)

    Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt

    2010-01-01

    Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...

  8. Stability and electronic properties of low-dimensional nanostructures

    Science.gov (United States)

    Guan, Jie

    As the devices used in daily life become smaller and more concentrated, traditional three-dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials have been attracting more attention in research and getting widely applied in many industrial fields because of their atomic-level size, unique advanced properties, and varied nanostructures. In this thesis, I have studied the stability and mechanical and electronic properties of zero-dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). I first briefly introduce the scientific background and the motivation of all the work in this thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed in Chapter 2. In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth metallofullerene La C60 and the trifluoromethylized La C60(CF3)n with n ≤ 5. Odd n is preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is also meaningful for the separation of C 60-based metallofullerenes. Mechanical and electronic properties of layered materials including TMDs and black phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on the in-layer strain in bulk black phosphorus. In Chapters 6, 7 and

  9. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    Science.gov (United States)

    Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

    2012-12-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  10. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    International Nuclear Information System (INIS)

    Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng

    2012-01-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)

  11. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    International Nuclear Information System (INIS)

    Yu, L.; Batlle, F.

    2011-01-01

    Highlights: → A quasi-three-dimensional slope stability analysis method was proposed. → The proposed method is a good engineering tool for 3D slope stability analysis. → Factor of safety from 3D analysis is higher than from 2D analysis. → 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that

  12. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium

    International Nuclear Information System (INIS)

    Mompiou, Frédéric; Caillard, Daniel; Legros, Marc; Mughrabi, Haël

    2012-01-01

    Loading–unloading cycles have been performed on ultrafine-grained (UFG) aluminium inside a transmission electron microscope (TEM). The interaction of dislocations with grain boundaries, which is supposed to be at the origin of the inelastic behaviour of this class of materials, differs according to the main character of the dislocation segments involved in pile-ups. Pile-ups are formed by spiral sources and lead to the incorporation of dislocations into grain boundaries (GBs) during loading. Upon unloading, partial re-emission of dislocations from GBs can be observed. Stress and strain measurements performed during these in situ TEM loading–unloading experiments are in agreement with the rather large inelastic reverse strains observed during unloading in loading–unloading tests on bulk macroscopic UFG aluminium specimens.

  13. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  14. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  15. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p anabolic actions of GH.

  16. Time course of the response of carbohydrate metabolism to unloading of the soleus

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.

    1988-01-01

    The time course of the response of carbohydrate metabolism to unloading was studied in the soleus muscle of rats subjected to tail-cast suspension. In the fresh soleus, 12 hours of unloading led to higher concentrations of glycogen and lower activity ratios of both glycogen synthase and glycogen phosphorylase. These changes were still evident on day three. Thereafter, the increased glycogen concentration apparently diminished the activity ratio of glycogen synthase, leading to a subsequent fall in the total glycogen content after day one. After 24 hours of unloading, when no significant atrophy was detectable, there was no differential response to insulin for in vitro glucose metabolism. On day three, the soleus atrophied significantly and displayed a greater sensitivity to insulin for most of these parameters compared to the weight-bearing control muscle. However, insulin sensitivity for glycogen synthesis was unchanged. These results showed that the increased sensitivity to insulin of the unloaded soleus is associated with the degree of muscle atrophy, likely due to an increased insulin binding capacity relative to muscle mass. This study also showed that insulin regulation of glucose uptake and of glycogen synthesis is affected differentially in the unloaded soleus muscle.

  17. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

    International Nuclear Information System (INIS)

    Shvets', D.V.

    2009-01-01

    By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

  18. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation.

    Science.gov (United States)

    Yin, Chong; Zhang, Yan; Hu, Lifang; Tian, Ye; Chen, Zhihao; Li, Dijie; Zhao, Fan; Su, Peihong; Ma, Xiaoli; Zhang, Ge; Miao, Zhiping; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-07-01

    Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation. © 2017 Wiley Periodicals, Inc.

  19. Linear stability theory as an early warning sign for transitions in high dimensional complex systems

    International Nuclear Information System (INIS)

    Piovani, Duccio; Grujić, Jelena; Jensen, Henrik Jeldtoft

    2016-01-01

    We analyse in detail a new approach to the monitoring and forecasting of the onset of transitions in high dimensional complex systems by application to the Tangled Nature model of evolutionary ecology and high dimensional replicator systems with a stochastic element. A high dimensional stability matrix is derived in the mean field approximation to the stochastic dynamics. This allows us to determine the stability spectrum about the observed quasi-stable configurations. From overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean field approximation, we are able to construct a good early-warning indicator of the transitions occurring intermittently. (paper)

  20. Quadruped robots for nuclear facilities. Development of cooperative carrying and unloading functions

    International Nuclear Information System (INIS)

    2016-01-01

    As the Fukushima Daiichi Nuclear Power Station (hereafter refers to as 1F) became the high dose environment by the Great East Japan Earthquake, remotely operated robots were required in order to reduce workers' radiation exposure. We developed a quadruped robot to walk the stairs and narrow passages with carrying burdens such as investigation tools. This robot investigated water leakage from vent pipes at underground of 1F unit 2. There are various works towards the decommissioning such as measuring doses of radiation, cutting pipes, connecting wires and more. It is desirable to carry various work tools and to unload them at destinations with remotely operated robots. To this end, we have developed carrying and unloading functions of the robot. In addition, we have developed cooperative carrying functions that two quadruped robots carry and unload a burden which is too long or heavy for individual robot. As a result, it was realized that two robots carried the pipe of 48 kg while getting over a step of 100 mm and unloading it at a destination. (author)

  1. Stability of narcissistic personality disorder: tracking categorical and dimensional rating systems over a two-year period.

    Science.gov (United States)

    Vater, Aline; Ritter, Kathrin; Strunz, Sandra; Ronningstam, Elsa F; Renneberg, Babette; Roepke, Stefan

    2014-07-01

    Personality disorders are characterized as temporally stable patterns of symptoms (APA, 2000). However, evidence on the stability of narcissistic personality disorder (NPD) is generally lacking. This study tracked the prevalence and remission rates of individual criteria for NPD over the course of 2 years. In addition, the stability of dimensional personality pathology in patients with NPD (assessed with the Dimensional Assessment of Personality Pathology, DAPP-BQ) was assessed over time. A sample of 96 patients with a diagnosis of NPD was recruited at baseline. Forty patients participated in the follow-up assessment 2 years later. Our results indicate a moderate remission rate (53%) for NPD as a categorical diagnosis. However, single NPD criteria differed in their prevalence and temporal stability, similar to findings for other personality disorders. Moreover, scores on dimensional subscales of the DAPP-BQ remained stable over time. Theoretical implications are discussed. (c) 2014 APA, all rights reserved.

  2. 76 FR 13313 - Hazardous Materials: Cargo Tank Motor Vehicle Loading and Unloading Operations

    Science.gov (United States)

    2011-03-11

    ...-the-job complacency. As a result, PHMSA expects a reduction in the number of loading and unloading... monitoring of internal tank pressure and cargo temperature. C. CSB Accident Investigations CSB has... unloading practices is impractical. ATA states that, ``[i]t is critically important that PHMSA not choose a...

  3. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  4. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    Science.gov (United States)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically

  5. Effect of Pouring Time and Storage Temperature on Dimensional Stability of Casts Made from Irreversible Hydrocolloid

    Directory of Open Access Journals (Sweden)

    M. Farzin

    2010-12-01

    Full Text Available Objective: The aim of this study was to evaluate the dimensional stability of casts made from an alginate impression material poured immediately and stored after specific periods.Materials and Methods: The common alginate used in Iran (Super; Iralgin, Golchai Co.,Tehran, Iran was tested. A master model was mounted on a special device and used to obtain the impressions. These impressions were stored at 23°C (SD=1 and 4°C (SD=1 in100% relative humidity, then poured with gypsum immediately and again after 12, 25, 45 and 60 minutes. The casts were measured with a traveling microscope with the precision of 0.5 micrometer.Results: The dimensional stability of the alginate and impressions were both significantly time and temperature dependent. The impressions were dimensionally stable significantly until 12 minutes of storage at room temperature and until 45 minutes of storage at 4°C(SD=1.Conclusion: The dimensional stability of the alginate impressions was influenced by the storage time and environment temperature, but a humid environment and 4°C (SD=1temperature may delay the pouring.

  6. The effect of some heat treatment parameters on the dimensional stability of AISI D2

    Science.gov (United States)

    Surberg, Cord Henrik; Stratton, Paul; Lingenhöle, Klaus

    2008-01-01

    The tool steel AISI D2 is usually processed by vacuum hardening followed by multiple tempering cycles. It has been suggested that a deep cold treatment in between the hardening and tempering processes could reduce processing time and improve the final properties and dimensional stability. Hardened blocks were then subjected to various combinations of single and multiple tempering steps (520 and 540 °C) and deep cold treatments (-90, -120 and -150 °C). The greatest dimensional stability was achieved by deep cold treatments at the lowest temperature used and was independent of the deep cold treatment time.

  7. Effect of Storage Time and Temperature on Dimensional Stability of Impressions Made with Zinc Oxide Impression Paste

    Directory of Open Access Journals (Sweden)

    Sareh Habibzadeh

    2016-10-01

    Full Text Available Objectives: This study aimed to assess the effect of storage time and temperature on dimensional stability of impressions made with Cavex Outline zinc oxide impression paste.Materials and Methods: A round stainless steel mold with five grooves (three horizontal and two vertical was used in this in-vitro experimental study. Cavex Outline impression paste was prepared according to the manufacturer’s instructions and applied to the mold. The mold was placed on a block and stored at 35°C and 100% humidity for setting. The impressions were poured with stone immediately and also after 30, 120, 240 and 420 minutes and 24 hours. The distance between the vertical lines on the casts was measured and compared with that in the immediately poured cast.Results: Storage in a refrigerator and at room temperature for zero to seven hours had no significant effect on dimensional stability of the impressions; however, 24 hours of storage in a refrigerator or at room temperature decreased the dimensional stability of Cavex Outline (P=0.001. Also, a significant association was found between dimensional changes following 24 hours of storage in a refrigerator (4°C and at room temperature (23°C; P<0.01.Conclusions: The optimal pouring time of Cavex Outline impressions with stone is between zero to seven hours, and 24 hours of storage significantly decreases the dimensional stability.Keywords: Dental Impression Materials; Zinc Oxide; Cavex

  8. Three-dimensional boundary layer stability and transition

    Science.gov (United States)

    Malik, M. R.; Li, F.

    1992-01-01

    Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.

  9. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    Science.gov (United States)

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  10. AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R-1 and R4

    International Nuclear Information System (INIS)

    Guenther, Uwe; Zhuk, Alexander; Bezerra, Valdir B; Romero, Carlos

    2005-01-01

    We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R -1 and R 4 . It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R -1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R 4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D 4 model

  11. Influence of chemical treatment on dimensional stability of narrow-leaved ash - part one: Tangential swelling

    Directory of Open Access Journals (Sweden)

    Popović Jasmina

    2012-01-01

    Full Text Available Dimensional change in wood occurs with the change in hygroscopic moisture content, as a consequence of available hydroxyl groups in wood constituents, allowing for the hydrogen bonding with water molecules. Various pretreatments of wood material are being frequently applied in the wood processing industry. One of the main effects of such processes is the hydrolysis of hemicelluloses, which is the main carrier of the free hydroxyl groups in wood material. Hence, the influence of water treatment and the acetic acid treatment on dimensional stability of narrow-leaved ash (Fraxinus angustifolia Vahl. ssp. Pannonica Soó & Simon were examined in this paper. Duration of treatments was 1h, 2h, 3h and 4h for both solvents. In addition the acetic acid was separately used in concentrations of 3% and 6%. Dimensional stability of the control (referent and treated sample groups were tested on oven dried samples which were consequently submerged in the distilled water during 32 days. The increase of dimensional stability of narrow-leaved ash was achieved with all of the three treatments (one treatment with water and the two with acetic acid solutions. Simultaneously, it was noticed that the results of water uptake and tangential swelling were not significantly affected by the duration (length of the treatments. [Projekat Ministarstva nauke Republike Srbije, br. TP-031041

  12. Contribution of social isolation, restraint, and hindlimb unloading to changes in hemodynamic parameters and motion activity in rats.

    Directory of Open Access Journals (Sweden)

    Darya Tsvirkun

    Full Text Available The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint, and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient.

  13. Impaired axonal Na+ current by hindlimb unloading: implication for disuse neuromuscular atrophy

    Directory of Open Access Journals (Sweden)

    Chimeglkham eBanzrai

    2016-02-01

    Full Text Available This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading, which is a model of disuse neuromuscular atrophy. Hindlimb unloading was performed in normal 6-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal’s cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes (2.2 ± 1.3 mV [HLU] vs. 4.3 ± 1.2 mV [Control], P = 0.03. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC and late subexcitability (recovery cycle than the controls (0.075 ± 0.01 [HLU] vs. 0.12 ± 0.01 [Control], P < 0.01; 5.4 ± 1.0 [HLU] vs. 10.0 ± 1.3 % [Control], P = 0.01, respectively. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by hindlimb unloading. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.

  14. Stability model for one-dimensional FRCs

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Hewitt, T.G.; Lewis, H.R.; Seyler, C.E.; Symon, K.R.

    1982-01-01

    The subject of transport near the separatrix in FRC devices is important for determining the performance to be expected from an FRC reactor or from FRC experiments. A computer code was constructed for studying the micro-stability properties of FRCs near the separatrix as a first step in obtaining quasilinear transport coefficients that can be used in a transport code. We consider collisionless ions and electrons, without an expansion in powers of a parameter, like the electron or ion gyroradius, and we approximate the equilibrium with an infinitely long axially and translationally symmetric equilibrium. Thus, in our equilibria, there are only an axial magnetic field and a radial electric field. Our equilibria are collisionless, two-species, diffuse-profile, one-dimensional, theta-pinch equilibria. We allow the possibility that there be a magnetic field null in order to be able to model FRC devices more realistically

  15. Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control

    NARCIS (Netherlands)

    Logemann, H; Curtain, RF

    2000-01-01

    We derive absolute stability results for well-posed infinite-dimensional systems which, in a sense, extend the well-known circle criterion to the case that the underlying linear system is the series interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator

  16. The Effect of Ultrasound Pretreatment on Poplar Wood Dimensional Stability

    Directory of Open Access Journals (Sweden)

    Shu Qiu

    2016-08-01

    Full Text Available Dimensional stability is a key property of wood that significantly affects its applications. The effect of an ultrasound pretreatment on poplar wood (Populous tomentosa dimensional stability was examined. During the pretreatments, wood samples were immersed in distilled water and treated ultrasonically under three different powers and frequencies. The samples were then analyzed by Fourier transform infrared spectroscopy (FTIR and X-ray diffraction (XRD. The chemical transformation of the cell-wall material was studied and then associated with the change of water absorption and the swelling coefficient. The results showed that the water absorption decreased after the ultrasonic pretreatment. The axial and radial swelling coefficients of the pretreated samples decreased, while the tangential swelling coefficients increased. The volumetric swelling coefficient of pretreated specimens fluctuated near 4.48% (the volumetric swelling coefficient of untreated wood. Ultrasonic pretreatment increased the number of hydrophilic groups, such as the hydroxyl, acetyl, and uronic ester groups. Meanwhile, the pretreatment also increased the degree of crystallinity and reduced the available polar groups. These two factors together caused the change of the moisture absorption and the swelling coefficient of the pretreated wood. These conclusions suggest that the ultrasonic pretreatment is a promising method for further chemical modification of wood.

  17. The effects of body weight unloading on kinetics and muscle activity of overweight males during Overground walking.

    Science.gov (United States)

    Fischer, Arielle G; Wolf, Alon

    2018-02-01

    Excess body weight has become a major worldwide health and social epidemic. Training with body weight unloading, is a common method for gait corrections for various neuromuscular impairments. In the present study we assessed the effects of body weight unloading on knee and ankle kinetics and muscle activation of overweight subjects walking overground under various levels of body weight unloading. Ten overweight subjects (25 ≤ BMI weight unloading experimental conditions. Gait parameters assessed under these conditions included knee and ankle flexion moments and the Electromygraphic activity of the Tibialis Anterior, Lateral Gastrocnemius and Vastus Lateralis. Increasing body weight unloading levels from 0% to 30% was found to significantly reduce the peak knee flexion and ankle plantarflexion moments. Also observed was a significant reduction in muscle activity of the Tibialis Anterior, Lateral Gastrocnemius and Vastus Lateralis under the three body-weight unloading conditions. Our results demonstrate that a reduction of up to 30% overweight subjects' body weight during gait is conducive to a reduction in the knee and ankle flexion moments and in the balancing net quadriceps moment and ankle flexors moment. The newly devised body weight unloading device is therefore an effective method for reducing joint loads allowing overweight people who require controlled weight bearing scenarios to retrain their gait while engaging in sustained walking exercise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Stability enhancement and electronic tunability of two-dimensional SbIV compounds via surface functionalization

    Science.gov (United States)

    Zhou, Wenhan; Guo, Shiying; Liu, Xuhai; Cai, Bo; Song, Xiufeng; Zhu, Zhen; Zhang, Shengli

    2018-01-01

    We propose a family of hydrogenated- and halogenated-SbIV (SbIVX-2) materials that simultaneously have two-dimensional (2D) structures, high stability and appealing electronic properties. Based on first-principles total-energy and vibrational-spectra calculations, SbIVX-2 monolayers are found both thermally and dynamically stable. Varying IV and X elements can rationally tune the electronic properties of SbIVX-2 monolayers, effectively modulating the band gap from 0 to 3.42 eV. Regarding such superior stability and broad band-gap range, SbIVX-2 monolayers are expected to be synthesized in experiments and taken as promising candidates for low-dimensional electronic and optoelectronic devices, such as blue-to-ultraviolet light-emitting diodes (LED) and photodetectors.

  19. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression

    Science.gov (United States)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong

    2018-04-01

    To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.

  20. Stability of plane wave solutions of the two-space-dimensional nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Martin, D.U.; Yuen, H.C.; Saffman, P.G.

    1980-01-01

    The stability of plane, periodic solutions of the two-dimensional nonlinear Schroedinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik, Saffman and Yuen and Ablowitz and Segur on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations. (orig.)

  1. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation

    Directory of Open Access Journals (Sweden)

    Takashi Kubota

    2015-08-01

    Full Text Available The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication.

  2. Effect of phosphate/fluoride electrolytes on mass and dimensional stability of anodization bath manufactured by FDM

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Present paper is an experimental study on mass and dimensional stability of components manufactured by additive technology of Fused Deposition Modeling (FDM from PLA and ABS filaments, components to be subjected to the action of aqueous phosphate/fluoride solutions during the process of surface modification and TiO2 nanotubes development on the surface of titanium based materials by electrochemical anodization. Several specimens were printed with 30% and 100% fill density; we used control samples of PP, PLA and ABS in order to compare the results. The specimens and control samples were in contact with 1M H3PO4 + 0.5 wt% HF electrolyte, for 2 hours and 48 hours. Regarding mass stability we found that the specimens’ mass is increasing after exposure to electrolyte, showing absorption on to the material, the mass gain being up to 0.2% from initial mass. Dimensional stability is also questionable; there are modifications of up to 0.05 mm after 48 hours exposure to electrolyte. All of our results lead to the conclusion that, even if FDM has certain advantages in terms of flexibility of design and short design to product time, drawbacks appear in terms of mass and dimensional stability when the printed components work in aqueous acid solutions, raising questions regarding their safe utilization over time.

  3. Study of sugar phloem unloading in ripening grape berries under water stress conditions

    Directory of Open Access Journals (Sweden)

    Zenphing Wang

    2003-12-01

    Full Text Available Sugar phloem unloading in ripening grape berries (Vitis vinifera L. cv. Syrah was studied under water stress conditions using the «beny-cup» technique. After veraison, berry growth, the potential Exposed Leaf Area (pELA and photosynthetic activity are clearly reduced in water-stressed vines (- 0.5 > Ψb > - 0.6 MPa as compared to normal 1 Ψ-watcred vines (Mb = - 0.2 MPa. The ratio pELA/yield is also reduced, which is particular to this experiment. The beiries' ripening period (between veraison and maturity can be divided into three growth phases, Illa, Illb and IIlc. During phase Ma, the berries grow rapidly; at this point, water stress severely inhibits cell expan¬ sion of the berries but does not impact on daily sugar accumulation. During phase Mb, the berries grow slowly in both water-stressed and control vines. Water stress can shorten this phase and reduce sugar accumulation in the berries by decreasing daily sugar unloading. During phase II le, the Iresh weight and volume of the berries decreases as does the daily sugar unloading. During the day, sugar unloading in ripening berries occurs mainly in the morning (7 am to 10.30 am and at noon (1 to 1.30 pm; little sugar is unloaded in the afternoon (4 pm to 4.30 pin. Moderate water stress from veraison to maturity affects végétative growth (i.e. the growth of primary and secoridary shoots, and reduces the exposed leaf area, photosynthetic activity, berry growth, and the accumulation of sugar at the end of ripening (phases Mb and IIlc.

  4. Linear dimensional stability of elastomeric impression materials over time.

    Science.gov (United States)

    Garrofé, Analía B; Ferrari, Beatriz A; Picca, Mariana; Kaplan, Andrea E

    2011-01-01

    The purpose of this study was to evaluate the linear dimensional stability of different elastomeric impression materials over time. A metal mold was designed with its custom trays, which were made of thermoplastic sheets (Sabilex sheets 0.125 mm thick). Three impressions were taken of it with each of the following: the polyvinylsiloxane Examix-GC-(AdEx), Aquasil-Dentsply-(AdAq) and Panasil-Kettenbach-(AdPa), and the polydimethylsiloxane Densell-Dental Medrano-(CoDe), Speedex-Coltene-(CoSp) and Lastic-Kettenbach-(CoLa). All impressions were taken with putty and light-body materials using a one-step technique. Standardized digital photographs were taken at different time intervals (0, 15, 30, 60, 120 minutes; 24 hours; 7 and 14 days), using an "ad-hoc" device, and analyzed using software (Image Tool) by measuring the distance between lines previously made at the top of the mold. The results were analyzed by ANOVA for repeated measures. The initial and final values for mean and SD were: AdEx: 1.32 (0.01) and 1.31 (0.00); AdAq: 1.32 (0.00) and 1.32 (0.00), AdPa: 1.327 (0.006) and 1.31 (0.00); CoDe: 1.32 (0.00) and 1.32 (0.01); CoSp: 1.327 (0.006) and 1.31 (0.00), CoLa: 1.327 (0.006) and 1.303 (0.006). Statistical evaluation showed that both material and time have significant effects. Under the conditions in this study we conclude that time would significantly affect the lineal dimensional stability of elastomeric impression materials.

  5. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. Bed-rest results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data point to the importance of providing axial body loading as a central component of an inflight training system that will integrate cardiovascular, resistance and sensorimotor adaptability training modalities into a single interdisciplinary countermeasure system.

  6. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Science.gov (United States)

    Provenzano, Paolo P; Alejandro-Osorio, Adriana L; Grorud, Kelley W; Martinez, Daniel A; Vailas, Arthur C; Grindeland, Richard E; Vanderby, Ray

    2007-01-01

    Background Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. Results Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. Conclusion These results

  7. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Directory of Open Access Journals (Sweden)

    Martinez Daniel A

    2007-03-01

    Full Text Available Abstract Background Insulin-like growth factor-I (IGF-I plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH, or both (GH+IGF-I would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs, while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. Results Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF

  8. Bucket elevator type continuous unloader; Basket elevator gata renzokushiki anroda

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    This unloader was delivered to Wakayama branch of Sumikin Butsuryu in the site of Wakayama steel plant of Sumitomo Metal Industries Ltd. for landing sub-materials for ironworks. Main specifications: (1) Capacity: 400t/h for limestone, 280t/h for gypsum, (2) Kinds of ships: 5,000DWT maximum, (3) Boom swing radius: 20m. Features: (1) Simple light-weight unloader for not large ships for main materials but small coastal service ships which works with not swing motion but only traveling and normal-directional motion of the under structure of a bucket elevator unit, (2) Various useful functions such as ground conveyance, truck loading, back yard stacking and back yard shipment for handling of various sub-materials. (translated by NEDO)

  9. Evaluation of muscle activity for loaded and unloaded dynamic squats during vertical whole-body vibration.

    Science.gov (United States)

    Hazell, Tom J; Kenno, Kenji A; Jakobi, Jennifer M

    2010-07-01

    The purpose of this investigation was to examine if the addition of a light external load would enhance whole-body vibration (WBV)-induced increases in muscle activity during dynamic squatting in 4 leg muscles. Thirteen recreationally active male university students performed a series of dynamic squats (unloaded with no WBV, unloaded with WBV, loaded with no WBV, and loaded with WBV). The load was set to 30% of body mass and WBV included 25-, 35-, and 45-Hz frequencies with 4-mm amplitude. Muscle activity was recorded with surface electromyography (EMG) on the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GC) and is reported as EMGrms (root mean square) normalized to %maximal voluntary exertion. During unloaded dynamic squats, exposure to WBV (45 Hz) significantly (p squat exercise in all muscles but decreased the TA. This loaded level of muscle activity was further increased with WBV (45 Hz) in all muscles. The WBV-induced increases in muscle activity in the loaded condition (approximately 3.5%) were of a similar magnitude to the WBV-induced increases during the unloaded condition (approximately 2.5%) demonstrating the addition of WBV to unloaded or loaded dynamic squatting results in an increase in muscle activity. These results demonstrate the potential effectiveness of using external loads with exposure to WBV.

  10. Factors Affecting the Dimensional Stability of Decorative Papers under Moistening

    Directory of Open Access Journals (Sweden)

    Andreia B. Figueiredo

    2016-01-01

    Full Text Available A crucial problem for laminate producers is the dimensional instability of decorative papers during soaking in aqueous solutions, but the source of this dilemma is not completely understood yet. In this study, eight commercial decorative papers of similar fiber composition and sizing were analyzed for their structural, physical, and mechanical properties. These properties were examined for their correlations to the dimensional stability of papers when moistened, as assessed by the wet stretch dynamics. Structure-to-property relationships were evaluated by principal component analysis (PCA. Within the set of parameters examined, PCA revealed that fiber orientation and the content of fillers/pigments influenced the wet expansion of paper web and affected its margins and dimensions in longitudinal and transverse directions of the paper machine. These variables are discussed within the context of decorative paper engineering in order to produce high performance papers with regular wet expansion properties.

  11. Influence of the Elastic Dilatation of Mining-Induced Unloading Rock Mass on the Development of Bed Separation

    Directory of Open Access Journals (Sweden)

    Weibing Zhu

    2018-03-01

    Full Text Available Understanding how mining-induced strata movement, fractures, bed separation, and ground subsidence evolve is an area of great importance for the underground coal mining industry, particularly for disaster control and sustainable mining. Based on the rules of mining-induced strata movement and stress evolution, accumulative dilatation of mining-induced unloading rock mass is first proposed in this paper. Triaxial unloading tests and theoretical calculation were used to investigate the influence of elastic dilatation of mining-induced unloading rock mass on the development of bed separation in the context of district No. 102 where a layer of super-thick igneous sill exists in the Haizi colliery. It is shown that the elastic dilatation coefficient of mining-induced unloading hard rocks and coal were 0.9~1.0‰ and 2.63‰ respectively under the axial load of 16 MPa, which increased to 1.30~1.59‰ and 4.88‰ when the axial load was 32 MPa. After successively excavating working faces No. 1022 and No. 1024, the elastic dilatation of unloading rock mass was 157.9 mm, which represented approximately 6.3% of the mining height, indicating the elastic dilatation of mining-induced unloading rock mass has a moderate influence on the development of bed separation. Drill hole detection results after grouting, showed that only 0.33 m of the total grouting filling thickness (1.67 m was located in the fracture zone and bending zone, which verified the result from previous drill hole detection that only small bed separation developed beneath the igneous sill. Therefore, it was concluded that the influences of elastic dilatation of mining-induced unloading rock mass and bulking of caved rock mass jointly contributed to the small bed separation space beneath the igneous sill. Since the accurate calculation of the unloading dilatation of rock mass is the fundamental basis for quantitative calculation of bed separation and surface subsidence, this paper is expected

  12. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    Science.gov (United States)

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  13. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming-Song; Li, Kuo-Kuo [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China); Chen, Jian [Changsha University of Science and Technology, School of Energy and Power Engineering, Key Laboratory of Efficient and Clean Energy Utilization, Changsha (China)

    2016-09-15

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  14. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Li, Kuo-Kuo; Lin, Y.C.; Chen, Jian

    2016-01-01

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  15. Stability analysis of lower dimensional gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2016-11-15

    The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)

  16. Counter-rotational effects on stability of 2 + 1-dimensional thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2014-09-15

    The role of angular momentum in a 2 + 1-dimensional rotating thin-shell wormhole (TSW) is considered. Particular emphasis is given to stability when the shells (rings) are counter-rotating. We find that counter-rotating halves make the TSW supported by the equation of state of a linear gas more stable. Under a small velocity dependent perturbation, however, it becomes unstable. (orig.)

  17. Vertical dimensional stability and rigidity of occlusal registration materials.

    Science.gov (United States)

    Walker, Mary P; Wu, Edis; Heckman, M Elizabeth; Alderman, Nicholas

    2009-01-01

    Dimensionally accurate occlusal registration records are essential for restorative dentistry; moreover, since records are not used immediately or may be used more than once, the registration material should exhibit accuracy over time (a concept known as dimensional stability). It has been speculated that materials with increased hardness or rigidity should produce more accurate registration records due to an increased resistance to distortion. This study compared the rigidity and associated dimensional accuracy of a recently marketed bisacrylic occlusal registration material and a vinyl polysiloxane (VPS). Maxillary and mandibular typodont arches were mounted on a plasterless articulator from which teeth No. 3, 13, and 15 had been removed to simulate edentulous spaces. After preparing teeth No. 2, 4, 12, and 14 as bridge abutments, the remaining teeth were equilibrated selectively to produce even anterior contact. Four digital photographs were taken to make vertical interarch measurements at four locations (teeth No. 3, 7, 10, and 14). Following initial photos (controls), 10 interocclusal records were made using each registration material, with material placed only in the segments in which teeth were prepared. The records were used for mounting the maxillary arch against the mandibular arch after 48, 72, and 120 hours. There were significant effects on vertical dimensional change related to arch location, material, and mounting time. Both materials demonstrated significantly larger posterior vertical openings than anterior vertical openings, while the bisacrylate produced a larger posterior opening than VPS at 48 and 72 hours and a larger anterior opening at all mounting times. There also was a significant difference in hardness/rigidity due to material and measurement time; at all measurement times, bisacrylate exhibited a significantly higher hardness number.

  18. Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers

    NARCIS (Netherlands)

    State, M.; Brands, P.J.; Vosse, van de F.N.

    2010-01-01

    Novel ultrasound backing materials based on polymer composites with improved dimensional stability and low coefficient of thermal expansion are being developed and analyzed. For this purpose a filled epoxy resin (Stycast1265), a commonly used backing material, was considered reference material and

  19. Preoperative three-dimensional printing for surgical stabilization of rib fractures

    Directory of Open Access Journals (Sweden)

    Wei-Chun Lin

    2018-01-01

    Full Text Available Pulmonary trauma is a significant cause of morbidity and mortality in patients with major trauma. Chest wall contusion with rib fracture is very common. Surgical stabilization of rib fracture (SSRF has traditionally required an exploratory thoracotomy for adequate exposure. Minimally invasive approaches for SSRF are now being developed. However, preoperative localization of rib fractures and intraoperative designing of titanium plates require additional time. We present a novel technique involving three-dimensional printing for promoting SSRF with a minimally invasive approach that is efficient and provides good patient outcomes.

  20. Effect of the Addition of 3% Co in NiTi Alloy on Loading/Unloading Force

    Science.gov (United States)

    Phukaoluan, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Khantachawana, A.; Kaewtathip, P.; Kajornchaiyakul, J.; Wichai, W.

    2017-11-01

    The study evaluated the loading-unloading force in the load-deflection curve of the fabricated NiTiCo and NiTi wires. Wire alloys with Nickel, Titanium, and Cobalt (purity-99.95%) with atomic weight ratio 47Ni:50Ti:3Co and 50.6Ni:49.4Ti were prepared, sliced, and cold-rolled at 30% reduction, followed by heat treatment in a furnace at 400oC for 1 hour. The specimens of wire size of 0.016 x 0.022 inch2 were cut and subjected to three-point bending test to investigate the load-deflection curve at deflection point 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm. Descriptive statistic was used to evaluate each variables and independent t-test was used to compare between the groups. The results presented a load-deflection curve that resembled a typical superelastic wire. However, significant differences were seen in the loading-unloading forces between the two with an average loading force of 412.53g and 304.98g and unloading force of 292.40g and 208.08g for NiTiCo and NiTi wire, respectively. The force at each deflection point of NiTiCo in loading-unloading force was higher than NiTi wire. This study concluded that the addition of 3%Co in NiTi alloy can increase the loading-unloading force of NiTi wire but were within the range for orthodontic tooth movement.

  1. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    Science.gov (United States)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure

  2. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry.

    Science.gov (United States)

    Malinowski, Marcin; Wilton, Penny; Khaghani, Asghar; Brown, Michael; Langholz, David; Hooker, Victoria; Eberhart, Lenora; Hooker, Robert L; Timek, Tomasz A

    2016-09-01

    Left ventricular assist device (LVAD) implantation may alter right ventricular shape and function and lead to tricuspid regurgitation. This in turn has been reported to be a determinant of right ventricular (RV) failure after LVAD implantation, but the effect of mechanical left ventricular (LV) unloading on the tricuspid annulus is unknown. The aim of the study was to provide insight into the effect of LVAD support on tricuspid annular geometry and dynamics that may help to optimize LV unloading with the least deleterious effect on the right-sided geometry. In seven open-chest anaesthetized sheep, nine sonomicrometry crystals were implanted on the right ventricle. Additional nine crystals were implanted around the tricuspid annulus, with one crystal at each commissure defining three separate annular regions: anterior, posterior and septal. Left ventricular unloading was achieved by connecting a cannula in the left atrium and the aorta to a continuous-flow pump. The pump was used for 15 min at a full flow of 3.8 ± 0.3 l/min. Epicardial echocardiography was used to assess the degree of tricuspid insufficiency. Haemodynamic, echocardiographic and sonomicrometry data were collected before and during full unloading. Tricuspid annular area, and the regional and total perimeter were calculated from crystal coordinates, while 3D annular geometry was expressed as the orthogonal distance of each annular crystal to the least squares plane of all annular crystals. There was no significant tricuspid regurgitation observed either before or during LV unloading. Right ventricular free wall to septum diameter increased significantly at end-diastole during unloading from 23.6 ± 5.8 to 26.3 ± 6.5 mm (P = 0.009), but the right ventricular volume, tricuspid annular area and total perimeter did not change from baseline. However, the septal part of the annulus significantly decreased its maximal length (38.6 ± 8.1 to 37.9 ± 8.2 mm, P = 0.03). Annular contraction was not altered. The

  3. Study of Physical Properties of SiCw/Al Composites During Unloaded Thermal Cycling

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin-ming; TIAN zhi-gang; CHENG hua; ZHU Xiao-gang; CHEN Wen-li

    2004-01-01

    The thermal expansion coefficient of SiCw/Al composites squeeze cast during unloaded thermal cycling was determined and analyzed. The study had shown that the thermal expansion coefficient of SiCw/Al composites reduced greatly with temperature raising. The thermal expansion coefficient of artificial ageing treatment SiCw/Al composites during unloaded thermal cycling reduced gradually, while the thermal expansion coefficient of squeezing SiCw/Al composites increased gradually. In addition, the thermal expansion coefficient of SiCw/Al composites reduced drastically with fiber fraction increasing.

