WorldWideScience

Sample records for unitary symmetry models

  1. Identical Wells, Symmetry Breaking, and the Near-Unitary Limit

    Science.gov (United States)

    Harshman, N. L.

    2017-03-01

    Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.

  2. Unitary Gas Constraints on Nuclear Symmetry Energy

    CERN Document Server

    Kolomeitsev, Evgeni E; Ohnishi, Akira; Tews, Ingo

    2016-01-01

    We show the existence of a lower bound on the volume symmetry energy parameter $S_0$ from unitary gas considerations. We further demonstrate that values of $S_0$ above this minimum imply upper and lower bounds on the symmetry energy parameter $L$ describing its lowest-order density dependence. The bounds are found to be consistent with both recent calculations of the energies of pure neutron matter and constraints from nuclear experiments. These results are significant because many equations of state in active use for simulations of nuclear structure, heavy ion collisions, supernovae, neutron star mergers, and neutron star structure violate these constraints.

  3. Quantum mechanics with non-unitary symmetries

    CERN Document Server

    Bistrovic, B

    2000-01-01

    This article shows how to properly extend symmetries of non-relativistic quantum mechanics to include non-unitary representations of Lorentz group for all spins. It follows from this that (almost) all existing relativistic single particle Lagrangians and equations are incorrect. This is shown in particular for Dirac's equation and Proca equations. It is shown that properly constructed relativistic extensions have no negative energies, zitterbewegung effects and have proper symmetric energy-momentum tensor and angular momentum density tensor. The downside is that states with negative norm are inevitable in all representations.

  4. Unitary symmetry, combinatorics, and special functions

    Energy Technology Data Exchange (ETDEWEB)

    Louck, J.D.

    1996-12-31

    From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.

  5. Time reversal and exchange symmetries of unitary gate capacities

    CERN Document Server

    Harrow, A W; Harrow, Aram W.; Shor, Peter W.

    2005-01-01

    Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.

  6. Unitary Response Regression Models

    Science.gov (United States)

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  7. Spectral stability of unitary network models

    Science.gov (United States)

    Asch, Joachim; Bourget, Olivier; Joye, Alain

    2015-08-01

    We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.

  8. Boundary Relations, Unitary Colligations, and Functional Models

    NARCIS (Netherlands)

    Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk

    2009-01-01

    Recently a new notion, the so-called boundary relation, has been introduced involving an analytic object, the so-called Weyl family. Weyl families and boundary relations establish a link between the class of Nevanlinna families and unitary relations acting from one Krein in space, a basic (state) sp

  9. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  10. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  11. Large Representation Recurrences in Large N Random Unitary Matrix Models

    CERN Document Server

    Karczmarek, Joanna L

    2011-01-01

    In a random unitary matrix model at large N, we study the properties of the expectation value of the character of the unitary matrix in the rank k symmetric tensor representation. We address the problem of whether the standard semiclassical technique for solving the model in the large N limit can be applied when the representation is very large, with k of order N. We find that the eigenvalues do indeed localize on an extremum of the effective potential; however, for finite but sufficiently large k/N, it is not possible to replace the discrete eigenvalue density with a continuous one. Nonetheless, the expectation value of the character has a well-defined large N limit, and when the discreteness of the eigenvalues is properly accounted for, it shows an intriguing approximate periodicity as a function of k/N.

  12. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S- E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  13. Unitary transformation method for solving generalized Jaynes-Cummings models

    Indian Academy of Sciences (India)

    Sudha Singh

    2006-03-01

    Two fully quantized generalized Jaynes-Cummings models for the interaction of a two-level atom with radiation field are treated, one involving intensity dependent coupling and the other involving multiphoton interaction between the field and the atom. The unitary transformation method presented here not only solves the time dependent problem but also allows a determination of the eigensolutions of the interacting Hamiltonian at the same time.

  14. Generalized holographic electroweak symmetry breaking models and the possibility of negative S^

    Science.gov (United States)

    Round, Mark

    2011-07-01

    Within an AdS/CFT inspired model of electroweak symmetry breaking, the effects of various boundary terms and modifications to the background are studied. The effect on the S^ precision parameter is discussed, with particular attention to its sign and whether the theory is unitary when S^<0. Connections between the various possible AdS slice models of symmetry breaking are discussed.

  15. Generalised Holographic Electroweak Symmetry Breaking Models and the Possibility of Negative S

    CERN Document Server

    Round, Mark

    2011-01-01

    Within an AdS/CFT inspired model of electroweak symmetry breaking the effects of various boundary terms and modifications to the background are studied. The effect on the S precision parameter is discussed with particular attention to its sign and whether the theory is unitary when S. Connections between the various possible AdS slice models of symmetry breaking are discussed.

  16. Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer in the transition from quantum to classical

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2007-11-01

    Measurements transfer information about a system to the apparatus and then, further on, to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide a framework for “wave-packet collapse,” designating terminal points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment—the fittest quantum states that not only survive decoherence, but subvert the environment into carrying information about them—into becoming a witness.

  17. Qubit Transport Model for Unitary Black Hole Evaporation without Firewalls

    CERN Document Server

    Osuga, Kento

    2016-01-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon and fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  18. Heisenberg symmetry and collective modes of one dimensional unitary correlated fermions

    Science.gov (United States)

    Abhinav, Kumar; Chandrasekhar, B.; Vyas, Vivek M.; Panigrahi, Prasanta K.

    2017-02-01

    The correlated fermionic many-particle system, near infinite scattering length, reveals an underlying Heisenberg symmetry in one dimension, as compared to an SO (2 , 1) symmetry in two dimensions. This facilitates an exact map from the interacting to the non-interacting system, both with and without a harmonic trap, and explains the short-distance scaling behavior of the wave-function. Taking advantage of the phenomenological Calogero-Sutherland-type interaction, motivated by the density functional approach, we connect the ground-state energy shift, to many-body correlation effect. For the excited states, modes at integral values of the harmonic frequency ω are predicted in one dimension, in contrast to the breathing modes with frequency 2ω in two dimensions.

  19. Global unitary fixing and matrix-valued correlations in matrix models

    CERN Document Server

    Adler, S L; Horwitz, Lawrence P.

    2003-01-01

    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions.

  20. Unitary theory of pion photoproduction in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Afnan, I.R.

    1987-07-01

    We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here, B is the nucleon or ..delta..(1232), with possible extension to include the Roper resonance and strange baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and then three-body unitarity, taking into consideration the ..pi pi..B and ..gamma pi..B intermediate states, we derive a set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those in the crossed, contact, and pion pole diagrams are dressed.

  1. Unitary theory of pion photoproduction in the chiral bag model

    Science.gov (United States)

    Araki, M.; Afnan, I. R.

    1987-07-01

    We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here, B is the nucleon or Δ(1232), with possible extension to include the Roper resonance and strange baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and then three-body unitarity, taking into consideration the ππB and γπB intermediate states, we derive a set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those in the crossed, contact, and pion pole diagrams are dressed.

  2. Modeling Sampling in Tensor Products of Unitary Invariant Subspaces

    Directory of Open Access Journals (Sweden)

    Antonio G. García

    2016-01-01

    Full Text Available The use of unitary invariant subspaces of a Hilbert space H is nowadays a recognized fact in the treatment of sampling problems. Indeed, shift-invariant subspaces of L2(R and also periodic extensions of finite signals are remarkable examples where this occurs. As a consequence, the availability of an abstract unitary sampling theory becomes a useful tool to handle these problems. In this paper we derive a sampling theory for tensor products of unitary invariant subspaces. This allows merging the cases of finitely/infinitely generated unitary invariant subspaces formerly studied in the mathematical literature; it also allows introducing the several variables case. As the involved samples are identified as frame coefficients in suitable tensor product spaces, the relevant mathematical technique is that of frame theory, involving both finite/infinite dimensional cases.

  3. A Tree-level Unitary Noncompact Weyl-Einstein-Yang-Mills Model

    CERN Document Server

    Dengiz, Suat

    2016-01-01

    We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a $3+1$-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus $SU(N)$ phase invariant Higgs-like field, conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable constant curvature vacuum. The model is unitary in de Si...

  4. Characterizing 3-qubit UPB states: violations of LHV models, preparation via nonlocal unitaries and PPT entangled nonlocal orbits

    CERN Document Server

    Altafini, C

    2004-01-01

    For the 3-qubit UPB state, i.e., the bound entangled state constructed from an Unextendable Product Basis of Bennett et al. (Phys. Rev. Lett. 82:5385, 1999), we provide a set of violations of Local Hidden Variable (LHV) models based on the particular type of reflection symmetry encoded in this state. The explicit nonlocal unitary operation needed to prepare the state from its reflected separable mixture of pure states is given, as well as a nonlocal one-parameter orbit of states with Positive Partial Transpositions (PPT) which swaps the entanglement between a state and its reflection twice during a period.

  5. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  6. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

  7. Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature

    CERN Document Server

    Pandey, Sachin

    2016-01-01

    Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.

  8. Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature

    Science.gov (United States)

    Pandey, Sachin; Banerjee, Narayan

    2016-11-01

    Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either an explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.

  9. Symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We report the recent progress in understanding of symmetries which can be implemented in the scalar sector of electroweak symmetry breaking models with several Higgs doublets. In particular we present the list of finite reparametrization symmetry groups which can appear in the three-Higgs-doublet models.

  10. Symmetries of the dissipative Hofstadter model

    CERN Document Server

    Freed, D E

    1993-01-01

    The dissipative Hofstadter model, which describes a particle in 2-D subject to a periodic potential, uniform magnetic field, and dissipation, is also related to open string boundary states. This model exhibits an SL(2,Z) duality symmetry and hidden reparametrization invariance symmetries. These symmetries are useful for finding exact solutions for correlation functions.

  11. A model of intrinsic symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Li [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China); Li, Sheng [Department of Physics, Zhejiang Normal University, Zhejiang 310004 (China); George, Thomas F., E-mail: tfgeorge@umsl.edu [Office of the Chancellor and Center for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Sun, Xin, E-mail: xin_sun@fudan.edu.cn [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China)

    2013-11-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.

  12. Parameter Symmetry of the Interacting Boson Model

    CERN Document Server

    Shirokov, A M; Smirnov, Yu F; Shirokov, Andrey M.; Smirnov, Yu. F.

    1998-01-01

    We discuss the symmetry of the parameter space of the interacting boson model (IBM). It is shown that for any set of the IBM Hamiltonian parameters (with the only exception of the U(5) dynamical symmetry limit) one can always find another set that generates the equivalent spectrum. We discuss the origin of the symmetry and its relevance for physical applications.

  13. Approximate Flavor Symmetry in Supersymmetric Model

    OpenAIRE

    Tao, Zhijian

    1998-01-01

    We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...

