Sample records for universal enveloping algebra

  1. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud


    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  2. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    N.W. van den Hijligenberg; R. Martini


    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  3. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud


    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  4. Universal enveloping algebras of Toda field theories and the light-cone asymmetry parameter

    Itoyama, H.; Moxhay, P.


    The generators of the universal enveloping algebras in Toda field theories associated with Lie algebras are constructed. These form spectrum-generating algebras of the system which survive the constraints acting on the larger current algebra structure. It is found that the same generators fail to be a symmetry in the case of affine Toda field theory despite their close relationship with Mandelstam's soliton operators. We introduce the light-cone asymmetry parameter; its significance and utility are demonstrated. (orig.)

  5. Rank of quantized universal enveloping algebras and modular functions

    Majid, S.; Soibelman, Ya.S.


    We compute an intrinsic rank invariant for quasitriangular Hopf algebras in the case of general quantum groups U q (g). As a function of q the rank has remarkable number theoretic properties connected with modular covariance and Galois theory. A number of examples are treated in detail, including rank (U q (su(3)) and rank (U q (e 8 )). We briefly indicate a physical interpretation as relating Chern-Simons theory with the theory of a quantum particle confined to an alcove of g. (orig.)

  6. (Quasi-)Poisson enveloping algebras

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu


    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  7. Meson and baryon families as vibronic states in sl(2) quantum universal enveloping algebra

    Iwao, Syurei; Ono, Yasuji


    A mass formula of the q-deformed modified harmonic oscillator type in the sl(2) quantum universal enveloping algebra is proposed for the meson and baryon families, by taking into account the known theories as a guide. Specifying the vibronic quantum number, the deformation parameter and associated ones of the theory are determined from available data for the scalar, pseudoscalar, vector meson and baryon families. The parameters determined from totally ten families not only predict many unobserved states, but also give restrictions on the observable number of states. The method may admit taking into account non-perturbative effects. (author)

  8. Recoupling Lie algebra and universal ω-algebra

    Joyce, William P.


    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  9. Universal algebra

    Grätzer, George


    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  10. Constructing canonical bases of quantized enveloping algebras

    Graaf, W.A. de


    An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

  11. Enveloping algebras of Lie groups with descrete series

    Nguyen huu Anh; Vuong manh Son


    In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs

  12. Enveloping σ-C C C-algebra of a smooth Frechet algebra crossed ...

    Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 2. Enveloping -*-Algebra of a Smooth Frechet Algebra Crossed Product by R R , K -Theory and Differential Structure in *-Algebras. Subhash J Bhatt. Regular Articles Volume 116 Issue 2 May 2006 pp 161-173 ...

  13. Topological أ-algebras with Cأ-enveloping algebras II

    necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.

  14. Representation theory of Lie-admissible enveloping algebras on operator algebras: an extension of a theorem by Nelson

    Ghikas, D.K.P.; Ktorides, C.N.; Papaloukas, L.


    This mathematical note is motivated by an assessment concerning our current understanding of the role of Lie-admissible symmetries in connection with quantum structures. We identify the problem of representations of the universal enveloping (lambda, μ)-mutation algebra of a given Lie algebra on a suitable algebra of operators, as constituting a fundamental first step for improving the situation. We acknowledge a number of difficulties which are peculiar to the adopted nonassociative product for the operator algebra. In view of these difficulties, we are presently content in establishing the generalization, to the Lie-admissible case, of a certain theorem by Nelson. This theorem has been very instrumental in Nelson's treatment concerning the Lie symmetry content of quantum structures. It is hoped that a similar situation will eventually prevail for the Lie-admissible case. We offer a number of relevant suggestions

  15. Semiprojectivity of universal -algebras generated by algebraic elements

    Shulman, Tatiana


    Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....

  16. The universal R-matrix and its associated quantum algebra as functionals of the classical r-matrix: the sl2 case

    Freidel, L.; Maillet, J.M.


    Using a geometrical approach to the quantum Yang-Baxter equation, the quantum algebra U h (sl 2 ) and its universal quantum R-matrix are explicitly constructed as functionals of the associated classical r-matrix. In this framework, the quantum algebra U h (sl 2 ) is naturally imbedded in the universal enveloping algebra of the sl 2 current algebra. (author) 13 refs

  17. Representations of braid group obtained from quantum sl(3) enveloping algebra

    Ma Zhongqi.


    The quantum Clebsch-Gordan coefficients for the coproduct 6x6 of the quantum sl(3) enveloping algebra are computed. Based on the representation 6, the representation of the braid group and the corresponding link polynomial are obtained. The link polynomials based on the representations of the quantum sl(3) enveloping algebra with one row Young tableau are discussed. (author). 11 refs, 3 tabs

  18. The combinatorics computation for Casimir operators of the symplectic Lie algebra and the application for determining the center of the enveloping algebra of a semidirect product

    Le Van Hop.


    The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs

  19. All the Universe in an envelope


    Do you know which force is hidden in an envelope or how many billions of years old are the atoms it contains? You will find the answers to these (curious) questions in a post office in the Pays de Gex. The French postal services of the Pays de Gex are again issuing pre-paid envelopes in collaboration with CERN (see Bulletin No. 24/2006). The new series presents some of the concepts of modern physics in an amazing way by showing what you can learn about the Universe with a single envelope. Packets of ten pre-stamped envelopes, each carrying a statement on fundamental physics, will be on sale from 7 July onwards. To learn more about the physics issues presented on the envelopes, people are invited to go to the CERN Web site where they will find the explanations. Five thousand envelopes will be put on sale in July and five thousand more during the French "Fête de la science" in October. They will be available from five post offices in the Pays de Gex (F...

  20. On Fock Space Representations of quantized Enveloping Algebras related to Non-Commutative Differential Geometry

    Jurco, B; Jurco, B; Schlieker, M


    In this paper we construct explicitly natural (from the geometrical point of view) Fock space representations (contragradient Verma modules) of the quantized enveloping algebras. In order to do so, we start from the Gauss decomposition of the quantum group and introduce the differential operators on the corresponding q-deformed flag manifold (asuumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, we express the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group as first-order differential operators on the q-deformed flag manifold.

  1. The Universal Askey-Wilson Algebra

    Paul Terwilliger


    Full Text Available In 1992 A. Zhedanov introduced the Askey-Wilson algebra AW=AW(3 and used it to describe the Askey-Wilson polynomials. In this paper we introduce a central extension Δ of AW, obtained from AW by reinterpreting certain parameters as central elements in the algebra. We call Δ the universal Askey-Wilson algebra. We give a faithful action of the modular group PSL_2(Z on Δ as a group of automorphisms. We give a linear basis for Δ. We describe the center of Δ and the 2-sided ideal Δ[Δ,Δ]Δ. We discuss how Δ is related to the q-Onsager algebra.

  2. New link polynomial obtained from octet representation of quantum sl(3) enveloping algebra

    Ma Zhongqi.


    The quantum Clebsch-Gordan coefficients for the coproduct 8x8 of the quantum sl(3) enveloping algebra are computed. In the decomposition of the coproduct 8x8, there are two octet representations which are identified by the symmetry in changing the order of the factor octet representations. The corresponding R q matrix, and a new link polynomial are obtained. (author). 14 refs, 3 tabs

  3. On Associative Conformal Algebras of Linear Growth

    Retakh, Alexander


    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  4. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.


    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  5. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Jurco, B.; Schraml, S.; Wess, J.; Schupp, P.


    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  6. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Jurco, B. [Max-Planck-Institut fuer Mathematik, Bonn (Germany); Schraml, S.; Wess, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany); Schupp, P. [Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)


    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  7. Clifford algebras, noncommutative tori and universal quantum computers

    Vlasov, Alexander Yu.


    Recently author suggested [quant-ph/0010071] an application of Clifford algebras for construction of a "compiler" for universal binary quantum computer together with later development [quant-ph/0012009] of the similar idea for a non-binary base. The non-binary case is related with application of some extension of idea of Clifford algebras. It is noncommutative torus defined by polynomial algebraic relations of order l. For l=2 it coincides with definition of Clifford algebra. Here is presente...

  8. The Universal C*-Algebra of the Electromagnetic Field

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio


    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

  9. Universal R-matrix for quantized (super) algebras

    Khoroshkin, S.M.; Tolstoj, V.N.


    For quantum deformations of finite-dimensional contragredient Lie (super)algebras an explicit formula for the universal R-matrix is given. This formula generalizes the analogous formulae for quantized semisimple Lie algebras obtained by M. Rosso, A.N. Kirillov and N. Reshetikhin, Yas.S. Soibelman and S.Z. Levendorskii. Approach is based on careful analysis of quantized rank 1 and 2 (super)algebras, a combinatorial structure of the root systems and algebraic properties of q-exponential functions. Quantum Weyl group is not used. 19 refs.; 2 tabs

  10. An invitation to general algebra and universal constructions

    Bergman, George M


    Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.

  11. Quantum Heisenberg groups and Sklyanin algebras

    Andruskiewitsch, N.; Devoto, J.; Tiraboschi, A.


    We define new quantizations of the Heisenberg group by introducing new quantizations in the universal enveloping algebra of its Lie algebra. Matrix coefficients of the Stone-von Neumann representation are preserved by these new multiplications on the algebra of functions on the Heisenberg group. Some of the new quantizations provide also a new multiplication in the algebra of theta functions; we obtain in this way Sklyanin algebras. (author). 23 refs

  12. International Conference on Lattices, Semigroups, and Universal Algebra

    Bordalo, Gabriela; Dwinger, Philip


    This volume contains papers which, for the most part, are based on talks given at an international conference on Lattices, Semigroups, and Universal Algebra that was held in Lisbon, Portugal during the week of June 20-24, 1988. The conference was dedicated to the memory of Professor Antonio Almeida Costa, a Portuguese mathematician who greatly contributed to the development of th algebra in Portugal, on the 10 anniversary of his death. The themes of the conference reflect some of his research interests and those of his students. The purpose of the conference was to gather leading experts in Lattices, Semigroups, and Universal Algebra and to promote a discussion of recent developments and trends in these areas. All three fields have grown rapidly during the last few decades with varying degrees of interaction. Lattice theory and Universal Algebra have historically evolved alongside with a large overlap between the groups of researchers in the two fields. More recently, techniques and ideas of these theories ha...

  13. Dynamic network data envelopment analysis for university hospitals evaluation

    Maria Stella de Castro Lobo


    Full Text Available ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects. Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC, 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier.

  14. Algebra

    Tabak, John


    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  15. Twisted classical Poincare algebras

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.


    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  16. Algebra

    Flanders, Harley


    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  17. Algebra

    Sepanski, Mark R


    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  18. The relation between quantum W algebras and Lie algebras

    Boer, J. de; Tjin, T.


    By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

  19. University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report

    What Works Clearinghouse, 2009


    University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…

  20. Influence Of Collapsing Matter On The Enveloping Expanding Universe

    Choudhury, A. Latif


    Using a collapsing matter model at the center of an expanding universe as described by Weinberg we assume a special type of generated pressure. This pressure transmits into the surrounding expanding universe. Under certain restriction the ensuing hubble parameter is positive. The deacceleration parameter fluctuates with time, indicating that the universe accelerates for certain time and decelerates for other time intervals.

  1. Representations of the algebra Uq'(son) related to quantum gravity

    Klimyk, A.U.


    The aim of this paper is to review our results on finite dimensional irreducible representations of the nonstandard q-deformation U q ' (so n ) of the universal enveloping algebra U(so(n)) of the Lie algebra so(n) which does not coincide with the Drinfeld-Jimbo quantum algebra U q (so n ).This algebra is related to algebras of observables in quantum gravity and to algebraic geometry.Irreducible finite dimensional representations of the algebra U q ' (so n ) for q not a root of unity and for q a root of unity are given

  2. Semicrossed products of operator algebras by semigroups

    Davidson, Kenneth R; Kakariadis, Evgenios T A


    The authors examine the semicrossed products of a semigroup action by *-endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. The authors seek quite general conditions which will allow them to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action. Their analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.

  3. Measuring the Efficiency of Public Universities: Using Data Envelopment Analysis (DEA) to Examine Public Universities in Saudi Arabia

    Alabdulmenem, Fahad Mohammed


    Saudi Arabia is one of the countries that allot substantial amount of government resources for education. Thus, it is important to measure how these resources are used to generate favorable academic outcomes for its nationals. In this study, data envelopment analysis (DEA) is used to measure the relative efficiency of 25 public universities in…

  4. Bases in Lie and quantum algebras

    Ballesteros, A; Celeghini, E; Olmo, M A del


    Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su q (2).