  4. The exploration of stability of two-dimensional nanocrystalline metallic composites depending on temperature

    International Nuclear Information System (INIS)

    Poletayev, G.M.; Starostenkov, M.D.; Popova, G.V.; Skakov, M.K.

    2004-01-01

    Full text: In nanocrystalline compositional materials the borders of phase separation play special role. The detection of stability of the borders of phase separation depending on external conditions, such pressure, temperature of alloying is the important task in the case of nanocrystalline materials. In the current paper the stability of two-dimensional nanocrystal, composite on the basis of Ni-Al system, depending on the structure of compositional material and vacancy availability is studied. Atomic packing in two-dimensional crystal corresponds to the plane (111) of fee crystal structure, or the plane (111) of superstructure L1 2 of intermetallide system Ni-Al. The interaction between atoms is set by pair potential functions of Morse, that consider interatomic bonding in the first six coordinate spheres. The calculated block was expressed in atomic packing in the cell 40x40. Beyond the bounds of the calculated block crystal is repeated with the help of periodical border conditions. Computer modeling is performed according to the method of molecular dynamics, when speeds of atom dislocations depending on temperature are set in accidental way, according to Boltzmann allocation. Two-dimensional material was represented by different packs of phases, clean Ni, Al and intermetallic superstructure NiAl in accordance with concentrations, structures and forms. It was understood that when the concentration in composite of phase of clean Al increases, or when the number of Al atoms in intermetallide rises, the initial temperature of thermo activated diffusing destruction of interphase borders turns out to be very low. On the other hand, when the part of clean nickel increases or when the concentration of clean Ni atoms in the structure (L1 2 ) rises, diffusion stability of interphase borders is observes right up to high temperatures. According to the results, basic diffusion processes take place right on interphase borders

  5. On the sensitivity of dimensional stability of high density polyethylene on heating rate

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Although high density polyethylene (HDPE is one of the most widely used industrial polymers, its application compared to its potential has been limited because of its low dimensional stability particularly at high temperature. Dilatometry test is considered as a method for examining thermal dimensional stability (TDS of the material. In spite of the importance of simulation of TDS of HDPE during dilatometry test it has not been paid attention by other investigators. Thus the main goal of this research is concentrated on simulation of TDS of HDPE. Also it has been tried to validate the simulation results and practical experiments. For this purpose the standard dilatometry test was done on the HDPE speci­mens. Secant coefficient of linear thermal expansion was computed from the test. Then by considering boundary conditions and material properties, dilatometry test has been simulated at different heating rates and the thermal strain versus temper­ature was calculated. The results showed that the simulation results and practical experiments were very close together.

  6. Lithosphere stress changes due to groundwater unloading in North China Plain

    Science.gov (United States)

    Pang, Yajin; Zhang, Huai; Shi, Yaolin

    2015-04-01

    During the past 50 years, excessive groundwater pumping has led to the continuous decline of groundwater table in North China Plain, which becomes one of the global hotspots of groundwater depletion. Over most of the rural areas of the plain, the shallow aquifer has experienced a water-table decline of more than 15m, with greater declines up to 50m in most urban centres, such as Beijing, Tangshan, Shijiangzhuang and so forth in 1960-2000. The entire groundwater depletion area covers a total area of approximately 56,273 km2 , more than 40% of the North China Plain. The vast area of enormous groundwater exploitation in North China Plain will definitely unload the lithosphere and create stress perturbations, the problem is if the stresses change large enough to affect tectonic activities. In this essay, we set up a 3 dimensional numerical visco-elastic model to discuss the effect of groundwater over-pumping on the lithosphere deformation and stress state in North China Plain. Based on the records of total groundwater-table decline during 1960-2010 in North China Plain, we estimate the accumulated deformation and lithosphere stress due to unloading of human-induced groundwater depletion. The area in the model ranges from 34° To 42°N, and 112° To 119°E, including the major groundwater depression cones in North China Plain. According to the simulating result, the maximum surface vertical uplift caused by groundwater unloading is 8cm. Meanwhile cumulative horizontal crustal stress changes near the surface goes up to 100kPa, and up to 40kPa at 15km depth where most earthquakes occurred in this area. The tectonic compressive stress rate is about 0.25kPa per year. Therefore, the stress changes due to groundwater pumping is significant compared with the tectonic driven stress changes. As China developed rapidly since 1978, the groundwater table mainly declined after 1978. Taking the earthquake catalog in the vicinity of groundwater depression zone into consideration, we

  7. On fully three-dimensional resistive wall mode and feedback stabilization computations

    International Nuclear Information System (INIS)

    Strumberger, E.; Merkel, P.; Sempf, M.; Guenter, S.

    2008-01-01

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208

  8. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A unified elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Lin, Y.C.; Li, Kuo-Kuo; Chen, Jian

    2016-01-01

    In authors' previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain. (orig.)

  9. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    Science.gov (United States)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  10. Verification of dimensional stability on ITER blanket shield block after stress relieving

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr; Jung, Hun-Chea; Ha, Min-Su; Shim, Hee-Jin

    2016-11-01

    Highlights: • The SB#08 FSP were manufactured by using conventional manufacturing processes such as cutting, milling, drilling and welding. • Especially, a strong back system was adopted in order to prevent welding deformation during cover plate welding process. • Post-Welding Heat Treatment (PWHT) for stress relieving and Hot He Leak Test (HHLT) were waived from the lake of huge test facility in the pre-qualification program. • The PWHT combined with the HHLT, however, were implemented to remove the residual stress and to confirm the soundness of welded parts as an internal R&D activities after the pre-qualification program. • Three dimensional inspection also carried out after the PWHT to check the dimensional stabilization. - Abstract: The tight tolerance requirement is one of key issue to manufacture the ITER blanket shield blocks (SBs) which have many interfaces with the First Wall (FW) and Vacuum Vessel (VV). Manufactured SB shall be satisfied with general tolerances (Class “C” of ISO 2768-1 and “L” of ISO 2768-2) and specific tolerance in 2D general assembly drawings. In order to fulfill the tight tolerance requirements in the final stage of SB, stress relieving after welding operations in the manufacturing process shall be performed. Hot helium leak test, Post Welding Heat Treatment (PWHT) and three-dimensional inspection before and after heat treatment were implemented by using the Full Scale Prototype (FSP) of SB in the framework of domestic R&D activities. The hot He leak test was performed at 250 °C for 30 min, and the result was satisfied the requirements. PWHT was carried out at 400 °C for 24 h by brazing furnace with test chamber. The deformation value before and after was measured by contact type coordinate measuring machine. The objective of this study is to verify dimensional stability of SB after stress relieving. The results will support to determine the machining allowance prior to welding process.

  11. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  12. Assimilate unloading from maize (Zea mays L.) pedicel tissues. II. Effects of chemical agents on sugar, amino acid, and 14C-assimilate unloading

    International Nuclear Information System (INIS)

    Porter, G.A.; Knievel, D.P.; Shannon, J.C.

    1987-01-01

    Sugar, amino acid, and 14 C-assimilate release from attached maize (Zea mays L.) pedicels was studied following treatment with several chemical inhibitors. In the absence of these agents, sugar release was nearly linear over a 7-hour period. At least 13 amino acids were released with glutamine comprising over 30% of the total. Release was not affected by potassium concentration, 10-minute pretreatments with p-chloromercuribenzene sulfonic acid (PCMBS) or dithiothreitol, and low concentrations of CaCl 2 . Three hours or more exposure to PCMBS, dinitrophenol, N-ethylmaleimide, or 2,4,6-trinitrobenzene sulfonic acid strongly inhibited 14 C-assimilate, sugar, and amino acid release from the pedicel. These treatments also reduced 14 C-assimilate movement into the kernel bases. It is, therefore, likely that reduced unloading, caused by these relatively long-term exposures to chemical inhibitors, was related to reduced translocation of assimilates into treated kernels. Whether this effect is due to disruption of kernel metabolism and sieve element function or reduced assimilate unloading and subsequent accumulation of unlabeled assimilates within the pedicel tissues cannot be determined at this time

  13. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    Science.gov (United States)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  14. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

    International Nuclear Information System (INIS)

    Dai Xiao-Lin

    2014-01-01

    This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi–Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result. (general)

  15. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

    Science.gov (United States)

    Dai, Xiao-Lin

    2014-04-01

    This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.

  16. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    OpenAIRE

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study,...

  17. A hydraulic device for unloading coke

    Energy Technology Data Exchange (ETDEWEB)

    Kretinin, M.V.; Abizgildin, U.M.; Kirillov, T.S.; Makarov, M.I.; Prokopov, O.I.; Solov' ev, A.M.

    1979-07-15

    A hydraulic device for unloading petroleum coke from slow carbonization chambers is characterized by an arrangement whereby in order to increase the output of large size coke by controlling the increment of the cutting line of the coke, the mechanism used to move the rod in the hydraulic cutter is built in the form of a rod rotation rotor; a gear wheel is mounted on the immobile section of this rotor, and on the mobile section a multi-stage regulator is installed. The drive gear of the regulator is engaged with the gear wheel, while the driven gear is connected to the rack, which is fastened to the rod.

  18. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    Science.gov (United States)

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Ground reaction forces during level ground walking with body weight unloading

    Science.gov (United States)

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  20. Ground reaction forces during level ground walking with body weight unloading

    Directory of Open Access Journals (Sweden)

    Ana M. F. Barela

    2014-12-01

    Full Text Available Background: Partial body weight support (BWS systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate.

  1. A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We study properties of stabilizer codes that permit a local description on a regular D-dimensional lattice. Specifically, we assume that the stabilizer group of a code (the gauge group for subsystem codes) can be generated by local Pauli operators such that the support of any generator is bounded by a hypercube of size O(1). Our first result concerns the optimal scaling of the distance d with the linear size of the lattice L. We prove an upper bound d=O(L D-1 ) which is tight for D=1, 2. This bound applies to both subspace and subsystem stabilizer codes. Secondly, we analyze the suitability of stabilizer codes for building a self-correcting quantum memory. Any stabilizer code with geometrically local generators can be naturally transformed to a local Hamiltonian penalizing states that violate the stabilizer condition. A degenerate ground state of this Hamiltonian corresponds to the logical subspace of the code. We prove that for D=1, 2, different logical states can be mapped into each other by a sequence of single-qubit Pauli errors such that the energy of all intermediate states is upper bounded by a constant independent of the lattice size L. The same result holds if there are unused logical qubits that are treated as 'gauge qubits'. It demonstrates that a self-correcting quantum memory cannot be built using stabilizer codes in dimensions D=1, 2. This result is in sharp contrast with the existence of a classical self-correcting memory in the form of a two-dimensional (2D) ferromagnet. Our results leave open the possibility for a self-correcting quantum memory based on 2D subsystem codes or on 3D subspace or subsystem codes.

  2. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Science.gov (United States)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  3. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  4. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  5. Effect of Storage Period on Dimensional Stability of Alginplus and Hydrogum 5

    OpenAIRE

    Shima Aalaei; Rohollah Ganj-Khanloo; Fatemeh Gholami

    2017-01-01

    Objectives: This study aimed to evaluate the effect of storage period on dimensional stability of Alginplus and Hydrogum 5.Materials and Methods: In this in vitro experimental study, 60 impressions were taken of an upper jaw typodont, including 10 impressions for each storage period to be tested (12 minutes, 24 and 120 hours) for each type of alginate. Then, the impressions were stored in an incubator with stable temperature and humidity, and poured using a type III dental stone. Subsequently...

  6. Application of the simulation of a tank capacity proposal for loading and unloading process of bulk material

    Directory of Open Access Journals (Sweden)

    Janka Šaderová

    2012-12-01

    Full Text Available n this paper, the algorithm is given - how to design a tankfor bulk materials. An important part of the proposal is to setthe loading and unloading of a tank, which is also closely related to the proposal of its capacity and volume. Loading and unloadingprocess is dependent on several factors but the main are: method and speed of loading which represents the parameter - hour powerof loading device (e.g. continuous by a conveyor belt, method andspeed of unloading (continuousor at intervals and a typeand capacity of means of transport, in which the material loading (truck, rail car, conveyor belt system. The paper presents twomethods for determination of the loadingand unloading process - the graphic method and determination during the simulation -creating a simulation model.

  7. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    Science.gov (United States)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  8. AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R{sup -1} and R{sup 4}

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Uwe [Gravitationsprojekt, Mathematische Physik I, Institut fuer Mathematik, Universitaet Potsdam, Am Neuen Palais 10, PF 601553, D-14415 Potsdam (Germany); Zhuk, Alexander [Department of Physics, University of Odessa, 2 Dvoryanskaya St, Odessa 65100 (Ukraine); Bezerra, Valdir B [Departamento de Fisica, Universidade Federal de ParaIba C Postal 5008, Joao Pessoa, PB, 58059-970 (Brazil); Romero, Carlos [Departamento de Fisica, Universidade Federal de ParaIba C Postal 5008, Joao Pessoa, PB, 58059-970 (Brazil)

    2005-08-21

    We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R{sup -1} and R{sup 4}. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R{sup -1} model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R{sup 4} model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D < 8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility of inflation are discussed for the R{sup 4} model.

  9. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.

    Science.gov (United States)

    Hu, Liping; Sun, Huihui; Li, Ruifu; Zhang, Lingyun; Wang, Shaohui; Sui, Xiaolei; Zhang, Zhenxian

    2011-11-01

    The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed. © 2011 Blackwell Publishing Ltd.

  10. Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.

    Science.gov (United States)

    Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L

    2017-01-01

    Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.

  11. Grain Unloading of Arsenic Species in Rice

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Manchester); (Aberdeen); (UC)

    2010-01-11

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a {+-} stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.

  12. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    Science.gov (United States)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  13. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    Science.gov (United States)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  14. [Influence of autoclave sterilization on dimensional stability and detail reproduction of 5 additional silicone impression materials].

    Science.gov (United States)

    Xu, Tong-kai; Sun, Zhi-hui; Jiang, Yong

    2012-03-01

    To evaluate the dimensional stability and detail reproduction of five additional silicone impression materials after autoclave sterilization. Impressions were made on the ISO 4823 standard mold containing several marking lines, in five kinds of additional silicone. All the impressions were sterilized by high temperature and pressure (135 °C, 212.8 kPa) for 25 min. Linear measurements of pre-sterilization and post-sterilization were made with a measuring microscope. Statistical analysis utilized single-factor analysis with pair-wise comparison of mean values when appropriate. Hypothesis testing was conducted at alpha = 0.05. No significant difference was found between the pre-sterilization and post-sterilization conditions for all locations, and all the absolute valuse of linear rate of change less than 8%. All the sterilization by the autoclave did not affect the surfuce detail reproduction of the 5 impression materials. The dimensional stability and detail reproduction of the five additional silicone impression materials in the study was unaffected by autoclave sterilization.

  15. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    Directory of Open Access Journals (Sweden)

    Arlene Garcia

    2014-12-01

    Full Text Available The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°, five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay, two moistures (dry or wet bedding; >50% moisture over two seasons (>23.9 °C summer, <23.9 °C winter were assessed for slips/falls/vocalizations (n = 6,000 pig observations. “Score” was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01. Providing bedding reduced (P < 0.05 scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01. Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was

  16. Three-Dimensional Graphene Foam-Polymer Composite with Superior Deicing Efficiency and Strength.

    Science.gov (United States)

    Bustillos, Jenniffer; Zhang, Cheng; Boesl, Benjamin; Agarwal, Arvind

    2018-02-07

    The adhesion of ice severely compromises the aerodynamic performance of aircrafts operating under critically low-temperature conditions to their surfaces. In this study, highly thermally and electrically conductive graphene foam (GrF) polymer composite is fabricated. GrF-polydimethylsiloxane (PDMS) deicing composite exhibits superior deicing efficiency of 477% and electrical conductivities of 500 S m -1 with only 0.1 vol % graphene foam addition as compared to other nanocarbon-based deicing systems. The three-dimensional interconnected architecture of GrF allows the effective deicing of surfaces by employing low power densities (0.2 W cm -2 ). Electrothermal stability of the GrF-PDMS composite was proven after enduring 100 cycles of the dc loading-unloading current. Moreover, multifunctional GrF-PDMS deicing composite provides simultaneous mechanical reinforcement by the effective transfer and absorption of loads resulting in a 23% and 18% increase in elastic modulus and tensile strength, respectively, as compared to pure PDMS. The enhanced efficiency of the GrF-PDMS deicing composite is a novel alternative to current high-power consumption deicing systems.

  17. Direct comparison of unloading compliance and potential drop techniques in J-integral testing

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.

    1984-01-01

    Single-specimen J-integral testing is performed commonly with the unloading compliance technique. Use of modern instrumentation techniques and powerful desktop computers have made this technique a standard. However, this testing technique is slow and tedious, with the loading rate fixed at a slow quasi-static rate. For these reasons the dc potential drop technique was investigated for crack length measurement during a J-integral test. For direct comparison, both unloading compliance and potential drop were used simultaneously during a J-integral test. The results showed good agreement between the techniques. However, the potential drop technique showed an offset in crack length due to plastic blunting processes. Taking this offset into account, J/sub Ic/ values calculated by both techniques compared well

  18. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    Directory of Open Access Journals (Sweden)

    Yunfei Huang

    2018-05-01

    Full Text Available The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each: hindlimb unloading (HU, HU + vibration (HUV, and cage-control (CON. The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density, immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  19. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    Science.gov (United States)

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  20. Three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves

    International Nuclear Information System (INIS)

    Ghosh, G.; Das, K.P.

    1994-01-01

    Starting from a set of equations that lead to a linear dispersion relation coupling kinetic Alfven waves and ion-acoustic waves, three-dimensional KdV equations are derived for these waves. These equations are then used to investigate the three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves by the small-k perturbation expansion method of Rowlands and Infeld. For kinetic Alfven waves it is found that there is instability if the direction of the plane-wave perturbation lies inside a cone, and the growth rate of the instability attains a maximum when the direction of the perturbation lies in the plane containing the external magnetic field and the direction of propagation of the solitary wave. For ion-acoustic waves the growth rate of instability attains a maximum when the direction of the perturbation lies in a plane perpendicular to the direction of propagation of the solitary wave. (Author)

  1. Effect of Storage Period on Dimensional Stability of Alginplus and Hydrogum 5

    Directory of Open Access Journals (Sweden)

    Shima Aalaei

    2017-02-01

    Full Text Available Objectives: This study aimed to evaluate the effect of storage period on dimensional stability of Alginplus and Hydrogum 5.Materials and Methods: In this in vitro experimental study, 60 impressions were taken of an upper jaw typodont, including 10 impressions for each storage period to be tested (12 minutes, 24 and 120 hours for each type of alginate. Then, the impressions were stored in an incubator with stable temperature and humidity, and poured using a type III dental stone. Subsequently, the mesiodistal dimension, occlusogingival height, and interarch distance were measured using a digital caliper with an accuracy of 0.01mm. The data were analyzed using ANOVA and t-test (P<0.05.Results: Alginplus and Hydrogum 5 impressions were not significantly different from the master model after 12 minutes and 24 hours in terms of dimensions (P>0.05. After 120 hours, all dimensions measured on casts were significantly different from those measured on the master model, except for the mesiodistal dimension of the Hydrogum 5 impressions.Conclusions: At a consistent temperature and humidity, the Alginplus and Hydrogum 5 impressions were dimensionally stable for at least 24 hours.Keywords: Dimensional Measurement Accuracy; Dental Impression Materials; Alginic Acid

  2. Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys

    Science.gov (United States)

    Alessi, Roberto; Pham, Kim

    2016-02-01

    This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.

  3. New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl.

    Directory of Open Access Journals (Sweden)

    Julie Bossu

    Full Text Available Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability. On the contrary the role of wood extractive content remains unclear. This work focuses on the fast-growing tropical species Bagassa guianensis and we report herein a correlation between heartwood drying shrinkage and extractive content. Chemical extractions and shrinkage experiments were performed on separate wood twin samples to better evaluate correctly how secondary metabolites influence the wood shrinkage behaviour. Extractive content were qualitatively and quantitatively analysed using HPLC and NMR spectroscopy. We found that B guianensis heartwood has a homogeneous low shrinkage along its radius that could not be explained only by its basic density. In fact the low drying shrinkage is correlated to the high extractive content and a corrected model to improve the prediction of wood dimensional stability is presented. Additionally NMR experiments conducted on sapwood and heartwood extracts demonstrate that secondary metabolites biosynthesis occurs in sapwood thus revealing B. guianensis as a Juglans-Type heartwood formation. This work demonstrates that B. guianensis, a fast-growing species associated with high durability and high dimensional stability, is a good candidate for lumber production and commercial purposes.

  4. Towards a rational use of loading and unloading areas in urban environments

    Science.gov (United States)

    Barba, Daniel; Garcia-Villanueva, Sergio; Del-Campo-Pardo, Hector; March, Juan A.; Llanos, Diego R.

    2017-10-01

    Despite the efforts of the authorities, that promote the use of alternative transportation systems, the traffic still increases in European cities, leading not only to traffic jams but also to pollution episodes. Delivery vehicles are part of both problems, because of their intensive use, the advent of e-commerce, the limited number and sizes of loading and unloading areas in many ancient European cities, and the difficulties associated to keep track of the correct use of these spaces. In this work we propose an holistic solution to the management of delivery vehicles in urban environments. Our solution, called RYDER, is based on the use of BLE (Bluetooth Low Energy) devices that should be provided by the local authority to delivery vehicles, as part of their authorization to use the loading and unloading areas. With the help of low-cost, low-power antennas with Bluetooth and 4G capabilities installed next to each loading/unloading area, the authorities are able to know in real time (a) the use of these areas by delivery vehicles, (b) the paths of the vehicles while they travel across the city, (c) the time spent in each area by each one of them, and (d) with the help of a mobile/tablet App, the local Police can check in seconds the permissions of each vehicle using these public spaces. Moreover, the use of a GIS-based platform allows the Traffic Department to track online each particular vehicle, based on the loading/unloading spaces being used, and to infer the most representative paths they follow, an information that may guide the decision about where these spaces are really necessary and whether each particular vehicle follows their associated usage rules. The deployment of RYDER low-cost antennas can also serve for other purposes, such as to track the routes followed by public loan bicycles, or by other fleets of public vehicles. With the help of low-cost sensors, antennas can also return an estimation of pollution values, such as levels of ozone, particulate

  5. A comparative evaluation of dimensional stability of three types of interocclusal recording materials-an in-vitro multi-centre study

    Directory of Open Access Journals (Sweden)

    Tejo Sampath

    2012-10-01

    Full Text Available Abstract Background The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient’s diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. Purpose of the study The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Materials and method Commercially available and ADA approved Polyether bite registration paste (Ramitec, Poly vinyl siloxane bite registration paste (Jetbite and Zinc oxide eugenol (ZOE bite registration paste (Super bite were used in the study. A stainless steel die was made according to modified American dental Associations (ADA specification no. 19. Each one of the tested materials were manipulated according to manufacturers’ instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus and compared with standard die

  6. Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V.; Mehlhorn, T.; Razorenov, S.V.; Utkin, A.V.

    1999-01-01

    This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure

  7. Use of loading-unloading compression curves in medical device design

    Science.gov (United States)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method and experimental results regarding mechanical testing of soft materials. In order to characterize the mechanical behaviour of technological materials used in prosthesis, a large number of material constants are required, as well as the comparison to the original. The present paper proposes as methodology the comparison between compression loading-unloading curves corresponding to a soft biological tissue and to a synthetic material. To this purpose, a device was designed based on the principle of the dynamic harness test. A moving load is considered and the force upon the indenter is controlled for loading-unloading phases. The load and specimen deformation are simultaneously recorded. A significant contribution of this paper is the interpolation of experimental data by power law functions, a difficult task because of the instability of the system of equations to be optimized. Finding the interpolation function was simplified, from solving a system of transcendental equations to solving a unique equation. The characteristic parameters of the experimentally curves must be compared to the ones corresponding to actual tissue. The tests were performed for two cases: first, using a spherical punch, and second, for a flat-ended cylindrical punch.

  8. A cross-cultural investigation into the dimensional structure and stability of the Barriers to Research and Utilization Scale (BARRIERS Scale).

    Science.gov (United States)

    Williams, Brett; Brown, Ted; Costello, Shane

    2015-10-24

    It is important that scales exhibit strong measurement properties including those related to the investigation of issues that impact evidence-based practice. The validity of the Barriers to Research Utilization Scale (BARRIERS Scale) has recently been questioned in a systematic review. This study investigated the dimensional structure and stability of the 28 item BARRIERS Scale when completed by three groups of participants from three different cross-cultural environments. Data from the BARRIERS Scale completed by 696 occupational therapists from Australia (n = 137), Taiwan (n = 413), and the United Kingdom (n = 144) were analysed using principal components analysis, followed by Procrustes Transformation. Poorly fitting items were identified by low communalities, cross-loading, and theoretically inconsistent primary loadings, and were systematically removed until good fit was achieved. The cross-cultural stability of the component structure of the BARRIERS Scale was examined. A four component, 19 item version of the BARRIERS Scale emerged that demonstrated an improved dimensional fit and stability across the three participant groups. The resulting four components were consistent with the BARRIERS Scale as originally conceptualised. Findings from the study suggest that the four component, 19 item version of the BARRIERS Scale is a robust and valid measure for identifying barriers to research utilization for occupational therapists in paediatric health care settings across Australia, United Kingdom, and Taiwan. The four component 19 item version of the BARRIERS Scale exhibited good dimensional structure, internal consistency, and stability.

  9. Using three-dimensional plant root architecture in models of shallow-slope stability.

    Science.gov (United States)

    Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia

    2008-05-01

    The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.

  10. Three-dimensional stability and deformations of opencast slopes; Raeumliche Standfestigkeit und Verformung von Tagebauboeschungen

    Energy Technology Data Exchange (ETDEWEB)

    Gudehus, G [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Bodenmechanik und Felsbau; Pierschke, K J [Rheinbraun AG, Koeln (Germany)

    1996-05-01

    Where the inside dump follows the line of face advance the bottom section of the frontal batter of the opencast mine is limited to a so-called face window which is as narrow as possible. Because of the resulting three-dimensional bearing effect the stability is greater and the deformations are less than is the case when excavation proceeds at the same depth over a long stretch. For years the three-dimensional support effect has been determined by means of a calculation model, developed at Rheinbraun, in which, for safety reasons, only the cohesion is assumed. The three-dimensional stability can however be determined ore accurately with a mechanism consisting of several individual elements sliding against each other. A large-scale test has meanwhile proved that this device corresponds to the actual conditions. Deformation calculations are carried out with increasing accuracy by a finite-element-method and on the basis of newly evolved constitutive relation. Cohesive and non-cohesive layers, faults and groundwater horizons are taken into account. For adjustment purposes detailed survey rangings are carried out, and the three-dimensional bearing effect and creep effects are now also allowed for. (orig.) [Deutsch] Die Tagebaurandboeschung wird bei einer dem Abbau folgenden Innenkippe in ihrem untersten Bereich auf ein moeglichst schmales Abbaufenster begrenzt. Durch die damit verbundene raeumliche Tragwirkung ergeben sich eine groessere Standfestigkeit und geringere Verformungen als bei einem ueber eine grosse Laenge gleich tiefen Aushub. Die raeumliche Stuetzwirkung wird in einem bei Rheinbraun entwickelten Rechenmodell bereits seit Jahren erfasst, wobei vorsichtshalber nur die Kohaesion angesetzt wird. Genauer wird die raeumliche Standfestigkeit mit einem Mechanismus aus mehreren gegeneinander gleitenden Teilkoerpern erfasst. Die Realitaetsnaehe wurde durch einen grossmassstaeblichen Versuch inzwischen belegt. Verformungsberechnungen werden mit einer Finite

  11. Loading/unloading buoy. Laste/lossebye

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.; Syvertsen, K.

    1994-07-04

    The invention relates to a buoy for use in loading or unloading of a flowable medium, especially oil. The buoy is at its lower end arranged for connection to at least one transfer line and further being arranged to be introduced into a submerged downwardly open receiving space in a floating vessel. The buoy forms in operation a transfer connection between the transfer line and a tube system on the vessel. The buoy comprises an outer buoyancy member arranged for releasable locking to the receiving space of the vessel by means of a locking mechanism arranged therein, and centrally in the outer member a rotatably mounted member which forms a passage for medium and at its ends is arranged for connection to the transfer line and the tube system on the vessel, respectively. The buoy at its upper end is connected to a means for hoisting and introducing the buoy into the receiving space of the vessel. 8 figs.

  12. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    Science.gov (United States)

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  13. On the Load-Unload (L-U) and Force-Release (F-R) Algorithms for Simulating Brittle Fracture Processes via Lattice Models

    KAUST Repository

    Liu, Jinxing

    2011-11-11

    General summaries on the load-unload and force-release methods indicate that the two methods are efficient for different-charactered quasi-static failures; therefore, it is important to choose the right one for different applications. Then we take, as an example, the case where the release of the ruptured element\\'s internal force is infinitely slower than the relaxation of the lattice system and analyze why the force-release method works better than the load-unload method in this particular case. Different trial deformation fields are used by them to track the next equilibrium state. Force-release method ensures that the deformation throughout the whole failure process coincides exactly with the controlled-displacement boundary conditions and we utilize the \\'left modulus\\' concept to prove that this method satisfies the energetic evolution in the force-displacement diagram; both of which are not satisfied by the load-unload method. To illustrate that the force-release method is not just another form of the load-unload method, a tensile test on a specifically designed system is analyzed to further compare the above two methods, showing that their predicted sequences of elemental failures can be different. In closing, we simulate the uniaxial tensile test on a beam lattice system by the load-unload and force-release methods and exploit the details of the resulting fracture processes. © The Author(s), 2011.

  14. A study on risk analysis for loading and un-loading accident

    International Nuclear Information System (INIS)

    Watabe, N.; Suzuki, H.; Saegusa, T.

    1998-01-01

    Low Level Waste packages are transported from each Japanese nuclear power plants to Rokkasho-Mura by exclusive ship. These packages are contained in half-height 5 ton containers. The handling system for loading and unloading containers is composed of the 25 ton crane, the cell-guide system and transport trucks. These systems are mostly automated and under computer control. By design, the whole handling system should be highly protected from any accident. However unknown causes for accidents might be concealed in this handling system, because of complicated system interaction between computer control and human operation. The representative 25 ton bridge type crane was analyzed in this assessment. As the first step, causes of drop accidents were analyzed using design drawing of the crane and its system operation flow chart as inputs to the analysis. After analysis the protection methods were reviewed, and where necessary, revised in each step accident cause. Those results were rearranged by fault trees for each cause. To provide quantitative details of operational interactions, crane operators and safety supervisors were consulted. Based on their experience, a method to determine probabilities of basic events was tentatively adopted. According to this assessment, each protection method was clarified and some weak points of the loading and un-loading process were able to be identified. Figure 1 shows schematically the sequential steps in the method. As a result of this assessment, the PSA method (including fault trees, etc) was found to be adaptable for the loading and un-loading process (i.e. handling system) and to be effective in understanding the system characteristics. Further, using this PSA analysis method allows transport companies to review protection methods with 'Cost and Benefit' analysis concepts. (authors)

  15. Analysis of internal stress and anelasticity in the shock-compressed state from unloading wave data

    International Nuclear Information System (INIS)

    Johnson, J.N.; Lomdahl, P.S.; Wills, J.M.

    1991-01-01

    This paper reports on time resolved shock-wave measurements have often been used to infer microstructural behavior in crystalline solids. The authors apply this approach to an interpretation of the release-wave response of an aluminum alloy (6061-T6) as it is dynamically unloaded from a shock-compressed state of 20.7 GPa. The anelastic behavior in the initial portion of the unloading wave is attributed to the accumulation of internal stresses created by the shock process. Specific internal-stress models which are investigated are the double pile-up, the single pile-up, and single dislocation loops between pinning points. It is found that the essential characteristics of double and single pile-ups can be represented by a single dislocation between two pinned dislocations of like sing. Calculations of anelastic wave speeds at constant unloading strain rate are then compared with experimental data. The results suggest that the residual internal stress is due to pinned loops of density 10 15 M - 2 , and the viscous drag coefficient in the shock-compressed state is on the order of 10 - 7 MPa s (approximately two orders of magnitude greater than expected under ambient conditions)

  16. A remark on Dickey's stabilizing chain

    International Nuclear Information System (INIS)

    Svinin, Andrei K.

    2011-01-01

    We observe that Dickey's stabilizing chain can be naturally included into two-dimensional chain of infinitely many copies of equations of KP hierarchy. -- Highlights: → In this study we consider Dickey's stabilizing chain. → We construct two-dimensional chain of dressing truncated operators. → We show that Dickey's stabilizing chain can be included into two-dimensional chain of KP hierarchies.

  17. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    Science.gov (United States)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  18. Failure Characteristics of Granite Influenced by Sample Height-to-Width Ratios and Intermediate Principal Stress Under True-Triaxial Unloading Conditions

    Science.gov (United States)

    Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal

    2018-05-01

    The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.

  19. Fuel element load/unload machine for the PEC reactor

    International Nuclear Information System (INIS)

    Clayton, K.F.

    1984-01-01

    GEC Energy Systems Limited are providing two fuel element load/unload machines for use in the Italian fast reactor programme. One will be used in the mechanism test facility (IPM) at Casaccia, to check the salient features of the machine operating in a sodium environment prior to the second machine being installed in the PEC Brasimone Reactor. The machine is used to handle fuel elements, control rods and other reactor components in the sodium-immersed core of the reactor. (U.K.)

  20. Dimensional stability of some Fe-Ni-Cr alloys used in nuclear power generation

    International Nuclear Information System (INIS)

    Marucco, A.; Nath, B.

    1983-01-01

    The dimensional stability of four materials used in the nuclear power industry, viz Nimonic PE16, 20Cr-25Ni steel, Alloy 600 and Inconel 690, have been studied using X-ray diffractometry, electrical resistivity and thin foil microscopic techniques. Appreciable reductions in lattice parameters of these alloys occur on exposure to temperatures of 823 deg K and below. An order-disorder transformation has been found to be responsible for the observed behaviour. The transformation kinetics, associated microstructural changes and the implications for the usage of these materials are discussed. (author)

  1. A comparative evaluation of dimensional stability of three types of interocclusal recording materials-an in-vitro multi-centre study.

    Science.gov (United States)

    Tejo, Sampath Kumar; Kumar, Anil G; Kattimani, Vivekanand S; Desai, Priti D; Nalla, Sandeep; Chaitanya K, Krishna

    2012-10-05

    The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient's diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Commercially available and ADA approved Polyether bite registration paste (Ramitec), Poly vinyl siloxane bite registration paste (Jetbite) and Zinc oxide eugenol (ZOE) bite registration paste (Super bite) were used in the study.A stainless steel die was made according to modified American dental Associations (ADA) specification no. 19. Each one of the tested materials were manipulated according to manufacturers' instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus) and compared with standard die measurements made according to ADA specification no.19 to find out the dimensional

  2. Human spaceflight and space adaptations: Computational simulation of gravitational unloading on the spine

    Science.gov (United States)

    Townsend, Molly T.; Sarigul-Klijn, Nesrin

    2018-04-01

    Living in reduced gravitational environments for a prolonged duration such, as a fly by mission to Mars or an extended stay at the international space station, affects the human body - in particular, the spine. As the spine adapts to spaceflight, morphological and physiological changes cause the mechanical integrity of the spinal column to be compromised, potentially endangering internal organs, nervous health, and human body mechanical function. Therefore, a high fidelity computational model and simulation of the whole human spine was created and validated for the purpose of investigating the mechanical integrity of the spine in crew members during exploratory space missions. A spaceflight exposed spine has been developed through the adaptation of a three-dimensional nonlinear finite element model with the updated Lagrangian formulation of a healthy ground-based human spine in vivo. Simulation of the porohyperelastic response of the intervertebral disc to mechanical unloading resulted in a model capable of accurately predicting spinal swelling/lengthening, spinal motion, and internal stress distribution. The curvature of this space adaptation exposed spine model was compared to a control terrestrial-based finite element model, indicating how the shape changed. Finally, the potential of injury sites to crew members are predicted for a typical 9 day mission.

