WorldWideScience

Sample records for units thunder basin

  1. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  2. 76 FR 78234 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland, Campbell County, WY...

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF AGRICULTURE Forest Service Medicine Bow-Routt National Forests and Thunder Basin... Supervisor, Medicine Bow-Routt National Forests and Thunder Basin National Grassland, 2250 East Richards.... Responsible Official Richard Cooksey, Deputy Forest Supervisor, Medicine Bow-Routt National Forests and...

  3. 76 FR 35398 - Scoria Mining Addition, Medicine Bow-Routt National Forests and Thunder Basin National Grassland...

    Science.gov (United States)

    2011-06-17

    ... authorize Thunder Basin Coal Company, LLC to expand the area of its existing scoria gravel pit development... statement (DEIS) is expected to be available by October 2011, and the final environmental impact statement... analysis and its findings and then document the final decision in a Record of Decision (ROD). The decision...

  4. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  5. Thunder God Vine

    Science.gov (United States)

    ... T U V W X Y Z Thunder God Vine Share: On This Page Background How Much ... This fact sheet provides basic information about thunder god vine—common names, usefulness and safety, and resources ...

  6. Structural setting and evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico: A case study

    NARCIS (Netherlands)

    Weimer, P.; Bouroullec, R.; Berg, A.A. van den; Lapinski, T.G.; Roesink, J.G.; Adson, J.

    2017-01-01

    The Mensa and Thunder Horse intraslope minibasins in southcentralMississippi Canyon, northern deep-water Gulf ofMexico, had a linked structural evolution from the Early Cretaceous through the late Miocene. Analysis of the two minibasins illustrates the complexities of deep-water sedimentation and

  7. Modelling digital thunder

    International Nuclear Information System (INIS)

    Blanco, Francesco; La Rocca, Paola; Petta, Catia; Riggi, Francesco

    2009-01-01

    An educational model simulation of the sound produced by lightning in the sky has been employed to demonstrate realistic signatures of thunder and its connection to the particular structure of the lightning channel. Algorithms used in the past have been revisited and implemented, making use of current computer techniques. The basic properties of the mathematical model, together with typical results and suggestions for additional developments are discussed. The paper is intended as a teaching aid for students and teachers in the context of introductory physics courses at university level

  8. 77 FR 2972 - Thunder Bay Power Company, Thunder Bay Power, LLC, et al.

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Thunder Bay Power Company, Thunder Bay Power, LLC, et al.; Notice of Application for Transfer of Licenses, and Soliciting Comments and Motions To Intervene Thunder Bay Power Company Project No. 2404-095 Thunder Bay Power, LLC Midwest Hydro, Inc...

  9. Audible thunder characteristic and the relation between peak ...

    Indian Academy of Sciences (India)

    can detect, generally a few tens of hertz. Audi- ... paper, audible thunder signals have been obtained and analysed. Thunder ... thunder data when the optical spectrum of light- ning could .... finally a relatively weak sound of long duration and.

  10. Stealing thunder as a courtroom tactic revisited: processes and boundaries.

    Science.gov (United States)

    Dolnik, Lara; Case, Trevor I; Williams, Kipling D

    2003-06-01

    Stealing thunder refers to a dissuasion tactic in which an individual reveals potentially incriminating evidence first, for the purpose of reducing its negative impact on an evaluative audience. We examined whether it was necessary to frame the negative revelation in a manner that downplayed its importance, and found that stealing thunder successfully dissuaded mock jurors even without framing. We also sought to determine the mechanism by which stealing thunder operated, and found that stealing thunder led mock jurors to change the meaning of incriminating evidence to be less damaging to the individual. We also found that stealing thunder's effectiveness did not hinge on whether or not opposing counsel also mentioned the thunder evidence, and that the stealing thunder tactic was no longer effective when opposing counsel revealed to the mock jurors that the stealing thunder tactic had been used on them.

  11. Thunder Mountain School Is Something Special.

    Science.gov (United States)

    NJEA Review, 1979

    1979-01-01

    This article describes Thunder Mountain School, operated year round by the Newton Board of Education under a special use permit granted by the National Park Service. The center includes sports facilities, nature preserves, a farm, and historic sites for use by residential and day students, kindergarten through college. (SJL)

  12. Acoustic signature of thunder from seismic records

    Science.gov (United States)

    Kappus, Mary E.; Vernon, Frank L.

    1991-06-01

    Thunder, the sound wave through the air associated with lightning, transfers sufficient energy to the ground to trigger seismometers set to record regional earthquakes. The acoustic signature recorded on seismometers, in the form of ground velocity as a function of time, contains the same type features as pressure variations recorded with microphones in air. At a seismic station in Kislovodsk, USSR, a nearly direct lightning strike caused electronic failure of borehole instruments while leaving a brief impulsive acoustic signature on the surface instruments. The peak frequency of 25-55 Hz is consistent with previously published values for cloud-to-ground lightning strikes, but spectra from this station are contaminated by very strong wind noise in this band. A thunderstorm near a similar station in Karasu triggered more than a dozen records of individual lightning strikes during a 2-hour period. The spectra for these events are fairly broadband, with peaks at low frequencies, varying from 6 to 13 Hz. The spectra were all computed by multitaper analysis, which deals appropriately with the nonstationary thunder signal. These independent measurements of low-frequency peaks corroborate the occasional occurrences in traditional microphone records, but a theory concerning the physical mechanism to account for them is still in question. Examined separately, the individual claps in each record have similar frequency distributions, discounting a need for multiple mechanisms to explain different phases of the thunder sequence. Particle motion, determined from polarization analysis of the three-component records, is predominantly vertical downward, with smaller horizontal components indicative of the direction to the lightning bolt. In three of the records the azimuth to the lightning bolt changes with time, confirming a significant horizontal component to the lightning channel itself.

  13. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  14. Mapping thunder sources by inverting acoustic and electromagnetic observations

    Science.gov (United States)

    Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.

    2014-12-01

    We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.

  15. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-09-13

    ... consistent decision-making process. The 2009 Strategy further established control colonies to address human... 7th, 8th, 9th, and 10th. October 7: Douglas, Wyoming--Douglas National Guard Armory--315 Pearson Road...

  16. Unit-Specific Contingency Plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    Edens, V.G.

    1998-04-01

    This document is a supplement to DOE/RL-93-75, 'Hanford Contingency Plan.' It provides the unit-specific information needed to fully comply with the Washington Administrative Code. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H Solar Evaporation Basins were four concrete internal surfaces, which contained radiologically and hazardous contaminated waste. The 183-H Basin area is a final status treatment, storage, and disposal unit undergoing Resource Conservation and Recovery Act modified post- closure care

  17. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    Science.gov (United States)

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  18. Unit-specific contingency plan for the 183-H solar evaporation basins. Revision 1

    International Nuclear Information System (INIS)

    Zoric, J.P.

    1996-03-01

    This document is a supplement to the Hanford Facility Contingency Plan. It provides the unit-specific information needed to fully comply with the Washington Administrative Code, Chapter 173-303, ''Dangerous Waste Regulations,'' for contingency plans. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H solar evaporation basins are four concrete internal surfaces which contained radiologically- and hazardous-contaminated waste. The 183-H basins are currently empty, inactive and designated as a Resource Conservation and Recovery Act interim-status treatment, storage, and disposal unit undergoing closure. There is no dangerous waste management actively occurring. There is very little likelihood of any incidents that would present hazards to public health or the environment occurring at the 183-H basins

  19. Unit-specific contingency plan for the 183-H Solar Evaporation Basins. Revision 2

    International Nuclear Information System (INIS)

    Zoric, J.P.

    1997-01-01

    This document is a supplement to the Hanford Facility Contingency Plan. It provides the unit-specific information needed to fully comply with the Washington Administrative Code, Chapter 173-303, ''Dangerous Waste Regulations,'' for contingency plans. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H Solar Evaporation Basins are four concrete internal surfaces which contained radiologically- and hazardous-contaminated waste. The 183-H basins are currently empty, inactive and designated as a Resource Conservation and Recovery Act interim-status treatment, storage, and disposal unit undergoing closure. There is no dangerous waste management actively occurring. There is very little likelihood of any incidents that would present hazards to public health or the environment occurring at the 183-H basins

  20. Priority research and management issues for the imperiled Great Basin of the western United States

    Science.gov (United States)

    Jeanne C. Chambers; Michael J. Wisdom

    2009-01-01

    Like many arid and semiarid regions, the Great Basin of the western United States is undergoing major ecological, social, and economic changes that are having widespread detrimental effects on the structure, composition, and function of native ecosystems. The causes of change are highly interactive and include urban, suburban, and exurban growth, past and present land...

  1. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters

    Science.gov (United States)

    Dennen, Kristin O.; Hackley, Paul C.

    2012-01-01

    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  2. 77 FR 15359 - Availability of Seats for the Thunder Bay National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2012-03-15

    ... Bay National Marine Sanctuary, 500 W. Fletcher Street, Alpena, Michigan 49707. Completed applications... Coordinator, Thunder Bay National Marine. Sanctuary, 500 W. Fletcher Street, Alpena, Michigan 49707, (989) 356...

  3. Development of lightweight THUNDER with fiber composite layers

    Science.gov (United States)

    Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.

    2000-06-01

    This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.

  4. Corelations between the landslides and the morphological and functional units of slopes in the Transylvanian Basin

    Directory of Open Access Journals (Sweden)

    Gh. ROȘIAN

    2016-11-01

    Full Text Available The presence of fluvial morphology in the Transylvanian Basin, in form of an alternation of water divides and valley corridors, indicates favourable conditions for the genesis of geomorphologic processes. Under this aspect two sections stand out within this type of processes: river beds and slopes. In this paper, the emphasis is on the processes, developed on slopes. Water erosion and mass movement processes can be observed on their surface. From all mass movement processes, the emphasis will be put on the landslides. They will be observed in correlation with the morphologic and functional units of the slopes from different regional units of Transylvanian Basin. Eight case studies were taken into consideration regarding this aspect. Thus, we noticed that landslides particularly develop in the median part of the slopes which is corresponding to the maximum processual dynamic and transfer unit.

  5. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  6. 76 FR 51885 - Safety Zone; Thunder on Niagara, Niagara River, North Tonawanda, NY

    Science.gov (United States)

    2011-08-19

    ... River, North Tonawanda, NY. This temporary safety zone is intended to restrict vessels from a portion of the Niagara River during the Thunder on Niagara powerboat races. This temporary safety zone is...-AA00 Safety Zone; Thunder on Niagara, Niagara River, North Tonawanda, NY AGENCY: Coast Guard, DHS...

  7. 78 FR 64186 - Boundary Expansion of Thunder Bay National Marine Sanctuary

    Science.gov (United States)

    2013-10-28

    .... 130403324-3 376-01 RIN 0648-BC94] Boundary Expansion of Thunder Bay National Marine Sanctuary AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric... boundary of the Thunder Bay National Marine Sanctuary (78 FR 35776). On August 15, NOAA re-opened the...

  8. 78 FR 73112 - Boundary Expansion of Thunder Bay National Marine Sanctuary

    Science.gov (United States)

    2013-12-05

    .... 130403324-3376-01] RIN 0648-BC94 Boundary Expansion of Thunder Bay National Marine Sanctuary AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric... boundary of the Thunder Bay National Marine Sanctuary. This document re-opens the public comment period...

  9. 78 FR 49700 - Boundary Expansion of Thunder Bay National Marine Sanctuary

    Science.gov (United States)

    2013-08-15

    .... 130403324-3376-01] RIN 0648-BC94 Boundary Expansion of Thunder Bay National Marine Sanctuary AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric... boundary of the Thunder Bay National Marine Sanctuary (78 FR 35776). This notice reopens the public comment...

  10. Predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwestern United States

    Science.gov (United States)

    Anning, David W.; Paul, Angela P.; McKinney, Tim S.; Huntington, Jena M.; Bexfield, Laura M.; Thiros, Susan A.

    2012-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) is conducting a regional analysis of water quality in the principal aquifer systems across the United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to groundwater contamination by synthesizing baseline knowledge of groundwater-quality conditions in 16 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of groundwater resources.Human-health concerns and economic considerations associated with meeting drinking-water standards motivated a study of the vulnerability of basin-fill aquifers to nitrate con­tamination and arsenic enrichment in the southwestern United States. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents about 190,600 square miles of basin-fill aquifers in parts of Arizona, California, Colorado, Nevada, New Mexico, and Utah. The statistical models, referred to as classifiers, reflect natural and human-related factors that affect aquifer vulnerability to contamina­tion and relate nitrate and arsenic concentrations to explana­tory variables representing local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions. The classifiers were unbiased and fit the observed data well, and misclassifications were primarily due to statistical sampling error in the training datasets.The classifiers were designed to predict concentrations to be in one of six classes for nitrate, and one of seven classes for arsenic. Each classification scheme allowed for identification of areas with concentrations that were equal to or exceeding

  11. Integrated watershed-scale response to climate change for selected basins across the United States

    Science.gov (United States)

    Markstrom, Steven L.; Hay, Lauren E.; Ward-Garrison, D. Christian; Risley, John C.; Battaglin, William A.; Bjerklie, David M.; Chase, Katherine J.; Christiansen, Daniel E.; Dudley, Robert W.; Hunt, Randall J.; Koczot, Kathryn M.; Mastin, Mark C.; Regan, R. Steven; Viger, Roland J.; Vining, Kevin C.; Walker, John F.

    2012-01-01

    A study by the U.S. Geological Survey (USGS) evaluated the hydrologic response to different projected carbon emission scenarios of the 21st century using a hydrologic simulation model. This study involved five major steps: (1) setup, calibrate and evaluated the Precipitation Runoff Modeling System (PRMS) model in 14 basins across the United States by local USGS personnel; (2) acquire selected simulated carbon emission scenarios from the World Climate Research Programme's Coupled Model Intercomparison Project; (3) statistical downscaling of these scenarios to create PRMS input files which reflect the future climatic conditions of these scenarios; (4) generate PRMS projections for the carbon emission scenarios for the 14 basins; and (5) analyze the modeled hydrologic response. This report presents an overview of this study, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the carbon emission scenarios and how this uncertainty propagates through the hydrologic simulations.

  12. Status and understanding of groundwater quality in the Northern Coast Ranges study unit, 2009: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    Groundwater quality in the 633-square-mile (1,639-square-kilometer) Northern Coast Ranges (NOCO) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program and the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The study unit is composed of two study areas (Interior Basins and Coastal Basins) and is located in northern California in Napa, Sonoma, Lake, Colusa, Mendocino, Glenn, Humboldt, and Del Norte Counties. The GAMA-PBP is being conducted by the California State Water Resources Control Board in collaboration with the USGS and the Lawrence Livermore National Laboratory.

  13. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    Science.gov (United States)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases

  14. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  15. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    Science.gov (United States)

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    The glacial, lower Tertiary, and Upper Cretaceous aquifer systems in the Williston and Powder River structural basins within the United States and Canada are the uppermost principal aquifer systems and most accessible sources of groundwater for these energy-producing basins. The glacial aquifer system covers the northeastern part of the Williston structural basin. The lower Tertiary and Upper Cretaceous aquifer systems are present in about 91,300 square miles (mi2) of the Williston structural basin and about 25,500 mi2 of the Powder River structural basin. Directly under these aquifer systems are 800 to more than 3,000 feet (ft) of relatively impermeable marine shale that serves as a basal confining unit. The aquifer systems in the Williston structural basin have a shallow (less than 2,900 ft deep), wide, and generally symmetrical bowl shape. The aquifer systems in the Powder River structural basin have a very deep (as much as 8,500 ft deep), narrow, and asymmetrical shape.

  16. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    Science.gov (United States)

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  17. Review of potential host rocks for radioactive wasste disposal in the southeast United States: Triassic basin subregion

    International Nuclear Information System (INIS)

    1980-10-01

    Based on an evaluation of existing information, areas were identified within the Triassic basins of the southeastern United States with geologic properties considered favorable for containment of radioactive waste. The study region included both exposed and buried Triassic basins from Maryland to Georgia. These basins are long, narrow northeast-trending troughs filled with continental deposits derived from Paleozoic and Precambrian metamorphic and igneous rocks bordering the basins. The rocks are predominantly red in color and consist mainly of fanglomerates, conglomerates, arkosic sandstones, siltstones, claystones, shales, and argillites. The investigation identified 14 exposed and 5 buried basins within the study region. Candidate areas for further investigation were identified which meet the broad general criteria for tectonic stability, slow ground water movement, and long flow paths to the biosphere. These include: the Danville Triassic Basin in Virginia; the Dan River, Durham, and Wadesboro Triassic Basins in North Carolina; and the buried Florence and Dunbarton Triassic Basins in South Carolina. Other rock types in the southeast may prove more or less suitable as host rocks for a repository, but the available data suggest that the argillaceous Triassic rocks offer sufficient promise to be considered for additional study

  18. 78 FR 11821 - Availability of Seats for the Thunder Bay National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2013-02-20

    ...: Application kits may be obtained from Thunder Bay National Marine Sanctuary, 500 W. Fletcher Street, Alpena..., Alpena, Michigan 49707, (989) 356-8805 ext. 13, [email protected] . SUPPLEMENTARY INFORMATION: The...

  19. Brine contamination to aquatic resources from oil and gas development in the Williston Basin, United States

    Science.gov (United States)

    Gleason, Robert A.; Contributions by Chesley-Preston, Tara L.; Coleman, James L.; Haines, Seth S.; Jenni, Karen E.; Nieman, Timothy L.; Peterman, Zell E.; van der Burg, Max Post; Preston, Todd M.; Smith, Bruce D.; Tangen, Brian A.; Thamke, Joanna N.; Gleason, Robert A.; Tangen, Brian A.

    2014-01-01

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States and the provinces of Manitoba and Saskatchewan in Canada, has been a leading domestic oil and gas producing region for more than one-half a century. Currently, there are renewed efforts to develop oil and gas resources from deep geologic formations, spurred by advances in recovery technologies and economic incentives associated with the price of oil. Domestic oil and gas production has many economic benefits and provides a means for the United States to fulfill a part of domestic energy demands; however, environmental hazards can be associated with this type of energy production in the Williston Basin, particularly to aquatic resources (surface water and shallow groundwater) by extremely saline water, or brine, which is produced with oil and gas. The primary source of concern is the migration of brine from buried reserve pits that were used to store produced water during recovery operations; however, there also are considerable risks of brine release from pipeline failures, poor infrastructure construction, and flow-back water from hydraulic fracturing associated with modern oilfield operations. During 2008, a multidisciplinary (biology, geology, water) team of U.S. Geological Survey researchers was assembled to investigate potential energy production effects in the Williston Basin. Researchers from the U.S. Geological Survey participated in field tours and met with representatives from county, State, tribal, and Federal agencies to identify information needs and focus research objectives. Common questions from agency personnel, especially those from the U.S. Fish and Wildlife Service, were “are the brine plumes (plumes of brine-contaminated groundwater) from abandoned oil wells affecting wetlands on Waterfowl Production Areas and National Wildlife Refuges?” and “are newer wells related to Bakken and Three Forks development different than the older

  20. Geospatial data to support analysis of water-quality conditions in basin-fill aquifers in the southwestern United States

    Science.gov (United States)

    McKinney, Tim S.; Anning, David W.

    2009-01-01

    The Southwest Principal Aquifers study area consists of most of California and Nevada and parts of Utah, Arizona, New Mexico, and Colorado; it is about 409,000 square miles. The Basin-fill aquifers extend through about 201,000 square miles of the study area and are the primary source of water for cities and agricultural communities in basins in the arid and semiarid southwestern United States (Southwest). The demand on limited ground-water resources in areas in the southwestern United States has increased significantly. This increased demand underscores the importance of understanding factors that affect the water quality in basin-fill aquifers in the region, which are being studied through the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. As a part of this study, spatial datasets of natural and anthropogenic factors that may affect ground-water quality of the basin-fill aquifers in the southwestern United States were developed. These data include physical characteristics of the region, such as geology, elevation, and precipitation, as well as anthropogenic factors, including population, land use, and water use. Spatial statistics for the alluvial basins in the Southwest have been calculated using the datasets. This information provides a foundation for the development of conceptual and statistical models that relate natural and anthropogenic factors to ground-water quality across the Southwest. A geographic information system (GIS) was used to determine and illustrate the spatial distribution of these basin-fill variables across the region. One hundred-meter resolution raster data layers that represent the spatial characteristics of the basins' boundaries, drainage areas, population densities, land use, and water use were developed for the entire Southwest.

  1. Facies architecture of basin-margin units in time and space: Lower to Middle Miocene Sivas Basin, Turkey

    Science.gov (United States)

    Çiner, A.; Kosun, E.

    2003-04-01

    The Miocene Sivas Basin is located within a collision zone, forming one of the largest basins in Central Turkey that developed unconformably on a foundered Paleozoic-Mesozoic basement and Eocene-Oligocene deposits. The time and space relationships of sedimentary environments and depositional evolution of Lower to Middle Miocene rocks exposed between Zara and Hafik towns is studied. A 4 km thick continuous section is subdivided into the Agilkaya and Egribucak Formations. Each formation shows an overall fining upward trend and contains three members. Although a complete section is present at the western part (near Hafik) of the basin, to the east the uppermost two members (near Zara) are absent. The lower members of both formations are composed of fluvial sheet-sandstone and red mudstone that migrate laterally on a flood basin within a semi-arid fan system. In the Agilkaya Formation that crops out near Zara, alluvial fans composed of red-pink volcanic pebbles are also present. The middle members are composed of bedded to massive gypsum and red-green mudstone of a coastal and/or continental sabkha environment. While the massive gypsum beds reach several 10’s of m in Hafik area, near Zara, they are only few m thick and alternate with green mudstones. In Hafik, bedded gypsums are intercalated with lagoonal dolomitic limestone and bituminous shale in the Agilkaya Formation and with fluvial red-pink sandstone-red mudstone in the Egribucak Formation. The upper members are made up of fossiliferous mudstone and discontinuous sandy limestone beds with gutter casts, HCS, and 3-D ripples. They indicate storm-induced sedimentation in a shallow marine setting. The disorganized accumulations of ostreid and cerithiid shells, interpreted as coquina bars, are the products of storm generated reworking processes in brackish environments. Rapid vertical and horizontal facies changes and the facies associations in both formations reflect the locally subsiding nature of this molassic

  2. An Actantial and Functional Analysis on Mildred Taylor’s Roll of Thunder Hear My Cry

    Directory of Open Access Journals (Sweden)

    Heri Dwi Santoso

    2017-10-01

    Full Text Available To a certain extent, a structural study is good enough to comprehend the very substance of a literary work. Given the above thesis, the researcher attempted to conduct a structural research on Roll of Thunder Hear My Cry (ROTHMC, an African-American novel, using actantial and functional structure analysis. This study aimed at comprehending the basic framework of the story that leads to the revelation of the plot and relations between characters, which indicated the African-American protagonist’s struggle to challenge white supremacy. Method used in the research was descriptive qualitative. Results found that the protagonist was David Logan, an African-American independent farmer that had an ambition to free African-American community from white people’s repressions. It was also found that the ambition and dream of David Logan about African-American freedom and independence and his awareness on the repression toward African-American people (Sender has made him struggled to make African-American or African-American become a free race with dignity in the United States, where land and other things at the time was dominated by White people. Meanwhile, the functional analysis showed the plot structure of ROTHMC, which was centered on the struggles of David Logan and the family to challenge white supremacy.

  3. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.

    Science.gov (United States)

    Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C

    2018-01-01

    The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.

  4. The use of handheld radiometry for the identification of stratigraphic characteristics of Paraiba Basin units

    International Nuclear Information System (INIS)

    Souza, Ebenezer Moreno de; Villar, Heldio Pereira; Lima, Ricardo de Andrade; Lima Filho, Mario

    2000-01-01

    A study on the use of radiometric techniques for the identification of stratigraphic characteristics of Paraiba Basin units was carried out with handheld instrumentation. The area chosen ran from north Pernambuco to south Paraiba. The presence of radioactive material had been previously determined. For this work a portable scintillometer was fixed to the door of a vehicle, on the outside, with the probe directed downwards. Background radiation was measured as 40 cps (counts per second). The scintillometer has an alarm which sounds whenever the measured count rate rises above a pre-established figure, 100 cps in the present case. Monitoring then proceeded manually. In sites where the count rate was much higher than 100 cps, the probe was lowered to the soil surface. Local coordinates were obtained by GPS. Therefore, an isoradioactivity map of the area could be drawn. The comparison between this map and local geological charts showed significant correlation between observed count rates and geologic formations. Low count rates were indicative of the Barreiras formation, whereas the highest rates were obtained for the Gramame formation (with urano-phosphatic lythotypes). It is concluded that handheld radiometry is a useful tool in geological charting, is special in areas where stratigraphic units have been masked by environmental changes and human activities. (author)

  5. Watershed-scale response to climate change through the twenty-first century for selected basins across the United States

    Science.gov (United States)

    Hay, Lauren E.; Markstrom, Steven; Ward-Garrison, Christian D.

    2011-01-01

    The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output.This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.

  6. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    Science.gov (United States)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  7. Maps of estimated nitrate and arsenic concentrations in basin-fill aquifers of the southwestern United States

    Science.gov (United States)

    Beisner, Kimberly R.; Anning, David W.; Paul, Angela P.; McKinney, Tim S.; Huntington, Jena M.; Bexfield, Laura M.; Thiros, Susan A.

    2012-01-01

    Human-health concerns and economic considerations associated with meeting drinking-water standards motivated a study of the vulnerability of basin-fill aquifers to nitrate contamination and arsenic enrichment in the southwestern United States. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid representing about 190,600 square miles of basin-fill aquifers in parts of Arizona, California, Colorado, Nevada, New Mexico, and Utah. The statistical models, referred to as classifiers, reflect natural and human-related factors that affect aquifer vulnerability to contamination and relate nitrate and arsenic concentrations to explanatory variables representing local- and basin-scale measures of source and aquifer susceptibility conditions. Geochemical variables were not used in concentration predictions because they were not available for the entire study area. The models were calibrated to assess model accuracy on the basis of measured values.Only 2 percent of the area underlain by basin-fill aquifers in the study area was predicted to equal or exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as N (10 milligrams per liter), whereas 43 percent of the area was predicted to equal or exceed the standard for arsenic (10 micrograms per liter). Areas predicted to equal or exceed the drinking-water standard for nitrate include basins in central Arizona near Phoenix; the San Joaquin Valley, the Santa Ana Inland, and San Jacinto Basins of California; and the San Luis Valley of Colorado. Much of the area predicted to equal or exceed the drinking-water standard for arsenic is within a belt of basins along the western portion of the Basin and Range Physiographic Province that includes almost all of Nevada and parts of California and Arizona. Predicted nitrate and arsenic concentrations are substantially lower than the drinking-water standards in much of

  8. Compilation of data relating to the erosive response of 608 recently-burned basins in the western United States

    Science.gov (United States)

    Gartner, Joseph E.; Cannon, Susan H.; Bigio, Erica R.; Davis, Nicole K.; Parrett, Charles; Pierce, Kenneth L.; Rupert, Michael G.; Thurston, Brandon L.; Trebesch, Matthew J.; Garcia, Steve P.; Rea, Alan H.

    2005-01-01

    This report presents a compilation of data on the erosive response, debris-flow initiation processes, basin morphology, burn severity, event-triggering rainfall, rock type, and soils for 608 basins recently burned by 53 fires located throughout the Western United States.  The data presented here are a combination of those collected during our own field research and those reported in the literature.  In some cases, data from a Geographic Information System (GIS) and Digital Elevation Models (DEMs) were used to supplement the data from the primary source.  Due to gaps in the information available, not all parameters are characterized for all basins. This database provides a resource for researchers and land managers interested in examining relations between the runoff response of recently burned basins and their morphology, burn severity, soils and rock type, and triggering rainfall.  The purpose of this compilation is to provide a single resource for future studies addressing problems associated with wildfire-related erosion.  For example, data in this compilation have been used to develop a model for debris flow probability from recently burned basins using logistic multiple regression analysis (Cannon and others, 2004).  This database provides a convenient starting point for other studies.  For additional information on estimated post-fire runoff peak discharges and debris-flow volumes, see Gartner and others (2004).

  9. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  10. Thunder Bay Terminals Ltd. Site selection to operation: the management function

    Energy Technology Data Exchange (ETDEWEB)

    Cook, P.R.

    1979-08-01

    Thunder Bay Terminals Ltd. is a link in a new transportation system for Canada's natural resources stretching over 3000 miles from British Columbia's mountains to Ontario's lower Great Lakes. Thunder Bay Terminals' plant, now in operation, cost about $70 million and was completed on time and under budget. The paper is the project manager's account of this accomplishment. From site selection through feasibility, engineering and construction to realization, he emphasizes the necessary philosophies for the control of time and money. The computer as a tool is discussed, as well as techniques for procurement.

  11. Land of the thunder dragon is on the move. Bhutan.

    Science.gov (United States)

    Molitor, C

    1992-08-01

    A small and landlocked country in the Himalayas, the size of Switzerland, Bhutan or Druk Yul, Land of the Thunder Dragon, had for centuries been isolated from the outside world. Finally, its tradition-bound people are beginning to pick up new trades and vocations. Penjore Timber Industries & Exports Ltd. is one of the 1st modern wood-processing complexes in Bhutan still with a predominantly subsistence and barter agriculture economy. The company, set up with the financial support of the Asian Development Bank (ADB), is producing broomsticks, handles for tools, wooden doors, and window frames mainly for export. The industrial sector is small and accounts for only 4% of GDP. Most of the 125 private enterprises in the country are small. A development bank, the Bhutan Development Finance Corporation (BDFC), was established in 1988 with ADB support for the development of private industry. A general education system was established and schools were opened only in the early 1960s. The government had given the development of trained manpower high priority in its 5th Economic and Social Development Plan (FY 1981/82-FY 1986/87). The Royal Institute of Management (RIM) was established in 1986. About 40 trainees each in secretarial, accounting, and basic management training programs and 150 managerial personnel from public and private agencies are trained each year by RIM which the ADB supports under the Second Multiproject Loan to Bhutan with cofinancing by the Norwegian Development Agency. So far RIM has designed 12 different training courses, 92 students graduated in 1989, and by 1995 about 30 training courses are envisioned. According to 1987 data in a recent UN report Bhutan is the only one of the world's 42 least-developed countries with a more than 10% agricultural production growth rate where real GDP growth has outspaced population growth.

  12. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  13. ABQ ThunderBird Cup v3.0 Alpha Worksop: Workshop Analysis 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wellington K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Morris, Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chu, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gilmore, Katrina [Paine College, Augusta, GA (United States); Russ, Joshua [Voorhees College, Denmark, SC (United States); Carter, Aliyah [Norfolk State Univ., Norfolk, VA (United States)

    2016-11-01

    The ThunderBird Cup v3.0 (TBC3) program falls under the Minority Serving Institution Pipeline Program (MSIPP) that aims to establish a world-class workforce development, education and research program that combines the strengths of Historically Black Colleges and Universities (HBCUs) and national laboratories to create a K-20 pipeline of students to participate in cybersecurity and related fields.

  14. 76 FR 54375 - Safety Zone; Thunder on the Gulf, Gulf of Mexico, Orange Beach, AL

    Science.gov (United States)

    2011-09-01

    ...-AA00 Safety Zone; Thunder on the Gulf, Gulf of Mexico, Orange Beach, AL AGENCY: Coast Guard, DHS... portion of the Gulf of Mexico for the waters off Orange Beach, Alabama. This action is necessary for the... conduct a high speed boat race on the Gulf of Mexico, south of Orange Beach, Alabama to occur from October...

  15. 78 FR 35776 - Boundary Expansion of Thunder Bay National Marine Sanctuary

    Science.gov (United States)

    2013-06-14

    ... 49779. Tuesday, July 16--Great Lakes Maritime Heritage Center, 500 W. Fletcher Street, Alpena, MI 49707... Thunder Bay National Marine Sanctuary, 500 W. Fletcher, Alpena, Michigan 49707, Attn: Jeff Gray.../tbnmsmp.pdf . In April 2012, NOAA held three public scoping meetings: in Alpena, Harrisville and Rogers...

  16. Nature, origin, and production characteristics of the Lower Silurian regional oil and gas accumulation, central Appalachian basin, United States

    Science.gov (United States)

    Ryder, R.; Zagorski, W.A.

    2003-01-01

    uplift and erosion, causing gas leakage and a marked reduction in fluid pressure. Most future natural-gas production in the Clinton/Medina sandstones is anticipated to come from the basin-center accumulation. The Tuscarora Sandstone has additional gas resources but typically low reservoir porosity and permeability, and the likelihood of low-energy (in British thermal units) gas reduce the incentive to explore for it.

  17. Auxiliary variables for the mapping of the drainage network: spatial correlation between relieve units, lithotypes and springs in Benevente River basin-ES

    Directory of Open Access Journals (Sweden)

    Tony Vinicius Moreira Sampaio

    2014-12-01

    Full Text Available Process of the drainage network mapping present methodological limitations re- sulting in inaccurate maps, restricting their use in environmental studies. Such problems demand the realization of long field surveys to verify the error and the search for auxiliary variables to optimize this works and turn possible the analysis of map accuracy. This research aims at the measurement of the correlation be- tween springs, lithotypes and relieve units, characterized by Roughness Concentration Index (RCI in River Basin Benevente-ES, focusing on the operations of map algebra and the use of spatial statistical techniques. These procedures have identified classes of RCI and lithotypes that present the highest and the lowest correlation with the spatial distribution of springs, indicating its potential use as auxiliary variables to verify the map accuracy.

  18. 78 FR 23280 - Agency Information Collection Activities: United States-Caribbean Basin Trade Partnership Act...

    Science.gov (United States)

    2013-04-18

    ..., Attn: Tracey Denning, Regulations and Rulings, Office of International Trade, 90 K Street NE., 10th... and Rulings, Office of International Trade, 90 K Street NE., 10th Floor, Washington, DC 20229-1177, at... trade benefits to countries in the Caribbean Basin. For preferential duty treatment under CBTPA...

  19. 78 FR 77644 - Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming; Teckla...

    Science.gov (United States)

    2013-12-24

    ...: Approximately 135 miles of transmission line Require a 125 foot right-of-way Construction of wood or steel H... lands, and state lands in Wyoming. The line would be constructed on wood or steel H-frame structures for...

  20. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    Science.gov (United States)

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The

  1. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    Science.gov (United States)

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in

  2. The Collyhurst Sandstone as a secondary storage unit for CCS in the East Irish Sea Basin (UK)

    Science.gov (United States)

    Gamboa, D.; Williams, J. D. O.; Kirk, K.; Gent, C. M. A.; Bentham, M.; Schofield, D. I.

    2016-12-01

    Carbon Capture and Storage (CCS) is key technology for low-carbon energy and industry. The UK hosts a large CO2 storage potential offshore with an estimated capacity of 78 Gt. The East Irish Sea Basin (EISB) is the key area for CCS in the western UK, with a CO2 storage potential of 1.7 Gt in hydrocarbon fields and in saline aquifers within the Triassic Sherwood Sandstone Formation. However, this theoretical storage capacity does not consider the secondary storage potential in the lower Permian Collyhurst Sandstone Formation. 3D seismic data were used to characterise the Collyhurst Sandstone Formation in the EISB. On the southern basin domain, numerous fault-bound blocks limit the lateral continuity of the sandstone strata, while on the northern domain the sandstones are intersected by less faults. The caprock for the Collyhurst sandstones is variable. The Manchester Marls predominate in the south, transitioning to the St. Bees evaporites towards the north. The evaporites in the EISB cause overburden faults to terminate or detach along Upper Permian strata, limiting the deformation of the underlying reservoir units. Five main storage closures have been identified in the Permian strata. In the southern and central area these are predominantly fault bounded, occurring at depths over 1000m. Despite the higher Collyhurst sandstone thickness in the southern IESB, the dolomitic nature of the caprock constitutes a storage risk in this area. Closures in the northern area are deeper (around 2000-2500m) and wider, reaching areas of 34Km2, and are overlain by evaporitic caprocks. The larger Collyhurst closures to the north underlie large Triassic fields with high storage potential. The spatial overlap favours storage plans including secondary storage units in the EISB. The results of this work also expand the understanding of prospective areas for CO2 sequestration in the East Irish Sea Basin in locations where the primary Sherwood Sandstone Formation is either too shallow

  3. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Sierra Nevada Regional (SNR) study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment Program Priority Basin Project. The study was designed to provide statistically unbiased assessments of the quality of untreated groundwater within the primary aquifer system of the Sierra Nevada. The primary aquifer system for the SNR study unit was delineated by the depth intervals over which wells in the State of California’s database of public drinking-water supply wells are open or screened. Two types of assessments were made: (1) a status assessment that described the current quality of the groundwater resource, and (2) an evaluation of relations between groundwater quality and potential explanatory factors that represent characteristics of the primary aquifer system. The assessments characterize untreated groundwater quality, rather than the quality of treated drinking water delivered to consumers by water distributors.