  5. Research efficiency assessment of Colombian public universities 2003-2012: data envelopment analysis

    Gabriel Yáñez Canal


    Full Text Available In 2003, the process of public universities evaluation began. For this purpose, a set of performance indicators constructed by the Public University System (SUE by its acronym in Spanish in alliance with the Ministry of National Education (MEN was used. In an effort to know about the research efficiency level that public universities had in the period 2003-2012, an analysis of the results of these indicators was executed using Data Envelopment Analysis. In particular, the product-oriented CCR model was applied. Although many universities have experienced a sustained development in some of the indicators analyzed and show high relative levels of efficiency, the results show that, as a whole, the Public University System has still much to improve regarding its scientific mission, especially, those aspects related to graduate programs and scientific journals.

  6. Representations of the q-deformed algebras Uq (so2,1) and Uq (so3,1)

    Gavrilik, O.M.; Klimyk, A.U.


    Representations of algebra U q (so 2 ,1) are studied. This algebra is a q-deformation of the universal enveloping algebra U(so 2 ,1) of the Lie algebra of the group SO 0 (2,1) and differs from the quantum algebra U q (SU 1 ,1). Classifications of irreducible representations and of infinitesimally irreducible representations of U q (SU 1 ,1). The sets of irreducible representations and of infinitesimally unitary irreducible representations of the algebra U q (so 3 ,1) are given. We also consider representations of U q (so n ,1) which are of class 1 with respect to subalgebra U q (so n ). (author). 22 refs

  7. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio


    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  8. Three-dimensional quantum algebras: a Cartan-like point of view

    Ballesteros, A; Celeghini, E; Olmo, M A del


    A perturbative quantization procedure for Lie bialgebras is introduced. The relevance of the choice of a completely symmetrized basis of the quantum universal enveloping algebra is stressed. Sets of elements of the quantum algebra that play a role similar to generators in the case of Lie algebras are considered and a Cartan-like procedure applied to find a representative for each class of quantum algebras. The method is used to construct and classify all three-dimensional complex quantum algebras that are compatible with a given type of coproduct. The quantization of all Lie algebras that, in the classical limit, belong to the most relevant sector in the classification for three-dimensional Lie bialgebras is thus performed. New quantizations of solvable algebras, whose simplicity makes them suitable for possible physical applications, are obtained and already known related quantum algebras recovered

  9. NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra

    Rosenberg, Ivo; Goldstein, Martin


    Several of the contributions to this volume bring forward many mutually beneficial interactions and connections between the three domains of the title. Developing them was the main purpose of the NATO ASI summerschool held in Montreal in 2003. Although some connections, for example between semigroups and automata, were known for a long time, developing them and surveying them in one volume is novel and hopefully stimulating for the future. Another aspect is the emphasis on the structural theory of automata that studies ways to contstruct big automata from small ones. The volume also has contributions on top current research or surveys in the three domains. One contribution even links clones of universal algebra with the computational complexity of computer science. Three contributions introduce the reader to research in the former East block.

  10. Operators and representation theory canonical models for algebras of operators arising in quantum mechanics

    Jorgensen, Palle E T


    Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e

  11. Teachers’ beliefs about improving transfer of algebraic skills from mathematics into physics in senior pre-university education

    Tursucu, S.; Spandaw, J.G.; Flipse, S.M.; de Vries, M.J.


    Students in senior pre-university education encounter difficulties in the application of mathematics into physics. This paper presents the outcome of an explorative qualitative study of teachers’ beliefs about improving the transfer of algebraic skills from mathematics into physics. We

  12. Teachers' Beliefs about Improving Transfer of Algebraic Skills from Mathematics into Physics in Senior Pre-University Education

    Tursucu, Süleyman; Spandaw, Jeroen; Flipse, Steven; de Vries, Marc J.


    Students in senior pre-university education encounter difficulties in the application of mathematics into physics. This paper presents the outcome of an explorative qualitative study of teachers' beliefs about improving the transfer of algebraic skills from mathematics into physics. We interviewed 10 mathematics and 10 physics teachers using a…

  13. Abstract algebra

    Garrett, Paul B


    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  14. Some quantum Lie algebras of type Dn positive

    Bautista, Cesar; Juarez-Ramirez, Maria Araceli


    A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D n . Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D n positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true

  15. Algebraic conformal field theory

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica


    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  16. A Description of the Computer Assisted Assessment Program in University Elementary Algebra at Norfolk State University

    White, Ronald L.; Myers, Shadana; Earl, Archie W., Sr.


    Many colleges and universities today are faced with the problem of low student academic achievement in math. Some of them are trying to improve student academic achievement through the use of technology. Their proposed solution is to teach children how to use the technological tools available to them and integrate that technology into the…

  17. Algebraic special functions and SO(3,2)

    Celeghini, E.; Olmo, M.A. del


    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L 2 functions defined on (−1,1)×Z and on the sphere S 2 , respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L 2 functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L 2 functions

  18. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    Yildiz Ulus, Aysegul


    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  19. Success after Failure: Academic Effects and Psychological Implications of Early Universal Algebra Policies

    Howard, Keith A.; Scott, Allison; Romero, Martin; Saddler, Derrick


    In this article, the authors use the High School Longitudinal Study 2009 (HSLS:09) national database to analyze the relationships between algebra failure, subsequent performance, motivation, and college readiness. Students who failed eighth-grade Algebra I did not differ significantly in mathematics proficiency from those who passed lower-level…

  20. Current algebra formulation of radiative corrections in gauge theories and the universality of the weak interactions

    Sirlin, A.


    A current algebra formulation of the radiative corrections in gauge theories, with special applications to the analysis of the universality of the weak interactions, is developed in the framework of quantum chromodynamics. For definiteness, we work in the SU(2) x U(1) model with four quark flavors, but the methods are quite general and can be applied to other theories. The explicit cancellation of ultraviolet divergences for arbitrary semileptonic processes is achieved relying solely on the Ward identities and general considerations, both in the W and Higgs sectors. The finite parts of order G/sub F/..cap alpha.. are then evaluated in the case of the superallowed Fermi transitions, including small effects proportional to g/sup -2//sub S/(kappa/sup 2/), which are induced by the strong interactions in the asymptotic domain. We consider here both the simplest version of the Weinberg--Salam model in which the Higgs scalars transform as a single isospinsor, as well as the case of general symmetry breaking. Except for the small effects proportional to g/sup -2//sub S/(kappa/sup 2/), the results are identical to the answers previously found on the basis of heuristic arguments. The phenomenological verification of Cabibbo universality on the basis of these corrections and the superallowed Fermi transitions has been discussed before and found to be in very good agreement with present experimental evidence. The analogous calculation for the transition rate of pion ..beta.. decay is given. Theoretical alternatives to quantum chromdynamics as a framework for the evaluate ion of the radiative corrections are briefly discussed. The appendixes contain a generalization of an important result in the theory of radiative corrections, an analysis of the hadronic contributions to the W and phi propagators, mathematical methods for evaluating the g/sup -2//sub S/(kappa/sup 2/) corrections, and discussions of quark mass renormalization and the absence of operator &apos

  1. A Universal Approach to Optimize the Folding and Stability of Prefusion-Closed HIV-1 Envelope Trimers

    Lucy Rutten


    Full Text Available Summary: The heavily glycosylated native-like envelope (Env trimer of HIV-1 is expected to have low immunogenicity, whereas misfolded forms are often highly immunogenic. High-quality correctly folded Envs may therefore be critical for developing a vaccine that induces broadly neutralizing antibodies. Moreover, the high variability of Env may require immunizations with multiple Envs. Here, we report a universal strategy that provides for correctly folded Env trimers of high quality and yield through a repair-and-stabilize approach. In the repair stage, we utilized a consensus strategy that substituted rare strain-specific residues with more prevalent ones. The stabilization stage involved structure-based design and experimental assessment confirmed by crystallographic feedback. Regions important for the refolding of Env were targeted for stabilization. Notably, the α9-helix and an intersubunit β sheet proved to be critical for trimer stability. Our approach provides a means to produce prefusion-closed Env trimers from diverse HIV-1 strains, a substantial advance for vaccine development. : Rutten et al. describe a universal repair and stabilize approach that corrects rare mutations and stabilizes refolding regions to obtain high-quality HIV Envs with high yields. The crystal structure shows how the optimization of the trimer interface between α9, α6, and the intersubunit β-sheet stabilizes the membrane-proximal base. Keywords: envelope protein, chronic, ConC_base, HIV, SOSIP, stabilization, transmitted/founder, vaccine, X-ray structure, hybrid sheet

  2. Shapley value-based multi-objective data envelopment analysis application for assessing academic efficiency of university departments

    Abing, Stephen Lloyd N.; Barton, Mercie Grace L.; Dumdum, Michael Gerard M.; Bongo, Miriam F.; Ocampo, Lanndon A.


    This paper adopts a modified approach of data envelopment analysis (DEA) to measure the academic efficiency of university departments. In real-world case studies, conventional DEA models often identify too many decision-making units (DMUs) as efficient. This occurs when the number of DMUs under evaluation is not large enough compared to the total number of decision variables. To overcome this limitation and reduce the number of decision variables, multi-objective data envelopment analysis (MODEA) approach previously presented in the literature is applied. The MODEA approach applies Shapley value as a cooperative game to determine the appropriate weights and efficiency score of each category of inputs. To illustrate the performance of the adopted approach, a case study is conducted in a university in the Philippines. The input variables are academic staff, non-academic staff, classrooms, laboratories, research grants, and department expenditures, while the output variables are the number of graduates and publications. The results of the case study revealed that all DMUs are inefficient. DMUs with efficiency scores close to the ideal efficiency score may be emulated by other DMUs with least efficiency scores.

  3. Data envelopment analysis with upper bound on output to measure efficiency performance of departments in Malaikulsaleh University

    Abdullah, Dahlan; Suwilo, Saib; Tulus; Mawengkang, Herman; Efendi, Syahril


    The higher education system in Indonesia can be considered not only as an important source of developing knowledge in the country, but also could create positive living conditions for the country. Therefore it is not surprising that enrollments in higher education continue to expand. However, the implication of this situation, the Indonesian government is necessarily to support more funds. In the interest of accountability, it is essential to measure the efficiency for this higher institution. Data envelopment analysis (DEA) is a method to evaluate the technical efficiency of production units which have multiple input and output. The higher learning institution considered in this paper is Malikussaleh University located in Lhokseumawe, a city in Aceh province of Indonesia. This paper develops a method to evaluate efficiency for all departments in Malikussaleh University using DEA with bounded output. Accordingly, we present some important differences in efficiency of those departments. Finally we discuss the effort should be done by these departments in order to become efficient.

  4. The Relative Efficiencies of Research Universities of Science and Technology in China: Based on the Data Envelopment Analysis and Stochastic Frontier Analysis

    Chuanyi, Wang; Xiaohong, Lv; Shikui, Zhao


    This paper applies data envelopment analysis (DEA) and stochastic frontier analysis (SFA) to explore the relative efficiency of China's research universities of science and technology. According to the finding, when talent training is the only output, the efficiency of research universities of science and technology is far lower than that of…

  5. On an extension of the Weil algebra

    Palev, Ch.

    An extension of the Weil algebra Wsub(n), generated by an appropriate topology is considered. The topology is introduced in such a way that algebraic operations in Wsub(n) to be continuous. The algebraic operations in Wsub(n) are extended by a natural way to a complement, which is noted as an extended Weil algebra. It turns out that the last algebra contains isomorphically the Heisenberg group. By the same way an arbitrary enveloping algebra of a Lie group may be extended. The extended algebra will contain the initial Lie group. (S.P.)

  6. International Conference on Analytic and Algebraic Geometry held at the Tata Institute of Fundamental Research and the University of Hyderabad

    Biswas, Indranil; Morye, Archana; Parameswaran, A


    This volume is an outcome of the International conference held in Tata Institute of Fundamental Research and the University of Hyderabad. There are fifteen articles in this volume. The main purpose of the articles is to introduce recent and advanced techniques in the area of analytic and algebraic geometry. This volume attempts to give recent developments in the area to target mainly young researchers who are new to this area. Also, some research articles have been added to give examples of how to use these techniques to prove new results.