  14. Parameter counting in models with global symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua [Institute for High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)], E-mail: jb454@cornell.edu; Grossman, Yuval [Institute for High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)], E-mail: yuvalg@lepp.cornell.edu

    2009-05-18

    We present rules for determining the number of physical parameters in models with exact flavor symmetries. In such models the total number of parameters (physical and unphysical) needed to described a matrix is less than in a model without the symmetries. Several toy examples are studied in order to demonstrate the rules. The use of global symmetries in studying the minimally supersymmetric standard model (MSSM) is examined.

  15. Local discrete symmetries from superstring derived models

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  16. Local discrete symmetries from superstring derived models

    Science.gov (United States)

    Faraggi, Alon E.

    1997-02-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model I illustrate how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  17. Local discrete symmetries from superstring derived models

    CERN Document Server

    Faraggi, A E

    1996-01-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model I illustrate how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non--Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  18. Restricted Quantum Affine Symmetry of Perturbed Minimal Models

    CERN Document Server

    Felder, G

    1992-01-01

    We study the structure of superselection sectors of an arbitrary perturbation of a conformal field theory. We describe how a restriction of the q-deformed $\\hat{sl(2)}$ affine Lie algebra symmetry of the sine-Gordon theory can be used to derive the S-matrices of the $\\Phi^{(1,3)}$ perturbations of the minimal unitary series. This analysis provides an identification of fields which create the massive kink spectrum. We investigate the ultraviolet limit of the restricted sine-Gordon model, and explain the relation between the restriction and the Fock space cohomology of minimal models. We also comment on the structure of degenerate vacuum states. Deformed Serre relations are proven for arbitrary affine Toda theories, and it is shown in certain cases how relations of the Serre type become fractional spin supersymmetry relations upon restriction.

  19. Anisotropic models are unitary: A rejuvenation of standard quantum cosmology

    CERN Document Server

    Pal, Sridip

    2016-01-01

    The present work proves that the folk-lore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed to be a symmetric operator, thereby making the problem of non-unitarity in context of anisotropic homogeneous model a ghost. Moreover, it is indicated that the self-adjoint extension is not unique and this non-uniqueness is suspected not to be a feature of Anisotropic model only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension, albeit for isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian i.e {\\it Friedrichs extension}. Details of calculations are carried out for a Bianchi III model.

  20. Entanglement Entropy from Corner Transfer Matrix in Forrester Baxter non-unitary RSOS models

    CERN Document Server

    Bianchini, Davide

    2015-01-01

    Using a Corner Transfer Matrix approach, we compute the bipartite entanglement R\\'enyi entropy in the off-critical perturbations of non-unitary conformal minimal models realised by lattice spin chains Hamiltonians related to the Forrester Baxter RSOS models in regime III. This allows to show on a set of explicit examples that the R\\'enyi entropies for non-unitary theories rescale near criticality as the logarithm of the correlation length with a coefficient proportional to the effective central charge. This complements a similar result, recently established for the size rescaling at the critical point, showing the expected agreement of the two behaviours. We also compute the first subleading unusual correction to the scaling behaviour, showing that it is expressible in terms of expansions of various fractional powers of the correlation length, related to the differences $\\Delta-\\Delta_{\\min}$ between the conformal dimensions of fields in the theory and the minimal conformal dimension. Finally, a few observati...

  1. Tensor Network Models of Unitary Black Hole Evaporation

    CERN Document Server

    Leutheusser, Samuel

    2016-01-01

    We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entangled states of a tensor product black-hole/radiation Hilbert space. The final state of the black hole radiation is conveniently summarized by a tensor network built from these isometries. We introduce a set of quantities generalizing the Renyi entropies that provide a complete set of bipartite/multipartite entanglement measures, and give a general formula for the average of these over initial black hole states in terms of the isometries defining the model. For models where the dimension of the final tensor product radiation Hilbert space is the same as that of the space of initial black hole microstates, the entanglement structure is universal, independent of the choice of isometries. In the more general case, we find that models which best capture the "information...

  2. Elegant Coercion and Iran: Beyond the Unitary Actor Model

    Science.gov (United States)

    2005-05-01

    leader to manipulate state information and propaganda . The Supreme Leader’s authority to appoint the commander of the Artesh, the Chief of the...are parochial • Decisio rather r compro • State de collages outcom politica Figure 10 – Summary of Allison’s Decision-Making Models Data for this

  3. Symmetry-enriched string nets: Exactly solvable models for SET phases

    Science.gov (United States)

    Heinrich, Chris; Burnell, Fiona; Fidkowski, Lukasz; Levin, Michael

    2016-12-01

    We construct exactly solvable models for a wide class of symmetry-enriched topological (SET) phases. Our construction applies to two-dimensional (2D) bosonic SET phases with finite unitary on-site symmetry group G and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. Our models are designed so that they have a special property: If we couple them to a dynamical lattice gauge field with gauge group G , the resulting gauge theories are equivalent to string-net models. This property is what allows us to analyze our models in generality. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples.

  4. Minimal unitary representation of D(2,1;\\lambda) and its SU(2) deformations and d=1, N=4 superconformal models

    CERN Document Server

    Govil, Karan

    2012-01-01

    Quantization of the geometric quasiconformal realizations of noncompact groups and supergroups leads directly to their minimal unitary representations (minreps). Using quasiconformal methods massless unitary supermultiplets of superconformal groups SU(2,2|N) and OSp(8*|2n) in four and six dimensions were constructed as minreps and their U(1) and SU(2) deformations, respectively. In this paper we extend these results to SU(2) deformations of the minrep of N=4 superconformal algebra D(2,1;\\lambda) in one dimension. We find that SU(2) deformations can be achieved using n pairs of bosons and m pairs of fermions simultaneously. The generators of deformed minimal representations of D(2,1;\\lambda) commute with the generators of a dual superalgebra OSp(2n*|2m) realized in terms of these bosons and fermions. We show that there exists a precise mapping between symmetry generators of N=4 superconformal models in harmonic superspace studied recently and minimal unitary supermultiplets of D(2,1;\\lambda) deformed by a pair...

  5. Symmetry in Image Registration and Deformation Modeling

    DEFF Research Database (Denmark)

    Sommer, Stefan; Jacobs, Henry O.

    We survey the role of symmetry in diffeomorphic registration of landmarks, curves, surfaces, images and higher-order data. The infinite dimensional problem of finding correspondences between objects can for a range of concrete data types be reduced resulting in compact representations of shape...... and spatial structure. This reduction is possible because the available data is incomplete in encoding the full deformation model. Using reduction by symmetry, we describe the reduced models in a common theoretical framework that draws on links between the registration problem and geometric mechanics....... Symmetry also arises in reduction to the Lie algebra using particle relabeling symmetry allowing the equations of motion to be written purely in terms of Eulerian velocity field. Reduction by symmetry has recently been applied for jet-matching and higher-order discrete approximations of the image matching...

  6. Physical Aspects of Unitary evolution of Bianchi-I Quantum Cosmological Model

    CERN Document Server

    Pal, Sridip

    2015-01-01

    In this work, we study some physical aspects of unitary evolution of Bianchi-I model. In particular, we study the behavior of the volume and the scale factor as a function of time for the Bianchi-I universe with ultra-relativistic fluid ($\\alpha=1$). The expectation value of volume is shown not to hit any singularity. We elucidate on the anisotropic nature of the solution and physically interpret the wavefunction as a superposition of collapsing universe and expanding universe mimicking Hartle-Hawking type wavefunction. The same analysis has been done for $\\alpha\

  7. Inextendibility of expanding cosmological models with symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dafermos, Mihalis [University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Rendall, Alan D [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm (Germany)

    2005-12-07

    A new criterion for inextendibility of expanding cosmological models with symmetry is presented. It is applied to derive a number of new results and to simplify the proofs of existing ones. In particular, it shows that the solutions of the Einstein-Vlasov system with T{sup 2} symmetry, including the vacuum solutions, are inextendible in the future. The technique introduced adds a qualitatively new element to the available tool-kit for studying strong cosmic censorship. (letter to the editor)

  8. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  9. New Symmetries for a Model of Fast Diffusion

    Institute of Scientific and Technical Information of China (English)

    QIN Mao-Chang; XU Xue-Jun; MEI Feng-Xiang

    2004-01-01

    @@ The new symmetries for a mathematical model of fast diffusion are determined. A new system method is given to search for new symmetries of differential equations written in a conserved form, several new symmetry generators and exact solutions are presented.

  10. Going beyond the unitary curve: incorporating richer cognition into agent-based water resources models

    Science.gov (United States)

    Kock, B. E.

    2008-12-01

    The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.

  11. Models for neutrino mass with discrete symmetries

    Science.gov (United States)

    Morisi, S.

    2011-08-01

    Discrete non-abelian flavor symmetries give in a natural way tri-bimaximal (TBM) mixing as showed in a prototype model. However neutrino mass matrix pattern may be very different from the tri-bimaximal one if small deviations of TBM will be observed. We give the result of a model independent analysis for TBM neutrino mass pattern.

  12. Models for neutrino mass with discrete symmetries

    CERN Document Server

    Morisi, S

    2010-01-01

    Discrete non-abelian flavor symmetries give in a natural way tri-bimaximal (TBM) mixing as showed in a prototype model. However neutrino mass matrix pattern may be very different from the tri-bimaximal one if small deviations of TBM will be observed. We give the result of a model independent analysis for TBM neutrino mass pattern.

  13. Supersymmetric defect models and mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Kachru, Shamit; Torroba, Gonzalo

    2013-11-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  14. Anomalous Abelian symmetry in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ramond, P.

    1995-12-31

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.

  15. Supersymmetric Defect Models and Mirror Symmetry

    CERN Document Server

    Hook, Anson; Torroba, Gonzalo

    2013-01-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d N=4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d N=2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of N=4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  16. Hidden Symmetry of a Fluid Dynamical Model

    CERN Document Server

    Neves, C

    2001-01-01

    A connection between solutions of the relativistic d-brane system in (d+1) dimensions with the solutions of a Galileo invariant fluid in d-dimensions is by now well established. However, the physical nature of the light-cone gauge description of a relativistic membrane changes after the reduction to the fluid dynamical model since the gauge symmetry is lost. In this work we argue that the original gauge symmetry present in a relativistic d-brane system can be recovered after the reduction process to a d-dimensional fluid model. To this end we propose, without introducing Wess-Zumino fields, a gauge invariant theory of isentropic fluid dynamics and show that this symmetry corresponds to the invariance under local translation of the velocity potential in the fluid dynamics picture. We show that different but equivalent choices of the sympletic sector lead to distinct representations of the embedded gauge algebra.

  17. Unitary input DEA model to identify beef cattle production systems typologies

    Directory of Open Access Journals (Sweden)

    Eliane Gonçalves Gomes

    2012-08-01

    Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.