  3. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat

    2010-03-17

    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  4. An explanation for the shape of nanoindentation unloading curves based on finite element simulation

    International Nuclear Information System (INIS)

    Bolshakov, A.; Pharr, G.M.

    1995-01-01

    Current methods for measuring hardness and modulus from nanoindentation load-displacement data are based on Sneddon's equations for the indentation of an elastic half-space by an axially symmetric rigid punch. Recent experiments have shown that nanoindentation unloading data are distinctly curved in a manner which is not consistent with either the flat punch or the conical indenter geometries frequently used in modeling, but are more closely approximated by a parabola of revolution. Finite element simulations for conical indentation of an elastic-plastic material are presented which corroborate the experimental observations, and from which a simple explanation for the shape of the unloading curve is derived. The explanation is based on the concept of an effective indenter shape whose geometry is determined by the shape of the plastic hardness impression formed during indentation

  5. Transforming growth factor-β inhibits CCAAT/enhancer-binding protein expression and PPARγ activity in unloaded bone marrow stromal cells

    International Nuclear Information System (INIS)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J.

    2005-01-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-β2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP)α and C/EBPβ α at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor γ (PPARγ2) transcripts at 7 days. TGF-β2 administration in unloaded rats corrected the rise in C/EBPα and C/EBPβ transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPARγ2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBPα and C/EBPβ expression by TGF-β2 was associated with increased PPARγ serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPARγ transactivating activity. The sequential inhibitory effect of TGF-β2 on C/EBPα, C/EBPβ, and PPARγ2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-β2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBPα, C/EBPβ, and PPARγ expression and activity, which provides a sequential mechanism by which TGF-β2 regulates adipogenic differentiation of bone marrow stromal cells in vivo

  6. Changes in muscle strength and morphology after muscle unloading in Special Forces missions

    DEFF Research Database (Denmark)

    Thorlund, J B; Jakobsen, O; Madsen, T

    2011-01-01

    The purpose of the present study was to determine the changes in maximal muscle strength, rapid force capacity, jumping performance and muscle morphology following a Special Forces military operation involving 8 days of muscle unloading. Nine male Special Forces soldiers were tested before (pre) ...

  7. Apparatus and method for magnetically unloading a rotor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth Robert

    2018-02-13

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  8. Three-dimensional verification of 125I seed stability after permanent implantation in the parotid gland and periparotid region

    International Nuclear Information System (INIS)

    Fan, Yi; Huang, Ming-Wei; Zheng, Lei; Zhao, Yi-Jiao; Zhang, Jian-Guo

    2015-01-01

    To evaluate seed stability after permanent implantation in the parotid gland and periparotid region via a three-dimensional reconstruction of CT data. Fifteen patients treated from June 2008 to June 2012 at Peking University School and Hospital of Stomatology for parotid gland tumors with postoperative adjunctive 125 I interstitial brachytherapy were retrospectively reviewed in this study. Serial CT data were obtained during follow-up. Mimics and Geomagic Studio software were used for seed reconstruction and stability analysis, respectively. Seed loss and/or migration outside of the treated area were absent in all patients during follow-up (23–71 months). Total seed cluster volume was maximized on day 1 post-implantation due to edema and decreased significantly by an average of 13.5 % (SD = 9.80 %; 95 % CI, 6.82–17.68 %) during the first two months and an average of 4.5 % (SD = 3.60 %; 95 % CI, 2.29–6.29 %) during the next four months. Volume stabilized over the subsequent six months. 125 I seed number and location were stable with a general volumetric shrinkage tendency in the parotid gland and periparotid region. Three-dimensional seed reconstruction of CT images is feasible for visualization and verification of implanted seeds in parotid brachytherapy

  9. Development of a functional food or drug against unloading-mediated muscle atrophy

    Science.gov (United States)

    Nikawa, Takeshi; Nakao, Reiko; Kagawa, Sachiko; Yamada, Chiharu; Abe, Manami; Tamura, Seiko; Kohno, Shohei; Sukeno, Akiko; Hirasaka, Katsuya; Okumura, Yuushi; Ishidoh, Kazumi

    The ubiquitin-proteasome pathway is a primary regulator of muscle protein turnover, providing a mechanism for selective degradation of regulatory and structural proteins. This pathway is constitutively active in muscle fibers and mediates both intracellular signaling events and normal muscle protein turnover. However, conditions of decreased muscle use, so called unloading, remarkably stimulate activity of this pathway, resulting in loss of muscle protein. In fact, we previously reported that expression of several ubiquitin ligase genes, such as MuRF-1, Cbl-b, and Siah-1A, which are rate-limiting enzymes of the ubiquitin-proteasome proteolytic pathway, are significantly up-regulated in rat skeletal muscle during spaceflight. Moreover, we found that Cbl-b-mediated ubiquitination and degradation of IRS-1, an important intermediates of IGF-1 signal transduction, contributes to muscle atrophy during unloading. Therefore, we hypothesized that inhibition of Cbl-b-mediated ubiquitination and degradation of IRS-1 leads to prevention of muscle atrophy during unloading. In this study, we aimed to evaluate oligopeptide as an inhibitor against ubiquitination of IRS-1 by Cbl-b. We synthesized various oligopeptides that may competitively inhibit the binding of Cbl-b to IRS-1 on the basis of their structures and screened inhibitory effects of these synthesized oligopeptides on Cbl-b-mediated ubiquitination of IRS-1 using in vitro ubiquitination systems. We found that two synthetic oligopeptides with specific amino acid sequences effectively inhibited interaction with Cbl-b and IRS-1, resulting in decreased ubiquitination and degradation of IRS-1 (Patent pending). In contrast, we also found inhibitory activity against Cbl-b-mediated ubiquitination of IRS-1 in soy protein-derived oligopeptides, whereas their inhibitory effects were weaker than those of synthetic oligopeptides. Our results suggest that specific oligopeptides may be available as a functional food against the muscle

  10. Evaluation of the effect of intrinsic material properties and ambient conditions on the dimensional stability of white mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Camilleri, Josette

    2011-02-01

    A number of factors affect the dimensional stability of a material. These factors include curing conditions, material solubility, leaching, and time. The aim of this study was to evaluate the restrained dimensional change in the vertical direction as a function of the ambient conditions, fluid uptake, solubility, and leaching of white mineral trioxide aggregate (MTA) and Portland cement stored in Hank's balanced salt solution (HBSS) over a period of 28 days. The dimensional change in the vertical direction over a 28-day period was determined using a linear variable differential transducer (LVDT) on laterally restrained test samples. The fluid uptake and solubility of both MTA and Portland cement was also evaluated. The leaching in water and HBSS was assessed using inductively coupled plasma. MTA was more soluble than Portland cement. Both materials absorbed water and physiological solution, with Portland cement displaying a lower uptake than MTA. Both cements exhibited a net expansion when in contact with a physiological solution and released high levels of calcium. MTA leached bismuth. Both calcium and bismuth ion release was higher in HBSS than in water. Phosphorus ions in HBSS were depleted when in contact with both MTA and Portland cement. The MTA was very susceptible to ambient conditions. The addition of bismuth oxide to MTA reduced the leaching of calcium hydroxide, increased the material solubility, and caused deterioration in material dimensional stability. Further research is necessary to establish the material porosity and its effect on the dimensional stability. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. The effect of prolonged storage and disinfection on the dimensional stability of 5 vinyl polyether silicone impression materials.

    Science.gov (United States)

    Nassar, Usama; Flores-Mir, Carlos; Heo, Giseon; Torrealba, Ysidora

    2017-06-01

    Vinyl polyether silicone (VPES) has a different composition from other elastomeric impression materials as it combines vinyl polysiloxane (VPS) and polyether (PE). Therefore, it is important to study its properties and behavior under different test conditions. This study investigated the dimensional stability of 5 VPES consistencies when stored for up to 2 weeks, with and without using a standard disinfection procedure. 40 discs of each VPES consistency (total 200) were made using a stainless steel die and ring as described by ANSI /ADA specification No. 19. 20 discs of each material were immersed in a 2.5% buffered glutaraldehyde solution for 30 minutes. Dimensional stability measurements were calculated immediately after fabrication and repeated on the same discs after 7 and 14 days of storage. The data was analyzed using two-way ANOVA with a significance level set at α = 0.05. The discs mean contraction was below 0.5% at all test times ranging from 0.200 ± 0.014 to 0.325 ± 0.007. Repeated measures ANOVA showed a statistically significant difference after 2-week storage between the disinfected and non-disinfected groups ( P < .001). Although there was no statistically significant difference between the materials at the time of fabrication, the contraction of the materials increased with storage for 1 and 2 weeks. The dimensional changes of VPES impression discs after disinfection and prolonged storage complied with ANSI/ADA standard. The tested VPES impression materials were dimensionally stable for clinical use after disinfection for 30 minutes in glutaraldehyde and storage for up to 2 weeks.

  12. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    International Nuclear Information System (INIS)

    Hostick, C.J.; Lavender, J.C.; Wakeman, B.H.

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel

  13. The molecular response of bone to growth hormone during skeletal unloading: regional differences

    Science.gov (United States)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Currier, P. A.; Tanner, S.; Morey-Holton, E.

    1995-01-01

    Hind limb elevation of the growing rat provides a good model for the skeletal changes that occur during space flight. In this model the bones of the forelimbs (normally loaded) are used as an internal control for the changes that occur in the unloaded bones of the hind limbs. Previous studies have shown that skeletal unloading of the hind limbs results in a transient reduction of bone formation in the tibia and femur, with no change in the humerus. This fall in bone formation is accompanied by a fall in serum osteocalcin (bone Gla protein, BGP) and bone BGP messenger RNA (mRNA) levels, but a rise in bone insulin-like growth factor-I (IGF-I) protein and mRNA levels and resistance to the skeletal growth-promoting actions of IGF-I. To determine whether skeletal unloading also induced resistance to GH, we evaluated the response of the femur and humerus of sham and hypophysectomized rats, control and hind limb elevated, to GH (two doses), measuring mRNA levels of IGF-I, BGP, rat bone alkaline phosphatase (RAP), and alpha 1(1)-procollagen (coll). Hypophysectomy (HPX) decreased the mRNA levels of IGF-I, BGP, and coll in the femur, but was either less effective or had the opposite effect in the humerus. GH at the higher dose (500 micrograms/day) restored these mRNA levels to or above the sham control values in the femur, but generally had little or no effect on the humerus. RAP mRNA levels were increased by HPX, especially in the femur. The lower dose of GH (50 micrograms/day) inhibited this rise in RAP, whereas the higher dose raised the mRNA levels and resulted in the appearance of additional transcripts not seen in controls. As for the other mRNAs, RAP mRNA in the humerus was less affected by HPX or GH than that in the femur. Hind limb elevation led to an increase in IGF-I, coll, and RAP mRNAs and a reduction in BGP mRNA in the femur and either had no effect or potentiated the response of these mRNAs to GH. We conclude that GH stimulates a number of markers of bone

  14. Calculating of radiation doses in rutinary unloads of liquid wastes from Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Molina, G.

    1985-01-01

    Utilization of nuclear energy to produce or generate electricity is a growing practice in the world, since it represent an economic and safe option to replace fossil fuels. During operation of nuclear power plants, radioactive materials are produced. A small fraction of these material are released to environment in the form of liquid or gaseous effluents. Estimation of radiation doses causing by effluents release has three purposes. During design phase of a nuclear station it is useful to adapt the wastes treatment systems to acceptable limits. During licensing phase, the regulator organism verifies the design of nuclear station effectuating estimation of doses. Finally, during operation of a nuclear station, before every unload of radioactive effluents, radiation doses should be evaluate in order to fulfill technical specifications, which limit the release of radioactive materials to environment. 1. To perform calculations of individual doses due to liquid radioactive effluents unload in units 1 and 2 of Laguna Verde nuclear power plant (In licensing phase). 2. To perform a parametric study of the effect of unload recirculation over individual dose, since recirculation has two principal effects: thermodynamical effects in nuclear station and radioactivity concentration, the last can affect the fullfilment of dose limits. 3. To perform the calculation of collective doses causes by unloads of liquid effluents within a radius of 80 Kms. of nuclear station caused by unload of liquid radioactive effluents during normal operation of nuclear power plant and does not include doses caused during accident conditions. In Mexico the organism in charge of regulation of peaceful uses of nuclear energy is Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) and for Laguna Verde licensing, the regulations of country who manufactured the reactor was adopted, it is to say United States of America. In Appendix 'C' units used along this work are explained. Unless another

  15. Dimensional Stability of Color-Changing Irreversible Hydrocolloids after Disinfection

    Directory of Open Access Journals (Sweden)

    Khaledi AAR

    2015-03-01

    Full Text Available Statement of Problem: Disinfection of dental impressions is a weak point in the dental hygiene chain. In addition, dental office personnel and dental technicians are endangered by cross-contamination. Objectives: This study aimed to investigate the dimensional stability of two color-changing irreversible hydrocolloid materials (IH after disinfection with glutaraldehyde. Materials and Methods: In this in vitro study, impressions were made of a master maxillary arch containing three reference inserts on the occlucal surface of the left and right maxillary second molars and in the incisal surface of the maxillary central incisors. Two types of color-changing irreversible hydrocolloid (tetrachrom, cavex were used. Glutaraldehyde 2% was used in two methods of spraying and immersion to disinfect the impressions. The control group was not disinfected. Casts were made of type IV gypsum. The linear dimensional change of the stone casts was measured with a profile projector. For statistical analysis, Kruskall-Wallis and Mann-Witney tests were used (α=0.05. Results: By immersion method, the casts fabricated from tetrachrom were 0.36% larger in the anteroposterior (AP and 0.05% smaller in cross arch (CA dimensions; however, the casts prepared after spraying of tetrachrom were 0.44% larger in the AP and 0.10% smaller in CA dimensions. The casts made from Cavex were 0.05% smaller in the AP and 0.02% smaller in CA dimensions after spraying and 0.01% smaller in the AP and 0.003% smaller in CA dimensions after immersion. Generally there were not significant differences in AP and CA dimensions of the experimental groups compared to the control (p > 0.05. Conclusions: Disinfection of the tested color-changing irreversible hydrocolloids by glutaraldahyde 2% did not compromise the accuracy of the obtained casts.

  16. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Czech Academy of Sciences Publication Activity Database

    Řeřucha, Šimon; Yacoot, A.; Pham, Minh Tuan; Čížek, Martin; Hucl, Václav; Lazar, Josef; Číp, Ondřej

    2017-01-01

    Roč. 28, č. 4 (2017), s. 1-11, č. článku 045204. ISSN 0957-0233 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : optical metrology * DBR laser diode * frequency stabilization * laser interferometry * dimensional metrology * iodine stabilization * displacement measurement Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.585, year: 2016

  17. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  18. Variational study of the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model

    International Nuclear Information System (INIS)

    Bajdich, M.; Hlubina, R.

    2001-01-01

    Making use of variational wave functions of the Basile-Elser type we study the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model for t#prime#/t∼0.5. In the low-density limit the variational estimate of the stability region of the Nagaoka state is in qualitative agreement with the predictions of the T-matrix approximation

  19. A New Animal Model for Investigation of Mechanical Unloading in Hypertrophic and Failing Hearts: Combination of Transverse Aortic Constriction and Heterotopic Heart Transplantation.

    Directory of Open Access Journals (Sweden)

    Andreas Schaefer

    Full Text Available Previous small animal models for simulation of mechanical unloading are solely performed in healthy or infarcted hearts, not representing the pathophysiology of hypertrophic and dilated hearts emerging in heart failure patients. In this article, we present a new and economic small animal model to investigate mechanical unloading in hypertrophic and failing hearts: the combination of transverse aortic constriction (TAC and heterotopic heart transplantation (hHTx in rats.To induce cardiac hypertrophy and failure in rat hearts, three-week old rats underwent TAC procedure. Three and six weeks after TAC, hHTx with hypertrophic and failing hearts in Lewis rats was performed to induce mechanical unloading. After 14 days of mechanical unloading animals were euthanatized and grafts were explanted for further investigations.50 TAC procedures were performed with a survival of 92% (46/50. When compared to healthy rats left ventricular surface decreased to 5.8±1.0 mm² (vs. 9.6± 2.4 mm² (p = 0.001 after three weeks with a fractional shortening (FS of 23.7± 4.3% vs. 28.2± 1.5% (p = 0.01. Six weeks later, systolic function decreased to 17.1± 3.2% vs. 28.2± 1.5% (p = 0.0001 and left ventricular inner surface increased to 19.9±1.1 mm² (p = 0.0001. Intraoperative graft survival during hHTx was 80% with 46 performed procedures (37/46. All transplanted organs survived two weeks of mechanical unloading.Combination of TAC and hHTx in rats offers an economic and reproducible small animal model enabling serial examination of mechanical unloading in a truly hypertrophic and failing heart, representing the typical pressure overloaded and dilated LV, occurring in patients with moderate to severe heart failure.

  20. Load-Unload Response Ratio and Accelerating Moment/Energy Release Critical Region Scaling and Earthquake Prediction

    Science.gov (United States)

    Yin, X. C.; Mora, P.; Peng, K.; Wang, Y. C.; Weatherley, D.

    The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.

  1. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model

    Science.gov (United States)

    2012-01-01

    Background This study characterizes the distribution and components of plaque structure by presenting a three-dimensional blood-vessel modelling with the aim of determining mechanical properties due to the effect of lipid core and calcification within a plaque. Numerical simulation has been used to answer how cap thickness and calcium distribution in lipids influence the biomechanical stress on the plaque. Method Modelling atherosclerotic plaque based on structural analysis confirms the rationale for plaque mechanical examination and the feasibility of our simulation model. Meaningful validation of predictions from modelled atherosclerotic plaque model typically requires examination of bona fide atherosclerotic lesions. To analyze a more accurate plaque rupture, fluid-structure interaction is applied to three-dimensional blood-vessel carotid bifurcation modelling. A patient-specific pressure variation is applied onto the plaque to influence its vulnerability. Results Modelling of the human atherosclerotic artery with varying degrees of lipid core elasticity, fibrous cap thickness and calcification gap, which is defined as the distance between the fibrous cap and calcification agglomerate, form the basis of our rupture analysis. Finite element analysis shows that the calcification gap should be conservatively smaller than its threshold to maintain plaque stability. The results add new mechanistic insights and methodologically sound data to investigate plaque rupture mechanics. Conclusion Structural analysis using a three-dimensional calcified model represents a more realistic simulation of late-stage atherosclerotic plaque. We also demonstrate that increases of calcium content that is coupled with a decrease in lipid core volume can stabilize plaque structurally. PMID:22336469

  2. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model

    Directory of Open Access Journals (Sweden)

    Wong Kelvin KL

    2012-02-01

    Full Text Available Abstract Background This study characterizes the distribution and components of plaque structure by presenting a three-dimensional blood-vessel modelling with the aim of determining mechanical properties due to the effect of lipid core and calcification within a plaque. Numerical simulation has been used to answer how cap thickness and calcium distribution in lipids influence the biomechanical stress on the plaque. Method Modelling atherosclerotic plaque based on structural analysis confirms the rationale for plaque mechanical examination and the feasibility of our simulation model. Meaningful validation of predictions from modelled atherosclerotic plaque model typically requires examination of bona fide atherosclerotic lesions. To analyze a more accurate plaque rupture, fluid-structure interaction is applied to three-dimensional blood-vessel carotid bifurcation modelling. A patient-specific pressure variation is applied onto the plaque to influence its vulnerability. Results Modelling of the human atherosclerotic artery with varying degrees of lipid core elasticity, fibrous cap thickness and calcification gap, which is defined as the distance between the fibrous cap and calcification agglomerate, form the basis of our rupture analysis. Finite element analysis shows that the calcification gap should be conservatively smaller than its threshold to maintain plaque stability. The results add new mechanistic insights and methodologically sound data to investigate plaque rupture mechanics. Conclusion Structural analysis using a three-dimensional calcified model represents a more realistic simulation of late-stage atherosclerotic plaque. We also demonstrate that increases of calcium content that is coupled with a decrease in lipid core volume can stabilize plaque structurally.

  3. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    Science.gov (United States)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  4. Corrections to the Eckhaus' stability criterion for one-dimensional stationary structures

    Science.gov (United States)

    Malomed, B. A.; Staroselsky, I. E.; Konstantinov, A. B.

    1989-01-01

    Two amendments to the well-known Eckhaus' stability criterion for small-amplitude non-linear structures generated by weak instability of a spatially uniform state of a non-equilibrium one-dimensional system against small perturbations with finite wavelengths are obtained. Firstly, we evaluate small corrections to the main Eckhaus' term which, on the contrary so that term, do not have a universal form. Comparison of those non-universal corrections with experimental or numerical results gives a possibility to select a more relevant form of an effective nonlinear evolution equation. In particular, the comparison with such results for convective rolls and Taylor vortices gives arguments in favor of the Swift-Hohenberg equation. Secondly, we derive an analog of the Eckhaus criterion for systems degenerate in the sense that in an expansion of their non-linear parts in powers of dynamical variables, the second and third degree terms are absent.

  5. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  6. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.

    Science.gov (United States)

    Ogneva, I V

    2010-12-01

    The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.

  7. Preparation of Salicylic Acid Loaded Nanostructured Lipid Carriers Using Box-Behnken Design: Optimization, Characterization and Physicochemical Stability.

    Science.gov (United States)

    Pantub, Ketrawee; Wongtrakul, Paveena; Janwitayanuchit, Wicharn

    2017-01-01

    Nanostructured lipid carriers loaded salicylic acid (NLCs-SA) were developed and optimized by using the design of experiment (DOE). Box-Behnken experimental design of 3-factor, 3-level was applied for optimization of nanostructured lipid carriers prepared by emulsification method. The independent variables were total lipid concentration (X 1 ), stearic acid to Lexol ® GT-865 ratio (X 2 ) and Tween ® 80 concentration (X 3 ) while the particle size was a dependent variable (Y). Box-Behnken design could create 15 runs by setting response optimizer as minimum particle size. The optimized formulation consists of 10% of total lipid, a mixture of stearic acid and capric/caprylic triglyceride at a 4:1 ratio, and 25% of Tween ® 80 which the formulation was applied in order to prepare in both loaded and unloaded salicylic acid. After preparation for 24 hours, the particle size of loaded and unloaded salicylic acid was 189.62±1.82 nm and 369.00±3.37 nm, respectively. Response surface analysis revealed that the amount of total lipid is a main factor which could affect the particle size of lipid carriers. In addition, the stability studies showed a significant change in particle size by time. Compared to unloaded nanoparticles, the addition of salicylic acid into the particles resulted in physically stable dispersion. After 30 days, sedimentation of unloaded lipid carriers was clearly observed. Absolute values of zeta potential of both systems were in the range of 3 to 18 mV since non-ionic surfactant, Tween ® 80, providing steric barrier was used. Differential thermograms indicated a shift of endothermic peak from 55°C for α-crystal form in freshly prepared samples to 60°C for β´-crystal form in storage samples. It was found that the presence of capric/caprylic triglyceride oil could enhance encapsulation efficiency up to 80% and facilitate stability of the particles.

  8. The BWR Stability Issue

    International Nuclear Information System (INIS)

    D'Auria, F.

    2008-01-01

    The purpose of this paper is to supply general information about Boiling Water Reactor (BWR) stability. The main concerned topics are: phenomenological aspects, experimental database, modelling features and capabilities, numerical models, three-dimensional modelling, BWR system performance during stability, stability monitoring and licensing aspects.

  9. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  10. Automated Loading and Unloading of the Stratasys FDM 1600 Rapid Prototyping System

    OpenAIRE

    Brockmeier, Oivind

    2000-01-01

    Rapid prototyping systems have advanced significantly with respect to material capabilities, fabrication speed, and surface quality. However, build jobs are still manually activated one at a time. The result is non-productive machine time whenever an operator is not at hand to make a job changeover. A low-cost auxiliary system, named Continuous Layered Manufacturing (CLM), has been developed to automatically load and unload the FDM 1600 rapid prototyping system (Stratasys, Inc.). The modifica...

  11. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability.

    Science.gov (United States)

    Zhang, Haihua; Liao, Qing; Wu, Yishi; Chen, Jianwei; Gao, Qinggang; Fu, Hongbing

    2017-11-08

    Zero-dimensional (0D) perovskite Cs 4 PbBr 6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs 4 PbBr 6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs 4 PbBr 6 itself or CsPbBr 3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs 4 PbBr 6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs 4 PbBr 6 MDs and CsPbBr 3 MDs were phase-separated from each other and the strong green emission comes from Cs 4 PbBr 6 . Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs 4 PbBr 6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr 6 4- octahedra separated by a Cs + ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs 4 PbBr 6 MDs with highly efficient luminescence and stability for further optoelectronic applications.

  12. Role of Exercise Therapy in Prevention of Decline in Aging Muscle Function: Glucocorticoid Myopathy and Unloading

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2012-01-01

    Full Text Available Changes in skeletal muscle quantity and quality lead to disability in the aging population. Physiological changes in aging skeletal muscle are associated with a decline in mass, strength, and inability to maintain balance. Glucocorticoids, which are in wide exploitation in various clinical scenarios, lead to the loss of the myofibrillar apparatus, changes in the extracellular matrix, and a decrease in muscle strength and motor activity, particularly in the elderly. Exercise therapy has shown to be a useful tool for the prevention of different diseases, including glucocorticoid myopathy and muscle unloading in the elderly. The purpose of the paper is to discuss the possibilities of using exercise therapy in the prevention of glucocorticoid caused myopathy and unloading in the elderly and to describe relationships between the muscle contractile apparatus and the extracellular matrix in different types of aging muscles.

  13. 49 CFR 179.100-13 - Venting, loading and unloading valves, measuring and sampling devices.

    Science.gov (United States)

    2010-10-01

    ... interior pipes of the loading and unloading valves shall be anchored and, except as prescribed in §§ 173... approved design. Interior pipe of the thermometer well shall be anchored in an approved manner to prevent... tank shell, the wall thickness of the pressed section must not be less than that specified for the...

  14. Hindlimb unloading in rat decreases preosteoblast proliferation assessed in vivo with BrdU incorporation.

    Science.gov (United States)

    Barou, O; Palle, S; Vico, L; Alexandre, C; Lafage-Proust, M H

    1998-01-01

    Immobilization affects bone formation. However, the mechanisms regulating the decrease in osteoblast recruitment remain unclear. The aim of our study was to determine in vivo osteoblastic proliferation after short-term immobilization among the different bone compartments. Twelve Wistar 5-wk-old rats were assigned to two groups: six tail-suspended animals for 6 days and their six age-related controls. Osmotic minipumps, each containing 40 mg of bromodeoxyuridine (BrdU), were implanted intraperitoneally at day 4 until euthanasia. Histomorphometric measurements found a significantly lower bone volume in primary (ISP, -22%) and secondary spongiosa (IISP, -37%) in unloaded rats compared with their age-related controls. BrdU immunohistochemistry showed that the proliferation capacity of osteogenic precursors in ISP (-29%) and preosteoblasts in IISP (-80%) and in periosteum as well as bone marrow cells (-40%) was lowered by unloading. We demonstrated in vivo for the first time that 6-day tail suspension induced a significant decrease in proliferation of periosteal and trabecular preosteoblasts in ISP and IISP as well as in bone marrow cells.

  15. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    Science.gov (United States)

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  16. Vent hood concept for safely unloading TRUPACT-IIs

    International Nuclear Information System (INIS)

    Kelley, C.R.

    1991-01-01

    Receipt of transuranic (TRU) waste in the TRUPACT-2 shipping package, implies a potential of receiving waste packages contaminated with only alpha emitters or emitting hazardous gases. Due to the difficulty of rapidly detecting low-level alpha contamination, a strict contamination control system has been developed to check incoming waste packages in a controlled environment. A part of this control is the use of a vent hood system for the TRUPACT-2 shipping container unloading process. A clear final shroud with a monitored/filtered exhaust system has been designed and fabricated to permit direct surveillance of TRU waste packages prior to exposing personnel or facilities to possible radioactive contamination or hazardous gases. This concept has also been adapted to similar evolutions in which packages are exposed that hold TRU or hazardous materials but cannot be directly monitored prior to opening

  17. A loading/unloading buoy; Laste/losseboeye

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.; Smedal, A.; Syvertsen, K.

    1994-10-10

    The invention relates to a buoy design for use in the offshore loading or unloading of crude oil in particular. The buoy comprises an outer buoyancy member arranged to be introduced and secured in a submerged downwardly open receiving space in a floating vessel, and a central member which is rotatably mounted in the outer member and is intended for anchoring to the sea bed and arranged for passage of medium between a transfer line which, in operation, is coupled to the lower end of the central member and a tube system on the vessel. The central member is provided with a lower extension body having an outer peripheral portion abutting on and essentially corresponding to the outer periphery of the adjacent end of the outer buoyancy member, and having a lower portion which is downwardly tapering from the outer peripheral portion. A number of fastening means for fastening of the upper ends of anchoring lines for anchoring of the buoy are fastened at intervals along the periphery of the outer peripheral portion of the extension body, and the extension body comprises at least one buoyancy chamber for buoyancy or ballast material. 6 figs.

  18. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  19. Field investigation of keyblock stability

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1985-04-01

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. This engineering problem is divided into two parts: block identification, and evaluation of block stability. One stable keyblock and thirteen fallen keyblocks were observed in field investigations at the Nevada Test Site. Nine blocks were measured in detail sufficient to allow back-analysis of their stability. Measurements included block geometry, and discontinuity roughness and compressive strength. Back-analysis correctly predicted stability or failure in all but two cases. These two exceptions involved situations that violated the stress assumptions of the stability calculations. Keyblock faces correlated well with known joint set orientations. The effect of tunnel orientation on keyblock frequency was apparent. Back-analysis of physical models successfully predicted block pullout force for two-dimensional models of unit thickness. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were examined. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls block displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender. Rock mass temperature decreases reduce the confining stress magnitudes and can lead to failure. The pattern of stresses affecting each block face explains conceptually the occurrence of pyramidal keyblocks that are truncated near their apex

  20. Surface Detail Reproduction and Effect of Disinfectant and Long-Term Storage on the Dimensional Stability of a Novel Vinyl Polyether Silicone Impression Material.

    Science.gov (United States)

    Nassar, Usama; Chow, Ava K

    2015-08-01

    This study investigated the surface detail reproduction and dimensional stability of a vinyl polyether silicone (VPES) in comparison to a vinylpolysiloxane (VPS) material as a function of prolonged storage for up to 2 weeks. Heavy-body VPES (EXA'lence(TM) Fast Set) and VPS (Imprint(TM) 3 Quick Step) were compared. Forty impression ingots of each material were made using a stainless steel die as described by ANSI/ADA specification No. 19. Twenty impressions of each material were disinfected by immersion in a 2.5% buffered glutaraldehyde solution. Surface quality was assessed and scored immediately after making the ingots. Dimensional stability measurements were made immediately and repeated on the same ingots after 7 and 14 days storage in ambient laboratory conditions. Data were analyzed using the D'Agostino and Pearson omnibus normality test followed by two-way repeated measures ANOVA with post hoc Bonferroni tests. Values of p < 0.01 were deemed to be significant. Disinfected VPES and VPS specimens had significantly reduced dimensional changes at 7 and 14 days when compared with the nondisinfected ones (p < 0.0001). The dimensional stability of both materials was within ANSI/ADA specification No. 19's acceptable limit throughout the 2-week test period, regardless of whether they were disinfected. Out of the initial 80 ingots, 8 VPES and 1 VPS ingot scored a 2 on the surface detail test, while the remaining 71 ingots scored 1. Heavy-body fast-set VPES experienced minimal contraction in vitro after prolonged storage, though surface detail scores were not as consistent as those of the VPS tested. The least contraction occurred when the material was examined immediately after ingot production. © 2014 by the American College of Prosthodontists.

  1. Evaluation of surface detail reproduction, dimensional stability and gypsum compatibility of monophase polyvinyl-siloxane and polyether elastomeric impression materials under dry and moist conditions.

    Science.gov (United States)

    Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N Suman; Tadi, Durga Prasad

    2016-01-01

    This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In

  2. An electromyographic and kinematic comparison between an extendable conveyor system and an articulating belt conveyor used for truck loading and unloading tasks.

    Science.gov (United States)

    Lavender, Steven A; Nagavarapu, Shasank; Allread, W Gary

    2017-01-01

    Many retail distribution centers (DCs) manually load and unload boxes into or out of trailers and shipping containers. This study investigated whether an articulating belt conveyor with a height adjustable platform, positioned at the end of an extendable conveyor, significantly reduces shoulder and back muscle loading and the spine kinematics associated with these tasks. Electromyographic and kinematic data were collected from eight volunteer employees as trailers at a shoe DC were unloaded and from nine volunteer employees as trailers at an apparel DC were loaded. Participants in this repeated measures study handled boxes with a conventional powered extendable conveyor system and with the articulating belt conveyor positioned at the end of the extendable conveyor. Bilaterally the normalized activation levels of the erector spinae and anterior deltoid muscles were reduced when loading and unloading boxes with the articulating belt conveyor. Spine movement speeds were also reduced with the articulating conveyor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 49 CFR 176.108 - Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  4. Property comparisons of commercially available silica-based microporous insulations I. Machinability and thermal dimensional stability

    International Nuclear Information System (INIS)

    Kramer, Daniel P.; McNeil, Dennis C.; Ruhkamp, Joseph D.; Wells, Donna J.; Stringer, Robert L.; Howell, Edwin I.

    2002-01-01

    Maximizing the thermal to electrical conversion efficiency of a nuclear space power system requires that all of the available thermal energy be utilized in the most efficient manner. Microporous insulations are attractive for application in space power systems due to their very low thermal conductivity. Over the last few years, several new silica-based microporous insulating materials have become commercially available. Property comparisons of the various insulations obtained from company literature and experiments on microporous sample specimens are discussed. The results demonstrate that their machinability and thermal dimensional stability as a function of time at temperature and atmosphere are dependent on the particular material

  5. Comparative evaluation of dimensional stability of impression materials from developing countries and developed countries after disinfection with different immersion disinfectant systems and ultraviolet chamber

    Directory of Open Access Journals (Sweden)

    Rupandeep Kaur Samra

    2018-04-01

    Full Text Available Objectives: It was to analyse and compare the effect of different disinfectant systems on the dimensional stability of commonly used irreversible hydrocolloid and addition silicone impression materials from developing countries as compared to materials from developed countries. Material and methods: Disinfectant systems used were glutaraldehyde, sodium hypochlorite and ultraviolet chamber. The stability after disinfection of commonly used alginate and addition silicone of native origin (Algin-Gum & Ad-Sil was compared with similar impression materials from developed countries (Vignette and Aquasil and results compared. A CAD/CAM manufactured stainless steel die simulating maxilla with four metal studs at canine and molar region was used. Impressions were made and disinfected after rinsing and drying and casts poured. The cross arch distance, interabutment distance and the occluso-gingival length of the studs was measured under traveling microscope and observations were recorded and compared. ANOVA test and Bonferroni test was applied. Results: An increase in the interabutment and cross arch distance and decrease in occluso-gingival height was seen in the casts obtained. Glutaraldehyde immersion showed variation in the interabutment and cross arch distance for all materials studied. Ultraviolet chamber and sodium hypochlorite produced best results. Dimensional stability of impression materials like Vignette, Algin-Gum & Aquasil was found to within clinically acceptable limits after disinfection while maximum deviation was seen with Algin-Gum. Conclusion: Evaluated materials can be safely disinfected with sodium hypochlorite and ultraviolet chamber. Addition silicone of native origin is at par with impression materials from developed countries but same cannot be said about alginate. Keywords: Dimensional stability, Immersion systems, Ultraviolet chamber, Addition silicone, Alginate, Sodium hypochlorite, Glutaraldehyde

  6. Impact of skeletal unloading on bone formation: Role of systemic and local factors

    Science.gov (United States)

    Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily

    We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.