  7. A framework for performance measurement in university using extended network data envelopment analysis (DEA) structures

    Kashim, Rosmaini; Kasim, Maznah Mat; Rahman, Rosshairy Abd


    Measuring university performance is essential for efficient allocation and utilization of educational resources. In most of the previous studies, performance measurement in universities emphasized the operational efficiency and resource utilization without investigating the university's ability to fulfill the needs of its stakeholders and society. Therefore, assessment of the performance of university should be separated into two stages namely efficiency and effectiveness. In conventional DEA analysis, a decision making unit (DMU) or in this context, a university is generally treated as a black-box which ignores the operation and interdependence of the internal processes. When this happens, the results obtained would be misleading. Thus, this paper suggest an alternative framework for measuring the overall performance of a university by incorporating both efficiency and effectiveness and applies network DEA model. The network DEA models are recommended because this approach takes into account the interrelationship between the processes of efficiency and effectiveness in the system. This framework also focuses on the university structure which is expanded from the hierarchical to form a series of horizontal relationship between subordinate units by assuming both intermediate unit and its subordinate units can generate output(s). Three conceptual models are proposed to evaluate the performance of a university. An efficiency model is developed at the first stage by using hierarchical network model. It is followed by an effectiveness model which take output(s) from the hierarchical structure at the first stage as a input(s) at the second stage. As a result, a new overall performance model is proposed by combining both efficiency and effectiveness models. Thus, once this overall model is realized and utilized, the university's top management can determine the overall performance of each unit more accurately and systematically. Besides that, the result from the network

  8. Algebraic partial Boolean algebras

    Smith, Derek


    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  9. Boundaries, injective envelopes, and reduced crossed products

    Bryder, Rasmus Sylvester

    In this dissertation, we study boundary actions, equivariant injective envelopes, as well as theideal structure of reduced crossed products. These topics have recently been linked to thestudy of C-simple groups, that is, groups with simple reduced group C-algebras.In joint work with Matthew Kennedy......, we consider reduced twisted crossed products overC-simple groups. For any twisted C-dynamical system over a C-simple group, we provethat there is a one-to-one correspondence between maximal invariant ideals in the underlyingC-algebra and maximal ideals in the reduced crossed product. When......*-algebras, and relate the intersection property for group actions on unital C*-algebras to the intersection property for theequivariant injective envelope. Moreover, we also prove that the equivariant injective envelopeof the centre of the injective envelope of a unital C*-algebra can be regarded as a C...

  10. Some quantum Lie algebras of type D{sub n} positive

    Bautista, Cesar [Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Edif 135, 14 sur y Av San Claudio, Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico); Juarez-Ramirez, Maria Araceli [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Edif 158 Av San Claudio y Rio Verde sn Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico)


    A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D{sub n}. Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D{sub n} positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true.

  11. Graded and filtrated topological * - algebras. The closure of the positive cone

    Shmudgen, K.


    It is shown that for certain graded locally convex topologies on a filtrated *-algebra the closure of the cone of all finite sums of squares is precisely the cone of all infinite (convergent) sums of squares, similar to the case of the test function algebra. The result applies to tensor algebras and symmetrized tensor algebras over involutive nuclear Frechet spaces and to some finitely generated *-algebras such as polynomial algebras, the Weyl algebra and enveloping algebras

  12. An embedding of the universal Askey-Wilson algebra into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2)

    Huang, Hau-Wen


    The Askey-Wilson algebras were used to interpret the algebraic structure hidden in the Racah-Wigner coefficients of the quantum algebra Uq (sl2). In this paper, we display an injection of a universal analog △q of Askey-Wilson algebras into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2) behind the application. Moreover we establish the decomposition rules for 3-fold tensor products of irreducible Verma Uq (sl2)-modules and of finite-dimensional irreducible Uq (sl2)-modules into the direct sums of finite-dimensional irreducible △q-modules. As an application, we derive a formula for the Racah-Wigner coefficients of Uq (sl2).

  13. An embedding of the universal Askey–Wilson algebra into Uq(sl2⊗Uq(sl2⊗Uq(sl2

    Hau-Wen Huang


    Full Text Available The Askey–Wilson algebras were used to interpret the algebraic structure hidden in the Racah–Wigner coefficients of the quantum algebra Uq(sl2. In this paper, we display an injection of a universal analog △q of Askey–Wilson algebras into Uq(sl2⊗Uq(sl2⊗Uq(sl2 behind the application. Moreover we establish the decomposition rules for 3-fold tensor products of irreducible Verma Uq(sl2-modules and of finite-dimensional irreducible Uq(sl2-modules into the direct sums of finite-dimensional irreducible △q-modules. As an application, we derive a formula for the Racah–Wigner coefficients of Uq(sl2.

  14. Equivariant calculus in the differential envelope

    Kastler, D.


    The author shows how Z/2-graded cyclic cohomology is related to the equivariant calculus of S. Klimek, W. Kondracki, and A. Lesniewski (HUTMP 90/B247 (1990)). He uses the differential envelope of a complex unital differential algebra. After a presentation of fiber-preserved operators on equivariant functions valued in this algebra on a group he considers certain operators on this algebra. Finally he discusses explicitly the case G=Z/2. (HSI)

  15. Equivariant calculus in the differential envelope

    Kastler, D. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique)


    The author shows how Z/2-graded cyclic cohomology is related to the equivariant calculus of S. Klimek, W. Kondracki, and A. Lesniewski (HUTMP 90/B247 (1990)). He uses the differential envelope of a complex unital differential algebra. After a presentation of fiber-preserved operators on equivariant functions valued in this algebra on a group he considers certain operators on this algebra. Finally he discusses explicitly the case G=Z/2. (HSI).

  16. Algebraic geometry

    Lefschetz, Solomon


    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  17. Grassmann algebras

    Garcia, R.L.


    The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt

  18. Basic notions of algebra

    Shafarevich, Igor Rostislavovich


    This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches

  19. Simple relation algebras

    Givant, Steven


    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  20. Compact quantum group C*-algebras as Hopf algebras with approximate unit

    Do Ngoc Diep; Phung Ho Hai; Kuku, A.O.


    In this paper, we construct and study the representation theory of a Hopf C*-algebra with approximate unit, which constitutes quantum analogue of a compact group C*-algebra. The construction is done by first introducing a convolution-product on an arbitrary Hopf algebra H with integral, and then constructing the L 2 and C*-envelopes of H (with the new convolution-product) when H is a compact Hopf *-algebra. (author)

  1. New approaches to teaching of the course of linear algebra in teacher training university in the conditions of information of education

    Евгений Сергеевич Сарыков


    Full Text Available In article possibilities of perfection of the maintenance of subject preparation of the mathematics teacher in teacher training university in the conditions of information of education are considered, receptions of enrichment of an information component of mathematical problems on an example of a course of linear algebra are shown.

  2. Vertex algebras and algebraic curves

    Frenkel, Edward


    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  3. Implicative Algebras


    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

  4. Monomial algebras

    Villarreal, Rafael


    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  5. Algebra: A Challenge at the Crossroads of Policy and Practice

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.


    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  6. Connections between algebra, combinatorics, and geometry

    Sather-Wagstaff, Sean


    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  7. Quadratic algebras

    Polishchuk, Alexander


    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  8. Building envelope

    Gibberd, Jeremy T


    Full Text Available for use in the building. This is done through photovoltaic and solar water heating panels and wind turbines. Ideally these are integrated in the design of the building envelope to improve the aesthetic quality of the building and minimise material... are naturally ventilated. Renewable energy The building envelope includes renewable energy generation such as photovoltaics, wind turbines and solar water heaters and 10% of the building’s energy requirements are generated from these sources. Views All...

  9. Biomimetic Envelopes

    Ilaria Mazzoleni


    How to translate the lessons learned from the analysis and observation of the animal world is the design learning experience presented in this article. Skin is a complex and incredibly sophisticated organ that performs various functions, including protection, sensation and heat and water regulation. In a similar way building envelopes serve multiple roles, as they are the interface between the building inhabitants and environmental elements. The resulting architectural building envelopes prot...

  10. Boolean algebra

    Goodstein, R L


    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  11. Analytic vectors and irreducible representations of nilpotent Lie groups and algebras

    Arnal, D.


    Let U be a unitary irreducible locally faithful representation of a nilpotent Lie group G, V the universal enveloping algebra of G, M a simple module on V with kernel ker dU, then there exists an automorphism of V keeping ker dU invariant such that, after transport of structure, M is isomorphic to a submodule of the space of analytic vectors for U. (Auth.)

  12. Jordan algebras versus C*- algebras

    Stormer, E.


    The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

  13. Partially-massless higher-spin algebras and their finite-dimensional truncations

    Joung, Euihun; Mkrtchyan, Karapet


    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  14. Degenerate representation from tensorial identities and quantum realisations of YBZF algebras

    Iosifescu, M.; Scutaru, H.


    The second- degree irreducible tensors in the enveloping algebra of the classical semisimple Lie algebras are determined and the irreducible representations on which these tensors vanish are derived.(authors)

  15. Hopf algebras in noncommutative geometry

    Varilly, Joseph C.


    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  16. Cellularity of certain quantum endomorphism algebras

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...

  17. Casimir elements of epsilon Lie algebras

    Scheunert, M.


    The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)

  18. Wigner oscillators, twisted Hopf algebras and second quantization

    Castro, P.G.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails:;; Chakraborty, B. [S. N. Bose National Center for Basic Sciences, Kolkata (India)]. E-mail:


    By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U{sup F}(h) is shown to be induced from a more 'fundamental' Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of a given superalgebra. We also discuss the possible implications in the context of quantum statistics. (author)

  19. Quasi exactly solvable operators and abstract associative algebras

    Brihaye, Y.; Kosinski, P.


    We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra

  20. Separable algebras

    Ford, Timothy J


    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  1. Some Issues about the Introduction of First Concepts in Linear Algebra during Tutorial Sessions at the Beginning of University

    Grenier-Boley, Nicolas


    Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…

  2. Linear Algebra and Smarandache Linear Algebra

    Vasantha, Kandasamy


    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  3. UCSMP Algebra. What Works Clearinghouse Intervention Report

    What Works Clearinghouse, 2007


    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  4. College algebra

    Kolman, Bernard


    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  5. Algebraic K-theory

    Swan, R G


    From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."

  6. Coherent states and classical limit of algebraic quantum models

    Scutaru, H.


    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  7. Higher regulators, algebraic

    Bloch, Spencer J


    This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

  8. Algebraic entropy for algebraic maps

    Hone, A N W; Ragnisco, Orlando; Zullo, Federico


    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  9. Waterloo Workshop on Computer Algebra

    Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday


    This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

  10. Algebraic computing

    MacCallum, M.A.H.


    The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)

  11. Linear algebra

    Liesen, Jörg


    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  12. Linear algebra

    Edwards, Harold M


    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  13. Linear algebra

    Stoll, R R


    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  14. Lie algebras

    Jacobson, Nathan


    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  15. Basic algebra

    Jacobson, Nathan


    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  16. The BRS algebra of a free differential algebra

    Boukraa, S.


    We construct in this work, the Weil and the universal BRS algebras of theories that can have as a gauge symmetry a free differential (Sullivan) algebra, the natural extension of Lie algebras allowing the definition of p-form gauge potentials (p>1). The finite gauge transformations of these potentials are deduced from the infinitesimal ones and the group structure is shown. The geometrical meaning of these p-form gauge potentials is given by the notion of a Quillen superconnection. (author). 19 refs

  17. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Ammar, F; Makhlouf, A; Silvestrov, S


    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  18. Exponentiation and deformations of Lie-admissible algebras

    Myung, H.C.


    The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one

  19. Investigating the Financial Performance of Universities of Medical Science and Health Services in Iran, Using Data Envelopment Analysis.

    Nasiripour, Amir Ashkan; Toloie-Ashlaghy, Abbas; Ta-Bibi, Seyed Jamaleddin; Maleki, Mohammad Reza; Gorji, Hassan Abolghasem


    Universities of Medical Science and Health Services (UMSHSs) are among the main organizations in Iran's health-care section. Improving their efficiency in financial resource management through creating an appropri-ate coordination between consumption and resources is strategically vital. Investigating the financial performance as well as ranking the Iranian UMSHSs is the research objective. The study is of descriptive and applied type. The study population includes the UMSHSs of Iran (n=42) among which 24 UMSHSs are selected. DEA is used with the aim to model and assess the financial performance in-cluding 4 inputs and 3 outputs. Also, linear regression is applied to determine the effectiveness of the applied indices as well as the level of the financial performance. Data are obtained from the Budgeting Center in the Ministry of Health and Medical Education, during 2010 mainly through forms designed based on the available balance sheets. The average score of financial performance assessment for UMSHSs based on the DEA of input-oriented data is 0.74, assuming a constant scale of DEA-CRS. Thus, approximately 25% of the studied UMSHSs have maxi-mum relative performance and totally, there is about a 30% capacity to increase the financial performance in these UMSHSs. Most Iranian UMSHSs do not have high financial performance. This can be due to problems in financial resource management especially in asset combining. Therefore, compilation and execution of a comprehensive pro-gram for organizational change and agility with the aim to create a kind of optimized combination of resources and assets is strongly recommended.


    tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).