  18. Why is the $3\\times 3$ neutrino mixing matrix almost unitary in realistic seesaw models?

    CERN Document Server

    Xing, Z; Xing, Zhi-zhong; Zhou, Shun

    2006-01-01

    A simple extension of the standard model is to introduce $n$ heavy right-handed Majorana neutrinos and preserve its $\\rm SU(2)^{}_L \\times U(1)^{}_Y$ gauge symmetry. Diagonalizing the $(3+n) \\times (3+n)$ neutrino mass matrix, we obtain an exact analytical expression for the effective mass matrix of $\

  19. The effect of unconditional cash transfers on adult labour supply: A unitary discrete choice model for the case of Ecuador

    NARCIS (Netherlands)

    Mideros, A.; O'Donoghue, C.

    2014-01-01

    We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the nationa

  20. The effect of unconditional cash transfers on adult labour supply: A unitary discrete choice model for the case of Ecuador

    NARCIS (Netherlands)

    Mideros, A.; O'Donoghue, C.

    2014-01-01

    We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the

  1. The effect of unconditional cash transfers on adult labour supply: A unitary discrete choice model for the case of Ecuador

    NARCIS (Netherlands)

    Mideros, A.; O'Donoghue, C.

    2014-01-01

    We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the nationa

  2. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and Its Application to Data Representation

    Science.gov (United States)

    Veloz, Tomas; Desjardins, Sylvie

    2015-01-01

    Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations. PMID:26617556

  3. Systematic model building with flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plentinger, Florian

    2009-12-19

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and

  4. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  5. The Symmetry of Partner Modelling

    Science.gov (United States)

    Dillenbourg, Pierre; Lemaignan, Séverin; Sangin, Mirweis; Nova, Nicolas; Molinari, Gaëlle

    2016-01-01

    Collaborative learning has often been associated with the construction of a shared understanding of the situation at hand. The psycholinguistics mechanisms at work while establishing common grounds are the object of scientific controversy. We postulate that collaborative tasks require some level of mutual modelling, i.e. that each partner needs…

  6. Random matrix model approach to chiral symmetry

    CERN Document Server

    Verbaarschot, J J M

    1996-01-01

    We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.

  7. State of Modeling Symmetry in Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    Modeling radiation drive asymmetry is challenging problem whose agreement with data depends on the hohlraum gas fill density. Modeling to date uses the HYDRA code with crossbeam energy transfer (CBET) calculated separately, and backscattered light removed from the input laser. For high fill hohlraums (~>1 mg/cc), matching symmetry requires ad hoc adjustments to CBET during picket and peak of drive. For near-vacuum hohlraums, there is little CBET or backscatter, and drive is more waist-high than predicted. For intermediate fill densities (~0.6 mg/cc) there appears to be a region of small CBET and backscatter where symmetry is reasonably well modeled. A new technique where backscatter and CBET are done “inline” appears it could bring high fill simulations closer to data.

  8. Rotational symmetry breaking in baby Skyrme models

    CERN Document Server

    Hen, Itay

    2007-01-01

    We consider multisolitons with charges 1 =< B =< 5 in the baby Skyrme model for the one-parametric family of potentials U=\\mu^2 (1-\\phi_3)^s with 0models. We find that for charge one, stable solutions exist for every value of s and they are rotationally-symmetric. For higher charges, stable solutions exist only below s \\approx 2. In the charge-two sector the stable solutions are always rotationally-symmetric and ring-like. For charge three and above, rotational symmetry is exhibited only in the small s region; above a certain critical value of s, this symmetry is broken and a strong repulsion between the constituent one-Skyrmions becomes apparent. We also compute the spatial energy distributions of these solutions.

  9. Comparing the Rξ gauge and the unitary gauge for the standard model: An example

    Science.gov (United States)

    Wu, Tai Tsun; Wu, Sau Lan

    2017-01-01

    For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge - the Rξ gauge and the unitary gauge - are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang-Mills non-Abelian gauge theory in general and the standard model in particular.

  10. Particle Mechanics Models with W-symmetries

    CERN Document Server

    Gomis, J P; Kamimura, K; Roca, J

    1995-01-01

    We introduce a particle mechanics model with Sp($2M$) gauge invariance. Different partial gauge-fixings by means of sl(2) embeddings on the gauge algebra lead to reduced models which are invariant under diffeomorphisms and classical non-linear \\W-transformations as the residual gauge symmetries thus providing a set of models of gauge and matter fields coupled in a \\W-invariant way. The equations of motion for the matter variables give Lax operators in a matrix form. We examine several examples in detail and discuss the issue of integration of infinitesimal \\W-transformations.

  11. Geodesic models generated by Lie symmetries

    CERN Document Server

    Abebe, G Z; Govinder, K S

    2014-01-01

    We study the junction condition relating the pressure to the heat flux at the boundary of a shearing and expanding spherically symmetric radiating star when the fluid particles are travelling in geodesic motion. The Lie symmetry generators that leave the junction condition invariant are identified and the optimal system is generated. We use each element of the optimal system to transform the partial differential equation to an ordinary differential equation. New exact solutions, which are group invariant under the action of Lie point infinitesimal symmetries, are found. We obtain families of traveling wave solutions and self-similar solutions, amongst others. The gravitational potentials are given in terms of elementary functions, and the line elements can be given explicitly in all cases. We show that the Friedmann dust model is regained as a special case, and we can connect our results to earlier investigations.

  12. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2012-10-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011.

  13. Approximate Noether gauge symmetries of the Bardeen model

    Energy Technology Data Exchange (ETDEWEB)

    Camci, U. [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)

    2014-12-01

    We investigate the approximate Noether gauge symmetries of the geodesic Lagrangian for the Bardeen spacetime model. This is accommodated by a set of new approximate Noether gauge symmetry relations for the perturbed geodesic Lagrangian in the spacetime. A detailed analysis of the spacetime of the Bardeen model up to third-order approximate Noether gauge symmetries is presented. (orig.)

  14. Unitary Quantum Relativity - (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2016-12-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  15. Unitary Quantum Relativity. (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2017-01-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  16. A study of Feshbach resonances and the unitary limit in a model of strongly correlated nucleons

    CERN Document Server

    Mekjian, Aram Z

    2010-01-01

    A model of strongly interacting and correlated hadrons is developed. The interaction used contains a long range attraction and short range repulsive hard core. Using this interaction and various limiting situations of it, a study of the effect of bound states and Feshbach resonances is given. The limiting situations are a pure square well interaction, a delta-shell potential and a pure hard core potential. The limit of a pure hard core potential are compared with results for a spinless Bose and Fermi gas. The limit of many partial waves for a pure hard core interaction is also considered and result in expressions involving the hard core volume. This feature arises from a scaling relation similar to that for hard sphere scattering with diffractive corrections. The role of underlying isospin symmetries associated with the strong interaction of protons and neutrons in this two component model is investigated. Properties are studied with varying proton fraction. An analytic expression for the Beth Uhlenbeck conti...

  17. Energy Spectrum Symmetry of Heisenberg Model in Fock Space

    Institute of Scientific and Technical Information of China (English)

    WANG An-Min; ZHU Ren-Gui

    2006-01-01

    @@ We extend the BCS paring model with equally spaced energy levels to a general one-dimensional spin-l/2 Heisenberg model. The two well-known symmetries of the Heisenberg model, i.e. permutational and spin-inversion symmetries, no longer exist. However, when jointing these two operations together, we find a new symmetry of energy spectrum between its subspace n and subspace L - n of the Fock space. A rigorous proof is presented.

  18. A minimal seesaw model with mu-tau symmetry

    CERN Document Server

    Jurciukonis, Darius; Juodagalvis, Andrius

    2015-01-01

    We analyse a flavour model for a lepton sector which is based on type I seesaw mechanism, a Z_2 symmetry for lepton flavours, a mu-tau interchange symmetry and a CP symmetry. This model fits well the data of neutrino mass squared differences and oscillation angles. The model predicts an overall neutrino mass scale for normal and inverted neutrino mass hierarchy and the effective mass m_beta, which is used in the neutrinoless double beta decay.

  19. Symmetry breaking: The standard model and superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1988-08-31

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.

  20. A Molecular Model for Chiral Symmetry Breaking

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  1. Symmetry and partial order reduction techniques in model checking Rebeca

    NARCIS (Netherlands)

    Jaghouri, M.M.; Sirjani, M.; Mousavi, M.R.; Movaghar, A.

    2007-01-01

    Rebeca is an actor-based language with formal semantics that can be used in modeling concurrent and distributed software and protocols. In this paper, we study the application of partial order and symmetry reduction techniques to model checking dynamic Rebeca models. Finding symmetry based equivalen

  2. Discrete flavor symmetries in D-brane models

    CERN Document Server

    Marchesano, Fernando; Vázquez-Mercado, Liliana

    2013-01-01

    We study the presence of discrete flavor symmetries in D-brane models of particle physics. By analyzing the compact extra dimensions of these models one can determine when such symmetries exist both in the context of intersecting and magnetized D-brane constructions. Our approach allows to distinguish between approximate and exact discrete symmetries, and it can be applied to compactification manifolds with continuous isometries or to manifolds that only contain discrete isometries, like Calabi-Yau three-folds. We analyze in detail the class of rigid D-branes models based on a Z_2 x Z'_2 toroidal orientifold, for which the flavor symmetry group is either the dihedral group D_4 or tensor products of it. We construct explicit Pati-Salam examples in which families transform in non-Abelian representations of the flavor symmetry group, constraining Yukawa couplings beyond the effect of massive U(1) D-brane symmetries.

  3. Charged Fermion Masses and Mixing from a SU(3) Family Symmetry Model

    CERN Document Server

    Hernandez-Galeana, Albino

    2016-01-01

    Within the framework of a Beyond Standard Model (BSM) with a local $SU(3)$ family symmetry, we report an updated fit of parameters which account for the known spectrum of quarks and charged lepton masses and the quark mixing in a $4\\times 4$ non-unitary $V_{CKM}$. In this scenario, ordinary heavy fermions, top and bottom quarks and tau lepton, become massive at tree level from Dirac See-saw mechanisms implemented by the introduction of a new set of $SU(2)_L$ weak singlet vector-like fermions, $U,D,E,N$, with $N$ a sterile neutrino. The $N_{L,R}$ sterile neutrinos allow the implementation of a $8\\times 8$ general See-saw Majorana neutrino mass matrix with four massless eigenvalues at tree level. Hence, light fermions, including neutrinos, obtain masses from loop radiative corrections mediated by the massive $SU(3)$ gauge bosons. $SU(3)$ family symmetry is broken spontaneously in two stages, whose hierarchy of scales yield an approximate $SU(2)$ global symmetry associated with the $Z_1, Y_1^\\pm$ gauge boson mas...