  4. Uranium occurrences of the Thunder Bay-Nipigon-Marathon area

    International Nuclear Information System (INIS)

    Scott, J.F.

    1987-01-01

    During the 1981, 1982 and 1983 field seasons an inventory of all known uranium occurrences in the North Central Region of Ontario was undertaken. Three major categories of uranium occurrences were identified: uranium associated with the rocks of the Quetico Subprovince; uranium associated with the Proterozoic/Archean unconformity; and uranium associated with alkalic and carbonatite rocks of Late Precambrian age. Occurrences associated with the Quetico Belt are in white, albite-quartz-muscovite pegmatites. Occurrences associated with the Proterozoic/Archean unconformity are usually of high gradee (up to 12% U 3 O 8 ), nearly always hematized and are related to fault or shear zones proximal to the unconformity. Although of high grade, many of the unconformity related occurrences are very narrow (<1 m). Alkalic and carbonatite rocks of Late Precambrian age are an important source of uranium but possible metallurgical problems might downgrade their potential. The Quetico Subprovince is anomalously high in background uranium, and therefore contains important source rocks for uranium. Areas that have the highest potential for uranium deposits in the North Central Region are the Nipigon Basin area, and the areas underlain by the Gunflint and Rove Formations. All the high grade vein-type uranium deposits related to the unconformity are found within the Nipigon Basin. 126 refs

  5. Records of millennial-scale climate change from the Great Basin of the Western United States

    Science.gov (United States)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which

  6. Assessment of undiscovered conventional oil and gas resources, onshore Claiborne Group, United Statespart of the northern Gulf of Mexico Basin

    Science.gov (United States)

    Hackley, P.C.; Ewing, T.E.

    2010-01-01

    The middle Eocene Claiborne Group was assessed for undiscovered conventional hydrocarbon resources using established U.S. Geological Survey assessment methodology. This work was conducted as part of a 2007 assessment of Paleogene-Neogene strata of the northern Gulf of Mexico Basin, including the United States onshore and state waters (Dubiel et al., 2007). The assessed area is within the Upper Jurassic-CretaceousTertiary composite total petroleum system, which was defined for the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich, downdip, shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources, including the Jurassic Smackover Formation and the Haynesville and Bossier shales, the Cretaceous Eagle Ford and Pearsall (?) formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is currently ongoing. Primary reservoir sandstones in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. A geologic model, supported by spatial analysis of petroleum geology data, including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AUs) with three distinctive structural and depositional settings. The three structural and depositional settings are (1) stable shelf, (2) expanded fault zone, and (3) slope and basin floor; the seven AUs are (1) lower Claiborne stable-shelf gas and oil, (2) lower Claiborne expanded fault-zone gas, (3) lower Claiborne slope and basin-floor gas, (4) lower Claiborne Cane River, (5) upper Claiborne stable-shelf gas and oil, (6) upper Claiborne expanded fault-zone gas, and (7) upper Claiborne slope and basin

  7. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  8. Characterizing climate-change impacts on the 1.5-yr flood flow in selected basins across the United States: a probabilistic approach

    Science.gov (United States)

    Walker, John F.; Hay, Lauren E.; Markstrom, Steven L.; Dettinger, Michael D.

    2011-01-01

    The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) model was applied to basins in 14 different hydroclimatic regions to determine the sensitivity and variability of the freshwater resources of the United States in the face of current climate-change projections. Rather than attempting to choose a most likely scenario from the results of the Intergovernmental Panel on Climate Change, an ensemble of climate simulations from five models under three emissions scenarios each was used to drive the basin models. Climate-change scenarios were generated for PRMS by modifying historical precipitation and temperature inputs; mean monthly climate change was derived by calculating changes in mean climates from current to various future decades in the ensemble of climate projections. Empirical orthogonal functions (EOFs) were fitted to the PRMS model output driven by the ensemble of climate projections and provided a basis for randomly (but representatively) generating realizations of hydrologic response to future climates. For each realization, the 1.5-yr flood was calculated to represent a flow important for sediment transport and channel geomorphology. The empirical probability density function (pdf) of the 1.5-yr flood was estimated using the results across the realizations for each basin. Of the 14 basins studied, 9 showed clear temporal shifts in the pdfs of the 1.5-yr flood projected into the twenty-first century. In the western United States, where the annual peak discharges are heavily influenced by snowmelt, three basins show at least a 10% increase in the 1.5-yr flood in the twenty-first century; the remaining two basins demonstrate increases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Four basins in the eastern Rockies/central United States show at least a 10% decrease in the 1.5-yr flood; the remaining two basins demonstrate decreases in the 1.5-yr flood, but the temporal shifts in the pdfs

  9. Should the shady steal thunder? : The effects of crisis communication timing, pre-crisis reputation valence, and crisis type on post-crisis organizational trust and purchase intention

    NARCIS (Netherlands)

    Beldad, Ardion D.; van Laar, Ester; Hegner, Sabrina M.

    2018-01-01

    A scenario-based 2 (communication timing: stealing thunder vs. thunder) × 2 (pre-crisis reputation valence: positive vs. negative) × 2 (crisis type: product-harm vs. moral-harm) between-subjects experiment was implemented with 273 Dutch participants to address the question of whether or not the

  10. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  11. Groundwater-Quality Data in the South Coast Interior Basins Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity

  12. Managing Competing Influences: Risk Acceptance in Operation Rolling Thunder

    Science.gov (United States)

    2017-03-12

    perspective beyond the chance of loss because the nation may require units to fight, even when the odds may not be in their favor. James Creelman and...J. Davidson Frame, Managing Risk in Organizations: A Guide for Managers (San Francisco: Jossey-Bass, 2003), 7. 22 James Creelman and Andrew Smart...translated by Peter Paret and Michael Howard. Princeton: Princeton University Press, 1976. Creelman , James, and Andrew Smart. Risk-Based Performance

  13. Venezuelas Pursuit of Caribbean Basin Interests: Implications for United States National Security.

    Science.gov (United States)

    1985-01-01

    sold to buyers in Western Europe and the United States. The most important Venezuelan exports in the 19th century were cocoa and coffee. In the 20th...confusion in the U.S. Congress over the difference between the Organiza- tion of Arab Petroleum Exporting Countries (OAPEC), of which Venezuela was not a...member, and the Organization of Petroleum Exporting Countries (OPEC), to which Venezuela belonged, the action remained in force even though Caracas had

  14. An initial abstraction and constant loss model, and methods for estimating unit hydrographs, peak streamflows, and flood volumes for urban basins in Missouri

    Science.gov (United States)

    Huizinga, Richard J.

    2014-01-01

    Streamflow data, basin characteristics, and rainfall data from 39 streamflow-gaging stations for urban areas in and adjacent to Missouri were used by the U.S. Geological Survey in cooperation with the Metropolitan Sewer District of St. Louis to develop an initial abstraction and constant loss model (a time-distributed basin-loss model) and a gamma unit hydrograph (GUH) for urban areas in Missouri. Study-specific methods to determine peak streamflow and flood volume for a given rainfall event also were developed.

  15. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  16. Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States

    Science.gov (United States)

    Rossman, Nathan R.; Zlotnik, Vitaly A.

    2013-09-01

    Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.

  17. Factors Controlling Nitrogen Loadings in Major River Basins Across the United States

    Science.gov (United States)

    Boyer, E. W.; Alexander, R. B.; Galloway, J. N.; Golden, H. E.; Moore, R. B.; Schwarz, G. E.; Harvey, J. W.; Gomez-Velez, J. D.; Scott, D.; Clune, J.

    2017-12-01

    Inputs of reactive nitrogen (all N species except for N2) have been increasing worldwide, largely due to human activities associated with food production and energy consumption via the combustion of fossil fuels and biofuels. Despite the obvious essential benefits of a plentiful supply of food and energy, the adverse consequences associated with the accumulation of N in the environment are large. Most of the N created by human activities is released to the environment, often with unintended negative consequences. The greater the inputs of N to the landscape, the greater the potential for negative effects - caused by greenhouse gas production, ground level ozone, acid deposition, and N overload; which in turn can contribute to climate change, degradation of soils and vegetation, acidification of surface waters, coastal eutrophication, hypoxia, habitat loss, and loss of stratospheric ozone. Here we present a contemporary inventory of reactive N inputs to major water regions in the United States, and discuss accounting methods for quantifying N sources and transport. Furthermore, we quantify loadings of N from terrestrial headwaters downstream to coastal estuaries and embayments. N delivery to downstream waters is influenced by nutrient sources as well as coupled hydrological and biogeochemical processes occurring along the river corridor (e.g., travel time distributions, denitrification, and storage) that scale with stream size and are affected by impoundments such as lakes and reservoirs. This underscores the need to account for the nonlinear interactions of aquatic transport processes with watershed nutrient sources, as well as cumulative effects, in developing efficient nutrient reduction strategies. Our work is useful as a benchmark of the current N situation against which future progress can be assessed in varying water regions of the country; amidst changing N inputs, policies, and management strategies. Our results stem from the EPA Integrated Nitrogen

  18. Status and understanding of groundwater quality in the Klamath Mountains study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George Luther; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations

  19. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    Raines, Gary L.

    1999-01-01

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km 2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  20. Assessment of undiscovered oil and gas resources of the Cretaceous-Tertiary Composite Total Petroleum System, Taranaki Basin Assessment Unit, New Zealand

    Science.gov (United States)

    Wandrey, Craig J.; Schenk, Christopher J.; Klett, Timothy R.; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.; Tennyson, Marilyn E.

    2013-01-01

    The Cretaceous-Tertiary Composite Total Petroleum System coincident Taranaki Basin Assessment Unit was recently assessed for undiscovered technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey (USGS) World Energy Resources Project, World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 487 million barrels of oil, 9.8 trillion cubic feet of gas, and 408 million barrels of natural gas liquids.

  1. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Sonoran region, California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, Kenneth A.; Langer, William H.

    1989-01-01

    The Sonoran region of California lies west of the Colorado River and adjoins the Mojave Desert on the west, Death Valley on the northwest, and the Salton trough on the south. The region is arid with annual precipitation ranging from less than 80 millimeters to as great as 250 millimeters in one mountain range; annual free-surface evaporation is as great as 2,500 millimeters. The characteristic basin and range topography of the region was caused by a mid-Tertiary period of intense crustal extension, accompanied by volcanic eruptions, clastic sedimentation, faulting, and tilting. Potential host media for isolation of high-level radioactive waste include granite and other coarsegrained plutonic rocks, ash-flow tuff, and basalt and basaltic andesite lava flows. Thick sections of the unsaturated zone in basin fill, intrusive, and volcanic rocks appear to have potential as host media. The region is bordered on the west by areas of relatively greater Quaternary faulting, vertical crustal uplift, and seismicity. The region has a few areas of Quaternary volcanic activity. Geothermal heat flows of 2.5 heat-flow units or greater and one earthquake of magnitude 6-7 have been recorded. The region includes topographically closed basins as well as basins that drain to the Colorado River. Dry lakes and playas occupy the closed basins. Ground-water recharge and surface runoff are small because of the small amount of precipitation and great potential evaporation. Natural ground-water discharge is by evaporation in the basin playas and by underflow to the Colorado River. Dissolved-solids concentration of ground water generally is less than 500 milligrams per liter, and much of it is of the sodium bicarbonate type. Ground water is saline in many of the playas, and chloride or sulfate is the predominant anion. Small tonnages of ore have been produced from numerous precious and fewer base-metal deposits. (author)

  2. Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions

    Science.gov (United States)

    Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.

  3. Status and understanding of groundwater quality in the Madera, Chowchilla Study Unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2013-01-01

    Groundwater quality in the approximately 860-square-mile Madera and Chowchilla Subbasins (Madera-Chowchilla study unit) of the San Joaquin Valley Basin was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in California's Central Valley region in parts of Madera, Merced, and Fresno Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The Project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in California. The primary aquifer system within each study unit is defined by the depth of the perforated or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Madera-Chowchilla study unit were based on water-quality and ancillary data collected by the USGS from 35 wells during April-May 2008 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of natural factors and human activities affecting groundwater quality. The primary aquifer system is represented by the grid wells, of which 90 percent (%) had depths that ranged from about 200 to 800 feet (ft) below land surface and had depths to the top of perforations that ranged from about 140 to 400 ft below land surface. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for

  4. Consistent lithological units and its influence on geomechanical stratification in shale reservoir: case study from Baltic Basin, Poland.

    Science.gov (United States)

    Pachytel, Radomir; Jarosiński, Marek; Bobek, Kinga

    2017-04-01

    Geomechanical investigations in shale reservoir are crucial to understand rock behavior during hydraulic fracturing treatment and to solve borehole wall stability problem. Anisotropy should be considered as key mechanical parameter while trying to characterize shale properties in variety of scales. We are developing a concept of step-by-step approach to characterize and upscale the Consistent Lithological Units (CLU) at several scales of analysis. We decided that the most regional scale model, comparable to lithostratigraphic formations, is too general for hydraulic fracture propagation study thus a more detailed description is needed. The CLU's hierarchic model aims in upscale elastic properties with their anisotropy based on available data from vertical borehole. For the purpose of our study we have an access to continuous borehole core profile and full set of geophysical logging from several wells in the Pomeranian part of the Ordovician and Silurian shale complex belongs to the Baltic Basin. We are focused on shale properties that might be crucial for mechanical response to hydraulic fracturing: mineral components, porosity, density, elastic parameters and natural fracture pattern. To prepare the precise CLU model we compare several methods of determination and upscaling every single parameter used for consistent units secretion. Mineralogical data taken from ULTRA log, GEM log, X-ray diffraction and X-ray fluorescence were compared with Young modulus from sonic logs and Triaxial Compressive Strength Tests. The results showed the impact of clay content and porosity increase on Young's modulus reduction while carbonates (both calcite and dolomite) have stronger impact on elastic modulus growth, more than quartz, represented here mostly by detrital particles. Comparing the shales of similar composition in a few wells of different depths we concluded that differences in diagenesis and compaction due to variation in formation depth in a range of 1 km has negligible

  5. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States

    International Nuclear Information System (INIS)

    Wu Yiping; Liu Shuguang; Sohl, Terry L; Young, Claudia J

    2013-01-01

    The physical surface of the Earth is in constant change due to climate forcing and human activities. In the Midwestern United States, urban area, farmland, and dedicated energy crop (e.g., switchgrass) cultivation are predicted to expand in the coming decades, which will lead to changes in hydrological processes. This study is designed to (1) project the land use and land cover (LULC) by mid-century using the FORecasting SCEnarios of future land-use (FORE-SCE) model under the A1B greenhouse gas emission scenario (future condition) and (2) assess its potential impacts on the water cycle and water quality against the 2001 baseline condition in the Cedar River Basin using the physically based soil and water assessment tool (SWAT). We compared the baseline LULC (National Land Cover data 2001) and 2050 projection, indicating substantial expansions of urban area and pastureland (including the cultivation of bioenergy crops) and a decrease in rangeland. We then used the above two LULC maps as the input data to drive the SWAT model, keeping other input data (e.g., climate) unchanged to isolate the LULC change impacts. The modeling results indicate that quick-response surface runoff would increase significantly (about 10.5%) due to the projected urban expansion (i.e., increase in impervious areas), and the baseflow would decrease substantially (about 7.3%) because of the reduced infiltration. Although the net effect may cause an increase in water yield, the increased variability may impede its use for public supply. Additionally, the cultivation of bioenergy crops such as switchgrass in the newly added pasture lands may further reduce the soil water content and lead to an increase in nitrogen loading (about 2.5% increase) due to intensified fertilizer application. These study results will be informative to decision makers for sustainable water resource management when facing LULC change and an increasing demand for biofuel production in this area. (letter)

  6. Point sources of emerging contaminants along the Colorado River Basin: Source water for the arid Southwestern United States

    Science.gov (United States)

    Jones-Lepp, Tammy L.; Sanchez, Charles; Alvarez, David A.; Wilson, Doyle C.; Taniguchi-Fu, Randi-Laurant

    2012-01-01

    Emerging contaminants (ECs) (e.g., pharmaceuticals, illicit drugs, personal care products) have been detected in waters across the United States. The objective of this study was to evaluate point sources of ECs along the Colorado River, from the headwaters in Colorado to the Gulf of California. At selected locations in the Colorado River Basin (sites in Colorado, Utah, Nevada, Arizona, and California), waste stream tributaries and receiving surface waters were sampled using either grab sampling or polar organic chemical integrative samplers (POCIS). The grab samples were extracted using solid-phase cartridge extraction (SPE), and the POCIS sorbents were transferred into empty SPEs and eluted with methanol. All extracts were prepared for, and analyzed by, liquid chromatography–electrospray-ion trap mass spectrometry (LC–ESI-ITMS). Log DOW values were calculated for all ECs in the study and compared to the empirical data collected. POCIS extracts were screened for the presence of estrogenic chemicals using the yeast estrogen screen (YES) assay. Extracts from the 2008 POCIS deployment in the Las Vegas Wash showed the second highest estrogenicity response. In the grab samples, azithromycin (an antibiotic) was detected in all but one urban waste stream, with concentrations ranging from 30 ng/L to 2800 ng/L. Concentration levels of azithromycin, methamphetamine and pseudoephedrine showed temporal variation from the Tucson WWTP. Those ECs that were detected in the main surface water channels (those that are diverted for urban use and irrigation along the Colorado River) were in the region of the limit-of-detection (e.g., 10 ng/L), but most were below detection limits.

  7. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Sohl, Terry L.; Young, Claudia

    2013-01-01

    The physical surface of the Earth is in constant change due to climate forcing and human activities. In the Midwestern United States, urban area, farmland, and dedicated energy crop (e.g., switchgrass) cultivation are predicted to expand in the coming decades, which will lead to changes in hydrological processes. This study is designed to (1) project the land use and land cover (LULC) by mid-century using the FORecasting SCEnarios of future land-use (FORE-SCE) model under the A1B greenhouse gas emission scenario (future condition) and (2) assess its potential impacts on the water cycle and water quality against the 2001 baseline condition in the Cedar River Basin using the physically based soil and water assessment tool (SWAT). We compared the baseline LULC (National Land Cover data 2001) and 2050 projection, indicating substantial expansions of urban area and pastureland (including the cultivation of bioenergy crops) and a decrease in rangeland. We then used the above two LULC maps as the input data to drive the SWAT model, keeping other input data (e.g., climate) unchanged to isolate the LULC change impacts. The modeling results indicate that quick-response surface runoff would increase significantly (about 10.5%) due to the projected urban expansion (i.e., increase in impervious areas), and the baseflow would decrease substantially (about 7.3%) because of the reduced infiltration. Although the net effect may cause an increase in water yield, the increased variability may impede its use for public supply. Additionally, the cultivation of bioenergy crops such as switchgrass in the newly added pasture lands may further reduce the soil water content and lead to an increase in nitrogen loading (about 2.5% increase) due to intensified fertilizer application. These study results will be informative to decision makers for sustainable water resource management when facing LULC change and an increasing demand for biofuel production in this area.

  8. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  9. Estimates of water use and trends in the Colorado River Basin, Southwestern United States, 1985–2010

    Science.gov (United States)

    Maupin, Molly A.; Ivahnenko, Tamara I.; Bruce, Breton

    2018-06-26

    The Colorado River Basin (CRB) drains 246,000 square miles and includes parts of California, Colorado, Nevada, New Mexico, Utah, and Wyoming, and all of Arizona (Basin States). This report contains water-use estimates by category of use for drainage basins (Hydrologic Unit Code 8; HUC‑8) within the CRB from 1985 to 2010, at 5-year intervals. Estimates for public supply, domestic, commercial, industrial, irrigation, livestock, mining, aquaculture, hydroelectric and thermoelectric power, and wastewater returns are tabulated as (1) water withdrawals from groundwater or surface‑water sources of fresh or saline quality, (2) water delivered for domestic use, (3) wastewater returns and instream use (hydroelectric), and (4) consumptive use, or water that is consumed (USGS definition) and not available for immediate reuse. Water transported outside of the CRB (interbasin transfers) is not included as part of withdrawals and are not accounted for in any category of use within the CRB.Total withdrawals in the CRB (excluding interbasin transfers) averaged about 17 million acre-feet (maf) from 1985 to 2010, peaked at about 17.76 maf in 2000, and reached their lowest levels of 16.43 maf in 1990. Interbasin transfers to serve mostly public-supply and irrigation needs outside of the CRB are reported for 2000, 2005, and 2010 only, and averaged 5.40 maf. More surface water was used in the CRB than groundwater, averaging about 78 percent of total withdrawals, and its use increased less than 2 percent from 1985 to 2010, while groundwater withdrawals decreased about 12 percent. From 1985 to 2010, surface water averaged 98 percent of withdrawals in the upper CRB, and about 59 percent in the lower CRB. Nearly all withdrawals were freshwater, but some saline groundwater was used for mining and self-supplied industrial.Interbasin transfers have a large effect on flows in the Colorado River and are listed in this report separately with no explanation of how the water is used outside of

  10. Geologic assessment of undiscovered conventional oil and gas resources--Middle Eocene Claiborne Group, United States part of the Gulf of Mexico Basin

    Science.gov (United States)

    Hackley, Paul C.

    2012-01-01

    The Middle Eocene Claiborne Group was assessed using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources as part of the 2007 USGS assessment of Paleogene-Neogene strata of the United States part of the Gulf of Mexico Basin including onshore and State waters. The assessed area is within the Upper Jurassic-Cretaceous-Tertiary Composite total petroleum system, which was defined as part of the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich downdip shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources including the Jurassic Smackover and Haynesville Formations and Bossier Shale, the Cretaceous Eagle Ford and Pearsall(?) Formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is ongoing at present. Emplacement of hydrocarbons into Claiborne reservoirs has occurred primarily via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir sands in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. Hydrocarbon traps dominantly are rollover anticlines associated with growth faults; salt structures and stratigraphic traps also are important. Sealing lithologies probably are shaley facies within the Claiborne and in the overlying Jackson Group. A geologic model, supported by spatial analysis of petroleum geology data including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AU) with distinctive structural and depositional settings. The AUs include (1) Lower Claiborne Stable Shelf

  11. Gorstian palaeoposition and geotectonic setting of Suchomasty Volcanic Centre (Silurian, Prague Basin, Teplá-Barrandian Unit, Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Tasáryová, Z.; Schnabl, Petr; Čížková, Kristýna; Pruner, Petr; Janoušek, V.; Rapprich, V.; Štorch, Petr; Manda, Š.; Frýda, J.; Trubač, J.

    2014-01-01

    Roč. 136, č. 1 (2014), s. 262-265 ISSN 1103-5897 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : basalt geochemistry * Gorstian * palaeolatitude * Prague Basin * Silurian * Suchomasty Volcanic Centre Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.309, year: 2014

  12. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: STATSGO Soil Characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents estimated soil variables compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Annual R-factor, 1971-2000

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002). The ERF1_2 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Nitrate (NO3)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of Nitrate (NO3) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic Nitrogen for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Ammonium (NH4)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of ammonium (NH4) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Human amplified changes in precipitation-runoff patterns in large river basins of the Midwestern United States

    Science.gov (United States)

    Kelly, Sara A.; Takbiri, Zeinab; Belmont, Patrick; Foufoula-Georgiou, Efi

    2017-10-01

    Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000-69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30-200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.

  18. Fabrication and characterization of THUNDER actuators—pre-stress-induced nonlinearity in the actuation response

    International Nuclear Information System (INIS)

    Kim, Younghoon; Jiang, Qing; Cai, Ling; Usher, Timothy

    2009-01-01

    This paper documents an experimental and theoretical investigation into characterizing the mechanical configurations and performances of THUNDER actuators, a type of piezoelectric actuator known for their large actuation displacements, through fabrication, measurements and finite element analysis. Five groups of such actuators with different dimensions were fabricated using identical fabrication parameters. The as-fabricated arched configurations, resulting from the thermo-mechanical mismatch among the constituent layers, and their actuation performances were characterized using an experimental set-up based on a laser displacement sensor and through numerical simulations with ANSYS, a widely used commercial software program for finite element analysis. This investigation shows that the presence of large residual stresses within the piezoelectric ceramic layer, built up during the fabrication process, leads to significant nonlinear electromechanical coupling in the actuator response to the driving electric voltage, and it is this nonlinear coupling that is responsible for the large actuation displacements. Furthermore, the severity of the residual stresses, and thus the nonlinearity, increases with increasing substrate/piezoelectric thickness ratio and, to a lesser extent, with decreasing in-plane dimensions of the piezoelectric layer

  19. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Romeo M.; Rice, Cynthia A.; Stricker, Gary D.; Warden, Augusta; Ellis, Margaret S. [U.S. Geological Survey, Box 25046, MS 939, Denver, Colorado 80225 (United States)

    2008-10-02

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C{sub 1}/(C{sub 2} + C{sub 3}) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane {delta}{sup 13}C and {delta}D, carbon dioxide {delta}{sup 13}C, and water {delta}D values indicate gas was generated primarily from microbial CO{sub 2} reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO{sub 2} reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane {delta}{sup 13}C is distributed along the basin margins where {delta}D is also depleted, indicating that both CO{sub 2}-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and

  20. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    Science.gov (United States)

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  1. Observed Hydrologic Impacts of Landfalling Atmospheric Rivers in the Salt and Verde River Basins of Arizona, United States

    Science.gov (United States)

    Demaria, Eleonora M. C.; Dominguez, Francina; Hu, Huancui; von Glinski, Gerd; Robles, Marcos; Skindlov, Jonathan; Walter, James

    2017-12-01

    Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over-allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain-on-snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.

  2. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  3. Overal EU guideline for water: Inventory taking in the river basin unit Weser; EG-Wasserrahmenrichtlinie: Bestandsaufnahme in der Flussgebietseinheit Weser

    Energy Technology Data Exchange (ETDEWEB)

    Graw, M.; Wetzel, A.

    2004-12-01

    The first expert step for the inventory taking in the river basin unit Weser has been taken with the present report that was demanded by the overall European guideline for water. It contains a first preliminary estimation of the condition of the surface water and the groundwater. An overview of the existing variety of protected areas in the river basin unit has also been added. The acquisition of economic data has already begun with respect to measure programmes that will become necessary in order to reach a good condition of surface water and groundwater according to later demands. The target is to introduce Europe-wide environmentally friendly and lasting water services with cost covering water prices and to secure the use of the resource water for the future. (orig.) [German] Mit dem vorliegenden Bericht ueber die Bestandsaufnahme in der Flussgebietseinheit Weser ist der erste fachliche Schritt, den die europaeische Wasserrahmenrichtlinie fordert, getan. Sie enthaelt eine erste vorlaeufige Einschaetzung des Zustandes der Oberflaechengewaesser und des Grundwassers. Ergaenzt wird sie durch einen Ueberblick ueber die vorhandenen vielfaeltigen Schutzgebiete in der Flussgebietseinheit. Im Hinblick auf Massnahmenprogramme, die notwendig werden, um spaeter den geforderten guten Zustand der Oberflaechengewaesser und des Grundwassers zu erreichen, hat bereits jetzt die Erhebung oekonomischer Daten stattgefunden. Ziel ist es europaweit mit kostendeckenden Wasserpreisen umweltgerechte und nachhaltige Wasserdienstleistungen einzufuehren und die Nutzung der Ressource Wasserfuer die Zukunft weiter zu sichern. (orig.)

  4. Ecosystem effects in the Lower Mississippi River Basin: Chapter L in 2011 Floods of the Central United States

    Science.gov (United States)

    Turnipseed, D. Phil; Allen, Yvonne C.; Couvillion, Brady R.; McKee, Karen L.; Vervaeke, William C.

    2014-01-01

    The 2011 Mississippi River flood in the Lower Mississippi River Basin was one of the largest flood events in recorded history, producing the largest or next to largest peak streamflow for the period of record at a number of streamgages on the lower Mississippi River. Ecosystem effects include changes to wetlands, nutrient transport, and land accretion and sediment deposition changes. Direct effects to the wetland ecosystems in the Lower Mississippi River Basin were minimized because of the expansive levee system built to pass floodwaters. Nutrients carried by the Mississippi River affect water quality in the Lower Mississippi River Basin. During 2011, nutrient fluxes in the lower Mississippi River were about average. Generally, nutrient delivery of the Mississippi and Atchafalaya Rivers contributes to the size of the hypoxic zone in the Gulf of Mexico. Based on available limited post-flood satellite imagery, some land expansion in both the Wax Lake and Atchafalaya River Deltas was observed. A wetland sediment survey completed in June 2011 indicated that recent sediment deposits were relatively thicker in the Atchafalaya and Mississippi River (Birdsfoot) Delta marshes compared to marshes farther from these rivers.

  5. 75 FR 74678 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Colorado and Wyoming...

    Science.gov (United States)

    2010-12-01

    ... Carduus acanthoides......... 4 0 Purple loosestrife Lythrum salicaria 4 0 Quackgrass Elymus repens 4 0..., endangered, or sensitive species and their habitats. Economics, effectiveness, and potential impacts of...

  6. 76 FR 53400 - Black Hills National Forest, SD; Thunder Basin National Grassland, WY; Teckla-Osage-Rapid City...

    Science.gov (United States)

    2011-08-26

    ...: Approximately 135 miles of transmission line. Require a 125 foot right-of-way. Construction of wood or steel H... in Wyoming. The line would be constructed on wood or steel H-frame structures for most of its length...

  7. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  8. Metrics of Urban Sustainability: A Case Study of Changing Downtowns in Thunder Bay, Canada

    Directory of Open Access Journals (Sweden)

    Todd Randall

    2017-07-01

    Full Text Available Thunder Bay, a medium-sized city in Northern Ontario, has a twin downtown core model, arising from the merging of two former cities in 1970. Its north core, designated as the City’s Entertainment District has received considerable investment, notably a major waterfront renewal project undertaken in 2009 as part of an overall strategy towards downtown revitalization. Greater diversity of commercial functions and increasing residential capacity in downtowns are considered positive steps towards sustainable urban development. It is hoped the leadership taken by the City in its downtown capital investments can stimulate others (corporations and individuals to re-invest in both living and working in more central locations to the benefit of environmental sustainability indicators like journey-to-work (distance and mode selected and residential density. This article tracks changes in business composition and residential capacity during a five year period via the development of an intensive database of business and institutional activities. Urban sustainability metrics developed include residential capacity and density, business vacancy rates and business composition and turnover, which complement an existing measure of land-use diversity developed in earlier research. While major capital investments in downtown revitalization (such as the waterfront project have fairly long-term impact horizons, data suggest some positive trends in the developed metrics in the downtown north core since 2009. In particular, there have been notable investments in waterfront condos and downtown lofts and some diversification in the food retailing and restaurant sectors. However, overall trends in downtown commerce are currently flat, indicative of a struggling local economy and a continued suburbanization of key commercial sectors.

  9. Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Li, Zhengpeng

    2012-01-01

    Biofuels are now an important resource in the United States because of the Energy Independence and Security Act of 2007. Both increased corn growth for ethanol production and perennial dedicated energy crop growth for cellulosic feedstocks are potential sources to meet the rising demand for biofuels. However, these measures may cause adverse environmental consequences that are not yet fully understood. This study 1) evaluates the long-term impacts of increased frequency of corn in the crop rotation system on water quantity and quality as well as soil fertility in the James River Basin and 2) identifies potential grasslands for cultivating bioenergy crops (e.g. switchgrass), estimating the water quality impacts. We selected the soil and water assessment tool, a physically based multidisciplinary model, as the modeling approach to simulate a series of biofuel production scenarios involving crop rotation and land cover changes. The model simulations with different crop rotation scenarios indicate that decreases in water yield and soil nitrate nitrogen (NO3-N) concentration along with an increase in NO3-N load to stream water could justify serious concerns regarding increased corn rotations in this basin. Simulations with land cover change scenarios helped us spatially classify the grasslands in terms of biomass productivity and nitrogen loads, and we further derived the relationship of biomass production targets and the resulting nitrogen loads against switchgrass planting acreages. The suggested economically efficient (planting acreage) and environmentally friendly (water quality) planting locations and acreages can be a valuable guide for cultivating switchgrass in this basin. This information, along with the projected environmental costs (i.e. reduced water yield and increased nitrogen load), can contribute to decision support tools for land managers to seek the sustainability of biofuel development in this region.

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Assessment of goods and valuation of ecosystem services (AGAVES) San Pedro River Basin, United States and Mexico

    Science.gov (United States)

    Semmens, Darius; Kepner, William; Goodrich, David

    2010-01-01

    A consortium of federal, academic, and nongovernment organization (NGO) partners have established a collaborative research enterprise in the San Pedro River Basin to develop methods, standards, and tools to assess and value ecosystem goods and services. The central premise of ecosystem services research is that human condition is intrinsically linked to the environment. Human health and well-being (including economic prosperity) depend on important supporting, regulating, provisioning, and cultural services that we derive from our surrounding ecosystems. The AGAVES project is intended as a demonstration study for incorporating ecosystem services information into resource management policy and decisionmaking. Accordingly, a nested, multiscale project design has been adopted to address a range of stakeholder information requirements. This design will further facilitate an evaluation of how well methods developed in this project can be transferred to other areas.

  12. Geomechanical Framework for Secure CO2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in theMidwest United States

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel [Battelle, Columbus, OH (United States)

    2017-09-29

    This report presents final technical results for the project Geomechanical Framework for Secure CO2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in the Midwest United States (DE-FE0023330). The project was a three-year effort consisting of seven technical tasks focused on defining geomechanical factors for CO2 storage applications in deep saline rock formations in Ohio and the Midwest United States, because geomechancial issues have been identified as a significant risk factor for large-scale CO2 storage applications. A basin-scale stress-strain analysis was completed to describe the geomechanical setting for rock formations of Ordovician-Cambrian age in Ohio and adjacent areas of the Midwest United States in relation to geologic CO2 storage applications. The tectonic setting, stress orientation-magnitude, and geomechanical and petrophysical parameters for CO2 storage zones and caprocks in the region were cataloged. Ten geophysical image logs were analyzed for natural fractures, borehole breakouts, and drilling-induced fractures. The logs indicated mostly less than 10 fractures per 100 vertical feet in the borehole, with mostly N65E principal stress orientation through the section. Geophysical image logs and other logs were obtained for three wells located near the sites where specific models were developed for geomechanical simulations: Arches site in Boone County, Kentucky; Northern Appalachian Basin site in Chautauqua County, New York; and E-Central Appalachian Basin site in Tuscarawas County, Ohio. For these three wells, 9,700 feet of image logs were processed and interpreted to provide a systematic review of the distribution within each well of natural fractures, wellbore breakouts, faults, and drilling induced fractures. There were many borehole breakouts and drilling-induced tensile fractures but few natural fractures. Concentrated fractures were present at the Rome-basal sandstone

  13. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  14. "Papa Said That One Day I Would Understand": Examining Child Agency and Character Development in "Roll of Thunder, Hear My Cry" Using Critical Corpus Linguistics

    Science.gov (United States)

    Hardstaff, Sarah

    2015-01-01

    This paper considers the issue of child agency in Mildred D. Taylor's 1976 novel "Roll of Thunder, Hear My Cry" using a critical corpus linguistics framework based on Halliday's systemic functional linguistics. The novel has long received praise for its portrayal of child agency in a hostile racist society as well as its depiction of a…

  15. Recent state of stress change in the Walker Lane zone, western Basin and Range province, United States

    Science.gov (United States)

    Bellier, Olivier; Zoback, Mary Lou

    1995-06-01

    The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts the dominantly strike-slip earthquake focal mechanisms and

  16. Winters-Domengine Total Petroleum System—Northern Nonassociated Gas Assessment Unit of the San Joaquin Basin Province: Chapter 21 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    Science.gov (United States)

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The Northern Nonassociated Gas Assessment Unit (AU) of the Winters-Domengine Total Petroleum System of the San Joaquin Basin Province consists of all nonassociated gas accumulations in Cretaceous, Eocene, and Miocene sandstones located north of township 15 South in the San Joaquin Valley. The northern San Joaquin Valley forms a northwest-southeast trending asymmetrical trough. It is filled with an alternating sequence of Cretaceous-aged sands and shales deposited on Franciscan Complex, ophiolitic, and Sierran basement. Eocene-aged strata unconformably overlie the thick Cretaceous section, and in turn are overlain unconformably by nonmarine Pliocene-Miocene sediments. Nonassociated gas accumulations have been discovered in the sands of the Panoche, Moreno, Kreyenhagen, andDomengine Formations and in the nonmarine Zilch formation of Loken (1959) (hereafter referred to as Zilch formation). Most hydrocarbon accumulations occur in low-relief, northwest-southeast trending anticlines formed chiefly by differential compaction of sediment and by northeast southwest directed compression during the Paleogene (Bartow, 1991) and in stratigraphic traps formed by pinch out of submarine fan sands against slope shales. To date, 176 billion cubic feet (BCF) of nonassociated recoverable gas has been found in fields within the assessment unit (table 21.1). A small amount of biogenic gas forms near the surface of the AU. Map boundaries of the assessment unit are shown in figures 21.1 and 21.2; in plan view, this assessment unit is identical to the Northern Area Nonassociated Gas play 1007 considered by the U.S. Geological Survey (USGS) in its 1995 National Assessment (Beyer, 1996). The AU is bounded on the east by the mapped limits of Cretaceous sandstone reservoir rocks and on the west by the east flank of the Diablo Range. The southern limit of the AU is the southernmost occurrence of nonassociated thermogenic-gas accumulations. The northern limit of the AU corresponds to the

  17. Status and understanding of groundwater quality in the Cascade Range and Modoc Plateau study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2015-01-01

    Groundwater quality in the Cascade Range and Modoc Plateau study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The study was designed to provide a statistically unbiased assessment of untreated groundwater quality in the primary aquifer system. The depth of the primary aquifer system for the Cascade Range and Modoc Plateau study unit was delineated by the depths of the screened or open intervals of wells in the State of California’s database of public-supply wells. Two types of assessments were made: a status assessment that described the current quality of the groundwater resource, and an understanding assessment that made evaluations of relations between groundwater quality and potential explanatory factors representing characteristics of the primary aquifer system. The assessments characterize the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.