  1. Algebraic stacks

    Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

  2. Constant curvature algebras and higher spin action generating functions

    Hallowell, K.; Waldron, A.


    The algebra of differential geometry operations on symmetric tensors over constant curvature manifolds forms a novel deformation of the sl(2,R)-bar R 2 Lie algebra. We present a simple calculus for calculations in its universal enveloping algebra. As an application, we derive generating functions for the actions and gauge invariances of massive, partially massless and massless (for both Bose and Fermi statistics) higher spins on constant curvature backgrounds. These are formulated in terms of a minimal set of covariant, unconstrained, fields rather than towers of auxiliary fields. Partially massless gauge transformations are shown to arise as degeneracies of the flat, massless gauge transformation in one dimension higher. Moreover, our results and calculus offer a considerable simplification over existing techniques for handling higher spins. In particular, we show how theories of arbitrary spin in dimension d can be rewritten in terms of a single scalar field in dimension 2d where the d additional dimensions correspond to coordinate differentials. We also develop an analogous framework for spinor-tensor fields in terms of the corresponding superalgebra

  3. Nineteen papers on algebraic semigroups

    Aizenshtat, A Ya; Podran, N E; Ponizovskii, IS; Shain, BM


    This volume contains papers selected by leading specialists in algebraic semigroups in the U.S., the United Kingdom, and Australia. Many of the papers strongly influenced the development of algebraic semigroups, but most were virtually unavailable outside the U.S.S.R. Written by some of the most prominent Soviet researchers in the field, the papers have a particular emphasis on semigroups of transformations. Boris Schein of the University of Arkansas is the translator.

  4. Fundamentals of linear algebra

    Dash, Rajani Ballav


    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  5. Function algebras on finite sets basic course on many-valued logic and clone theory

    Lau, Dietlinde


    Gives an introduction to the theory of function algebras. This book gives the general concepts of the Universal Algebra in order to familiarize the reader from the beginning on with the algebraic side of function algebras. It is a source on function algebras for students and researchers in mathematical logic and theoretical computer science.

  6. Algebraic characterizations of measure algebras

    Jech, Thomas


    Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008

  7. Quantum W-algebras and elliptic algebras

    Feigin, B.; Kyoto Univ.; Frenkel, E.


    We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

  8. AT-algebras and extensions of AT-algebras

    Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 2. A T -Algebras and Extensions of A T ... School of Science, Nanjing University of Science and Technology, Nanjing 210014, People's Republic of China; Department of Mathematics, Tongji University, Shanghai 200092, People's Republic of China ...

  9. On 2-Banach algebras

    Mohammad, N.; Siddiqui, A.H.


    The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs

  10. Color Algebras

    Mulligan, Jeffrey B.


    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  11. Error-Detecting Identification Codes for Algebra Students.

    Sutherland, David C.


    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  12. Current algebra

    Jacob, M.


    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

  13. Fibered F-Algebra

    Kleyn, Aleks


    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  14. Generalized symmetry algebras

    Dragon, N.


    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  15. Hom-Novikov algebras

    Yau, Donald


    We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.

  16. Algebraic functions

    Bliss, Gilbert Ames


    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  17. Iterated Leavitt Path Algebras

    Hazrat, R.


    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  18. JB*-Algebras of Topological Stable Rank 1

    Akhlaq A. Siddiqui


    Full Text Available In 1976, Kaplansky introduced the class JB*-algebras which includes all C*-algebras as a proper subclass. The notion of topological stable rank 1 for C*-algebras was originally introduced by M. A. Rieffel and was extensively studied by various authors. In this paper, we extend this notion to general JB*-algebras. We show that the complex spin factors are of tsr 1 providing an example of special JBW*-algebras for which the enveloping von Neumann algebras may not be of tsr 1. In the sequel, we prove that every invertible element of a JB*-algebra is positive in certain isotope of ; if the algebra is finite-dimensional, then it is of tsr 1 and every element of is positive in some unitary isotope of . Further, it is established that extreme points of the unit ball sufficiently close to invertible elements in a JB*-algebra must be unitaries and that in any JB*-algebras of tsr 1, all extreme points of the unit ball are unitaries. In the end, we prove the coincidence between the λ-function and λu-function on invertibles in a JB*-algebra.

  19. Enveloping Aerodynamic Decelerator

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)


    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  20. Yoneda algebras of almost Koszul algebras

    Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...

  1. Algebra, Geometry and Mathematical Physics Conference

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander


    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  2. Algebra II textbook for students of mathematics

    Gorodentsev, Alexey L


    This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  3. Algebra I textbook for students of mathematics

    Gorodentsev, Alexey L


    This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  4. Circle Maps and C*-algebras

    Schmidt, Thomas Lundsgaard

    such a map, generalising the transformation groupoid of a local homeomorphism first introduced by Renault in \\cite{re}. We conduct a detailed study of the relationship between the dynamics of $\\phi$, the properties of these groupoids, the structure of their corresponding reduced groupoid $C^*$-algebras, and......, for certain classes of maps, the K-theory of these algebras. When the map $\\phi$ is transitive, we show that the algebras $C^*_r(\\Gamma_\\phi)$ and $C^*_r(\\Gamma_\\phi^+)$ are purely infinite and satisfy the Universal Coefficient Theorem. Furthermore, we find necessary and sufficient conditions for simplicity...... of these algebras in terms of dynamical properties of $\\phi$. We proceed to consider the situation when the algebras are non-simple, and describe the primitive ideal spectrum in this case. We prove that any irreducible representation factors through the $C^*$-algebra of the reduction of the groupoid to the orbit...

  5. Open algebraic surfaces

    Miyanishi, Masayoshi


    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  6. Cluster algebras in mathematical physics

    Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito


    identities in conformal field theory and so forth. It is remarkable that the key ingredients in such a variety of theories and models are captured and described universally in the common language of cluster algebras. This special issue provides a bird's-eye view of the known and latest results in various topics in mathematical physics where cluster algebras have played an essential role. The contributed articles are themselves an eloquent illustration of the breadth and depth of the subject of cluster algebras. We are confident that the issue will stimulate both newcomers and experts, since the applications to physics still seem to be growing

  7. Linear algebra

    Said-Houari, Belkacem


    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  8. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    Cassidy, T.; Phan, C.; Shelton, B.


    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  9. Novikov-Jordan algebras

    Dzhumadil'daev, A. S.


    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  10. Introduction to relation algebras relation algebras

    Givant, Steven


    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  11. Adventures in Flipping College Algebra

    Van Sickle, Jenna


    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  12. Wavelets and quantum algebras

    Ludu, A.; Greiner, M.


    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  13. Banach Synaptic Algebras

    Foulis, David J.; Pulmannov, Sylvia


    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  14. On an infinite-dimensional Lie algebra of Virasoro-type

    Pei Yufeng; Bai Chengming


    In this paper, we study an infinite-dimensional Lie algebra of Virasoro-type which is realized as an affinization of a two-dimensional Novikov algebra. It is a special deformation of the Lie algebra of differential operators on a circle of order at most 1. There is an explicit construction of a vertex algebra associated with the Lie algebra. We determine all derivations of this Lie algebra in terms of some derivations and centroids of the corresponding Novikov algebra. The universal central extension of this Lie algebra is also determined. (paper)

  15. Regular algebra and finite machines

    Conway, John Horton


    World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg

  16. Quantum cluster algebras and quantum nilpotent algebras

    Goodearl, Kenneth R.; Yakimov, Milen T.


    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  17. Point group invariants in the Uqp(u(2)) quantum algebra picture

    Kibler, M.


    Some consequences of a qp-quantization of a point group invariant developed in the enveloping algebra of SU(2) are examined. A set of open problems concerning such invariants in the U qp (u(2)) quantum algebra picture is briefly discussed. (author) 18 refs

  18. Leavitt path algebras

    Abrams, Gene; Siles Molina, Mercedes


    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  19. The Cuntz algebra Q_N and C*-algebras of product systems

    Hong, Jeong Hee; Larsen, Nadia S.; Szymanski, Wojciech


    We consider a product system over the multiplicative group semigroup N^x of Hilbert bimodules which is implicit in work of S. Yamashita and of the second named author. We prove directly, using universal properties, that the associated Nica-Toeplitz algebra is an extension of the C*-algebra Q...

  20. On the Directly and Subdirectly Irreducible Many-Sorted Algebras

    Climent Vidal J.


    Full Text Available A theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.

  1. Algebraic theory of numbers

    Samuel, Pierre


    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  2. Lukasiewicz-Moisil algebras

    Boicescu, V; Georgescu, G; Rudeanu, S


    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  3. Introduction to quantum algebras

    Kibler, M.R.


    The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs

  4. The classical limit of W-algebras

    Figueroa-O'Farrill, J.M.; Ramos, E.


    We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)

  5. Storage envelopes or sleeves

    Freshwater, J.R.; Wagman, P.I.


    A storage envelope or sleeve particularly for processed X-ray films is described. It consists of front and back panels joined together at a hinge line and connected along the intermediate sides by connecting flaps. An inner pocket is formed from a third flap which is folded to lie against the inner face of the back panel. The panels may have additional score lines parallel to the closed sides of the envelope and the inner pocket so that the envelope and the inner pocket can accommodate bulky contents. The free edge of the pocket is inset from the open side of the envelope, and finger cut-outs may be provided to facilitate access to the contents of the envelope and the pocket. (author)

  6. Generalized EMV-Effect Algebras

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.


    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  7. Families talen en algebra

    Asveld, P.R.J.


    Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

  8. Rudiments of algebraic geometry

    Jenner, WE


    Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

  9. Cellularity of certain quantum endomorphism algebras

    Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin


    For any ring A˜ such that Z[q±1∕2]⊆A˜⊆Q(q1∕2), let ΔA˜(d) be an A˜-form of the Weyl module of highest weight d∈N of the quantised enveloping algebra UA˜ of sl2. For suitable A˜, we exhibit for all positive integers r an explicit cellular structure for EndUA˜(ΔA˜(d)⊗r). This algebra and its cellular...... structure are described in terms of certain Temperley–Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When ζ is a root of unity of order bigger than d we consider the Uζ-module structure...... of the specialisation Δζ(d)⊗r at q↦ζ of ΔA˜(d)⊗r. As an application of these results, we prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above is equivalent to knowledge of the weight multiplicities of the tilting modules for Uζ(sl2). As an example, in the final section...

  10. Differential geometry on Hopf algebras and quantum groups

    Watts, P.


    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined

  11. Clifford algebras, spinors, spin groups and covering groups

    Magneville, C.; Pansart, J.P.


    The Dirac equation uses matrices named Υ matrices which are representations of general algebraic structures associated with a metric space. These algebras are the Clifford algebras. In the first past, these algebras are studied. Then the notion of spinor is developed. It is shown that Majorana and Weyl spinors only exist for some particular metric space. In the second part, Clifford and spinor groups are studied. They may be interpreted as the extension of the notion of orthogonal group for Clifford algebras and their spaces for representation. The rotation of a spinor is computed. In the last part, the connexion between the spinor groups and the Universal Covering Groups is presented [fr

  12. Practical algebraic renormalization

    Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias


    A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ

  13. Cylindric-like algebras and algebraic logic

    Ferenczi, Miklós; Németi, István


    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  14. Categories and Commutative Algebra

    Salmon, P


    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  15. Abstract algebra for physicists

    Zeman, J.


    Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)

  16. Combinatorial commutative algebra

    Miller, Ezra


    Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

  17. Algebraic Geometry and Number Theory Summer School

    Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk


    This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

  18. Protective plasma envelope

    Bocharov, V.N.; Konstantinov, S.G.; Kudryavtsev, A.M.; Myskin, O.K.; Panasyuk, V.M.; Tsel'nik, F.A.


    A method of creating an annular plasma envelope used to protect the hot plasma from flows of impurities and gases from the walls of the vacuum chamber is described. The diameter of the envelope is 30 cm, the thickness of the wall is 1.5 cm, the length is 2.5 m, and its density is from 10 13 to 10 14 cm -3 . The envelope attenuates the incident (from outside) flow of helium 10-fold and the low of hydrogen 20-fold

  19. A New Light on Nets of C*-Algebras and Their Representations

    Ruzzi, Giuseppe; Vasselli, Ezio


    The present paper deals with the question of representability of nets of C*-algebras whose underlying poset, indexing the net, is not upward directed. A particular class of nets, called C*-net bundles, is classified in terms of C*-dynamical systems having as group the fundamental group of the poset. Any net of C*-algebras has a canonical morphism into a C*-net bundle, the enveloping net bundle, which generalizes the notion of universal C*-algebra given by Fredenhagen to nonsimply connected posets. This allows a classification of nets; in particular, we call injective those nets such that the canonical morphism is faithful. Injectivity turns out to be equivalent to the existence of faithful representations. We further relate injectivity to a generalized Čech cocycle of the net, and this allows us to give examples of nets exhausting the above classification. Using these results we have shown, in another paper, that any conformal net over S 1 is injective.