  4. Quantum symmetries induced by phonons in the Hubbard model

    Science.gov (United States)

    Montorsi, Arianna; Rasetti, Mario

    1994-03-01

    We show how the addition of a phonon field to the Hubbard model deforms the superconducting su(2) part of the global symmetry Lie algebra su(2)⊗su(2)/openZ2, holding at half filling for the customary model, into a quantum [su(2)]q symmetry, holding for a filling which depends on the electron-phonon interaction strength. Such symmetry originates in the feature that in the presence of phonons the hopping amplitude turns out to depend on the coupling strength. The states generated by resorting to this q symmetry exhibit both off-diagonal long-range order and pairing.

  5. Kac-Moody Symmetry in Hosotani Model

    CERN Document Server

    Shiraishi, Kiyoshi

    2012-01-01

    The symmetry of the massive tower of fields in higher-dimensional Yang-Mills theory compactified on a space-time of the form M_d x S^1 is clarified. The transformations form a loop algebra, a class of Kac-Moody algebras. Since the symmetry is spontaneously broken, vector fields "eat" Goldstone bosons and acquire masses. The field of zero-mass mode can also become massive provided that the field of the internal component develops a vacuum expectation value. The relation between the "restoration" of the symmetry in massive modes and the gauge transformation of the zero-mode vacuum field is discussed.

  6. Symmetries and solvable models for evaporating 2D black holes

    CERN Document Server

    Cruz, J; Navarro-Salas, J; Talavera, C F

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is switched off suddenly. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model.

  7. Review of Rotational Symmetry Breaking in Baby Skyrme Models

    CERN Document Server

    Karliner, Marek

    2009-01-01

    We discuss one of the most interesting phenomena exhibited by baby skyrmions -- breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  8. Thawing model and symmetry breaking in a coupled quintessence model

    CERN Document Server

    Honardoost, M; Sepangi, H R

    2015-01-01

    We consider the thawing model in the framework of coupled quintessence scenario. The effective potential has $Z_2$ symmetry which is broken spontaneously when dark matter density becomes less than a critical value leading the quintessence equation of state parameter to deviate from -1. Conditions required for this procedure are obtained and analytical solution for the equation of state parameter is derived.

  9. Discrete symmetries in the three-Higgs-doublet model

    CERN Document Server

    Ivanov, I P

    2012-01-01

    N-Higgs-doublet models (NHDM) are among the most popular examples of electroweak symmetry breaking mechanisms beyond the Standard Model. Discrete symmetries imposed on the NHDM scalar potential play a pivotal role in shaping the phenomenology of the model, and various symmetry groups have been studied so far. However, in spite of all efforts, the classification of finite Higgs-family symmetry groups realizable in NHDM for any N>2 is still missing. Here, we solve this problem for the three-Higgs-doublet model. Using recently found realizable abelian groups and applying Burnside's theorem and other group-theoretic tools, we find the full list of finite symmetry groups of Higgs-family transformations which are realizable in the scalar sector of 3HDM.

  10. Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, Joseph N [Los Alamos National Laboratory

    2010-09-21

    Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.

  11. Self-consistent Models of Strong Interaction with Chiral Symmetry

    Science.gov (United States)

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  12. SU(5) symmetry of spdfg interacting boson model

    Institute of Scientific and Technical Information of China (English)

    LI; Jingsheng(李京生); LIU; Yuxin(刘玉鑫); GAO; Peng(高鹏)

    2003-01-01

    The extended interacting boson model with s-, p-, d-, f- and g-bosons included (spdfg IBM)is investigated. The algebraic structure including the generators, the Casimir operators of the groups at the SU(5) dynamical symmetry and the branching rules of the irreducible representation reductions along the group chain are obtained. The typical energy spectrum of the symmetry is given.

  13. Symmetry breaking and cosmic acceleration in scalar field models

    CERN Document Server

    Sadjadi, M Mohseni; Sepangi, H R

    2015-01-01

    We study the possible role of symmetry breaking in the onset of the acceleration of the Universe in a scalar field dark energy model. We propose a new scenario in which acceleration of the Universe is driven by a positive potential produced by means of symmetry breaking.

  14. PT-symmetry in quasi-integrable models

    CERN Document Server

    Assis, P E G

    2015-01-01

    We reinforce the observations of almost stable scattering in nonintegrable models and show that $\\mathcal{PT}$-symmetry can be used as a guiding principle to select relevant systems also when it comes to integrability properties. We show that the presence of unbroken $\\mathcal{PT}$-symmetry in classical field theories produces quasi-integrable excitations with asymptotically conserved charges.

  15. Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel

    Science.gov (United States)

    Erickson, G. E.; Burner, A. W.; DeLoach, R.

    1999-01-01

    Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

  16. Partial dynamical symmetry in the symplectic shell model

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. [TRIUMF, Vancouver, British Columbia (Canada); Leviatan, A. [Hebrew Univ., Racah Inst. of Physics, Jerusalem (Israel)

    2000-08-01

    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the interacting boson model are considered. (author)

  17. SO(10) models with flavour symmetries: classification and examples

    Science.gov (United States)

    Ivanov, I. P.; Lavoura, L.

    2016-10-01

    Renormalizable SO(10) grand unified theory (GUT) models equipped with flavour symmetries are a popular framework for addressing the flavour puzzle. Usually, the flavour symmetry group has been an ad hoc choice, and no general arguments limiting this choice were known. In this paper, we establish the full list of flavour symmetry groups which may be enforced, without producing any further accidental symmetry, on the Yukawa-coupling matrices of an SO(10) GUT with arbitrary numbers of scalar multiplets in the {{10}}, \\bar{{{126}}}, and {{120}} representations of SO(10). For each of the possible discrete non-Abelian symmetry groups, we present examples of minimal models which do not run into obvious contradiction with the phenomenological fermion masses and mixings.

  18. A left-right symmetric flavor symmetry model

    Energy Technology Data Exchange (ETDEWEB)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Xu, Xun-Jie [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Tsinghua University, Institute of Modern Physics and Center for High Energy Physics, Beijing (China)

    2016-03-15

    We discuss flavor symmetries in left-right symmetric theories. We show that such frameworks are a different environment for flavor symmetry model building compared to the usually considered cases. This does not only concern the need to obey the enlarged gauge structure, but also more subtle issues with respect to residual symmetries. Furthermore, if the discrete left-right symmetry is charge conjugation, potential inconsistencies between the flavor and charge conjugation symmetries should be taken care of. In our predictive model based on A{sub 4} we analyze the correlations between the smallest neutrino mass, the atmospheric mixing angle and the Dirac CP phase, the latter prefers to lie around maximal values. There is no lepton flavor violation from the Higgs bi-doublet. (orig.)

  19. A left-right symmetric flavor symmetry model

    CERN Document Server

    Rodejohann, Werner

    2015-01-01

    We discuss flavor symmetries in left-right symmetric theories. We show that such frameworks are a different environment for flavor symmetry model building compared to the usually considered cases. This does not only concern the need to obey the enlarged gauge structure, but also more subtle issues with respect to residual symmetries. Furthermore, if the discrete left-right symmetry is charge conjugation, potential inconsistencies between the flavor and charge conjugation symmetries should be taken care of. In our predictive model based on $A_4$ we analyze the correlations between the smallest neutrino mass, the atmospheric mixing angle and the Dirac CP phase, the latter prefers to lie around maximal values. There is no lepton flavor violation from the Higgs bi-doublet.

  20. A left-right symmetric flavor symmetry model

    Science.gov (United States)

    Rodejohann, Werner; Xu, Xun-Jie

    2016-03-01

    We discuss flavor symmetries in left-right symmetric theories. We show that such frameworks are a different environment for flavor symmetry model building compared to the usually considered cases. This does not only concern the need to obey the enlarged gauge structure, but also more subtle issues with respect to residual symmetries. Furthermore, if the discrete left-right symmetry is charge conjugation, potential inconsistencies between the flavor and charge conjugation symmetries should be taken care of. In our predictive model based on A_4 we analyze the correlations between the smallest neutrino mass, the atmospheric mixing angle and the Dirac CP phase, the latter prefers to lie around maximal values. There is no lepton flavor violation from the Higgs bi-doublet.

  1. New statistical lattice model with double honeycomb symmetry

    Science.gov (United States)

    Naji, S.; Belhaj, A.; Labrim, H.; Bhihi, M.; Benyoussef, A.; El Kenz, A.

    2014-04-01

    Inspired from the connection between Lie symmetries and two-dimensional materials, we propose a new statistical lattice model based on a double hexagonal structure appearing in the G2 symmetry. We first construct an Ising-1/2 model, with spin values σ = ±1, exhibiting such a symmetry. The corresponding ground state shows the ferromagnetic, the antiferromagnetic, the partial ferrimagnetic and the topological ferrimagnetic phases depending on the exchange couplings. Then, we examine the phase diagrams and the magnetization using the mean field approximation (MFA). Among others, it has been suggested that the present model could be localized between systems involving the triangular and the single hexagonal lattice geometries.

  2. Fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2015-10-01

    Full Text Available A natural generalization of the original Dirac spinor into a multi-component spinor is achieved, which corresponds to the single lepton and the three quarks of the first family of the standard model of elementary particle physics. Different fermions result from similarity transformations of the Dirac equation, but apparently there can be no more fermions according to the maximal multiplicity revealed in this study. Rotations in the fermion state space are achieved by the unitary generators of the U(1 and the SU(3 groups, corresponding to quantum electrodynamics (QED based on electric charge and chromodynamics (QCD based on colour charge. In addition to hypercharge the dual degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by the two related (Weyl and Dirac representations of the Dirac equation. This yields the SU(2 symmetry of the weak interaction, which can be married to U(1 to generate the unified electroweak interaction as in the standard model. Therefore, the symmetry group encompassing all the three groups mentioned above is SU(8, which can accommodate and unify the observed eight basic stable fermions.

  3. Renormalisation group improved leptogenesis in family symmetry models

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Iain K., E-mail: ikc1g08@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, Stephen F., E-mail: king@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph, E-mail: christoph.luhn@durham.ac.uk [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE (United Kingdom)

    2012-06-11

    We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli-Feruglio A{sub 4} model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and {tau} Yukawa couplings.

  4. Universal Symmetry of Complexity and Its Manifestations at Different Levels of World Dynamics

    CERN Document Server

    Kirilyuk, A P

    2004-01-01

    The unreduced, universally nonperturbative analysis of arbitrary interaction process, described by a quite general equation, provides the truly complete, "dynamically multivalued" general solution that leads to dynamically derived, universal definitions of randomness, probability, chaoticity, complexity, fractality, self-organisation, and other properties, extending their axiomatic introduction in the conventional, dynamically single-valued (unitary) theory (physics/9806002, physics/0211071). Any real system emergence, structure, and behaviour can be expressed now by the universal law of conservation, or symmetry, of complexity that unifies extended versions of any (correct) symmetry, law, or "principle". Both the observed world structure and its unreduced dynamics result from that universal, unique symmetry, instead of formal imposition of separated, broken and simplified symmetries upon the existing, postulated structures in the unitary world "model". Whereas any unitary "symmetry" is regular and therefore ...