  18. Deployment of independent method of culture to detect bacteria and archaean domains in drainage basin under the influence of uranium mining - ore treatment unit, Caldas/MG, Brazil

    International Nuclear Information System (INIS)

    Borba Junior, Palvo J.; Azevedo, Heliana de; Ronqui, Leilane Barbosa

    2011-01-01

    Bortolan reservoir (BR), part of the Ribeirao das Antas Hydrographic Sub-Basin, is a dam located in the Pocos de Caldas Plateau region and characterized by the reception of industrial and domestic residue discharge from the city of Pocos de Caldas. Another important dam, found within the same hydrographic sub-basin and the focus of many studies as well, is Antas reservoir (AR), situated on the proximities of a uranium mine (Brazilian Nuclear Industries Ore Treatment Unit - UTM/INB), and the receiver of treated radioactive effluents originated there. The UTM/INB Pit Mine (PM) is an artificial pond characterized by its acidity and elevated electrical conductivity, besides the presence of radioactive and stable metals. The focus of this study is to determine the phylogenetic classification of the Bacteria and Archaea domains, in addition to quantify the bacterial community at points PM, BR and AR, seeking to compare the data to results from other analyzed water bodies. These microorganisms can be determined with the use of molecular techniques that allow their phylogenetic identification, such as the Fluorescent in situ Hybridization (FISH) that detects the presence of specific organisms' DNA or RNA. In the FISH method, probes produced from each domain's DNA fragments are used (EUB338 and ARC915), allowing the identification of oligonucleotide sequences with a higher degree of similarity. The bacterial cells quantification is verified by the use of the DAPI (4-6-diamidino-2-phenylindole) stain, allowing the density calculation of the bacteria found in the samples from AR and BR, as well as from the PM. (author)

  19. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  20. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    Science.gov (United States)

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox

  1. Status and understanding of groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units, 2006-2007--California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those

  2. Description of chronostratigraphic units preserved as channel deposits and geomorphic processes following a basin-scale disturbance by a wildfire in Colorado

    Science.gov (United States)

    Moody, John A.; Martin, Deborah A.

    2017-10-11

    The consequence of a 1996 wildfire disturbance and a subsequent high-intensity summer convective rain storm (about 110 millimeters per hour) was the deposition of a sediment superslug in the Spring Creek basin (26.8 square kilometers) of the Front Range Mountains in Colorado. Spring Creek is a tributary to the South Platte River upstream from Strontia Springs Reservoir, which supplies domestic water for the cities of Denver and Aurora. Changes in a superslug were monitored over the course of 18 years (1996–2014) by repeat surveys at 18 channel cross sections spaced at nearly equal intervals along a 1,500-meter study reach and by a time series of photographs of each cross section. Surveys were not repeated at regular time intervals but after major changes caused by different geomorphic processes. The focus of this long-term study was to understand the evolution and internal alluvial architecture of chronostratigraphic units (defined as the volume of sediment deposited between two successive surveys), and the preservation or storage of these units in the superslug. The data are presented as a series of 18 narratives (one for each cross section) that summarize the changes, illustrate these changes with photographs, and provide a preservation plot showing the amount of each chronostratigraphic unit still remaining in June 2014.The most significant hydrologic change after the wildfire was an exponential decrease in peak discharge of flash floods caused by summer convective rain storms. In response to these hydrologic changes, all 18 locations went through an aggradation phase, an incision phase, and finally a stabilization phase. However, the architecture of the chronostratigraphic units differs from cross section to cross section, and units are characterized by either a laminar, fragmented, or hybrid alluvial architecture. In response to the decrease in peak-flood discharge and the increase in hillslope and riparian vegetation, Spring Creek abandoned many of the

  3. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  4. Surface Water Interim Measures/Interim Remedial Action Plan/ Environmental and Decision Document, South Walnut Creek Basin, Operable Unit No.2

    International Nuclear Information System (INIS)

    1991-01-01

    Water quality investigations have identified the presence of volatile organic compound (VOC) and radionuclide contamination of surface water at the Rocky Flats Plant (RFP). The subject interim Measures/Interim Remedial Action Plan/Environmental Assessment (IM/IRAP/EA) addresses contaminated surface water in a portion of the South Walnut Creek drainage basin located within an area identified as Operable Unit No. 2 (OU 2). There is no immediate threat to public health and the environment posed by this surface water contamination. The affected surface water is contained within the plant boundary by existing detention ponds, and is treated prior to discharge for removal of volatile contaminants and suspended particulates to which radionuclides, if present, are likely to absorb. However, there is a potential threat and the Department of Energy (DOE) is implementing this Surface Water IM/IRAP at the request of the US Environmental Protection Agency (EPA) and Colorado Department of Health (CDH). Implementation of the Surface Water IM/IRA will enhance the DOE's efforts towards containing and managing contaminated surface water, and will mitigate downgradient migration of contaminants. Another factor in implementing this IM/IRA is the length of time it will take to complete the investigations and engineering studies necessary to determine the final remedy for OU 2. 44 refs., 23 figs., 14 tabs

  5. Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States†

    Science.gov (United States)

    Lemons, Angela R.; Hogan, Mary Beth; Gault, Ruth A.; Holland, Kathleen; Sobek, Edward; Olsen-Wilson, Kimberly A.; Park, Yeonmi; Park, Ju-Hyeong; Gu, Ja Kook; Kashon, Michael L.; Green, Brett J.

    2017-01-01

    Recent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region. PMID:28091681

  6. Science informed water resources decision-making: Examples using remote sensing observations in East Africa, the Lower Mekong Basin and the western United States

    Science.gov (United States)

    Granger, S. L.; Andreadis, K.; Das, N.; Farr, T. G.; Ines, A. V. M.; Jayasinghe, S.; Jones, C. E.; Melton, F. S.; Ndungu, L. W.; Lai-Norling, J.; Painter, T. H.

    2017-12-01

    Across the globe, planners and decision makers are often hampered by organizational and data silos and/or a lack of historic data or scant in situ observations on which to base policy and action plans. The end result is a complex interaction of responsibilities, legal frameworks, and stakeholder needs guided by uncertain information that is essentially bounded by how climate extremes are defined and characterized. Because of the importance of water, considerable resources in the developing and developed world are invested in data and tools for managing water. However, the existing paradigm of water management around the world faces significant challenges including inadequate funding to install, maintain or upgrade monitoring networks, lack of resources to integrate new science and data sources into existing tools, and demands for improved spatial coverage of observations. Add to this, a changing hydrology that is so complex it requires measurements and analyses that have never been done before. Interest in applying remote sensing science and observations into the decision making process is growing the world over, but in order to succeed, it is essential to form partnerships with stakeholder organizations and decision makers at the outset. In this talk, we describe examples of succesful decision-maker and science partnering based on projects that apply remote sensing science and observations in East Africa and the Lower Mekong Basin supported by the SERVIR Initiative, a joint United States Agency for International Development (USAID) and National Aeronautics and Space Administration (NASA) program, and projects in the western United States supported by NASA's Jet Propulsion Laboratory and the Western Water Applications Office (WWAO). All of these examples have benefitted from strong, committed partnerships with end user agencies. Best practices and lessons learned in connecting science to decision making amongst these examples are explored.

  7. Geologic assessment of undiscovered oil and gas resources in Aptian carbonates, onshore northern Gulf of Mexico Basin, United States

    Science.gov (United States)

    Hackley, Paul C.; Karlsen, Alexander W.

    2014-01-01

    Carbonate lithofacies of the Lower Cretaceous Sligo Formation and James Limestone were regionally evaluated using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources. The assessed area is within the Upper Jurassic–Cretaceous–Tertiary Composite total petroleum system, which was defined for the assessment. Hydrocarbons reservoired in carbonate platform Sligo-James oil and gas accumulations are interpreted to originate primarily from the Jurassic Smackover Formation. Emplacement of hydrocarbons occurred via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir facies include porous patch reefs developed over paleostructural salt highs, carbonate shoals, and stacked linear reefs at the carbonate shelf margin. Hydrocarbon traps dominantly are combination structural-stratigraphic. Sealing lithologies include micrite, calcareous shale, and argillaceous lime mudstone. A geologic model, supported by discovery history analysis of petroleum geology data, was used to define a single regional assessment unit (AU) for conventional reservoirs in carbonate facies of the Sligo Formation and James Limestone. The AU is formally entitled Sligo-James Carbonate Platform Oil and Gas (50490121). A fully risked mean undiscovered technically recoverable resource in the AU of 50 million barrels of oil (MMBO), 791 billion cubic feet of natural gas (BCFG), and 26 million barrels of natural gas liquids was estimated. Substantial new development through horizontal drilling has occurred since the time of this assessment (2010), resulting in cumulative production of >200 BCFG and >1 MMBO.

  8. Status and understanding of groundwater quality in the North San Francisco Bay Shallow Aquifer study unit, 2012; California GAMA Priority Basin Project (ver. 1.1, February 2018)

    Science.gov (United States)

    Bennett, George L.

    2017-07-20

    Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic

  9. Status and understanding of groundwater quality in the South Coast Range-Coastal study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the South Coast Range–Coastal (SCRC) study unit was investigated from May through November 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Range hydrologic province and includes parts of Santa Barbara and San Luis Obispo Counties. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifer system. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The assessments for the SCRC study unit were based on water-quality and ancillary data collected in 2008 by the USGS from 55 wells on a spatially distributed grid, and water-quality data from the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. Water-quality and ancillary data were collected from an additional 15 wells for the understanding assessment. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. The first component of this study, the status assessment of groundwater quality, used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. Although the status assessment applies to untreated

  10. Drainage basins features and hydrological behaviour river Minateda basin

    International Nuclear Information System (INIS)

    Alonso-Sarria, F.

    1991-01-01

    Nine basin variables (shape, size and topology) have been analyzed in four small basins with non-permanent run off (SE of Spain). These geomorphological variables have been selected for their high correlation with the Instantaneous unit hydrograph parameters. It is shown that the variables can change from one small basin to another within a very short area; because of it, generalizations about the behaviour of the run off are not possible. In conclusion, it is stated that the variations in geomorphological aspects between different basins, caused mainly by geological constraints, are a very important factor to be controlled in a study of geoecological change derived from climatic change

  11. Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years

    International Nuclear Information System (INIS)

    Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M.

    1996-01-01

    The disposal of hazardous and radioactive waste in arid regions requires a thorough understanding of the occurrence of soil-water flux and recharge. Soil-water chemistry and isotopic data are presented from three deep vadose zone boreholes (> 230 m) at the Nevada Test Site, located in the Great Basin geographic province of the southwestern United States, to quantify soil-water flux and its relation to climate. The low water contents found in the soils significantly reduce the mixing of tracers in the subsurface and provide a unique opportunity to examine the role of climate variation on recharge in arid climates. Tracing techniques and core data are examined in this work to reconstruct the paleohydrologic conditions existing in the vadose zone well beyond the timescales typically investigated. Stable chloride and chlorine 36 profiles indicate that the soil waters deep in the vadose zone range in age from approximately 20,000 to 120,000 years. Secondary chloride bulges that are present in two of the three profiles support the concept of recharge occurring at or near the last two glacial maxima, when the climate of the area was considerably wetter and cooler. The stable isotopic composition of the soil water in the profiles is significantly more depleted in heavy isotopes than is modern precipitation, suggesting that recharge under the current climate is not occurring at this arid site. Past and present recharge appears to have been strongly controlled by surface topography, with increased incidence of recharge where runoff from the surrounding mountains may have been concentrated. The data obtained from this detailed drilling and sampling program shed new light on the behavior of water in thick vadose zones and, in particular, show the sensitivity of arid regions to the extreme variations in climate experienced by the region over the last two glacial maxima

  12. Surface Water Interim Measures/Interim Remedial Action Plan/Environmental Assessment and Decision Document, South Walnut Creek Basin, Operable Unit No. 2

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 2 of this IM/IRA Plan contains OU 2 surface water, sediment, ground water and soil chemistry data, as well as the South Walnut Creek Basin Surface Water IM/IRA schedule and a tabulation of ARARs. (FL)

  13. Status and understanding of groundwater quality in the Monterey-Salinas Shallow Aquifer Study Unit, 2012–13: California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen; Wright, Michael

    2018-05-30

    Groundwater quality in the approximately 7,820-square-kilometer (km2) Monterey-Salinas Shallow Aquifer (MS-SA) study unit was investigated from October 2012 to May 2013 as part of the second phase of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in the central coast region of California in the counties of Santa Cruz, Monterey, and San Luis Obispo. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in cooperation with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.The MS-SA study was designed to provide a statistically robust assessment of untreated-groundwater quality in the shallow aquifer systems. The assessment was based on water-quality samples collected by the U.S. Geological Survey from 100 groundwater sites and 70 household tap sites, along with ancillary data such as land use and well-construction information. The shallow aquifer systems were defined by the depth interval of wells associated with domestic supply. The MS-SA study unit consisted of four study areas—Santa Cruz (210 km2), Pajaro Valley (360 km2), Salinas Valley (2,000 km2), and Highlands (5,250 km2).This study had two primary components: the status assessment and the understanding assessment. The first primary component of this study—the status assessment—assessed the quality of the groundwater resource indicated by data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally present inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of groundwater resources in the shallow aquifer system of the MS-SA study unit, not the treated drinking water delivered to consumers by water purveyors. As opposed to the public wells, however, water from private wells, which often tap the shallow aquifer, is usually consumed without any treatment. The second

  14. Groundwater quality data in 15 GAMA study units: results from the 2006–10 Initial sampling and the 2009–13 resampling of wells, California GAMA Priority Basin Project

    Science.gov (United States)

    Kent, Robert

    2015-08-31

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). From May 2004 to March 2012, the GAMA-PBP collected samples from more than 2,300 wells in 35 study units across the State. Selected wells in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. This triennial (every 3 years) trend sampling of GAMA-PBP study units concluded in December 2013. Fifteen of the study units, initially sampled between January 2006 and June 2010 and sampled a second time between April 2009 and April 2013 to assess temporal trends, are the subject of this report.

  15. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Rio Grande Region, New Mexico, and Texas

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, Kenneth A.; Langer, William H.

    1989-01-01

    The Rio Grande region, New Mexico and Texas, includes most of the area east of the Rio Grande to the Sacramento Mountains. The region encompasses two large basins, the Jornada del Muerto and Tularosa basins, and the intervening San Andres Mountains. The valley surfaces generally have altitudes from 600 to 1,500 meters, and the mountain ranges generally have altitudes from 1,500 to 2,400 meters. About one-half the area is underlain by basin fill. Sedimentary rocks that crop out in the Rio Grande region range in age from Precambrian to Holocene. The oldest Precambrian rocks are metamorphosed and intruded by plutons. Paleozoic rocks are primarily carbonates, with argillaceous beds in the older Paleozoic units. Clastic and gypsum are in greater abundance in younger Paleozoic units of Pennsylvanian and Permian age. The Mesozoic rocks primarily are clastic rocks with some limestone. Cenozoic rocks consist of sequences of conglomerate, sandstone, mudstone, and siltstone, derived from adjacent mountain masses, interbedded with basalt and andesite flows and silicic tuffs. Early to middle Tertiary volcanic and tectonic processes resulted in the implacement of plutonic bodies; volcanic activity continued into the Quaternary. Media considered to have potential for isolation of high-level radioactive waste include intrusive rocks, ash-flow tuff, and basaltic lava flows. Laharic and mudflow breccia and argillaceous beds also may be potential host rocks. These and other rocks may be potential media in areas where the unsaturated zone is thick. Quaternary faults are more common in the southern one-half of the region than in the northern one-half. Range-bounding faults with evidence of Quaternary movement extend northward into the central part of the region. Volcanic activity in the northern part of the region includes basalt flows of Quaternary age. Historical crustal uplift and seismicity have occurred in the vicinity of Socorro, New Mexico. The region is bordered on the west by

  16. Water-quality assessment of part of the Upper Mississippi River Basin Study Unit, Minnesota and Wisconsin- Nutrients, chlorophyll a, phytoplankton, and suspended sediment in streams, 1996-98

    Science.gov (United States)

    Kroening, Sharon E.; Lee, Kathy E.; Goldstein, R.M.

    2003-01-01

    Stream water-quality data from part of the Upper Mississippi River Basin Study Unit (Study Unit) from 1995 through 1998 was used to describe the distribution of nutrients, chlorophyll a, phytoplankton, and suspended sediment; and the influence of natural and anthropogenic factors on reported concentrations, loads, and yields. During the study period, streamflows generally were near to greater than average. Agricultural land cover, particularly on tile-drained soils, had the most substantial influence on nutrients, chlorophyll a, and suspended sediment in the Study Unit. The greatest concentrations and yields of total nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved nitrite nitrogen, total organic plus ammonia nitrogen, total phosphorus, and suspended sediment were measured in a stream representing agricultural land cover on tile-drained soils. Total nitrogen yields also were about 6 times greater in a stream representing agricultural land cover on tile-drained soils than in a stream representing agricultural land cover on naturally welldrained soils.

  17. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  18. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  19. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  20. Basin and Range Province, Western US, USGS Grids #3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  1. Basin and Range Province, Western US, USGS Grids #2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  2. Basin and Range Province, Western US, USGS Grids, #1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  3. Basin and Range Province, Western US, USGS Grids #5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  4. Basin and Range Province, Western US, USGS Grids #4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  5. Analysis of thunder and lightning frequency in the Belgrade area in Serbia in the period 1975 - 2009

    Science.gov (United States)

    Todorovich, N.; Vujovic, D.

    2010-09-01

    The analysis included observations (non-instrumental data) about the thunder and lightning (TL) on Belgrade Meteorological Observatory (latitude 44°48´N, longitude 20°28´E, h=132 m) in the period 1975-2009. The data about the duration (in minutes) by dates were analyzed. The results confirmed already known fact that the TL are most frequent in June. There is a slight increasing trend of TL duration since the mid-eighties. The results of the daily distribution confirmed the basic finding that the TL frequency is higher in the afternoon and the evening hours when two distinctive peak noticed: first of about 17 hours and second about 21 and 22 hours (UTC +1), with the minimum in the morning hours. The annual number of days with TL has the similar distribution in the reporting period as like the annual sum of the duration in minutes. There is a slight increasing trend of days with TL from the mid-eighties. The month with the extreme number of days with TL is June. The most interesting result of analysis is the distribution of the number of days with TL by calendar days. Maximum is in late June and early July, the central date is June 28. In addition to the primary maximum, there are several maximum more in the form of group of several days. Such periods we might call quasi-singularities. In addition to the main period June 27 - July 01, the most important periods and dates (quasi-singularities) are April 24, April 30 - May 2, May 16 - May 22, June 7 - June 17, July 7, July 12-July 14, August 4, August 8 - August 11 and August 28 - September 1. The most notable long period with low frequency of days with TL is second half of July. It is evident that the number of days with TL rapidly increases after April 23 and rapidly reduced after September 2.

  6. Monitoring of levees, bridges, pipelines, and other critical infrastructure during the 2011 flooding in the Mississippi River Basin: Chapter J in 2011 floods of the central United States

    Science.gov (United States)

    Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.

    2014-01-01

    During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are

  7. Studies of geology and hydrology in the Basin and Range Province, Southwestern United States, for isolation of high-level radioactive waste - Basis of characterization and evaluation

    Science.gov (United States)

    Bedinger, M.S.; Sargent, K.A.; Langer, William H.; Sherman, Frank B.; Reed, J.E.; Brady, B.T.

    1989-01-01

    The geologic and hydrologic factors in selected regions of the Basin and Range province were examined to identify prospective areas for further study that may provide isolation of high-level radioactive waste from the accessible environment. The six regions selected for study were characterized with respect to the following guidelines: (1) Potential repository media; (2) Quaternary tectonic conditions; (3) climatic change and geomorphic processes; (4) ground-water conditions; (5) ground-water quality; and (6) mineral and energy resources.The repository medium will function as the first natural barrier to radionuclide travel by virtue of associated slow ground-water velocity. The principal rock types considered as host media include granitic, intermediate, and mafic intrusive rocks; argillaceous rocks; salt and anhydrite; volcanic mudflow (laharic) breccias; some intrusive rhyolitic plugs and stocks; partially zeolitized tuff; and metamorphic rocks. In the unsaturated zone, the permeability and hydrologic properties of the rocks and the hydrologic setting are more important than the rock type. Media ideally should be permeable to provide drainage and should have a minimal water fluxThe ground-water flow path from a repository to the accessible environment needs to present major barriers to the transport of radionuclides. Factors considered in evaluating the ground-water conditions include ground-water traveltimes and quality, confining beds, and earth materials favorable for retardation of radionuclides. Ground-water velocities in the regions were calculated from estimated hydraulic properties of the rocks and gradients. Because site-specific data on hydraulic properties are not available, data from the literature were assembled and synthesized to obtain values for use in estimating ground-water velocities. Hydraulic conductivities for many rock types having granular and fracture permeability follow a log-normal distribution. Porosity for granular and very weathered

  8. Ephemeral-stream channel and basin-floor infiltration and recharge in the Sierra Vista subwatershed of the Upper San Pedro Basin, Southeastern Arizona: Chapter J in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Coes, A.L.; Pool, D.R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    The timing and location of streamflow in the San Pedro River are partially dependent on the aerial distribution of recharge in the Sierra Vista subwatershed. Previous investigators have assumed that recharge in the subwatershed occurs only along the mountain fronts by way of stream-channel infiltration near the contact between low-permeability rocks of the mountains and the basin fill. Recent studies in other alluvial basins of the Southwestern United States, however, have shown that significant recharge can occur through the sediments of ephemeral stream channels at locations several kilometers distant from the mountains. The purpose of this study was to characterize the spatial distribution of infiltration and subsequent recharge through the ephemeral channels in the Sierra Vista subwatershed.Infiltration fluxes in ephemeral channels and through the basin floor of the subwatershed were estimated by using several methods. Data collected during the drilling and coring of 16 boreholes included physical, thermal, and hydraulic properties of sediments; chloride concentrations of sediments; and pore-water stable-isotope values and tritium activity. Surface and subsurface sediment temperatures were continuously measured at each borehole.Twelve boreholes were drilled in five ephemeral stream channels to estimate infiltration within ephemeral channels. Active infiltration was verified to at least 20 meters at 11 of the 12 borehole sites on the basis of low sediment-chloride concentrations, high soil-water contents, and pore-water tritium activity similar to present-day precipitation. Consolidated sediments at the twelfth site prevented core recovery and estimation of infiltration. Analytical and numerical methods were applied to determine the surface infiltration flux required to produce the observed sediment-temperature fluctuations at six sites. Infiltration fluxes were determined for summer ephemeral flow events only because no winter flows were recorded at the sites

  9. The Deadlock Principle as a Ground for the Just and Equitable Winding Up of a Solvent Company: Thunder Cats Investments 92 (Pty Ltd v Nkonjane Economic Prospecting Investment (Pty Ltd 2014 5 SA 1 (SCA

    Directory of Open Access Journals (Sweden)

    Tumo Charles Maloka

    2016-05-01

    Full Text Available The question addressed by the Supreme Court of Appeal in Thunder Cats Investment 92 (Pty Ltd v Nkonjane Economic Prospecting & Investments (Pty Ltd 2014 5 SA 1 (SCA (hereafter the "Thunder Cats" provides much-needed guidance on the deadlock principle as well as the breadth and scope of the "just and equitable ground for winding up in terms of s 81(1(d(iii of the Companies Act 71 of 2008. The facts, the issues and the contextual authority of Thunder Cats also bring to fore the lacuna in the just and equitable winding up provisions of the current Companies Act which lacuna has so far received no judicial or academic consideration. This Note contends the fact that the just and equitable winding up provisions do not countenance any deviation from the statutory prescriptions once the factual grounds for just and equitable winding up have been established is not in consonance with the spirit, purport and objects of Companies Act, and, in particular those of Chapter Six of the Act which have introduced the innovative business rescue scheme into South African corporate law landscape. The facts, the issues and the contextual authority of Thunder Cats will be reviewed at length in the ensuing discussion.

  10. Silurian extension in the Upper Connecticut Valley, United States and the origin of middle Paleozoic basins in the Québec embayment

    Science.gov (United States)

    Rankin, D.W.; Coish, R.A.; Tucker, R.D.; Peng, Z.X.; Wilson, S.A.; Rouff, A.A.

    2007-01-01

    Pre-Silurian strata of the Bronson Hill arch (BHA) in the Upper Connecticut Valley, NH-VT are host to the latest Ludlow Comerford Intrusive Suite consisting, east to west, of a mafic dike swarm with sheeted dikes, and an intrusive complex. The rocks are mostly mafic but with compositions ranging from gabbro to leucocratic tonalite. The suite is truncated on the west by the Monroe fault, a late Acadian thrust that carries rocks of the BHA westward over Silurian-Devonian strata of the Connecticut Valley-Gaspe?? trough (CVGT). Dikes intrude folded strata with a pre-intrusion metamorphic fabric (Taconian?) but they experienced Acadian deformation. Twenty fractions of zircon and baddeleyite from three sample sites of gabbrodiorite spanning nearly 40 km yield a weighted 207Pb/206Pb age of 419 ?? 1 Ma. Greenschist-facies dikes, sampled over a strike distance of 35 km, were tholeiitic basalts formed by partial melting of asthenospheric mantle, with little or no influence from mantle or crustal lithosphere. The dike chemistry is similar to mid-ocean ridge, within-plate, and back-arc basin basalts. Parent magmas originated in the asthenosphere and were erupted through severely thinned lithosphere adjacent to the CVGT. Extensive middle Paleozoic basins in the internides of the Appalachian orogen are restricted to the Que??bec embayment of the Laurentian rifted margin, and include the CVGT and the Central Maine trough (CMT), separated from the BHA by a Silurian tectonic hinge. The NE-trending Comerford intrusions parallel the CVGT, CMT, and the tectonic hinge, and indicate NW-SE extension. During post-Taconian convergence, the irregular margins of composite Laurentia and Avalon permitted continued collision in Newfoundland (St. Lawrence promontory) and coeval extension in the Que??bec embayment. Extension may be related to hinge retreat of the northwest directed Brunswick subduction complex and rise of the asthenosphere following slab break-off. An alternative hypothesis is

  11. The most important water management questions concerning the river basin unit Weser. EG water management guidelines; Die wichtigsten Wasserbewirtschaftungsfragen in der Flussgebietseinheit Weser. EG-Wasserrahmenrichtlinien

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-15

    The most important water management questions concerning the river basin Weser are the following: The salt load of Werra and Weser due to tha actual and former potash mining, the load due to anthropogenic nutrient input, and the disturbance of the watercourses. It is extremely important to discuss not only these questions but also their interdependence and relations. The fish is identified as an efficient indicator of the water quality, esp. migrating species that require different watercourse structures. In order to fulfill the requirements of a sustainable and integrative protection of the resources the water management strategies have do be comprehensive with respect to the discussed questions.

  12. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  13. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  14. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  15. Seeking a Second Opinion: Robert McNamara’s Distrust of the U.S. Intelligence Community During Operation Rolling Thunder

    Directory of Open Access Journals (Sweden)

    Thomas A. Reinstein

    2016-04-01

    Full Text Available Thomas A. Reinstein reexamines how military intelligence was evaluated and employed during the Vietnam War, especially by Secretary of Defense Robert McNamara. Reinstein takes a relatively unexplored approach by delving into the Secretary’s personal policy predilections and efforts to retain cabinet influence as factors determining his use of intelligence reports. These considerations guided his changing positions on the bombing campaign known as Rolling Thunder. The article’s focus on personal considerations in policy making adds complexity to our views of decision making but also raises very serious concerns about the flawed nature of those processes and the dangers of miscalculation at the highest levels of government.

  16. A proposal for an administrative set up of river basin management in the Sittaung River Basin

    OpenAIRE

    Tun, Zaw Lwin; Ni, Bo; Tun, Sein; Nesheim, Ingrid

    2016-01-01

    The purpose of this report is to present a proposal for how an administrative approach based on River Basin Management can be implemented in Myanmar. The Sittaung River Basin has been used as an example area to investigate how the basin can be administered according to the IWRM principles of cooperation between the different sectors and the administrative units, including stakeholder involvement. Ministry of Natural Resource and Environmental Conservation, Myanmar Norwegian Ministry of For...

  17. Siliciclastics in the Upper Triassic dolomite formations of the Krizna Unit (Maid Fatra Mountains, Western Carpathians): constraints for the Carnian Pluvial Event in the Fatric Basin

    Czech Academy of Sciences Publication Activity Database

    Sýkora, M.; Siblík, Miloš; Soták, J.

    2011-01-01

    Roč. 62, č. 2 (2011), s. 121-138 ISSN 1335-0552 Institutional research plan: CEZ:AV0Z30130516 Keywords : Carnian event * Upper Triassic dolomites * Western Carpathians * Krizna Unit * shaly interbeds * lingulids * conchostracans Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.787, year: 2011

  18. Ecological limit functions relating fish community response to hydrologic departures of the ecological flow regime in the Tennessee River basin, United States

    Science.gov (United States)

    Knight, Rodney R.; Murphy, Jennifer C.; Wolfe, William J.; Saylor, Charles F.; Wales, Amy K.

    2014-01-01

    Ecological limit functions relating streamflow and aquatic ecosystems remain elusive despite decades of research. We investigated functional relationships between species richness and changes in streamflow characteristics at 662 fish sampling sites in the Tennessee River basin. Our approach included the following: (1) a brief summary of relevant literature on functional relations between fish and streamflow, (2) the development of ecological limit functions that describe the strongest discernible relationships between fish species richness and streamflow characteristics, (3) the evaluation of proposed definitions of hydrologic reference conditions, and (4) an investigation of the internal structures of wedge-shaped distributions underlying ecological limit functions.Twenty-one ecological limit functions were developed across three ecoregions that relate the species richness of 11 fish groups and departures from hydrologic reference conditions using multivariate and quantile regression methods. Each negatively sloped function is described using up to four streamflow characteristics expressed in terms of cumulative departure from hydrologic reference conditions. Negative slopes indicate increased departure results in decreased species richness.Sites with the highest measured fish species richness generally had near-reference hydrologic conditions for a given ecoregion. Hydrology did not generally differ between sites with the highest and lowest fish species richness, indicating that other environmental factors likely limit species richness at sites with reference hydrology.Use of ecological limit functions to make decisions regarding proposed hydrologic regime changes, although commonly presented as a management tool, is not as straightforward or informative as often assumed. We contend that statistical evaluation of the internal wedge structure below limit functions may provide a probabilistic understanding of how aquatic ecology is influenced by altered hydrology

  19. Comment on “The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States”: report published in Hydrogeology Journal (2014) 22:807–828, by Stephen T. Nelson and Alan L. Mayo

    Science.gov (United States)

    Masbruch, Melissa D.; Brooks, Lynette E.; Heilweil, Victor M.; Sweetkind, Donald S.

    2015-01-01

    The subject article (Nelson and Mayo 2014) presents an overview of previous reports of interbasin flow in the Great Basin of the western United States. This Comment is presented by authors of a cited study (comprising chapters in one large report) on the Great Basin carbonate and alluvial aquifer system (GBCAAS; Heilweil and Brooks 2011; Masbruch et al. 2011; Sweetkind et al. 2011a, b), who agree that water budget imbalances alone are not enough to accurately quantify interbasin flow; however, it is proposed that statements made in the subject article about the GBCAAS report are inaccurate. The Comment authors appreciate the opportunity to clarify some statements made about the work.

  20. 105-KE basin pilot run relocation

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1994-01-01

    The purpose of this document is to present the bases for selecting the exact in-facility location for installation of process equipment to support pilot testing activities in the 105-KE Basin at the United States Department of Energy Hanford Site, in southeastern Washington State. The 105-KE Basin was constructed during the early 1950s, as an integralcomponent of the 105-K East reactor building. Similar basins were provided in all Hanford weapons production reactor buildings to receive fuel elements discharged from the reactors and stage them for rail transport to 200 Area fuel reprocessing plants. The 105-KE reactor began operation in 1955. It was shut down in 1971. However, the 105-KE Basin was reactivated several years later to store spent fuel from the N-Reactor basin and permit its continued operation during outages at the Plutonium Uranium Extraction (PUREX) plant in the 200E Area

  1. Climatology of the interior Columbia River basin.

    Science.gov (United States)

    Sue A. Ferguson

    1999-01-01

    This work describes climate means and trends in each of three major ecological zones and 13 ecological reporting units in the interior Columbia River basin. Widely differing climates help define each major zone and reporting unit, the pattern of which is controlled by three competing air masses: marine, continental, and arctic. Paleoclimatic evidence and historical...

  2. Surface Water Interim Measures/Interim Remedial Action Plan/Environmental Assessment and Decision Document for South Walnut Creek Basin (Operable Unit No. 2)

    International Nuclear Information System (INIS)

    1991-01-01

    The Department of Energy (DOE) is pursuing an Interim Measure/Interim Remedial Action (IM/IRA) at the 903 Pad, Mound, and East Trenches Areas (Operable Unit No. 2) at the Rocky Flats Plant (RFP). This IM/IRA is to be conducted to minimize the release from these areas of hazardous substances that pose a potential threat to the public health and environment. The Plan involved the collection of contaminated surface water at specific locations, treatment by chemical precipitation, cross-flow membrane filtration and granular activated carbon (GAC) adsorption, and surface discharge of treated water. Information for the initial configuration of the Plan is presented in the document entitled ''Proposed Interim Measures/Interim Remedial Action Plan and Decision Document, 903 Pad, Mound, and East Trenches Areas, Operable Unit No. 2'' (IM/IRAP) dated 26 September 1990. Information concerning the proposed Surface Water IM/IRA was presented during a public meeting held from 7 to 10 p.m., Tuesday, 23 October 1990, at the Westminster City Park Recreation Center in Westminster, Colorado. This Responsiveness Summary presents DOE's response to all comments received at the public meeting, as well as those mailed to DOE during the public comment period which ended 24 November 1990. There were a number of technical comments on the plan that DOE has addressed herein. It is noted that several major issues were raised by the comments. Regardless of the estimated low risk to the public from construction and water transport activities, the popular sentiment of the public, based on comments received, is strong concern over worker and public health risks from these activities. In the light of public and municipal concerns, DOE proposes to eliminate from this IM/IRA the interbasin transfer of Woman Creek seepage to the South Walnut Creek drainage and to address collection and treatment of contaminated South Walnut Creek and Woman Creek surface water under two separate IM/IRAs

  3. Groundwater-quality data in seven GAMA study units: results from initial sampling, 2004-2005, and resampling, 2007-2008, of wells: California GAMA Program Priority Basin Project

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth; Fram, Miranda S.