  20. Linearizing W-algebras

    Krivonos, S.O.; Sorin, A.S.


    We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs

  1. Algebraic topological entropy

    Hudetz, T.


    As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

  2. Algorithms in Algebraic Geometry

    Dickenstein, Alicia; Sommese, Andrew J


    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  3. Computer algebra and operators

    Fateman, Richard; Grossman, Robert


    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  4. Safe operating envelope

    Oliva, N [Ontario Hydro, Toronto, ON (Canada)


    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs.

  5. Safe operating envelope

    Oliva, N.


    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs

  6. Lectures on algebraic statistics

    Drton, Mathias; Sullivant, Seth


    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  7. Extended conformal algebras

    Goddard, Peter


    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  8. Wn(2) algebras

    Feigin, B.L.; Semikhatov, A.M.


    We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras

  9. Symmetric vectors and algebraic classification

    Leibowitz, E.


    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  10. Bicovariant quantum algebras and quantum Lie algebras

    Schupp, P.; Watts, P.; Zumino, B.


    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

  11. The Boolean algebra and central Galois algebras

    George Szeto


    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  12. Nonflexible Lie-admissible algebras

    Myung, H.C.


    We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

  13. Hurwitz Algebras and the Octonion Algebra

    Burdik, Čestmir; Catto, Sultan


    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  14. Language Analysis and Generation in Algebra Tutorial Dialogues for Language-Based Intelligent Tutoring Systems

    Kim, Jung


    The North Carolina A&T State University algebra tutoring dialogue project collects and analyzes algebra tutoring dialogues with the aim of describing tutoring strategies and language with enough rigor that they may...

  15. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

    Arakelyan, T.A.


    The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

  16. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    Shomron, Noam; Parlett, Beresford N.


    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  17. On construction of two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space

    Saveliev, M.V.


    In the framework of the algebraic approach a construction of exactly integrable two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space Rsub(N) of an arbitrary dimension is presented. The construction is based on a reformulation of the Gauss, Peterson-Codazzi and Ricci equations in the form of a Lax-type representation in two-dimensional space. Here the Lax pair operators take the values in algebra SO(N)

  18. Introduction to W-algebras

    Takao, Masaru


    We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)

  19. Representations of quantum bicrossproduct algebras

    Arratia, Oscar; Olmo, Mariano A del


    We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

  20. On hyper BCC-algebras

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.


    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  1. On hyper BCC-algebras

    R. A. Borzooei


    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  2. Lie algebras and applications

    Iachello, Francesco


    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  3. International Conference on Algebra and its Applications

    Ali, Asma; Filippis, Vincenzo


    This book discusses recent developments and the latest research in algebra and related topics. The book allows aspiring researchers to update their understanding of prime rings, generalized derivations, generalized semiderivations, regular semigroups, completely simple semigroups, module hulls, injective hulls, Baer modules, extending modules, local cohomology modules, orthogonal lattices, Banach algebras, multilinear polynomials, fuzzy ideals, Laurent power series, and Hilbert functions. All the contributing authors are leading international academicians and researchers in their respective fields. Most of the papers were presented at the international conference on Algebra and its Applications (ICAA-2014), held at Aligarh Muslim University, India, from December 15–17, 2014. The conference has emerged as a powerful forum offering researchers a venue to meet and discuss advances in algebra and its applications, inspiring further research directions. <.

  4. Division algebra, generalized supersymmetries and octonionic M-theory

    Toppan, Francesco


    This is the report of the talk given at the conference 'Number, Time and Relativity', held at the Bauman University, Moscow, August 2004, concerning the recent research activity of the author and his collaborators about the inter-relation of the concepts of division algebras, representations of Clifford algebras, generalized supersymmetries with the introduction of an alternative description of the M-algebra in terms of the non-associative structure of the octonions. (author)

  5. 3rd International Algebra Conference

    Fong, Yuen; Zelmanov, Efim


    This volume contains one invited lecture which was presented by the 1994 Fields Medal­ ist Professor E. Zelmanov and twelve other papers which were presented at the Third International Conference on Algebra and Their Related Topics at Chang Jung Christian University, Tainan, Republic of China, during the period June 26-July 1, 200l. All papers in this volume have been refereed by an international referee board and we would like to express our deepest thanks to all the referees who were so helpful and punctual in submitting their reports. Thanks are also due to the Promotion and Research Center of National Science Council of Republic of China and the Chang Jung Christian University for their generous financial support of this conference. The spirit of this conference is a continuation of the last two International Tainan­ Moscow Algebra Workshop on Algebras and Their Related Topics which were held in the mid-90's of the last century. The purpose of this very conference was to give a clear picture of the rece...

  6. A non-Lie algebraic framework and its possible merits for symmetry descriptions

    Ktorides, C.N.


    A nonassociative algebraic construction is introduced which bears a relation to a Lie algebra L paralleling the relation between an associative enveloping algebra and L. The key ingredient of this algebraic construction is the presence of two parameters which relate it to the enveloping algebra of L. The analog of the Poincare--Birkhoff--Witt theorem is proved for the new algebra. Possibilities of physical relevance are also considered. It is noted that, if fully developed, the mathematical framework suggested by this new algebra should be non-Lie. Subsequently, a certain scheme resulting from specific considerations connected with this (non-Lie) algebraic structure is found to bear striking resemblance to a recent phenomenological theory proposed for explaining CP violation by the K 0 system. Some relevant speculations are also made in view of certain recent trends of thought in elementary particle physics. Finally, in an appendix, a Gell-Mann--Okubo-like mass formula for the new algebra is derived for an SU (3) octet

  7. Cohomology of Effect Algebras

    Frank Roumen


    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  8. Boolean algebra essentials

    Solomon, Alan D


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  9. Quiver W-algebras

    Kimura, Taro; Pestun, Vasily


    For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  10. Combinatorial algebra syntax and semantics

    Sapir, Mark V


    Combinatorial Algebra: Syntax and Semantics provides a comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of  more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about the growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata.   With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified...

  11. From Rota-Baxter algebras to pre-Lie algebras

    An Huihui; Ba, Chengming


    Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

  12. Algebraic monoids, group embeddings, and algebraic combinatorics

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang


    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  13. Data envelopment analysis - DEA and fuzzy sets to assess the performance of academic departments: a case study at Federal University of Santa Catarina - UFSC

    Lopes Ana Lúcia Miranda


    Full Text Available This paper address the issue of performance evaluation - productivity and quality - of academic departments at an University. A DEA model was used to simulate a process of cross-evaluation between departments. The results of DEA in the dimensions of teaching, research, service and quality were modeled as fuzzy numbers and then aggregated through a weighted ordered aggregator. A single index of performance for each department was generated. The proposal is to identify departments with low performance in one or more dimensions that should receive additional evaluation from an external auditing committee. A by-product of the model is to enlarge the possibility of working with more variables than a conventional DEA model. The model applied to a set of fifty-eight departments of a Brazilian University showed fifteen with low performance. Zero correlation between department teaching, research and service were observed. Weak correlation was detected between research productivity and quality. Weak scale effects were detected.

  14. HIV-1 envelope glycoprotein

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe


    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  15. Common envelope evolution

    Taam, Ronald E.; Ricker, Paul M.


    The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major features of this evolutionary phase, focusing on the

  16. Ready, Set, Algebra?

    Levy, Alissa Beth


    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  17. Learning Activity Package, Algebra.

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  18. Who Takes College Algebra?

    Herriott, Scott R.; Dunbar, Steven R.


    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  19. Analytic real algebras.

    Seo, Young Joo; Kim, Young Hee


    In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.

  20. Pre-Algebra Lexicon.

    Hayden, Dunstan; Cuevas, Gilberto

    The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…

  1. Computer algebra applications

    Calmet, J.


    A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)

  2. Algebraic Description of Motion

    Davidon, William C.


    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  3. Linear-Algebra Programs

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.


    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  4. Elementary Algebra + Student-Written Web Illustrations = Math Mastery.

    Veteto, Bette R.

    This project focuses on the construction and use of a student-made elementary algebra tutorial World Wide Web page at the University of Memphis (Tennessee), how this helps students further explore the topics studied in elementary algebra, and how students can publish their work on the class Web page for use by other students. Practical,…

  5. Elements of mathematics algebra

    Bourbaki, Nicolas


    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  6. Featured Image: Orbiting Stars Share an Envelope

    Kohler, Susanna


    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  7. Effects of Using Problem of the Week in Teaching on Teacher Learning and Change in Algebraic Thinking and Algebra

    Wu, Zhonghe


    The study investigated the effects of using the problem of the week in teaching (POWT) on teachers' learning and changes in knowledge and teaching skills, in algebraic thinking and algebra tasks, in the setting of a university mathematics education graduate program. The graduate students participated in learning POWT weekly in a mathematics…

  8. Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory

    Molina, Mercedes


    Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...

  9. Cluster algebras bases on vertex operator algebras

    Zuevsky, Alexander


    Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016

  10. Algebraic K-theory and algebraic topology

    Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)


    This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.

  11. Linking Computer Algebra Systems and Paper-and-Pencil Techniques To Support the Teaching of Mathematics.

    van Herwaarden, Onno A.; Gielen, Joseph L. W.


    Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…

  12. An introduction to algebraic geometry and algebraic groups

    Geck, Meinolf


    An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

  13. Linear algebraic groups

    Springer, T A


    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  14. Thermal Activated Envelope

    Foged, Isak Worre; Pasold, Anke


    The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary......, environmental dynamics and occupancy dynamics. Lastly, a physical prototype is created, which illustrates the physical expression of the bi-materials and the problems related to manufacturing of these composite structures.......The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary...

  15. Matrices and linear algebra

    Schneider, Hans


    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  16. Quantitative Algebraic Reasoning

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon


    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  17. Topology general & algebraic

    Chatterjee, D


    About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the

  18. Adaptive algebraic reconstruction technique

    Lu Wenkai; Yin Fangfang


    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

  19. Brauer algebras of type B

    Cohen, A.M.; Liu, S.


    For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

  20. Extension properties of states on operator algebras

    Hamhalter, Jan


    We summarize and deepen some recent results concerning the extension problem for states on operator algebras and general quantum logics. In particular, we establish equivalence between the Gleason extension property, the Hahn-Banach extension property, and the universal state extension property of projection logics. Extensions of Jauch-Piron states are investigated.

  1. Profinite algebras and affine boundedness

    Schneider, Friedrich Martin; Zumbrägel, Jens


    We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...

  2. Pseudo-Riemannian Novikov algebras

    Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail:, E-mail:


    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

  3. On the PR-algebras

    Lebedenko, V.M.


    The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language

  4. Algebraic geometry in India

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  5. Linear algebra done right

    Axler, Sheldon


    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  6. Algebraic Semantics for Narrative

    Kahn, E.


    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  7. Groebner Finite Path Algebras

    Leamer, Micah J.


    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  8. Gauging the octonion algebra

    Waldron, A.K.; Joshi, G.C.


    By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs

  9. Summing Boolean Algebras

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA


    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  10. Polynomials in algebraic analysis

    Multarzyński, Piotr


    The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...

  11. Intermediate algebra & analytic geometry

    Gondin, William R


    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  12. Currents on Grassmann algebras

    Coquereaux, R.; Ragoucy, E.


    Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

  13. Introduction to abstract algebra

    Nicholson, W Keith


    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  14. The Boolean algebra of Galois algebras

    Lianyong Xue


    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  15. The quantum Rabi model and Lie algebra representations of sl2

    Wakayama, Masato; Yamasaki, Taishi


    The aim of the present paper is to understand the spectral problem of the quantum Rabi model in terms of Lie algebra representations of sl 2 (R). We define a second order element of the universal enveloping algebra U(sl 2 ) of sl 2 (R), which, through the image of a principal series representation of sl 2 (R), provides a picture equivalent to the quantum Rabi model drawn by confluent Heun differential equations. By this description, in particular, we give a representation theoretic interpretation of the degenerate part of the spectrum (i.e., Judd's eigenstates) of the Rabi Hamiltonian due to Kuś in 1985, which is a part of the exceptional spectrum parameterized by integers. We also discuss the non-degenerate part of the exceptional spectrum of the model, in addition to the Judd eigenstates, from a viewpoint of infinite dimensional irreducible submodules (or subquotients) of the non-unitary principal series such as holomorphic discrete series representations of sl 2 (R). (paper)

  16. Real division algebras and other algebras motivated by physics

    Benkart, G.; Osborn, J.M.