  5. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Schelkacheva, T.I., E-mail: tanschelk@gmail.com [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Chtchelkatchev, N.M. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow (Russian Federation); Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation)

    2013-02-15

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington–Kirkpatrick model with arbitrary diagonal operators U{sup -hat} standing instead of Ising spins. We focus on the case when U{sup -hat} is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of U{sup -hat} is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  6. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    Science.gov (United States)

    Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2013-02-01

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington-Kirkpatrick model with arbitrary diagonal operators Uˆ standing instead of Ising spins. We focus on the case when Uˆ is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of Uˆ is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  7. Partial Dynamical Symmetry in the Symplectic Shell Model

    CERN Document Server

    Escher, J; Escher, Jutta; Leviatan, Amiram

    2002-01-01

    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding new light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the Interact...

  8. Quantum symmetries induced by phonons in the Hubbard model

    OpenAIRE

    Montorsi, Arianna; Rasetti, Mario

    1994-01-01

    We show how the addition of a phonon field to the Hubbard model deforms the superconducting su(2) part of the global symmetry Lie algebra su(2)⊗su(2)/openZ2, holding at half filling for the customary model, into a quantum [su(2)]q symmetry, holding for a filling which depends on the electron-phonon interaction strength. Such symmetry originates in the feature that in the presence of phonons the hopping amplitude turns out to depend on the coupling strength. The states generated by resorting t...

  9. Classically conformal radiative neutrino model with gauged B - L symmetry

    Science.gov (United States)

    Okada, Hiroshi; Orikasa, Yuta

    2016-09-01

    We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B - L symmetry in the standard model that is essential in order to work the Coleman-Weinberg mechanism well that induces the B - L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman-Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ → eγ), the current bound on the Z‧ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  10. Particle model with generalized Poincaré symmetry

    Science.gov (United States)

    Smith, A.

    2017-08-01

    Using the techniques of nonlinear coset realization with a generalized Poincaré group, we construct a relativistic particle model, invariant under the generalized symmetries, providing a dynamical realization of the B5 algebra.

  11. Mirror symmetry for two parameter models, 2

    CERN Document Server

    Candelas, Philip; Katz, S; Morrison, Douglas Robert Ogston; Philip Candelas; Anamaria Font; Sheldon Katz; David R Morrison

    1994-01-01

    We describe in detail the space of the two K\\"ahler parameters of the Calabi--Yau manifold \\P_4^{(1,1,1,6,9)}[18] by exploiting mirror symmetry. The large complex structure limit of the mirror, which corresponds to the classical large radius limit, is found by studying the monodromy of the periods about the discriminant locus, the boundary of the moduli space corresponding to singular Calabi--Yau manifolds. A symplectic basis of periods is found and the action of the Sp(6,\\Z) generators of the modular group is determined. From the mirror map we compute the instanton expansion of the Yukawa couplings and the generalized N=2 index, arriving at the numbers of instantons of genus zero and genus one of each degree. We also investigate an SL(2,\\Z) symmetry that acts on a boundary of the moduli space.

  12. Chiral symmetry and the constituent quark model

    CERN Document Server

    Glozman, L Ya

    1995-01-01

    New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.

  13. The flavour problem and family symmetry beyond the Standard Model

    CERN Document Server

    Dziewit, Bartosz; Richter, Monika; Zając, Sebastian; Zrałek, Marek

    2016-01-01

    In the frame of two Higgs doublet model we try to explain the lepton masses and mixing matrix elements assuming that neutrinos are Dirac particles. Discrete family symmetry groups, which are subgroups of U(3) up to the 1025 order are considered. Like in the one Higgs Standard Model, we found that discrete family symmetries do not give satisfactory answer for this basic questions in the flavour problem.

  14. A biologically plausible model of human shape symmetry perception.

    Science.gov (United States)

    Poirier, Frédéric J A M; Wilson, Hugh R

    2010-01-19

    Symmetry is usually computationally expensive to encode reliably, and yet it is relatively effortless to perceive. Here, we extend F. J. A. M. Poirier and H. R. Wilson's (2006) model for shape perception to account for H. R. Wilson and F. Wilkinson's (2002) data on shape symmetry. Because the model already accounts for shape perception, only minimal neural circuitry is required to enable it to encode shape symmetry as well. The model is composed of three main parts: (1) recovery of object position using large-scale non-Fourier V4-like concentric units that respond at the center of concentric contour segments across orientations, (2) around that recovered object center, curvature mechanisms combine multiplicatively the responses of oriented filters to encode object-centric local shape information, with a preference for convexities, and (3) object-centric symmetry mechanisms. Model and human performances are comparable for symmetry perception of shapes. Moreover, with some improvement of edge recovery, the model can encode symmetry axes in natural images such as faces.

  15. EW scale DM models with dark gauge symmetries

    CERN Document Server

    Ko, P

    2016-01-01

    In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singlet portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for...

  16. Abelian symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, Igor P; Vdovin, Evgeny

    2012-01-01

    Classifying symmetry groups which can be implemented in the scalar sector of a model with $N$ Higgs doublets is a difficult and an unsolved task for $N>2$. Here, we make the first step towards this goal by classifying the Abelian symmetry groups. We describe a strategy that identifies all Abelian groups which can be realized as symmetry groups of the NHDM scalar potential. We give examples of the use of this strategy in 3HDM and 4HDM and prove several statements for arbitrary $N$.

  17. N= 4 Supersymmetric Quantum Mechanical Model: Novel Symmetries

    CERN Document Server

    Krishna, S

    2016-01-01

    We discuss a set of novel discrete symmetry transformations of the N = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent N = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions onto (1, 4)-dimensional supermanifold.

  18. 𝒩 = 4 supersymmetric quantum mechanical model: Novel symmetries

    Science.gov (United States)

    Krishna, S.

    2017-04-01

    We discuss a set of novel discrete symmetry transformations of the 𝒩 = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent 𝒩 = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions 𝜃α and 𝜃¯α onto (1, 4)-dimensional supermanifold.

  19. Symmetries and deformations in the spherical shell model

    Science.gov (United States)

    Van Isacker, P.; Pittel, S.

    2016-02-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott’s model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott’s SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells, N\\to ∞ , the algebraic octupole interaction tends to that of the geometric collective model.

  20. Abelian symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, Igor P; Vdovin, Evgeny

    2011-01-01

    N-Higgs-doublet models (NHDM) are a popular framework to construct electroweak symmetry breaking mechanisms beyond the Standard model. Usually, one builds an NHDM scalar sector which is invariant under a certain symmetry group. Although several such groups have been used, no general analysis of symmetries possible in the NHDM scalar sector exists. Here, we describe a strategy that identifies all abelian groups which are realizable as symmetry groups of the NHDM Higgs potential. We consider both the groups of Higgs-family transformations only and the groups which also contain generalized CP transformations. We illustrate this strategy with the examples of 3HDM and 4HDM and prove several statements for arbitrary N.

  1. The origin of discrete symmetries in F-theory models

    OpenAIRE

    2015-01-01

    While non-abelian groups are undoubtedly the cornerstone of Grand Unified Theories (GUTs), phenomenology shows that the role of abelian and discrete symmetries is equally important in model building. The latter are the appropriate tool to suppress undesired proton decay operators and various flavour violating interactions, to generate a hierarchical fermion mass spectrum, etc. In F-theory, GUT symmetries are linked to the singularities of the elliptically fibred K3 manifolds; they are of ADE ...

  2. Spontaneous symmetry breaking in the composite-vector-boson model

    Energy Technology Data Exchange (ETDEWEB)

    Garavaglia, T.

    1986-11-15

    Spontaneous symmetry breaking is discussed in the Abelian, QED-like, composite-vector-boson model. When the auxiliary vector field has a nonzero vacuum expectation value, a global symmetry, Lorentz invariance, is broken. It is shown that the regularization of the saddle-point conditions for the quantum fluctuation generating functional is consistent only with a spacelike vacuum expectation value for the auxiliary vector field.

  3. Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments

    Directory of Open Access Journals (Sweden)

    Jacques Ninio

    2011-07-01

    Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.

  4. A radiative model of quark masses with binary tetrahedral symmetry

    Science.gov (United States)

    Natale, Alexander

    2017-01-01

    A radiative model of quark and lepton masses utilizing the binary tetrahedral (T‧) flavor symmetry, or horizontal symmetry, is proposed which produces the first two generation of quark masses through their interactions with vector-like quarks that carry charges under an additional U (1). By softly-breaking the T‧ to a residual Z4 through the vector-like quark masses, a CKM mixing angle close to the Cabibbo angle is produced. In order to generate the cobimaximal neutrino oscillation pattern (θ13 ≠ 0 ,θ23 = π / 4 ,δCP = ± π / 2) and protect the horizontal symmetry from arbitrary corrections in the lepton sector, there are automatically two stabilizing symmetries in the dark sector. Several benchmark cases where the correct relic density is achieved in a multi-component DM scenario, as well as the potential collider signatures of the vector-like quarks are discussed.

  5. The Friedberg-Lee symmetry and minimal seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    He Xiaogang [Center for High Energy Physics, Peking University, Beijing (China); Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China); Liao Wei, E-mail: liaow@ecust.edu.c [Center for High Energy Physics, Peking University, Beijing (China); Institute of Modern Physics, East China University of Science and Technology, Shanghai (China)

    2009-11-02

    The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field q to q+xiz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N-1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.

  6. The Friedberg-Lee symmetry and minimal seesaw model

    Science.gov (United States)

    He, Xiao-Gang; Liao, Wei

    2009-11-01

    The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field q to q + ξz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N - 1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.

  7. The Friedberg-Lee Symmetry and Minimal Seesaw Model

    CERN Document Server

    He, Xiao-Gang

    2009-01-01

    The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field $q$ to $q + \\xi z$. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to $N$ fermionic fields, we find that the number of independent fields is reduced to $N-1$ if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino mass must be zero.

  8. Self-Similar Symmetry Model and Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Tomohide eSonoda

    2016-05-01

    Full Text Available In this paper, we present the self-similar symmetry (SSS model that describes the hierarchical structure of the universe. The model is based on the concept of self-similarity, which explains the symmetry of the cosmic microwave background (CMB. The approximate length and time scales of the six hierarchies of the universe---grand unification, electroweak unification, the atom, the pulsar, the solar system, and the galactic system---are derived from the SSS model. In addition, the model implies that the electron mass and gravitational constant could vary with the CMB radiation temperature.

  9. The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    CERN Document Server

    Kondratyuk, S; Myhrer, F; Scholten, O

    2004-01-01

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating of the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the $\\Delta$ resonance, including its dressing with meson loops, is discussed in some detail and found to be small.