    2014-01-01

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The GAMA-PBP began sampling, primarily public supply wells in May 2004. By the end of February 2006, seven (of what would eventually be 35) study units had been sampled over a wide area of the State. Selected wells in these first seven study units were resampled for water quality from August 2007 to November 2008 as part of an assessment of temporal trends in water quality by the GAMA-PBP. The initial sampling was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the seven study units. In the 7 study units, 462 wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study area. Wells selected this way are referred to as grid wells or status wells. Approximately 3 years after the initial sampling, 55 of these previously sampled status wells (approximately 10 percent in each study unit) were randomly selected for resampling. The seven resampled study units, the total number of status wells sampled for each study unit, and the number of these wells resampled for trends are as follows, in chronological order of sampling: San Diego Drainages (53 status wells, 7 trend wells), North San Francisco Bay (84, 10), Northern San Joaquin Basin (51, 5), Southern Sacramento Valley (67, 7), San Fernando–San Gabriel (35, 6), Monterey Bay and Salinas Valley Basins (91, 11), and Southeast San Joaquin Valley (83, 9). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N

  4. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  5. Groundwater-quality data in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010--Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Wright, Michael T.; Beuttel, Brandon S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the 12,103-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts (CLUB) study unit was investigated by the U.S. Geological Survey (USGS) from December 2008 to March 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CLUB study unit was the twenty-eighth study unit to be sampled as part of the GAMA-PBP. The GAMA CLUB study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer systems, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) are defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the CLUB study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the CLUB study unit, groundwater samples were collected from 52 wells in 3 study areas (Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts) in San Bernardino, Riverside, Kern, San Diego, and Imperial Counties. Forty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and three wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile

  6. A preliminary assessment of the spatial sources of contemporary suspended sediment in the Ohio River basin, United States, using water quality data from the NASQAN programme in a source tracing procedure

    Science.gov (United States)

    Zhang, Y.-S.; Collins, A.L.; Horowitz, A.J.

    2012-01-01

    Reliable information on catchment scale suspended sediment sources is required to inform the design of management strategies for helping abate the numerous environmental issues associated with enhanced sediment mobilization and off-site loadings. Since sediment fingerprinting techniques avoid many of the logistical constraints associated with using more traditional indirect measurement methods at catchment scale, such approaches have been increasingly reported in the international literature and typically use data sets collected specifically for sediment source apportionment purposes. There remains scope for investigating the potential for using geochemical data sets assembled by routine monitoring programmes to fingerprint sediment provenance. In the United States, routine water quality samples are collected as part of the US Geological Survey's revised National Stream Quality Accounting Network programme. Accordingly, the geochemistry data generated from these samples over a 10-year period (1996-2006) were used as the basis for a fingerprinting exercise to assess the key tributary sub-catchment spatial sources of contemporary suspended sediment transported by the Ohio River. Uncertainty associated with the spatial source estimates was quantified using a Monte Carlo approach in conjunction with mass balance modelling. Relative frequency weighted means were used as an alternative way of summarizing the spatial source contributions, thereby avoiding the need to use confidence limits. The results should be interpreted in the context of the routine, but infrequent nature, of the suspended sediment samples used to assemble geochemistry as a basis for the sourcing exercise. Nonetheless, the study demonstrates how routine monitoring samples can be used to provide some preliminary information on sediment provenance in large drainage basins. ?? 2011 John Wiley & Sons, Ltd.

  7. The upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound, Antarctica): local Pleistocene volcanic sources, paleoenvironmental implications and subsidence in the southern Victoria Land Basin

    Science.gov (United States)

    Del Carlo, P.; Panter, K. S.; Bassett, K. N.; Bracciali, L.; di Vincenzo, G.; Rocchi, S.

    2009-12-01

    We report results from the study of the uppermost 37 meters of the Southern McMurdo Sound (SMS) AND-2A drillcore, corresponding to the lithostratigraphic unit 1 (LSU 1), the most volcanogenic unit within the core. Nearly all of LSU 1 consists of volcanic breccia and sandstone that is a mixture of near primary volcanic material dominated by lava and vitric clasts with minor exotic material derived from distal basement sources. Lava clasts and glass are mafic and range from strongly alkaline (basanite, tephrite) to moderately alkaline (alkali basalt, hawaiite) compositions that are similar to nearby land deposits. 40Ar-39Ar laser step-heating analyses on groundmass separated from lava clasts yield Pleistocene ages (692±38 and 793±63, ±2σ internal errors). Volcanoes of the Dailey Island group, located ~13 km SW of the drillsite, are a possible source for the volcanic materials based on their close proximity, similar composition and age. A basanite lava flow on Juergens Island yields a comparable Pleistocene age of 775±22 ka. Yet there is evidence to suggest that the volcanic source is much closer to the drillsite and that the sediments were deposited in much shallower water relative to the present-day water depth of 384 mbsl. Evidence for local volcanic activity is based in part on the common occurrence of delicate vitriclasts (e.g. glass shards and Pele’s hair) and a minimally reworked ~2 meter thick monomict breccia that is interpreted to have formed by autobrecciating lava. In addition, conical-shaped seamounts and high frequency magnetic anomalies encompass the drillsite and extend south including the volcanoes of the Dailey Islands. Sedimentary features and structures indicate shallow water sedimentation for the whole of LSU 1. Rippled asymmetric cross-laminated sands and hummocky cross-stratification occur intermittently throughout LSU 1 and indicate water depths shallower than 100 meters. The occurrence of ooliths and layers containing siderite and Fe

  8. Regionalization for uncertainty reduction in flows in ungauged basins

    NARCIS (Netherlands)

    Booij, Martijn J.; Deckers, Dave L.E.H.; Rientjes, Tom H.M.; Krol, Martinus S.; Boegh, Eva; Kunstmann, Harald; Wagener, Thorsten; Hall, Alan; Bastidas, Luis; Franks, Stewart; Gupta, Hoshin; Rosbjerg, Dan; Schaake, John

    2007-01-01

    The objective of this study is to contribute to the reduction of predictive uncertainty in flows in ungauged basins through application of a regionalization method to 56 well-gauged basins in the United Kingdom. The classical approach of regionalization is adopted, where regression relationships

  9. 48 CFR 25.405 - Caribbean Basin Trade Initiative.

    Science.gov (United States)

    2010-10-01

    ... Initiative. 25.405 Section 25.405 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.405 Caribbean Basin Trade Initiative. Under the Caribbean Basin Trade Initiative, the United States Trade Representative has determined that, for...

  10. Groundwater-quality data in 12 GAMA study units: Results from the 2006–10 initial sampling period and the 2008–13 trend sampling period, California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy M.

    2017-03-09

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey in cooperation with the California State Water Resources Control Board. From 2004 through 2012, the GAMA-PBP collected samples and assessed the quality of groundwater resources that supply public drinking water in 35 study units across the State. Selected sites in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. Twelve of the study units, initially sampled during 2006–11 (initial sampling period) and sampled a second time during 2008–13 (trend sampling period) to assess temporal trends, are the subject of this report.The initial sampling was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies in the 12 study units. In these study units, 550 sampling sites were selected by using a spatially distributed, randomized, grid-based method to provide spatially unbiased representation of the areas assessed (grid sites, also called “status sites”). After the initial sampling period, 76 of the previously sampled status sites (approximately 10 percent in each study unit) were randomly selected for trend sampling (“trend sites”). The 12 study units sampled both during the initial sampling and during the trend sampling period were distributed among 6 hydrogeologic provinces: Coastal (Northern and Southern), Transverse Ranges and Selected Peninsular Ranges, Klamath, Modoc Plateau and Cascades, and Sierra Nevada Hydrogeologic Provinces. For the purposes of this trend report, the six hydrogeologic provinces were grouped into two hydrogeologic regions based on location: Coastal and Mountain.The groundwater samples were analyzed for a number of synthetic organic

  11. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin, one of the largest Pennsylvanian bituminous coal-producing regions in the world, currently contains nearly one-half of the top 15 coal-producing States in the United States (Energy Information Agency, 2006). Anthracite of Pennsylvanian age occurs in synclinal basins in eastern Pennsylvania, but production is minimal. A simplified correlation chart was compiled from published and unpublished sources as a means of visualizing currently accepted stratigraphic relations between the rock formations, coal beds, coal zones, and key stratigraphic units in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. The thickness of each column is based on chronostratigraphic divisions (Lower, Middle, and Upper Pennsylvanian), not the thickness of strata. Researchers of Pennsylvanian strata in the Appalachian basin also use biostratigraphic markers and other relative and absolute geologic age associations between the rocks to better understand the spatial relations of the strata. Thus, the stratigraphic correlation data in this chart should be considered provisional and will be updated as coal-bearing rocks within the Appalachian coal regions continue to be evaluated.

  12. Oil and gas in the Ogaden Basin, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Du Toit, S.R.; Kurdy, S. [Alconsult International, Calgary, AB (Canada); Asfaw, S.H.; Gessesse, A.A. [Petroleum Operations Dept., Ministry of Mines and Energy, Addis Ababa (Ethiopia)

    1997-09-01

    To date, many of the 47 exploration and development wells drilled in the Ogaden Basin in Ethiopia have exhibited natural oil seeps and oil and gas shows. The Calub gas field and the Hilala oil field occurs in the central part of the 350,000 sq. km. basin. The various units within the basin consist of continental sediments, a regional organic-rich interval close to the Permo-Triassic boundary, organic-rich marine sediments and carbonates. The Ogaden Basin is dissected by several faults that are related to the Ethiopian Rift and may form a component of traps in the Calub-Hilala area.

  13. Progress and delivery of health care in Bhutan, the Land of the Thunder Dragon and Gross National Happiness.

    Science.gov (United States)

    Tobgay, Tashi; Dorji, Tandin; Pelzom, Dorji; Gibbons, Robert V

    2011-06-01

    The Himalayan Kingdom of Bhutan is rapidly changing, but it remains relatively isolated, and it tenaciously embraces its rich cultural heritage. Despite very limited resources, Bhutan is making a concerted effort to update its health care and deliver it to all of its citizens. Healthcare services are delivered through 31 hospitals, 178 basic health unit clinics and 654 outreach clinics that provide maternal and child health services in remote communities in the mountains. Physical access to primary health care is now well sustained for more than 90% of the population. Bhutan has made progress in key health indicators. In the past 50 years, life expectancy increased by 18 years and infant mortality dropped from 102.8 to 49.3 per 1000 live births between 1984 and 2008. Bhutan has a rich medical history. One of the ancient names for Bhutan was 'Land of Medicinal Herbs' because of the diverse medicinal plants it exported to neighbouring countries. In 1967, traditional medicine was included in the National Health System, and in 1971, formal training for Drungtshos (traditional doctors) and sMenpas (traditional compounders) began. In 1982, Bhutan established the Pharmaceutical and Research Unit, which manufactures, develops and researches traditional herbal medicines. Despite commendable achievements, considerable challenges lie ahead, but the advances of the past few decades bode well for the future. © 2011 Blackwell Publishing Ltd.

  14. Rifte Guaritas basin compartmentation in Camaqua

    International Nuclear Information System (INIS)

    Preissler, A; Rolim, S; Philipp, R.

    2010-01-01

    The study contributes to the knowledge of the tectonic evolution of the Guaritas rift basin in Camaqua. Were used aero magnetic geophysical data for modeling the geometry and the depth of the structures and geological units. The research was supported in processing and interpretation of Aster images (EOS-Terra), which were extracted from geophysical models and digital image

  15. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  16. Flow-specific trends in river-water quality resulting from the effects of the clean air act in three mesoscale, forested river basins in the northeastern United States through 2002

    Science.gov (United States)

    Murdoch, Peter S.; Shanley, J.B.

    2006-01-01

    Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments. Declining sulfate (SO2-4) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (SO2-4) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining SO2-4 concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2+ + Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO-3), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (???decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early

  17. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste-characterization of the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, K.A.; Langer, W.H.

    1989-01-01

    The Death Valley region, Nevada and California, in the Basin and Range province, is an area of about 80,200 sq km located in southern Nevada and southeastern California. Precambrian metamorphic and intrusive basement rocks are overlain by a thick section of Paleozoic clastic and evaporitic sedimentary rocks. Mesozoic and Cenozoic rocks include extrusive and intrusive rocks and clastic sedimentary rocks. Structural features within the Death Valley indicate a long and complex tectonic evolution from late Precambrian to the present. Potential repository host media in the region include granite and other coarse-grained plutonic rocks, ashflow tuff, basaltic and andesitic lava flows, and basin fill. The Death Valley region is composed largely of closed topographic basins that are apparently coincident with closed groundwater flow systems. In these systems, recharge occurs sparingly at higher altitudes by infiltration of precipitation or by infiltration of ephemeral runoff. Discharge occurs largely by spring flow and by evaporation and transpiration in the playas. Death Valley proper, for which the region was named, is the ultimate discharge area for a large, complex system of groundwater aquifers that occupy the northeastern part of the region. The deepest part of the system consists of carbonate aquifers that connect closed topographic basins at depth. The discharge from the system occurs in several intermediate areas that are geomorphically, stratigraphically, and structurally controlled. Ultimately, most groundwater flow terminates by discharge to Death Valley; groundwater is discharged to the Colorado River from a small part of the region

  19. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.

    1979-10-01

    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  20. Melo carboniferous basin

    International Nuclear Information System (INIS)

    Flossdarf, A.

    1988-01-01

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  1. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  2. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  3. Basin Assessment Spatial Planning Platform

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-26

    The tool is intended to facilitate hydropower development and water resource planning by improving synthesis and interpretation of disparate spatial datasets that are considered in development actions (e.g., hydrological characteristics, environmentally and culturally sensitive areas, existing or proposed water power resources, climate-informed forecasts). The tool enables this capability by providing a unique framework for assimilating, relating, summarizing, and visualizing disparate spatial data through the use of spatial aggregation techniques, relational geodatabase platforms, and an interactive web-based Geographic Information Systems (GIS). Data are aggregated and related based on shared intersections with a common spatial unit; in this case, industry-standard hydrologic drainage areas for the U.S. (National Hydrography Dataset) are used as the spatial unit to associate planning data. This process is performed using all available scalar delineations of drainage areas (i.e., region, sub-region, basin, sub-basin, watershed, sub-watershed, catchment) to create spatially hierarchical relationships among planning data and drainages. These entity-relationships are stored in a relational geodatabase that provides back-end structure to the web GIS and its widgets. The full technology stack was built using all open-source software in modern programming languages. Interactive widgets that function within the viewport are also compatible with all modern browsers.

  4. Quality of water and sediment in streams affected by historical mining, and quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    Science.gov (United States)

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of

  5. The Ogaden Basin, Ethiopia: an underexplored sedimentary basin

    Energy Technology Data Exchange (ETDEWEB)

    Teitz, H.H.

    1991-01-01

    A brief article examines the Ogaden Basin in Ethiopia in terms of basin origin, basin fill and the hydrocarbon exploration history and results. The natural gas find in pre-Jurassic sandstones, which appears to contain substantial reserves, justifies continuing investigations in this largely underexplored basin. (UK).

  6. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  7. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  8. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    Science.gov (United States)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  9. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    Science.gov (United States)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  10. Repository site definition in basalt: Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi 2 (5180 km 2 ) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process

  11. Repository site definition in basalt: Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  12. Superfund record of decision (EPA Region 4): Savannah River Site (USDOE), F-Area Retention Basin (281-3F), Aiken, SC, September 4, 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The F-Area Retention Basin (FRB) Operable Unit (OU) includes the retention basin (basin soils), the former process sewer line (pipeline sediment, and pipeline associated soils), and the groundwater associated with the unit. This decision document presents the selected remedial alternatives for the FRB OU located at the SRS south of Aiken, South Carolina

  13. Petroleum geology framework, southeast Bowser Basin, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Haggart, J.W. [Geological Survey of Canada, Vancouver, BC (Canada); Mahoney, J.B. [Wisconsin Univ., Eau Claire, WS (United States). Dept. of Geology

    2003-07-01

    There are significant coal resources in the northern regions of the Bowser basin in north-central British Columbia. However, the resource potential of the southern part of the basin has not been assessed, therefore the hydrocarbon potential is not known. Geological maps indicate several Mesozoic clastic and volcanic units across the southern part of the basin. Two stratigraphic intervals of the southern Bowser basin are considered to be potential source rocks within the Jurassic-Cretaceous strata. The fine-grained clastic rocks of the Bowser Lake Group contain significant amounts of carbonaceous material or organic matter. Well developed cleavage indicates that the rocks may be thermally over mature. This paper described potential reservoir rocks within the basin, along with their thermal maturation and conceptual play. 4 figs.

  14. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  15. BASINS Framework and Features

    Science.gov (United States)

    BASINS enables users to efficiently access nationwide environmental databases and local user-specified datasets, apply assessment and planning tools, and run a variety of proven nonpoint loading and water quality models within a single GIS format.

  16. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  17. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  18. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  19. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  20. Brushy Basin drilling project, Cedar Mountain, Emergy County, Utah

    International Nuclear Information System (INIS)

    Kiloh, K.D.; McNeil, M.; Vizcaino, H.

    1980-03-01

    A 12-hole drilling program was conducted on the northwestern flank of the San Rafael swell of eastern Utah to obtain subsurface geologic data to evaluate the uranium resource potential of the Brushy Basin Member of the Morrison Formation (Jurassic). In the Cedar Mountain-Castle Valley area, the Brushy Basin Member consists primarily of tuffaceous and carbonaceous mudstones. Known uranium mineralization is thin, spotty, very low grade, and occurs in small lenticular pods. Four of the 12 drill holes penetrated thin intervals of intermediate-grade uranium mineralization in the Brushy Basin. The study confirmed that the unit does not contain significant deposits of intermediate-grade uranium

  1. Western Gas Sands Project: stratigrapy of the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S. (comp.)

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  2. Groundwater quality in the Tahoe and Martis Basins, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.

  3. Chapter 48: Geology and petroleum potential of the Eurasia Basin

    Science.gov (United States)

    Moore, Thomas E.; Pitman, Janet K.

    2011-01-01

    The Eurasia Basin petroleum province comprises the younger, eastern half of the Arctic Ocean, including the Cenozoic Eurasia Basin and the outboard part of the continental margin of northern Europe. For the USGS petroleum assessment (CARA), it was divided into four assessment units (AUs): the Lena Prodelta AU, consisting of the deep-marine part of the Lena Delta; the Nansen Basin Margin AU, comprising the passive margin sequence of the Eurasian plate; and the Amundsen Basin and Nansen Basin AUs which encompass the abyssal plains north and south of the Gakkel Ridge spreading centre, respectively. The primary petroleum system thought to be present is sourced in c. 50–44 Ma (Early to Middle Eocene) condensed pelagic deposits that could be widespread in the province. Mean estimates of undiscovered, technically recoverable petroleum resources include <1 billion barrels of oil (BBO) and about 1.4 trillion cubic feet (TCF) of nonassociated gas in Lena Prodelta AU, and <0.4 BBO and 3.4 TCF nonassociated gas in the Nansen Basin Margin AU. The Nansen Basin and Amundsen Basin AUs were not quantitatively assessed because they have less than 10% probability of containing at least one accumulation of 50 MMBOE (million barrels of oil equivalent).

  4. Permian Basin location recommendation report

    International Nuclear Information System (INIS)

    1983-09-01

    Candidate study areas are screened from the Palo Duro and Dalhart Basin areas using data obtained from studies to date and criteria and specifications that consider: rock geometry; rock characteristics; human intrusion potential; surface characteristics; and environmental and socioeconomic conditions. Two preferred locations are recommended from among these areas for additional characterization to identify potential National Waste Terminal Storage (NWTS) salt repository sites. One location, in northeastern Deaf Smith County and southeastern Oldham County, is underlain by two salt units that meet the adopted screening specifications. The other location, in northcentral Swisher County, is underlain by one salt unit that meets the adopted screening specifications. Both locations have several favorable features, relative to surrounding areas, and no obviously undesirable characteristics. Both lie wholly on the Southern High Plains surface, are in relatively sparsely populated areas, contain no unique land use conflicts, and comprise large enough geographic areas to provide flexibility in site selection. Data gathered to date indicate that these locations contain salt units sufficient in thickness and in depth for the safe construction and operation of the underground facilities under consideration. 93 references, 34 figures, 6 tables

  5. Forearc Basin Stratigraphy and Interactions With Accretionary Wedge Growth According to the Critical Taper Concept

    Science.gov (United States)

    Noda, Atsushi

    2018-03-01

    Forearc basins are important constituents of sediment traps along subduction zones; the basin stratigraphy records various events that the basin experienced. Although the linkage between basin formation and accretionary wedge growth suggests that mass balance exerts a key control on their evolution, the interaction processes between basin and basement remain poorly understood. This study performed 2-D numerical simulations in which basin stratigraphy was controlled by changes in sediment fluxes with accretionary wedge growth according to the critical taper concept. The resultant stratigraphy depended on the degree of filling (i.e., whether the basin was underfilled or overfilled) and the volume balance between the sediment flux supplied to the basin from the hinterland and the accommodation space in the basin. The trenchward progradation of deposition with onlapping contacts on the trenchside basin floor occurred during the underfilled phase, which formed a wedge-shaped sedimentary unit. In contrast, the landward migration of the depocenter, with the tilting of strata, was characteristic for the overfilled phase. Condensed sections marked stratigraphic boundaries, indicating when sediment supply or accommodation space was limited. The accommodation-limited intervals could have formed during the end of wedge uplift or when the taper angle decreased and possibly associated with the development of submarine canyons as conduits for bypassing sediments from the hinterland. Variations in sediment fluxes and their balance exerted a strong influence on the stratigraphic patterns in forearc basins. Assessing basin stratigraphy could be a key to evaluating how subduction zones evolve through their interactions with changing surface processes.

  6. Structural Framework and Architecture of the Paleoproterozoic Bryah and Padbury Basins from Integrated Potential Field and Geological Datasets: Towards an Understanding of the Basin Evolution

    Science.gov (United States)

    Nigro R A Ramos, L.; Aitken, A.; Occhipinti, S.; Lindsay, M.

    2017-12-01

    The Bryah and Padbury Basins were developed along the northern margin of the Yilgarn Craton, in the southern portion of the Capricorn Orogen, which represents a Proterozoic tectonic zone that bounds the Yilgarn and Pilbara Cratons in Western Australia. These basins have been previously interpreted as developing in a rift, back-arc, and retro-arc foreland basins. Recent studies suggest that the Bryah Basin was deposited in a rift setting, while the overlying Padbury Basin evolved in a pro-foreland basin during the collision of the Yilgarn Craton and the Pilboyne block (formed by the Pilbara Craton and the Glenburgh Terrane), occurring in the Glenburgh Orogeny (2005-1960 Ma). This study focuses on characterizing the architecture and structural framework of the Bryah and Padbury Basins through analysis of geophysical and geological datasets, in order to better understand the different stages of the basins evolution. Gravity and magnetic data were used to define the main tectonic units and lithological boundaries, and to delineate major discontinuities in the upper and lower crust, as well as anomalies through a combination of map view interpretation and forward modelling. Geological mapping and drill core observations were linked with the geophysical interpretations. Fourteen magnetic domains are distinguished within the basins, while four main domains based on the Bouguer Anomaly are recognized. The highest gravity amplitude is related with an anomaly trending EW/NE-SW, which is coincident with the voluminous mafic rocks of the Bryah Basin, and may indicate the presence of an approximately 5km thick package of higher density mafic rocks. Magnetic depth estimations also indicate deep magnetic sources up to approximately 4,45km. These results can help to elucidate processes that occurred during the precursor rift of the early stages of the Bryah Basin, add information in relation to the basement control on sedimentation, allow the characterization of the varying

  7. Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1979-01-01

    The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement of the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers

  8. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  9. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  10. Feast to famine: Sediment supply control on Laramide basin fill

    Science.gov (United States)

    Carroll, Alan R.; Chetel, Lauren M.; Elliot Smith, M.

    2006-03-01

    Erosion of Laramide-style uplifts in the western United States exerted an important first-order influence on Paleogene sedimentation by controlling sediment supply rates to adjacent closed basins. During the latest Cretaceous through Paleocene, these uplifts exposed thick intervals of mud-rich Upper Cretaceous foreland basin fill, which was quickly eroded and redeposited. Cretaceous sedimentary lithologies dominate Paleocene conglomerate clast compositions, and the volume of eroded foreland basin strata is approximately twice the volume of preserved Paleocene basin fill. As a result of this sediment oversupply, clastic alluvial and paludal facies dominate Paleocene strata, and are associated with relatively shallow and ephemeral freshwater lake facies. In contrast, large, long-lived, carbonate-producing lakes occupied several of the basins during the Eocene. Basement-derived clasts (granite, quartzite, and other metamorphic rocks) simultaneously became abundant in lower Eocene conglomerate. We propose that Eocene lakes developed primarily due to exposure of erosion-resistant lithologies within cores of Laramide uplifts. The resultant decrease in erosion rate starved adjacent basins of sediment, allowing the widespread and prolonged deposition of organic-rich lacustrine mudstone. These observations suggest that geomorphic evolution of the surrounding landscape should be considered as a potentially important influence on sedimentation in many other interior basins, in addition to more conventionally interpreted tectonic and climatic controls.

  11. Water reform in the Murray-Darling Basin

    Science.gov (United States)

    Connell, Daniel; Grafton, R. Quentin

    2011-12-01

    In Australia's Murray-Darling Basin the Australian and state governments are attempting to introduce a system of water management that will halt ongoing decline in environmental conditions and resource security and provide a robust foundation for managing climate change. This parallels similar efforts being undertaken in regions such as southern Africa, the southern United States, and Spain. Central to the project is the Australian government's Water Act 2007, which requires the preparation of a comprehensive basin plan expected to be finalized in 2011. This paper places recent and expected developments occurring as part of this process in their historical context and examines factors that could affect implementation. Significant challenges to the success of the basin plan include human resource constraints, legislative tensions within the Australian federal system, difficulties in coordinating the network of water-related agencies in the six jurisdictions with responsibilities in the Murray-Darling Basin, and social, economic, and environmental limitations that restrict policy implementation.

  12. Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas

    NARCIS (Netherlands)

    Geluk, M.C.

    2005-01-01

    This thesis addresses different aspects of the geological development during the Permian and Triassic (300 to 200 Ma) of the Netherlands and surrounding areas. The study area encompasses the Southern Permian Basin (SPB), a large intracratonic basin stretched out from the United Kingdom in the west

  13. Estimation of the Heat Flow Variation in the Chad Basin Nigeria ...

    African Journals Online (AJOL)

    Wireline logs from 14 oil wells from the Nigerian sector of the Chad Basin were analyzed and interpreted to estimate the heat flow trend in the basin. Geothermal gradients were computed from corrected bottom hole temperatures while the bulk effective thermal conductivity for the different stratigraphic units encountered in ...

  14. Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales

    Science.gov (United States)

    Blake Meneken Engelhardt

    2009-01-01

    Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...

  15. East Asia basin Analysis Project

    International Nuclear Information System (INIS)

    Terman, M.J.

    1986-01-01

    The United Nations-related Committee for Coordination of Joint Prospecting for Mineral Resources in Asian Offshore Areas (CCOP), in cooperation with the International Union of Geological Sciences and Circum-Pacific Council, is implementing the East Asia Basin Analysis Project. National and regional organizations, principally members of the ASEAN Council of Petroleum, are compiling maps at a scale of 1:2 million and stratigraphic cross sections of basins, with particular initial emphasis on defining and assessing oil and gas plays and with later analytical focus on other sedimentary minerals (e.g., coal, phosphate, evaporites, and uranium). Completion is anticipated in 1988. Two major elements of the project are being contributed from other agencies. (1) Base maps. - The US Geological Survey (USGS) has partly compiled eight sheets covering east Asia that show bathymetry, shorelines, and drainage systems. One sheet also presents topography and selected cultural features. All sheets are scheduled to be completed in 1987. (2) Geotectonic maps. - The Working Group on Studies of East Asian Tectonics and Resources (SEATAR) is now completing 10 transect studies with crustal profiles and strip maps at a scale of 1:1 million. One map for each transect shows a plate tectonic interpretation. Transect coordinators or others will be encouraged to extrapolate between the strips and complete the geotectonic interpretation (on USGS bases) in 1987. The IGCP Project 220 is also compiling on (USGS bases) the tin and tungsten granites of east Asia, emphasizing geochemical data needed to identify predictive models. Other mapping will probably follow mineral-deposit modeling workshops on ophiolotic chromite and regional symposia on oceanic massive sulfide and subvolcanic gold and base metals. Completion may be possible by 1989

  16. Contribution to the stratigraphy of the onshore Paraiba Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rossetti, Dilce F.; Valeriano, Marcio M., E-mail: rossetti@dsr.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Divisao de Sensoriamento Remoto; Goes, Ana M.; Brito-Neves, Benjamim B. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Geociencias; Bezerra, Francisco H.R.; Ochoa, Felipe L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias Exatas e da Terra. Departamento de Geologia

    2012-06-15

    Several publications have contributed to improve the stratigraphy of the Paraiba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono- sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraiba Basin. Except for a few outcrops of carbonatic-rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraiba Basin. (author)

  17. Contribution to the stratigraphy of the onshore Paraiba Basin, Brazil

    International Nuclear Information System (INIS)

    Rossetti, Dilce F.; Valeriano, Marcio M.; Goes, Ana M.; Brito-Neves, Benjamim B.; Bezerra, Francisco H.R.; Ochoa, Felipe L.

    2012-01-01

    Several publications have contributed to improve the stratigraphy of the Paraiba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono- sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraiba Basin. Except for a few outcrops of carbonatic-rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraiba Basin. (author)

  18. Reconnaissance coal study in the Susitna basin, 2014

    Science.gov (United States)

    David L. LePain,; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth T.; Tsigonis, Rebekah

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) conducted fieldwork during the summer of 2014 in the Susitna basin as part of an ongoing evaluation of the hydrocarbon potential of frontier basins, particularly those near the Railbelt region (for example, Decker and others, 2013; Gillis and others, 2013). Topical studies associated with this recent work include sedimentary facies analysis (LePain and others, 2015) and structural geology investigations (Gillis and others, 2015). The Susitna basin contains coal-bearing Paleogene and Neogene strata correlative with formations that host oil and gas in Cook Inlet basin to its south. Isotopic signatures of natural gas reservoired in the Miocene/Pliocene Sterling and Miocene Beluga Formations suggest a biogenic origin for Cook Inlet gas (Claypool and others, 1980). To assess the biogenic gas potential of the Susitna basin, it is important to obtain information from its coal-bearing units.Characteristics of coal, such as maturity/rank and cleat development are key parameters influencing viability of a biogenic gas system (Laubach and others, 1998). In an early study of the Susitna basin (Beluga–Yentna region), Barnes (1966) identified, analyzed, and recognized potentially valuable subbituminous coal resources at Fairview Mountain, Canyon Creek, and Johnson Creek. Merritt (1990), in a sedimentological study to evaluate surface coal mining potential of the Tertiary rocks of the Susitna basin (Susitna lowland), concluded that the basin contained several billion tons of mineable reserves. This preliminary report offers a brief summary of new information on coals in the Susitna Basin acquired during associated stratigraphic studies (see LePain and others, 2015). 

  19. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  20. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  1. Evolution of Xihulitu basin and its control to uranium ore-formation

    International Nuclear Information System (INIS)

    Guo Qingyin; Li Ziying; Dong Wenming

    2003-01-01

    There is a close relationship between basin filling succession and evolution of the basin. Characteristics of basin evolution can be studied by analyzing the basin filling succession. Two major periods are recognized according to the filling succession and subsequent alteration of the Xihulitu Basin. Evolutionary characteristics of each stage of the basin formation and alteration have been discussed in details. The types and special distribution of uranium metallization are controlled by the scale, connection degree and distribution of sandstone units and impermeable mudstone beds. The environment of uranium ore-formation became favorable as the faults modified the hydrodynamic condition. The basin had been uplifted for a long time after it was filled. Intergranular pores are not destroyed due to the weak mechanical compaction, which is beneficial to groundwater penetrating. Montmorillonitization and zeolitization in some sandstone units are strong because of the high content of volcanic fragments. The major uranium metallization is the phreatic oxidation type. The northern zone of the second sub-basin in the central section of the basin is regarded as the first perspective target for subsequent exploration. (authors)

  2. Asian Pacific Basin: Ushering in the age of global technology

    International Nuclear Information System (INIS)

    Stinson, R.C.

    1987-01-01

    The one-way transfer of nuclear technology from the United States to the Asian countries now no longer applies. Technology transfer in the Asian Pacific Basin is now flowing both ways. This reversing of the flow of technology is discussed and the marketing of new technologies in the USA is considered. (U.K.)

  3. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  4. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    Science.gov (United States)

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these

  5. Characterization of hydraulic conductivity of the alluvium and basin fill, Pinal Creek Basin near Globe, Arizona

    Science.gov (United States)

    Angeroth, Cory E.

    2002-01-01

    Acidic waters containing elevated concentrations of dissolved metals have contaminated the regional aquifer in the Pinal Creek Basin, which is in Gila County, Arizona, about 100 kilometers east of Phoenix. The aquifer is made up of two geologic units: unconsolidated stream alluvium and consolidated basin fill. To better understand how contaminants are transported through these units, a better understanding of the distribution of hydraulic conductivity and processes that affect it within the aquifer is needed. Slug tests were done in September 1997 and October 1998 on 9 wells finished in the basin fill and 14 wells finished in the stream alluvium. Data from the tests were analyzed by using either the Bouwer and Rice (1976) method, or by using an extension to the method developed by Springer and Gellhar (1991). Both methods are applicable for unconfined aquifers and partially penetrating wells. The results of the analyses show wide variability within and between the two geologic units. Hydraulic conductivity estimates ranged from 0.5 to 250 meters per day for the basin fill and from 3 to 200 meters per day for the stream alluvium. Results of the slug tests also show a correlation coefficient of 0.83 between the hydraulic conductivity and the pH of the ground water. The areas of highest hydraulic conductivity coincide with the areas of lowest pH, and the areas of lowest hydraulic conductivity coincide with the areas of highest pH, suggesting that the acidic water is increasing the hydraulic conductivity of the aquifer by dissolution of carbonate minerals.

  6. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  7. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  8. DROUGHT ANALYSIS IN OZANA DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Marina IOSUB

    2016-03-01

    Full Text Available Ozana drainage basin is located at the contact between large landscape units (the Carpathian mountains, the Subcarpathian area, and the plateau region. This placement determines the existence of a complex climate in the region. Despite being small in size, and its extension on an W-E direction, differences can be observed, especially of the way extreme phenomena take place. In the case of droughts, it had different intensities in the mountains, compared to the plateau region. In order to emphasize the different distribution on the territory, several climatic indexes have been calculated, regarding dryness (De Martonne Index, Hellman criterion. The analysis of these indexes at the same monitoring stations (Pluton, Leghin and Dumbrava emphasizes the growth of the drought periods in the plateau region and the fact that they shorten in the mountain area. In the mountainous area, where the land is very well forested, the values of the De Martonne index can reach 45.4, and in the plateau regions, where the forest associations are sparse, the values dropped to 30.6. According to the Hellman criterion, several differences can be emphasized, at basin level. In the mountainous region, there is only one month that, at a multi-annual level, has stood up among the rest, as being excessively droughty, while in the median /central region of the basin, three months have been identified, that have such potential, as well as five months, at Dumbrava.

  9. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  10. Desert basins of the Southwest

    Science.gov (United States)

    Leake, Stanley A.; Konieczki, Alice D.; Rees, Julie A.H.

    2000-01-01

    Ground water is among the Nation’s most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from overuse and contamination. Because ground-water systems typically respond slowly to human actions, a long-term perspective is needed to manage this valuable resource. This publication is one in a series of fact sheets that describe ground-water-resource issues across the United States, as well as some of the activities of the U.S. Geological Survey that provide information to help others develop, manage, and protect ground-water resources in a sustainable manner. Ground-water resources in the Southwest are among the most overused in the United States. Natural recharge to aquifers is low and pumping in many areas has resulted in lowering of water tables. The consequences of large-scale removal of water from storage are becoming increasingly evident. These consequences include land subsidence; loss of springs, streams, wetlands and associated habitat; and degradation of water quality. Water managers are now seeking better ways of managing ground-water resources while looking for supplemental sources of water. This fact sheet reviews basic information on ground water in the desert basins of the Southwest. Also described are some activities of the U.S. Geological Survey (USGS) that are providing scientific information for sustainable management of ground-water resources in the Southwest. Ground-water sustainability is defined as developing and using ground water in a way that can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences.