    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  17. Uncertain data envelopment analysis

    Wen, Meilin


    This book is intended to present the milestones in the progression of uncertain Data envelopment analysis (DEA). Chapter 1 gives some basic introduction to uncertain theories, including probability theory, credibility theory, uncertainty theory and chance theory. Chapter 2 presents a comprehensive review and discussion of basic DEA models. The stochastic DEA is introduced in Chapter 3, in which the inputs and outputs are assumed to be random variables. To obtain the probability distribution of a random variable, a lot of samples are needed to apply the statistics inference approach. Chapter 4

  18. Linear algebra and group theory for physicists

    Rao, K N Srinivasa


    Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...

  19. Special set linear algebra and special set fuzzy linear algebra

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.


    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  20. A concrete introduction to higher algebra

    Childs, Lindsay N


    This book is written as an introduction to higher algebra for students with a background of a year of calculus. The first edition of this book emerged from a set of notes written in the 1970sfor a sophomore-junior level course at the University at Albany entitled "Classical Algebra." The objective of the course, and the book, is to give students enough experience in the algebraic theory of the integers and polynomials to appre­ ciate the basic concepts of abstract algebra. The main theoretical thread is to develop algebraic properties of the ring of integers: unique factorization into primes, congruences and congruence classes, Fermat's theorem, the Chinese remainder theorem; and then again for the ring of polynomials. Doing so leads to the study of simple field extensions, and, in particular, to an exposition of finite fields. Elementary properties of rings, fields, groups, and homomorphisms of these objects are introduced and used as needed in the development. Concurrently with the theoretical development,...

  1. Hecke algebras with unequal parameters

    Lusztig, G


    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  2. Axis Problem of Rough 3-Valued Algebras

    Jianhua Dai; Weidong Chen; Yunhe Pan


    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  3. Polynomial deformations of oscillator algebras in quantum theories with internal symmetries

    Karassiov, V.P.


    This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )

  4. C*-algebras by example

    Davidson, Kenneth R


    The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

  5. Algebra II workbook for dummies

    Sterling, Mary Jane


    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  6. Algebraic K-theory

    Srinivas, V


    Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...

  7. Matrix realization of string algebra axioms and conditions of invariance

    Babichev, L.F.; Kuvshinov, V.I.; Fedorov, F.I.


    The matrix representations of Witten's and B-algebras of the field string theory in finite dimensional space of the ghost states are suggested for the case of Virasoro algebra truncated to its SU(1,1) subalgebra. In this case all algebraic operations of Witten's and B-algebras are realized in explicit form as some matrix operations in the graded complex vector space. The structure of string action coincides with the universal non-linear cubic matrix form of action for the gauge field theories. These representations lead to matrix conditions of theory invariance which can be used for finding of the explicit form of corresponding operators of the string algebras. (author)

  8. Regularity of C*-algebras and central sequence algebras

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  9. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    Pitsch, Wolfgang; Zarzuela, Santiago


    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  10. Quantum cluster algebra structures on quantum nilpotent algebras

    Goodearl, K R


    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  11. Identities and derivations for Jacobian algebras

    Dzhumadil'daev, A.S.


    Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)

  12. Algebraic quantum field theory

    Foroutan, A.


    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  13. Complex algebraic geometry

    Kollár, János


    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  14. Algebraic design theory

    Launey, Warwick De


    Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...

  15. Complex Algebraic Varieties

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf


    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  16. Problems in abstract algebra

    Wadsworth, A R


    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  17. Applied linear algebra

    Olver, Peter J


    This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

  18. Basic linear algebra

    Blyth, T S


    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  19. Algebraic topology a primer

    Deo, Satya


    This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...

  20. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Wasserman, Nicholas H.


    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  1. Converting nested algebra expressions into flat algebra expressions

    Paredaens, J.; Van Gucht, D.


    Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its

  2. Computer Program For Linear Algebra

    Krogh, F. T.; Hanson, R. J.


    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  3. Algebra for Gifted Third Graders.

    Borenson, Henry


    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  4. Gradings on simple Lie algebras

    Elduque, Alberto


    Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

  5. Tensor spaces and exterior algebra

    Yokonuma, Takeo


    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  6. Dynamical systems and linear algebra

    Colonius, Fritz (Prof.)


    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  7. Projector bases and algebraic spinors

    Bergdolt, G.


    In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

  8. Contractions of quantum algebraic structures

    Doikou, A.; Sfetsos, K.


    A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Polynomial Heisenberg algebras

    Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M


    Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

  10. Classical algebraic chromodynamics

    Adler, S.L.


    I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

  11. Algebraic number theory

    Weiss, Edwin


    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  12. Partially ordered algebraic systems

    Fuchs, Laszlo


    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  13. Elementary matrix algebra

    Hohn, Franz E


    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  14. Principles of algebraic geometry

    Griffiths, Phillip A


    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  15. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)


    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  16. Endomorphisms of graph algebras

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech


    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  17. Algebraic curves and cryptography

    Murty, V Kumar


    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  18. Elementary algebraic geometry

    Kendig, Keith


    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  19. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P


    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  20. Handbook of linear algebra

    Hogben, Leslie


    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  1. Algebra & trigonometry I essentials

    REA, Editors of


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  2. Algebra & trigonometry super review


    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  3. Linear Algebra Thoroughly Explained

    Vujičić, Milan


    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  4. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

    Gebert, R.W.


    The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

  5. The theory of algebraic numbers

    Pollard, Harry


    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  6. Spin-4 extended conformal algebras

    Kakas, A.C.


    We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)

  7. An algebra of reversible computation.

    Wang, Yong


    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  8. On Weak-BCC-Algebras

    Thomys, Janus; Zhang, Xiaohong


    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  9. Assessing Elementary Algebra with STACK

    Sangwin, Christopher J.


    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system,, which uses the CAS…

  10. Process Algebra and Markov Chains

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  11. Process algebra and Markov chains

    Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.


    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  12. Algebraic Methods to Design Signals


    to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

  13. Vanishing theorems and effective results in algebraic geometry

    Demailly, J.P.; Goettsche, L.; Lazarsfeld, R.


    The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks

  14. Vanishing theorems and effective results in algebraic geometry

    Demailly, J P [Universite de Grenoble (France); Goettsche, L [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Lazarsfeld, R [University of Michigan (United States)


    The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks.

  15. Probabilistic thread algebra

    Bergstra, J.A.; Middelburg, C.A.


    We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution

  16. Discourses on Algebra

    BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.

  17. Thinking Visually about Algebra

    Baroudi, Ziad


    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  18. The algebraic collective model

    Rowe, D.J.; Turner, P.S.


    A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei

  19. College Algebra I.

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…

  20. Real space process algebra

    Bergstra, J.A.; Baeten, J.C.M.


    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  1. Commutative algebra with a view toward algebraic geometry

    Eisenbud, David


    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  2. A Comparison of Success and Failure Rates between Computer-Assisted and Traditional College Algebra Sections

    Herron, Sherry; Gandy, Rex; Ye, Ningjun; Syed, Nasser


    A unique aspect of the implementation of a computer algebra system (CAS) at a comprehensive university in the U.S. allowed us to compare the student success and failure rates to the traditional method of teaching college algebra. Due to space limitations, the university offered sections of both CAS and traditional simultaneously and, upon…

  3. Operator algebras and topology

    Schick, T.


    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  4. Teaching materials of algebraic equation

    Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi


    The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.

  5. Advanced modern algebra part 2

    Rotman, Joseph J


    This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

  6. q-deformed Poincare algebra

    Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA


    The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)

  7. An Algebraic Approach to Knowledge Bases Informational Equivalence

    Plotkin, B.; Plotkin, T.


    In this paper we study the notion of knowledge from the positions of universal algebra and algebraic logic. We consider first order knowledge which is based on first order logic. We define categories of knowledge and knowledge bases. These notions are defined for the fixed subject of knowledge. The key notion of informational equivalence of two knowledge bases is introduced. We use the idea of equivalence of categories in this definition. We prove that for finite models there is a clear way t...

  8. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.


    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  9. On Dunkl angular momenta algebra

    Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)


    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  10. Continuum analogues of contragredient Lie algebras

    Saveliev, M.V.; Vershik, A.M.


    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  11. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    Marquette, Ian


    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently


    Daniel Tudor


    This paper analyzes two special cases of C* -algebras, the cases of universal crossed product and reduced crossed product of a group by a C* -algebra. In the hypothesis that the universal crossed product is a continuous trace C* -algebra or a type I C* -algebra, it is proved that the reduced crossed product is a continuous trace C* -algebra or, respectively, a type I C* -algebra. Moreover, these results can be extended in the case when the crossed products are obtained from a groupoid an...

  13. Real algebraic geometry

    Bochnak, Jacek; Roy, Marie-Françoise


    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  14. Algebra de Clifford

    María Carolina Spinel G.


    Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.

  15. Split Malcev algebras

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  16. Algebra of Majorana doubling.

    Lee, Jaehoon; Wilczek, Frank


    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  17. The Algebra Artist

    Beigie, Darin


    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  18. Algebras of Information States

    Punčochář, Vít


    Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016

  19. Clifford Algebras and Spinors

    Todorov, Ivan


    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  20. Algebra & trigonometry II essentials

    REA, Editors of


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  1. Modern algebra essentials

    Lutfiyya, Lutfi A


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  2. The LHC on an envelope


    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  3. The LHC in an envelope


    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  4. Further linear algebra

    Blyth, T S


    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  5. Priority in Process Algebras

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.


    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  6. Assessing Algebraic Solving Ability: A Theoretical Framework

    Lian, Lim Hooi; Yew, Wun Thiam


    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  7. Associative and Lie deformations of Poisson algebras

    Remm, Elisabeth


    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  8. Fusion rules of chiral algebras

    Gaberdiel, M.


    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  9. Einstein algebras and general relativity

    Heller, M.


    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  10. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Verburgt, Lukas M


    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  11. Experimental and Theoretical Methods in Algebra, Geometry and Topology

    Veys, Willem; Bridging Algebra, Geometry, and Topology


    Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...

  12. Category-theoretic models of algebraic computer systems

    Kovalyov, S. P.


    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  13. Four-parametric two-layer algebraic model of transition boundary layer at a planar plate

    Labusov, A.N.; Lapin, Yu.V.


    Consideration is given to four-parametric two-layer algebraic model of transition boundary layer on a plane plate, based on generalization of one-parametric algebraic Prandtl-Loitsjansky-Klauzer-3 model. The algebraic model uses Prandtl formulas for mixing path with Loitsjansky damping multiplier in the internal region and the relation for turbulent viscosity, based on universal scales of external region and named the Klauzer-3 formula. 12 refs., 10 figs

  14. Categorical Algebra and its Applications


    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  15. Chiral algebras of class S

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.


    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  16. Applications of Computer Algebra Conference

    Martínez-Moro, Edgar


    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  17. Chiral algebras for trinion theories

    Lemos, Madalena; Peelaers, Wolfger


    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  18. Computational aspects of algebraic curves

    Shaska, Tanush


    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  19. Electronic Algebra and Calculus Tutor

    Larissa Fradkin


    Full Text Available Modern undergraduates join science and engineering courses with poorer mathematical background than most contemporaries of the current faculty had when they were freshers. The problem is very acute in the United Kingdom but more and more countries adopt less resource intensive models of teaching and the problem spreads. University tutors and lecturers spend more and more time covering the basics. However, most of them still rely on traditional methods of delivery which presuppose that learners have a good memory and considerable time to practice, so that they can memorize disjointed facts and discover for themselves various connections between the underlying concepts. These suppositions are particularly unrealistic when dealing with a large number of undergraduates who are ordinary learners with limited mathematics background. The first author has developed a teaching system that allows such adult learners achieve relatively deep learning of mathematics – and remarkably quickly – through a teacher-guided (often called Socratic dialog, which aims at the frequent reinforcement of basic mathematical abstractions through Eulerian sequencing. These ideas have been applied to create a prototype of a Cognitive Mathematics Tutoring System aimed at teaching basic mathematics to University freshers., an electronic Personal Algebra and Calculus Tutor (e- PACT.

  20. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    Ayupov, Shavkat; Kudaybergenov, Karimbergen


    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)

  1. Nonsimplicity of certain universal C^*-algebras

    Jeu, de M.F.E.; Elharti, R.; Pinto, P.R.