  7. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2014-01-01

    Full Text Available We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL and soleus (SOL muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS and subjected to fibre typing and measures for costameric (FAK and FRNK, mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1, and MHCI protein and RNA content. Mean cross-sectional area (MCSA of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05≤P<0.10. FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P=0.029. SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012. Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  8. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Science.gov (United States)

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  9. The miRNA Expression Profile in Acute Myocardial Infarct Using Sheep Model with Left Ventricular Assist Device Unloading

    Directory of Open Access Journals (Sweden)

    Xiaoqian Yan

    2017-01-01

    Full Text Available This study attempted to establish miRNA expression profiles in acute myocardial infarct (AMI sheep model with left ventricular assist device (LVAD unloading. AMI was established in sheep model and FW-II type axial flow pump was implanted to maintain continuous unloading for 3 days. The cardiomyocyte survival, inflammatory cell infiltration, and myocardial fibrosis were detected by tissue staining, and cardiomyocyte apoptosis was detected by TUNEL assay. High throughput sequencing technique was used to detect miRNA expression in cardiomyocytes and to establish miRNA expression profile. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG analyses were established. miRNA sequencing results identified 152 known mature miRNAs and 1582 new mature miRNAs. The unloading and control groups differentially expressed genes, of which RT-PCR verified oar-miR-19b and oar-miR-26a. The GO and KEGG pathway annotation and enrichment established that the regulating functions and signaling pathways of these miRNAs were closely related to cardiovascular diseases (CVD. In this study, LVAD effectively reduced the cell death degree of cardiomyocyte in MI. The established miRNA expression profiles of AMI and LVAD intervention in this study suggest that the expression profile could be used to explore the unknown miRNA and the regulatory mechanisms involved in AMI.

  10. Importance of loading and unloading procedures for gecko-inspired controllable adhesives.

    Science.gov (United States)

    Tamelier, John; Chary, Sathya; Turner, Kimberly L

    2013-08-27

    The importance of loading and unloading procedures has been shown in a variety of different methods for biological dry adhesives, such as the fibers on the feet of the Tokay gecko, but biomimetic dry adhesives have yet to be explored in a similar manner. To date, little work has systematically varied multiple parameters to discern the influence of the testing procedure, and the effect of the approach angle remains uncertain. In this study, a synthetic adhesive is moved in 13 individual approach and retraction angles relative to a flat substrate as well as 9 different shear lengths to discern how loading and unloading procedures influence the preload, adhesion, and shear/friction forces supported. The synthetic adhesive, composed of vertical 10 μm diameter semicircular poly(dimethylsiloxane) fibers, is tested against a 4 mm diameter flat glass puck on a home-built microtribometer using both vertical approach and retraction tests and angled approach and retraction tests. The results show that near maximum adhesion and friction can be obtained for most approach and retraction angles, provided that a sufficient shear length is performed. The results also show that the reaction forces during adhesive placement can be significantly reduced by using specific approach angles, resulting for the vertical fibers in a 38-fold increase in the ratio of adhesion force to preload force, μ', when compared to that when using a vertical approach. These results can be of use to those currently researching gecko-inspired adhesives when designing their testing procedures and control algorithms for climbing and perching robots.

  11. Quantification of ventricular unloading by 3D echocardiography in single ventricle of left ventricular morphology following superior cavo-pulmonary anastomosis and Fontan completion – a feasibility study

    Directory of Open Access Journals (Sweden)

    Deepa Sasikumar

    2017-01-01

    Conclusions: We provide preliminary information on 3DE volume data of single ventricle of LV morphology and the pattern of unloading after SCPA and Fontan operation. Immediate significant volume unloading occurred after SCPA which tended to catch-up after 3 months, whereas continued fall in ventricular volume with time was noted after Fontan.

  12. One dimensional simulation on stability of detached plasma in a tokamak divertor

    International Nuclear Information System (INIS)

    Nakazawa, Shinji; Nakajima, Noriyoshi; Okamoto, Masao; Ohyabu, Nobuyoshi

    1999-06-01

    The stability of radiation front in the Scrape-Off-Layer (SOL) of a tokamak is studied with a one dimensional fluid code; the time-dependent transport equations are solved in the direction parallel to a magnetic field line. The simulation results show that stable detached solutions exist, where the plasma temperature near the divertor target is ∼2 eV. It is found that whenever such stable detached states are attained, the strong radiation front is contact with or at a small distance from the divertor target. When the energy externally injected into the SOL is decreased below a critical value, the radiation front starts to move towards the X-point, cooling the SOL plasma. In such cases, no stationary solutions such that the radiation front rests in the divertor channel are observed in our parameter space. This qualitatively corresponds to the results of tokamak divertor experiments which show the movement of radiation front. (author)

  13. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.; Bhat, U.; Batra, Nitin M; Sharona, H.; Vishal, B.; Sarkar, S.; Devi, Assa Aravindh Sasikala; Peter, S. C.; Roqan, Iman S.; Costa , P. M. F. J.; Datta, Ranjan

    2017-01-01

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition

  14. Modelling of three dimensional equilibrium and stability of MAST plasmas with magnetic perturbations using VMEC and COBRA

    Energy Technology Data Exchange (ETDEWEB)

    Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.; Saarelma, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2014-10-15

    It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium of a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and

  15. Role of Growth Hormone, Exercise and Serum Phosphorus in Unloaded Bone of Young Rats

    Science.gov (United States)

    Arnnaud, Sara B.; Harper, J. S.; Gosselink, K. L.; Navidi, M.; Fung, P.; Grindeland, R. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone, known to be stimulated by exercise, is suppressed in rats after space flight and in a ground-based model in which the hind-limbs are unloaded (S). To determine the role of GH in the osteopenia of unloaded bones of S rats, young males were treated with GH combined with insulin-like growth factor-1 (IGF-1), a peptide that mediates the local actions of the hormone. 200 g rats, hypophysectomized (hypox) 17 d earlier, were treated with 1 mg/kg/d GH/IGF-1 (H) or saline (C) in 3 divided daily doses x10 d. Hind-limb bones were unloaded (S), ambulated (A) or exercised (X) by climbing a ladder while carrying a weight. Growth was monitored daily. Tibial growth plate (Tepi) was measured with a micrometer, and femoral (F) area, length, and mineral content (BMC) by DEXA. Parameters of calcium metabolism were measured by autoanalyzer and calciotropic hormones by radioimmunoassay. F bone density, g/square cm, (BMD) or BW were not affected by S in Hypox. However, FBMD was lower in S+H than A+H (p is less than 0.002) and H stimulated whole body growth in S (5.2 g/d) and SX (5.6 g/d) to a lesser extent than in A (6.6 g/d) (p is less than 0.05). Adjusted for BW, Tepi showed the greatest increase in S+H+X (64%), the next highest increase in S+H (50%) and no change in S+X. F area, length and BMC/100 g BW were lower in all H groups than respective C's. By multiple regression analysis, serum phosphorus (Pi) which correlated with Tepi (r = 0.88, p is less than 0.001) and was inversely related to FBMC (r = -0.68, p is less than 0.001) proved to be the most significant determinant of BMC. This illustrates the dependence of osteopenia in S on GH, the maximizing effect of X for epiphyseal growth and the major role of Pi metabolism on BMC in weight bearing bone during growth.

  16. Stability and carrier mobility of organic-inorganic hybrid perovskite CH3NH3PbI3 in two-dimensional limit

    Science.gov (United States)

    Huang, Kui; Lai, Kang; Yan, Chang-Lin; Zhang, Wei-Bing

    2017-10-01

    Recently, atomically thin organic-inorganic hybrid perovskites have been synthesized experimentally, which opens up new opportunities for exploring their novel properties in the 2D limit. Based on the comparative density functional theory calculation with and without spin-orbit coupling effects, the stability, electronic structure, and carrier mobility of the two-dimensional organic-inorganic hybrid perovskites MAPbI3 (MA = CH3NH3) have been investigated systemically. Two single-unit-cell-thick 2D MAPbI3 terminated by PbI2 and CH3NH3I are constructed, and their thermodynamic stabilities are also evaluated using the first-principles constrained thermodynamics method. Our results indicate that both 2D MAPbI3 with different terminations can be stable under certain conditions and have a suitable direct bandgap. Moreover, they are also found to have termination-dependent band edge and carrier mobility. The acoustic-phonon-limited carrier mobilities estimated using the deformation theory and effective mass approximation are on the order of thousands of square centimeters per volt per second and also highly anisotropic. These results indicate that 2D MAPbI3 are competitive candidates for low-dimensional photovoltaic applications.

  17. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    Science.gov (United States)

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  18. Effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of Beech (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available This research was conducted to determine the effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of beech according to EN113 and ASTM-D1037 standards respectively. The heat treatment with raw cotton seed oil was carried out in the cylinder at the temperatures of 130 and 170oC for 30 and 60 minutes. Oil uptake, density, volumetric swelling, water absorption and weight loss exposed to decay were measured. Oil uptake at 30 and 60 min were determined 10.5 and 13.3 Kg/cm3 respectively. Oil-heat treated samples at 30min and 130°C indicated the maximum density with 87.7% increase. According to results, oil-heat treatment improved water repellency and dimensional stability. Water absorption in 130°C and 60 minutes decreased 76% in comparison with control. Decay resistance of oil soaked samples for 60minutes was 80.2% more than control samples. Oil-heat treatment compared with oil treatment improved decay resistance, this effect was significant at 30 min. The temperature rise of oil–heat treatment at 30 minutes improved decay resistance, but the improvement under same level of temperature with increase time was not significant.

  19. Can footwall unloading explain late Cenozoic uplift of the Sierra Nevada crest?

    Science.gov (United States)

    Thompson, G.A.; Parsons, T.

    2009-01-01

    Globally, normal-fault displacement bends and warps rift flanks upwards, as adjoining basins drop downwards. Perhaps the most evident manifestations are the flanks of the East African Rift, which cuts across the otherwise minimally deformed continent. Flank uplift was explained by Vening Meinesz (1950, Institut Royal Colonial Belge, Bulletin des Seances, v. 21, p. 539-552), who recognized that isostasy should cause uplift of a normal-faulted footwall and subsidence of its hanging wall. Uplift occurs because slip on a dipping normal fault creates a broader root of less-dense material beneath the footwall, and a narrowed one beneath the hanging wall. In this paper, we investigate the potential influence of this process on the latest stages of Sierra Nevada uplift. Through theoretical calculations and 3D finite element modelling, we find that cumulative slip of about 4km on range-front faults would have produced about 1.3km peak isostatic uplift at the ridge crest. Numerical models suggest that the zone of uplift is narrow, with the width controlled by bending resistance of the seismogenic crust. We conclude that footwall unloading cannot account for the entire elevation of the Sierran crest above sea level, but if range-front faulting initiated in an already elevated plateau like the adjacent Basin and Range Province, then a hybrid model of pre-existing regional uplift and localized footwall unloading can account for the older and newer uplift phases suggested by the geologic record.

  20. Theseus Engine Being Unloaded

    Science.gov (United States)

    1996-01-01

    Crew members are seen here unloading an engine of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change

  1. Theseus Tail Being Unloaded

    Science.gov (United States)

    1996-01-01

    The tail of the Theseus prototype research aircraft is seen here being unloaded at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements

  2. Elastic unloading of a disk after plastic deformation by a circular heat source

    International Nuclear Information System (INIS)

    Gamer, U.; Mack, W.

    1987-01-01

    Subject of the investigation is the transient stress distribution in an elastic-plastic disk acted upon by a circular heat source. The disk serves as a mechanical model of the rotating anode of an X-ray-tube. The calculation is based on Tresca's yield criterion and the flow rule associatd to it. During heating, a plastic region spreads around the source, which is absorbed by an unloaded zone after the removal of the source. (orig.) [de

  3. Unloading arm movement modeling using neural networks for a rotary hearth furnace

    Directory of Open Access Journals (Sweden)

    Iulia Inoan

    2011-12-01

    Full Text Available Neural networks are being applied in many fields of engineering having nowadays a wide range of application. Neural networks are very useful for modeling dynamic processes for which the mathematical modeling is hard to obtain, or for processes that can’t be modeled using mathematical equations. This paper describes the modeling process for the unloading arm movement from a rotary hearth furnace using neural networks with back propagation algorithm. In this case the designed network was trained using the simulation results from a previous calculated mathematical model.

  4. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert A. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Goss, Josue A. [Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Zou, Min, E-mail: mzou@uark.edu [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States)

    2017-08-01

    Highlights: • Nanoindentation behavior of Al/a-Si core-shell nanostructures were studied. • 3D core confinement enables significant deformation recovery beyond elastic limit. • As the confinement is reduced, the deformation recovery is reduced or suppressed. • Atomistic simulations suggest core confinement affects dislocation dynamics. • 3D confinement has the highest percentage of dislocation removal after unloading. - Abstract: The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  5. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    International Nuclear Information System (INIS)

    Fleming, Robert A.; Goss, Josue A.; Zou, Min

    2017-01-01

    Highlights: • Nanoindentation behavior of Al/a-Si core-shell nanostructures were studied. • 3D core confinement enables significant deformation recovery beyond elastic limit. • As the confinement is reduced, the deformation recovery is reduced or suppressed. • Atomistic simulations suggest core confinement affects dislocation dynamics. • 3D confinement has the highest percentage of dislocation removal after unloading. - Abstract: The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  6. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    Science.gov (United States)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  7. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Agnese Arduini

    2017-02-01

    Full Text Available In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min, 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score (p < 0.05, which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  8. Comparison of the dimensional stability of alginate impressions disinfected with 1% sodium hypochlorite using the spray or immersion method.

    Science.gov (United States)

    Oderinu, O H; Adegbulugbe, I C; Shaba, O P

    2007-01-01

    To determine and compare the dimensional stability of alginate impressions disinfected with Sodium hypochlorite using the spray and immersion methods. Alginate impressions of a master model of truncated metal cones were made and disinfected with 1% sodium hypochlorite constituted from 3.5% household bleach using the spray and immersion technique for 10; 20 and 30 minutes. Impressions were cast in dental stone and the linear dimensional differences between the inter-abutment distances were measured with an electronic caliper. One sample T test and percentage differences were calculated. There were no statistically significant differences in dimensions of alginate impressions of the control and those disinfected by either spraying or immersion methods when compared with the master model at 10 minutes. However, there was a statistically significant difference at 20 and 30 minutes. The spray technique showed the least percentage difference from the master model. Disinfection of alginate impressions with 1% sodium hypochlorite constituted from commercially available household bleach by the spray or immersion techniques for ten minutes will produce casts with minimal dimensional changes.

  9. Stability of parallel flows

    CERN Document Server

    Betchov, R

    2012-01-01

    Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation

  10. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    Science.gov (United States)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  11. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test.

    Science.gov (United States)

    Gilbert, Hunter B; Hendrick, Richard J; Webster, Robert J

    2016-02-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.

  12. Application, advantages and limitations of high-density gravimetric surveys compared with three-dimensional geological modelling in dolomite stability investigations

    OpenAIRE

    Breytenbach, I J; Bosch, P J A

    2011-01-01

    The article discusses the nature of the gravimetric survey as applied and used in dolomite stability investigations on areas underlain by the Chuniespoort Group in South Africa. A short discussion is given on the gravimetric survey procedure along with its uses and alternative methods. Finally, two case studies illustrate the application of the method on a high-density survey grid spacing in comparison with three-dimensional geological modelling based on the lithology and karst weathering hor...

  13. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Science.gov (United States)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  14. Classifying spaces with virtually cyclic stabilizers for linear groups

    DEFF Research Database (Denmark)

    Degrijse, Dieter Dries; Köhl, Ralf; Petrosyan, Nansen

    2015-01-01

    We show that every discrete subgroup of GL(n, ℝ) admits a finite-dimensional classifying space with virtually cyclic stabilizers. Applying our methods to SL(3, ℤ), we obtain a four-dimensional classifying space with virtually cyclic stabilizers and a decomposition of the algebraic K-theory of its...

  15. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    Science.gov (United States)

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  16. The KineSpring® Knee Implant System: an implantable joint-unloading prosthesis for treatment of medial knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Clifford AG

    2013-05-01

    Full Text Available Anton G Clifford,1 Stefan M Gabriel,1 Mary O’Connell,1 David Lowe,1 Larry E Miller,2,3 Jon E Block31Moximed, Inc, Hayward, CA, USA; 2Miller Scientific Consulting, Inc, Arden, NC, USA; 3The Jon Block Group, San Francisco, CA, USAAbstract: Symptomatic medial compartment knee osteoarthritis (OA is the leading cause of musculoskeletal pain and disability in adults. Therapies intended to unload the medial knee compartment have yielded unsatisfactory results due to low patient compliance with conservative treatments and high complication rates with surgical options. There is no widely available joint-unloading treatment for medial knee OA that offers clinically important symptom alleviation, low complication risk, and high patient acceptance. The KineSpring® Knee Implant System (Moximed, Inc, Hayward, CA, USA is a first-of-its-kind, implantable, extra-articular, extra-capsular prosthesis intended to alleviate knee OA-related symptoms by reducing medial knee compartment loading while overcoming the limitations of traditional joint-unloading therapies. Preclinical and clinical studies have demonstrated excellent prosthesis durability, substantial reductions in medial compartment and total joint loads, and clinically important improvements in OA-related pain and function. The purpose of this report is to describe the KineSpring System, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The KineSpring System has potential to bridge the gap between ineffective conservative treatments and irreversible surgical interventions for medial compartment knee OA.Keywords: KineSpring, knee, medial, osteoarthritis, prosthesis

  17. Sucrose transport and phloem unloading in stem of Vicia faba: possible involvement of a sucrose carrier and osmotic regulation

    International Nuclear Information System (INIS)

    Aloni, B.; Wyse, R.E.; Griffith, S.

    1986-01-01

    After pulse labeling of a source leaf with 14 CO 2 , stem sections of Vicia faba plants were cut and the efflux characteristics of 14 C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of 14 C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of [ 14 C]sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced [ 14 C]sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved

  18. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Unloading at Cointrin Airport of the IBM 709 computer

    CERN Multimedia

    CERN PhotoLab

    1960-01-01

    CERN's first computer, a huge vacuum-tube Ferranti Mercury, was installed in building 2 in 1958. With its 60 microsecond clock cycle, it was a million times slower than today's big computers. The Mercury took 3 months to install and filled a huge room, even so, its computational ability didn't quite match that of a modern pocket calculator. "Mass" storage was provided by four magnetic drums each holding 32K x 20 bits - not enough to hold the data from a single proton-proton collision in the LHC. It was replaced in 1960 by the IBM 709 computer, seen here being unloaded at Cointrin airport. Although it was taken over so quickly by transistor equipped machines, a small part of the Ferranti Mercury remains. The computer's engineers installed a warning bell to signal computing errors - it can still be found mounted on the wall in a corridor of building 2.

  20. Influence of artificial accelerated aging on dimensional stability of acrylic resins submitted to different storage protocols.

    Science.gov (United States)

    Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides

    2010-08-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p artificial accelerated aging and storage period influenced these alterations.

  1. Two-dimensional simulation of the MHD stability, (2)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.

    1977-09-01

    Growth rate and eigen-function of the MHD instability of a toroidal plasma were calculated numerically as an initial-boundary value problem. When a conducting shell is away from the plasma, toroidicity hardly influences growth rate of the external kink modes in a slender tokamak, but it stabilizes the modes in a fat tokamak. On the other hand, when the shell is near to the plasma, the unstable external modes are stabilized by both toroidicity and shell effect. (auth.)

  2. Innovation in shortsea shipping : Self-loading and -unloading unitload shipsystems (S-curve shift in the handling of unitloads)

    NARCIS (Netherlands)

    Wijnolst, N.; Van der Hoeven, H.B.; Kleijwegt, C.J.; Sjöbris, A.

    1993-01-01

    This book is not about the technology of a selfloading and unloading ship system, but about the constraints and conditions under which shortsea shipping can compete against other modes, on the level of transit time, frequency of departure, quality of service and of course, in price. The

  3. 9 CFR 325.17 - Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited; exception.

    Science.gov (United States)

    2010-01-01

    ... sealed railroad cars, trucks, etc., en route prohibited; exception. 325.17 Section 325.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND... TRANSPORTATION § 325.17 Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited...

  4. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Science.gov (United States)

    2010-10-01

    ... interchange with any other fixture, and be tightly closed. Unloading pipes shall be securely anchored within... of the tank shell, the wall thickness of the pressed section must not be less than that specified for... must have walls of such thickness and be so reinforced that the stresses in the walls caused by a given...

  5. Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability.

    Science.gov (United States)

    Yang, Shuang; Niu, Wenxin; Wang, An-Liang; Fan, Zhanxi; Chen, Bo; Tan, Chaoliang; Lu, Qipeng; Zhang, Hua

    2017-04-03

    Two-dimensional (2D) organic-inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single- and few-layer free-standing phenylethylammonium lead halide perovskite NSs, that is, (PEA) 2 PbX 4 (PEA=C 8 H 9 NH 3 , X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Neutron diffraction studies on lattice strain evolution around a crack-tip during tensile loading and unloading cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yinan [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)]. E-mail: ysun1@utk.edu; Choo, Hahn [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Lu Yulin [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Yang Bing [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-10-15

    Elastic lattice-strain profiles ahead of a fatigue-crack-tip were measured during tensile loading and unloading cycles using neutron diffraction. The crack-closure phenomenon after an overload was observed. Furthermore, the plastic-zone size in front of the crack-tip was estimated from the diffraction-peak broadening, which showed good agreement with the calculated result.

  7. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Science.gov (United States)

    2010-10-01

    ... with any other fixture and must be tightly closed. Each unloading pipe must be securely anchored within... pressed in the bottom of the tank shell, the wall thickness of the pressed section must not be less than... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the...

  8. Static stability of a three-dimensional space truss. M.S. Thesis - Case Western Reserve Univ., 1994

    Science.gov (United States)

    Shaker, John F.

    1995-01-01

    In order to deploy large flexible space structures it is necessary to develop support systems that are strong and lightweight. The most recent example of this aerospace design need is vividly evident in the space station solar array assembly. In order to accommodate both weight limitations and strength performance criteria, ABLE Engineering has developed the Folding Articulating Square Truss (FASTMast) support structure. The FASTMast is a space truss/mechanism hybrid that can provide system support while adhering to stringent packaging demands. However, due to its slender nature and anticipated loading, stability characterization is a critical part of the design process. Furthermore, the dire consequences surely to result from a catastrophic instability quickly provide the motivation for careful examination of this problem. The fundamental components of the space station solar array system are the (1) solar array blanket system, (2) FASTMast support structure, and (3) mast canister assembly. The FASTMast once fully deployed from the canister will provide support to the solar array blankets. A unique feature of this structure is that the system responds linearly within a certain range of operating loads and nonlinearly when that range is exceeded. The source of nonlinear behavior in this case is due to a changing stiffness state resulting from an inability of diagonal members to resist applied loads. The principal objective of this study was to establish the failure modes involving instability of the FASTMast structure. Also of great interest during this effort was to establish a reliable analytical approach capable of effectively predicting critical values at which the mast becomes unstable. Due to the dual nature of structural response inherent to this problem, both linear and nonlinear analyses are required to characterize the mast in terms of stability. The approach employed herein is one that can be considered systematic in nature. The analysis begins with one

  9. Extrapolated stabilized explicit Runge-Kutta methods

    Science.gov (United States)

    Martín-Vaquero, J.; Kleefeld, B.

    2016-12-01

    Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.

  10. On the Load-Unload (L-U) and Force-Release (F-R) Algorithms for Simulating Brittle Fracture Processes via Lattice Models

    KAUST Repository

    Liu, Jinxing; El Sayed, Tamer S.

    2011-01-01

    General summaries on the load-unload and force-release methods indicate that the two methods are efficient for different-charactered quasi-static failures; therefore, it is important to choose the right one for different applications. Then we take

  11. Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation

    Science.gov (United States)

    Cardoso, Wesley B.; Salasnich, Luca; Malomed, Boris A.

    2017-05-01

    We study effects of tight harmonic-oscillator confinement on the electromagnetic field in a laser cavity by solving the two-dimensional Lugiato-Lefever (2D LL) equation, taking into account self-focusing or defocusing nonlinearity, losses, pump, and the trapping potential. Tightly confined (quasi-zero-dimensional) optical modes (pixels), produced by this model, are analyzed by means of the variational approximation, which provides a qualitative picture of the ensuing phenomena. This is followed by systematic simulations of the time-dependent 2D LL equation, which reveal the shape, stability, and dynamical behavior of the resulting localized patterns. In this way, we produce stability diagrams for the expected pixels. Then, we consider the LL model with the vortical pump, showing that it can produce stable pixels with embedded vorticity (vortex solitons) in remarkably broad stability areas. Alongside confined vortices with the simple single-ring structure, in the latter case the LL model gives rise to stable multi-ring states, with a spiral phase field. In addition to the numerical results, a qualitatively correct description of the vortex solitons is provided by the Thomas-Fermi approximation. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  12. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.

    Science.gov (United States)

    Kim, Myunghee; Collins, Steven H

    2013-06-01

    Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.

  13. The effects of loaded and unloaded high-velocity resistance training on functional fitness among community-dwelling older adults.

    Science.gov (United States)

    Glenn, Jordan M; Gray, Michelle; Binns, Ashley

    2015-11-01

    Physical function declines up to 4% per year after the age of 65. High-velocity training is important for maintaining muscular power and ultimately, physical function; however, whether performing high-velocity training without external resistance increases functional fitness among older adults remains unclear. The purpose of this investigation was to evaluate loaded and unloaded high-velocity training on lower body muscular power and functional fitness in older adults. Fifty-seven community-dwelling older adults (n = 16 males, n = 41 females) participated in this study. Inclusion criteria comprised ≥65 years of age, ≥24 on the Mini-mental state examination and no falls within past year. Two groups completed a 20-week high-velocity training intervention. The non-weighted group (UNLOAD, n = 27) performed the protocol without external load while the intervention group (LOAD, n = 30) used external loads via exercise machines. Functional fitness was assessed using the Short Physical Performance Battery (SPPB), Senior Fitness Test (SFT), hand-grip and lower body power measures. Multivariate ANOVA revealed that both groups had significant improvements for average (17.21%) and peak (9.26%) lower body power, along with the SFT arm curl (16.94%), chair stand (20.10%) and 8 ft. up-and-go (15.67%). Improvements were also noticed for SPPB 8 ft. walk (25.21%). However, improvements for all functional fitness measures were independent of training group. Unloaded high-velocity training increased functional fitness and power the same as loaded training. The ability of high-velocity movements to elicit gains in functional fitness without external loads may help health professionals develop fitness programs when time/space is limiting factor. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. [Changes in cell respiration of postural muscle fibers under long-term gravitational unloading after dietary succinate supplementation].

    Science.gov (United States)

    Ogneva, I V; Veselova, O M; Larina, I M

    2011-01-01

    The intensity of cell respiration of the rat m. soleus, m. gastrocnemius c.m. and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the discharge. This may be associated with the transition to the glycolytic energy path due to a decrease in the EMG-activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.

  15. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  16. Three-dimensional analyses of ultrasonic scaler oscillations.

    Science.gov (United States)

    Lea, Simon C; Felver, Bernhard; Landini, Gabriel; Walmsley, A Damien

    2009-01-01

    It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p0.207). All TFI-3 tips were different to each other (p0.867). Generator power increased all Slimline and P tip vibrations (pultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.

  17. Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering.

    Science.gov (United States)

    Kumar, Alok; Akkineni, Ashwini R; Basu, Bikramjit; Gelinsky, Michael

    2016-03-01

    Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)2.74). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 ± 0.5 MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 ± 0.6 MPa). The difference in properties is explained in terms of the phase assemblage and microstructure. © The Author(s) 2015.

  18. Three-dimensional equilibria and Mercier stability calculations

    International Nuclear Information System (INIS)

    Lynch, V.E.; Dominguez, N.; Carreras, B.A.; Varias, A.; Alejaldre, C.; Fraguas, A.L.

    1989-01-01

    It is well known that an equilibrium to be used for stability calculations must be extremely accurate. These high accuracy requirements, in a fixed boundary calculation, are translated into high accuracy in the representation of the boundary. These requirements are even stricter for stellarator configurations, for which all the information about the magnetic configuration is given externally through the boundary. Many Fourier components are required to accurately represent the boundary input from a realistic coil system. For torsatron-type configurations, as many as 50 components can be needed to describe the last closed magnetic surface for the vacuum field. For a heliac configuration, the number of components can go up to 200. For 3-D calculations, there is another question of accuracy that does not apply to stability calculations for axisymmetric systems. This is the role of resonant components in the calculation of the geodesic curvature or the Pfirsch-Schlueter current. As Boozer argues, local flattening of the pressure profile eliminates the singularities generated by the resonant components. However, to implement it in a numerical calculation and to eliminate the resonant components, it is necessary to work in a coordinate system with straight magnetic field lines. This creates another problem, since the equilibrium representation in a straight magnetic field lines coordinate system requires many more components than the optimal equilibrium representation developed by Hirshman and co-workers over the last decade and implemented in the VMEC equilibrium code. In this paper, we use the VMEC equilibrium code and tranform the results to the straight magnetic field line coordinate system to calculate the input for the stability analysis. The accuracy of the transformation and the convergence of the equilibrium in the new coordinate system are the major points discussed in this paper. 6 refs., 1 fig

  19. Multi-Dimensional Shallow Landslide Stability Analysis Suitable for Application at the Watershed Scale

    Science.gov (United States)

    Milledge, David; Bellugi, Dino; McKean, Jim; Dietrich, William E.

    2013-04-01

    Current practice in regional-scale shallow landslide hazard assessment is to adopt a one-dimensional slope stability representation. Such a representation cannot produce discrete landslides and thus cannot make predictions on landslide size. Furthermore, one-dimensional approaches cannot include lateral effects, which are known to be important in defining instability. Here we derive an alternative model that accounts for lateral resistance by representing the forces acting on each margin of an unstable block of soil. We model boundary frictional resistances using 'at rest' earth pressure on the lateral sides, and 'active' and 'passive' pressure, using the log-spiral method, on the upslope and downslope margins. We represent root reinforcement on each margin assuming that root cohesion declines exponentially with soil depth. We test our model's ability to predict failure of an observed landslide where the relevant parameters are relatively well constrained and find that our model predicts failure at the observed location and predicts that larger or smaller failures conformal to the observed shape are indeed more stable. We use a sensitivity analysis of the model to show that lateral reinforcement sets a minimum landslide size, and that the additional strength at the downslope boundary results in optimal shapes that are longer in the downslope direction. However, reinforcement effects alone cannot fully explain the size or shape distributions of observed landslides, highlighting the importance of the spatial pattern of key parameters (e.g. pore water pressure and soil depth) at the watershed scale. The application of the model at this scale requires an efficient method to find unstable shapes among an exponential number of candidates. In this context, the model allows a more extensive examination of the controls on landslide size, shape and location.

  20. Nuclear fuel pellet sintering boat unloading apparatus and method

    International Nuclear Information System (INIS)

    Huggins, T.B.; Widener, W.H.; Klapper, K.K.

    1990-01-01

    This patent describes a method for unloading nuclear fuel pellets from a sintering boat having an open top. It comprises: pivoting a transfer housing loaded with the boat filled with nuclear fuel pellets about a generally horizontal axis from an upright position remote from a pellet deposit surface to an inverted position adjacent to the deposit surface to move the boat from an upright to inverted orientation with the pellets retained within the boat by a latched lid in a closed condition on the housing; unlatching the lid of the housing as the housing reaches its inverted position but engaging the unlatched lid with the deposit surface to retain it in its closed condition; and reverse pivoting the housing from its inverted position back toward its upright position to permit the unlatched lid to pivot from the closed condition to an opened condition thereby allowing pellets to slide out of the open top of the inverted boat and down the opened lid of the housing to the deposit site

  1. Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses.

    Science.gov (United States)

    Barou, O; Lafage-Proust, M H; Martel, C; Thomas, T; Tirode, F; Laroche, N; Barbier, A; Alexandre, C; Vico, L

    1999-10-01

    The effects of antiresorptive drugs on bone loss remain unclear. Using three-dimensional microtomography, dual X-ray/densitometry, and histomorphometry, we evaluated tiludronate effects in the bone loss model of immobilization in tail-suspended rats after 7, 13, and 23 days. Seventy-eight 12-week-old Wistar male rats were assigned to 13 groups: 1 baseline group, and for each time point, 1 control group treated with vehicle and three tail-suspended groups treated with either tiludronate (0.5 or 5 mg/kg) or vehicle, administered s. c. every other day, during the last week before sacrifice. In primary spongiosa (ISP), immobilization-induced bone loss plateaued after day 7 and was prevented by tiludronate. In secondary spongiosa (IISP), bone loss appeared at day 13 with a decrease in trabecular thickness and trabecular number (Tb.N) as assessed by three-dimensional microtomography. Osteoclastic parameters did not differ in tail-suspended rats versus control rats, whereas bone formation showed a biphasic pattern: after a marked decrease at day 7, osteoblastic activity and recruitment normalized at days 13 and 23, respectively. At day 23, the 80% decrease in bone mass was fully prevented by high-dose tiludronate with an increase in Tb.N without preventing trabecular thinning. In summary, at day 7, tiludronate prevented bone loss in ISP. After day 13, tiludronate prevented bone loss in ISP and IISP despite a further decrease in bone formation. Thus, the preventive effects of tiludronate in this model may be related to the alteration in bone modeling with an increase in Tb.N in ISP and subsequently in IISP.

  2. Comparison Of The Dimensional Stability Of Alginate Impressions ...

    African Journals Online (AJOL)

    Methodology: Alginate impressions of a master model of truncated metal cones were made and disinfected with 1% sodium hypochlorite constituted from 3.5% household bleach using the spray and immersion technique for 10;20 and 30 minutes. Impressions were cast in dental stone and the linear dimensional differences ...

  3. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  4. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    International Nuclear Information System (INIS)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-01-01

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  5. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  6. Unloaded polyether type polyurethane foams as solid extractants for trace elements

    International Nuclear Information System (INIS)

    Palagyi, S.; Braun, T.