  11. Seismic stratigraphy and regional unconformity analysis of Chukchi Sea Basins

    Science.gov (United States)

    Agasheva, Mariia; Karpov, Yury; Stoupakova, Antonina; Suslova, Anna

    2017-04-01

    ) progressed from south to north. It indicates the source area was Wrangel Herald arch. Horizon LCU lies on chaotic reflectance sequence of basement in South Chukchi profiles. It is matches to the geological structure in Hope basin Alaska. Cretaceous and Paleogene strata divided by Mid-Brooks unconformity that accompanied with intensive uplift and erosion. Paleogene sequence is characterized by high thickness in North Chukchi basin in comparison with Hanna Trough and North Slope basins. Prograding Paleogene thick clinoform units of various geometries, angular and trajectories are observed in North Chukchi basin. Thick clinoform sequences could be formed as a result of significant subsidence followed by rapid sedimentary influx. This model assumes that North Chukchi basin could be more affected by Cenozoic tectonics of Eurasia Basin rifting. Complementary studies will be connected with careful clinoform types mapping in combination with sequence stratigraphy analyses to identify the depositional environment, source rocks and reservoirs distribution. [1] Moore, T.E., Wallace, W.K., Bird, K.J., Karl, S.M., Mull, C.G. & Dillon, J.T. (1994) Geology of northern Alaska. In:The Geology of Alaska (Ed. by G. Plafker & H.C. Berg), Geol. Soc. Am., Geol.North America, G-1, 49-140.

  12. Basin-Scale Opportunity Assessment Initiative Background Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-10-01

    As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended

  13. Atlantic Basin refining profitability

    International Nuclear Information System (INIS)

    Jones, R.J.

    1998-01-01

    A review of the profitability margins of oil refining in the Atlantic Basin was presented. Petroleum refiners face the continuous challenge of balancing supply with demand. It would appear that the profitability margins in the Atlantic Basin will increase significantly in the near future because of shrinking supply surpluses. Refinery capacity utilization has reached higher levels than ever before. The American Petroleum Institute reported that in August 1997, U.S. refineries used 99 per cent of their capacity for several weeks in a row. U.S. gasoline inventories have also declined as the industry has focused on reducing capital costs. This is further evidence that supply and demand are tightly balanced. Some of the reasons for tightening supplies were reviewed. It was predicted that U.S. gasoline demand will continue to grow in the near future. Gasoline demand has not declined as expected because new vehicles are not any more fuel efficient today than they were a decade ago. Although federally-mandated fuel efficiency standards were designed to lower gasoline consumption, they may actually have prevented consumption from falling. Atlantic margins were predicted to continue moving up because of the supply and demand evidence: high capacity utilization rates, low operating inventories, limited capacity addition resulting from lower capital spending, continued U.S. gasoline demand growth, and steady total oil demand growth. 11 figs

  14. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  15. A basin on an unstable ground: Correlation of the Middle Archaean Moodies Basin, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ohnemueller, Frank; Heubeck, Christoph; Kirstein, Jens; Gamper, Antonia

    2010-05-01

    The 3.22 Ga-old Moodies Group, representing the uppermost part of the Barberton Supergroup of the Barberton Greenstone Belt (BGB), is the oldest well-exposed, relatively unmetamorphosed, quartz-rich sedimentary unit on Earth. Moodies facies (north of the Inyoka Fault) were thought to be largely of alluvial, fluvial, deltaic or shallow-marine origin (Anhaeusser, 1976; Eriksson, 1980; Heubeck and Lowe, 1994) and in its upper part syndeformational. However, units can only locally be correlated, and the understanding of the interplay between Moodies sedimentation and deformation is thus limited. We mapped and measured Moodies units in the northern BGB. They partly consist of extensive turbiditic deepwater deposits, including graded bedding, flame structures, and slumped beds, interbedded with jaspilites. These contrast with shallow-water environments, south-facing progressive unconformities and overlying alluvial-fan conglomerates along the northern margin of the Saddleback Syncline further south. The palaeogeographic setting in which late BGB deformation was initiated therefore appears complex and cannot be readily explained by a simple southward-directed shortening event. In order to constrain Moodies basin setting before and during late-Moodies basin collapse, we correlated ~15 measured sections in the northern and central BGB. Most units below the Moodies Lava (MdL, ca. 3230.6+-6 Ma) can be correlated throughout although facies variations are apparent. Above the Moodies Lava, coarse-grained units can only be correlated through the Eureka Syncline and the Moodies Hills Block but not with the Saddleback Syncline. Fine-grained and jaspilitic units can be correlated throughout the northern BGB. Moodies below-wavebase deposition occurred largely north of the Saddleback Fault. The observations are consistent with a pronounced basin compartmentalization event following the eruption of the MdL which appeared to have blanketed most of the Moodies basin(s) in middle Moodies

  16. Identification of igneous rocks in a superimposed basin through integrated interpretation dominantly based on magnetic data

    Science.gov (United States)

    LI, S.

    2017-12-01

    Identification of igneous rocks in the basin environment is of great significance to the exploration for hydrocarbon reservoirs hosted in igneous rocks. Magnetic methods are often used to alleviate the difficulties faced by seismic imaging in basins with thick cover and complicated superimposed structures. We present a case study on identification of igneous rocks in a superimposed basin through integrated interpretation based on magnetic and other geophysical data sets. The study area is located in the deepest depression with sedimentary cover of 14,000 m in Huanghua basin, which is a Cenozoic basin superimposed on a residual pre-Cenozoic basin above the North China craton. Cenozoic and Mesozoic igneous rocks that are dominantly intermediate-basic volcanic and intrusive rocks are widespread at depth in the basin. Drilling and seismic data reveal some volcanic units and intrusive rocks in Cenozoic stratum at depths of about 4,000 m. The question remains to identify the lateral extent of igneous rocks in large depth and adjacent areas. In order to tackle the difficulties for interpretation of magnetic data arisen from weak magnetic anomaly and remanent magnetization of igneous rocks buried deep in the superimposed basin, we use the preferential continuation approach to extract the anomaly and magnetic amplitude inversion to image the 3D magnetic units. The resultant distribution of effective susceptibility not only correlates well with the locations of Cenozoic igneous rocks known previously through drilling and seismic imaging, but also identifies the larger scale distribution of Mesozoic igneous rocks at greater depth in the west of the basin. The integrated interpretation results dominantly based on magnetic data shows that the above strategy is effective for identification of igneous rocks deep buried in the superimposed basin. Keywords: Identification of igneous rocks; Superimposed basin; Magnetic data

  17. Hydrogeological investigation of Melendiz basin (Aksaray)

    International Nuclear Information System (INIS)

    Dogdu, M.S.

    1995-01-01

    Within the scope of this M.Sc, study entitled Hydrogeologic Investigation of Melendiz basin, the geological, hydrological, hydrogeological and hydrochemical features of a 600 km2 area have been studied and, 1/100.000 scale geological and hydrogeological maps have been prepared. Tetriary-Guaternary aged young volkanic rocks occupy nearly 80% (480 km2 ) of the area. The major aquifers are alluvium and andesite and basalt which are extensively fractured and jointed. Aquitard units comprise of ignimbirite, some of the andesites-basalts and formations that composes of limestone-sandstone-marl intercalations. The youngest geologic unit of the area, Hasandag volcanic ash formation, and also the tuffs have been indentified as aquiclude units. Mean areal precipitation, potential and real evapotranspiration rates and mean annual streamflow have been calculated on the basis of available data and, a hydrologic budget of the basin has been established. Hydrogeologic units have been classified as aquifer, aquitard and aquiclude with respect to their geohydrologic properties, field observations and the results of the pumping tests. On the other hand, hydrodynamic mechanism of the groundwater flow reaching major cold and thermal water discharges have also been explained. A hydrogeologic budget for the area covering Ciftlik township and its vicinity where extensively joint and fractured andesite-basalt and alluvial aquifers outcrop has been established. Major water points as thermal and cold springs, wells and streams have been sampled for major ion analysis. Beyond this, some water points have also been sampled for organic, trace,metal ald environmental isotropic analyses. Environmental isotope data of thermal springs point out a long-deep groundwater flow path

  18. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    Science.gov (United States)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  19. Tectonic characteristics and structural styles of a continental rifted basin: Revelation from deep seismic reflection profiles

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-09-01

    Full Text Available The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional (3-D seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone (CTZ which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized: (i the western multi-stage faults slope; (ii the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan sub-basin and other similar rifted basins of the Beibuwan Basin in South China Sea.

  20. Phase I Focused Corrective Measures Study/Feasibility Study for the L-Area Oil and Chemical Basin (904-83G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-02-01

    This report presents the completed Resource Conservation and Recovery Act (RCRA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Focused Corrective Measures Study/Feasibility Study (CMS/FS) for the L-Area Oil and Chemical Basin (LAOCB)/L-Area Acid Caustic Basin (9LAACB) Solid Waste Management Unit/Operable Unit (SWMU/OU) at the Savannah River Site (SRS).

  1. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    Science.gov (United States)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  2. K-Basins design guidelines

    International Nuclear Information System (INIS)

    Roe, N.R.; Mills, W.C.

    1995-06-01

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines

  3. Misrepresenting the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Clemens Messerschmid

    2015-06-01

    Full Text Available This article advances a critique of the UN Economic and Social Commission for West Asia’s (ESCWA’s representation of the Jordan River Basin, as contained in its recently published Inventory of Shared Water Resources in Western Asia. We argue that ESCWA’s representation of the Jordan Basin is marked by serious technical errors and a systematic bias in favour of one riparian, Israel, and against the Jordan River’s four Arab riparians. We demonstrate this in relation to ESCWA’s account of the political geography of the Jordan River Basin, which foregrounds Israel and its perspectives and narratives; in relation to hydrology, where Israel’s contribution to the basin is overstated, whilst that of Arab riparians is understated; and in relation to development and abstraction, where Israel’s transformation and use of the basin are underplayed, while Arab impacts are exaggerated. Taken together, this bundle of misrepresentations conveys the impression that it is Israel which is the main contributor to the Jordan River Basin, Arab riparians its chief exploiters. This impression is, we argue, not just false but also surprising, given that the Inventory is in the name of an organisation of Arab states. The evidence discussed here provides a striking illustration of how hegemonic hydro-political narratives are reproduced, including by actors other than basin hegemons themselves.

  4. Slip Potential of Faults in the Fort Worth Basin

    Science.gov (United States)

    Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.

    2017-12-01

    Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.

  5. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  6. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  7. Marketing San Juan Basin gas

    International Nuclear Information System (INIS)

    Posner, D.M.

    1988-01-01

    Marketing natural gas produced in the San Juan Basin of New Mexico and Colorado principally involves four gas pipeline companies with significant facilities in the basin. The system capacity, transportation rates, regulatory status, and market access of each of these companies is evaluated. Because of excess gas supplies available to these pipeline companies, producers can expect improved take levels and prices by selling gas directly to end users and utilities as opposed to selling gas to the pipelines for system supply. The complexities of transporting gas today suggest that the services of an independent gas marketing company may be beneficial to smaller producers with gas supplies in the San Juan Basin

  8. Western Canada Sedimentary Basin competitiveness

    International Nuclear Information System (INIS)

    Millar, R.H.G.

    1996-01-01

    Recent dramatic expansion of the natural gas industry in the Western Canada Sedimentary Basin provided ample proof of the potential of this area for further development of natural gas supply. However, the inherent competitive advantages provided by the Western Canada Sedimentary Basin were said to have been offset by low netback prices resulting in poor producer economics when competitiveness is measured by availability of opportunities to find and develop gas supply at costs low enough to ensure attractive returns. Technology was identified as one of the key elements in improving basin competitiveness, but the greatest potential lies in reduced transportation costs and increased access to North American market centres. 8 figs

  9. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  10. Water resources of the Cook Inlet Basin, Alaska

    Science.gov (United States)

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  11. Groundwater quality in the Coastal Los Angeles Basin, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    The Coastal Los Angeles Basin study unit is approximately 860 square miles and consists of the Santa Monica, Hollywood, West Coast, Central, and Orange County Coastal Plain groundwater basins (California Department of Water Resources, 2003). The basins are bounded in part by faults, including the Newport-Inglewood fault zone, and are filled with Holocene-, Pleistocene-, and Pliocene-age marine and alluvial sediments. The Central Basin and Orange County Coastal Plain are divided into a forebay zone on the northeast and a pressure zone in the center and southwest. The forebays consist of unconsolidated coarser sediment, and the pressure zones are characterized by lenses of coarser sediment divided into confined to semi-confined aquifers by lenses of finer sediments. The primary aquifer system in the study unit is defined as those parts of the aquifer system corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database of public-supply wells. The majority of public-supply wells are drilled to depths of 510 to 1,145 feet, consist of solid casing from the land surface to a depth of about 300 to 510 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer systems.

  12. Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado

    Science.gov (United States)

    Ackerman, D.J.; Rush, F.E.

    1984-01-01

    The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)

  13. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    Science.gov (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  14. Allegheny County Basin Outlines Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This basins dataset was created to initiate regional watershed approaches with respect to sewer rehabilitation. If viewing this description on the Western...

  15. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations

  16. Controls on evolution of gas-hydrate system in the Krishna-Godavari basin, offshore India

    Digital Repository Service at National Institute of Oceanography (India)

    Badesab, F.K.; Dewangan, P.; Usapkar, A.; Kocherla, M.; Peketi, A.; Mohite, K.; Sangode, S.J.; Deenadayalan, K.

    -hydrate system in the Krishna-Godavari (K-G) basin. Four distinct sedimentary units have been identified, based on the sediment magnetic signatures. An anomalous zone of enhanced magnetic susceptibility (Unit III: 51.9–160.4 mbsf) coinciding with the gas hydrate...

  17. Advancements in understanding the aeromagnetic expressions of basin-margin faults—An example from San Luis Basin, Colorado

    Science.gov (United States)

    Grauch, V. J.; Bedrosian, Paul A.; Drenth, Benjamin J.

    2013-01-01

    Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets. Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets.

  18. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Bayo, A.

    2002-01-01

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  19. Neotectonic Studies of the Lake Ohrid Basin (FYROM/Albania)

    Science.gov (United States)

    Nadine, H.; Liermann, A.; Glasmacher, U. A.; Reicherter, K. R.

    2010-12-01

    active regions, where erosion cannot outpace the fault slip and are in general getting younger towards the center of the basin. Other characteristics are well preserved wineglass-shaped valleys and triangular facets. In contrast, the plains that stretch along the shore north and south of the lake are dominated by clastic input related to climate variations and uplift/erosion. Apatite fission track analysis shows a range of the apparent ages from 56.5±3.1 to 10.5±0.9 Ma, with a spatial distribution that gives evidence for the activation of separate blocks with differing exhumation and rock uplift history. Fission-track ages from molasses and flysch sediments of the basin fillings show distinctly younger ages than those from basement units. Generally, the Prespa Basin, which is located east of Ohrid Basin, reveals A-FT-ages around 10 Ma close to normal faults, whereas modelling results of the Ohrid Basin suggest a rapid uplift initiated around 1.4 Ma associated with uplift rates on the order of 1 mm/a. Therefore, we assume a westward migration of the extensional basin formation, as the initiation of the Prespa Basin can be placed well before the formation of the Ohrid Basin.

  20. Lithofacies palaeogeography of the Carboniferous and Permian in the Qinshui Basin, Shanxi Province, China

    Directory of Open Access Journals (Sweden)

    Long-Yi Shao

    2015-10-01

    The Xiashihezi, Shangshihezi, and Shiqianfeng Formations consist mainly of red mudstones with thick-interbedded sandstones. During the deposition of these formations, most areas of the basin were occupied by a fluvial channel, resulting in palaeogeographic units that include fluvial channel zones and flood basins. The fluvial channel deposits consist mainly of relatively-thick sandstones, which could have potential for exploration of tight sandstone gas.

  1. Heat flow in Indian Gondwana basins and heat production of their basement rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.V.; Rao, R.U.M.

    1983-01-01

    Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins. Heat-flow values from all of the Damodar valley basins are within the narrow range of 69-79 mW/m exp(2). The value from the Sonhat basin (107 mW/m exp(2)) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned. (5 figs., 14 refs., 4 tables).

  2. Heat flow in Indian Gondwana basins and heat production of their basement rocks

    Science.gov (United States)

    Rao, G. V.; Rao, R. U. M.

    1983-01-01

    Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins. Heat-flow values from all of the Damodar valley basins are within the narrow range of 69-79 mW/m 2. The value from the Sonhat basin (107 mW/m 2) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned.

  3. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    International Nuclear Information System (INIS)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area

  4. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  5. Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

    Science.gov (United States)

    Haefner, Ralph J.; Simonson, Laura A.

    2010-01-01

    The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute

  6. Evidence for an intra-Oligocene compressive event in the Marseille-Aubagne basins (SE France)

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, M.; Nury, D.; Arihac, P.; Gartner, A.; Linnemann, U.; Pantaine, L.

    2016-10-01

    An Oligocene tectonic event has been suspected as the origin of thrusts and folds in several Oligocene troughs and basins of Provence, including the Marseille-Aubagne basins. Deformations are generally assumed to be to a post Oligocene extensional event. The Marseille-Aubagne basins are geographically and stratigraphically separated into three basins (Jarret, Prado and Aubagne) with each of them exhibiting their own sedimentary succession. However, each of the successions includes two main units: - The lower unit which includes several formations attributed to the Rupelian age. All of these sediments are strongly or slightly deformed depending on their location with respect to the main faults. - The upper unit which includes formations of mainly Chattian age. They are undeformed or slightly deformed. Geological sections across the southern Prado basin show a succession of anticlines and synclines. Additionally the thrusting of the Carpiagne massif over the Prado basin has been evidenced since 1952. These deformations are here related to a compressional event According to palaeontological data, the latest deformed strata are ascribed to the Late Rupelian, whereas the earliest undeformed strata are ascribed to the Latest Rupelian. This is in accordance with age determinations on detrital zircons extracted from the latest deformed sandstone, and from the youngest age of detrital zircons from the undeformed sandstone. Thus, the stratigraphic limit between the deformed and undeformed formations should be set around the Rupelian / Chattian limit (28.1 Ma) according to the latest chronostratigraphic chart. Finally, we discuss correlations with similar events occurring around the Mediterranean area. (Author)

  7. Treatment of spent nuclear fuel L-basin sludge

    International Nuclear Information System (INIS)

    Westover, B.L.; Oji, L.N.; Martin, H.L.; Nichols, D.M.

    1997-01-01

    Each production reactor at the DOE Savannah River Site (SRS) has a disassembly basin whose primary purpose is to cool irradiated production fuel and target. The disassembly basins also provide a shielded environment for personnel. Material has historically resided in the basins for 6 to 12 months. Increases in basin storage time have occurred, and have caused the buildup of a sludge layer on the basin floors to be greater than historical levels. The sludge is composed primarily of inorganic oxide and hydroxide corrosion products. The sludge layer has increased the turbidity and conductivity of the basin water, contributed to fuel corrosion, and has impacted fuel handling operations. Initial characterization of the sludge indicates that it is a low-level radioactive aqueous waste. This evaluation looked at methods to separate the sludge into its liquid and solid phases. The experimental data obtained during this evaluation clearly shows that a filtration-based approach to dewatering using an Oberlin pressure filtration unit at SRS is possible. This research task was to identify and optimize filtration and settling parameters pursuant sludge processing. The research specifically addressed: choice of filter aid, filter aid to sludge ratio, choice and dosage of polymer flocculation and settling agents, and the determination of Kynch curve settling parameters. Two commercial perlite filter-aids were identified as the most suitable. Of 11 water soluble flocculating polymers evaluated, 3 cationic commercial types formed stable flocs in the screening tests. In low doses, the flocculating polymers also enhanced sludge particle settling and decreased filtrate turbidity. The filtration cake from the sludge can be solidified to meet waste acceptance and storage criteria. However, the conductivity of the remaining filtrate does not meet Reactor Area Return Water criteria and may require a secondary filtration process. 2 refs., 14 figs., 5 tabs

  8. Interface unit

    NARCIS (Netherlands)

    Keyson, D.V.; Freudenthal, A.; De Hoogh, M.P.A.; Dekoven, E.A.M.

    2001-01-01

    The invention relates to an interface unit comprising at least a display unit for communication with a user, which is designed for being coupled with a control unit for at least one or more parameters in a living or working environment, such as the temperature setting in a house, which control unit

  9. A MATLAB®-based program for 3D visualization of stratigraphic setting and subsidence evolution of sedimentary basins: example application to the Vienna Basin

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2015-04-01

    In recent years, 3D visualization of sedimentary basins has become increasingly popular. Stratigraphic and structural mapping is highly important to understand the internal setting of sedimentary basins. And subsequent subsidence analysis provides significant insights for basin evolution. This study focused on developing a simple and user-friendly program which allows geologists to analyze and model sedimentary basin data. The developed program is aimed at stratigraphic and subsidence modelling of sedimentary basins from wells or stratigraphic profile data. This program is mainly based on two numerical methods; surface interpolation and subsidence analysis. For surface visualization four different interpolation techniques (Linear, Natural, Cubic Spline, and Thin-Plate Spline) are provided in this program. The subsidence analysis consists of decompaction and backstripping techniques. The numerical methods are computed in MATLAB® which is a multi-paradigm numerical computing environment used extensively in academic, research, and industrial fields. This program consists of five main processing steps; 1) setup (study area and stratigraphic units), 2) loading of well data, 3) stratigraphic modelling (depth distribution and isopach plots), 4) subsidence parameter input, and 5) subsidence modelling (subsided depth and subsidence rate plots). The graphical user interface intuitively guides users through all process stages and provides tools to analyse and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the visualization results using the full range of available plot options in MATLAB. All functions of this program are illustrated with a case study of Miocene sediments in the Vienna Basin. The basin is an ideal place to test this program, because sufficient data is

  10. Conceptual model of water resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  11. The Central European Permian Basins; Rheological and structural controls on basin history and on inter-basin connectivity

    NARCIS (Netherlands)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2014-01-01

    We analyse the relative importance of the major crustal-scale fault zones and crustal architecture in controlling basin formation, deformation and the structural connections between basins. The North and South Permian Basins of Central Europe are usually defined by the extend of Rotliegend

  12. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  13. Environmental Setting of the Lower Merced River Basin, California

    Science.gov (United States)

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  14. Mechanical Properties of K Basin Sludge Constituents and Their Surrogates

    International Nuclear Information System (INIS)

    Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2004-01-01

    A survey of the technical literature was performed to summarize the mechanical properties of inorganic components in K Basins sludge. The components included gibbsite, ferrihydrite, lepidocrocite and goethite, hematite, quartz, anorthite, calcite, basalt, Zircaloy, aluminum, and, in particular, irradiated uranium metal and uranium dioxide. Review of the technical literature showed that information on the hardness of uranium metal at irradiation exposures similar to those experienced by the N Reactor fuel present in the K Basins (typically up to 3000 MWd/t) were not available. Measurements therefore were performed to determine the hardness of coupons taken from three irradiated N Reactor uranium metal fuel elements taken from K Basins. Hardness values averaged 30 ± 8 Rockwell C units, similar to values previously reported for uranium irradiated to ∼1200 MWd/t. The physical properties of candidate uranium metal and uranium dioxide surrogates were gathered and compared. Surrogates having properties closest to those of irradiated uranium metal appear to be alloys of tungsten. The surrogate for uranium dioxide, present both as particles and agglomerates in actual K Basin sludge, likely requires two materials. Cerium oxide, CeO2, was identified as a surrogate of the smaller UO2 particles while steel grit was identified for the UO2 agglomerates

  15. Determination of the Basin Structure Beneath European Side of Istanbul

    Science.gov (United States)

    Karabulut, Savas; Cengiz Cinku, Mulla; Thomas, Michael; Lamontagne, Maurice

    2016-04-01

    Istanbul (near North Anatolian Fault Zone:NAFZ, Turkey) is located in northern part of Sea of Marmara, an area that has been influenced by possible Marmara Earthquakes. The general geology of Istanbul divided into two stratigraphic unit such as sedimentary (from Oligocene to Quaternary Deposits) and bedrock (Paleozoic and Eocene). The bedrock units consists of sand stone, clay stone to Paleozoic age and limestone to Eocene age and sedimentary unit consist of sand, clay, mil and gravel from Oligocene to Quaternary age. Earthquake disaster mitigation studies divided into two important phases, too. Firstly, earthquake, soil and engineering structure problems identify for investigation area, later on strategic emergency plan can prepare for these problems. Soil amplification play important role the disaster mitigation and the site effect analysis and basin structure is also a key parameter for determining of site effect. Some geophysical, geological and geotechnical measurements are requeired to defined this relationship. Istanbul Megacity has been waiting possible Marmara Earthquake and their related results. In order to defined to possible damage potential related to site effect, gravity measurements carried out for determining to geological structure, basin geometry and faults in Istanbul. Gravity data were collected at 640 sites by using a Scientrex CG-5 Autogravity meter Standard corrections applied to the gravity data include those for instrumental drift, Earth tides and latitude, and the free-air and Bouguer corrections. The corrected gravity data were imported into a Geosoft database to create a grid and map of the Bouguer gravity anomaly (grid cell size of 200 m). As a previously results, we determined some lineminants, faults and basins beneath Istanbul City. Especially, orientation of faults were NW-SE direction and some basin structures determined on between Buyukcekmece and Kucukcekmece Lake.

  16. Hydrologic Sub-basins of Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  17. 5. Basin assessment and watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  18. On the significance of ELF basins

    Indian Academy of Sciences (India)

    Unknown

    to complement to chemical intuition (see, e.g., refs. 2, 3). In a mathematically more rigorous way, such regions, ELF basins,4 were defined following the spirit of Bader's Atoms in Molecules (AIM). All points in space which lead to the a given maximum of ELF, by following the gradient of ELF, belong to the same basin. Basins ...

  19. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  20. Supplementary information on K-Basin sludges

    International Nuclear Information System (INIS)

    MAKENAS, B.J.

    1999-01-01

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period

  1. F-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the F-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  2. H-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and Fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isocactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1994. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the H-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  3. Regional Hydrology of the Green River-Moab Area, Northwestern Paradox Basin, Utah

    OpenAIRE

    United States Geological Survey

    1982-01-01

    The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and overlying and underlying thick sequences of rocks with...

  4. 75 FR 68153 - To Adjust the Rules of Origin Under the United States-Bahrain Free Trade Agreement, Implement...

    Science.gov (United States)

    2010-11-04

    ...-Bahrain Free Trade Agreement, Implement Modifications to the Caribbean Basin Economic Recovery Act, and... Adjust the Rules of Origin Under the United States-Bahrain Free Trade Agreement, Implement Modifications to the Caribbean Basin Economic Recovery Act, and for Other Purposes By the President of the United...

  5. High-resolution sedimentological and subsidence analysis of the Late Neogene, Pannonian Basin, Hungary

    Science.gov (United States)

    Juhasz, E.; Muller, P.; Toth-Makk, A.; Hamor, T.; Farkas-Bulla, J.; Suto-Szentai, M.; Phillips, R.L.; Ricketts, B.

    1996-01-01

    Detailed sedimentological and paleontological analyses were carried out on more than 13,000 m of core from ten boreholes in the Late Neogene sediments of the Pannonian Basin, Hungary. These data provide the basis for determining the character of high-order depositional cycles and their stacking patterns. In the Late Neogene sediments of the Pannonian Basin there are two third-order sequences: the Late Miocene and the Pliocene ones. The Miocene sequence shows a regressive, upward-coarsening trend. There are four distinguishable sedimentary units in this sequence: the basal transgressive, the lower aggradational, the progradational and the upper aggradational units. The Pliocene sequence is also of aggradational character. The progradation does not coincide in time in the wells within the basin. The character of the relative water-level curves is similar throughout the basin but shows only very faint similarity to the sea-level curve. Therefore, it is unlikely that eustasy played any significant role in the pattern of basin filling. Rather, the dominant controls were the rapidly changing basin subsidence and high sedimentation rates, together with possible climatic factors.

  6. Assessment of macroinvertebrate communities in adjacent urban stream basins, Kansas City, Missouri, metropolitan area, 2007 through 2011

    Science.gov (United States)

    Christensen, Eric D.; Krempa, Heather M.

    2013-01-01

    Macroinvertebrates were collected as part of two separate urban water-quality studies from adjacent basins, the Blue River Basin (Kansas City, Missouri), the Little Blue River and Rock Creek Basins (Independence, Missouri), and their tributaries. Consistent collection and processing procedures between the studies allowed for statistical comparisons. Seven Blue River Basin sites, nine Little Blue River Basin sites, including Rock Creek, and two rural sites representative of Missouri ecological drainage units and the area’s ecoregions were used in the analysis. Different factors or levels of urban intensity may affect the basins and macroinvertebrate community metrics differently, even though both basins are substantially developed above their downstream streamgages (Blue River, 65 percent; Little Blue River, 52 percent). The Blue River has no flood control reservoirs and receives wastewater effluent and stormflow from a combined sewer system. The Little Blue River has flood control reservoirs, receives no wastewater effluent, and has a separate stormwater sewer system. Analysis of macroinvertebrate community structure with pollution-tolerance metrics and water-quality parameters indicated differences between the Blue River Basin and the Little Blue River Basin.

  7. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  8. On identifying relationships between the flood scaling exponent and basin attributes.

    Science.gov (United States)

    Medhi, Hemanta; Tripathi, Shivam

    2015-07-01

    Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

  9. The Mackenzie Basin impacts study

    International Nuclear Information System (INIS)

    Cohen, S.J.

    1993-01-01

    In 1989, a commitment was made to begin development of a framework for an integrated regional impact assessment of global warming scenarios in the Mackenzie Basin, the most populated region of Canada's north. The project, called Mackenzie Basin Impact Study (MBIS), is led by a multidisciplinary working group from government and non-governmental organizations with interests in the Basin. Objectives of MBIS include defining the direction and magnitude of regional-scale impacts of global warming scenarios on the physical, biological, and human systems of the Basin. MBIS will also identify regional sensitivities to climate, inter-system linkages, uncertainties, policy implications, and research needs. MBIS research activities as of March 1992 are outlined and policy concerns related to global warming are listed. Two new methodologies are being developed by MBIS to address particular economic and policy concerns: a socio-economic resource accounting framework and an integrated land assessment framework. Throughout MBIS, opportunities will be presented for western science and traditional native knowledge to be integrated

  10. Great Basin paleoenvironmental studies project

    International Nuclear Information System (INIS)

    1993-01-01

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project

  11. The Amazon Basin in transition

    Science.gov (United States)

    Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy

    2012-01-01

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...

  12. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  13. Great Basin wildlife disease concerns

    Science.gov (United States)

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  14. Pacific Basin Heavy Oil Refining Capacity

    Directory of Open Access Journals (Sweden)

    David Hackett

    2013-02-01

    Full Text Available The United States today is Canada’s largest customer for oil and refined oil products. However, this relationship may be strained due to physical, economic and political influences. Pipeline capacity is approaching its limits; Canadian oil is selling at substantive discounts to world market prices; and U.S. demand for crude oil and finished products (such as gasoline, has begun to flatten significantly relative to historical rates. Lower demand, combined with increased shale oil production, means U.S. demand for Canadian oil is expected to continue to decline. Under these circumstances, gaining access to new markets such as those in the Asia-Pacific region is becoming more and more important for the Canadian economy. However, expanding pipeline capacity to the Pacific via the proposed Northern Gateway pipeline and the planned Trans Mountain pipeline expansion is only feasible when there is sufficient demand and processing capacity to support Canadian crude blends. Canadian heavy oil requires more refining and produces less valuable end products than other lighter and sweeter blends. Canadian producers must compete with lighter, sweeter oils from the Middle East, and elsewhere, for a place in the Pacific Basin refineries built to handle heavy crude blends. Canadian oil sands producers are currently expanding production capacity. Once complete, the Northern Gateway pipeline and the Trans Mountain expansion are expected to deliver an additional 500,000 to 1.1 million barrels a day to tankers on the Pacific coast. Through this survey of the capacity of Pacific Basin refineries, including existing and proposed facilities, we have concluded that there is sufficient technical capacity in the Pacific Basin to refine the additional Canadian volume; however, there may be some modifications required to certain refineries to allow them to process Western Canadian crude. Any additional capacity for Canadian oil would require refinery modifications or

  15. Geology and Assessment of Undiscovered Oil and Gas Resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province, 2008

    Science.gov (United States)

    Klett, Timothy R.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered petroleum resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province as part of its Circum-Arctic Resource Appraisal. These two provinces are situated northeast of Scandinavia and the northwestern Russian Federation, on the Barents Sea Shelf between Novaya Zemlya to the east and the Barents Platform to the west. Three assessment units (AUs) were defined in the East Barents Basins Province for this study: the Kolguyev Terrace AU, the South Barents and Ludlov Saddle AU, and the North Barents Basin AU. A fourth AU, defined as the Novaya Zemlya Basins and Admiralty Arch AU, coincides with the Novaya Zemlya Basins and Admiralty Arch Province. These four AUs, all lying north of the Arctic Circle, were assessed for undiscovered, technically recoverable resources, resulting in total estimated mean volumes of ~7.4 billion barrels of crude oil, 318 trillion cubic feet (TCF) of natural gas, and 1.4 billion barrels of natural-gas liquids.

  16. A topological system for delineation and codification of the Earth's river basins

    Science.gov (United States)

    Verdin, K.L.; Verdin, J.P.

    1999-01-01

    A comprehensive reference system for the Earth's river basins is proposed as a support to fiver basin management, global change research, and the pursuit of sustainable development. A natural system for delineation and codification of basins is presented which is based upon topographic control and the topology of the fiver network. These characteristics make the system well suited for implementation and use with digital elevation models (DEMs) and geographic information systems. A demonstration of these traits is made with the 30-arcsecond GTOPO30 DEM for North America. The system has additional appeal owing to its economy of digits and the topological information that they carry. This is illustrated through presentation of comparisons with USGS hydrologic unit codes and demonstration of the use of code numbers to reveal dependence or independence of water use activities within a basin.

  17. Estimation of Potential Carbon Dioxide Storage Capacities of Onshore Sedimentary Basins in Republic of Korea

    Science.gov (United States)

    Park, S.; Kim, J.; Lee, Y.

    2010-12-01

    The potential carbon dioxide storage capacities of the five main onshore sedimentary basins (Chungnam, Gyeongsang, Honam, Mungyeong, and Taebaeksan Basins) in Republic of Korea are estimated based on the methods suggested by the United States National Energy Technology Laboratory (NETL). The target geologic formations considered for geologic storage of carbon dioxide in the sedimentary basins are sandstone and coal beds. The density of carbon dioxide is set equal to 446.4 kg/m3. The adsorption capacity and density of coal (anthracite) are set equal to 2.71 × 10-2 kg/kg and 1.82 × 103 kg/m3, respectively. The average storage efficiency factors for sandstone and coal are set equal to 2.5% and 34.0%, respectively. The Chungnam Basin has the sandstone volume of 72 km3 and the coal volume of 1.24 km3. The average porosity of sandstone in the Chungnam Basin is 3.8%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Chungnam Basin are estimated to be 31 Mton and 21 Mton, respectively. The Gyeongsang Basin has the sandstone volume of 1,960 km3. The average porosity of sandstone in the Gyeongsang Basin is 4.6%. As a result, the potential carbon dioxide storage capacity of sandstone in the Gyeongsang Basin is estimated to be 1,011 Mton. The Honam Basin has the sandstone volume of 8 km3 and the coal volume of 0.27 km3. The average porosity of sandstone in the Honam Basin is 1.9%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Honam Basin are estimated to be 2 Mton and 5 Mton, respectively. The Mungyeong Basin has the sandstone volume of 60 km3 and the coal volume of 0.66 km3. The average porosity of sandstone in the Mungyeong Basin is 2.0%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Mungyeong Basin are estimated to be 13 Mton and 11 Mton, respectively. The Taebaeksan Basin has the sandstone volume of 71 km3 and the coal volume of 0.73 km3. The

  18. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  19. The global dimension of water governance: why the river basin approach is no longer sufficient and why cooperative action at global level is needed

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2011-01-01

    When water problems extend beyond the borders of local communities, the river basin is generally seen as the most appropriate unit for analysis, planning, and institutional arrangements. In this paper it is argued that addressing water problems at the river basin level is not always sufficient. Many

  20. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational Simplified Surface Energy Balance Model

    Science.gov (United States)

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. L...

  1. Influence of recharge basins on the hydrology of Nassau and Suffolk Counties, Long Island, New York

    Science.gov (United States)

    Seaburn, G.E.; Aronson, D.A.