    Given n≥2" role="presentation">n≥2, zij∈T" role="presentation">zij∈T such that zij=z¯ji" role="presentation">zij=z¯ji for 1≤i,j≤n" role="presentation">1≤i,j≤n and zii=1" role="presentation">zii=1 for 1≤i≤n" role="presentation">1≤i≤n, and integers p1,…,pn≥1" role="presentation">p1,…,pn≥1, we show

  2. Dynamical entropy of C* algebras and Von Neumann algebras

    Connes, A.; Narnhofer, H.; Thirring, W.


    The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)

  3. Abstract Algebra to Secondary School Algebra: Building Bridges

    Christy, Donna; Sparks, Rebecca


    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  4. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    Put, Marius van der


    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  5. A modal characterization of Peirce algebras

    M. de Rijke (Maarten)


    textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.

  6. Quantum deformation of the affine transformation algebra

    Aizawa, N.; Sato, Haru-Tada


    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  7. Development of a pneumatic roof envelope for industrial greenhouses

    Lindner, G.; Vos, de G.J.


    The Eindhoven University of Technology (TU/e) was approached by Van Diemen BV, a turn-key greenhouse builder looking for a new and higher insulated design for their green house envelope. They had developed a new system of climate control which rendered windows for ventilation purposes unnecessary

  8. Algebra in Cuneiform

    Høyrup, Jens

    with basic Assyriology but otherwise philological details are avoided. All of these texts are from the second half of the Old Babylonian period, that is, 1800–1600 BCE. It is indeed during this period that the “algebraic” discipline, and Babylonian mathematics in general, culminates. Even though a few texts...... particular culture. Finally, it describes the origin of the discipline and its impact in later mathematics, not least Euclid’s geometry and genuine algebra as created in medieval Islam and taken over in European medieval and Renaissance mathematics....

  9. Algebraic topology and concurrency

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric


    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...

  10. Elements of abstract algebra

    Clark, Allan


    This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)

  11. Geometric Algebra Computing

    Corrochano, Eduardo Bayro


    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  12. Matlab linear algebra

    Lopez, Cesar


    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  13. Handbook of algebra

    Hazewinkel, M


    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  14. Safeguards Envelope Progress FY08

    Bean, Robert; Metcalf, Richard; Bevill, Aaron


    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  15. The Unitality of Quantum B-algebras

    Han, Shengwei; Xu, Xiaoting; Qin, Feng


    Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

  16. Fractional supersymmetry and infinite dimensional lie algebras

    Rausch de Traubenberg, M.


    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  17. New examples of continuum graded Lie algebras

    Savel'ev, M.V.


    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  18. Moisture dynamics in building envelopes

    Peuhkuri, R.


    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  19. Moisture Dynamics in Building Envelopes

    Peuhkuri, Ruut Hannele


    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  20. Graded associative conformal algebras of finite type

    Kolesnikov, Pavel


    In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...

  1. Linear Algebra and Image Processing

    Allali, Mohamed


    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  2. Templates for Linear Algebra Problems

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der


    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  3. Differential Equation over Banach Algebra

    Kleyn, Aleks


    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  4. Smarandache hyper BCC-algebra

    Ahadpanah, A.; Borumand Saeid, A.


    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  5. General distributions in process algebra

    Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.


    This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential

  6. Tilting-connected symmetric algebras

    Aihara, Takuma


    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  7. Algebraic study of chiral anomalies


    Jun 14, 2012 ... They form a group G which acts on the (affine) space of ... The curvature F of A is defined by (notice that in this paper the bracket is defined ... This purely algebraic formulation easily extends to the consideration of the Lie algebra of vector .... namely the case of perturbatively renormalizable theories in four ...

  8. Logarithmic residues in Banach algebras

    H. Bart (Harm); T. Ehrhardt; B. Silbermann


    textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In

  9. Modular specifications in process algebra

    R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)


    textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,

  10. Galois Connections for Flow Algebras

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis


    to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...

  11. The Algebra of Complex Numbers.

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  12. Donaldson invariants in algebraic geometry

    Goettsche, L.


    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  13. Learning Algebra from Worked Examples

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.


    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  14. Covariant representations of nuclear *-algebras

    Moore, S.M.


    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  15. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin


    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  16. N=2 superconformal Newton-Hooke algebra and many-body mechanics

    Galajinsky, Anton


    A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.

  17. Improving Algebra Preparation: Implications from Research on Student Misconceptions and Difficulties

    Welder, Rachael M.


    Through historical and contemporary research, educators have identified widespread misconceptions and difficulties faced by students in learning algebra. Many of these universal issues stem from content addressed long before students take their first algebra course. Yet elementary and middle school teachers may not understand how the subtleties of…

  18. Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.

    Morris, J. Richard

    This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…

  19. Factors Related to Problem Solving by College Students in Developmental Algebra.

    Schonberger, Ann K.

    A study was conducted to contrast the characteristics of three groups of college students who completed a developmental algebra course at the University of Maine at Orono during 1980-81. On the basis of a two-part final examination, involving a multiple-choice test of algebraic concepts and skills and a free-response test of problem-solving…

  20. Effective basis for modelling outlines of envelopes generated by motion of surfaces of revolution

    Turlapov, V.E.; Yakunin, V.I.


    This paper considers effective solutions of problems on parallel processing of envelopes generated by three-dimensional movement of surfaces of revolution. In general, determining the points outlining the envelope corresponding to concrete values for motion parameters reduces to numerical solution of nonlinear equations in generatrix parameters. For surfaces of revolution whose generatrix is a circular arc, this problem reduces to solution of a fourth-degree algebraic equation. It is shown that an envelope outline can be specified in the form of an explicit function of the motion parameters for any motion if the generatrix of the surface of revolution is a strait line, and, for motion with a fixed point or a fixed axis for the surface of revolution, if the generatrix is a conic section, spline, or a number of other curves

  1. Basic algebraic geometry, v.2

    Shafarevich, Igor Rostislavovich


    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  2. Invariants of triangular Lie algebras

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman


    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated

  3. Elements of algebraic coding systems

    Cardoso da Rocha, Jr, Valdemar


    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  4. Representations of affine Hecke algebras

    Xi, Nanhua


    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  5. Geometric algebra with applications in science and engineering

    Sobczyk, Garret


    The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer­ ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar­ ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math­ ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling ...

  6. A natural history of mathematics: George Peacock and the making of English algebra.

    Lambert, Kevin


    In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.

  7. Multifractal vector fields and stochastic Clifford algebra.

    Schertzer, Daniel; Tchiguirinskaia, Ioulia


    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  8. Multifractal vector fields and stochastic Clifford algebra

    Schertzer, Daniel, E-mail:; Tchiguirinskaia, Ioulia, E-mail: [University Paris-Est, Ecole des Ponts ParisTech, Hydrology Meteorology and Complexity HM& Co, Marne-la-Vallée (France)


    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  9. (Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras

    Dusko Pavlovic


    Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.

  10. Algebra of pseudo-differential operators over C*-algebra

    Mohammad, N.


    Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

  11. Rota-Baxter algebras and the Hopf algebra of renormalization

    Ebrahimi-Fard, K.


    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  12. Rota-Baxter algebras and the Hopf algebra of renormalization

    Ebrahimi-Fard, K.


    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  13. Nature of 'unseen' galactic envelopes

    McCrea, W.H.


    In this paper, it is suggested that unseen matter in a galactic envelope or in a group of galaxies may consist of substellar bodies originating as the first permanent 'stars' in the formation of a very massive galaxy according to a model for galaxy-formation on the basis of simple big-bang cosmology. (Auth.)

  14. Handbook on data envelopment analysis

    Cooper, William W; Zhu, Joe


    Focusing on extensively used Data Envelopment Analysis topics, this volume aims to both describe the state of the field and extend the frontier of DEA research. New chapters include DEA models for DMUs, network DEA, models for supply chain operations and applications, and new developments.

  15. Lie algebra in quantum physics by means of computer algebra

    Kikuchi, Ichio; Kikuchi, Akihito


    This article explains how to apply the computer algebra package GAP ( in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...

  16. Head First Algebra A Learner's Guide to Algebra I

    Pilone, Tracey


    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  17. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    Gonzalez-Vega, Laureano


    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  18. Grade 11 Students' Interconnected Use of Conceptual Knowledge, Procedural Skills, and Strategic Competence in Algebra: A Mixed Method Study of Error Analysis

    Egodawatte, Gunawardena; Stoilescu, Dorian


    The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…

  19. Algebra for cryptologists

    Meijer, Alko R


    This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...

  20. Space-time algebra

    Hestenes, David


    This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...

  1. Current algebra for parafields

    Palev, Ch.D.


    Within the framework of the Lagrangean QFT a generalization of canonical commutation and anticommutation relations in terms of three-linear commutation relations, corresponding to the parastatistics, s discussed. A detailed derivation of these three-linear relations for a set of parafermi fields is presented. Then for a Lagrangean, depending of a family of parabose fields and a family of paraferm fields, is shown that the fundamental hypothesis of current algebra is valid. In other words, the currents corresponding to the linear gauge transformations are found to meet the commutation relation: [Jsub(f)sup(0)(x), Jsub(g)sup(0)]sub(x 0 =y 0 ) = -idelta(x vector - y vector)Jsub([f,g])sup(0) (x), where Jsub(f)sup(0) is a time component of the current, corresponding to transformation f. (S.P.)

  2. Applications of computer algebra


    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  3. MATLAB matrix algebra

    Pérez López, César


    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  4. A nonlinear deformed su(2) algebra with a two-color quasitriangular Hopf structure

    Bonatsos, D.; Daskaloyannis, C.; Kolokotronis, P.; Ludu, A.; Quesne, C.


    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J 0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as scr(A) q + (1). This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0,1,2,hor-ellipsis. To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su q (2) and scr(A) q + (1), is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su q (2) is carried over to scr(A) q + (1), thereby endowing the latter with a double Hopf structure. In the second step, the definition of the coproduct, counit, antipode, and scr(R)-matrix is extended so that the double Hopf algebra is enlarged into a new algebraic structure. The latter is referred to as a two-color quasitriangular Hopf algebra because the corresponding scr(R)-matrix is a solution of the colored Yang endash Baxter equation, where the open-quotes colorclose quotes parameters take two discrete values associated with the two series of finite-dimensional representations. copyright 1997 American Institute of Physics

  5. Quantum algebra of N superspace

    Hatcher, Nicolas; Restuccia, A.; Stephany, J.


    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra

  6. Macdonald index and chiral algebra

    Song, Jaewon


    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  7. Vertex algebras and mirror symmetry

    Borisov, L.A.


    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  8. Complex envelope control of pulsed accelerating fields in superconducting cavities

    Czarski, T


    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  9. Introduction to Banach spaces and algebras

    Allan, Graham


    Banach spaces and algebras are a key topic of pure mathematics. Graham Allan's careful and detailed introductory account will prove essential reading for anyone wishing to specialise in functional analysis and is aimed at final year undergraduates or masters level students. Based on the author's lectures to fourth year students at Cambridge University, the book assumes knowledge typical of first degrees in mathematics, including metric spaces, analytic topology, and complexanalysis. However, readers are not expected to be familiar with the Lebesgue theory of measure and integration.The text be

  10. Introduction to the theory of abstract algebras

    Pierce, Richard S


    Intended for beginning graduate-level courses, this text introduces various aspects of the theory of abstract algebra. The book is also suitable as independent reading for interested students at that level as well as a primary source for a one-semester course that an instructor may supplement to expand to a full year. Author Richard S. Pierce, a Professor of Mathematics at Seattle's University of Washington, places considerable emphasis on applications of the theory and focuses particularly on lattice theory.After a preliminary review of set theory, the treatment presents the basic definitions

  11. Handbook of algebra Vol. 1


    Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear d

  12. P-commutative topological *-algebras

    Mohammad, N.; Thaheem, A.B.


    If P(A) denotes the set of all continuous positive functionals on a unital complete Imc *-algebra and S(A) the extreme points of P(A), and if the spectrum of an element χ Ε A coincides with the set {f(χ): f Ε S(A)}, then A is shown to be P-commutative. Moreover, if A is unital symmetric Frechet Q Imc *-algebra, then this spectral condition is, in fact, necessary. Also, an isomorphism theorem between symmetric Frechet P-commutative Imc *-algebras is established. (author). 12 refs

  13. Introduction to applied algebraic systems

    Reilly, Norman R


    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  14. Remarks on finite W algebras

    Barbarin, F.; Sorba, P.; Ragoucy, E.