    1992-01-01

    Polyether type polyurethane foams (PU) are regular stacks of solid quasi-spherical membranes produced by the reaction of polyisocyanates with polyols of polyether nature in the presence of a catalyst and a blowing agent. Contrary to conventional membrane separations, where a solid membrane is merely a differentially separating agent, or a transport medium, PU foams, apart from separation and preconcentration, also retain, i.e., sorb the species on, or in the membranes. Therefore, PU foam membranes can be considered to act as true sorbents. The membrane properties of PU foam sorbents offer unique advantages over conventional bulk type granular sorbents in rapid, versatile and effective separations and preconcentrations of different compounds from fluid samples. Unloaded PU foam sorbents have received considerable attention in the separation of different trace inorganic species. (author) 74 refs.; 1 fig.; 1 tab

  7. Long-term microwaving of denture base materials: effects on dimensional, color and translucency stability

    Directory of Open Access Journals (Sweden)

    Nick POLYCHRONAKIS

    2018-06-01

    Full Text Available Abstract While the combined effect of microwave irradiation with cleansing solutions on denture base materials has been investigated, the effects of only using microwave irradiation and, more importantly, in a long-term basis, was not studied yet. Objective The purpose of this study was to evaluate the effect of a long-term repeated microwaving on the dimensional, color and translucency stability of acrylic and polyamide denture base materials. Material and Methods Thirty two specimens (32 mm x 10 mm x 2.5 mm from polyamide (Valplast and PMMA (Vertex Rapid Simplified denture base materials were made. Eight specimens from each material were immersed in distilled water (control and 8 were subjected to microwave exposure at 450 W for 3 minutes for a period simulating 224 days of daily disinfection. Linear dimension, color change (ΔE* and translucency parameter (TP were measured at baseline and after certain intervals up to 224 cycles of immersion, using a digital calliper and a portable colorimeter. The results were analysed using two-way repeated measures ANOVA to estimate possible differences among predetermined cycles and material type. Regression analysis was also performed to estimate the trend of changes with time. Statistical evaluations performed at a significance level of 5%. Results Data analysis showed significant changes in length at baseline with an increasing number of cycles (p0.05. TP decreased similarly in both materials following microwave action but in a significantly higher level for Valplast (p<0.001. Conclusions The results indicated that long-term repeated microwaving affects linear dimensional, color and translucency changes of both materials. Differences between PMMA and polyamide material were noted only in dimension and translucency changes.

  8. Stability of squashed Kaluza-Klein black holes

    International Nuclear Information System (INIS)

    Kimura, Masashi; Ishihara, Hideki; Murata, Keiju; Soda, Jiro

    2008-01-01

    The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1)≅U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Klein black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.

  9. Stability analysis of non-axisymmetric three-dimensional finite ...

    Indian Academy of Sciences (India)

    The present work explores the use of mass-lumping in stability ... further considers orthotropic flexible support which makes the stiffness matrix a ... symmetric rotor on rigid, isotropic and orthotropic bearing is stable in absence of a destabilizing.

  10. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  11. The Effect of the Loading on Dynamic Stability and Scapular Asymmetry

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Azarsa

    2014-03-01

    Full Text Available Background: Scapular stabilization and neuromuscular control provide an important parameter to characterize shoulder function during dynamic activities. Many studies have confirmed the effect of the loading on scapular position and scapulohumeral rhythm. Therefore, the evaluation of stabilizer muscles involvement in scapular asymmetry may assist in the development of clinical examination and rehabilitation program. The aim of this study was to evaluate the effect of loading on dynamic stability and scapular asymmetry in basketball players. Methods: Thirty healthy male basketball players aged between 20 to 31 years old were tested. The linear distance between scapular inferior angle and T7 spinous process was measured using a caliper in 90 degrees of unloaded scaption and with 1, 2 and 4 kg loading. The difference of distances of two sides in the above 4 positions was analyzed. Results: The amount of distances difference in two sides with 1 kg loading was minimal (9.36 mm. This difference increased to 10.19 mm and 12.22 mm, with increasing the loading to 2 and 4 kg respectively; although the 4 positions of the test did not show significant differences in distances difference (P>0.05. Conclusion: This study shows that dynamic stability of the scapula is dependent on the role of muscles, so that with increasing load on the muscles, the scapular asymmetry is more pronounced.

  12. Uniform stability for time-varying infinite-dimensional discrete linear systems

    International Nuclear Information System (INIS)

    Kubrusly, C.S.

    1988-09-01

    Stability for time-varying discrete linear systems in a Banach space is investigated. On the one hand, it established a fairly complete collection of necessary and sufficient conditions for uniform asymptotic equistability for input-free systems. This includes uniform and strong power equistability, and uniform and strong l p -equistability, among other technical conditions which also play essential role in stability theory. On other hand, it is shown that uniform asymptotic equistability for input-free systems is equivalent to each of the following concepts of uniform stability for forced systems: l p -input l p -state, c o -input c o -state, bounded-input bounded-state, l p>1 -input bounded-state, c sub (o)-input bounded-state, and convergent-input bounded-state; which are also equivalent to their nonuniform counterparts. For time-varying convergent systems, the above is also equivalent to convergent-input convergent-state stability. The proofs presented here are all ''elementary'' in the sense that they are based essentially only on the Banach-Steinhaus theorem. (autor) [pt

  13. A study on the secondary consolidation of Boom Clay at Essen site under loading and unloading compression

    International Nuclear Information System (INIS)

    Deng, Y.F.; Cui, Y.J.; Tang, A.M.; Li, X.L.; Sillen, X.

    2010-01-01

    Document available in extended abstract form only. Boom clay formation, a thick deposit of over-consolidated marine clay has been selected as a possible host material of nuclear waste disposal in Belgium. For this purpose, its deformation behaviour, especially its long-term deformation behaviour (secondary consolidation) is essential for the safety of the whole storage system and therefore needs to be investigated deeply. In the present work, odometer consolidation tests were performed on Boom clay taken from the Essen site. The loading and unloading were run in steps and the secondary consolidation coefficient C α (C α = de/dlogt) was determined for each step. This allows the secondary consolidation behaviour to be analysed. Four soil cores of Boom clay were taken from the site of Essen, Belgium, at the depths of 220-248 m. The geotechnical identification characteristics of these cores are similar: specific gravity, γ s = 2.64-2.68; liquid limit, w L = 68-78%; plastic limit, w P = 29-33%; and plastic index, I P 36-45. The soil water content (w) is between 26.5 and 29.7% and the void ratio (e) between 0.700 and 0.785. The blue methylene values (VBS) are equally similar, VBS = 6.20-6.67 (g/100 g). The clay fraction (< 2 μm) is relatively high (more than 50%). An example of the results obtained is presented (void ratio versus vertical stress and secondary consolidation coefficient versus vertical stress, determined in the e/log t plot) for the core taken at 227 m depth. After the installation of specimen in the odometer cell, an initial loading to the in-situ stress gave rise to a decrease of the void ratio from 0.730 to 0.651. The drainage system was then saturated for the subsequent loading/unloading paths in steps. The results show that the void ratio decreased to 0.270 when the vertical stress reached σ v = 32 MPa. A compression index Cc of about 0.31 can be estimated and the swelling index is estimated at 0.14. C α > 0 during loading and C α < 0 during

  14. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  15. Laccases stabilization with phosphatidylcholine liposomes

    OpenAIRE

    Martí, M.; Zille, Andrea; Paulo, Artur Cavaco; Parra, J. L.; Coderch, L.

    2012-01-01

    In recent years, there has been an upsurge of interest in enzyme treatment of textile fibres. Enzymes are globular proteins whose catalytic function is due to their three dimensional structure. For this reason, stability strategies make use of compounds that avoid dismantling or distorting protein 3D structures. This study is concerned with the use of microencapsulation techniques to optimize enzyme stabilization. Laccases were embedded in phophatidylcholine liposomes and their encaps...

  16. Biomechanics of unilateral and bilateral sacroiliac joint stabilization: laboratory investigation.

    Science.gov (United States)

    Lindsey, Derek P; Parrish, Robin; Gundanna, Mukund; Leasure, Jeremi; Yerby, Scott A; Kondrashov, Dimitriy

    2018-03-01

    OBJECTIVE Bilateral symptoms have been reported in 8%-35% of patients with sacroiliac (SI) joint dysfunction. Stabilization of a single SI joint may significantly alter the stresses on the contralateral SI joint. If the contralateral SI joint stresses are significantly increased, degeneration may occur; alternatively, if the stresses are significantly reduced, bilateral stabilization may be unnecessary for patients with bilateral symptoms. The biomechanical effects of 1) unilateral stabilization on the contralateral SI joint and 2) bilateral stabilization on both SI joints are currently unknown. The objectives of this study were to characterize bilateral SI joint range of motion (ROM) and evaluate and compare the biomechanical effects of unilateral and bilateral implant placement for SI joint fusion. METHODS A lumbopelvic model (L5-pelvis) was used to test the ROM of both SI joints in 8 cadavers. A single-leg stance setup was used to load the lumbar spine and measure the ROM of each SI joint in flexion-extension, lateral bending, and axial rotation. Both joints were tested 1) while intact, 2) after unilateral stabilization, and 3) after bilateral stabilization. Stabilization consisted of lateral transiliac placement of 3 triangular titanium plasma-sprayed (TPS) implants. RESULTS Intact testing showed that during single-leg stance the contralateral SI joint had less ROM in flexion-extension (27%), lateral bending (32%), and axial rotation (69%) than the loaded joint. Unilateral stabilization resulted in significant reduction of flexion-extension ROM (46%) on the treated side; no significant ROM changes were observed for the nontreated side. Bilateral stabilization resulted in significant reduction of flexion-extension ROM of the primary (45%) and secondary (75%) SI joints. CONCLUSIONS This study demonstrated that during single-leg loading the ROMs for the stance (loaded) and swing (unloaded) SI joints are significantly different. Unilateral stabilization for SI

  17. The Influence of Surgical Stabilization on Glenohumeral Abduction Using 3-Dimensional Computed Tomography in Patients With Shoulder Instability.

    Science.gov (United States)

    Bakshi, Neil K; Jameel, Omar F; Merrill, Zachary F; Debski, Richard E; Sekiya, Jon K

    2016-08-01

    This study compared the amount of glenohumeral abduction during arm abduction in the affected and unaffected shoulders of 3 groups of patients with shoulder instability: failed surgical stabilization, successful surgical stabilization, and unstable shoulder with no prior surgical intervention. All patients underwent bilateral shoulder computed tomography scans in 3 positions: 0° of abduction and 0° of external rotation (0-0 position), 30° of abduction and 30° of external rotation (30-30 position), and arms maximally abducted (overhead position). Three-dimensional computed tomography reconstruction was performed for both shoulders in all 3 positions. A specialized coordinate system marked specific points and directions on the humerus and glenoid of each model. These coordinates were used to calculate the glenohumeral abduction for the normal and affected sides in the 0-0, 30-30, and overhead positions. Thirty-nine patients with shoulder instability were included, of whom 14 had failed surgical repairs, 10 had successful surgical repairs, and 15 had unstable shoulders with no prior surgical intervention. In the overhead position, patients with failed surgical intervention had significantly less glenohumeral abduction in the failed shoulder (95.6° ± 12.7°) compared with the normal shoulder (101.5° ± 12.4°, P = .02). Patients with successfully stabilized shoulders had significantly less glenohumeral abduction in the successfully stabilized shoulder (93.6° ± 10.8°) compared with the normal shoulder (102.1° ± 12.5°, P = .03). Unstable shoulders with no prior surgical intervention (102.1° ± 10.3°) did not differ when compared with the normal shoulders (101.9° ± 10.9°, P = .95). Surgical intervention, regardless of its success, limits the amount of abduction at the glenohumeral joint. Level III, retrospective comparative study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Variability in dynamic properties of tantalum : spall, attenuation and load/unload.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael David; Reinhart, William Dodd; Trott, Wayne Merle; Vogler, Tracy John; Chhabildas, Lalit Chandra

    2005-07-01

    A suite of impact experiments was conducted to assess spatial and shot-to-shot variability in dynamic properties of tantalum. Samples had a uniform refined {approx}20 micron grain structure with a strong axisymmetric [111] crystallographic texture. Two experiments performed with sapphire windows (stresses of approximately 7 and 12 GPa) clearly showed elastic-plastic loading and slightly hysteretic unloading behavior. An HEL amplitude of 2.8 GPa (corresponding to Y 1.5 GPa) was observed. Free-surface spall experiments showed clear wave attenuation and spallation phenomena. Here, loading stresses were {approx} 12.5 GPa and various ratios of impactor to target thicknesses were used. Spatial and shot-to-shot variability of the spall strength was {+-} 20%, and of the HEL, {+-} 10%. Experiments conducted with smaller diameter flyer plates clearly showed edge effects in the line and point VISAR records, indicating lateral release speeds of roughly 5 km/s.

  19. Is the Mercier criterion relevant to stellarator stability?

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.; Ichiguchi, K.; Wakatani, M.; Tatsuno, T.

    2001-01-01

    Local flattening of the pressure profile at the resonant surfaces may significantly change the stellarator stability properties. This flattening may be an intrinsic consequence of the three-dimensional nature of the equilibrium and may invalidate the local stability criteria often used in stellarator design. (author)

  20. The effect of gamma irradiation on the stability of cemented Winfrith reactor (SGHWR) sludge

    International Nuclear Information System (INIS)

    Holland, T.R.

    1985-01-01

    The effects of prolonged self-irradiation within cemented Winfrith SGHWR sludge have been investigated by exposing simulant material to a CO-60 source. Measurements of dimensional stability and radiolysis have been used in this assessment of radiation stability. The dimensional stability of the cement matrix was unaffected by an irradiation intensity which greatly exceeded the expected lifetime dose, and radiolysis rates have followed those which have previously been observed by other researchers. Data obtained for the release of radiolytic hydrogen has allowed a prediction to be made of release from the full-size product, during decay of the principal radioactive species, Co-60. A method has been developed for the determination of dimensional stability using non-standard sized specimens and is appended. (author)

  1. Decrease of Na, K-ATPase Electrogenic Contribution and Resting Membrane Potential of Rat Soleus after 3 Days of Hindlimb Unloading

    Science.gov (United States)

    Krivoi, I. I.; Kravtsova, V. V.; Drabkina, T. M.; Prokofiev, A. V.; Nikolsky, E. E.; Shenkman, B. S.

    2008-06-01

    The Na,K-ATPase activity is critically important for excitability, electrogenesis and contractility of skeletal muscle expressing ? and ? isoforms of the enzyme [6, 9]. It is well known that disuse induced by hindlimb unloading (HU) leads to progressive atrophy of skeletal muscle; the muscle undergoes a number of dramatic remodeling events. In particular, changes in ion channel expression in response to muscle unweighting were observed [1, 8]. Decrease of resting membrane potential (RMP), electrogenic contribution of Na,K-ATPase and membrane resistance during 7-28 days of HU was shown [8, 10]. The intrinsic mechanisms involved in the process have not been revealed until present. At the same time, the understanding of these mechanisms could be crucial for the disclosing the mechanisms underlying the resting Ca2+ accumulation in the cytoplasm of the unloaded muscle [3, 7]. In the present study, the effect of early (3 days) HU-induced disuse of slow-twitch soleus muscle on membrane electrogenesis as well as on electrogenic contribution of Na,K-ATPase isoforms was investigated.

  2. User's manual for the FLORA equilibrium and stability code

    International Nuclear Information System (INIS)

    Freis, R.P.; Cohen, B.I.

    1985-01-01

    This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability

  3. Clinical practice guidelines for rest orthosis, knee sleeves, and unloading knee braces in knee osteoarthritis.

    Science.gov (United States)

    Beaudreuil, Johann; Bendaya, Samy; Faucher, Marc; Coudeyre, Emmanuel; Ribinik, Patricia; Revel, Michel; Rannou, François

    2009-12-01

    To develop clinical practice guidelines concerning the use of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis. The French Physical Medicine and Rehabilitation Society (SOFMER) methodology, associating a systematic literature review, collection of everyday clinical practice, and external review by multidisciplinary expert panel, was used. Few high-level studies of bracing for knee osteoarthritis were found. No evidence exists for the effectiveness of rest orthosis. Evidence for knee sleeves suggests that they decrease pain in knee osteoarthritis, and their use is associated with subjective improvement. These actions do not appear to depend on a local thermal effect. The effectiveness of knee sleeves for disability is not demonstrated for knee osteoarthritis. Short- and mid-term follow-up indicates that valgus knee bracing decreases pain and disability in medial knee osteoarthritis, appears to be more effective than knee sleeves, and improves quality of life, knee proprioception, quadriceps strength, and gait symmetry, and decreases compressive loads in the medial femoro-tibial compartment. However, results of response to valgus knee bracing remain inconsistent; discomfort and side effects can result. Thrombophlebitis of the lower limbs has been reported with the braces. Braces, whatever kind, are infrequently prescribed in clinical practice for osteoarthritis of the lower limbs. Modest evidence exists for the effectiveness of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis, with only low level recommendations for its use. Braces are prescribed infrequently in French clinical practice for osteoarthritis of the knee. Randomized clinical trials concerning bracing in knee osteoarthritis are still necessary.

  4. Long-term stability of a one-dimensional current-driven double layer

    International Nuclear Information System (INIS)

    Hori, N.; Yamamoto, T.

    1988-01-01

    Long-term (>an electron transit time over the system) stability of a one-dimensional current-driven double layer is studied by numerical experiments using particles. In these experiments, the potential difference across the system is self-consistently determined by the space charge distributions inside the system. Each boundary of the system supplies a nondrifting half-Maxwellian plasma. The current density is increased by increasing the number density of the source plasma at the injection (right) boundary. A double layer can be developed by injection of a sufficiently high current density. For a fixed level of current injection, plasmas carrying no current with various densities (n/sup ts/ 0 ) are loaded on the left side of the system. Whether or not the generated double layer can maintain its potential drop for a long period depends on the density (n/sup ts/ 0 ) relative to the initial density (n/sup */ 0 ) near the injection boundary: (1) the double layer is found to grow when n/sup ts/ 0 = n/sup */ 0 ; (2) the steady double layer is seen for a long period when n/sup ts/ 0 approx. >n/sup */ 0 ; (3) the double layer is found to decay when n/sup ts/ 0 is even higher than n/sup */ 0 . A new concept of the current polarizability P/sub c/ = J/n/sup number/ is introduced for understanding these results, where J is the current density flowing through the double layer and n/sup number/ is the plasma density at the injection front, i.e., the low-potential edge of the double layer

  5. Effects of Unloaded vs. Loaded Plyometrics on Speed and Power Performance of Elite Young Soccer Players

    Directory of Open Access Journals (Sweden)

    Ronaldo Kobal

    2017-09-01

    Full Text Available The purpose of this study was to investigate the effects of loaded and unloaded plyometric training strategies on speed and power performance of elite young soccer players. Twenty-three under-17 male soccer players (age: 15.9 ± 1.2 years, height: 178.3 ± 8.1 cm, body-mass (BM: 68.1 ± 9.3 kg from the same club took part in this study. The athletes were pair-matched in two training groups: loaded vertical and horizontal jumps using an haltere type handheld with a load of 8% of the athletes' body mass (LJ; n = 12 and unloaded vertical and horizontal plyometrics (UJ; n = 11. Sprinting speeds at 5-, 10-, and 20-m, mean propulsive power (MPP relative to the players' BM in the jump squat exercise, and performance in the squat jump (SJ and countermovement jump (CMJ were assessed pre- and post-training period. During the experimental period, soccer players performed 12 plyometric training sessions across a 6-week preseason period. Magnitude based inferences and standardized differences were used for statistical analysis. A very likely increase in the vertical jumps was observed for the LJ group (99/01/00 and 98/02/00 for SJ and CMJ, respectively. In the UJ group a likely increase was observed for both vertical jumps (83/16/01 and 90/10/00, for SJ and CMJ, respectively. An almost certainly decrease in the sprinting velocities along the 20-m course were found in the LJ group (00/00/100 for all split distances tested. Meanwhile, in the UJ likely to very likely decreases were observed for all sprinting velocities tested (03/18/79, 01/13/86, and 00/04/96, for velocities in 5-, 10-, and 20-m, respectively. No meaningful differences were observed for the MPP in either training group (11/85/04 and 37/55/08 for LJ and UJ, respectively. In summary, under-17 professional soccer players increased jumping ability after a 6-week preseason training program, using loaded or unloaded jumps. Despite these positive adaptations, both plyometric strategies failed to

  6. D-brane gases and stabilization of extra dimensions in dilaton gravity

    International Nuclear Information System (INIS)

    Arapoglu, Savas; Kaya, Ali

    2004-01-01

    We consider a toy cosmological model with a gas of wrapped Dp-branes in 10-dimensional dilaton gravity compactified on a p-dimensional Ricci flat internal manifold. A consistent generalization of the low energy effective field equations in the presence of a conserved brane source coupled to dilaton is obtained. It is then shown that the compact dimensions are dynamically stabilized in string frame as a result of a balance between negative winding and positive momentum pressures. Curiously, when p=6, i.e., when the observed space is three-dimensional, the dilaton becomes a constant and stabilization in Einstein frame is also realized

  7. Phloem unloading in developing leaves of sugar beet

    International Nuclear Information System (INIS)

    Schmalstig, J.G.

    1985-01-01

    Physiological and transport data support a symplastic pathway for phloem unloading in developing leaves of sugar beet (Beta vulgaris L. Klein E, multigerm). The sulfhydryl inhibitor parachloromercuribenzene sulfonic acid (PCMBS) inhibited uptake of [ 14 C]-sucrose added to the free space of developing leaves, but did not affect import of [ 14 C]-sucrose during steady-state 14 CO 2 labeling of a source leaf. The passively-transported xenobiotic sugar, [ 14 C]-L-glucose did not readily enter mesophyll cells when supplied through the cut end of the petiole of a sink leaf as determined by whole leaf autoradiography. In contrast, [ 14 C]-L-glucose translocated through the phloem from a mature leaf, rapidly entered mesophyll cells, and was evenly distributed between mesophyll and veins. Autoradiographs of developing leaves following a pulse of 14 CO 2 to a source leaf revealed rapid passage of phloem translocated into progressively higher order veins as the leaf developed. Entry into V order veins occurred during the last stage of import through the phloem. Import into developing leaves was inhibited by glyphosate (N-phosphomethylglycine), a herbicide which inhibits the aromatic amino acid pathway and hence protein synthesis. Glyphosate also stopped net starch accumulation in sprayed mature leaves, but did not affect export of carbon from treated leaves during the time period that import into developed leaves was inhibited

  8. Axisymmetric MHD stability of sharp-boundary Tokamaks

    International Nuclear Information System (INIS)

    Rebhan, E.; Salat, A.

    1976-09-01

    For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de

  9. Time Course of Peri-Implant Bone Regeneration around Loaded and Unloaded Implants in a Rat Model

    Science.gov (United States)

    Jariwala, Shailly H.; Wee, Hwabok; Roush, Evan P.; Whitcomb, Tiffany L.; Murter, Christopher; Kozlansky, Gery; Lakhtakia, Akhlesh; Kunselman, Allen R.; Donahue, Henry J.; Armstrong, April D.; Lewis, Gregory S.

    2018-01-01

    The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 μm or 100 μm displacement, 1 Hz, 60 seconds) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0 % and 37.2 ± 10.0 %, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119 % increase in pull-out strength was measured in the loaded implants. PMID:27381807

  10. Matlab Stability and Control Toolbox: Trim and Static Stability Module

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.

    2006-01-01

    This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.

  11. Thermophysical and Mechanical Properties of Granite and Its Effects on Borehole Stability in High Temperature and Three-Dimensional Stress

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-01-01

    Full Text Available When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite’s stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  12. Thermophysical and mechanical properties of granite and its effects on borehole stability in high temperature and three-dimensional stress.

    Science.gov (United States)

    Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao

    2014-01-01

    When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  13. Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices

    International Nuclear Information System (INIS)

    Liao Shu; Wang Jin

    2012-01-01

    Highlights: ► Global dynamics of high dimensional dynamical systems. ► A systematic approach for global stability analysis. ► Epidemiological models of environment-dependent diseases. - Abstract: In this paper, we study the global dynamics of a class of mathematical epidemiological models formulated by systems of differential equations. These models involve both human population and environmental component(s) and constitute high-dimensional nonlinear autonomous systems, for which the global asymptotic stability of the endemic equilibria has been a major challenge in analyzing the dynamics. By incorporating the theory of Volterra–Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis and obtain new results on some three- and four-dimensional model systems. In addition, we conduct numerical simulation to verify the analytical results.

  14. Two-fluid model stability, simulation and chaos

    CERN Document Server

    Bertodano, Martín López de; Clausse, Alejandro; Ransom, Victor H

    2017-01-01

    This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter. The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases of nonlinear two-phase behavior that are ...

  15. Three-dimensional quantification of cardiac surface motion: a newly developed three-dimensional digital motion-capture and reconstruction system for beating heart surgery.

    Science.gov (United States)

    Watanabe, Toshiki; Omata, Sadao; Odamura, Motoki; Okada, Masahumi; Nakamura, Yoshihiko; Yokoyama, Hitoshi

    2006-11-01

    This study aimed to evaluate our newly developed 3-dimensional digital motion-capture and reconstruction system in an animal experiment setting and to characterize quantitatively the three regional cardiac surface motions, in the left anterior descending artery, right coronary artery, and left circumflex artery, before and after stabilization using a stabilizer. Six pigs underwent a full sternotomy. Three tiny metallic markers (diameter 2 mm) coated with a reflective material were attached on three regional cardiac surfaces (left anterior descending, right coronary, and left circumflex coronary artery regions). These markers were captured by two high-speed digital video cameras (955 frames per second) as 2-dimensional coordinates and reconstructed to 3-dimensional data points (about 480 xyz-position data per second) by a newly developed computer program. The remaining motion after stabilization ranged from 0.4 to 1.01 mm at the left anterior descending, 0.91 to 1.52 mm at the right coronary artery, and 0.53 to 1.14 mm at the left circumflex regions. Significant differences before and after stabilization were evaluated in maximum moving velocity (left anterior descending 456.7 +/- 178.7 vs 306.5 +/- 207.4 mm/s; right coronary artery 574.9 +/- 161.7 vs 446.9 +/- 170.7 mm/s; left circumflex 578.7 +/- 226.7 vs 398.9 +/- 192.6 mm/s; P heart surface movement. This helps us better understand the complexity of the heart, its motion, and the need for developing a better stabilizer for beating heart surgery.

  16. Thermodynamics of (d+1)-dimensional NUT-charged AdS spacetimes

    International Nuclear Information System (INIS)

    Clarkson, R.; Fatibene, L.; Mann, R.B.

    2003-01-01

    We consider the thermodynamic properties of (d+1)-dimensional spacetimes with NUT charges. Such spacetimes are asymptotically locally anti-de Sitter (or flat), with non-trivial topology in their spatial sections, and can have fixed point sets of the Euclidean time symmetry that are either (d-1)-dimensional (called 'bolts') or of lower dimensionality (pure 'NUTs'). We compute the free energy, conserved mass, and entropy for 4, 6, 8 and 10 dimensions for each, using both Noether charge methods and the AdS/CFT-inspired counterterm approach. We then generalize these results to arbitrary dimensionality. We find in 4k+2 dimensions that there are no regions in parameter space in the pure NUT case for which the entropy and specific heat are both positive, and so all such spacetimes are thermodynamically unstable. For the pure NUT case in 4k dimensions a region of stability exists in parameter space that decreases in size with increasing dimensionality. All bolt cases have some region of parameter space for which thermodynamic stability can be realized

  17. A simplified spatial model for BWR stability

    International Nuclear Information System (INIS)

    Berman, Y.; Lederer, Y.; Meron, E.

    2012-01-01

    A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)

  18. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  19. Influência da distribuição granulométrica na estabilidade dimensional de placas cerâmicas de base vermelha Influence of particle size distribution on the dimensional stability of red ceramic tiles

    Directory of Open Access Journals (Sweden)

    A. C. A. Prado

    2008-12-01

    Full Text Available As propriedades do revestimento cerâmico queimado estão intrinsecamente ligadas às características da massa, dentre estas se encontram o tamanho, a distribuição, o formato e o arranjo das partículas. O efeito da distribuição granulométrica de partículas sobre a estabilidade dimensional de placas cerâmicas para revestimentos de base vermelha foi estudado em três massas, todas continham no mínimo 57% de material advindo da Formação Corumbataí. Foram estudadas duas distribuições granulométricas - uma parecida com aquelas usadas no Pólo Cerâmico de Santa Gertrudes e, outra, com uma massa de grés. De uma maneira geral, granulações mais grossas, semelhantes à massa de Santa Gertrudes, variaram menos dimensionalmente quando as placas apresentaram médias e altas porosidades (absorção de água entre 3,0 e 10,0%. Já, granulações mais finas, similares a massas de grés, foram necessárias para a produção de placas de baixa absorção (menor que 3,0%.The properties of final ceramic tiles are related with the mass characteristics, among them the size, shape, distribution and arrange of particles. The effect of particle size distribution on dimensional stability of red ceramic tiles was studied in three masses; all of them composed with, at minimum, 57% of Corumbataí Formation's materials. Two particle size distributions were investigated: the first was similar to the masses that are used in the Santa Gertrudes Ceramic Pole's factories and the other was similar to the stoneware mass. In general, masses with larger particle sizes, similar to that of Santa Gertrudes, had greater dimensional stability in the products with 3 to 10% of water absorption. On the other hand, in the manufacture of low porosity tiles (water absorption capacity < 3% it is recommended the use of smaller grain size.

  20. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    Science.gov (United States)

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Marginal Stability Boundaries for Infinite-n Ballooning Modes in a Quasi-axisymmetric Stellarator

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2003-01-01

    A method for computing the ideal-MHD stability boundaries in three-dimensional equilibria is employed. Following Hegna and Nakajima [Phys. Plasmas 5 (May 1998) 1336], a two-dimensional family of equilibria are constructed by perturbing the pressure and rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The perturbations are constrained to preserve the magnetohydrodynamic equilibrium condition. For each perturbed equilibrium, the infinite-n ballooning stability is calculated. Marginal stability diagrams are thus constructed that are analogous to (s; a) diagrams for axisymmetric configurations. A quasi-axisymmetric stellarator is considered. Calculations of stability boundaries generally show regions of instability can occur for either sign of the average magnetic shear. Additionally, regions of second-stability are present

  2. Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration

    Science.gov (United States)

    O'Connell, Grace D.; Jacobs, Nathan T.; Sen, Sounok; Vresilovic, Edward J.; Elliott, Dawn M.

    2011-01-01

    The intervertebral disc maintains a balance between externally applied loads and internal osmotic pressure. Fluid flow plays a key role in this process, causing fluctuations in disc hydration and height. The objectives of this study were to quantify and model the axial creep and recovery responses of nondegenerate and degenerate human lumbar discs. Two experiments were performed. First, a slow compressive ramp was applied to 2000 N, unloaded to allow recovery for up to 24 hours, and re-applied. The linear-region stiffness and disc height were within 5% of the initial condition for recovery times greater than 8 hours. In the second experiment, a 1000 N creep load was applied for four hours, unloaded recovery monitored for 24 hours, and the creep load repeated. A viscoelastic model comprised of a “fast” and “slow” exponential response was used to describe the creep and recovery, where the fast response is associated with flow in the nucleus pulposus (NP) and endplate, while the slow response is associated with the annulus fibrosus (AF). The study demonstrated that recovery is 3-4X slower than loading. The fast response was correlated with degeneration, suggesting larger changes in the NP with degeneration compared to the AF. However, the fast response comprised only 10-15% of the total equilibrium displacement, with the AF-dominated slow response comprising 40-70%. Finally, the physiological loads and deformations and their associated long equilibrium times confirm that diurnal loading does not represent “equilibrium” in the disc, but that over time the disc is in steady-state. PMID:21783103

  3. Ultrahigh stability of atomically thin metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  4. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    Science.gov (United States)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  5. Controlled size and one-dimensional growth

    Indian Academy of Sciences (India)

    875–881. c Indian Academy of Sciences. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. JEYARAMAN ATHILAKSHMI and DILLIP KUMAR CHAND. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India e-mail: dillip@iitm.ac.

  6. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways

    Directory of Open Access Journals (Sweden)

    Naomi Elisabeth Brooks

    2014-03-01

    Full Text Available Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilisation, disuse and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fibre attrition. Skeletal muscle stem cells (satellite cells and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signalling pathways activated in muscle fibres by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g. amino acids may further enhance recovery (or reduce atrophy despite unloading or ageing is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.

  7. Calculating of radiation doses in rutinary unloads of liquid wastes from Laguna Verde nuclear power plant.; Calculo de las dosis de radiacion debidas a las descargas rutinarias de desechos liquidos de la central nucleoelectrica de Laguna Verde.

    Energy Technology Data Exchange (ETDEWEB)

    Molina, G

    1986-12-31

    Utilization of nuclear energy to generate electricity is increasingly being used to replace fossil fuels. During operation of nuclear power plants, radioactive materials are produced, a small fraction of which are released to environment as liquid or gaseous effluents. Estimation of radiation doses caused by effluents release has three purposes. During design phase of a nuclear station it is useful to adapt the wastes treatment systems to acceptable limits. During licensing phase, the regulator organism verifies the design of nuclear station effectuating estimation of doses. Finally, during operation, before every unload of radioactive effluents, radiation doses should be evaluated in order to fulfill technical specifications limiting the release of radioactive materials to environment. 1. To perform calculations of individual doses due to liquid radioactive effluents unload in units 1 and 2 of Laguna Verde nuclear power plant (In licensing phase). 2. To perform a parametric study of the effect of unload recirculation over individual dose, since recirculation has two principal effects: thermodynamical effects in nuclear station and radioactivity concentration; the last can affect the fullfilment of dose limits. 3. To perform the calculation of collective doses causes by unloads of liquid effluents within a radius of 80 km of the plant caused by unload of liquid radioactive effluents during normal operation and does not include doses during accident conditions. In Mexico the organism in charge of regulation of peaceful uses of nuclear energy is Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) and for Laguna Verde licensing, the regulations of the country who manufactured the reactor (USA). In Appendix C, units are explained.

  8. Analysis of the gyroscopic stabilization of a system of rigid bodies

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Seyranian, Alexander P.

    1997-01-01

    We study the gyroscopic stability of a three-body system. A new method of finding stability regions, based on mechanism and criteria for gyroscopic stabilization, is presented. Of particular interest in this connection is the theory of interaction of eigenvalues. This leads to a complete 3......-dimensional analysis, which shows the regions of stability, divergence, and flutter of a simple model of a rotating spaceship....

  9. Test and implementation of position sensors on load and unload [18O]H2O control valve of the target used in 18F - production by proton irradiation

    International Nuclear Information System (INIS)

    Costa, Osvaldo L. da; Sciani, Valdir

    2009-01-01

    The radionuclide 18 F used to produce the radiopharmaceutical [ 18 F]FDG has 109.7 min of half-life, becoming your productive chain so peculiar, because since the beginning of [ 18 O]H 2 O irradiation until the PET-CT exam there is a period about six hours, and any procedure fail in the productive chain will result in a delay to the PET CT exam. The absence of the position signs from [ 18 O]H 2 O load and unload valve of the target may result in 18 F production loss and even area contamination around the target. In this paper, three types of position sensors, into cyclotron radionuclides production environment in Cyclotron Accelerator Center from IPEN-CNEN/SP were tested. The tests were an indicative to discover the fitter sensor to the [ 18 O]H 2 O load and unload valve from target used in [ 18 F]fluoride production. After finding the fitter sensor, it was implemented in 18 F- target, supplying the correct position from [ 18 O]H 2 O load and unload valve to programmable logic controller, that had the software modified, respecting in this way the valve position. By this way, it was possible to reduce the incidence of fails, increasing the reliability in [ 18 F]FDG productive chain. (author)

  10. Compressible stability of growing boundary layers using parabolized stability equations

    Science.gov (United States)

    Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.