    1974-01-01

    An investigation of recharge basins on Long Island was made by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, Nassau County Department of Public Works, Suffolk County Department of Environmental Control, and Suffolk County Water Authority. The major objectives of the study were to (1) catalog basic physical data on the recharge basins in use on Long Island, (2) measure quality and quantity of precipitation and inflow, (3) measure infiltration rates at selected recharge basins, and (4) evaluate regional effects of recharge basins on the hydrologic system of Long Island. The area of study consists of Nassau and Suffolk Counties -- about 1,370 square miles -- in eastern Long Island, N.Y. Recharge basins, numbering more than 2,100 on Long Island in 1969, are open pits in moderately to highly permeable sand and gravel deposits. These pits are used to dispose of storm runoff from residential, industrial, and commercial areas, and from highways, by infiltration of the water through the bottom and sides of the basins. The hydrology of three recharge basins on Long Island -- Westbury, Syosset, and Deer Park basins -- was studied. The precipitation-inflow relation showed that the average percentages of precipitation flowing into each basin were roughly equivalent to the average percentages of impervious areas in the total drainage areas of the basins. Average percentages of precipitation flowing into the basins as direct runoff were 12 percent at the Westbury basin, 10 percent at the Syosset basin, and 7 percent at the Deer Park basin. Numerous open-bottomed storm-water catch basins at Syosset and Deer Park reduced the proportion of inflow to those basins, as compared with the Westbury basin, which has only a few open-bottomed catch basins. Inflow hydrographs for each basin typify the usual urban runoff hydrograph -- steeply rising and falling limbs, sharp peaks, and short time bases. Unit hydrographs for the

  2. REGIONAL MAGNETOTELLURIC SURVEYS IN HYDROCARBON EXPLORATION, PARANA BASIN, BRAZIL.

    Science.gov (United States)

    Stanley, William D.; Saad, Antonio; Ohofugi, Walter

    1985-01-01

    The mangetotelluric geophysical method has been used effectively as a hydrocarbon exploration tool in the intracratonic Parana basin of South America. The 1-2 km thick surface basalts and buried diabase sills pose no problem for the magnetotelluric method because the natural electromagnetic fields used as the energy source pass easily through the basalt. Data for the regional study were taken on six profiles with sounding spaced 8 to 15 km apart. The magnetotelluric sounding data outline a linear uplift known as the Ponta Grossa arch. This major structural feature cuts across the northeast-trending intracratonic basin almost perpendicularly, and is injected with numerous diabase dikes. Significant electrical contrasts occur between the Permian sediments and older units, so that magnetotelluric measurements can give an indication of the regional thickness of the Permian and younger sediments to aid in interpreting hydrocarbon migration patterns and possible trap areas. Refs.

  3. Levee Presence and Wetland Areas within the 100-Year Floodplain of the Wabash Basin

    Science.gov (United States)

    Morrison, R. R.; Dong, Q.; Nardi, F.; Grantham, T.; Annis, A.

    2016-12-01

    Wetlands have declined over the past century due to land use changes and water management activities in the United States. Levees have been extensively built to provide protection against flooding events, and can fundamentally alter the water distribution and hydrologic dynamics within floodplains. Although levees can reduce wetlands in many places, it is unclear how much wetland areas are impacted at a basin-scale. This study explores the relationship between wetlands, levee presence, and other important hydrologic metrics within a 100-year floodplain. We estimated total wetland area, levee length, floodplain area and other variables, in discrete 12-digit hydrologic units (HUC-12) of the Wabash Basin (n=854) and examined the relationship between these variables using non-parametric statistical tests. We found greater areas of wetland habitat in HUC12 units that contain levees compared to those without levees when we aggregated the results across the entire basin. Factors such as stream order, mean annual flow, and HUC12 area are not correlated with the wetland area in HUC-12 units that contain levees. In addition, median wetland area in HUC12 units with levees is surprisingly consistent regardless of maximum stream order. Visual observations of wetland distributions indicate that wetland presence may be dependent on its location relative to levees. These results indicate that refined geospatial analyses may be necessary to explore the complex influence of levees on wetland habitat, and that additional basins should be explored to develop more generalized trends. This information is preliminary and subject to revision.

  4. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    Science.gov (United States)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may

  5. Thunder Bay National Marine Sanctuary Boundary (polygon)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of National Marine Sanctuaries manages a system of sanctuaries and othermanaged areas around the country. The legal boundaries of These sanctuaries...

  6. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  7. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    partners, including the Government of Armenia, Armenia’s Hydrogeological Monitoring Center, and the USAID Global Development Lab and its GeoCenter.The hydrogeologic framework of the Ararat Basin includes several basin-fill stratigraphic units consisting of interbedded dense clays, gravels, sands, volcanic basalts, and andesite deposits. Previously published cross sections and well lithologic logs were used to map nine general hydrogeologic units. Hydrogeologic units were mapped based on lithology and water-bearing potential. Water-level data measured in the water-bearing hydrogeologic units 2, 4, 6, and 8 in 2016 were used to create potentiometric surface maps. In hydrogeologic unit 2, the estimated direction of groundwater flow is from the west to north in the western part of the basin (away from the Aras River) and from north to south (toward the Aras River) in the eastern part of the basin. In hydrogeologic unit 4, the direction of groundwater flow is generally from west to east and north to south (toward the Aras River) except in the western part of the basin where groundwater flow is toward the north or northwest. Hydrogeologic unit 6 has the same general pattern of groundwater flow as unit 4. Hydrogeologic unit 8 is the deepest of the water-bearing units and is confined in the basin. Groundwater flow generally is from the south to north (away from the Aras River) in the western part of the basin and from west to east and north to south (toward the Aras River) elsewhere in the basin.In addition to water levels, personnel from Armenia’s Hydrogeological Monitoring Center also measured specific conductance at 540 wells and temperature at 2,470 wells in the Ararat Basin using U.S. Geological Survey protocols in 2016. The minimum specific conductance was 377 microsiemens per centimeter (μS/cm), the maximum value was 4,000 μS/cm, and the mean was 998 μS/cm. The maximum water temperature was 24.2 degrees Celsius. An analysis between water temperature and well depth

  8. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  9. Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality

    Science.gov (United States)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2017-12-01

    Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.

  10. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  11. Major salt beds of the Palo Duro and Dalhart Basins, Texas

    International Nuclear Information System (INIS)

    1983-12-01

    Major salt beds are defined as salt intervals at least 75 feet thick that contain no interbeds greater than 10 feet thick and include no more than 15 percent non-salt interbeds. Maps based on the interpretation of geophysical logs from hundreds of oil and gas exploration wells reveal seven major salt beds in the Palo Duro Basin and one major salt bed in the Dalhart Basin. The most extensive major salt beds are in the central and northern Palo Duro Basin, in the Upper San Andres Formation and the Lower San Andres Formation Units 4 and 5. Of these, the major salt bed within the Lower San Andres Formation Unit 4 is the most widespread and generally the thickest. 7 references, 15 figures, 2 tables

  12. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  13. Comparison of the rift and post-rift architecture of conjugated salt and salt-free basins offshore Brazil and Angola/Namibia, South Atlantic

    Science.gov (United States)

    Strozyk, Frank; Back, Stefan; Kukla, Peter A.

    2017-10-01

    This study presents a regional comparison between selected 2D seismic transects from large, conjugated salt and salt-free basins offshore southern Brazil (Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Kwanza Basin, northern and southern Namibe Basin, Walvis Basin). Tectonic-stratigraphic interpretation of the main rift and post-rift units, free-air gravity data and flexural isostatic backstripping were used for a comprehensive basin-to-basin documentation of key mechanisms controlling the present-day differences in conjugated and neighbouring South Atlantic basins. A significant variation in the tectonic-sedimentary architecture along-strike at each margin and between the conjugated basins across the South Atlantic reflects major differences in (1) the structural configuration of each margin segment at transitional phase between rifting and breakup, as emphasized in the highly asymmetric settings of the large Santos salt basin and the conjugated, salt-free southern Namibe Basin, (2) the post-breakup subsidence and uplift history of the respective margin segment, which caused major differences for example between the Campos and Espirito Santo basins and the conjugated northern Namibe and Kwanza basins, (3) variations in the quantity and distribution of post-breakup margin sediments, which led to major differences in the subsidence history and the related present-day basin architecture, for example in the initially rather symmetric, siliciclastic Pelotas and Walvis basins, and (4) the deposition of Aptian evaporites in the large rift and sag basin provinces north of the Rio Grande Rise and Walvis Ridge, highly contrasting the siliciclastic basins along the margin segments south of the ridges. The resulting present-day architecture of the basins can be generally classified as (i) moderately symmetric, salt-free, and magma-rich in the northern part of the southern segment, (i) highly asymmetric, salt-bearing and magma-poor vs. salt-free and magma

  14. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa

    Science.gov (United States)

    Bordy, Emese M.; Catuneanu, Octavian

    2001-08-01

    The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.

  15. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    Science.gov (United States)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are

  16. K West Basin canister survey

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1998-01-01

    A survey was conducted of the K West Basin to determine the distribution of canister types that contain the irradiated N Reactor fuel. An underwater camera was used to conduct the survey during June 1998, and the results were recorded on videotape. A full row-by-row survey of the entire basin was performed, with the distinction between aluminum and stainless steel Mark 1 canisters made by the presence or absence of steel rings on the canister trunions (aluminum canisters have the steel rings). The results of the survey are presented in tables and figures. Grid maps of the three bays show the canister lid ID number and the canister type in each location that contained fuel. The following abbreviations are used in the grid maps for canister type designation: IA = Mark 1 aluminum, IS = Mark 1 stainless steel, and 2 = Mark 2 stainless steel. An overall summary of the canister distribution survey is presented in Table 1. The total number of canisters found to contain fuel was 3842, with 20% being Mark 1 Al, 25% being Mark 1 SS, and 55% being Mark 2 SS. The aluminum canisters were predominantly located in the East and West bays of the basin

  17. Uranium geochemistry of Orca Basin

    International Nuclear Information System (INIS)

    Weber, F.F. Jr.; Sackett, W.M.

    1981-01-01

    Orca Basin, an anoxic, brine-filled depression at a depth of 2200 m in the Northwestern Gulf of Mexico continental slope, has been studied with respect to its uranium geochemistry. Uranium concentration profiles for four cores from within the basin were determined by delayed-neutron counting. Uranium concentrations ranged from 2.1 to 4.1 ppm on a salt-free and carbonate-corrected basis. The highest uranium concentrations were associated with the lowest percentage and delta 13 C organic carbon values. For comparison, cores from the brine-filled Suakin and Atlantis II Deeps, both in the Red Sea, were also analyzed. Uranium concentrations ranged from 1.2 to 2.6 ppm in the Suakin Deep and from 8.0 to 11.0 ppm in the Atlantis II Deep. No significant correlation was found between uranium concentrations and organic carbon concentrations and delta 13 C values for these cores. Although anoxic conditions are necessary for significant uranium uptake by non-carbonate marine sediments, other factors such as dilution by rapidly depositing materials and uranium supply via mixing and diffusion across density gradients may be as important in determining uranium concentrations in hypersaline basin sediments. (author)

  18. Generating Units

    Data.gov (United States)

    Department of Homeland Security — Generating Units are any combination of physically connected generators, reactors, boilers, combustion turbines, and other prime movers operated together to produce...

  19. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  20. Structure of the Anayet Permian basin (Axial Zone, Central Pyrenees)

    Science.gov (United States)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    The Anayet Permian basin was generated by strike-slip tectonics that opened subsident basins with pull-apart geometries in the western Spanish Axial Zone (between the Aragon and Tena valleys). A continental succession of Permian age, that represents the first post-variscan deposits in the area, fills the basin and covers discordantly Devonian to Carboniferous limestones, sandstones and slates. Permian deposits have been classically divided in four main detrital groups, with three basic volcanic episodes interbedded (Gisbert, 1984, Bixel, 1987): the Grey Unit (50-120 m, Estefanian to Kungurian) with slates, conglomerates, tobaceous slates, coal and pyroclastic deposits, the Transition Unit (50 m maximum) showing grey and red sandstones and lutites with oolitic limestones intercalated, the Lower Red Unit (250 m) composed of cross-bedded red sandstones and andesitic volcanic rocks at the top, and finally the Upper Red Unit (400 m minimum, top eroded) formed by three fining up megasequences of carbonates, red sandstones and lutites with lacustrine carbonates intercalated and alkali basalts at the top. Increasingly older rocks are found towards the western part of the basin, where its depocenter is located. South-vergent angular folds deform the Permian sedimentary succession. Fold axes are N115 °E-trending, almost horizontal and are characterized by a remarkably constant orientation. Folds exhibit a long limb dipping slightly to the north and a short vertical limb, occasionally reversed. In the Anayet basin four main folds, with a wavelength of 400 m, can be distinguished, two anticlines and two synclines, with minor folds associated. Related to the angular folds an axial plane foliation, E-trending and dipping 40 to 60° to the north, is developed in the lutites. The more competent rocks, conglomerates and breccias, only locally show a spaced fracture cleavage. No main thrusts have been detected in Permian rocks. However, minor scale decollements, usually low angle

  1. Environmental setting and natural factors and human influences affecting water quality in the White River Basin, Indiana

    Science.gov (United States)

    Schnoebelen, Douglas J.; Fenelon, Joseph M.; Baker, Nancy T.; Martin, Jeffrey D.; Bayless, E. Randall; Jacques, David V.; Crawford, Charles G.

    1999-01-01

    The White River Basin drains 11,349 square miles of central and southern Indiana and is one of 59 Study Units selected for water-quality assessment as part of the U.S. Geological Survey's National WaterQuality Assessment Program. Defining the environmental setting of the basin and identifying the natural factors and human influences that affect water quality are important parts of the assessment.

  2. Basin wildrye (Leymus cinereus) pooled tetraploid accessions for U.S. Intermountain rangeland reclamation

    Science.gov (United States)

    Stanford A. Young; Jason Vernon; Nancy Shaw

    2013-01-01

    Basin wildrye (Leymus cinereus [Scribn. & Merr.] A. Love) is an important perennial, hardy, long-lived, cool season C3 native grass of rangeland plant communities throughout much of western United States and Canada. All classes of livestock and wildlife, including large and small birds and mammals, utilise the grass year round for food and protection due to its 2-3...

  3. Genecology and seed zones for tapertip onion in the US Great Basin

    Science.gov (United States)

    R. C. Johnson; Barbara C. Hellier; Ken W. Vance-Borland

    2013-01-01

    The choice of germplasm is critical for sustainable restoration, yet seed transfer guidelines are lacking for all but a few herbaceous species. Seed transfer zones based on genetic variability and climate were developed using tapertip onion (Allium acuminatum Hook.) collected in the Great Basin and surrounding areas in the United States. Bulbs from 53 locations were...

  4. Birds of a Great Basin Sagebrush Habitat in East-Central Nevada

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Breeding bird populations ranged from 3.35 to 3.48 individuals/ha over a 3-year study conducted from 1981 to 1983. Brewer's sparrows, sage sparrows, sage thrashers, and black-throated sparrows were numerically dominant. Horned larks and western meadowlarks were less common. Results are compared with bird populations in Great Basin sagebrush habitats elsewhere in the United States.

  5. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  6. The Donets Basin (Ukraine/Russia): coalification and thermal history.

    NARCIS (Netherlands)

    Sachsenhofer, R.F.; Privalov, V.A.; Zhykalyak, M.V.; Bueker, C.; Panova, E.A.; Rainer, T.; Shymanovskyy, V.A.; Stephenson, R.A.

    2002-01-01

    The Donets Basin (Donbas) is one of the major late Paleozoic coal basins in the world. The Donbas Foldbelt is an inverted part of the Donets Basin characterized by WNW-ESE-trending folds and faults. The age of basin inversion is under discussion. Large parts of the Donets Basin host anthracite and

  7. RFI/RI work plan for the Road A Chemical Basin 904-111G

    International Nuclear Information System (INIS)

    Kmetz, T.F.

    2000-01-01

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Remedial Investigation (RI) Work Plan has been prepared for the Road A Chemical Basin Operable Unit (RdACB OU) (904-111G). This unit is subject to the requirements of both RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This Work Plan presents the initial evaluation of existing unit data, applicable background data, the regulatory framework for the unit investigation, and the evaluations and decisions made during the determination of the scope and objectives of the planned Remedial Investigation/Feasibility Study (RI/FS) activities

  8. RFI/RI work plan for the Road A Chemical Basin 904-111G

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, T.F.

    2000-03-07

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Remedial Investigation (RI) Work Plan has been prepared for the Road A Chemical Basin Operable Unit (RdACB OU) (904-111G). This unit is subject to the requirements of both RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This Work Plan presents the initial evaluation of existing unit data, applicable background data, the regulatory framework for the unit investigation, and the evaluations and decisions made during the determination of the scope and objectives of the planned Remedial Investigation/Feasibility Study (RI/FS) activities.

  9. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  10. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  11. Tectonic-stratigraphic evolution of Cumuruxatiba Basin - Brazil; Evolucao tectono-estratigrafica da Bacia de Cumuruxatiba

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Gustavo; Fernandes, Flavio L.; Silva, Eric Zagotto; Ferreira Neto, Walter Dias [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem Multidisciplinar de Bacias Sedimentares; Ribeiro, Juliana [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Brasilia, DF (Brazil)

    2008-07-01

    In recent years, the exploratory interest on Cumuruxatiba Basin has been inconstant, with modest discoveries of oil. Aiming to deepen the geological knowledge of the basin and in order to attract the interest of oil companies, the ANP (National Agency of Petroleum, Natural Gas and Biofuels) signed contract with COPPE/UFRJ for carrying out an analysis basin project. The project was developed by the Basin Analysis Multidisciplinary Modeling Laboratory (Lab2M/UFRJ) in the period 2006/2007, and was with the main objective outline the main structural and seismo-stratigraphic features of the basin, and in an integrated and multidisciplinary way, build a model of its sedimentation and tectono-stratigraphic evolution. This paper presents the results of the regional seismic mapping, aided by well and potential methods data. The stratigraphic succession the basin has been divided into genetic units (UN-B, UN-C e UN-D) corresponding to second order depositional sequences, they are: UN-B, corresponding by a rift and sag-rift siliciclastic deposits, plus the Aptian evaporitic deposits; UN-C, characterized by carbonatic deposits, and shelf related sediments; and UN-D, corresponding by a final transgressive (siliciclastic) - regressive (mix) cycle, between Cenomanian and actual days. (author)

  12. Insights on the structural control of a Neogene forearc basin in Northern Chile: A geophysical approach

    Science.gov (United States)

    García-Pérez, Tiaren; Marquardt, Carlos; Yáñez, Gonzalo; Cembrano, José; Gomila, Rodrigo; Santibañez, Isabel; Maringue, José

    2018-06-01

    The comprehensive study of intramountain basins located in the Coastal Cordillera of the continental emergent Andean forearc in Northern Chile, enables the better understanding of the nature and evolution of the upper crustal deformation during the Neogene and Quaternary. A case study is the extensive extensional half-graben Alto Hospicio basin. The basin is cut by the Coastal Cliff, which exposes the deformed Neogene basin fill. Also exposed are several structural systems, some of which affect Quaternary surfaces. The results of the integrated geophysical surveys (Electromagnetic Transient and Gravity) allow us to fully constrain the geometry of the Alto Hospicio basin and the lithological relationship between the subsurface geological units. The structural geology analysis assesses the deformation regimes affecting the faults present in the basin and surrounding area. Altogether evidence a change in the deformation regime from an EW extensional deformation during the Miocene-Pliocene to a NS compression in the Quaternary as is presented in this study. We suggest this deformation change is related to a small change in the convergence vector orientation during the Pliocene.

  13. Sedimentary links between hillslopes and channels in a dryland basin

    Science.gov (United States)

    Hollings, R.

    2016-12-01

    The interface between hillslopes and channels is recognised as playing an important role in basin evolution and functioning. However, this interaction has not been described well in landscapes such as drylands, in which the diffuse process of runoff-driven sediment transport is important for sediment communication to the channel and to the basin outlet. This paper combines field measurements of surface sediment grain sizes in channels and on hillslopes with high resolution topography, >60 years of rainfall and runoff data from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, and simple calculations of spatial stress distributions for various hydrologic scenarios to explore the potential for sediment to move from hillslopes to channels and through channels across the entire basin. Here we generalise the net movement of sediment in to or out of channel reaches, at high resolution in WGEW, as the balance between hillslope sediment supply to the channel and channel evacuation, in response to a variety of storms and discharge events. Our results show that downstream of small, unit source area watersheds, the balance in the channel often switches from being supply-dominated to being evacuation dominated for all scenarios. The low frequency but high discharge event in the channel seems to control the long term evolution of the channel, as stress is far greater for this scenario than other scenarios tested. The results draw on the high variability of rainfall characteristics to drive runoff events and so provides a physical explanation for long-term evolution of the channel network in drylands.

  14. BASINs 4.0 Climate Assessment Tool (CAT): Supporting ...

    Science.gov (United States)

    EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of Research and Development, that focuses on assessing how potential changes in climate and other global environmental stressors may impact water quality, air quality, aquatic ecosystems, and human health in the United States. The Program’s focus on water quality is consistent with the Research Strategy of the U.S. Climate Change Research Program—the federal umbrella organization for climate change science in the U.S. government—and is responsive to U.S. EPA’s mission and responsibilities as defined by the Clean Water Act and the Safe Drinking Water Act. A central goal of the EPA GCRP is to provide EPA program offices, Regions, and other stakeholders with tools and information for assessing and responding to any potential future impacts of climate change. In 2007, the EPA Global Change Research Program (GCRP), in partnership with the EPA Office of Water, supported development of a Climate Assessment Tool (CAT) for version 4 of EPA’s BASINS modeling system. This report provides supporting documentation and user support materials for the BASINS CAT tool. The purpose of this report is to provide in a single document a variety of documentation and user support materials supporting the use

  15. Acquiring Marine Data in the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.

    2009-06-01

    Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two icebreakers, similar to other recent Arctic surveys [e.g., Jokat, 2003].

  16. Hydroclimatology of the Missouri River basin

    Science.gov (United States)

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  17. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  18. Sedimentologic and Geometric Characterization of Turbidites of Brazos-Trinity Basin IV in the Gulf of Mexico: Preliminary Results of IODP Expedition 308

    Science.gov (United States)

    Gutierrez-Pastor, J.; Pirmez, C.; Flemings, P. B.; Behrmann, J. H.; John, C. M.

    2005-12-01

    Brazos Trinity Basin IV is located about 200 km offshore Texas, and belongs to a linked system of four intra slope mini basins. Basin IV provides a type section to characterize turbidites in salt withdrawal mini-basins of the Gulf of Mexico. IODP Expedition 308 has cored and logged complete pre-fan and fan sequences that are clearly distinguished with high-resolution seismic profiles at Brazos Trinity Basin IV at Sites U1319, U1320 and U1321. Seismically imaged pre-fan and fan units also can be distinguished and correlated with the sedimentological and logging data. Turbidite facies display distinct properties in terms of grain size, bed thickness, color, organic matter content, vertical organization of beds and lateral distribution in all the units of the fan through the basin. The pre-fan sequence is composed of terrigenous laminated clay with color banding and it is interpreted to result from deposition from fluvial plumes and/or muddy turbidity currents overspilling from basins upstream of Basin IV. The lower fan is characterized by laminated and bioturbated muds with thin beds of silt and sand, and represent the initial infill of the basin by mostly muddy turbidity currents, although an exceptionally sand-rich unit occurs at the base of the lower fan. The middle and upper fan represent the main pulses of turbidity current influx into Basin IV, and contain fine to medium sand turbidite beds organized in packets ranging in thickness from 5 to 25 m. The middle fan displays an overall upward increase in sand content at Site U1320, suggesting increased flow by-pass from the updip basins through time. Key examples of turbidites from each fan unit are analysed in detail to infer the depositional processes and infilling history of Brazos-Trinity Basin IV. The study of turbidites in a calibrated basin such as Basin IV provides ground truth for the sedimentological processes and resultant seismic facies, which can be used to interpret the infill history of other

  19. U.S. Geological Survey Assessment of Undiscovered Petroleum Resources of the Hamra Basin, Libya, 2006

    Science.gov (United States)

    ,

    2007-01-01

    The Hamra Basin Province encompasses approximately 244,100 square kilometers (94,250 square miles) and is entirely within Libya. One composite total petroleum system (TPS) was defined for this assessment; it extends from Libya westward into adjacent parts of Algeria and southern Tunisia. The Hamra Basin part of the TPS was subdivided into four assessment units for the purpose of resource assessment. The assessment units cover only 172,390 square kilometers of the Hamra Basin Province; the remaining area has little potential for undiscovered petroleum resources because of the absence of petroleum source rocks. Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 784 million barrels of crude oil, 4,748 billion cubic feet of natural gas, and 381 million barrels of natural gas liquids in the Hamra Basin of northwestern Libya. Most of the undiscovered crude oil and natural gas are interpreted to be in deeper parts of the Hamra Basin.

  20. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    Science.gov (United States)

    Kováč, Michal; Márton, Emő; Oszczypko, Nestor; Vojtko, Rastislav; Hók, Jozef; Králiková, Silvia; Plašienka, Dušan; Klučiar, Tomáš; Hudáčková, Natália; Oszczypko-Clowes, Marta

    2017-08-01

    The data on the Neogene geodynamics, palaeogeography, and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas (ALCAPA Mega-unit) are summarized, re-evaluated, supplemented, and newly interpreted. The proposed concept is illustrated by a series of palinspastic and palaeotopographic maps. The Miocene development of the Outer Carpathians reflects the vanishing subduction of the residual oceanic and/or thinned continental crust. A compression perpendicular to the front of the orogenic system led to the closing of residual flysch troughs and to accretionary wedge growth, as well as to the development of a foredeep on the margin of the European Platform. Docking of the Outer Western Carpathians accretionary wedge, together with the Central Western Carpathians and Northern Pannonian domain, was accompanied by stretching of the overriding microplate. An orogen parallel and perpendicular extension was associated with the opening and subsidence of the Early and Middle Miocene hinterland (back-arc) basin system that compensated counter-clockwise rotations of the individual crustal fragments of ALCAPA. The Late Miocene development relates to the opening of the Pannonian Basin System. This process was coupled with common stretching of both ALCAPA and Tisza-Dacia Mega-units due to the pull exerted by subduction rollback in front of the Eastern Carpathians. The filling up of the hinterland basin system was associated with thermal subsidence and was followed by the Pliocene tectonic inversion and consequent erosion of the basin system margins, as well as part of the interior.

  1. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  2. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-09-01

    Reported here are the results of Laboratory and Bench- Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE- AC22- 91PC91040 during the period April 1, 1997 to June 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which includes dispersed lower- cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This report includes a data analysis of the ALC- 2 run which was the second continuous run in which Wyodak Black Thunder coal was fed to a two kg/ h bench- scale unit. One of the objectives of that run was to determine the relative activity of several Mo- based coal impregnated catalyst precursors. The precursors included ammonium heptamolybdate (100 mg Mo/ kg dry coal), which was used alone as well as in combination with ferrous sulfate (1% Fe/ dry coal) and nickel sulfate (50 mg Ni/ kg dry coal). The fourth precursor that was tested was phosphomolybdic acid which was used at a level of 100 mg Mo/ kg dry coal. Because of difficulties in effectively separating solids from the product stream, considerable variation in the feed stream occurred. Although the coal feed rate was nearly constant, the amount of recycle solvent varied which resulted in wide variations of resid, unconverted coal and mineral matter in the feed stream. Unfortunately, steady state was not achieved in any of the four conditions that were run. Earlier it was reported that Ni- Mo catalyst appeared to give the best results based upon speculative steady- state yields that were developed.

  3. Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts

    Science.gov (United States)

    Coleman, James

    2016-01-01

    The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.

  4. Relating petroleum system and play development to basin evolution: West African South Atlantic basins

    NARCIS (Netherlands)

    Beglinger, S.E.; Doust, H.; Cloetingh, S.A.P.L.

    2012-01-01

    Sedimentary basins can be classified according to their structural genesis and evolutionary history and the latter can be linked to petroleumsystem and playdevelopment. We propose an approach in which we use the established concepts in a new way: breaking basins down into their natural basin cycle

  5. Oil geochemistry of the Putumayo basin

    International Nuclear Information System (INIS)

    Ramon, J.C

    1996-01-01

    Bio marker fingerprinting of 2O crude oils from Putumayo Basin, Colombia, shows a vertical segregation of oil families. The Lower Cretaceous reservoirs (Caballos and 'U' Villeta sands) contain oils that come from a mixture of marine and terrestrial organic matter, deposited in a marginal, 'oxic' marine setting. The Upper Cretaceous ('T' and N ' sands) and Tertiary reservoirs contain oils with marine algal input deposited in a reducing, carbonate-rich environment. Lithology, environmental conditions and organic matter type of source rocks as predicted from oil bio marker differences correspond to organic composition of two Cretaceous source rocks. Vertical heterogeneity in the oils, even those from single wells, suggests the presence of two isolated petroleum systems. Hydrocarbons from Lower Cretaceous source rocks charged Lower Cretaceous reservoirs whereas oils from Upper Cretaceous source rocks charged Upper Cretaceous and Tertiary reservoirs. Oil migration from mature source rocks into multiple reservoirs has been stratigraphically up dip along the regional sandstone units and vertical migration through faults has been limited. Bio marker maturity parameters indicate that all oils were generated from early thermal maturity oil window

  6. Quantification of Net Erosion and Uplift Experienced by the Barmer Basin, Rajasthan Using Sonic Log

    Science.gov (United States)

    Mitra, K.; Schulz, S.; Sarkar, A.

    2015-12-01

    Barmer Basin of Rajasthan, Western India is a hydrocarbon rich sedimentary basin currently being explored by Cairn India Limited. The hydrocarbon bearing Fatehgarh Formation is being found at different depths in different oil fields (e.g. From south to north: Guda, Vijaya & Vandana, Air field High) of the basin. The net uplift and erosion in the Barmer Basin has been quantified using compaction methodology. The sonic log, which is strongly controlled by porosity, is an appropriate indicator of compaction, and hence used for quantification of net uplift and erosion from compaction. The compaction methodology has been applied to the shale rich Dharvi Dungar Formation of Barmer Basin of Late Paleocene age. The net uplift and erosion is also being checked with the help of AFTA-VR and seismic sections. The results show relatively no uplift in the southernmost part of the basin and a Guda field well is thus taken to be the reference well with respect to which the uplifts in different parts of the basin have been calculated. The northern part of the basin i.e. Air Field High wells experienced maximum uplift (~2150m). Interestingly, a few wells further south of the reference well show evidence for uplift. The study was able to point out errors in the report produced with the help of AFTA-VR which found out less uplift in Vijaya & Vandana oil fields as opposed to sonic log data. The process of finding out uplift using sonic log has a standard deviation of 200m as compared to about 500m error in AFTA-VR method. This study has major implications for hydrocarbon exploration. Maturation of source rock will be higher for any given geothermal history if net uplift and erosion is incorporated in maturation modeling. They can also be used for porosity predictions of reservoir units in undrilled targets.

  7. Basin characterization and determination of hydraulic connectivity of mega basins using integrated methods: (The case of Baro-Akobo and mega watershed beyond)

    Science.gov (United States)

    Alemayehu, Taye; Kebede, Tesfaye; Liu, Lanbo

    2018-01-01

    Despite being the longest river and the fourth in drainage area, Nile River has the lowest discharge per unit areas among the top ten rivers of the world. Understanding the hydrologic significance of the regional litho-stratigraphy and structures help to better understand the hydrodynamics. This work is aimed at characterizing the Baro-Akobo-Sobbat sub-basin of Nile and determine trans-basin flows. Integrated method is used to characterize the basin and determine the Baro-Akobo-Sobbat sub-basin's relationship with African Mesozoic Rifts. Oil and water well drilling logs; aeromagnetic, gravity and vertical electrical sounding data; and various study reports are used to establish regional lithostratigraphic correlations and determine trans-regional hydrogeological connectivity. A total of 633 samples collected from wells, springs, rivers, lakes, swamps and rain water are analysed for their chemical, stable isotopes, tritium and radon properties. The Baro-Akobo river basin is commonly presumed to have good groundwater potential, particularly in its lowland plain. However, it has poor exploitable groundwater potential and recharge rate due to the extensive clay cover, limited retention capacity and the loss of the bulk of the groundwaters through regional geological structures to the deep seated continental sediments; presumably reaching the hydraulically connected African Mesozoic Rifts; mainly Melut and Muglad. The deep underground northward flows, along Nile River is, presumably, retarded by Central African Shear Zone in the Sudan.

  8. Suceava Anthropic Torrential Basin - Prolegomena

    Directory of Open Access Journals (Sweden)

    Andrei-Emil BRICIU

    2010-05-01

    Full Text Available One problem discussed by urban hydrology today is the draining influence of the modern cities over the natural drainage systems. The increasing urban areas and of their imperviousness all over theworld is linked to floods shape modifications and unpredicted systemic implications.  Generally, the draining influence of a city over its environment begins when it has a surface great enough to create an anthropic-generated runoff during a rain with enoughprecipitations to provoke waters accumulation into street torrents. The size, imperviousness, precipitations, drainage system and water consumption of the Suceava city are analysed in order to estimate the discharge of the city into Suceava river at various rainfalls. The article is structured as follows:1. Argumentation on the class separation between natural and anthropic torrential basins.2. Placing Suceava city as one of the torrential anthropic basins in Romania using basic arguments.3. Extending one of the argument, the importance of the rainfalls, in more detailed discussions (rainfall characteristics mainly, but also its cumulative effect with the floods on the Suceava river and the consumption of water in the city, with two scenarios. 4. The city is analysed as being integrated into a metropolitan area which can exacerbate the influence of the main city over the surrounding natural drainage basins nearby that area.5. Conclusions, where measures are proposed in order to diminish the potential negative effects on environment and human society.This article is only an introduction to a more detailed analysis which will be complete with further field data.

  9. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  10. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  11. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2001-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  12. K Basins Field Verification Program

    International Nuclear Information System (INIS)

    Booth, H.W.

    1994-01-01

    The Field Verification Program establishes a uniform and systematic process to ensure that technical information depicted on selected engineering drawings accurately reflects the actual existing physical configuration. This document defines the Field Verification Program necessary to perform the field walkdown and inspection process that identifies the physical configuration of the systems required to support the mission objectives of K Basins. This program is intended to provide an accurate accounting of the actual field configuration by documenting the as-found information on a controlled drawing

  13. Identification of basin characteristics influencing spatial variation of river flows

    NARCIS (Netherlands)

    Mazvimavi, D.; Burgers, S.L.G.E.; Stein, A.

    2006-01-01

    The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics,

  14. Regionalization of the Upper Tana Basin of Kenya Using Stream ...

    African Journals Online (AJOL)

    Regionalization of the Upper Tana Basin of Kenya Using Stream Flow Records. ... river gauge stations in the basin using the empirical orthogonal function analysis ... the study basin to be grouped into four homogenous hydrological zones that ...

  15. Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range

    Science.gov (United States)

    Sueker, J.K.; Turk, J.T.; Michel, R.L.

    1999-01-01

    High-elevation basins in Colorado are a major source of water for the central and western United States; however, acidic deposition may affect the quality of this water. Water that is retained in a basin for a longer period of time may be less impacted by acidic deposition. Sulfur-35 (35S), a short-lived isotope of sulfur (t( 1/2 ) = 87 days), is useful for studying short-time scale hydrologic processes in basins where biological influences and water/rock interactions are minimal. When sulfate response in a basin is conservative, the age of water may be assumed to be that of the dissolved sulfate in it. Three alpine-subalpine basins on granitic terrain in Colorado were investigated to determine the influence of basin morphology on the residence time of water in the basins. Fern and Spruce Creek basins are glaciated and accumulate deep snowpacks during the winter. These basins have hydrologic and chemical characteristics typical of systems with rapid hydrologic response times. The age of sulfate leaving these basins, determined from the activity of 35S, averages around 200 days. In contrast, Boulder Brook basin has broad, gentle slopes and an extensive cover of surficial debris. Its area above treeline, about one-half of the basin, is blown free of snow during the winter. Variations in flow and solute concentrations in Boulder Brook are quite small compared to Fern and Spruce Creeks. After peak snowmelt, sulfate in Boulder Brook is about 200 days older than sulfate in Fern and Spruce Creeks. This indicates a substantial source of older sulfate (lacking 35S) that is probably provided from water stored in pore spaces of surficial debris in Boulder Brook basin.

  16. Unit Manning

    National Research Council Canada - National Science Library

    McGinniss, Mike

    2003-01-01

    .... This decision combines two crucial initiatives: first, transforming the Army from an individual soldier replacement system to a unit manning system that enhances cohesion and keeps trained soldiers, leaders, and commanders together longer, thereby...