  10. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  11. An SU(5) grand unified model with discrete flavour symmetries

    CERN Document Server

    Hernández, A E Cárcamo; Schmidt, Iván

    2014-01-01

    We propose a model based on the $SU(5)$ grand unification with an extra $Z_{2}\\otimes Z_{2}^{\\prime}\\otimes Z_{2}^{\\prime \\prime}\\otimes Z_{4}\\otimes Z_{12}$ flavor symmetry, which successfully describes the observed SM fermion mass and mixing pattern. The observed quark mass and mixing pattern is caused by the $Z_{4}$ and $Z_{12}$ symmetries, which are broken at very high scale by the $SU(5)$ scalar singlets $\\sigma $ and $\\chi $, charged respectively under these symmetries and which acquire VEVs at the GUT scale. The light neutrino masses are generated via a type I seesaw mechanism with three heavy Majorana neutrinos. The model has in total 17 effective free parameters, from which 2 are fixed and 15 are fitted to reproduce the experimental values of the 18 physical parameters in the quark and lepton sectors. The model predictions for both quark and lepton sectors are in excellent agreement with the experimental data.

  12. A Unitary or Binary Model of Emotions: A Discussion on a Fundamental Difference between Cognitive Therapy and Rational Emotive Behaviour Therapy

    OpenAIRE

    Hyland, Philip; Boduszek, Daniel

    2012-01-01

    This primary purpose of this paper is to consider the differential cognitive conceptualization of emotions postulated by the two main schools of cognitive behavioural therapy (CBT), namely Rational Emotive Behaviour Therapy (REBT) and Cognitive Therapy (CT).While CT theory favours a unitary model of emotional distress, REBT theory posits a binary model of emotional distress. This paper will address how the two approaches differ in their conceptualizations of emotional disturbance and the impl...

  13. Quantum symmetries induced by phonons in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Montorsi, A.; Rasetti, M. (Theory Division, Los Alamos National Laboratories, Los Alamos, New Mexico 87545 (United States) Dipartimento di Fisica and Unita Istituto Nazionale di Fisica della Materia, Politecnico di Torino, I-10129 Torino (Italy))

    1994-03-14

    We show how the addition of a phonon field to the Hubbard model deforms the [ital superconducting] su(2) part of the global symmetry Lie algebra su(2)[direct product]su(2)/[ital openZ][sub 2], holding at half filling for the customary model, into a [ital quantum] [su(2)][sub [ital q

  14. Graphical Gaussian models with edge and vertex symmetries

    DEFF Research Database (Denmark)

    Højsgaard, Søren; Lauritzen, Steffen L

    2008-01-01

    study the properties of such models and derive the necessary algorithms for calculating maximum likelihood estimates. We identify conditions for restrictions on the concentration and correlation matrices being equivalent. This is for example the case when symmetries are generated by permutation...... of variable labels. For such models a particularly simple maximization of the likelihood function is available...

  15. Nonlocal regularization of abelian models with spontaneous symmetry breaking

    OpenAIRE

    Clayton, M. A.

    2001-01-01

    We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.

  16. Extended superconformal symmetry, Freudenthal triple systems and gauged WZW models

    CERN Document Server

    Günaydin, M

    1995-01-01

    We review the construction of extended ( N=2 and N=4 ) superconformal algebras over triple systems and the gauged WZW models invariant under them. The N=2 superconformal algebras (SCA) realized over Freudenthal triple systems (FTS) admit extension to ``maximal'' N=4 SCA's with SU(2)XSU(2)XU(1) symmetry. A detailed study of the construction and classification of N=2 and N=4 SCA's over Freudenthal triple systems is given. We conclude with a study and classification of gauged WZW models with N=4 superconformal symmetry.

  17. Noether symmetry approach in f(R)-tachyon model

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Mahomed, F.M., E-mail: Fazal.Mahomed@wits.ac.za [Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Wits 2050 (South Africa); Momeni, D., E-mail: d.momeni@yahoo.com [Department of Physics, Faculty of Sciences, Tarbiat Moa' llem University, Tehran (Iran, Islamic Republic of)

    2011-08-26

    In this Letter by utilizing the Noether symmetry approach in cosmology, we attempt to find the tachyon potential via the application of this kind of symmetry to a flat Friedmann-Robertson-Walker (FRW) metric. We reduce the system of equations to simpler ones and obtain the general class of the tachyon's potential function and f(R) functions. We have found that the Noether symmetric model results in a power law f(R) and an inverse fourth power potential for the tachyonic field. Further we investigate numerically the cosmological evolution of our model and show explicitly the behavior of the equation of state crossing the cosmological constant boundary.

  18. Estimate of the Critical Exponent of the Anderson Transition in the Three and Four-Dimensional Unitary Universality Classes

    Science.gov (United States)

    Slevin, Keith; Ohtsuki, Tomi

    2016-10-01

    Disordered non-interacting systems are classified into ten symmetry classes, with the unitary class being the most fundamental. The three and four-dimensional unitary universality classes are attracting renewed interest because of their relation to three-dimensional Weyl semi-metals and four-dimensional topological insulators. Determining the critical exponent of the correlation/localisation length for the Anderson transition in these classes is important both theoretically and experimentally. Using the transfer matrix technique, we report numerical estimations of the critical exponent in a U(1) model in three and four dimensions.

  19. An Interacting N = 2 Supersymmetric Quantum Mechanical Model: Novel Symmetries

    CERN Document Server

    Krishna, S; Malik, R P

    2015-01-01

    We demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting N = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realization of the de Rham cohomological operators of differential geometry. We derive the nilpotent N = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our N = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables, obtained after the imposition of the SUSY invariant restrictions, and...

  20. { P }{ T } symmetry in quasi-integrable models

    Science.gov (United States)

    Assis, P. E. G.

    2016-06-01

    Observations of almost stable scattering in nonintegrable models have been reinforced and a framework is proposed to describe quasi-integrability in terms of { P }{ T } symmetry. This new mechanism can be used to regard { P }{ T } symmetry in classical field theories as a guiding principle to also select relevant systems when it comes to integrability properties. It turns out that the if a deformed Lax pair is invariant under this symmetry, corresponding to the unbroken { P }{ T }-symmetric regime, quasi-integrable excitations are produced with asymptotically conserved charges. A generic nonlinear field equation is used in order to verify the validity of the assumptions but results for a specific non-integrable class of models are also presented. A set of quasi-integrable excitations is investigated and shown to have spectral functions with appropriate properties, which might lead to the determination of the almost conserved charges.

  1. E6 inspired supersymmetric models with exact custodial symmetry

    Science.gov (United States)

    Nevzorov, Roman

    2013-01-01

    The breakdown of E6 gauge symmetry at high energies may lead to supersymmetric models based on the standard model gauge group together with extra U(1)ψ and U(1)χ gauge symmetries. To ensure anomaly cancellation the particle content of these E6 inspired models involves extra exotic states that generically give rise to nondiagonal flavor transitions and rapid proton decay. We argue that a single discrete Z˜2H symmetry can be used to forbid tree-level flavor changing transitions, as well as the most dangerous baryon and lepton number violating operators. We present 5D and 6D orbifold grand unified theory constructions that lead to the E6 inspired supersymmetric models of this type. The breakdown of U(1)ψ and U(1)χ gauge symmetries that preserves E6 matter parity assignment guarantees that ordinary quarks and leptons and their superpartners, as well as the exotic states which originate from 27 representations of E6, survive to low energies. These E6 inspired models contain two dark matter candidates and must also include additional TeV scale vectorlike lepton or vectorlike down-type quark states to render the lightest exotic quark unstable. We examine gauge coupling unification in these models and discuss their implications for collider phenomenology and cosmology.

  2. E6 inspired SUSY models with exact custodial symmetry

    CERN Document Server

    Nevzorov, R

    2012-01-01

    The breakdown of E_6 gauge symmetry at high energies may result in supersymmetric (SUSY) models based on the Standard Model (SM) gauge group together with extra U(1)_{\\psi} and U(1)_{\\chi} gauge symmetries. To ensure anomaly cancellation the particle content of these E_6 inspired models involves extra exotic states that can give rise to non--diagonal flavour transitions and rapid proton decay. We argue that a single discrete \\tilde{Z}^{H}_2 symmetry can be used to forbid tree--level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present 5D and 6D orbifold GUT models that can lead to the E_6 inspired SUSY models of this type. The breakdown of U(1)_{\\psi} and U(1)_{\\chi} gauge symmetries that preserves E_6 matter parity assignment guarantees that the exotic states which originate from 27_i representations of E_6 as well as ordinary quark and lepton states survive to low energies. The considered E_6 inspired models contain at least two dark-matter candidates a...

  3. Transition from Poisson to circular unitary ensemble

    Indian Academy of Sciences (India)

    Vinayak; Akhilesh Pandey

    2009-09-01

    Transitions to universality classes of random matrix ensembles have been useful in the study of weakly-broken symmetries in quantum chaotic systems. Transitions involving Poisson as the initial ensemble have been particularly interesting. The exact two-point correlation function was derived by one of the present authors for the Poisson to circular unitary ensemble (CUE) transition with uniform initial density. This is given in terms of a rescaled symmetry breaking parameter Λ. The same result was obtained for Poisson to Gaussian unitary ensemble (GUE) transition by Kunz and Shapiro, using the contour-integral method of Brezin and Hikami. We show that their method is applicable to Poisson to CUE transition with arbitrary initial density. Their method is also applicable to the more general ℓ CUE to CUE transition where CUE refers to the superposition of ℓ independent CUE spectra in arbitrary ratio.

  4. Unitary appreciative inquiry.

    Science.gov (United States)

    Cowling, W R

    2001-06-01

    Unitary appreciative inquiry is described as an orientation, process, and approach for illuminating the wholeness, uniqueness, and essence that are the pattern of human life. It was designed to bring the concepts, assumptions, and perspectives of the science of unitary human beings into reality as a mode of inquiry. Unitary appreciative inquiry provides a way of giving fullest attention to important facets of human life that often are not fully accounted for in current methods that have a heavier emphasis on diagnostic representations. The participatory, synoptic, and transformative qualities of the unitary appreciative process are explicated. The critical dimensions of nursing knowledge development expressed in dialectics of the general and the particular, action and theory, stories and numbers, sense and soul, aesthetics and empirics, and interpretation and emancipation are considered in the context of the unitary appreciative stance. Issues of legitimacy of knowledge and credibility of research are posed and examined in the context of four quality standards that are deemed important to evaluate the worthiness of unitary appreciative inquiry for the advancement of nursing science and practice.