    1991-01-01

    The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.

  11. High Stability Induced by the TiN/Ti Interlayer in Three-Dimensional Si/Ge Nanorod Arrays as Anode in Micro Lithium Ion Battery.

    Science.gov (United States)

    Yue, Chuang; Yu, Yingjian; Wu, Zhenguo; Sun, Shibo; He, Xu; Li, Juntao; Zhao, Libo; Wu, Suntao; Li, Jing; Kang, Junyong; Lin, Liwei

    2016-03-01

    Three-dimensional (3D) Si/Ge-based micro/nano batteries are promising lab-on-chip power supply sources because of the good process compatibility with integrated circuits and Micro/Nano-Electro-Mechanical System technologies. In this work, the effective interlayer of TiN/Ti thin films were introduced to coat around the 3D Si nanorod (NR) arrays before the amorphous Ge layer deposition as anode in micro/nano lithium ion batteries, thus the superior cycling stability was realized by reason for the restriction of Si activation in this unique 3D matchlike Si/TiN/Ti/Ge NR array electrode. Moreover, the volume expansion properties after the repeated lithium-ion insertion/extraction were experimentally investigated to evidence the superior stability of this unique multilayered Si composite electrode. The demonstration of this wafer-scale, cost-effective, and Si-compatible fabrication for anodes in Li-ion micro/nano batteries provides new routes to configurate more efficient 3D energy storage systems for micro/nano smart semiconductor devices.

  12. Computation of focal values and stability analysis of 4-dimensional systems

    Directory of Open Access Journals (Sweden)

    Bo Sang

    2015-08-01

    Full Text Available This article presents a recursive formula for computing the n-th singular point values of a class of 4-dimensional autonomous systems, and establishes the algebraic equivalence between focal values and singular point values. The formula is linear and then avoids complicated integrating operations, therefore the calculation can be carried out by computer algebra system such as Maple. As an application of the formula, bifurcation analysis is made for a quadratic system with a Hopf equilibrium, which can have three small limit cycles around an equilibrium point. The theory and methodology developed in this paper can be used for higher-dimensional systems.

  13. Three-dimensional testing of power plant components

    International Nuclear Information System (INIS)

    Martin, A.

    1989-01-01

    Industrial photogrammetry is a dimensional checking procedure whose main advantages are the fast acquisition of the basic data (image), contactless inspection, and independent data processing. As a result of these basic characteristics, photogrammetry is particularly well suited to the maintenance of nuclear power plants. Since 1983, Framatome has employed photogrammetry in a number of cases for 3D dimensional checks and inspections of systems for repair purposes. To this day, e.g., the tube plates of steam generators have been inspected, the dimensional stability of the support rings in steam generators have been checked, and the alignment pins of fuel elements have been examined in this way. (orig.) [de

  14. Vacuum stability of asymptotically safe gauge-Yukawa theories

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Mojaza, Matin; Sannino, Francesco

    2016-01-01

    We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatr......, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established....

  15. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  16. Three-dimensional analysis of maxillary stability after Le Fort I osteotomy using hydroxyapatite/poly-L-lactide plate.

    Science.gov (United States)

    Park, Jung-Hyun; Kim, Minkyu; Kim, Sang Yoon; Jung, Hwi-Dong; Jung, Young-Soo

    2016-04-01

    To evaluate three-dimensional change in maxillary position using biodegradable plates. A total of 53 patients who underwent orthognathic surgery using biodegradable plates were analyzed retrospectively. The position of maxilla was measured three-dimensionally using cone beam computed tomography data at preoperative (T0), 1-month postoperative (T1), and 1-year postoperative (T2) time points. Changes in the maxilla 1 year after the operation (T2-T1) were analyzed to demonstrate postoperative stability. The correlation between postoperative relapse (T2-T1) and surgical movement (T1-T0) of the maxilla was investigated. At 1-year postoperatively, no significant changes in maxillary position were noted in the antero-posterior and transverse dimensions. The anterior maxillary position in the vertical dimension also showed no significant changes, but the posterior maxillary position (posterior nasal spine, greater palatine foramen) showed a 0- to 2.98-mm relapse at 1-year postoperatively. The posterior maxilla tended to relapse inferiorly when the amount of surgical upward movement was greater than 3-3.5 mm and to relapse superiorly when the amount of surgical upward movement was less than 3-3.5 mm. For all patients, no postoperative complications in the osteofixated maxilla were observed during the follow-up period. Maxilla fixed with biodegradable plates was stable in the antero-posterior and transverse and the vertical (anterior maxilla) dimensions. Posterior maxillary vertical relapse was clinically acceptable, but relapse patterns that relate to the amount of surgical upward movement should be considered for surgical treatment planning. Copyright © 2016. Published by Elsevier Ltd.

  17. The role of myostatin and activin receptor IIB in the regulation of unloading-induced myofiber type-specific skeletal muscle atrophy.

    Science.gov (United States)

    Babcock, Lyle W; Knoblauch, Mark; Clarke, Mark S F

    2015-09-15

    Chronic unloading induces decrements in muscle size and strength. This adaptation is governed by a number of molecular factors including myostatin, a potent negative regulator of muscle mass. Myostatin must first be secreted into the circulation and then bind to the membrane-bound activin receptor IIB (actRIIB) to exert its atrophic action. Therefore, we hypothesized that myofiber type-specific atrophy observed after hindlimb suspension (HLS) would be related to myofiber type-specific expression of myostatin and/or actRIIB. Wistar rats underwent HLS for 10 days, after which the tibialis anterior was harvested for frozen cross sectioning. Simultaneous multichannel immunofluorescent staining combined with differential interference contrast imaging was employed to analyze myofiber type-specific expression of myostatin and actRIIB and myofiber type cross-sectional area (CSA) across fiber types, myonuclei, and satellite cells. Hindlimb suspension (HLS) induced significant myofiber type-specific atrophy in myosin heavy chain (MHC) IIx (P Myostatin staining associated with myonuclei was less in HLS rats compared with controls, while satellite cell staining for myostatin remained unchanged. In contrast, the total number myonuclei and satellite cells per myofiber was reduced in HLS compared with ambulatory control rats (P myostatin-induced myofiber type-selective atrophy observed during chronic unloading. Copyright © 2015 the American Physiological Society.

  18. Analytical one-dimensional frequency response and stability model for PWR nuclear power plants

    International Nuclear Information System (INIS)

    Hoeld, A.

    1975-01-01

    A dynamic model for PWR nuclear power plants is presented. The plant is assumed to consist of one-dimensional single-channel core, a counterflow once-through steam generator (represented by two nodes according to the nonboiling and boiling region) and the necessary connection coolant lines. The model describes analytically the frequency response behaviour of important parameters of such a plant with respect to perturbations in reactivity, subcooling or mass flow (both at the entrances to the reactor core and/or the secondary steam generator side), the perturbations in steam load or system pressure (on the secondary side of the steam generator). From corresponding 'open' loop considerations it can then be concluded - by applying the Nyquist criterion - upon the degree of the stability behaviour of the underlying system. Based on this theoretical model, a computer code named ADYPMO has been established. From the knowledge of the frequency response behaviour of such a system, the corresponding transient behaviour with respect to a stepwise or any other perturbation signal can also be calculated by applying an appropriate retransformation method, e.g. by using digital code FRETI. To demonstrate this procedure, a transient experimental curve measured during the pre-operational test period at the PWR nuclear power plant KKS Stade was recalculated using the combination ADYPMO-FRETI. Good agreement between theoretical calculations and experimental results give an insight into the validity and efficiency of the underlying theoretical model and the applied retransformation method. (Auth.)

  19. Experimental research on stability of covering blocks for sloping banks

    International Nuclear Information System (INIS)

    Okuno, Toshihiko

    1988-01-01

    In the case of constructing thermal and nuclear power stations facing open seas, usually the harbors for unloading fuel and others are constructed. In Japan, breakwaters are installed in the places of relatively shallow depth less than 20 m, and in such case, the sloping banks having the covering material of wave-controlling blocks made of concrete are mostly adopted as those are excellent in their function and economical efficiency, and are advantageous in the maintenance and management. Sloping banks are of such type that wave-controlling blocks cover the vertical front face of nonpermeating caissons, and the same type was adopted for breakwaters and others in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc. As for the wave-controlling blocks, tetrapods and shake blocks were used. One of the most important problems in the design of sloping banks is how to estimate the stability of wave controlling blocks. In this paper, the results of the examination by hydraulic model experiment on the stability of covering blocks are reported, which are useful as the basic data for the rational and economical design of sloping banks. The experimental setup and a model bank, the generation of experimental waves and their characteristics, the experimental conditions and experimental method, and the results are reported. (Kako, I.)

  20. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    Science.gov (United States)

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On a stabilization mechanism for low-velocity detonations

    KAUST Repository

    Sow, Aliou; Semenko, Roman E.; Kasimov, Aslan R.

    2017-01-01

    We use numerical simulations of the reactive Lula equations to analyse the nonlinear stability of steady-state one-dimensional solutions for gaseous detonations in the presence of both momentum and heat losses. Our results point to a possible stabilization mechanism for the low-velocity detonations in such systems. The mechanism stems from the existence of a one-parameter family of solutions found in Semenko el al.

  2. On a stabilization mechanism for low-velocity detonations

    KAUST Repository

    Sow, Aliou

    2017-03-08

    We use numerical simulations of the reactive Lula equations to analyse the nonlinear stability of steady-state one-dimensional solutions for gaseous detonations in the presence of both momentum and heat losses. Our results point to a possible stabilization mechanism for the low-velocity detonations in such systems. The mechanism stems from the existence of a one-parameter family of solutions found in Semenko el al.

  3. Homological stability of diffeomorphism groups

    DEFF Research Database (Denmark)

    Berglund, Alexander; Madsen, Ib Henning

    2013-01-01

    In this paper we prove a stability theorem for block diffeomorphisms of 2d -dimensional manifolds that are connected sums of S d ×S d . Combining this with a recent theorem of S. Galatius and O. Randal-Williams and Morlet’s lemma of disjunction, we determine the homology of the classifying space ...

  4. Development and Validation of Multi-Dimensional Personality ...

    African Journals Online (AJOL)

    This study was carried out to establish the scientific processes for the development and validation of Multi-dimensional Personality Inventory (MPI). The process of development and validation occurred in three phases with five components of Agreeableness, Conscientiousness, Emotional stability, Extroversion, and ...

  5. Stabilizing and Organizing Bi3 Cu4 and Bi7 Cu12 Nanoclusters in Two-Dimensional Metal-Organic Networks.

    Science.gov (United States)

    Yan, Linghao; Xia, Bowen; Zhang, Qiushi; Kuang, Guowen; Xu, Hu; Liu, Jun; Liu, Pei Nian; Lin, Nian

    2018-04-16

    Multinuclear heterometallic nanoclusters with controllable stoichiometry and structure are anticipated to possess promising catalytic, magnetic, and optical properties. Heterometallic nanoclusters with precise stoichiometry of Bi 3 Cu 4 and Bi 7 Cu 12 can be stabilized in the scaffold of two-dimensional metal-organic networks on a Cu(111) surface through on-surface metallosupramolecular self-assembly processes. The atomic structures of the nanoclusters were resolved using scanning tunneling microscopy and density functional theory calculations. The nanoclusters feature highly symmetric planar hexagonal shapes and core-shell charge modulation. The clusters are arranged as triangular lattices with a periodicity that can be tuned by choosing molecules of different size. This work shows that on-surface metallosupramolecular self-assembly creates unique possibilities for the design and synthesis of multinuclear heterometallic nanoclusters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Science.gov (United States)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  7. Conceptualization of preferential flow for hillslope stability assessment

    Science.gov (United States)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  8. On stability of vortices in three-dimensional self-attractive Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Malomed, Boris A.; Lederer, Falk; Mazilu, Dumitru; Mihalache, Dumitru

    2007-01-01

    Results of accurate analysis of stability are reported for localized vortices in the Bose-Einstein condensate (BEC) with the negative scattering length, trapped in an anisotropic potential with the aspect ratio Ω. The cases of Ω-bar 1 and Ω-bar 1 correspond to the 'pancake' (nearly-2D) and 'cigar-shaped' (nearly-1D) configurations, respectively (in the latter limit, the vortices become 'tubular' solitons). The analysis is based on the 3D Gross-Pitaevskii equation. The family of solutions with vorticity S=1 is accurately predicted by the variational approximation. The relative size of the stability area for the vortices with S=1 (which was studied, in a part, before) increases with the decrease of Ω in terms of the number of atoms, but decreases in terms of the chemical potential. All states with S>=2 are unstable, while the stability of the ordinary solitons (S=0) obeys the Vakhitov-Kolokolov criterion. The stability predictions are verified by direct simulations of the full 3D equation

  9. The linearization method in hydrodynamical stability theory

    CERN Document Server

    Yudovich, V I

    1989-01-01

    This book presents the theory of the linearization method as applied to the problem of steady-state and periodic motions of continuous media. The author proves infinite-dimensional analogues of Lyapunov's theorems on stability, instability, and conditional stability for a large class of continuous media. In addition, semigroup properties for the linearized Navier-Stokes equations in the case of an incompressible fluid are studied, and coercivity inequalities and completeness of a system of small oscillations are proved.

  10. Thermodynamic stability of warped AdS3 black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2011-01-01

    We study the thermodynamic stability of warped black holes in three-dimensional topologically massive gravity. The spacelike stretched black hole is parametrized by its mass and angular momentum. We determine the local and global stability properties in the canonical and grand canonical ensembles. The presence of a Hawking-Page type transition is established, and the critical temperature is determined. The thermodynamic metric of Ruppeiner is computed, and the curvature is shown to diverge in the extremal limit. The consequences of these results for the classical stability properties of warped black holes are discussed within the context of the correlated stability conjecture.

  11. Radion stabilization in higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ashmita [Indian Institute of Technology, Department of Physics, Guwahati, Assam (India); Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + αR{sup 2} in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane. (orig.)

  12. On the variation in crack-opening stresses at different locations in a three-dimensional body

    Science.gov (United States)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  13. Moduli stabilization in non-geometric backgrounds

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Vafa, Cumrun; Walcher, Johannes

    2007-01-01

    Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kaehler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as anti-de Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background

  14. Existence, stability, and dynamics of harmonically trapped one-dimensional multi-component solitary waves: The near-linear limit

    Science.gov (United States)

    Xu, H.; Kevrekidis, P. G.; Kapitula, T.

    2017-06-01

    In the present work, we consider a variety of two-component, one-dimensional states in nonlinear Schrödinger equations in the presence of a parabolic trap, inspired by the atomic physics context of Bose-Einstein condensates. The use of Lyapunov-Schmidt reduction methods allows us to identify persistence criteria for the different families of solutions which we classify as (m, n), in accordance with the number of zeros in each component. Upon developing the existence theory, we turn to a stability analysis of the different configurations, using the Krein signature and the Hamiltonian-Krein index as topological tools identifying the number of potentially unstable eigendirections for each branch. A perturbation expansion for the eigenvalue problems associated with nonlinear states found near the linear limit permits us to obtain explicit asymptotic expressions for the eigenvalues. Finally, when the states are found to be unstable, typically by virtue of Hamiltonian Hopf bifurcations, their dynamics is studied in order to identify the nature of the respective instability. The dynamics is generally found to lead to a vibrational evolution over long time scales.

  15. On a family of (1+1)-dimensional scalar field theory models: Kinks, stability, one-loop mass shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada and IUFFyM, Universidad de Salamanca (Spain); Mateos Guilarte, J. [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca (Spain)

    2012-09-15

    In this paper we construct a one-parametric family of (1+1)-dimensional one-component scalar field theory models supporting kinks. Inspired by the sine-Gordon and {phi}{sup 4} models, we look at all possible extensions such that the kink second-order fluctuation operators are Schroedinger differential operators with Poeschl-Teller potential wells. In this situation, the associated spectral problem is solvable and therefore we shall succeed in analyzing the kink stability completely and in computing the one-loop quantum correction to the kink mass exactly. When the parameter is a natural number, the family becomes the hierarchy for which the potential wells are reflectionless, the two first levels of the hierarchy being the sine-Gordon and {phi}{sup 4} models. - Highlights: Black-Right-Pointing-Pointer We construct a family of scalar field theory models supporting kinks. Black-Right-Pointing-Pointer The second-order kink fluctuation operators involve Poeschl-Teller potential wells. Black-Right-Pointing-Pointer We compute the one-loop quantum correction to the kink mass with different methods.

  16. Effect of Storage Time of Extended-Pour and Conventional Alginate Impressions on Dimensional Accuracy of Casts

    OpenAIRE

    Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza

    2014-01-01

    Objectives: Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. Materials and Methods: In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions...

  17. Three-dimensional parallel vortex rings in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis

    2004-01-01

    We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability

  18. Theseus Nose and Pod Cones Being Unloaded

    Science.gov (United States)

    1996-01-01

    Crew members are seen here unloading the nose and pod cones of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  19. The Influence of Green Surface Modification of Oil Palm Mesocarp Fiber by Superheated Steam on the Mechanical Properties and Dimensional Stability of Oil Palm Mesocarp Fiber/Poly(butylene succinate Biocomposite

    Directory of Open Access Journals (Sweden)

    Yoon Yee Then

    2014-08-01

    Full Text Available In this paper, superheated steam (SHS was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200–230 °C and time (30–120 min under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate (PBS at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.

  20. The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit

    Science.gov (United States)

    Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka

    2014-10-01

    The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case

  1. Stability of time-dependent particle-like solutions of some wave equations

    International Nuclear Information System (INIS)

    Voronov, N.A.

    1978-01-01

    The proof of the nonstability of the one-dimensional periodical localized solutions of the equation with a spontaneously broken symmetry is given. The stability of the one-dimensional oscillating solutions of the sine-Gordon equation was also considered with regard to such perturbations. As it was expected these solutions proved to be stable

  2. Applying the methodology of Design of Experiments to stability studies: a Partial Least Squares approach for evaluation of drug stability.

    Science.gov (United States)

    Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok

    2018-05-01

    The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.

  3. On the propagation and stability of wave motions in rapidly rotating spherical shells. 2. Hydromagnetic two-dimensional motions

    International Nuclear Information System (INIS)

    Eltayeb, I.A.

    1983-07-01

    The linear progation properties and stability of wave motions in spherical shells examined in paper I (Geophys. Astr. Fluid Dyn., 16, 129) are here extended to the case of a toroidal magnetic field together with an associated shear flow. The analysis is restricted to moderate values of the magnetic field amplitude, in which case the ensuing motions are two-dimensional. They occur in thin cylindrical cells coaxial with the axis of rotation. For every set of the relevant parameters an infinity of modes exists and is divided into two uncoupled categories. One category is associated with a temperature perturbation even in the axial coordinate z and the other category odd in z. In the presence of an inner solid core the even set persists only outside the cylindrical surface, Csub(c), whose generators touch the inner core at its equator while the odd set persists everywhere. The direction of propagation of these waves depends on the ratio, q, of thermal to magnetic diffusivities and on the modified Chandrasekhar number Q (which is the ratio of Lorentz to Coriolis forces). For small values of q relevant to geophysical applications both eastward and westward propagation is possible if Q is small; but as Q increases beyond a certain value, only eastward propagation is possible. For the case of large q applicable to astrophysical situations both eastward and westward propagation is possible. All these results apply for a variety of temperature gradients in which both internal and differential forms of heating are invoked, and various forms of toroidal magnetic fields. The stability of these wave motions is examined and the most preferred mode of convection is identified in each case. The unstable cell always lies on Csub(c) or outside it. Its precise location depends on the types of magnetic field and temperature gradient. The sloping boundary of the spherical shell tends to stabilize westward propagating waves

  4. High dimensional neurocomputing growth, appraisal and applications

    CERN Document Server

    Tripathi, Bipin Kumar

    2015-01-01

    The book presents a coherent understanding of computational intelligence from the perspective of what is known as "intelligent computing" with high-dimensional parameters. It critically discusses the central issue of high-dimensional neurocomputing, such as quantitative representation of signals, extending the dimensionality of neuron, supervised and unsupervised learning and design of higher order neurons. The strong point of the book is its clarity and ability of the underlying theory to unify our understanding of high-dimensional computing where conventional methods fail. The plenty of application oriented problems are presented for evaluating, monitoring and maintaining the stability of adaptive learning machine. Author has taken care to cover the breadth and depth of the subject, both in the qualitative as well as quantitative way. The book is intended to enlighten the scientific community, ranging from advanced undergraduates to engineers, scientists and seasoned researchers in computational intelligenc...

  5. Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm

    2010-01-01

    We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e...

  6. Interferometric system for PM-level stability characterization

    NARCIS (Netherlands)

    Verlaan, A.L.; Ellis, J.D.; Voigt, D.; Spronck, J.W.; Munnig Schmidt, R.H.

    2010-01-01

    We present a double sided, single pass Michelson heterodyne interferometer for dimensional stability measurements. In preliminary measurements, the double deadpath configuration (no sample) showed better than ±1.5 nm (2/) over 13 hours. A 30 mm stainless gauge block was then measured with a

  7. Automatic Sieve-Shaker for Determining Soil Aggregate Stability and Dimensional Distribution Using a Vertical Oscillation System

    Directory of Open Access Journals (Sweden)

    Rosario Dell’Aquila

    Full Text Available The soil aggregate stability is determined generally by sifting the soil samples in water using a sieve-shaker (wet sieving. The Author has developed an original model of automatic sieve-shaker using a vertical oscillation system to the aim of an its possible use to determine the soil aggregate stability and dimensional distribution. The purpose of this note is to describe the construction and performance of the prototype currently used in the Laboratory for the Soil Structure Study of the ISAFOM – CNR. The proposed sieve-shaker, with the introduction of some innovations (protected by Italy Patent 0001332102, realizes the submersion and levelling of the soil samples using a lifter to support the containers with the water. With 6 workplaces it allows to process simultaneously up to 6 soil samples according to different test cycles. By means of the control panel it is possible to set up various determinations with the stroke of 3 cm and the oscillation frequency from 4 up to 80 oscillations per minute. The performance of the proposed sieve-shaker was verified with a technical test to verify the performance of the 6 workplaces to oscillation speed increasing up to 60 oscillations per minute and an agronomic test. The results have been submitted to analysis of variance considering the plots of the field from which have been taken the samples for repetitions and the six workplaces of the proposed sieve-shaker for experimental theses. The differences between the various workplaces have not been significant. This demonstrates that the behavior of the various workplaces is uniform. The dispersion in water at constant shaking time and increasing oscillation speed has evidenced a very significant inverse relation between the index of aggregate stability in water (IASW and number of oscillations per minute. This result demonstrates a constant performance of the proposed sieve-shaker to varying of the oscillation speed. The agnonomic test has demonstrated

  8. Automatic Sieve-Shaker for Determining Soil Aggregate Stability and Dimensional Distribution Using a Vertical Oscillation System

    Directory of Open Access Journals (Sweden)

    Rosario Dell’Aquila

    2007-12-01

    Full Text Available The soil aggregate stability is determined generally by sifting the soil samples in water using a sieve-shaker (wet sieving. The Author has developed an original model of automatic sieve-shaker using a vertical oscillation system to the aim of an its possible use to determine the soil aggregate stability and dimensional distribution. The purpose of this note is to describe the construction and performance of the prototype currently used in the Laboratory for the Soil Structure Study of the ISAFOM – CNR. The proposed sieve-shaker, with the introduction of some innovations (protected by Italy Patent 0001332102, realizes the submersion and levelling of the soil samples using a lifter to support the containers with the water. With 6 workplaces it allows to process simultaneously up to 6 soil samples according to different test cycles. By means of the control panel it is possible to set up various determinations with the stroke of 3 cm and the oscillation frequency from 4 up to 80 oscillations per minute. The performance of the proposed sieve-shaker was verified with a technical test to verify the performance of the 6 workplaces to oscillation speed increasing up to 60 oscillations per minute and an agronomic test. The results have been submitted to analysis of variance considering the plots of the field from which have been taken the samples for repetitions and the six workplaces of the proposed sieve-shaker for experimental theses. The differences between the various workplaces have not been significant. This demonstrates that the behavior of the various workplaces is uniform. The dispersion in water at constant shaking time and increasing oscillation speed has evidenced a very significant inverse relation between the index of aggregate stability in water (IASW and number of oscillations per minute. This result demonstrates a constant performance of the proposed sieve-shaker to varying of the oscillation speed. The agnonomic test has demonstrated

  9. Investigation of Rock Mass Stability Around the Tunnels in an Underground Mine in USA Using Three-Dimensional Numerical Modeling

    Science.gov (United States)

    Xing, Yan; Kulatilake, P. H. S. W.; Sandbak, L. A.

    2018-02-01

    The stability of the rock mass around the tunnels in an underground mine was investigated using the distinct element method. A three-dimensional model was developed based on the available geological, geotechnical, and mine construction information. It incorporates a complex lithological system, persistent and non-persistent faults, and a complex tunnel system including backfilled tunnels. The strain-softening constitutive model was applied for the rock masses. The rock mass properties were estimated using the Hoek-Brown equations based on the intact rock properties and the RMR values. The fault material behavior was modeled using the continuously yielding joint model. Sequential construction and rock supporting procedures were simulated based on the way they progressed in the mine. Stress analyses were performed to study the effect of the horizontal in situ stresses and the variability of rock mass properties on tunnel stability, and to evaluate the effectiveness of rock supports. The rock mass behavior was assessed using the stresses, failure zones, deformations around the tunnels, and the fault shear displacement vectors. The safety of rock supports was quantified using the bond shear and bolt tensile failures. Results show that the major fault and weak interlayer have distinct influences on the displacements and stresses around the tunnels. Comparison between the numerical modeling results and the field measurements indicated the cases with the average rock mass properties, and the K 0 values between 0.5 and 1.25 provide satisfactory agreement with the field measurements.

  10. Development, field testing and implementation of automated hydraulically controlled, variable volume loading systems for reciprocating compressors

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, Dwayne A. [ACI Services, Inc., Cambridge, OH (United States); Slupsky, John [Kvaerner Process Systems, Calgary, Alberta (Canada); Chrisman, Bruce M.; Hurley, Tom J. [Cooper Energy Services, Oklahoma City, OK (United States). Ajax Division

    2003-07-01

    Automated, variable volume unloaders provide the ability to smoothly load/unload reciprocating compressors to maintain ideal operations in ever-changing environments. Potential advantages provided by this load control system include: maximizing unit capacity, optimizing power economy, maintaining low exhaust emissions, and maintaining process suction and discharge pressures. Obstacles foreseen include: reliability, stability, serviceability and automation integration. Results desired include: increased productivity for the compressor and its operators, increased up time, and more stable process control. This presentation covers: system design features with descriptions of how different types of the devices were developed, initial test data, and how they can be effectively operated; three actual-case studies detailing the reasons why automated, hydraulically controlled, variable volume, head-end unloaders were chosen over other types of unloading devices; sophisticated software used in determining the device sizing and predicted performance; mechanical and field considerations; installation, serviceability and operating considerations; device control issues, including PC and PLC considerations; monitoring of actual performance and comparison of such with predicted performance; analysis of mechanical reliability and stability; and preliminary costs versus return on investment analysis. (author)

  11. One-dimensional flame instability and control of burning in fire-chamber

    Directory of Open Access Journals (Sweden)

    Victor E. Volkov

    2015-03-01

    Full Text Available The flame stability with regard to one-dimensional exponential perturbations both for the combustion in the fire-chamber and the flame propagating in closed tubes or chambers is investigated. It is proved that both stability and instability are possible for the combustion process. At the same time the one-dimensional flame instability is guaranteed near the front wall of the fire-chamber where the fuel supply is realized. Therefore the control of combustion in the fire-chamber leads to support of the flame at the maximum possible distance from the front wall of the fire-chamber to prevent the vibratory combustion or to diminish intensity of pulsations if these pulsations are inevitable.

  12. Thermodynamic stability of warped AdS{sub 3} black holes

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, Danny, E-mail: dbirmingham@pacific.ed [Department of Physics, University of the Pacific, Stockton, CA 95211 (United States); Mokhtari, Susan, E-mail: susan@science.csustan.ed [Department of Physics, California State University Stanislaus, Turlock, CA 95382 (United States)

    2011-02-21

    We study the thermodynamic stability of warped black holes in three-dimensional topologically massive gravity. The spacelike stretched black hole is parametrized by its mass and angular momentum. We determine the local and global stability properties in the canonical and grand canonical ensembles. The presence of a Hawking-Page type transition is established, and the critical temperature is determined. The thermodynamic metric of Ruppeiner is computed, and the curvature is shown to diverge in the extremal limit. The consequences of these results for the classical stability properties of warped black holes are discussed within the context of the correlated stability conjecture.

  13. Breakwater stability with damaged single layer armour units

    OpenAIRE

    De Rover, R.; Verhagen, H.J.; Van den Berge, A.; Reedijk, B.

    2008-01-01

    The effect of single layer interlocking armour unit breakage on the hydraulic armour layer stability and potential damage progression is addressed in this paper. A 2-dimensional scale model of a rubble mound breakwater with an armour layer consisting of Xbloc armour units was tested. The residual armour layer stability with broken units was determined. The armour unit displacement and damage progression was assessed. According to the test series breakage of the single layer armour units has a...

  14. Distributional Methods for a Class of Functional Equations and Their Stabilities

    Institute of Scientific and Technical Information of China (English)

    Jae Young CHUNG

    2007-01-01

    We consider a class of n-dimensional Pompeiu equations and that of Pexider equations and their Hyers-Ulam stability problems in the spaces of Schwartz distributions. First, reducing the given distribution version of functional equations to differential equations we find their solutions. Secondly,using approximate identities we prove the Hyers-Ulam stability of the equations.

  15. Lyapunov equation for infinite-dimensional discrete bilinear systems

    International Nuclear Information System (INIS)

    Costa, O.L.V.; Kubrusly, C.S.

    1991-03-01

    Mean-square stability for discrete systems requires that uniform convergence is preserved between input and state correlation sequences. Such a convergence preserving property holds for an infinite-dimensional bilinear system if and only if the associate Lyapunov equation has a unique strictly positive solution. (author)

  16. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  17. Note on moduli stabilization, supersymmetry breaking and axiverse

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics

    2011-06-15

    We study properties of moduli stabilization in the four dimensional N=1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum, i.e. nontachyonic saxions, in the non-supersymmetric Minkowski vacua. We also discuss the cases, where the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to supersymmetry breaking. Furthermore we study the models with axions originating from matter-like fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets. (orig.)

  18. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1999-01-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  19. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1999-12-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  20. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis.

    Science.gov (United States)

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2017-03-01

    In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.

  1. Behavioral Dimensions in One-Year-Olds and Dimensional Stability in Infancy.

    Science.gov (United States)

    Hagekull, Berit; And Others

    1980-01-01

    The dimensional structure of infants' behavioral repertoire was shown to be highly stable over 3 to 15 months of age. Factor analysis of parent questionnaire data produced seven factors named Intensity/Activity, Regularity, Approach-Withdrawal, Sensory Sensitivity, Attentiveness, Manageability and Sensitivity to New Food. An eighth factor,…

  2. Dynamical behavior and Jacobi stability analysis of wound strings

    Science.gov (United States)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  3. Dynamical behavior and Jacobi stability analysis of wound strings

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)

    2016-06-15

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of R{sup 2}, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S{sup 2} of constant radius R. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods. (orig.)

  4. Experimental investigation of cooling perimeter and disturbance length effect on stability of Nb3Sn cable-in-conduit conductors

    International Nuclear Information System (INIS)

    Armstrong, J.R.

    1992-02-01

    The stability of three coils, with similar parameters besides having differing strand diameters, was investigated experimentally using inductive heaters to input disturbances. One of the coils stability was also tested by doubling the inductive heated disturbance length to 10 cm. By computationally deriving approximate inductive heater input energy at 12 T, stability curves show fair agreement with zero-dimensional and one-dimensional computer predictions. Quench velocity and limiting currents also show good agreement with earlier work. Also, the stability measured on one of the coils below its limiting current by disturbing a 10 cm length of conductor was much less than the same samples stability using a 5 cm disturbance length. (author)

  5. Quantifying Stability in Complex Networks: From Linear to Basin Stability

    Science.gov (United States)

    Kurths, Jürgen

    The human brain, power grids, arrays of coupled lasers and the Amazon rainforest are all characterized by multistability. The likelihood that these systems will remain in the most desirable of their many stable states depends on their stability against significant perturbations, particularly in a state space populated by undesirable states. Here we claim that the traditional linearization-based approach to stability is in several cases too local to adequately assess how stable a state is. Instead, we quantify it in terms of basin stability, a new measure related to the volume of the basin of attraction. Basin stability is non-local, nonlinear and easily applicable, even to high-dimensional systems. It provides a long-sought-after explanation for the surprisingly regular topologies of neural networks and power grids, which have eluded theoretical description based solely on linear stability. Specifically, we employ a component-wise version of basin stability, a nonlinear inspection scheme, to investigate how a grid's degree of stability is influenced by certain patterns in the wiring topology. Various statistics from our ensemble simulations all support one main finding: The widespread and cheapest of all connection schemes, namely dead ends and dead trees, strongly diminish stability. For the Northern European power system we demonstrate that the inverse is also true: `Healing' dead ends by addition of transmission lines substantially enhances stability. This indicates a crucial smart-design principle for tomorrow's sustainable power grids: add just a few more lines to avoid dead ends. Further, we analyse the particular function of certain network motifs to promote the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design. Moreover, it will be shown that basin stability enables uncovering the mechanism for explosive synchronization and

  6. Relation Between Pressure and Volume Unloading During Ramp Testing in Patients Supported with a Continuous-Flow Left Ventricular Assist Device

    DEFF Research Database (Denmark)

    Jung, Mette H; Hassager, Christian; Balling, Louise

    2015-01-01

    Pulmonary capillary wedge pressure (PCWP) is the key to describing left ventricular (LV) unloading, however, the relation between pressure and the echocardiography-derived surrogate of LV volume (left ventricular end-diastolic diameter (LVEDD)) as a function of pump speed (RPM) in continuous......-flow left ventricular assist device (CF-LVAD) patients is unknown. In this study the pressure-volume relationship as a function of RPM during ramp testing was investigated by simultaneously measuring PCWP by Swan-Ganz catheter and LVEDD by echocardiography. The ramp protocol started at usual pump setting...

  7. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  8. Analyzing heavy-ion-induced charge collection in Si devices by three-dimensional simulation

    International Nuclear Information System (INIS)

    Dodd, P.E.

    1994-01-01

    Properties of charge collection in Si devices in response to single-ion bombardment have been studied using transient three-dimensional drift-diffusion simulation. In unloaded Si diodes, the funnel effect is particularly strong in lightly-doped materials for high-density strikes such as 100 MeV Fe, and essentially all charge collection is by funnel-assisted drift. This drift collection may occur at time scales as late as several nanoseconds, much later than is traditionally associated with drift. For more heavily-doped materials or lower-density strikes, such as 5-MeV α-particles, drift and diffusion play more equal roles. In epitaxial structures the funnel is truncated by the heavily-doped substrate, collapses quickly, and a great deal of charge is collected at late times by diffusion. Charge collection in Si circuitry is influenced by the circuit external to the struck device. Loading effects on charge collection were studied using passive external circuit elements as well as by mixed-mode simulation, which allows modeling of active external circuitry. Simulations indicate that the funnel can be significantly affected by the inclusion of passive loads, while active loads may prevent any direct charge collection by funneling. Finally, the use of three-dimensional device simulators is presented as a method of analyzing results obtained from focused ion microbeam experiments

  9. Enhancement of Orthodontic Anchor Screw Stability Under Immediate Loading by Ultraviolet Photofunctionalization Technology.