  17. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  18. Drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Umanchik, N P; Demin, A V; Khrustalev, N N; Linnik, G N; Lovchev, S V; Rozin, M M; Sidorov, R V; Sokolov, S I; Tsaregradskiy, Yu P

    1981-01-01

    A drilling unit is proposed which includes a hydraulic lifter, hydraulic multiple-cylinder pump with valve distribution and sectional drilling pump with separators of the working and flushing fluid. In order to reduce metal consumption and the overall dimensions of the drilling unit, the working cavity of each cylinder of the hydraulic multiple-cylinder pump is equipped with suction and injection valves and is hydraulically connected to the working cavity by one of the sections of the drilling pump.

  19. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  20. Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin

    Directory of Open Access Journals (Sweden)

    Iqra Atif

    2018-04-01

    Full Text Available The Upper Indus basin (UIB is characterized by contrasting hydrometeorological behaviors; therefore, it has become pertinent to understand hydrometeorological trends at the sub-watershed level. Many studies have investigated the snow cover and hydrometeorological modeling at basin level but none have reported the spatial variability of trends and their magnitude at a sub-basin level. This study was conducted to analyze the trends in the contrasting hydrological regimes of the snow and glacier-fed river catchments of the Hunza and Astore sub-basins of the UIB. Mann-Kendall and Sen’s slope methods were used to study the main trends and their magnitude using MODIS snow cover information (2001–2015 and hydrometeorological data. The results showed that in the Hunza basin, the river discharge and temperature were significantly (p ≤ 0.05 decreased with a Sen’s slope value of −2.541 m3·s−1·year−1 and −0.034 °C·year−1, respectively, while precipitation data showed a non-significant (p ≥ 0.05 increasing trend with a Sen’s slope value of 0.023 mm·year−1. In the Astore basin, the river discharge and precipitation are increasing significantly (p ≤ 0.05 with a Sen’s slope value of 1.039 m3·s−1·year−1 and 0.192 mm·year−1, respectively. The snow cover analysis results suggest that the Western Himalayas (the Astore basin had a stable trend with a Sen’s slope of 0.07% year−1 and the Central Karakoram region (the Hunza River basin shows a slightly increasing trend with a Sen’s slope of 0.394% year−1. Based on the results of this study it can be concluded that since both sub-basins are influenced by different climatological systems (monsoon and westerly, the results of those studies that treat the Upper Indus basin as one unit in hydrometeorological modeling should be used with caution. Furthermore, it is suggested that similar studies at the sub-basin level of the UIB will help in a better understanding of the

  1. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  2. Integrated management of operations in Santos Basin: methodology applied to a new philosophy of operations

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Leandro Leonardo; Lima, Claudio Benevenuto de Campos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Derenzi Neto, Dario [Accenture, Rio de Janeiro, RJ (Brazil); Pinto, Vladimir Steffen [Soda IT, Rio de Janeiro, RJ (Brazil); Lima, Gilson Brito Alves [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    The objective of this paper is to present the methodology used to develop the Integrated Management of Operations (GIOp) project in Santos Basin Operational Unit (UO-BS) in the South-Southeast Exploration and Production area of PETROBRAS. The following text describes how the activities were carried out to gather improvements opportunities and to design To-Be processes, considering the challenging environment of the Santos Basin in the coming years. At the end of more than 12 months of work, more than 50 processes and sub-processes were redesigned, involving a multidisciplinary team in the areas of operations, maintenance, safety, health and environment, flow assurance, wells, reservoirs and planning. (author)

  3. Environmental geologic analysis of Rio de las Taguas basin Departmento Iglesia San Juan Argentina

    International Nuclear Information System (INIS)

    Arroqui Langer, A.; Cardus, A.; Sindern, S.; Nozica, G.

    2007-01-01

    A mineral environmental research project results where it has been located in Rio de las Taguas basin, Departamento Iglesia, Provincia de San Juan, Argentina. It has been placed in frontal Andean mountain in San Juan. In this geographic framework has been developed Au and Ag mineral project in order the world scale. The aim of this article is has been related the mineral and geological units bet wen the basin chemistry as well as to carry out future measurements mines impacts in this area. (author)

  4. Breaching of strike-slip faults and flooding of pull-apart basins to form the southern Gulf of California seaway from 8 to 6 Ma

    Science.gov (United States)

    Umhoefer, P. J.; Skinner, L. A.; Oskin, M. E.; Dorsey, R. J.; Bennett, S. E. K.; Darin, M. H.

    2017-12-01

    Studies from multiple disciplines delineate the development of the oblique-divergent Pacific - North America plate boundary in the southern Gulf of California. Integration of onshore data from the Loreto - Santa Rosalia margin with offshore data from the Pescadero, Farallon, and Guaymas basins provides a detailed geologic history. Our GIS-based paleotectonic maps of the plate boundary from 9 to 6 Ma show that evolution of pull-apart basins led to the episodic northwestward encroachment of the Gulf of California seaway. Because adjacent pull-apart basins commonly have highlands between them, juxtaposition of adjacent basin lows during translation and pull apart lengthening played a critical role in seaway flooding. Microfossils and volcanic units date the earliest marine deposits at 9(?) - 8 Ma at the mouth of the Gulf. By ca. 8 Ma, the seaway had flooded north to the Pescadero basin, while the Loreto fault and the related fault-termination basin was proposed to have formed along strike at the plate margin. East of Loreto basin, a short topographic barrier between the Pescadero and Farallon pull-apart basins suggests that the Farallon basin was either a terrestrial basin, or if breaching occurred, it may contain 8 Ma salt or marine deposits. This early southern seaway formed along a series of pull-apart basins within a narrow belt of transtension structurally similar to the modern Walker Lane in NV and CA. At ca. 7 Ma, a series of marine incursions breached a 75-100 km long transtensional fault barrier between the Farallon and Guaymas basins offshore Bahía Concepción. Repeated breaching events and the isolation of the Guaymas basin in a subtropical setting formed a 2 km-thick salt deposit imaged in offshore seismic data, and thin evaporite deposits in the onshore Santa Rosalia basin. Lengthening of the Guaymas, Yaqui, and Tiburon basins caused breaches of the intervening Guaymas and Tiburón transforms by 6.5-6.3 Ma, forming a permanent 1500 km-long marine seaway

  5. Variation of Probable Maximum Precipitation in Brazos River Basin, TX

    Science.gov (United States)

    Bhatia, N.; Singh, V. P.

    2017-12-01

    The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was

  6. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin took place in tectonically controlled grabens and half-grabens formed by extensional fault systems and accompanied by passive subsidence. The sedimentation history of the basin is related to the tectonic events that affected ...

  7. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin ... accompanied by passive subsidence. ... margins, whereas the concentration of fine-grained clastic sediments and ..... concentrated at the marginal areas of the basin. .... faults favoured the accumulation of alluvial fan.

  8. Proterozoic intracontinental basin: The Vindhyan example

    Indian Academy of Sciences (India)

    basins display marked similarities in their lithology, depositional setting and stratigraphic architecture. (Naqvi and Rogers 1987). This note sum- marises the stratigraphy, stratal architecture, sed- imentology and geochronology of the Vindhyan. Supergroup occurring in the Son valley region. (figure 1). 2. The Vindhyan basin.

  9. Attractors and basins of dynamical systems

    Directory of Open Access Journals (Sweden)

    Attila Dénes

    2011-03-01

    Full Text Available There are several programs for studying dynamical systems, but none of them is very useful for investigating basins and attractors of higher dimensional systems. Our goal in this paper is to show a new algorithm for finding even chaotic attractors and their basins for these systems. We present an implementation and examples for the use of this program.

  10. K-Basin isolation barrier seal

    International Nuclear Information System (INIS)

    Ruff, E.S.

    1994-10-01

    This report documents various aspects of the design, analysis, procurement, and fabrication of the hydraulic seal on the isolation barriers to be installed in the 100-K Area spent nuclear fuel basin. The isolation barrier is used to keep water in the basin in the event of an earthquake

  11. The Use of Isotope Techniques to Separate of Hydrography Components. Case Study: Ankara-Guvenc Basin

    International Nuclear Information System (INIS)

    Tekeli, Y.I.; Sorman, A.U.; Sayin, M.

    2002-01-01

    In this research, a stable environmental isotope study was carried out from analysis of water samples collected from rainfall, runoff (total discharge), springs (subsurface flows), and wells (ground waters)in Ankara-Guevenc basin having a drainage area of about 16.125 km 2 between 1996-2000. The aim of the study was to investigate the rainfall-runoff relationship for the basin. Recorded total ten discharge hydrographs are separated to their components using stable isotopes (Oxygen-18, Deuterium) contents. Among these samples, unit hydrographs from two one-peak storm hydrographs were derived using both isotope and graphical methods, and the derived unit hydrographs values including peaks were compared. Peak values of 10 and 20 minutes unit hydrographs of the basin derived by using isotope method (Q p = 1322 1/s and Q p = 1327 l/s) are compared with those of graphical method (Q p = 1656 1/s, and Q p = 1250 1/s) using Barnes semi-log approach. It was found out that, the contribution of subsurface flow which is component of total discharge hydrograph and originating from various sub layers are important in the total flow of basin using isotope method of approach

  12. Regional hydrology of the Dolores River Basin, eastern Paradox Basin, Colorado and Utah

    International Nuclear Information System (INIS)

    Weir, J.E. Jr.; Maxfield, E.B.; Zimmerman, E.A.

    1983-01-01

    The Dolores River Basin, is in the eastern part of the Paradox Basin and includes the eastern slope of the La Sal Mountains, the western slopes of the Rico and La Plata Mountains, and the southwest flank of the Uncompahgre Plateau. The climate of this area is more humid than most of the surrounding Colorado Plateau region. Precipitation ranges from slightly 200 mm/yr to 1000 mm/yr; the estimated volume of water falling on the area is 4000 x 10 6 cm 3 /yr. Of this total, about 600 x 10 6 cm 3 /yr is runoff; 190 x 10 6 cm 3 /yr recharges the upper ground-water system; and an estimated 55 x 10 6 cm 3 returns to the atmosphere via evapotranspiration from stream valleys. The remainder evaporates. Principal hydrogeologic units are permeable sandstone and limestone and nearly impermeable salt (halitic) deposits. Structurally, the area is dominated by northwest-trending salt anticlines and contiguous faults paralleled by synclinal structures. The Uncompahgre Plateau lies along the north and northeast sides of the area. The instrusive masses that form the La Sal Mountains are laccoliths with bysmaliths and other complex intrusive forms comprising, in gross form, moderately faulted omal structures. Intrusive rocks underlie the La Plata and Rico Mountains along the southeastern edge of the area. These geologic structures significantly modify ground-water flow patterns in the upper ground-water system, but have no conspicuous effect on the flow regime in the lower ground-water system. The water in the upper ground-water system generally is fresh except where it is affected by evaporite dissolution from salt anticlines. The water of the lower ground-water system is slightly saline to briny. Water quality of the Dolores River is slightly saline to fresh, based on dissolved chemical constituents; some of the smaller tributaries of the river have saline water

  13. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    Science.gov (United States)

    Wieczorek, Michael; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5

  14. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins

  15. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  16. Paleogene Sediment Character of Mountain Front Central Sumatra Basin

    Directory of Open Access Journals (Sweden)

    P. A. Suandhi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest, Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.

  17. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Dorri G. J. te Boekhorst

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  18. An underground view of the Albuquerque Basin

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.W.; Haase, C.S.; Lozinsky, R.P. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)

    1995-12-31

    Development of valid hydrogeologic models of New Mexico`s ``critical groundwater basins`` has been a long-term objective of the New Mexico Bureau of Mines and Mineral Resources (NMBMMR), a division of New Mexico Tech. The best possible information on basin hydrogeology is needed not only for incorporation in numerical models of groundwater-flow systems, which are necessary for proper management of limited water resources, but also for addressing public concerns relating to a wide range of important environmental issues. In the latter case, a hydrogeologist must be prepared to provide appropriate explanations of why groundwater systems behave physically and chemically as they do in both natural and man-disturbed situations. The paper describes the regional geologic setting, the geologic setting of the Albuquerque Basin, basin- and valley-fill stratigraphy, and the hydrogeologic model of the Albuquerque Basin. 77 refs., 6 figs., 1 tab.

  19. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  20. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  1. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  2. How Widely Applicable is River Basin Management? An Analysis of Wastewater Management in an Arid Transboundary Case

    Science.gov (United States)

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

  3. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee

  4. Geology and assessment of undiscovered oil and gas resources of the Zyryanka Basin Province, 2008

    Science.gov (United States)

    Klett, Timothy; Pitman, Janet K.; Moore, T.E.; Gautier, D.L.

    2017-11-22

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the Zyryanka Basin Province as part of the 2008 USGS Circum-Arctic Resource Appraisal program. The province is in the Russian Federation and is situated on the Omolon superterrane of the Kolyma block. The one assessment unit (AU) that was defined for this study, called the Zyryanka Basin AU, which coincides with the province, was assessed for undiscovered, technically recoverable, conventional resources. The estimated mean volumes of undiscovered resources in the Zyryanka Basin Province are ~72 million barrels of crude oil, 2,282 billion cubic feet of natural gas, and 61 million barrels of natural-gas liquids. About 66 percent of the study area and undiscovered petroleum resources are north of the Arctic Circle.

  5. Sampling, testing and modeling particle size distribution in urban catch basins.

    Science.gov (United States)

    Garofalo, G; Carbone, M; Piro, P

    2014-01-01

    The study analyzed the particle size distribution of particulate matter (PM) retained in two catch basins located, respectively, near a parking lot and a traffic intersection with common high levels of traffic activity. Also, the treatment performance of a filter medium was evaluated by laboratory testing. The experimental treatment results and the field data were then used as inputs to a numerical model which described on a qualitative basis the hydrological response of the two catchments draining into each catch basin, respectively, and the quality of treatment provided by the filter during the measured rainfall. The results show that PM concentrations were on average around 300 mg/L (parking lot site) and 400 mg/L (road site) for the 10 rainfall-runoff events observed. PM with a particle diameter of model showed that a catch basin with a filter unit can remove 30 to 40% of the PM load depending on the storm characteristics.

  6. Geology and assessment of undiscovered oil and gas resources of the Hope Basin Province, 2008

    Science.gov (United States)

    Bird, Kenneth J.; Houseknecht, David W.; Pitman, Janet K.; Moore, Thomas E.; Gautier, Donald L.

    2018-01-04

    The Hope Basin, an independent petroleum province that lies mostly offshore in the southern Chukchi Sea north of the Chukotka and Seward Peninsulas and south of Wrangel Island, the Herald Arch, and the Lisburne Peninsula, is the largest in a series of postorogenic (successor) basins in the East Siberian-Chukchi Sea region and the only one with exploratory-well control and extensive seismic coverage.In spite of the seismic coverage and well data, the petroleum potential of the Hope Basin Province is poorly known. The adequacy of hydrocarbon charge, in combination with uncertainties in source-rock potential and maturation, was the greatest risk in this assessment. A single assessment unit was defined and assessed, resulting in mean estimates of undiscovered, technically recoverable resources that include ~3 million barrels of oil and 650 billion cubic feet of nonassociated gas.

  7. Area geological characterization report for the Palo Duro and Dalhart Basins, Texas

    International Nuclear Information System (INIS)

    1983-07-01

    The present state of knowledge of the geology, hydrogeology, and seismology of the Palo Duro and Dalhart basins is summarized as a basis for future siting studies for a high-level nuclear waste repository. Large portions of the Texas Panhandle, and especially the Palo Duro basin, have stable geologic conditions and a favorable evaporite stratigraphy that warrant further study. Five salt-bearing formations containing thick salt units are present within the basin. Salt beds appear to be persistent over wide areas, relatively flat lying and structurally undisturbed. Available hydrogeologic data suggest that favorable conditions for waste isolation are widespread. The level and rate of seismic activity are low throughout the Texas Panhandle. 335 references, 83 figures, 17 tables

  8. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  9. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  10. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  11. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  12. Deleware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2000-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  13. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2005-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  14. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2002-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2004-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  16. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2003-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  18. Sediment quality in the north coastal basin of Massachusetts, 2003

    Science.gov (United States)

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston

  19. [Conservation Units.

    Science.gov (United States)

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  20. Geochemistry and hydrodynamics of the Paradox Basin region, Utah, Colorado and New Mexico

    Science.gov (United States)

    Hanshaw, B.B.; Hill, G.A.

    1969-01-01

    The Paradox Basin region is approximately bounded by the south flank of the Uinta Basin to the north, the Uncompahgre uplift and San Juan Mountains to the east, the Four Corners structural platform to the southeast, the north rim of the Black Mesa Basin and the Grand Canyon to the south and southwest, and the Wasatch Plateau and Hurricane fault system to the west. Some of these geologic features are areas of ground-water recharge or discharge whereas others such as the Four Corners platform do not directly influence fluid movement. The aquifer systems studied were: (1) Mississippian rocks; (2) Pinkerton Trail Limestone of Wengerd and Strickland, 1954; (3) Paradox Member of the Hermosa Formation; (4) Honaker Trail Formation of Wengerd and Matheny, 1958; (5) Permian rocks. Recharge in the Paradox Basin occurs on the west flank of the San Juan Mountains and along the west side of the Uncompahgre uplift. The direction of ground-water movement in each analyzed unit is principally southwest-ward toward the topographically low outcrop areas along the Colorado River in Arizona. However, at any point in the basin, flow may be in some other direction owing to the influence of intrabasin recharge areas or local obstructions to flow, such as faults or dikes. A series of potentiometric surface maps was prepared for the five systems studied. Material used in construction of the maps included outcrop altitudes of springs and streams, drill-stem tests, water-well records, and an electric analog model of the entire basin. Many structurally and topographically high areas within the basin are above the regional potentiometric surface; recharge in these areas will drain rapidly off the high areas and adjust to the regional water level. With a few exceptions, most wells in formations above the Pennsylvanian contain fresh ( 35,000 mg/l T.D.S.) reported. Most water samples from strata below the Permian are brines of the sodium chloride type but with large amounts of calcium sulfate or

  1. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Structural and reservoir quality assessment

    Science.gov (United States)

    Rusillon, Elme; Clerc, Nicolas; Makhloufi, Yasin; Brentini, Maud; Moscariello, Andrea

    2017-04-01

    A reservoir assessment was performed in the Greater Geneva Basin to evaluate the geothermal resources potential of low to medium enthalpy (Moscariello, 2016). For this purpose, a detail structural analysis of the basin was performed (Clerc et al., 2016) simultaneously with a reservoir appraisal study including petrophysical properties assessment in a consistent sedimentological and stratigraphical frame (Brentini et al., 2017). This multi-disciplinary study was organised in 4 steps: (1) investigation of the surrounding outcrops to understand the stratigraphy and lateral facies distribution of the sedimentary sequence from Permo-Carboniferous to Lower Cretaceous units; (2) development of 3D geological models derived from 2D seismic and well data focusing on the structural scheme of the basin to constrain better the tectonic influence on facies distribution and to assess potential hydraulic connectivity through faults between reservoir units ; (3) evaluation of the distribution, geometry, sedimentology and petrophysical properties of potential reservoir units from well data; (4) identification and selection of the most promising reservoir units for in-depth rock type characterization and 3D modeling. Petrophysical investigations revealed that the Kimmeridgian-Tithonian Reef Complex and the underlying Calcaires de Tabalcon units are the most promising geothermal reservoir targets (porosity range 10-20%; permeability to 1mD). Best reservoir properties are measured in patch reefs and high-energy peri-reefal depositional environments, which are surrounded by synchronous tight lagoonal deposits. Associated highly porous dolomitized intervals reported in the western part of the basin also provide enhanced reservoir quality. The distribution and geometry of best reservoir bodies is complex and constrained by (1) palaeotopography, which can be affected by synsedimentary fault activity during Mesozoic times, (2) sedimentary factors such as hydrodynamics, sea level variations

  2. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  3. Sedimentology and sequence stratigraphy of the Nkporo Group (Campanian–Maastrichtian, Anambra Basin, Nigeria

    Directory of Open Access Journals (Sweden)

    Shirley O. Odunze

    2013-04-01

    Full Text Available Integration of sedimentologic and sequence stratigraphic interpretations of the Nkporo Group has provided the basis for a basin-wide framework for prediction of potential source, seal and reservoir rocks in the Anambra Basin, Nigeria. Lithofacies and biostratigraphic data show that the Nkporo Group in the Anambra Basin contains three main facies associations (fluvio-deltaic facies, estuarine central basin/shallow shelf facies and estuarine channel fill facies that determine the reservoir containers, flow units and seals. The units are arranged to form two stratigraphic sequences represented by the Nkporo Shale–Owelli Sandstone and Owelli Sandstone–Enugu Shale successions, respectively. The transgressive systems tract in each sequence comprises coarse-grained fluvio-deltaic sandstone and an overlying open marine black carbonaceous mud rock. The highstand systems tracts comprise delta front deposits with average porosity, permeability and net-to-gross values estimated in the ranges of 30%, 3000 md and 0.9, respectively. The fluvio-deltaic and delta front facies which are encased in organically rich estuarine central basin/shallow shelf mud rocks are likely the potential reservoirs. Trapping capacity is enhanced by the presence of several N–S trending normal faults, and other microstructures related to the post-Santonian tensional regime in the Benue. The new information presented in this paper on potential seal, source and reservoir lithofacies within the Nkporo Group should serve as a useful contribution to the geological modelling of reservoirs within the Late Cretaceous–Paleocene succession in the Anambra Basin.

  4. Crustal Structure and Subsidence of the Williston Basin: Evidence from Receiver Function Stacking and Gravity Modeling

    Science.gov (United States)

    Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.

    2017-12-01

    The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.

  5. Social-ecological resilience and law in the Platte River Basin

    Science.gov (United States)

    Birge, Hannah E.; Allen, Craig R.; Craig, Robin; Garmestani, Ahjond S.; Hamm, Joseph A.; Babbitt, Christina; Nemec, Kristine T.; Schlager, Edella

    2014-01-01

    Efficiency and resistance to rapid change are hallmarks of both the judicial and legislative branches of the United States government. These defining characteristics, while bringing stability and predictability, pose challenges when it comes to managing dynamic natural systems. As our understanding of ecosystems improves, we must devise ways to account for the non-linearities and uncertainties rife in complex social-ecological systems. This paper takes an in-depth look at the Platte River basin over time to explore how the system's resilience—the capacity to absorb disturbance without losing defining structures and functions—responds to human driven change. Beginning with pre-European settlement, the paper explores how water laws, policies, and infrastructure influenced the region's ecology and society. While much of the post-European development in the Platte River basin came at a high ecological cost to the system, the recent tri-state and federal collaborative Platte River Recovery and Implementation Program is a first step towards flexible and adaptive management of the social-ecological system. Using the Platte River basin as an example, we make the case that inherent flexibility and adaptability are vital for the next iteration of natural resources management policies affecting stressed basins. We argue that this can be accomplished by nesting policy in a resilience framework, which we describe and attempt to operationalize for use across systems and at different levels of jurisdiction. As our current natural resources policies fail under the weight of looming global change, unprecedented demand for natural resources, and shifting land use, the need for a new generation of adaptive, flexible natural resources govern-ance emerges. Here we offer a prescription for just that, rooted in the social , ecological and political realities of the Platte River basin. Social-Ecological Resilience and Law in the Platte River Basin (PDF Download Available). Available

  6. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  7. Rural Settlement Development and Environment Carrying Capacity Changes in Progo River Basin

    Directory of Open Access Journals (Sweden)

    Su Ritohardoyo

    2016-12-01

    Full Text Available Generally the broader rural settlement the heavier population pressure on agricultural land. It indicates that carrying capacity of the rural environment threatened lower. The spatial distribution of the threat in a river basin is quite important as one of the river basin management inputs. Therefore, this article aims at exposing result of research about influence rural population growth and rural settlement land changes to environment carrying capacity. This research was carried out in the rural area in Progo river basin consists 56 sub districts (34 sub districts part of Jawa Tengah Province, and 22 sub districts part of Yogyakarta Special Region. The whole sub districts are such as unit analysis, and research method is based on secondary data analysis. Several data consist Districts Region in Figure 1997 and 2003 (Temanggung, Magelang, Kulon Progo, Sleman and Bantul such as secondary data analysis. Data analysis employs of frequency and cross tabulation, statistics of regression and test. Result of the research shows that population growth of the rural areas in Progo river basin are about 0.72% annum; or the household growth about 3.15% annum as long as five years (1996-2003. Spatial distribution of the population growth in the upper part of the Progo river basin is higher than in the middle and lower part of the basin. The number proportion of farmer in every sub district area in this river basin have increased from 69.95% in 1997 to 70.81% in the year of 2003. It means that work opportunities broadening are still sluggish. However, the number proportion of farmers in the upper part of the Progo river basin is lower than in the middle and lower part of the basin. The rates of settlement land areas changes (0.32 ha/annum as long as five years (1997-2003 is not as fast as the rates of agricultural land areas changes (0.47 ha/annum. Spatial land settlement areas changes in the lower (6.1 ha/annum and middle parts (2.4 ha/annum faster than

  8. Geology, Water, and Wind in the Lower Helmand Basin, Southern Afghanistan

    Science.gov (United States)

    Whitney, John W.

    2006-01-01

    earth' by 19th century visitors. During dry years, large plumes of dust originating from Sistan are recorded by weather satellites. The Helmand River drains about 40 percent of Afghanistan and receives most of its moisture from melting snow and spring storms. Similar to many desert streams, the Helmand and its main tributary, the Arghandab River, are characterized by large fluctuations in monthly and annual discharges. Water from the Helmand accumulates in several hamuns (shallow lakes) in the Sistan depression. The wetlands surrounding these hamuns are the largest in western Asia and are directly affected by droughts and floods on the Helmand. Average annual discharge on the Helmand is about 6.12 million megaliters (million cubic meters), and the annual discharge varies by a factor of five. In 2005, the region was just beginning to recover from the longest drought (1998-2005) of record back to 1830. Annual peak discharges range from less than 80 cubic meters per second in 1971 to nearly 19,000 cubic meters per second in 1885. Large floods fill each hamun to overflowing to create one large lake that overflows into the normally dry Gaud-i Zirreh basin. The interaction of flooding, active subsidence, and wind erosion causes frequent channel changes on the Helmand delta. A major development effort on the Helmand River was initiated after World War II with substantial aid from the United States. Two dams and several major canals were completed in the 1950s; however, poor drainage conditions on the newly prepared agricultural fields caused extensive waterlogging and salinization. New drains were installed and improved agricultural methods were implemented in the 1970s, and some lands became more productive. Since 1980, Afghanistan has endured almost constant war and civil and political strife. In 2005, the country was on a path to rebuild much of its technical infrastructure. Revitalization of agricultural lands in the lower Helmand Basin and improved managem

  9. The Messinian evaporites in the Levant Basin: lithology, deformation and its evolution

    Science.gov (United States)

    Feng, Ye; Steinberg, Josh; Reshef, Moshe

    2017-04-01

    The lithological composition of the Messinian evaporite in the Levant Basin remains controversial and salt deformation mechanisms are still not fully understood, due to the lack of high resolution 3D depth seismic data and well logs that record the entire evaporite sequence. We demonstrate how 3D Pre-stack depth migration (PSDM) and intra-salt tomography can lead to improved salt imaging. Using 3D PSDM seismic data with great coverage and deepwater well log data from recently drilled boreholes, we reveal intra-salt reflective units associated with thin clastic layers and a seismic transparent background consisting of uniform pure halite. Structural maps of all internal reflectors are generated for stratigraphy and attributes analysis. High amplitude fan structures in the lowermost intra-salt reflector are observed, which may indicate the source of the clastic formation during the Messinian Salinity Crisis (MSC). The Messinian evaporite in the Levant Basin comprises six units; the uppermost unit thickens towards the northwest, whereas the other units are uniform in thickness. The top of salt (TS) horizon is relatively horizontal, while all other intra-salt reflectors and base of salt (BS) dip towards the northwest. Different seismic attributes are used for identification of intra-salt deformation patterns. Maximum curvature maps show NW-striking thrust faults on the TS and upper intra-salt units, and dip azimuth maps are used to show different fold orientations between the TS and intra-salt units, which indicate a two-phase deformation mechanism: basin NW tilting as syn-depositional phase and NNE spreading of Plio-Pleistocene overburden as post-depositional phase. RMS amplitude maps are used to identify a channelized system on the TS. An evaporite evolution model during the MSC of the Levant Basin is therefore established based on all the observations. Finally the mechanical properties of the salts will be utilized to explore salt deformation in the Levant Basin

  10. Spatial relationships of levees and wetland systems within floodplains of the Wabash Basin, USA

    Science.gov (United States)

    Bray, E. N.; Morrison, R. R.; Nardi, F.; Annis, A.; Dong, Q.

    2017-12-01

    Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influences wetland ecosystems. The construction of levees can reduce river-floodplain connectivity, yet it is unclear how levees affect wetlands within a river system, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete HUC-12 sub-basins. Our results show that cumulative wetland area is relatively constant in sub-basins that contain levees, regardless of maximum stream order within the sub-basin. In sub-basins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to be evaluated at finer-resolution spatial scales.

  11. Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.

    Science.gov (United States)

    Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune

    2010-10-01

    Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation. © 2010 Society for Conservation Biology.

  12. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin

    Science.gov (United States)

    Jie, M.; Zhang, J.; Guo, B. B.

    2017-12-01

    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  13. Stalling Tropical Cyclones over the Atlantic Basin

    Science.gov (United States)

    Nielsen-Gammon, J. W.; Emanuel, K.

    2017-12-01

    Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.

  14. Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution

    Science.gov (United States)

    Poisson, André; Vrielynck, Bruno; Wernli, Roland; Negri, Alessandra; Bassetti, Maria-Angela; Büyükmeriç, Yesim; Özer, Sacit; Guillou, Hervé; Kavak, Kaan S.; Temiz, Haluk; Orszag-Sperber, Fabienne

    2016-01-01

    We present here a reappraisal of the tectonic setting, stratigraphy and palaeogeography of the central part of the Sivas Basin from Palaeocene to late Miocene. The Sivas Basin is located in the collision zone between the Pontides (southern Eurasia) and Anatolia (a continental block rifted from Gondwana). The basin overlies ophiolites that were obducted onto Anatolia from Tethys to the north. The Central Anatolian Crystalline Complex (CACC) experienced similar ophiolite obduction during Campanian time, followed by exhumation and thrusting onto previously emplaced units during Maastrichtian time. To the east, crustal extension related to exhumation of the CACC created grabens during the early Tertiary, including the Sivas Basin. The Sivas Basin underwent several tectonic events during Paleogene-Neogene. The basin fill varies, with several sub-basins, each being characterised by a distinctive sequence, especially during Oligocene and Miocene. Evaporite deposition in the central part of the basin during early Oligocene was followed by mid-late Oligocene fluvio-lacustrine deposition. The weight of overlying fluvial sediments triggered salt tectonics and salt diapir formation. Lacustrine layers that are interbedded within the fluviatile sediments have locally yielded charophytes of late Oligocene age. Emergent areas including the pre-existing Sivas Basin and neighbouring areas were then flooded from the east by a shallow sea, giving rise to a range of open-marine sub-basins, coralgal reef barriers and subsiding, restricted-marine sub-basins. Utilising new data from foraminifera, molluscs, corals and nannoplankton, the age of the marine transgression is reassessed as Aquitanian. Specifically, age-diagnostic nannoplankton assemblages of classical type occur at the base of the transgressive sequence. However, classical stratigraphic markers have not been found within the planktic foraminiferal assemblages, even in the open-marine settings. In the restricted-marine sediments

  15. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    Science.gov (United States)

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment

  16. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  17. Estimating Stream Discharge of Aboine River Basin of Southeast ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of inter-basin parameters showed that the Aboine drainage basin is basically a flat surface. This ... on the fluvial system and also for predicting the basin output variables. Surface .... outflows of rainwater from the basin as has been done by ...

  18. Sedimentary Evolution of Marginal Ganga Foreland Basin during the Late Pleistocene

    Science.gov (United States)

    Ghosh, R.; Srivastava, P.; Shukla, U. K.

    2017-12-01

    Ganga foreland basin, an asymmetrical basin, was formed as result of plate-plate collision during middle Miocene. A major thrust event occurred during 500 ka when upper Siwalik sediments were uplifted and the modern Ganga foreland basin shifted towards craton, making a more wide and deep basin. The more distal part of this basin, south of axial river Yamuna, records fluvial sedimentary packages that helps to understand dynamics of peripheral bulge during the late Quaternary. Sedimentary architecture in conjunction with chemical index of alteration (CIA), paleocurrent direction and optically stimulated dating (OSL) from 19 stratigraphic sections helped reconstructing the variations in depositional environments vis-à-vis climate change and peripheral bulge tectonics. Three major units (i) paleosol; (ii) cratonic gravel; (iii) interfluve succession were identified. The lower unit-I showing CIA values close to 70-80 and micro-morphological features of moderately well-developed pedogenic unit that shows development of calcrete, rhizoliths, and mineralized organic matter in abundance. This is a regional paleosols unit and OSL age bracketed 200 ka. This is unconformably overlain by unit-II, a channelized gravel composed of sub-angular to sub-rounded clasts of granite, quartz, quartzite, limestone and calcrete. The gravel have low CIA value up to 55, rich in vertebrate fossil assemblages and mean paleocurrent vector direction is NE, which suggesting deposition by a fan of a river draining craton into foreland. This unit is dated between 100 ka and 54 ka. The top unit-III, interfluve succession of 10-15 m thick is composed of dark and light bands of sheet like deposit of silty clay to clayey silt comprises sand lenses of red to grey color and displaying top most OSL age is 12 ka. The basal mature paleosol signifies a humid climate developed under low subsidence rate at >100 ka. After a hiatus represented by pedogenic surface deposition of unit-II (gravel) suggests uplift

  19. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    Science.gov (United States)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  20. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    Science.gov (United States)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  1. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus Province, little of the land is flat, and most of the flat land is in the flood plains and terraces of streams; this has caused most development in this part of the basin to be near streams. The Blue Ridge Province is composed of crystalline rocks, and the Valley and Ridge and Appalachian Plateaus Provinces contain both carbonate and clastic rocks. Annual precipitation ranges from about 36 in. to more than 60 in., and is orographically affected, both locally and regionally. Average annual air temperature ranges from about 43?F to about 55?F, and varies with altitude but not physiographic province. Precipitation is greatest in the summer and least in the winter, and has the least seasonal variation in the Blue Ridge Province. In 1990, the population of the basin was about 870,000, of whom about 25 percent lived in the Charleston, W. Va. metropolitan area. About 75 million tons of coal were mined in the Kanawha River Basin in 1998. This figure represents about 45 percent of the coal mined in West Virginia, and about seven percent of the coal mined in the United States. Dominant forest types in the basin are Northern Hardwood, Oak-Pine, and Mixed Mesophytic. Agricultural land use is more common in the Valley and Ridge and Blue Ridge Provinces than in the Appalachian Plateaus Province. Cattle are the principal agricultural products of the basin. Streams in the Blue Ridge Province and Allegheny Highlands have the most runoff in the basin, and streams in the Valley and Ridge Province and the southwestern Appalachian Plateaus have the least runoff. Streamflow is greatest in the

  2. Assessment of Appalachian basin oil and gas resources: Carboniferous Coal-bed Gas Total Petroleum System: Chapter G.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Carboniferous Coal-bed Gas Total Petroleum System, which lies within the central and southern Appalachian basin, consists of the following five assessment units (AUs): (1) the Pocahontas Basin AU in southern West Virginia, eastern Kentucky, and southwestern Virginia; (2) the Central Appalachian Shelf AU in Tennessee, eastern Kentucky, and southern West Virginia; (3) the East Dunkard (Folded) AU in western Pennsylvania and northern West Virginia; (4) the West Dunkard (Unfolded) AU in Ohio and adjacent parts of Pennsylvania and West Virginia; and (5) the Appalachian Anthracite and Semi-Anthracite AU in Pennsylvania and Virginia. Only two of these assessment units were assessed quantitatively by the U.S. Geological Survey (USGS) in the National Oil and Gas Assessment in 2002. The USGS estimated the Pocahontas Basin AU and the East Dunkard (Folded) AU to contain a mean of about 3.6 and 4.8 trillion cubic feet (TCF) of undiscovered, technically recoverable gas, respectively.

  3. Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico

    Science.gov (United States)

    Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.

    2011-01-01

    This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.

  4. Geology, Surficial, Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, and shallow aquifers and confining units; Excel spread sheet with core names, coordinates, and data co, Published in 2006, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2006. Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize...