  5. Discrete symmetry breaking beyond the standard model

    NARCIS (Netherlands)

    Dekens, Wouter Gerard

    2015-01-01

    The current knowledge of elementary particles and their interactions is summarized in the Standard Model of particle physics. Practically all the predictions of this model, that have been tested, were confirmed experimentally. Nonetheless, there are phenomena which the model cannot explain. For

  6. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    Science.gov (United States)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  7. The fundamental role of symmetry in nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D. J. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-06-10

    The purpose of these lectures is to illustrate how symmetry and pattern recognition play essential roles in the progression from experimental observation to an understanding of nuclear phenomena in terms of interacting neutrons and protons. We do not discuss weak interactions nor relativistic and sub-nucleon degrees of freedom. The explicit use of symmetry and the power of algebraic methods, in combination with analytical and geometrical methods are illustrated by their use in deriving a shell-model description of nuclear rotational dynamics and the structure of deformed nuclei.

  8. Flavour symmetries in a renormalizable SO(10) model

    CERN Document Server

    Ferreira, P M; Jurčiukonis, D; Lavoura, L

    2015-01-01

    In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a $\\mathbf{10} \\oplus \\mathbf{120} \\oplus \\overline{\\mathbf{126}}$ representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by $Z_n$ symmetries, with suitable $n$, and one case is generated by a $Z_2 \\times Z_2$ symmetry. A numerical analysis of the 14 cases reveals that only two of them---dubbed A and B in the present paper---allow good fits to the experimentally known fermion masses and mixings.

  9. Ambiguities and Symmetry Relations in a Free Fermion Model

    CERN Document Server

    Battistel, O A

    1999-01-01

    We present a systematic study of one, two and three point functions of vector, axial-vector, scalar and pseudoscalar densities constructed in a free fermion model. The divergent content of the amplitudes are left in the form of (external momenta independent) 4-D integrals for which an appropriate regulating function is only implicitly assumed, and the integrals are not evaluated at any step of the calculation. The ambiguities and Symmetries Violations, in all cases, are shown to be associated with coefficients involving three relations between divergent integrals of the same degree of divergence. Setting these coefficients to zero is mandatory, e.g., for preserving gauge symmetry in QED. The implications for the ambiguities and symmetry violations are investigated. The results emerging from this alternative approach allow us to conclude that the traditional method used to establish the triangular anomalies could be questionable.

  10. Radiative breaking of conformal symmetry in the Standard Model

    Science.gov (United States)

    Arbuzov, A. B.; Nazmitdinov, R. G.; Pavlov, A. E.; Pervushin, V. N.; Zakharov, A. F.

    2016-02-01

    Radiative mechanism of conformal symmetry breaking in a comformal-invariant version of the Standard Model is considered. The Coleman-Weinberg mechanism of dimensional transmutation in this system gives rise to finite vacuum expectation values and, consequently, masses of scalar and spinor fields. A natural bootstrap between the energy scales of the top quark and Higgs boson is suggested.

  11. Leptogenesis in a model with Friedberg-Lee symmetry

    Science.gov (United States)

    Araki, Takeshi; Geng, C. Q.

    2009-10-01

    We study the matter-antimatter asymmetry through the leptogenesis mechanism in a specific model with the Friedberg-Lee (FL) symmetry. We relate the leptogenesis with the CP violating Dirac and Majorana phases in the Maki-Nakagawa-Sakata leptonic mixing matrix and illustrate the net baryon asymmetry of the universe in terms of these phases.

  12. Leptogenesis in a model with Friedberg-Lee symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Takeshi [Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan (China)], E-mail: araki@phys.nthu.edu.tw; Geng, C.Q. [Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan (China)], E-mail: geng@phys.nthu.edu.tw

    2009-10-05

    We study the matter-antimatter asymmetry through the leptogenesis mechanism in a specific model with the Friedberg-Lee (FL) symmetry. We relate the leptogenesis with the CP violating Dirac and Majorana phases in the Maki-Nakagawa-Sakata leptonic mixing matrix and illustrate the net baryon asymmetry of the universe in terms of these phases.

  13. A review on symmetries for certain Aedes aegypti models

    Science.gov (United States)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  14. Leptogenesis in model with Friedberg-Lee symmetry

    CERN Document Server

    Araki, Takeshi

    2009-01-01

    We study the matter-antimatter asymmetry through the leptogenesis mechanism in the model with the Friedberg-Lee (FL) symmetry. We relate the leptogenesis with the CP violating Dirac and Majorana phases in the Maki-Nakagawa-Sakata leptonic mixing matrix and illustrate the net baryon asymmetry of the universe in terms of these phases.

  15. The Calogero Model and the Virasoro Symmetry

    NARCIS (Netherlands)

    Bergshoeff, E.; Vasiliev, M.

    1995-01-01

    We construct new realizations of the Virasoro algebra inspired by the Calogero model. The Virasoro algebra we find acts as a kind of spectrum-generating algebra of the Calogero model. Furthermore, we present the superextension of these results and introduce a class of higher spin extensions of the V

  16. Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model

    CERN Document Server

    Drach, Vincent; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2015-01-01

    We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark masses at two different lattice spacings. To address the pressing issue of whether the model is inside or below the conformal window, we compare the spectrum to the expectations for a theory with spontaneous chiral symmetry breaking and to those of an IR conformal theory. Regardless of the answer (conformal or chirally broken), the theory is a cornerstone in our understanding of near-conformal and composite dynamics, ranging from Technicolor models to unparticle physics. It is also interesting for the composite dynamics of vector-like singlets with respect to the Standard Model interactions.

  17. Entanglement continuous unitary transformations

    Science.gov (United States)

    Sahin, Serkan; Schmidt, Kai Phillip; Orús, Román

    2017-01-01

    Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called “entanglement-CUT” or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators. We also present proof-of-principle results for the spin-(1/2) 1d quantum Ising model and the 3-state quantum Potts model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermodynamic limit.

  18. Phase Structure of the T-matrix and Multichannel Unitary Isobar Model

    Science.gov (United States)

    Razavi, S.; Nakayama, K.

    2015-04-01

    By exploiting the full phase structure of the meson-baryon coupled channels reaction amplitude-here including also the photon-baryon channel-an isobar model is constructed which fulfills automatically the unitarity and analyticity conditions of the S-matrix, in addition to gauge invariance in the case of photoproduction. In particular, it is shown that the unitarity of the (resonance) pole amplitude arises from the dressing mechanism inherent in the basic T-matrix equation, requiring no extra unitarity condition on the pole amplitude as is the case in earlier works on isobar models. As an example, the present model is applied in the description of the meson-nucleon reactions including the πN , ηN , σN , ρN and πΔ channels. The latter three account effectively for the ππN channel. FFE-COSY Grant No. 41788390.

  19. Nuclear numerical range and quantum error correction codes for non-unitary noise models

    Science.gov (United States)

    Lipka-Bartosik, Patryk; Życzkowski, Karol

    2017-01-01

    We introduce a notion of nuclear numerical range defined as the set of expectation values of a given operator A among normalized pure states, which belong to the nucleus of an auxiliary operator Z. This notion proves to be applicable to investigate models of quantum noise with block-diagonal structure of the corresponding Kraus operators. The problem of constructing a suitable quantum error correction code for this model can be restated as a geometric problem of finding intersection points of certain sets in the complex plane. This technique, worked out in the case of two-qubit systems, can be generalized for larger dimensions.

  20. Reggeon cuts in a multiparticle unitary model II Four-particle case

    CERN Document Server

    Drummond, I T

    1976-01-01

    For pt.I see ibid., vol.B105, p.293, 1976. The reggeon cuts in a model with four-particle unitarity in the t-channel are investigated. The model, which was previously discussed by McCoy and Wu (1974) is derived from phi /sup 3/ theory. The analysis of asymptotic behaviour uses momentum-space techniques. The integral equation for the partial- wave amplitude is carefully investigated and used to exhibit the origin of the various reggeon cuts, which turn out to satisfy discontinuity formulae consistent with Gribov's reggeon calculus. It is suggested that there is a four-particle Regge pole to the right of all the cuts. (12 refs).

  1. Matrix Models and Eigenvalue Statistics for Truncations of Classical Ensembles of Random Unitary Matrices

    Science.gov (United States)

    Killip, Rowan; Kozhan, Rostyslav

    2017-02-01

    We consider random non-normal matrices constructed by removing one row and column from samples from Dyson's circular ensembles or samples from the classical compact groups. We develop sparse matrix models whose spectral measures match these ensembles. This allows us to compute the joint law of the eigenvalues, which have a natural interpretation as resonances for open quantum systems or as electrostatic charges located in a dielectric medium. Our methods allow us to consider all values of {β > 0}, not merely {β=1,2,4}.

  2. Reggeon cuts in a multiparticle unitary model I Three-particle case

    CERN Document Server

    Drummond, I T

    1976-01-01

    The authors investigate the reggeon cuts in a model derived from phi /sup 3/ theory, which exhibits three-particle unitarity in the non- asymptotic channel. They use momentum-space techniques to derive the asymptotic behaviour of the Feynman diagrams and discuss the anomalous structure of certain low-order contributions. Finally they show how the integral equation for the partial-wave amplitude can be used to derive the discontinuity formula across the reggeon cut which turns out to have the same structure and sign as that of the original Mandelstam contribution. (16 refs).

  3. Viability of minimal left-right models with discrete symmetries

    Science.gov (United States)

    Dekens, Wouter; Boer, Daniël

    2014-12-01

    We provide a systematic study of minimal left-right models that are invariant under P, C, and/or CP transformations. Due to the high amount of symmetry such models are quite predictive in the amount and pattern of CP violation they can produce or accommodate at lower energies. Using current experimental constraints some of the models can already be excluded. For this purpose we provide an overview of the experimental constraints on the different left-right symmetric models, considering bounds from colliders, meson-mixing and low-energy observables, such as beta decay and electric dipole moments. The features of the various Yukawa and Higgs sectors are discussed in detail. In particular, we give the Higgs potentials for each case, discuss the possible vacua and investigate the amount of fine-tuning present in these potentials. It turns out that all left-right models with P, C, and/or CP symmetry have a high degree of fine-tuning, unless supplemented with mechanisms to suppress certain parameters. The models that are symmetric under both P and C are not in accordance with present observations, whereas the models with either P, C, or CP symmetry cannot be excluded by data yet. To further constrain and discriminate between the models measurements of B-meson observables at LHCb and B-factories will be especially important, while measurements of the EDMs of light nuclei in particular could provide complementary tests of the LRMs.