    Science.gov (United States)

    Takahashi, Maiko; Motoyoshi, Mitsuru; Inaba, Mizuki; Hagiwara, Yoshiyuki; Shimizu, Noriyoshi

    Ultraviolet (UV)-mediated photofunctionalization technology is intended to enhance the osseointegration capability of titanium implants. There are concerns about orthodontic anchor screws loosening under immediate loading protocols in adolescent orthodontic treatment. The purpose of this in vivo study was to evaluate the effects of photofunctionalization on the intrabony stability of orthodontic titanium anchor screws and bone-anchor screw contact under immediate loading in growing rats. Custom-made titanium anchor screws (1.4 mm in diameter and 4.0 mm in length) with or without photofunctionalization pretreatment were placed on the proximal epiphysis of the tibial bone in 6-week-old male Sprague-Dawley rats and were loaded immediately after placement. After 2 weeks of loading, the stability of the anchor screws was evaluated using a Periotest device, and the bone-anchor screw contact ratio (BSC) was assessed by a histomorphometric analysis using field-emission scanning electron microscopy. In the unloaded group, Periotest values (PTVs) were ~25 for UV-untreated screws and 13 for UVtreated screws (P < .01), while in the immediate-loading group, PTVs were 28 for UV-untreated screws and 16 for UV-treated screws (P < .05). Significantly less screw mobility was observed in both UV-treated groups regardless of the loading protocol. The BSC was increased ~1.8 fold for UV-treated screws, compared with UV-untreated screws, regardless of the loading protocol. Photofunctionalization enhanced the intrabony stability of orthodontic anchor screws under immediate loading in growing rats by increasing bone-anchor screw contact.

  10. Loaded and unloaded jump performance of top-level volleyball players from different age categories

    Science.gov (United States)

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo

    2017-01-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete’s body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (pvolleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group. PMID:29158621

  11. Stable three-dimensional solitons in attractive Bose-Einstein condensates loaded in an optical lattice

    International Nuclear Information System (INIS)

    Mihalache, D.; Mazilu, D.; Lederer, F.; Malomed, B.A.; Crasovan, L.-C.; Kartashov, Y.V.; Torner, L.

    2005-01-01

    The existence and stability of solitons in Bose-Einstein condensates with attractive interatomic interactions, described by the Gross-Pitaevskii equation with a three-dimensional (3D) periodic potential, are investigated in a systematic form. We find a one-parameter family of stable 3D solitons in a certain interval of values of their norm, provided that the strength of the potential exceeds a threshold value. The minimum number of 7 Li atoms in the stable solitons is 60, and the energy of the soliton at the stability threshold is ≅6 recoil energies in the lattice. The respective energy versus norm diagram features two cuspidal points, resulting in a typical swallowtail pattern, which is a generic feature of 3D solitons supported by quasi-two-dimensional or fully dimensional lattice potentials

  12. Clinical Outcomes of a Pneumatic Unloader Brace for Kellgren-Lawrence Grades 3 to 4 Osteoarthritis: A Minimum 1-Year Follow-Up Study.

    Science.gov (United States)

    Chughtai, Morad; Bhave, Anil; Khan, Sabahat Z; Khlopas, Anton; Ali, Osman; Harwin, Steven F; Mont, Michael A

    2016-11-01

    The use of a pneumatic unloader brace has been shown in pilot studies to decrease pain and increase muscle strength in patients with knee osteoarthritis (OA). Therefore, we analyzed patients who had knee OA, and either received a pneumatic unloader brace and conventional treatment or conventional treatment alone. Specifically, we assessed: (1) use of pain relieving injections; (2) opioid consumption; and (3) the eventual need for total knee arthroplasty (TKA) in the above-mentioned cohort. We performed an analysis of a longitudinally maintained database of patients from a prospective, randomized, single center study. This study randomized patients who had Kellgren-Lawrence grades 3 to 4 to receive either a pneumatic unloader brace and conventional treatment or conventional treatment alone. The brace cohort comprised 11 patients with a mean age of 55 years (range, 37-70 years). The final matched cohort comprised 25 patients with a mean age of 63 years (range, 41-86 years). The minimum follow-up was 1 year. There was a lower proportion of patients who underwent an eventual TKA in the bracing cohort as compared with the nonbracing cohort (18 vs. 36%). The mean time to TKA was longer in the bracing cohort as compared with the nonbracing cohort (482 vs. 389 days). The proportion of patients who used opioids was similar in both groups (27 vs. 22%). There was a significantly lower number of patients who received injections in the bracing cohort as compared with the nonbracing cohort (46 vs. 83%, p  = 0.026). The bracing cohort had received a significantly lower number of injections and a lower rate of subsequent TKA as compared with the nonbracing cohort. The mean time to TKA was also longer among the bracing cohort. These results may demonstrate the potential of this brace to reduce the need for and prolonging the time to TKA. Performing larger prospective randomized studies, with built-in compliance monitors is warranted. This brace may be a valuable adjunct to the

  13. Local stabilizer codes in three dimensions without string logical operators

    International Nuclear Information System (INIS)

    Haah, Jeongwan

    2011-01-01

    We suggest concrete models for self-correcting quantum memory by reporting examples of local stabilizer codes in 3D that have no string logical operators. Previously known local stabilizer codes in 3D all have stringlike logical operators, which make the codes non-self-correcting. We introduce a notion of ''logical string segments'' to avoid difficulties in defining one-dimensional objects in discrete lattices. We prove that every stringlike logical operator of our code can be deformed to a disjoint union of short segments, each of which is in the stabilizer group. The code has surfacelike logical operators whose partial implementation has unsatisfied stabilizers along its boundary.

  14. Three-dimensional phase-field simulations of directional solidification

    Science.gov (United States)

    Plapp, Mathis

    2007-05-01

    The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.

  15. On the stability of some systems of exponential difference equations

    Directory of Open Access Journals (Sweden)

    N. Psarros

    2018-01-01

    Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.

  16. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...... of nickel depending on temperature of the initial reduction and the operating conditions, and the temperature of reoxidation are very important for the size of the dimensional change. Cumulative redox strain (CRS) is shown to be correlated with temperature. Measured maximum CRS after three redox cycles...... varies within 0.25-3.2% dL/L in dry gas and respective temperature range of 600-1000 degrees C. A high degree of redox reversibility was reached at low temperature. however. reversibility is lost at elevated temperatures. We found that at 850 degrees C, 6% steam and a very high p(H2O)/p(H2) ratio...

  17. Bin-packing problems with load balancing and stability constraints

    DEFF Research Database (Denmark)

    Trivella, Alessio; Pisinger, David

    apper in a wide range of disciplines, including transportation and logistics, computer science, engineering, economics and manufacturing. The problem is well-known to be N P-hard and difficult to solve in practice, especially when dealing with the multi-dimensional cases. Closely connected to the BPP...... realistic constraints related to e.g. load balancing, cargo stability and weight limits, in the multi-dimensional BPP. The BPP poses additional challenges compared to the CLP due to the supplementary objective of minimizing the number of bins. In particular, in section 2 we discuss how to integrate bin......-packing and load balancing of items. The problem has only been considered in the literature in simplified versions, e.g. balancing a single bin or introducing a feasible region for the barycenter. In section 3 we generalize the problem to handle cargo stability and weight constraints....

  18. Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity

    International Nuclear Information System (INIS)

    Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.

    2007-01-01

    Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone

  19. Nonlinear stability of ideal fluid equilibria

    International Nuclear Information System (INIS)

    Holm, D.D.

    1988-01-01

    The Lyapunov method for establishing stability is related to well- known energy principles for nondissipative dynamical systems. A development of the Lyapunov method for Hamiltonian systems due to Arnold establishes sufficient conditions for Lyapunov stability by using the energy plus other conserved quantities, together with second variations and convexity estimates. When treating the stability of ideal fluid dynamics within the Hamiltonian framework, a useful class of these conserved quantities consists of the Casimir functionals, which Poisson-commute with all functionals of the dynamical fluid variables. Such conserved quantities, when added to the energy, help to provide convexity estimates that bound the growth of perturbations. These convexity estimates, in turn, provide norms necessary for establishing Lyapunov stability under the nonlinear evolution. In contrast, the commonly used second variation or spectral stability arguments only prove linearized stability. As ideal fluid examples, in these lectures we discuss planar barotropic compressible fluid dynamics, the three-dimensional hydrostatic Boussinesq model, and a new set of shallow water equations with nonlinear dispersion due to Basdenkov, Morosov, and Pogutse[1985]. Remarkably, all three of these samples have the same Hamiltonian structure and, thus, possess the same Casimir functionals upon which their stability analyses are based. We also treat stability of modified quasigeostrophic flow, a problem whose Hamiltonian structure and Casimirs closely resemble Arnold's original example. Finally, we discuss some aspects of conditional stability and the applicability of Arnold's development of the Lyapunov technique. 100 refs

  20. Linear stability analysis of heated parallel channels

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Isbin, H.S.

    1982-01-01

    An analyis is presented of thermal hydraulic stability of flow in parallel channels covering the range from inlet subcooling to exit superheat. The model is based on a one-dimensional drift velocity formulation of the two phase flow conservation equations. The system of equations is linearized by assuming small disturbances about the steady state. The dynamic response of the system to an inlet flow perturbation is derived yielding the characteristic equation which predicts the onset of instabilities. A specific application is carried out for homogeneous and regional uniformly heated systems. The particular case of equal characteristic frequencies of two-phase and single phase vapor region is studied in detail. The D-partition method and the Mikhailov stability criterion are used for determining the marginal stability boundary. Stability predictions from the present analysis are compared with the experimental data from the solar test facility. 8 references

  1. Rubble-Mound Breakwater Stability Tests for Dos Bocas Harbor, Tabasco, Mexico

    National Research Council Canada - National Science Library

    Carver, Robert

    1999-01-01

    ...). The initial purposes of the investigation were to determine, by two-dimensional flume tests, the stability response of three alternate armorings for the proposed breakwater and to evaluate overall...

  2. Stability and Bifurcation Analysis of a Modified Epidemic Model for Computer Viruses

    Directory of Open Access Journals (Sweden)

    Chuandong Li

    2014-01-01

    Full Text Available We extend the three-dimensional SIR model to four-dimensional case and then analyze its dynamical behavior including stability and bifurcation. It is shown that the new model makes a significant improvement to the epidemic model for computer viruses, which is more reasonable than the most existing SIR models. Furthermore, we investigate the stability of the possible equilibrium point and the existence of the Hopf bifurcation with respect to the delay. By analyzing the associated characteristic equation, it is found that Hopf bifurcation occurs when the delay passes through a sequence of critical values. An analytical condition for determining the direction, stability, and other properties of bifurcating periodic solutions is obtained by using the normal form theory and center manifold argument. The obtained results may provide a theoretical foundation to understand the spread of computer viruses and then to minimize virus risks.

  3. Breakwater stability with damaged single layer armour units

    NARCIS (Netherlands)

    De Rover, R.; Verhagen, H.J.; Van den Berge, A.; Reedijk, B.

    2008-01-01

    The effect of single layer interlocking armour unit breakage on the hydraulic armour layer stability and potential damage progression is addressed in this paper. A 2-dimensional scale model of a rubble mound breakwater with an armour layer consisting of Xbloc armour units was tested. The residual

  4. Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control

    Science.gov (United States)

    Varan, Metin; Akgul, Akif

    2018-04-01

    In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.

  5. Multiscale stabilization for convection-dominated diffusion in heterogeneous media

    KAUST Repository

    Calo, Victor M.

    2016-02-23

    We develop a Petrov-Galerkin stabilization method for multiscale convection-diffusion transport systems. Existing stabilization techniques add a limited number of degrees of freedom in the form of bubble functions or a modified diffusion, which may not be sufficient to stabilize multiscale systems. We seek a local reduced-order model for this kind of multiscale transport problems and thus, develop a systematic approach for finding reduced-order approximations of the solution. We start from a Petrov-Galerkin framework using optimal weighting functions. We introduce an auxiliary variable to a mixed formulation of the problem. The auxiliary variable stands for the optimal weighting function. The problem reduces to finding a test space (a dimensionally reduced space for this auxiliary variable), which guarantees that the error in the primal variable (representing the solution) is close to the projection error of the full solution on the dimensionally reduced space that approximates the solution. To find the test space, we reformulate some recent mixed Generalized Multiscale Finite Element Methods. We introduce snapshots and local spectral problems that appropriately define local weight and trial spaces. In particular, we use energy minimizing snapshots and local spectral decompositions in the natural norm associated with the auxiliary variable. The resulting spectral decomposition adaptively identifies and builds the optimal multiscale space to stabilize the system. We discuss the stability and its relation to the approximation property of the test space. We design online basis functions, which accelerate convergence in the test space, and consequently, improve stability. We present several numerical examples and show that one needs a few test functions to achieve an error similar to the projection error in the primal variable irrespective of the Peclet number.

  6. Approximation and stability of three-dimensional natural convection flows in a porous medium

    International Nuclear Information System (INIS)

    Janotto, Marie-Laurence

    1991-01-01

    The equations of the three-dimensional natural convection in a porous medium within a differentially heated horizontal walls cavity are solved by a pseudo-spectral method. First we will present the evolution of the two main modes according to two models of convection. A few asymptotic properties connected to the small and large eddies are set up and numerically validated. A new approximate inertial manifold is then proposed. The numerical scheme used is an exponential fitting algorithm the convergence of which is proved. We will present the physical mechanism at the origin of the un-stationary three-dimensional convection at high Rayleigh numbers. (author) [fr

  7. Atomic stabilization in superintense laser fields

    International Nuclear Information System (INIS)

    Gavrila, Mihai

    2002-01-01

    Atomic stabilization is a highlight of superintense laser-atom physics. A wealth of information has been gathered on it; established physical concepts have been revised in the process; points of contention have been debated. Recent technological breakthroughs are opening exciting perspectives of experimental study. With this in mind, we present a comprehensive overview of the phenomenon. We discuss the two forms of atomic stabilization identified theoretically. The first one, 'quasistationary (adiabatic) stabilization' (QS), refers to the limiting case of plane-wave monochromatic radiation. QS characterizes the fact that ionization rates, as calculated from single-state Floquet theory, decrease with intensity (possibly in an oscillatory manner) at high values of the field. We present predictions for QS from various forms of Floquet theory: high frequency (that has led to its discovery and offers the best physical insight), complex scaling, Sturmian, radiative close coupling and R-matrix. These predictions all agree quantitatively, and high-accuracy numerical results have been obtained for hydrogen. Predictions from non-Floquet theories are also discussed. Thereafter, we analyse the physical origin of QS. The alternative form of stabilization, 'dynamic stabilization' (DS), is presented next. This expresses the fact that the ionization probability at the end of a laser pulse of fixed shape and duration does not approach unity as the peak intensity is increased, but either starts decreasing with the intensity (possibly in an oscillatory manner), or flattens out at a value smaller than unity. We review the extensive research done on one-dimensional models, that has provided valuable insights into the phenomenon; two- and three-dimensional models are also considered. Full three-dimensional Coulomb calculations have encountered severe numerical handicaps in the past, and it is only recently that a comprehensive mapping of DS could be made for hydrogen. An adiabatic

  8. Enumeration and stability analysis of simple periodic orbits in β-Fermi Pasta Ulam lattice

    International Nuclear Information System (INIS)

    Sonone, Rupali L.; Jain, Sudhir R.

    2014-01-01

    We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the β-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA

  9. Enumeration and stability analysis of simple periodic orbits in β-Fermi Pasta Ulam lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sonone, Rupali L., E-mail: vaidehisonone@gmail.com; Jain, Sudhir R., E-mail: vaidehisonone@gmail.com [Department of Physics, University of Pune, Pune-411007, India and Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the β-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA.

  10. New histone supply regulates replication fork speed and PCNA unloading

    DEFF Research Database (Denmark)

    Mejlvang, Jakob; Feng, Yunpeng; Alabert, Constance

    2014-01-01

    Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that re...

  11. Stabilizing the thermal lattice Boltzmann method by spatial filtering.

    Science.gov (United States)

    Gillissen, J J J

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  12. Stability considerations and a double-diffusive convection model for solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, E.I.H.; Sha, W.T.; Soo, S.L.

    1979-04-01

    A brief survey is made on the basic principles, current designs and economic advantages of salinity-gradient solar ponds as solar collectors and reservoirs. Solar ponds are well-suited for various AIPH (agricultural and industrial process heat) applications, and as annual storage devices for space heating and cooling. The benefit of an efficient pond is demonstrated via a preliminary economic analysis which suggests the idea of energy farming as a profitable alternative for land usage in the face of rising fuel cost. The economy and reliability of solar-pond operation depend crucially on the stability of the nonconvective gradient zone against disturbances such as generated by a severe weather condition. Attention is focused on the subject of stability, and pertinent existing results are summarized and discussed. Details of the derivation of three-dimensional stability criteria for thermohaline convection with linear gradients are presented. Ten key questions pertaining to stability are posed, whose answers must be sought through extensive analytical and numerical studies. Possible methods of approach toward enhancing solar-pond stability are also discussed. For the numerical studies of pond behavior and stability characteristics, a double-diffusive convection model is proposed. The model can be constructed by extending the three-dimensional thermohydrodynamic computer code COMMIX-SA, following the necessary steps outlined; computational plans are described. Similarities exist between the halothermocline and the thermocline storage systems, and an extended COMMIX-SA will be a valuable tool for the investigation of both.

  13. Aeroelastic Stability of Suspension Bridges using CFD

    DEFF Research Database (Denmark)

    Stærdahl, Jesper Winther; Sørensen, Niels; Nielsen, Søren R.K.

    2007-01-01

    using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction......In recent years large span suspension bridges with very thin and slender profiles have been built without proportional increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis...... of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives...

  14. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  15. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination.

    Science.gov (United States)

    Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E

    2010-01-01

    Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.

  16. Thermodynamics and stability of flat anti-de Sitter black strings

    International Nuclear Information System (INIS)

    Chen Si; Schleich, Kristin; Witt, Donald M.

    2008-01-01

    We examine the thermodynamics and stability of 5-dimensional flat anti-de Sitter (AdS) black strings, locally asymptotically anti-de Sitter spacetimes whose spatial sections are AdS black holes with Ricci flat horizons. We find that there is a phase transition for the flat AdS black string when the AdS soliton string is chosen as the thermal background. We find that this bulk phase transition corresponds to a 4-dimensional flat AdS black hole to AdS soliton phase transition on the boundary Karch-Randall branes. We compute the possibility of a phase transition from a flat AdS black string to a 5-dimensional AdS soliton and show that, though possible for certain thin black strings, the transition to the AdS soliton string is preferred. In contrast to the case of the Schwarzschild-AdS black string, we find that the specific heat of the flat AdS black string is always positive; hence it is thermodynamically stable. We show numerically that both the flat AdS black string and AdS soliton string are free of a Gregory-Laflamme instability for all values of the mass parameter. Therefore thermodynamic stability implies perturbative stability for this spacetime. This may indicate that a generalization of the Gubser-Mitra conjecture, in which the assumption of a translational killing vector is weakened to that of a conformal killing vector of translational form, holds under certain conditions.

  17. Three-dimensional gravity and instability of $\\text{AdS}_{3}$

    OpenAIRE

    Jałmużna, Joanna

    2013-01-01

    This is an extended version of my lecture at the LIII Cracow School of Theoretical Physics in Zakopane in which I presented the results of joint work with Piotr Bizo\\'n concerning (in)stability of the three-dimensional anti-de Sitter spacetime.

  18. A model for moisture-induced dimensional instability in printing paper

    NARCIS (Netherlands)

    van der Sman, C.G.; Bosco, E.; Peerlings, R.H.J.

    2016-01-01

    The dimensional stability of printing paper is strongly related to changes in moisture content. This represents a major issue in the field of digital ink-jet printing, where moisture induced reversible and irreversible deformations may compromise printing quality and runnability. This paper proposes

  19. Homological stability for unordered configuration spaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2013-01-01

    This paper consists of two related parts. In the first part we give a self-contained proof of homological stability for the spaces C_n(M;X) of configurations of n unordered points in a connected open manifold M with labels in a path-connected space X, with the best possible integral stability range...... of the spaces C_n(M) can be considered stable when M is a closed manifold. In this case there are no stabilisation maps, but one may still ask if the dimensions of the homology groups over some field stabilise with n. We prove that this is true when M is odd-dimensional, or when the field is F_2 or Q...

  20. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading

    DEFF Research Database (Denmark)

    Nield, Grace A.; Barletta, Valentina Roberta; Bordoni, Andrea

    2014-01-01

    Since 1995 several ice shelves in the Northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, invoking a solid Earth response that has been recorded at continuous GPS (cGPS) stations. A previous attempt to model the observation of rapid uplift following the 2002 breakup...... of the Palmer cGPS station since 2002 cannot be explained by elastic deformation alone. We apply a viscoelastic model with linear Maxwell rheology to predict uplift since 1995 and test the fit to the Palmer cGPS time series, finding a well constrained upper mantle viscosity but less sensitivity to lithospheric...... thickness. We further constrain the best fitting Earth model by including six cGPS stations deployed after 2009 (the LARISSA network), with vertical velocities in the range 1.7 to 14.9 mm/yr. This results in a best fitting Earth model with lithospheric thickness of 100–140 km and upper mantle viscosity of 6...

  1. On the physical problem of spatial dimensions: an alternative procedure to stability arguments

    International Nuclear Information System (INIS)

    Caruso, F.; Xavier, R.M.

    1986-01-01

    The three-dimensionality of space as a physical problem is discussed. Consideration on previous works is done, in which it is showed that the n-dimensional solar system can be stable only for n=3 and, from quantum mechanics, that this is the case also for hydrogen atons. Thus the epistemological consequences of the use of the stability postulate to derive spatial dimensionality is critically reviewed. The distinguished role of Maxwell's eletromagnetic theory in the determination of space dimensionality is stressed. 'Metric versus' 'topological' 'arguments are compared and shown to apply respectively to 'matter' and 'fields'. (G.D.F.) [pt

  2. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    Science.gov (United States)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  3. Stability of interfacial waves in two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The influence of the interfacial pressure and the flow distribution in the one-dimensional two-fluid model on the stability problems of interfacial waves is discussed. With a proper formulation of the interfacial pressure, the following two-phase phenomena can be predicted from the stability and stationary criteria of the interfacial waves: onset of slug flow, stationary hydraulic jump in a stratified flow, flooding in a vertical pipe, and the critical void fraction of a bubbly flow. It can be concluded that the interfacial pressure plays an important role in the interfacial wave propagation of the two-fluid model. The flow distribution parameter may enhance the flow stability range, but only plays a minor role in the two-phase characteristics. (author). 20 refs., 3 tabs., 4 figs.

  4. Loaded and unloaded jump performance of top-level volleyball players from different age categories.

    Science.gov (United States)

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo; Loturco, Irineu

    2017-09-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete's body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (pjump squat was higher for under-21 players than under-17 players (pjump performances across different age categories of top-level volleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group.

  5. An algorithm for engineering regime shifts in one-dimensional dynamical systems

    Science.gov (United States)

    Tan, James P. L.

    2018-01-01

    Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.

  6. Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus

    Science.gov (United States)

    Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas

    2017-11-01

    Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.

  7. Stabilization of atoms with nonzero magnetic quantum numbers

    International Nuclear Information System (INIS)

    Sundaram, B.; Jensen, R.V.

    1993-01-01

    A classical analysis of the interaction of an atomic electron with an oscillating electric field with arbitrary initial quantum number, n, magnetic quantum number, m > 0, field strength, and frequency shows that the classical, dynamics for the perturbed electron can be stabilized for large fields and high frequencies. Using a four-dimensional map approximation to the classical dynamics, explicit expressions are obtained for the full parameter dependence of the boundaries of stability surrounding the open-quotes death valleyclose quotes of rapid classical ionization. A preliminary analysis of the quantum dynamics in terms of the quasienergy states associated with the corresponding quantum map is also included with particular emphasis on the role of unstable classical structures in stabilizing atoms. Together, these results provide motivation and direction for further theoretical and experimental studies of stabilization of atoms (and molecules) in super-intense microwave and laser fields

  8. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases

    Science.gov (United States)

    Chacon-Cabrera, Alba; Lund-Palau, Helena; Gea, Joaquim; Barreiro, Esther

    2016-01-01

    Background Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. Methods Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. Results Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. Conclusions A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised. PMID

  9. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.

    2017-01-01

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  10. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  11. Mode instability in one-dimensional anharmonic lattices: Variational equation approach

    Science.gov (United States)

    Yoshimura, K.

    1999-03-01

    The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.

  12. Stability Estimates for a Twisted Rod Under Terminal Loads: A Three-dimensional Study

    KAUST Repository

    Majumdar, Apala

    2012-03-01

    The stability of an inextensible unshearable elastic rod with quadratic strain energy density subject to end loads is considered. We study the second variation of the corresponding rod-energy, making a distinction between in-plane and out-of-plane perturbations and isotropic and anisotropic cross-sections, respectively. In all cases, we demonstrate that the naturally straight state is a local energy minimizer in parameter regimes specified by material constants. These stability results are also accompanied by instability results in parameter regimes defined in terms of material constants. © 2012 Springer Science+Business Media B.V.

  13. Stability Estimates for a Twisted Rod Under Terminal Loads: A Three-dimensional Study

    KAUST Repository

    Majumdar, Apala; Prior, Christopher; Goriely, Alain

    2012-01-01

    The stability of an inextensible unshearable elastic rod with quadratic strain energy density subject to end loads is considered. We study the second variation of the corresponding rod-energy, making a distinction between in-plane and out-of-plane perturbations and isotropic and anisotropic cross-sections, respectively. In all cases, we demonstrate that the naturally straight state is a local energy minimizer in parameter regimes specified by material constants. These stability results are also accompanied by instability results in parameter regimes defined in terms of material constants. © 2012 Springer Science+Business Media B.V.

  14. Load-Unload Response Ratio (LURR), Accelerating Moment/Energy Release (AM/ER) and State Vector Saltation as Precursors to Failure of Rock Specimens

    Science.gov (United States)

    Yin, Xiang-Chu; Yu, Huai-Zhong; Kukshenko, Victor; Xu, Zhao-Yong; Wu, Zhishen; Li, Min; Peng, Keyin; Elizarov, Surgey; Li, Qi

    2004-12-01

    In order to verify some precursors such as LURR (Load/Unload Response Ratio) and AER (Accelerating Energy Release) before large earthquakes or macro-fracture in heterogeneous brittle media, four acoustic emission experiments involving large rock specimens under tri-axial stress, have been conducted. The specimens were loaded in two ways: monotonous or cycling. The experimental results confirm that LURR and AER are precursors of macro-fracture in brittle media. A new measure called the state vector has been proposed to describe the damage evolution of loaded rock specimens.

  15. MESSENGER Observations of Extreme Magnetic Tail Loading and Unloading During its Third Flyby of Mercury: Substorms?

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Schriver, David; Solomon, Sean C.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury on September 29, 2009, a variable interplanetary magnetic field produced a series of several minute enhancements of the tail magnetic field hy factors of approx. 2 to 3.5. The magnetic field flaring during these intervals indicates that they result from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions, signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30% of the magnetic flux emanating from Mercury, and may have reached 100% for the largest event. In this case the dayside magnetic shielding is reduced and solar wind flux impacting the surface may be greatly enhanced. Despite the intensity of these events and their similarity to terrestrial substorm magnetic flux dynamics, no energetic charged particles with energies greater than 36 keV were observed.

  16. Stress analysis on the valve of the rotating shield, coupled with fuel element loading-unloading machine in a PWR pressure vessel

    International Nuclear Information System (INIS)

    Albuquerque, L.B. de; Jesus Miranda, C.A. de.

    1992-01-01

    A finite element static analysis was performed with the valve of the Rotating Shield (RS) which is coupled with the Fuel. Element Loading-Unloading Machine under OBE earthquake. The applied leads were obtained from a previous seismic analysis with the response spectrum method of the MTC under OBE load. A 3-D model with shell elements was developed for the valve body and for a part of the RS. The ANSYS program, version 4.4 A, was used. The two main scopes of this work were to verify the valve stresses and the functionality of its moving parts during the earthquake. (author)

  17. Spheromak tilting and its stability control

    International Nuclear Information System (INIS)

    Hayashi, T.; Sato, T.

    1983-01-01

    Spheromak tilting instability was studied. A numerical technique to create a rather arbitrarily-shaped spheromak like the one with a flux hole was investigated. The dynamics governing the tilting instability, namely, the influence of the magnetic index, the toroidal current (q-profile) and the resistivity upon the tilting growth rate, and the roles of magnetc reconnection upon the nonlinear development were studied. The best way to control the tilting instability was invented. The stabilizing effects of the vertical wall, the isolated conducting cylindrical belt, and the horizontal wall were studied. Central pole stabilization was also investigated. The influence of the wall condition, namely, whether the wall acted as a flux conserver in the spheromak creation stage or not is discussed. The present study has shown that the three- dimensional simulation is indeed useful and practical in not only studying the underlying physics but also finding a stabilization technique of spheromaks. (Kato, T.)

  18. Metal ion-specific thermal stability of bacterial S-Layers

    Energy Technology Data Exchange (ETDEWEB)

    Drobot, Bjoern; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry; Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biophysics

    2016-07-01

    Many bacteria are covered by a surface layer (S-layer), i.e., a para-crystalline two-dimensional array of proteins which control cell shape, act as molecular sieves and have potential applications as radionuclide-binding material for bioremediation of polluted areas. Knowledge and control of the metal-dependent stability of the purified proteins is required for their technical application. Here, we have explored by differential scanning calorimetry the thermal stability of the S-layer protein slp-B53 from Lysinibacillus sphaericus, a Gram-positive bacterium isolated from a uranium mining waste pile [1].

  19. Apparatus for unloading nuclear fuel pellets from a sintering boat

    International Nuclear Information System (INIS)

    Bucher, G.D.; Raymond, T.E.

    1987-01-01

    An apparatus is described for unloading nuclear fuel pellets from a loaded sintering boat having an open top, comprising: (a) means for receiving the boat in an upright position with the pellets contained therein, the boat receiving means including a platform for supporting the loaded boat in the upright position, the boat supporting platform having first and second portions; (b) means for clamping the boat including a pair of plates disposed at lateral sides of the boat and being movable in a first direction relative to one another for applying clamping forces to the boat on the platform and in a second direction relative to one another for releasing the clamping forces from the boat. The pair of plates have inner surfaces facing toward one another, the first and second platform portions of the boat supporting platform being mounted to the plates on the respective facing surfaces thereof and disposed in a common plane. One of the plates and one of the platform portions mounted thereto are disposed in a stationary position and the other of the plates and the other of the platform portions mounted thereto are movable relative thereto in the first and second directions for applying and releasing clamping forces to and from the boat while the boat is supported in the upright position by the platform portions; (c) means for transferring the clamped boat from the upright position to an inverted position and then back to the upright position; and (d) means of receiving the pellets from the clamped boat as the boat is being transferred from the upright position to the inverted position

  20. Dynamics, stability analysis and quantization of β-Fermi–Pasta ...

    Indian Academy of Sciences (India)

    We study the well-known one-dimensional problem of particles with nonlinear interaction. The -Fermi–Pasta–Ulam model is the special case of quadratic and quartic interaction potential among nearest neighbours. We enumerate and classify the simple periodic orbits for this system and find the stability zones, ...

  1. Stability and instability of stationary solutions for sublinear parabolic equations

    Science.gov (United States)

    Kajikiya, Ryuji

    2018-01-01

    In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.

  2. Elastocaloric effect of Ni-Ti wire for application in a cooling device

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Mikkelsen, Lars Pilgaard

    2015-01-01

    We report on the elastocaloric effect of a superelastic Ni-Ti wire to be used in a cooling device. Initially, each evaluated wire was subjected to 400 loading/unloading training cycles in order to stabilize its superelastic behavior. The wires were trained at different temperatures, which lead...... to different stabilized superelastic behaviors. The stabilized (trained) wires were further tested isothermally (at low strain-rate) and adiabatically (at high strain-rate) at different temperatures (from 312 K to 342 K). We studied the impact of the training temperature and resulting superelastic behavior...... that there are two sources of the temperature irreversibilities: the hysteresis (and related entropy generation) and the temporary residual strain immediately after unloading, respectively. The latter results in the temporary bending of the wire and reduced negative adiabatic temperature change. The paper also shows...

  3. In Vitro Evaluation of Dimensional Stability of Alginate Impressions after Disinfection by Spray and Immersion Methods

    Directory of Open Access Journals (Sweden)

    Fahimeh Hamedi Rad

    2010-12-01

    Full Text Available Background and aims. The most common method for alginate impression disinfection is spraying it with disinfecting agents, but some studies have shown that these impressions can be immersed, too. The aim of this study was to evaluate the dimensional stability of alginate impressions following disinfecting by spray and immersion methods. Materials and methods. Four common disinfecting agents (Sodium Hypochlorite, Micro 10, Glutaraldehyde and Deconex were selected and the impressions (n=108 were divided into four groups (n=24 and eight subgroups (n=12 for disinfecting by any of the four above-mentioned agents by spray or immersion methods. The control group (n=12 was not disinfected. Then the impressions were poured by type III Dental Stone Plaster in a standard method. The results were analyzed by descriptive methods (mean and standard deviation, t-test, two-way analysis of variance (ANOVA and Duncan test, using SPSS 14.0 software for windows. Results. The mean changes of length and height were significant between the various groups and disinfecting methods. Regarding the length, the greatest and the least amounts were related to Deconex and Micro 10 in the immersion method, respectively. Regarding height, the greatest and the least amounts were related to Glutaraldehyde and Deconex in the immersion method, respectively. Conclusion. Disinfecting alginate impressions by Sodium Hypochlorite, Deconex and Glutaraldehyde by immersion method is not recommended and it is better to disinfect alginate impressions by spraying of Micro 10, Sodium Hypochlorite, Glutaraldehyde and immersion in Micro 10.

  4. The dimensional stability and elastic modulus of cemented simulant Winfrith reactor (SGHWR) sludge

    International Nuclear Information System (INIS)

    Holland, T.R.; Lee, D.J.

    1985-12-01

    Dimensional changes and elastic modulus have been monitored on cemented simulant sludge stored in various environments. Specimens prepared using a blended cement show no serious detrimental effects during sealed storage, underwater storage or freeze/thaw cycling. (author)

  5. Instability of higher dimensional Yang-Mills systems

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1983-01-01

    We investigate the stability of Poincare xO(3) invariant solutions for a pure semi-simple Yang-Mills, as well as Yang-Mills coupled to gravity in 6-dimensional space-time compactified over M 4 xS 2 . In contrast to the Maxwell U(1) theory (IC-82/208) in six dimensions coupled with gravity and investigated previously, the present theory exhibits tachyonic excitations and is unstable. (author)

  6. Evaluation of Nucleic Acid Stabilization Products for Ambient Temperature Shipping and Storage of Viral RNA and Antibody in a Dried Whole Blood Format

    Science.gov (United States)

    Dauner, Allison L.; Gilliland, Theron C.; Mitra, Indrani; Pal, Subhamoy; Morrison, Amy C.; Hontz, Robert D.; Wu, Shuenn-Jue L.

    2015-01-01

    Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6–97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing. PMID:25940193

  7. Stabilization of a locally minimal forest

    Science.gov (United States)

    Ivanov, A. O.; Mel'nikova, A. E.; Tuzhilin, A. A.