    The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G ≅ so (4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach, which can be compared to the usual induced representation technique. When G approx=(2, R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) k is briefly presented. (authors)

  15. Lectures on Algebraic Geometry I

    Harder, Gunter


    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  16. Lie Algebras and Integrable Systems

    Zhang Yufeng; Mei Jianqin


    A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)

  17. Study guide for college algebra

    Snow, James W; Shapiro, Arnold


    Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what

  18. Test bank for college algebra

    Kolman, Bernard; Levitan, Michael L


    Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.

  19. Coxeter groups and Hopf algebras

    Aguiar, Marcelo


    An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou

  20. Algebraic and stochastic coding theory

    Kythe, Dave K


    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  1. Linear operators in Clifford algebras

    Laoues, M.


    We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)

  2. Introduction to algebra and trigonometry

    Kolman, Bernard


    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  3. Constructing Meanings and Utilities within Algebraic Tasks

    Ainley, Janet; Bills, Liz; Wilson, Kirsty


    The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…

  4. Brauer algebras of type F4

    Liu, S.


    We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.

  5. Contraction of graded su(2) algebra

    Patra, M.K.; Tripathy, K.C.


    The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)

  6. Located actions in process algebra with timing

    Bergstra, J.A.; Middelburg, C.A.


    We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a

  7. Brauer algebra of type F4

    Liu, S.


    We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.

  8. Strongly \\'etale difference algebras and Babbitt's decomposition

    Tomašić, Ivan; Wibmer, Michael


    We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.

  9. Particle-like structure of Lie algebras

    Vinogradov, A. M.


    If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.

  10. Galilean contractions of W-algebras

    Jørgen Rasmussen


    Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.

  11. The Centroid of a Lie Triple Algebra

    Xiaohong Liu


    Full Text Available General results on the centroids of Lie triple algebras are developed. Centroids of the tensor product of a Lie triple algebra and a unitary commutative associative algebra are studied. Furthermore, the centroid of the tensor product of a simple Lie triple algebra and a polynomial ring is completely determined.

  12. Geometry of Spin: Clifford Algebraic Approach

    Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a ...

  13. Lectures on algebraic quantum field theory and operator algebras

    Schroer, Bert


    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  14. Partially Flipped Linear Algebra: A Team-Based Approach

    Carney, Debra; Ormes, Nicholas; Swanson, Rebecca


    In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…

  15. Embodied, Symbolic and Formal Thinking in Linear Algebra

    Stewart, Sepideh; Thomas, Michael O. J.


    Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…

  16. Linear Algebra and the Experiences of a "Flipper"

    Wright, Sarah E.


    This paper describes the linear algebra class I taught during Spring 2014 semester at Adelphi University. I discuss the details of how I flipped the class and incorporated elements of inquiry-based learning as well as the reasoning behind specific decisions I made. I give feedback from the students on the success of the course and provide my own…

  17. A Framework for Mathematical Thinking: The Case of Linear Algebra

    Stewart, Sepideh; Thomas, Michael O. J.


    Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

  18. On ideals and quotients of AT AT AT-algebras

    Home; Journals; Proceedings – Mathematical Sciences; Volume 118; Issue 4. On Ideals and Quotients of A T -Algebras. Changguo Wei. Volume 118 Issue 4 November 2008 pp ... Author Affiliations. Changguo Wei1. School of Mathematical Sciences, Ocean University of China, Qingdao 266071, People's Republic of China ...

  19. Pre-Algebra Essentials For Dummies

    Zegarelli, Mark


    Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra

  20. On graded algebras of global dimension 3

    Piontkovskii, D I


    Assume that a graded associative algebra A over a field k is minimally presented as the quotient algebra of a free algebra F by the ideal I generated by a set f of homogeneous elements. We study the following two extensions of A: the algebra F-bar=F/I oplus I/I 2 oplus ... associated with F with respect to the I-adic filtration, and the homology algebra H of the Shafarevich complex Sh(f,F) (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the A-algebra H in this case is free, and the algebra F-bar is isomorphic to the quotient algebra of a free A-algebra by the ideal generated by a so-called strongly free (or inert) set

  1. Representations of fundamental groups of algebraic varieties

    Zuo, Kang


    Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.

  2. Asymptotic aspect of derivations in Banach algebras

    Jaiok Roh


    Full Text Available Abstract We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  3. Pure homology of algebraic varieties

    Weber, Andrzej


    We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.

  4. Lie-Algebras. Pt. 1

    Baeuerle, G.G.A.; Kerf, E.A. de


    The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs

  5. Classical theory of algebraic numbers

    Ribenboim, Paulo


    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  6. The algebraic geometry of multimonopoles

    Nahm, W.


    Multimonopole solutions of the Bogomolny equation are treated by a transform to an ordinary differential equation. The solution of this equation yields algebraic curves and holomorphic line bundles over them. (orig.)

  7. Algebraic study of chiral anomalies

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  8. Cartooning in Algebra and Calculus

    Moseley, L. Jeneva


    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  9. Ada Linear-Algebra Program

    Klumpp, A. R.; Lawson, C. L.


    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  10. Computational linear and commutative algebra

    Kreuzer, Martin


    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  11. Algebraic structure of chiral anomalies

    Stora, R.


    I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories

  12. Safeguards Envelope Progress FY08

    Robert Bean; Richard Metcalf; Aaron Bevill


    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  13. Transparent ceramic lamp envelope materials

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)


    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  14. Hopf algebras and topological recursion

    Esteves, João N


    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293–309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347–452). (paper)

  15. Distribution theory of algebraic numbers

    Yang, Chung-Chun


    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  16. Basic abstract algebra for graduate students and advanced undergraduates

    Ash, Robert B


    Geared toward upper-level undergraduates and graduate students, this text surveys fundamental algebraic structures and maps between these structures. Its techniques are used in many areas of mathematics, with applications to physics, engineering, and computer science as well. Author Robert B. Ash, a Professor of Mathematics at the University of Illinois, focuses on intuitive thinking. He also conveys the intrinsic beauty of abstract algebra while keeping the proofs as brief and clear as possible.The early chapters provide students with background by investigating the basic properties of groups

  17. An algebraic approach to modeling in software engineering

    Loegel, C.J.; Ravishankar, C.V.


    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ''computer science'' objects like abstract data types, but in practice software errors are often caused because ''real-world'' objects are improperly modeled. There is a large semantic gap between the customer's objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form

  18. Algebraic Systems and Pushdown Automata

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  19. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency

    Hong Qin


    Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.

  20. Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces

    Meljanac, Stjepan; Krešić–Jurić, Saša; Martinić, Tea


    This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra g0, we construct a Lie superalgebra g =g0⊕g1 containing noncommutative coordinates and one-forms. We show that g can be extended by a set of generators TAB whose action on the enveloping algebra U (g ) gives the commutation relations between monomials in U (g0 ) and one-forms. Realizations of noncommutative coordinates, one-forms, and the generators TAB as formal power series in a semicompleted Weyl superalgebra are found. In the special case dim(g0 ) =dim(g1 ) , we also find a realization of the exterior derivative on U (g0 ) . The realizations of these geometric objects yield a bicovariant differential calculus on U (g0 ) as a deformation of the standard calculus on the Euclidean space.

  1. Algebraic approach to q-deformed supersymmetric variants of the Hubbard model with pair hoppings

    Arnaudon, D.


    Two quantum spin chains Hamiltonians with quantum sl(2/1) invariance are constructed. These spin chains define variants of the Hubbard model and describe electron models with pair hoppings. A cubic algebra that admits the Birman-Wenzl-Murakami algebra as a quotient allows exact solvability of the periodic chain. The two Hamiltonians, respectively built using the distinguished and the fermionic bases of U q (sl(2/1)) differ only in the boundary terms. They are actually equivalent, but the equivalence is non local. Reflection equations are solved to get exact solvability on open chains with non trivial boundary conditions. Two families of diagonal solutions are found. The centre and the s-Casimir of the quantum enveloping algebra of sl(2/1) appear as tools for the construction of exactly solvable Hamiltonians. (author)

  2. New WZW D-branes from the algebra of Wilson loop operators

    Monnier, Samuel


    We investigate the algebra generated by the topological Wilson loop operators in WZW models. Wilson loops describe the nontrivial fixed points of the boundary renormalization group flows triggered by Kondo perturbations. Their enveloping algebra therefore encodes all the fixed points which can be reached by sequences of Kondo flows. This algebra is easily described in the case of SU(2), but displays a very rich structure for higher rank groups. In the latter case, its action on known D-branes creates a profusion of new and generically non-rational D-branes. We describe their symmetries and the geometry of their worldvolumes. We briefly explain how to extend these results to coset models.

  3. Algebras in genetics

    Wörz-Busekros, Angelika


    The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par­ ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...

  4. Esercizi scelti di algebra

    Chirivì, Rocco; Dvornicich, Roberto


    Questo libro – primo di due volumi -  presenta oltre 250 esercizi scelti di algebra ricavati dai compiti d'esame dei corsi di Aritmetica tenuti dagli autori all'Università di Pisa. Ogni esercizio viene presentato con una o più soluzioni accuratamente redatte con linguaggio e notazioni uniformi. Caratteristica distintiva del libro è che gli esercizi proposti sono tutti diversi uno dall'altro e le soluzioni richiedono sempre una piccola idea originale; ciò rende il libro unico nel genere. Gli argomenti di questo primo volume sono: principio d'induzione, combinatoria, congruenze, gruppi abeliani, anelli commutativi, polinomi, estensioni di campi, campi finiti. Il libro contiene inoltre una dettagliata sezione di richiami teorici e può essere usato come libro di riferimento per lo studio. Una serie di esercizi preliminari introduce le tecniche principali da usare per confrontarsi con i testi d'esame proposti. Il volume è rivolto a tutti gli studenti del primo anno dei corsi di laur ea in Matematica e Inf...

  5. The nuclear envelope from basic biology to therapy.

    Worman, Howard J; Foisner, Roland


    The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.

  6. Quantum deformed su(mvertical stroke n) algebra and superconformal algebra on quantum superspace

    Kobayashi, Tatsuo


    We study a deformed su(mvertical stroke n) algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. From the deformed su(1vertical stroke 4) algebra, we derive deformed Lorentz, translation of Minkowski space, iso(2,2) and its supersymmetric algebras as closed subalgebras with consistent automorphisms. (orig.)

  7. Approximation of complex algebraic numbers by algebraic numbers of bounded degree

    Bugeaud, Yann; Evertse, Jan-Hendrik


    We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...

  8. Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras

    Huang Yizhi


    We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)

  9. An application of the division algebras, Jordan algebras and split composition algebras

    Foot, R.; Joshi, G.C.


    It has been established that the covering group of the Lorentz group in D = 3, 4, 6, 10 can be expressed in a unified way, based on the four composition division algebras R, C, Q and O. In this paper, the authors discuss, in this framework, the role of the complex numbers of quantum mechanics. A unified treatment of quantum-mechanical spinors is given. The authors provide an explicit demonstration that the vector and spinor transformations recently constructed from a subgroup of the reduced structure group of the Jordan algebras M n 3 are indeed the Lorentz transformations. The authors also show that if the division algebras in the construction of the covering groups of the Lorentz groups in D = 3, 4, 6, 10 are replaced by the split composition algebras, then the sequence of groups SO(2, 2), SO(3, 3) and SO(5, 5) result. The analysis is presumed to be self-contained as the relevant aspects of the division algebras and Jordan algebras are reviewed. Some applications to physical theory are indicated

  10. Residuated lattices an algebraic glimpse at substructural logics

    Galatos, Nikolaos; Kowalski, Tomasz; Ono, Hiroakira


    The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the f...

  11. Directed Abelian algebras and their application to stochastic models.

    Alcaraz, F C; Rittenberg, V


    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  12. Novikov algebras with associative bilinear forms

    Zhu Fuhai; Chen Zhiqi [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)


    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.

  13. Homological methods, representation theory, and cluster algebras

    Trepode, Sonia


    This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...

  14. Extended Kac-Moody algebras and applications

    Ragoucy, E.; Sorba, P.


    The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs

  15. Automorphic Lie algebras with dihedral symmetry

    Knibbeler, V; Lombardo, S; A Sanders, J


    The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)

  16. Certain number-theoretic episodes in algebra

    Sivaramakrishnan, R


    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  17. Infinite dimension algebra and conformal symmetry

    Ragoucy-Aubezon, E.


    A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras

  18. Cortical processing of dynamic sound envelope transitions.

    Zhou, Yi; Wang, Xiaoqin


    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  19. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    Hoover, Jerome D; Healy, Alice F


    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  20. Double-partition Quantum Cluster Algebras

    Jakobsen, Hans Plesner; Zhang, Hechun


    A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....