  5. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    Science.gov (United States)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-10-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  6. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  7. 183-H Basin sludge treatability test report

    International Nuclear Information System (INIS)

    Biyani, R.K.

    1995-01-01

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  8. K-Basins S/RIDS

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  9. K-Basins S/RIDS

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.J.

    1995-09-22

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  10. K-Basins S/RIDS

    International Nuclear Information System (INIS)

    Watson, D.J.

    1997-01-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES(ampersand)H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  11. KE Basin water dispositioning engineering study

    International Nuclear Information System (INIS)

    Hunacek, G.S.; Gahir, S.S.

    1994-01-01

    This engineering study is a feasibility study of KE Basin water treatment to an acceptable level and dispositioning the treated water to Columbia River, ground through ETF or to air through evaporation

  12. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  13. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  14. Susquehanna River Basin Flood Control Review Study

    Science.gov (United States)

    1980-08-01

    and made recommendations for an intergrated water plan for the Basin and included a specific Early Action Plan. Concerning flood damage reduction, the...transportation and by agriculture as a source of income and occupation. The river served as a source of transportation for trade and commerce and also as a... trade patterns, and labor market areas. The Susquehanna River Basin is largely comprised of BEA economic areas 011, 012, 013, and 016. Figure II shows the

  15. Geo-economy of the Caspian basin

    International Nuclear Information System (INIS)

    Raballand, G.

    2003-05-01

    The Caspian area is essential for the development of the central Asia countries and Caucasus. Excepted the Iran and the Russia, these areas economy is poor. The hydrocarbons exploitation should reinforce the economic weight of these States. The author analyzes the Caspian area economies and shows that the basin economies are confronted with three handicaps, and that even with different economic ways, the soviet economic system is still present in the basin. (A.L.B.)

  16. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    International Nuclear Information System (INIS)

    Evans, S. K.

    2007-01-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve 'clean closure' of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems

  17. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    Science.gov (United States)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  18. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  19. Geology of the Devonian black shales of the Appalachian Basin

    Science.gov (United States)

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  20. Catalyzing Collaboration: Wisconsin's Agency-Initiated Basin Partnerships

    Science.gov (United States)

    Genskow, Kenneth D.

    2009-03-01

    Experience with collaborative approaches to natural resource and environmental management has grown substantially over the past 20 years, and multi-interest, shared-resources initiatives have become prevalent in the United States and internationally. Although often viewed as “grass-roots” and locally initiated, governmental participants are crucial to the success of collaborative efforts, and important questions remain regarding their appropriate roles, including roles in partnership initiation. In the midst of growing governmental support for collaborative approaches in the mid-1990s, the primary natural resource and environmental management agency in Wisconsin (USA) attempted to generate a statewide system of self-sustaining, collaborative partnerships, organized around the state’s river basin boundaries. The agency expected the partnerships to enhance participation by stakeholders, leverage additional resources, and help move the agency toward more integrated and ecosystem-based resource management initiatives. Most of the basin partnerships did form and function, but ten years after this initiative, the agency has moved away from these partnerships and half have disbanded. Those that remain active have changed, but continue to work closely with agency staff. Those no longer functioning lacked clear focus, were dependent upon agency leadership, or could not overcome issues of scale. This article outlines the context for state support of collaborative initiatives and explores Wisconsin’s experience with basin partnerships by discussing their formation and reviewing governmental roles in partnerships’ emergence and change. Wisconsin’s experience suggests benefits from agency support and agency responsiveness to partnership opportunities, but cautions about expectations for initiating general-purpose partnerships.

  1. Geothermal resources of the northern gulf of Mexico basin

    Science.gov (United States)

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  2. California Basin Studies (CaBS)

    International Nuclear Information System (INIS)

    Gorsline, D.S.

    1991-01-01

    The California Continental Borderland's present configuration dates from about 4 to 5 X 10 6 years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10 6 years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation

  3. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  4. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    Science.gov (United States)

    Bahlburg, H.; Breitkreuz, C.

    originated as an extensional structure at the continental margin of Gondwana. Independent lines of evidence imply that basin evolution was not connected to subduction. Thus, the basin could not have been in a fore-arc position as previously postulated. Above the folded Devonian-Early Carboniferous strata, a continental volcanic arc developed from the Late Carboniferous to the Middle Triassic. It represents the link between the Choiyoi Province in central Chile and Argentina, and the Mitu Group rift in southern Peru. The volcanic arc succession is characterized by the prevalence of silicic lavas and tuffs and volcaniclastic sedimentary rocks. During the latest Carboniferous, a thick ostracod-bearing lacustrine unit formed in an extended lake in the area of the Depresión Preandina. This lake basin originated in an intra-arc tensional setting. During the Early Permian, marine limestones were deposited on a marine platform west and east of the volcanic arc, connected to the depositional area of the Copacabana Formation in southern Peru.

  5. Time-Domain Electromagnetic Data Collected in the U.S. Part of the Mesilla Basin/Conejos-Médanos Aquifer System in Doña Ana County, New Mexico, and El Paso County, Texas, November 2012

    Data.gov (United States)

    Department of the Interior — The transboundary Mesilla Basin/Conejos-Médanos aquifer system was identified as one of the priority transboundary aquifer systems for additional study by the United...

  6. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    Science.gov (United States)

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  7. Geologic appraisal of Paradox basin salt deposits for water emplacement

    Science.gov (United States)

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin.The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits.Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines.The central or salt-bearing cores of the anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable.The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively slow

  8. Microcontroller Unit

    International Nuclear Information System (INIS)

    Tulaev, A.B.

    1994-01-01

    The general purpose micro controller unit based on 8-bit single-chip microcomputer of the MCS-51 family is described. The controller has the data and program memories, a serial interface and an external bus for functional I/O extensions. The controller consists of a microcomputer chip, up to 4 ROM-RAM chips and 10 SSI and MSI chips, and it measures 160x120 mm. Both hardware and software micro system debugging tools are described. (author). 8 refs., 1 fig., 1 tab

  9. Wyoming Basin Rapid Ecoregional Assessment

    Science.gov (United States)

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    The Wyoming Basin Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM). The overall goals of the BLM Rapid Ecoregional Assessments (REAs) are to identify important ecosystems and wildlife habitats at broad spatial scales; identify where these resources are at risk from Change Agents, including development, wildfire, invasive species, disease and climate change; quantify cumulative effects of anthropogenic stressors; and assess current levels of risk to ecological resources across a range of spatial scales and jurisdictional boundaries by assessing all lands within an ecoregion. There are several components of the REAs. Management Questions, developed by the BLM and stakeholders for the ecoregion, identify the regionally significant information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant species and ecological communities that are of management concern. Change Agents that currently affect or are likely to affect the condition of species and communities in the future are identified and assessed. REAs also identify areas that have high conservation potential that are referred to as “large intact areas.” At the ecoregion level, the ecological value of large intact areas is based on the assumption that because these areas have not been greatly altered by human activities (such as development), they are more likely to contain a variety of plant and animal communities and to be resilient and resistant to changes resulting from natural disturbances such as fire, insect outbreaks, and disease.

  10. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1978

    International Nuclear Information System (INIS)

    Dutton, S.P.; Finley, R.J.; Galloway, W.E.; Gustavson, T.C.; Handford, C.R.; Presley, M.W.

    1979-01-01

    Early in 1977 the Bureau of Economic Geology was invited to assemble and evaluate geologic data on several salt-bearing basins within the State of Texas as a contribution to the national nuclear repository program. In response to this request, the Bureau, acting as a technical research unit of the University of Texas at Austin and the State of Texas, initiated a long-term program to assemble and interpret all geologic and hydrologic information necessary for delineation, description, and evaluation of salt-bearing strata in the Panhandle area. The technical program can be subdivided into three broad research tasks, which are addressed by a basin analysis group, a surface studies group, and a basin geohydrology group. The basin analysis group has assembled the regional stratigraphic and structural framework of the total basin fill, initiated evaluation of natural resources, and selected stratigraphic core sites for sampling the salt and associated beds. Two drilling sites have provided nearly 8000 feet (2400 m) of core material for analysis and testing of the various lithologies overlying and interbedded with salt units. Concurrently, the surface studies group has collected ground and remotely-sensed data to describe surficial processes, including carbonate and evaporate solution, geomorphic evolution, and fracture system development. The newly formed basin geohydrology group will evaluate both shallow and deep circulation of fluids within the basins. This paper, a summary report of progress, reviews principal conclusions and illustrates the methodologies used and the types of data and displays generated

  11. Disaster mitigation at drainage basin of Kuranji Padang City

    Science.gov (United States)

    Utama, L.; Yamin, M.

    2017-06-01

    Floods is flooding of effect of exit water groove river because big river debit sudden its accomodation energy, happened swiftly knock over areas which is debasement, in river basin and hollow. Flow debris or which is recognized with galodo have knock over river of Kuranji year 2012 in Padang city. Area is floods disaster are: 19 Sub-District in 7 district, and hard that is district of Pauh and district of Nanggalo. Governmental claim tired loss of Rp 263,9 Billion while Government of Provinsi West Sumatera appraise loss estimated by Fourty Billion Rupiah (Padang Ekspress 28 July 2012), with detail of damage house counted 878 unit, damage religious service house 15 unit, damage irrigation 12 unit, damage bridge 6 unit, damage school 2 unit, damage health post 1 unit. Result of calculation, by using rainfall of year 2003 until year 2015 with method Gumbel, Hasper and Wedwen, got high rainfall plan is 310,00 mm, and method Melchior and Hasper floods is 1125,86 m³ / second. From result of study analyse at Citra map of correlation and image to parameters cause of floods, and use software Watershed Modelling System (WMS) this region have two class that is middle susceptance and low susceptance. Middle susceptance area is there are in middle river and downstream river, with inclination level off. Low susceptance area there is middle river. Area which have potency result the happening of floods is headwaters, because having keen ramp storey level ( 45 - 55%) and is hilly. For the mitigasi of floods disaster determined by three area evacuate that are: Sub-District Of Kelurahan Limau Manis District Of Pauh, Sub-District Of Surau Gadang District Of Nanggalo, and Sub-District Of Lambung Bukik District of Pauh, in the form of map.

  12. Basin Visual Estimation Technique (BVET) and Representative Reach Approaches to Wadeable Stream Surveys: Methodological Limitations and Future Directions

    Science.gov (United States)

    Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor

    2004-01-01

    Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...

  13. Wind erosion potential influenced by tillage in an irrigated potato-sweet corn rotation in the Columbia Basin

    Science.gov (United States)

    Wind erosion is a concern within the Columbia Basin of the Inland Pacific Northwest (PNW) United States due to the sandy texture of soils and small amount of residue retained on the soil surface after harvest of vegetable crops like potato. This study assessed potential wind erosion of an irrigated ...

  14. Quantifying Changes in Accessible Water in the Colorado River Basin

    Science.gov (United States)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  15. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  16. Petroleum systems in rift basins – a collective approach in South-east Asian basins.

    NARCIS (Netherlands)

    Doust, H.; Sumner, D.

    2007-01-01

    This paper synthesizes some of the main conclusions reached in a recent regional review of the Tertiary basins of Southeast Asia, carried out by Shell. Four distinctive types of petroleum systems, correlating with the four main stages of basin evolution (early to late syn-rift and early to late

  17. Geology and undiscovered resource assessment of the potash-bearing Pripyat and Dnieper-Donets Basins, Belarus and Ukraine

    Science.gov (United States)

    Cocker, Mark D.; Orris, Greta J.; Dunlap, Pamela; Lipin, Bruce R.; Ludington, Steve; Ryan, Robert J.; Słowakiewicz, Mirosław; Spanski, Gregory T.; Wynn, Jeff; Yang, Chao

    2017-08-03

    six potash mines in the Starobin area. Published reserves in the Pripyat Basin area are about 7.3 billion metric tons of potash ore (about 1.3 billion metric tons of K2O) mostly from potash-bearing salt horizons in the Starobin and Petrikov mine areas. The 15,160-square-kilometer area of the Pripyat Basin underlain by Famennian potash-bearing salt contains as many as 60 known potash-bearing salt horizons. Rough estimates of the total mineral endowment associated with stratabound Famennian salt horizons in the Pripyat Basin range from 80 to 200 billion metric tons of potash-bearing salt that could contain 15 to 30 billion metric tons of K2O.Parameters (including the number of economic potash horizons, grades, and depths) for these estimates are not published so the estimates are not easily confirmed. Historically, reserves have been estimated above a depth of 1,200 meters (m) (approximately the depths of conventional underground mining). Additional undiscovered K2O resources could be significantly greater in the remainder of the Fammenian salt depending on the extents and grades of the 60 identified potash horizons above the USGS assessment depth of 3,000 m in the remainder of the tract. Increasing ambient temperatures with increasing depths in the eastern parts of the Pripyat Basin may require a solution mining process which is aided by higher temperatures.No resource or reserve data have been published and little is known about stratabound Famennian and Frasnian salt in the Dnieper-Donets Basin. These Upper Devonian salt units dip to the southeast and extend to depths of 15–19 kilometers (km) or greater. The tract of stratabound Famennian salt that lies above a depth of 3 km, the depth above which potash is technically recoverable by solution mining, underlies an area of about 15,600 square kilometers (km2). If Upper Devonian salt units in the Dnieper-Donets Basin contain potash-bearing strata similar to salt of the same age in the Pripyat Basin, then the

  18. Petroleum geology of the Palo Duro Basin, Texas Panhandle

    International Nuclear Information System (INIS)

    Rose, P.R.

    1986-03-01

    The Palo Duro Basin, Permian Basin, Texas is an asymmetric, relatively shallow, intracratonic basin in the southern Texas Panhandle filled mostly by Mississippian, Pennsylvanian, and Permian sedimentary rocks. Although deeper and prolific prolific petroleum-producing basins adjoin it on the north (Anadarko Basin), south (Midland Basin), and east (Hardeman Basin), the Palo Duro Basin has produced remarkably small amounts of oil and gas to date. This is all the more noteworthy because the sedimentary sequence and rock types of the basin are similar to those of the adjacent basins. Analyses of the stratigraphic succession and structural configuration of the Palo Duro Basin suggest that adequate reservoir rocks, top-seals, and geologic structures are present. Most of the structures formed early enough to have trapped hydrocarbons if they were migrating in the rock column. Although additional work is under way to properly address the question of the petroleum source rocks, generation, and migration, the general absence of production in the basin may relate to an overall deficiency in hydrocarbon generation within the basin. Geologic information in this report will form part of the basis for further analysis and conclusions on hydrocarbon potential in the Palo Duro Basin

  19. GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration.

    Science.gov (United States)

    Fernandez, Paz; Delgado, Expectación; Lopez-Alonso, Mónica; Poyatos, José Manuel

    2018-02-01

    This article presents analyses of soil and environmental information for the Darro River basin (Granada-Spain) preliminary to its hydrological and forestry restoration. These analyses were carried out using a geographical information system (GIS) and employing a new procedure that adapts hydrological forest-restoration methods. The complete analysis encompasses morphological conditions, soil and climate characteristics as well as vegetation and land use. The study investigates soil erosion in the basin by using Universal Soil Loss Equation (USLE) and by mapping erosion fragility units. The results are presented in a set of maps and their analysis, providing the starting point for river basin management and the hydrological and forestry-restoration project that was approved at the end of 2015. The presence of soft substrates (e.g. gravel and sand) indicates that the area is susceptible to erosion, particularly the areas that are dominated by human activity and have little soil protection. Finally, land use and vegetation cover were identified as key factors in the soil erosion in the basin. According to the results, river authorities have included several measures in the restoration project aimed at reducing the erosion and helping to recover the environmental value of this river basin and to include it in recreation possibilities for the community of Granada. The presented analytical approach, designed by the authors, would be useful as a tool for environmental restoration in other small Mediterranean river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  1. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  2. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development

    DEFF Research Database (Denmark)

    Brozena, J.M.; Childers, V.A.; Lawver, L.A.

    2003-01-01

    In 1998 and 1999, new aerogeophysical surveys of the Arctic Ocean's Eurasia Basin produced the first collocated gravity and magnetic measurements over the western half of the basin. These data increase the density and extend the coverage of the U.S. Navy acromagnetic data from the 1970s. The new...... data reveal prominent bends in the isochrons that provide solid geometrical constraints for plate reconstructions. Tentative identification of anomaly 25 in the Eurasia Basin links early basin opening to spreading in the Labrador Sea before the locus of spreading in the North Atlantic shifted...... to the Norwegian-Greenland Sea. With the opening of the Labrador Sea, Greenland began similar to200 km of northward movement relative to North America and eventually collided with Svalbard, Ellesmere Island, and the nascent Eurasia ocean basin. Both gravity and magnetic data sets reconstructed to times prior...

  3. Persistent organic pollutants in wetlands of the Mekong Basin

    Science.gov (United States)

    Triet, Tran; Barzen, Jeb Anthony; Choowaew, Sansanee; Engels, Jon Michael; Ni, Duong Van; Mai, Nguyen Anh; Inkhavilay, Khamla; Soben, Kim; Sethik, Rath; Gomotean, Bhuvadol; Thuyen, Le Xuan; Kyi, Aung; Du, Nguyen Huy; Nordheim, Richard; Lam, Ho Si Tung; Moore, Dorn M.; Wilson, Scott

    2013-01-01

    In this study, the presence and concentration of persistent organic pollutants (POP) were assessed in surface sediments collected from a wide variety of wetlands located throughout the Mekong Basin in Myanmar, Lao People’s Democratic Republic (PDR), Thailand, Cambodia, and Vietnam. Of the 39 POPs tested in 531 sediment samples, dichlorodiphenyltrichloroethane (DDT) and its metabolites endosulfan, hexachlorobenzene (HCB), and endrin were most commonly detected. Even though DDT was banned in the 1990s, some use of DDT may still be occurring in the Mekong Basin. The amount of metabolites for DDT—dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)—found, however, suggests that use of DDT is on the decline throughout the region. HCB and endrin were found distributed broadly throughout the Mekong Basin but not in high amounts. The concentration and distribution of endosulfan and its metabolites represent a serious problem requiring further study and management action. While the total loading of POPs in wetland sediments of the Mekong Basin was generally low, hotspot sites occurred where concentrations exceeded established ecological risk thresholds. For example, wetlands of the open, dry dipterocarp forest of northern Cambodia and Vietnam as well as wetlands in the Mekong Delta of Vietnam contained high concentrations of some POPs. High concentrations of POPs were detected in some wetlands important for biodiversity conservation. Hotspots identified in wetlands such as the Tonle Sap not only had concentrations of DDT and DDE that exceeded Canadian and U.S. benchmarks, but fauna sampled in the area also showed high degrees of bioaccumulation of the same substances. Further and more extensive attention to monitoring POP presence in water birds, fish, and other aquatic organisms is warranted because of the bioaccumulation of these chemicals at higher levels in the food chain. This study represents a collaboration of eight universities from

  4. Solar unit

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A M; Trushevskiy, S N; Tveryanovich, E V

    1982-01-01

    A solar unit is proposed which contains an inclined solar collector with supply and outlet pipelines, the first of which is connected to the source of a heat carrier, while the second is connected through the valve to the tank for collecting heated heat carrier equipped with a device for recovery. In order to improve the effectiveness of heating the heat carrier, it additionally contains a concentrator of solar radiation and a device for maintaining a level of the heat carrier in the collector in the zone of the focal spot of the concentrator, while the heat pipeline is connected to the source of the heat carrier with the help of a device for maintaining the level of the heat carrier.

  5. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    Science.gov (United States)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  6. Geologic Assessment of Undiscovered Oil and Gas Resources of the North Cuba Basin, Cuba

    Science.gov (United States)

    Schenk, Christopher J.

    2010-01-01

    Petroleum generation in the North Cuba Basin is primarily the result of thrust loading of Jurassic and Cretaceous source rocks during formation of the North Cuba fold and thrust belt in the Late Cretaceous to Paleogene. The fold and thrust belt formed as Cuban arc-forearc rocks along the leading edge of the Caribbean plate translated northward during the opening of the Yucatan Basin and collided with the passive margin of southern North America in the Paleogene. Petroleum fluids generated during thrust loading migrated vertically into complex structures in the fold and thrust belt, into structures in the foreland basin, and possibly into carbonate reservoirs along the margins of the Yucatan and Bahama carbonate platforms. The U.S. Geological Survey (USGS) defined a Jurassic-Cretaceous Composite Total Petroleum System (TPS) and three assessment units (AU)-North Cuba Fold and Thrust Belt AU, North Cuba Foreland Basin AU, and the North Cuba Platform Margin Carbonate AU-within this TPS based mainly on structure and reservoir type (fig. 1). There is considerable geologic uncertainty as to the extent of petroleum migration that might have occurred within this TPS to form potential petroleum accumulations. Taking this geologic uncertainty into account, especially in the offshore area, the mean volumes of undiscovered resources in the composite TPS of the North Cuba Basin are estimated at (1) 4.6 billion barrels of oil (BBO), with means ranging from an F95 probability of 1 BBO to an F5 probability of 9 BBO; and (2) 8.6 trillion cubic feet of of gas (TCFG), of which 8.6 TCFG is associated with oil fields, and about 1.2 TCFG is in nonassociated gas fields in the North Cuba Foreland Basin AU.

  7. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  8. SEASONAL AVERAGE FLOW IN RÂUL NEGRU HYDROGRAPHIC BASIN

    Directory of Open Access Journals (Sweden)

    VIGH MELINDA

    2015-03-01

    Full Text Available The Râul Negru hydrographic basin is a well individualised physical-geographical unit inside the Braşov Depression. The flow is controlled by six hydrometric stations placed on the main river and on two important tributaries. The data base for seasonal flow analysis contains the discharges from 1950-2012. The results of data analysis show that there significant space-time differences between multiannual seasonal averages. Some interesting conclusions can be obtained by comparing abundant and scarce periods. Flow analysis was made using seasonal charts Q = f(T. The similarities come from the basin’s relative homogeneity, and the differences from flow’s evolution and trend. Flow variation is analysed using variation coefficient. In some cases appear significant Cv values differences. Also, Cv values trends are analysed according to basins’ average altitude.

  9. Morphometric characterization in basins affected by the mining industry

    International Nuclear Information System (INIS)

    Moreno Bortons, J.; Alonso Sarria, F.; Romero Diaz, A.; Belmonte Serrato, F.

    2009-01-01

    The intensive exploitation in the mining district of Cartagena la Union during recent centuries has generated a huge amount of waste scattered throughout the Sierra Minera. These debris act a dangerous pollution agent in the drainage network because the generated runoff erodes and disperse these wastes that are highly contaminated by heavy metals. In this way, the drainage networks of the study area been characterized to assess the production of runoff in basins which are sterile deposits, using the method of the Geomorphologic Unit Hydrography (GUH). The peak flows that have been obtained, taking into account the erodibility of soils, are capable of carrying large amounts of pollutants into the two main outlet areas (Mar Menor and Mediterranean Sea), meaning an important source of pollution int two sites of high ecological value. (Author) 6 refs.

  10. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    Science.gov (United States)

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-07-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Depositional environment and sedimentary of the basinal sediments in the Eibiswalder Bucht (Radl Formation and Lower Eibiswald Beds), Miocene Western Styrian Basin, Austria

    Science.gov (United States)

    Stingl, K.

    1994-12-01

    The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.

  12. Stratigraphical sequence and geochronology of the volcanic rock series in caifang basin, south jiangxi

    International Nuclear Information System (INIS)

    Xu Xunsheng; Wu Jianhua

    2010-01-01

    The late Mesozoic volcanic rocks in Jiangxi constitute two volcanic belts: the northern is Xiajiang-Guangfeng volcanic belt, the volcanic rocks series belong to one volcano cycle and named Wuyi group which is subdivided into three formations (Shuangfengling formation, Ehuling formation and Shixi formation); the southern is Sannan-Xunwu volcanic belt, the volcanic rocks series in Caifang basin which locates on Sannan-Xunwu volcanic belt also belong to only one volcano cycle. It can be subdivided into two lithology and lithofacies units (upper and lower): the lower unit consists of sedimentary rocks and associated with a subordinate amount of volcanic rocks, it belongs to erupt-deposit facies which is the product of early volcanic stage; the upper unit is mostly composed of volcanic rocks, it belongs to erupt facies that is the volcanic eruption product. SHRIMP zircon U-Pb age of rhyolite? which locates at the top of the upper unit is 130.79 ± 0.73) Ma. According to the new International Stratigraphic Chart, the boundary of Jurassic and Cretaceous is (145.4 ± 4.0) Ma, so the age shows that the geologic period of Caifang volcanic rocks series is early Early Cretaceous epoch. On the basis of lithological correlation, lithofacies and stratigraphic horizon analysis, the volcanic rock series in Caifang basin fall under Wuyi group, and the lower unit could be incorporated into Shuangfengling formation, the upper unit could be incorporated into Ehuling formation. The subdivision of sequence and the determination of geochronology of the volcanic rock series in Caifang basin provide some references for the study of the late Mesozoic volcanic rocks series of the Sannan-Xunwu volcanic belt. (authors)

  13. Sedimentological analysis of the Estefaniense de Tineo basin (Asturias): example of coal deposits in alluvial fans. Analisis sedimentologico de la cuenca Estefaniense de Tineo (Asturias): ejemplo de depositos de carbon en abanicos aluviales

    Energy Technology Data Exchange (ETDEWEB)

    Santos Garcia, J.A. (Empresa Nacional ADARO, Madrid (Spain))

    1991-01-01

    A sedimentological analysis of the Stephanian deposits of Tineo Basin is carried out. Three unities are established (Basal Breachs, Intermediate Unit and Conglomerate Unit) by means of lithological, mining and sedimentological criteria, which represent larger episodes in the filling of the basin. The first episode corresponds to the initial configuration of the basin, with coarse grained breccia deposits related to steep slopes (Basal Breccia). The second and more complex (Intermediate Unit), is represented by four larger sequences (stages from UI-1 to UI-4, La Prohida Zone) which show secondary tectonic pulsations. At this moment the sedimentation is carried out in several subbasins separated by palaeoreliefs or thresholds. The third episode corresponds to a strong reactivation of the northern edge of the basin, with deposition of the Conglomeratic Unit. The filling of the basin is assimilated to a pattern of alluvial fans in a tectonically-active basin, in which the coal deposition look place during calm (tranquil) periods when a large alluvial fan flanked by coalescent smaller sized fans developed along the northern margin of the basin. 24 refs., 9 figs.

  14. Geology and assessment of undiscovered oil and gas resources of the Timan-Pechora Basin Province, Russia, 2008

    Science.gov (United States)

    Schenk, Christopher J.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The Timan-Pechora Basin Province is a triangular area that represents the northeasternmost cratonic block of east European Russia. A 75-year history of petroleum exploration and production in the area there has led to the discovery of more than 16 billion barrels of oil (BBO) and 40 trillion cubic feet of gas (TCFG). Three geologic assessment units (AUs) were defined for assessing the potential for undiscovered oil and gas resources in the province: (1) the Northwest Izhma Depression AU, which includes all potential structures and reservoirs that formed in the northwestern part of the Izhma-Pechora Depression, although this part of the basin contains only sparse source and reservoir rocks and so was not assessed quantitatively; (2) the Main Basin Platform AU, which includes all potential structures and reservoirs that formed in the central part of the basin, where the tectonic and petroleum system evolution was complex; and (3) the Foredeep Basins AU, which includes all potential structures and reservoirs that formed within the thick sedimentary section of the foredeep basins west of the Uralian fold and thrust belt during the Permian and Triassic Uralian orogeny.For the Timan-Pechora Basin Province, the estimated means of undiscovered resources are 3.3 BBO, 17 TCFG, and 0.3 billion barrels of natural-gas liquids (BBNGL). For the AU areas north of the Arctic Circle in the province, the estimated means of undiscovered resources are 1.7 BBO, 9.0 TCFG, and 0.2 BBNGL. These assessment results indicate that exploration in the Timan-Pechora Basin Province is at a mature level.

  15. LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07

    Energy Technology Data Exchange (ETDEWEB)

    KNOLLMEYER PM

    2007-08-31

    Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford.

  16. LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07

    International Nuclear Information System (INIS)

    KNOLLMEYER PM

    2007-01-01

    Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford

  17. U.S. Geological Survey input-data forms for the assessment of the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas, 2017

    Science.gov (United States)

    Marra, Kristen R.

    2017-10-24

    In 2017, the U.S. Geological Survey (USGS) completed an updated assessment of undiscovered, technically recoverable oil and gas resources in the Spraberry Formation of the Midland Basin (Permian Basin Province) in southwestern Texas (Marra and others, 2017). The Spraberry Formation was assessed using both the standard continuous (unconventional) and conventional methodologies established by the USGS for three assessment units (AUs): (1) Lower Spraberry Continuous Oil Trend AU, (2) Middle Spraberry Continuous Oil Trend AU, and (3) Northern Spraberry Conventional Oil AU. The revised assessment resulted in total estimated mean resources of 4,245 million barrels of oil, 3,112 billion cubic feet of gas, and 311 million barrels of natural gas liquids. The purpose of this report is to provide supplemental documentation of the input parameters used in the USGS 2017 Spraberry Formation assessment.

  18. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  19. Satellite altimetry over large hydrological basins

    Science.gov (United States)

    Calmant, Stephane

    2015-04-01

    The use of satellite altimetry for hydrological applications, either it is basin management or hydrological modeling really started with the 21st century. Before, during two decades, the efforts were concentrated on the data processing until a precision of a few decimeters could be achieved. Today, several web sites distribute hundreds of series spread over hundeds of rivers runing in the major basins of the world. Among these, the Amazon basin has been the most widely studied. Satellite altimetry is now routinely used in this transboundary basin to predict discharges ranging over 4 orders of magnitude. In a few years, satellite altimetry should evolve dramatically. This year, we should see the launchs of Jason-3 and that of Sentinel-3A operating in SAR mode. With SAR, the accuracy and resolution of a growing number of measurements should be improved. In 2020, SWOT will provide a full coverage that will join in a unique framework all the previous and forthcoming missions. These technical and thematical evolutions will be illustrated by examples taken in the Amazon and Congo basin.

  20. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  1. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    Lake Michigan. In general, trends in year-class strengths were less concordant across the basin and only coregonids showed statistical agreement across the upper Great Lakes. The appearance of strong and moderate year-classes of Bloater in Lake Huron in 2005- 2011 countered the trend of continuing weak year-classes of coregonids in Lakes Michigan and Superior. Not shown in our analysis is the appearance of the 2013 year-class of Bloater in Huron, the largest to date. There was no agreement in cross-basin trends in year-class strengths for Rainbow Smelt and Alewife, although there was agreement between pairs of lakes. Although there was statistical agreement in trends of age-0 and older Round Goby biomass among lakes where this species has successfully invaded (Michigan, Huron, Erie and Ontario), temporal patterns of biomass in each lake were different. Round Goby may be approaching equilibrium in Lake Erie, peaking in Lake Huron, and expanding in Lake Michigan. The trend in Lake Ontario remains unclear. Declining abundance in Lake Erie has corresponded with evidence that Round Goby have become increasingly incorporated into piscivore diets, e.g., Lake Trout, Walleye, Smallmouth Bass, Yellow Perch, and Burbot in Lakes Michigan, Huron, Erie, and Ontario. Round Goby continue to be absent from spring bottom trawl assessments in Lake Superior, but their presence in the harbors and embayments of Duluth and Thunder Bay (U.S. Geological Survey and Ontario Ministry of Natural Resources, unpublished data), suggests that there is potential for future colonization.

  2. Status of groundwater quality in the Coastal Los Angeles Basin, 2006-California GAMA Priority Basin Project

    Science.gov (United States)

    Goldrath, Dara; Fram, Miranda S.; Land, Michael; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 860-square-mile (2,227-square-kilometer) Coastal Los Angeles Basin study unit (CLAB) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is located in southern California in Los Angeles and Orange Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA CLAB study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2006 by the USGS from 69 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth interval of the wells listed in the CDPH database for the CLAB study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the CLAB study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative

  3. Watershed scale response to climate change--Trout Lake Basin, Wisconsin

    Science.gov (United States)

    Walker, John F.; Hunt, Randall J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    General Circulation Model simulations of future climate through 2099 project a wide range of possible scenarios. To determine the sensitivity and potential effect of long-term climate change on the freshwater resources of the United States, the U.S. Geological Survey Global Change study, "An integrated watershed scale response to global change in selected basins across the United States" was started in 2008. The long-term goal of this national study is to provide the foundation for hydrologically based climate change studies across the nation.

  4. Detection and attribution of streamflow timing changes to climate change in the Western United States

    Science.gov (United States)

    Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R.; Pierce, D.W.; Barnett, T.P.; Bala, G.; Mirin, A.; Wood, A.W.; Bonfils, Celine; Santer, B.D.; Nozawa, T.

    2009-01-01

    This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow "center" timing (the day in the "water-year" on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States_the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier "center" timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States. ?? 2009 American Meteorological Society.

  5. Performance analysis of double basin solar still with evacuated tubes

    International Nuclear Information System (INIS)

    Hitesh N Panchal; Shah, P. K.

    2013-01-01

    Solar still is a very simple device, which is used for solar distillation process. In this research work, double basin solar still is made from locally available materials. Double basin solar still is made in such a way that, outer basin is exposed to sun and lower side of inner basin is directly connected with evacuated tubes to increase distillate output and reducing heat losses of a solar still. The overall size of the lower basin is about 1006 mm x 325 mm x 380 mm, the outer basin is about 1006 mm x 536 mm x 100 mm Black granite gravel is used to increase distillate output by reducing quantity of brackish or saline water in the both basins. Several experiments have conducted to determine the performance of a solar still in climate conditions of Mehsana (latitude of 23 degree 59' and longitude of 72 degree 38'), Gujarat, like a double basin solar still alone, double basin solar still with different size black granite gravel, double basin solar still with evacuated tubes and double basin solar still with evacuated tubes and different size black granite gravel. Experimental results show that, connecting evacuated tubes with the lower side of the inner basin increases daily distillate output of 56% and is increased by 60%, 63% and 67% with average 10 mm, 20 mm and 30 mm size black granite gravel. Economic analysis of present double basin solar still is 195 days. (authors)

  6. Termination unit

    Science.gov (United States)

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  7. Termination unit

    Energy Technology Data Exchange (ETDEWEB)

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  8. Tulare Lake Basin Hydrology and Hydrography: A Summary of the Movement of Water and Aquatic Species

    Science.gov (United States)

    Summary of the historic and current hydrology of the Tulare Lake Basin (Basin) describing past, present and potential future movement of water out of the Basin, and potential movement of bioiogical organisms and toxicants within and outside of the Basin.

  9. Tectonics in the Northwestern West Philippine Basin

    Institute of Scientific and Technical Information of China (English)

    Ni Xianglong; Wu Shiguo; Shinjo Ryuichi

    2008-01-01

    The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagnma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).

  10. Electricity, development and cooperation in mediterranean basin

    International Nuclear Information System (INIS)

    Fabra, J.

    1992-01-01

    Energy consumption along the southern rim of the Mediterranean basin is increasing much more quickly than on the northern side, in accordance with the different industrialization and urbanization rates. Over the last two decades, electric power consumption has been increasing throughout the basin at a rate exceeding not only that of total energy consumption but even that of the economy itself. The various electric power development strategies the countries of the Mediterranean have developed differ widely depending on the available energy resources they have. Power distribution systems are a strategic element of co-operation in the Mediterranean basin. Though all of these strategies involve cost trade-offs between diversification of energy sources, domestic supply and environmental protection, difficulties exist that may curtail the development of these programs. 2 figs., 4 tabs

  11. Environmental education for river-basin planning

    Energy Technology Data Exchange (ETDEWEB)

    Saha, S K

    1980-08-01

    Harmonious intervention in land use, a result of environmental education and good planning, can increase the social and economic benefits without precluding development. Modern river basin planning began as a US innovation in 1874 over the subject of water regulation in the west. The Tennessee Valley Authority (TVA) was devised as a state tool for comprehensive river basin planning and development. The TVA example was not repeated in the other 10 US basins by the Corps of Engineers and the Bureau of Reclamation, although the concept of unified development has survived as a three-part relationship of physical,biological, and human forces in which any malfunctioning of one subsystem affects the others. This is evident in problems of water transfer from agricultural to industrial functions and changes to drainage patterns. The potential damage from ignoring these relationships can be avoided with true interdisciplinary communications. 24 references, 2 tables. (DCK)

  12. Configuration Management Plan for K Basins

    International Nuclear Information System (INIS)

    Weir, W.R.; Laney, T.

    1995-01-01

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Programclose quotes

  13. Deep controls on intraplate basin inversion

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Stephenson, Randell Alexander; Schiffer, Christian

    2014-01-01