    2014-03-01

    The method of partial stabilization of locally minimal networks, which was invented by Ivanov and Tuzhilin to construct examples of shortest trees with given topology, is developed. According to this method, boundary vertices of degree 2 are not added to all edges of the original locally minimal tree, but only to some of them. The problem of partial stabilization of locally minimal trees in a finite-dimensional Euclidean space is solved completely in the paper, that is, without any restrictions imposed on the number of edges remaining free of subdivision. A criterion for the realizability of such stabilization is established. In addition, the general problem of searching for the shortest forest connecting a finite family of boundary compact sets in an arbitrary metric space is formalized; it is shown that such forests exist for any family of compact sets if and only if for any finite subset of the ambient space there exists a shortest tree connecting it. The theory developed here allows us to establish further generalizations of the stabilization theorem both for arbitrary metric spaces and for metric spaces with some special properties. Bibliography: 10 titles.

  8. Three-Dimensional Model Test Study of a CUBIPOD Armoured Roundhead

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Aldama, J. M. Urrutia

    ‐crested wave tests were performed as well. One objective of the tests was to compare the stability of CUBIPOD armoured roundheads to the stability of cube armoured roundheads. This could be done by choosing a model test setup identical to that previous used in a study of the stability of a cube armoured......The present report presents results from a three‐dimensional model test study carried out at Aalborg University in the period September 2008 - December 2008. The model tests were carried out to study the stability of a CUBIPOD armoured roundhead under short‐crested wave attack. Few long...... roundhead for the Punta Langosteira breakwater at La Coruna. To have a direct comparison some of the new test series were reproduced with cubes also. This was done with identical steering signals send to the paddles....

  9. Foundations of the theory of three-dimensional quadrupolar mass spectrometry. 1

    International Nuclear Information System (INIS)

    Sheretov, Eh.P.

    1979-01-01

    The basic principles of the theory of three-dimensional quadrupolar mass spectrometry are developed. It is shown that the ''stretching'' of the electrode system of the sensor of a three-dimensional quadrupolar mass spectrometer in the direction of an axis (introduction of the system assymetry) leads to a sharp decrease of the high-frequency field effect on the particle trajectory in this direction. Presented are ratios determining the configuration of electrode systems of sensors of flight-type quadrupolar mass spectrometers. Specific features of the stability diagram for such analyzers are discussed. It is shown that the property detected makes it possible to develop new promising time-of-flight three-dimensional quadrupolar mass spectrometers

  10. MARG1D: One dimensional outer region matching data code

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1995-08-01

    A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)

  11. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    Science.gov (United States)

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  12. M-Theory Model-Building and Proton Stability

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John; Faraggi, Alon E.

    1998-01-01

    We study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. We exhibit the underlying geometric (bosonic) interpretation of these models, which have a $Z_2 \\times Z_2$ orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory.

  13. M-theory model-building and proton stability

    International Nuclear Information System (INIS)

    Ellis, J.; Faraggi, A.E.; Nanopoulos, D.V.; Houston Advanced Research Center, The Woodlands, TX; Academy of Athens

    1997-09-01

    The authors study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. The authors exhibit the underlying geometric (bosonic) interpretation of these models, which have a Z 2 x Z 2 orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory

  14. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.

    1997-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)

  15. A double-pass interferometer for measurement of dimensional changes

    International Nuclear Information System (INIS)

    Ren, Dongmei; Lawton, K M; Miller, J A

    2008-01-01

    A double-pass interferometer was developed for measuring dimensional changes of materials in a nanoscale absolute interferometric dilatometer. This interferometer realized the double-ended measurement of a sample using a single-detection double-pass interference system. The nearly balanced design, in which the measurement beam and the reference beam have equal optical path lengths except for the path difference caused by the sample itself, makes this interferometer have high stability, which is verified by the measurement of a quasi-zero-length sample. The preliminary experiments and uncertainty analysis show that this interferometer should be able to measure dimensional changes with characteristic uncertainty at the nanometer level

  16. Effect of mobilities and electric field on the stability of magnetized positive column

    International Nuclear Information System (INIS)

    Dogra, V.K.; Uberoi, M.S.

    1983-01-01

    The effect of ratio of the mobilities of electrons and ions and non-dimensional electric field, on the stability of magnetized positive column for all unstable modes is studied in a self-consistent formulation for the perturbations of plasma density and electric potential. The minimum non-dimensional electric field at which magnetized positive column becomes unstable for different ratios of the mobilities of electrons and ions is also investigated. (author)

  17. Application of the DC potential drop and the partial unloading methods to fracture mechanics tests

    International Nuclear Information System (INIS)

    Heerens, J.; Schwalbe, K.H.; Hellmann, D.; Knaack, J.; Mueller-Roos, J.

    1985-01-01

    The ability of the DC potential drop method and the partial unloading technique to measure crack growth and to detect initation of crack growth has been investigated using a number of steels and aluminium alloys. It was found that within the range of parameters investigated both of these methods can be recommended for the determination of the R-curve; however, since at small amounts of crack growth the DC potential drop method gave more consistent results it is therefore considered to be superior. The initation values J(0) of J determined by fractography were compared with J(Ic) as obtained by current practice. It was found that J(Ic) is poorly related to initation or to specific amount of crack growth. A modification of the J(Ic) procedure is proposed. Two contacting arrangements of the DC potential drop method were checked for initation detection: one indicates initation by a potential minimum (related to a J value J(min)), the other by the intersection of the R-curve with the blunting line (related to a J value J(int)). (orig.) [de

  18. Multi-dimensional cosmology and GUP

    International Nuclear Information System (INIS)

    Zeynali, K.; Motavalli, H.; Darabi, F.

    2012-01-01

    We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions

  19. Multi-dimensional cosmology and GUP

    Energy Technology Data Exchange (ETDEWEB)

    Zeynali, K.; Motavalli, H. [Department of Theoretical Physics and Astrophysics, University of Tabriz, 51666-16471, Tabriz (Iran, Islamic Republic of); Darabi, F., E-mail: k.zeinali@arums.ac.ir, E-mail: f.darabi@azaruniv.edu, E-mail: motavalli@tabrizu.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of)

    2012-12-01

    We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.

  20. A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry

    International Nuclear Information System (INIS)

    Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan

    1988-01-01

    The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory

  1. The dimensional accuracy of the sintered billets

    Directory of Open Access Journals (Sweden)

    Чингиз Ариф оглы Алиев

    2016-01-01

    Full Text Available The article presents the results of assessing the impact of the behaviour stability of the components included in the compositions and process parameters of their production, on the dimensional accuracy of workpieces. It was found that by increasing the amount of oxide in the composition is greater compaction of the sintered billet in the process of heat treatment. This also increases the density of all components of the composition

  2. CP violation and moduli stabilization in heterotic models

    International Nuclear Information System (INIS)

    Giedt, Joel

    2002-01-01

    The role of moduli stabilization in predictions for CP violation is examined in the context of four-dimensional effective supergravity models obtained from the weakly coupled heterotic string. They point out that while stabilization of compactification moduli has been studied extensively, the determination of background values for other scalar by dynamical means has not been subjected to the same degree of scrutiny. These other complex scalars are important potential sources of CP violation and they show in a simple model how their background values (including complex phases) may be determined from the minimization of the supergravity scalar potential, subject to the constraint of vanishing cosmological constant

  3. Stability of hypersonic boundary-layer flows with chemistry

    Science.gov (United States)

    Reed, Helen L.; Stuckert, Gregory K.; Haynes, Timothy S.

    1993-01-01

    The effects of nonequilibrium chemistry and three dimensionality on the stability characteristics of hypersonic flows are discussed. In two-dimensional (2-D) and axisymmetric flows, the inclusion of chemistry causes a shift of the second mode of Mack to lower frequencies. This is found to be due to the increase in size of the region of relative supersonic flow because of the lower speeds of sound in the relatively cooler boundary layers. Although this shift in frequency is present in both the equilibrium and nonequilibrium air results, the equilibrium approximation predicts modes which are not observed in the nonequilibrium calculations (for the flight conditions considered). These modes are superpositions of incoming and outgoing unstable disturbances which travel supersonically relative to the boundary-layer edge velocity. Such solutions are possible because of the finite shock stand-off distance. Their corresponding wall-normal profiles exhibit an oscillatory behavior in the inviscid region between the boundary-layer edge and the bow shock. For the examination of three-dimensional (3-D) effects, a rotating cone is used as a model of a swept wing. An increase of stagnation temperature is found to be only slightly stabilizing. The correlation of transition location (N = 9) with parameters describing the crossflow profile is discussed. Transition location does not correlate with the traditional crossflow Reynolds number. A new parameter that appears to correlate for boundary-layer flow was found. A verification with experiments on a yawed cone is provided.

  4. Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions

    CERN Document Server

    Michel, Anthony N; Liu, Derong

    2015-01-01

    The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.   The authors cover the following four general topics:   -          Representation and modeling of dynamical systems of the types described above -          Presentation of Lyapunov and Lagrange stability theory for dynamical sy...

  5. Radion cosmology and stabilization

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2014-01-01

    We solve the Einstein equation in five-dimensional space-time for Randall-Sundrum Brane world model with time dependent radion field to study the variation of brane scale factor with time. We have shown that as the radion field decreases with time compactifying the extra dimension, the scale factor increases exponentially with time leading to an inflationary scenario. We have also proposed a time dependent generalization of the Goldberger-Wise moduli stabilization mechanism to explain the time evolution of the radion field to reach a stable value, after which the scale factor on the brane exits from inflationary expansion. (orig.)

  6. Stability of the Filter Equation for a Time-Dependent Signal on Rd

    International Nuclear Information System (INIS)

    Stannat, Wilhelm

    2005-01-01

    Stability of the pathwise filter equation for a time-dependent signal process induced by a d-dimensional stochastic differential equation and a linear observation is studied, using a variational approach. A lower bound for the rate of stability is identified in terms of the mass-gap of a parabolic ground state transform associated with the generator of the signal process and the square of the observation. The lower bound can be easily calculated a priori and provides hints on how precisely to measure the signal in order to reach a certain rate of stability. Ergodicity of the signal process is not needed

  7. Three-dimensional submodel for modelling of joints in precast concrete structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    The shear capacity of in-situ cast joints is crucial to the overall stability of precast concrete structures. The current design is based on empirical formulas, which account for neither the reinforcement layout of the joint nor the three-dimensional stress states present within the joint...

  8. Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...... of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped...... narrow spikes. The influence of the point impurities on this dynamics is also investigated....

  9. An Improved Backstepping-Based Controller for Three-Dimensional Trajectory Tracking of a Midwater Trawl System

    Directory of Open Access Journals (Sweden)

    Zhao Yan

    2016-01-01

    Full Text Available An improved backstepping control method for three-dimensional trajectory tracking of a midwater trawl system is investigated. A new mathematical model of the trawl system while considering the horizontal expansion effect of two otter boards is presented based on the Newton Euler method. Subsequently, an active path tracking strategy of the trawl system based on the backstepping method is proposed. The nonstrict feedback characteristic of the proposed model employs a control allocation method and several parallel nonlinear PID (Proportion Integration Differentiation controllers to eliminate the high-order state variables. Then, the stability analysis by the Lyapunov Stability Theory shows that the proposed controller can maintain the stability of the trawl system even with the presence of external disturbances. To validate the proposed controller, a simulation comparison with a linear PID controller was conducted. The simulation results illustrate that the improved backstepping controller is effective for three-dimensional trajectory tracking of the midwater trawl system.

  10. Evaluation of applicability of lead damper to 3-dimensional isolation system based on loading tests

    International Nuclear Information System (INIS)

    Matsuda, Akihiro

    2003-01-01

    To develop a damper for 3-dimensional base isolation system, horizontal and vertical mechanical properties, effect of loading frequency on vertical mechanical properties, coupled properties between horizontal and vertical directions, stability performance due to cyclic deformation are evaluated experimentally using scale models of lead damper originally developed for horizontal base isolation system. Loading test results are summarized as follows; 1) The lead damper has good vertical damping performance, in that the vertical yield load of the lead damper is three times as large as that for the horizontal direction, and the lead damper shows plastic behavior in the small deformation region. 2) The lead damper shows enough stability for static vertical displacement of ±40 mm. 3) the lead damper shows high stability performance for dynamic cyclic loading test using motions of isolation layer calculated by earthquake response analysis of FBR building subjected to S2-earthquake motion. Thus, applicability of the lead damper to 3-dimensional isolation system is shown from these results. (author)

  11. Evaluation of stability of foundation ground during earthquake, 6

    International Nuclear Information System (INIS)

    Kanatani, Mamoru; Nishi, Koichi

    1988-01-01

    The aseismatic capability of nuclear power plants located on Quaternary grounds, which consist of dense sand or sandy gravel, is heavily dependent on the stability of foundation grounds during earthquakes. In order to investigate into the stability of ground more in detail, it is necessary to develop the nonlinear earthquake response analysis method which can simulate the inelastic behavior of soil. In this report, the newly developed nonlinear response analysis method based on the effective stress, the results of simulation using the results of vibration table test and centrifuge test, and the case studies on two-dimensional soil-structure interaction problems are described. Soil was regarded as the two-phase mixture composed of soil particle skeleton and pore water. In the equation of motion taking their interaction into account, the elastoplastic constitutive equation that can simulate the inelastic deformation behavior of soil at the time of repeated shearing in two or three-dimensional field was introduced, and the analysis code which successively traces the behavior of ground at the time of earthquakes using FEM was developed. (K.I.)

  12. Liquid structure and freezing of the two-dimensional classical electron fluid

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Rovere, M.; Tosi, M.P.

    1984-11-01

    Accurate theoretical results are reported for the pair correlation function of the classical two-dimensional electron liquid with r -1 interactions at strong coupling. The approach involves an evaluation of the bridge diagram corrections to the hypernetted-chain approximation, the role of low dimensionality being evident, relative to the case of the three-dimensional classical plasma, in an enhanced sensitivity to long range correlations. The liquid structure results are utilized in a density-wave theory of first-order freezing into the triangular lattice, the calculated coupling strength at freezing being in reasonable agreement with computer simulation results and with data on electron films on a liquid-He surface. The stability of the triangular electron lattice against deformation into a body-centered rectangular lattice is also discussed. (author)

  13. Dimensional quantization effects in the thermodynamics of conductive filaments

    Science.gov (United States)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  14. Optomechanical stability design of space optical mapping camera

    Science.gov (United States)

    Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie

    2018-01-01

    According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.

  15. Stable high efficiency two-dimensional perovskite solar cells via cesium doping

    KAUST Repository

    Zhang, Xu

    2017-08-15

    Two-dimensional (2D) organic-inorganic perovskites have recently emerged as one of the most important thin-film solar cell materials owing to their excellent environmental stability. The remaining major pitfall is their relatively poor photovoltaic performance in contrast to 3D perovskites. In this work we demonstrate cesium cation (Cs) doped 2D (BA)(MA)PbI perovskite solar cells giving a power conversion efficiency (PCE) as high as 13.7%, the highest among the reported 2D devices, with excellent humidity resistance. The enhanced efficiency from 12.3% (without Cs) to 13.7% (with 5% Cs) is attributed to perfectly controlled crystal orientation, an increased grain size of the 2D planes, superior surface quality, reduced trap-state density, enhanced charge-carrier mobility and charge-transfer kinetics. Surprisingly, it is found that the Cs doping yields superior stability for the 2D perovskite solar cells when subjected to a high humidity environment without encapsulation. The device doped using 5% Cs degrades only ca. 10% after 1400 hours of exposure in 30% relative humidity (RH), and exhibits significantly improved stability under heating and high moisture environments. Our results provide an important step toward air-stable and fully printable low dimensional perovskites as a next-generation renewable energy source.

  16. Three-dimensional supramolecular architecture in imidazolium hydrogen 2,3,5,6-tetrafluoroterephthalate.

    Science.gov (United States)

    Yu, Li-Li; Cheng, Mei-Ling; Liu, Qi; Zhang, Zhi-Hui; Chen, Qun

    2010-04-01

    The asymmetric unit of the title salt formed between 2,3,5,6-tetrafluoroterephthalic acid (H(2)tfbdc) and imidazolium (ImH), C(3)H(5)N(2)(+).C(8)HF(4)O(4)(-), contains one Htfbdc(-) anion and one ImH(2)(+) cation, joined by a classical N-H...O hydrogen bond. The acid and base subunits are further linked by N-H...O and O-H...O hydrogen bonds into infinite two-dimensional layers with R(6)(5)(32) hydrogen-bond motifs. The resulting (4,4) network layers interpenetrate to produce an interlocked three-dimensional structure. The final three-dimensional supramolecular architecture is further stabilized by the linkages of two C-H...O interactions.

  17. Stability and instability of axisymmetric droplets in thermocapillary-driven thin films

    Science.gov (United States)

    Nicolaou, Zachary G.

    2018-03-01

    The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.

  18. Stability and Control of Human Trunk Movement During Walking.

    Science.gov (United States)

    Wu, Q.; Sepehri, N.; Thornton-Trump, A. B.; Alexander, M.

    1998-01-01

    A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov's stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.

  19. Stabilization of the Inverse Laplace Transform of Multiexponential Decay through Introduction of a Second Dimension

    Science.gov (United States)

    Celik, Hasan; Bouhrara, Mustapha; Reiter, David A.; Fishbein, Kenneth W.; Spencer, Richard G.

    2013-01-01

    We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay signal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The method is based on extension to a second, indirectly detected, dimension, that is, use of the established framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical results for signals comprised of discrete T1 and T2 relaxation components and experiments performed on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect to noise, as well as insensitivity to regularization in quantifying underlying relaxation components through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This improvement is demonstrated separately for two different inversion algorithms, nonnegative least squares and non-linear least squares, to indicate the generalizability of this approach. These results may have wide applicability in approaches to the Fredholm integral equation of the first kind. PMID:24035004

  20. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  1. Ideal Magnetohydrodynamic Stability of the NCSX

    International Nuclear Information System (INIS)

    Fu, Guo Yong; Isaev, Maxim Yu; Ku, Long-Poe; Mikhailov, M.; Redi, M.H; Sanchez, Raul; Subbotin, A; Hirshman, Steven Paul; Cooper, W. Anthony; Monticello, D.; Reiman, A.H.; Zarnstorff, M.C.

    2007-01-01

    The ideal magnetohydrodynamic (MHD) stability of the National Compact Stellarator Experiment (NCSX) is extensively analyzed using the most advanced three-dimensional MHD codes. It is shown that the NCSX is stable to finite-n MHD modes, including the vertical mode, external kink modes and ballooning modes. However, high-n external kink modes that peak near the plasma edge are found to be weakly unstable. A global calculation shows that finite-n ballooning modes are significantly more stable than the local infinite-n modes

  2. Stabilization of a locally minimal forest

    International Nuclear Information System (INIS)

    Ivanov, A O; Mel'nikova, A E; Tuzhilin, A A

    2014-01-01

    The method of partial stabilization of locally minimal networks, which was invented by Ivanov and Tuzhilin to construct examples of shortest trees with given topology, is developed. According to this method, boundary vertices of degree 2 are not added to all edges of the original locally minimal tree, but only to some of them. The problem of partial stabilization of locally minimal trees in a finite-dimensional Euclidean space is solved completely in the paper, that is, without any restrictions imposed on the number of edges remaining free of subdivision. A criterion for the realizability of such stabilization is established. In addition, the general problem of searching for the shortest forest connecting a finite family of boundary compact sets in an arbitrary metric space is formalized; it is shown that such forests exist for any family of compact sets if and only if for any finite subset of the ambient space there exists a shortest tree connecting it. The theory developed here allows us to establish further generalizations of the stabilization theorem both for arbitrary metric spaces and for metric spaces with some special properties. Bibliography: 10 titles

  3. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  4. Stabilization of compactification volume in a noncommutative mini-super-phase-space

    International Nuclear Information System (INIS)

    Khosravi, N.; Sepangi, H.R.; Sheikh-Jabbari, M.M.

    2007-01-01

    We consider a class of generalized FRW type metrics in the context of higher dimensional Einstein gravity in which the extra dimensions are allowed to have different scale factors. It is shown that noncommutativity between the momenta conjugate to the internal space scale factors controls the power-law behavior of the scale factors in the extra dimensions, taming it to an oscillatory behavior. Hence noncommutativity among the internal momenta of the mini-super-phase-space can be used to explain stabilization of the compactification volume of the internal space in a higher dimensional gravity theory

  5. Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2009-01-01

    Tendon tissue and the extracellular matrix of skeletal muscle respond to mechanical loading by increased collagen expression and synthesis. This response is likely a secondary effect of a mechanically induced expression of growth factors, including transforming growth factor-beta1 (TGF-beta1......) and insulin-like growth factor-I (IGF-I). It is not known whether unloading of tendon tissue can reduce the expression of collagen and collagen-inducing growth factors. Furthermore, the coordinated response of tendon and muscle tissue to disuse, followed by reloading, is unclear. Female Sprague-Dawley rats...... tissue growth factor (CTGF), myostatin, and IGF-I isoforms were measured by real-time RT-PCR in Achilles tendon and soleus muscle. The tendon mass was unchanged, while the muscle mass was reduced by 50% after HS (P

  6. Stationary states of the two-dimensional nonlinear Schrödinger model with disorder

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Hendriksen, D.; Christiansen, Peter Leth

    1998-01-01

    Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schrodinger equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model, otherwise unstable excitations are stabilized in the presence of disorder...

  7. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  8. Improving feature selection process resistance to failures caused by curse-of-dimensionality effects

    Czech Academy of Sciences Publication Activity Database

    Somol, Petr; Grim, Jiří; Novovičová, Jana; Pudil, P.

    2011-01-01

    Roč. 47, č. 3 (2011), s. 401-425 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : feature selection * curse of dimensionality * over-fitting * stability * machine learning * dimensionality reduction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/RO/somol-0368741.pdf

  9. Three dimensional tracking for volumetric spectral-domain optical coherence tomography.

    Science.gov (United States)

    Maguluri, Gopi; Mujat, Mircea; Park, B H; Kim, K H; Sun, Wei; Iftimia, N V; Ferguson, R D; Hammer, Daniel X; Chen, Teresa C; de Boer, Johannes F

    2007-12-10

    We present a three-dimensional (3D) tracker for a clinical ophthalmic spectral domain optical coherence tomography (SD-OCT) system that combines depth-tracking with lateral tracking, providing a stabilized reference frame for 3D data recording and post acquisition analysis. The depth-tracking system is implemented through a real-time dynamic feedback mechanism to compensate for motion artifact in the axial direction. Active monitoring of the retina and adapting the reference arm of the interferometer allowed the whole thickness of the retina to be stabilized to within +/-100 mum. We achieve a relatively constant SNR from image to image by stabilizing the image of the retina with respect to the depth dependent sensitivity of SD-OCT. The depth tracking range of our system is 5.2 mm in air and the depth is adjusted every frame.nhancement in the stability of the images with the depth-tracking algorithm is demonstrated on a healthy volunteer.

  10. Feedforward motor control in developmental dyslexia and developmental coordination disorder: Does comorbidity matter?

    Science.gov (United States)

    Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine

    2018-05-01

    Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Bifurcation analysis of a three dimensional system

    Directory of Open Access Journals (Sweden)

    Yongwen WANG

    2018-04-01

    Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.

  12. Solution-Based Processing and Applications of Two-Dimensional Heterostructures

    Science.gov (United States)

    Hersam, Mark

    Two-dimensional materials have emerged as promising candidates for next-generation electronics and optoelectronics, but advances in scalable nanomanufacturing are required to exploit this potential in real-world technology. This talk will explore methods for improving the uniformity of solution-processed two-dimensional materials with an eye toward realizing dispersions and inks that can be deposited into large-area thin-films. In particular, density gradient ultracentrifugation allows the solution-based isolation of graphene, boron nitride, montmorillonite, and transition metal dichalcogenides (e.g., MoS2, WS2, ReS2, MoSe2, WSe2) with homogeneous thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in organic solvents or deoxygenated aqueous surfactant solutions with the resulting phosphorene nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional material inks that are compatible with a range of additive manufacturing methods including inkjet, gravure, screen, and 3D printing. The resulting solution-processed two-dimensional heterostructures show promise in several device applications including photodiodes, anti-ambipolar transistors, gate-tunable memristors, and heterojunction photovoltaics.

  13. On increasing stability in the two dimensional inverse source scattering problem with many frequencies

    Science.gov (United States)

    Entekhabi, Mozhgan Nora; Isakov, Victor

    2018-05-01

    In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.

  14. Controlling the stability of nonlinear optical modes via electromagnetically induced transparency

    Science.gov (United States)

    Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun

    2018-02-01

    We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.

  15. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    Science.gov (United States)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  16. Influence of Kenaf Core Fiber Incorporation on the Mechanical Performance and Dimensional Stability of Oil Palm Fiber Reinforced Poly(lactic acid Hybrid Biocomposites

    Directory of Open Access Journals (Sweden)

    Abubakar Umar Birnin-Yauri

    2016-02-01

    Full Text Available This study demonstrated the reinforcing potential of kenaf core fiber (KCF to complement and sustain oil palm fiber supply chain in the production of natural fiber-thermoplastic biocomposites. The lignin-rich KCF was incorporated into cellulose-rich oil palm empty fruit bunch fiber (EFBF- and oil palm mesocarp fiber (OPMF-poly(lactic acid (PLA composites, aimed at achieving synergism. The hybrid biocomposites developed by melt blending and subsequent compression molding were characterized for possible application as an alternative to medium-density fiberboards. The mechanical properties and dimensional stability of both single fiber- and hybrid fiber-PLA biocomposites were evaluated and compared. The test results showed a synergistic improvement as a consequence of fiber hybridization. Also, the findings suggested the best material performance with the incorporation of 5% KCF into 55% EFBF or OPMF and 40% PLA matrix. The OPMF-KCF-PLA hybrid biocomposites gave better results than the EFBF-KCF-PLA hybrid biocomposites.

  17. Cosmic baldness and stability

    Energy Technology Data Exchange (ETDEWEB)

    Panchapakesan, N.; Lohiya, D.

    1985-04-01

    The stability of the de Sitter metric and the relevance of the initial state of a domain which approaches a de Sitter universe asymptotically are investigated analytically, adapting the one-dimensional wave equation with effective potential derived by Khanal and Panchapakesan (1981), for the perturbations of the de Sitter-Schwarzschild metric, to the de Sitter case. It is demonstrated that initial nonspherical perturbations do not increase exponentially with time but rather decay, the frozen modes exponentially and the backscattered perturbations of finite angular momentum l as t to the -(2l - l). It is concluded that the cosmic horizon is stable and has no hair. 14 references.

  18. Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts.

    Directory of Open Access Journals (Sweden)

    Ahmad Rohanian

    2014-12-01

    Full Text Available Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast.In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side and antero-posterior (distal of right first molar to the ipsilateral central incisor measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey's post-hoc test (P<0.05.Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001. Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours.Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5 alginates.

  19. Stability of icosahedral quasicrystals in a simple model with two-length scales

    International Nuclear Information System (INIS)

    Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2017-01-01

    The phase behaviour of a free energy functional with two length scales is examined by comparing the free energy of different candidate phases including three-dimensional icosahedral quasicrystals. Accurate free energy of the quasicrystals has been obtained using the recently developed projection method. The results reveal that the icosahedral quasicrystal and body-centred-cubic spherical phase are the stable ordered phases of the model. Furthermore, the difference between the results obtained from the projection method and the one-mode approximation has been analyzed in detail. The present study extends previous results on two-dimensional systems, demonstrating that the interactions between density waves at two length scales can stabilize two- and three-dimensional quasicrystals. (paper)

  20. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    Directory of Open Access Journals (Sweden)

    Wang Y

    2013-10-01

    Full Text Available Ying Wang, Qinfu Zhao, Yanchen Hu, Lizhang Sun, Ling Bai, Tongying Jiang, Siling WangDepartment of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People’s Republic of ChinaAbstract: The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15 with well-ordered two dimensional (2D cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC via the solvent deposition method. Scanning electron microscopy (SEM, N2 adsorption, differential scanning calorimetry (DSC, and X-ray diffraction (XRD were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41 has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and Cell Counting Kit (CCK-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous

  1. Stabilization of the hypersonic boundary layer by finite-amplitude streaks

    Science.gov (United States)

    Ren, Jie; Fu, Song; Hanifi, Ardeshir

    2016-02-01

    Stabilization of two-dimensional disturbances in hypersonic boundary layer flows by finite-amplitude streaks is investigated using nonlinear parabolized stability equations. The boundary-layer flows at Mach numbers 4.5 and 6.0 are studied in which both first and second modes are supported. The streaks considered here are driven either by the so-called optimal perturbations (Klebanoff-type) or the centrifugal instability (Görtler-type). When the streak amplitude is in an appropriate range, i.e., large enough to modulate the laminar boundary layer but low enough to not trigger secondary instability, both first and second modes can effectively be suppressed.

  2. Accuracy and dimensional stability of extended-pour and conventional alginate impression materials.

    Science.gov (United States)

    Imbery, Terence A; Nehring, Joshua; Janus, Charles; Moon, Peter C

    2010-01-01

    The authors conducted a study to determine if two irreversible hydrocolloid impression materials (Cavex ColorChange, Cavex Holland BV, Haarlem, Netherlands; Jeltrate Plus Antimicrobial Dustless Alginate Impression Material, Dentsply Caulk, Milford, Del.) stored for five days were dimensionally accurate. The authors modified Ivorine teeth (Columbia Dentoform, Long Island City, N.Y.) on a Dentoform model (1560 series model, Columbia Dentoform) to allow measurements of tooth and arch width. They made impressions and generated casts immediately and at five additional times. They recorded tooth and arch widths on the casts and compared the measurements with those for the standard model. Compared with measurements for the model, the greatest measured difference in casts was 0.003 inches for Cavex ColorChange (extended-pour alginate) and 0.005 inches for Jeltrate Plus Antimicrobial Dustless Alginate Impression Material (conventional alginate). The percentage of dimensional change ranged from -0.496 to 0.161 percent for the extended-pour alginate and from -0.174 to 0.912 percent for the conventional alginate. Results of analysis of variance and paired t tests indicated that when generated immediately and at day 5, casts produced from both impression materials were not statistically different from the standard model (P alginate materials can produce accurate impressions at day 5 for diagnostic casts and for fabrication of acrylic appliances.

  3. Study of three-dimensional effects on vortex breakdown

    Science.gov (United States)

    Salas, M. D.; Kuruvila, G.

    1988-01-01

    The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

  4. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  5. Specificities of one-dimensional dissipative magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Popov, P. V., E-mail: popov.pv@mipt.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

  6. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    Science.gov (United States)

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  7. One-dimensional Schroedinger equation as a classical dinamical problem

    International Nuclear Information System (INIS)

    Sanjines C, D.

    1990-01-01

    The analogy between the determination of the energy spectrum for periodic and localized 1 dimensional potentials and the stability for a particle under the influence of elastic forces is presented. For the particle to be confined in a bounded region of the phase space, it is necessary that the trace of the evolution matrix over a period of the periodic potential belongs to the interval (-2,2) [3]. Curiously, the same stability criterion might be applied to localized potentials and then determine the discrete spectrum for such potentials. We have found that for either periodic and localized potentials, the classical dynamical picture is more clarifying and the results are more compact. (Author)

  8. On the stability with respect to the form of scalar charged solitons with allowance for an electromagnetic field

    International Nuclear Information System (INIS)

    Rybakov, Yu.P.; Chakrabarti, S.

    1981-01-01

    Stability by the form of scalar charged solitons with account of electromagnetic field is studied by the Lyapunov method. Conditions of stability for the Sing model are investigated. The model is shown to admit the existence of pointless spherically-symmetric solitons in the absence of the electromagnetic field. Perturbation theory by a non-dimensional parameter is applied for evaluating the effect of electromagnetic field on the stability of pointless solitons [ru

  9. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    Science.gov (United States)

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p free weights.

  10. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  11. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  12. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  13. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    Science.gov (United States)

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  14. On the Linear Stability of the Fifth-Order WENO Discretization

    KAUST Repository

    Motamed, Mohammad

    2010-10-03

    We study the linear stability of the fifth-order Weighted Essentially Non-Oscillatory spatial discretization (WENO5) combined with explicit time stepping applied to the one-dimensional advection equation. We show that it is not necessary for the stability domain of the time integrator to include a part of the imaginary axis. In particular, we show that the combination of WENO5 with either the forward Euler method or a two-stage, second-order Runge-Kutta method is linearly stable provided very small time step-sizes are taken. We also consider fifth-order multistep time discretizations whose stability domains do not include the imaginary axis. These are found to be linearly stable with moderate time steps when combined with WENO5. In particular, the fifth-order extrapolated BDF scheme gave superior results in practice to high-order Runge-Kutta methods whose stability domain includes the imaginary axis. Numerical tests are presented which confirm the analysis. © Springer Science+Business Media, LLC 2010.

  15. Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates

    Science.gov (United States)

    Jochym-O'Connor, Tomas; Kubica, Aleksander; Yoder, Theodore J.

    2018-04-01

    Stabilizer codes are among the most successful quantum error-correcting codes, yet they have important limitations on their ability to fault tolerantly compute. Here, we introduce a new quantity, the disjointness of the stabilizer code, which, roughly speaking, is the number of mostly nonoverlapping representations of any given nontrivial logical Pauli operator. The notion of disjointness proves useful in limiting transversal gates on any error-detecting stabilizer code to a finite level of the Clifford hierarchy. For code families, we can similarly restrict logical operators implemented by constant-depth circuits. For instance, we show that it is impossible, with a constant-depth but possibly geometrically nonlocal circuit, to implement a logical non-Clifford gate on the standard two-dimensional surface code.

  16. Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers

    KAUST Repository

    RICHTER, DAVID

    2010-03-29

    The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (Re = 100 and Re = 300) revealed dramatic differences based on the choice of the polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer. © 2010 Cambridge University Press.

  17. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  18. Analysis of stability and Hopf bifurcation for a viral infectious model with delay

    International Nuclear Information System (INIS)

    Sun Chengjun; Cao Zhijie; Lin Yiping

    2007-01-01

    In this paper, a four-dimensional viral infectious model with delay is considered. The stability of the two equilibria and the existence of Hopf bifurcation are investigated. It is found that there are stability switches and Hopf bifurcations occur when the delay τ passes through a sequence of critical values. Using the normal form theory and center manifold argument [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981], the explicit formulaes which determine the stability, the direction and the period of bifurcating periodic solutions are derived. Numerical simulations are carried out to illustrate the validity of the main results

  19. Warped unification, proton stability, and dark matter.

    Science.gov (United States)

    Agashe, Kaustubh; Servant, Géraldine

    2004-12-03

    We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.

  20. Stability analysis of the high temperature thermal pebble bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1981-02-01

    A study was made of the stability of the high temperature gas-cooled pebble bed core against xenon-driven oscillation. This generic study indicated that a core as large as 3000 MW(t) could be stable. Several aspects present a challenge to analysis including the void space above the pebble bed, the effects of possible control rod configurations, and the temperature feedback contribution. Special methods of analysis were developed in this effort. Of considerable utility was the scheme of including an azimuthal buckling loss term in the neturon balance equations admitting direct solution of the first azimuthal harmonic for a core having azimuthal symmetry. This technique allows the linear stability analysis to be done solving two-dimensional (RZ) problems instead of three-dimensional problems. A scheme for removing the fundamental source contribution was also implemented to allow direct iteration toward the dominant harmonic solution, treating up to three dimensions with diffusion theory