  4. Viability of minimal left–right models with discrete symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Dekens, Wouter, E-mail: w.g.dekens@rug.nl; Boer, Daniël

    2014-12-15

    We provide a systematic study of minimal left–right models that are invariant under P, C, and/or CP transformations. Due to the high amount of symmetry such models are quite predictive in the amount and pattern of CP violation they can produce or accommodate at lower energies. Using current experimental constraints some of the models can already be excluded. For this purpose we provide an overview of the experimental constraints on the different left–right symmetric models, considering bounds from colliders, meson-mixing and low-energy observables, such as beta decay and electric dipole moments. The features of the various Yukawa and Higgs sectors are discussed in detail. In particular, we give the Higgs potentials for each case, discuss the possible vacua and investigate the amount of fine-tuning present in these potentials. It turns out that all left–right models with P, C, and/or CP symmetry have a high degree of fine-tuning, unless supplemented with mechanisms to suppress certain parameters. The models that are symmetric under both P and C are not in accordance with present observations, whereas the models with either P, C, or CP symmetry cannot be excluded by data yet. To further constrain and discriminate between the models measurements of B-meson observables at LHCb and B-factories will be especially important, while measurements of the EDMs of light nuclei in particular could provide complementary tests of the LRMs.

  5. Entanglement Continuous Unitary Transformations

    CERN Document Server

    Sahin, S; Orus, R

    2016-01-01

    Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called "entanglement-CUT" or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators, and we present proof-of-principle results for the spin-1/2 1d quantum Ising model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermo...

  6. Noether Symmetries Quantization and Superintegrability of Biological Models

    Directory of Open Access Journals (Sweden)

    Maria Clara Nucci

    2016-12-01

    Full Text Available It is shown that quantization and superintegrability are not concepts that are inherent to classical Physics alone. Indeed, one may quantize and also detect superintegrability of biological models by means of Noether symmetries. We exemplify the method by using a mathematical model that was proposed by Basener and Ross (2005, and that describes the dynamics of growth and sudden decrease in the population of Easter Island.

  7. Intrinsic Conformal Symmetries in Szekeres models

    CERN Document Server

    Apostolopoulos, Pantelis S

    2016-01-01

    We show that Spatially Inhomogeneous (SI) and Irrotational dust models admit a \\emph{6-dimensional algebra }of \\emph{Intrinsic Conformal Vector Fields} (ICVFs) $\\mathbf{X}_{\\alpha }$ satisfying $p_{a}^{c}p_{b}^{d}\\mathcal{L}_{\\mathbf{X}_{\\alpha }}p_{cd}=2\\phi (\\mathbf{X}_{\\alpha })p_{ab}$ where $p_{ab} $ is the associated metric of the 2d distribution $\\mathcal{X}$ normal to the fluid velocity $u^{a}$ and the radial unit spacelike vector field $x^{a}$. The Intrinsic Conformal (IC) algebra is determined for each of the curvature value $\\epsilon $ that characterizes the structure of the screen space $\\mathcal{X}$. In addition the conformal flatness of the hypersurfaces $\\mathbf{u}=\\mathbf{0}$ indicates the existence of a \\emph{10-dimensional algebra} of ICVFs of the 3d metric $h_{ab}$. We illustrate this expectation and propose a method to derive them by giving explicitly the \\emph{7 proper} ICVFs of the Lema\\^{\\i}tre-Tolman-Bondi (LTB) model which represents the simplest subclass within the Szekeres family.

  8. On multipartite invariant states II. Orthogonal symmetry

    OpenAIRE

    Chruściński, Dariusz; Kossakowski, Andrzej

    2006-01-01

    We construct a new class of multipartite states possessing orthogonal symmetry. This new class defines a convex hull of multipartite states which are invariant under the action of local unitary operations introduced in our previous paper "On multipartite invariant states I. Unitary symmetry". We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.

  9. On multipartite invariant states II. Orthogonal symmetry

    CERN Document Server

    Chruscinski, D; Chruscinski, Dariusz; Kossakowski, Andrzej

    2006-01-01

    We construct a new class of multipartite states possessing orthogonal symmetry. This new class defines a convex hull of multipartite states which are invariant under the action of local unitary operations introduced in our previous paper "On multipartite invariant states I. Unitary symmetry". We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.

  10. Symmetry Energy Effects in a Statistical Multifragmentation Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; GAO Yuan1; ZHANG Hong-Fei; CHEN Xi-Meng; Yu Mei-Ling; LI Jun-Qing

    2011-01-01

    The symmetry energy effects on the nuclear disintegration mechanisms of the neutron-rich system (A0 = 200, Z0 = 78) are studied in the framework of the statistical multifragmentation model (SMM) within its micro-canonical ensemble. A modified symmetry energy term with consideration of the volume and surface asymmetry is adopted instead of the original invariable value in the standard SMM model. The results indicate that as the volume and surface asymmetries are considered, the neutron-rich system translates to a fission-like process from evaporation earlier than the original standard SMM model at lower excitation energies, and its mass distribution has larger probabilities in the medium-heavy nuclei range so that the system breaks up more averagely. When the excitation energy becomes higher, the volume and surface asymmetry lead to a smaller average multiplicity.%The symmetry energy effects on the nuclear disintegration mechanisms of the neutron-rich system (A0 =200,Z0 =78) are studied in the framework of the statistical multifragmentation model (SMM) within its micro-canonical ensemble.A modified symmetry energy term with consideration of the volume and surface asymmetry is adopted instead of the original invariable value in the standard SMM model.The results indicate that as the volume and surface asymmetries are considered,the neutron-rich system translates to a fission-like process from evaporation earlier than the original standard SMM model at lower excitation energies,and its mass distribution has larger probabilities in the medium-heavy nuclei range so that the system breaks up more averagely.When the excitation energy becomes higher,the volume and surface asymmetry lead to a smaller average multiplicity.

  11. Beyond the standard gauging: gauge symmetries of Dirac sigma models

    Science.gov (United States)

    Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa; Strobl, Thomas

    2016-08-01

    In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic σ-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field theories called Dirac σ-models, which interpolate between the G/G Wess-Zumino-Witten model and the (Wess-Zumino-term twisted) Poisson sigma model.

  12. Dimer Models from Mirror Symmetry and Quivering Amoebae

    CERN Document Server

    Feng, B; Kennaway, K D; Vafa, C; Feng, Bo; He, Yang-Hui; Kennaway, Kristian D.; Vafa, Cumrun

    2005-01-01

    Dimer models are 2-dimensional combinatorial systems that have been shown to encode the gauge groups, matter content and tree-level superpotential of the world-volume quiver gauge theories obtained by placing D3-branes at the tip of a singular toric Calabi-Yau cone. In particular the dimer graph is dual to the quiver graph. However, the string theoretic explanation of this was unclear. In this paper we use mirror symmetry to shed light on this: the dimer models live on a T^2 subspace of the T^3 fiber that is involved in mirror symmetry and is wrapped by D6-branes. These D6-branes are mirror to the D3-branes at the singular point, and geometrically encode the same quiver theory on their world-volume.

  13. Symmetry-Based Tight Binding Modeling of Halide Perovskite Semiconductors

    OpenAIRE

    Boyer-Richard, Soline; Katan, Claudine; Traoré, Boubacar; Scholz, Reinhard; Jancu, Jean-Marc; Even, Jacky

    2016-01-01

    International audience; On the basis of a general symmetry analysis, this paper presents an empirical tight-binding (TB) model for the reference Pm-3m perovskite cubic phase of halide perovskites of general formula ABX3. The TB electronic band diagram, with and without spin orbit coupling effect of MAPbI3 has been determined based on state of the art density functional theory results including many body corrections (DFT+GW). It affords access to various properties, including distorted structu...

  14. Trivial symmetries in a 3D topological torsion model of gravity

    CERN Document Server

    Banerjee, Rabin; 10.1088/1742-6596/405/1/012028

    2012-01-01

    We study the gauge symmetries in a Mielke-Baekler type model of gravity in 2+1 dimensions. The model is built in a Poincare gauge theory framework where localisation of Poincare symmetries lead to gravity. However, explicit construction of gauge symmetries in the model through a Hamiltonian procedure yields an apparently different set of symmetries, as has been noted by various authors. Here, we show that the two sets of symmetries are actually equivalent in a canonical sense, their difference being just a set of trivial symmetries.

  15. Unitary version of the single-particle dispersive optical model and single-hole excitations in medium-heavy spherical nuclei

    Science.gov (United States)

    Kolomiytsev, G. V.; Igashov, S. Yu.; Urin, M. H.

    2017-07-01

    A unitary version of the single-particle dispersive optical model was proposed with the aim of applying it to describing high-energy single-hole excitations in medium-heavy mass nuclei. By considering the example of experimentally studied single-hole excitations in the 90Zr and 208Pb parent nuclei, the contribution of the fragmentation effect to the real part of the optical-model potential was estimated quantitatively in the framework of this version. The results obtained in this way were used to predict the properties of such excitations in the 132Sn parent nucleus.

  16. Nuclear symmetry energy in a modified quark meson coupling model

    CERN Document Server

    Mishra, R N; Panda, P K; Barik, N; Frederico, T

    2015-01-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.

  17. Adiabatic approximation for the Rabi model with broken inversion symmetry

    Science.gov (United States)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2017-01-01

    We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.

  18. Chaos, solitons and fractals in hidden symmetry models

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, 00015 Monterotondo, Rome (Italy)] e-mail: solitone@yahoo.it

    2006-01-01

    A spontaneous symmetry breaking (or hidden symmetry) model is reduced to a system nonlinear evolution equations integrable via an appropriate change of variables, by means of the asymptotic perturbation (AP) method, based on spatio-temporal rescaling and Fourier expansion. It is demonstrated the existence of coherent solutions as well as chaotic and fractal patterns, due to the possibility of selecting appropriately some arbitrary functions. Dromion, lump, breather, instanton and ring soliton solutions are derived and the interaction between these coherent solutions are completely elastic, because they pass through each other and preserve their shapes and velocities, the only change being a phase shift. Finally, one can construct lower dimensional chaotic patterns such as chaotic-chaotic patterns, periodic-chaotic patterns, chaotic soliton and dromion patterns. In a similar way, fractal dromion and lump patterns as well as stochastic fractal excitations can appear in the solution.

  19. Discrete symmetries and model-independent patterns of lepton mixing

    CERN Document Server

    Hernandez, D

    2012-01-01

    In the context of discrete flavor symmetries, we elaborate a method that allows one to obtain relations between the mixing parameters in a model-independent way. Under very general conditions, we show that flavor groups of the von Dyck type, that are not necessarily finite, determine the absolute values of the entries of one column of the mixing matrix. We apply our formalism to finite subgroups of the infinite von Dyck groups, such as the modular groups, and find cases that yield an excellent agreement with the best fit values for the mixing angles. We explore the Klein group as the residual symmetry of the neutrino sector and explain the permutation property that appears between the elements of the mixing matrix in this case.

  20. Discrete symmetries and model-independent patterns of lepton mixing

    Science.gov (United States)

    Hernandez, D.; Smirnov, A. Yu.

    2013-03-01

    In the context of discrete flavor symmetries, we elaborate a method that allows one to obtain relations between the mixing parameters in a model-independent way. Under very general conditions, we show that flavor groups of the von Dyck type, that are not necessarily finite, determine the absolute values of the entries of one column of the mixing matrix. We apply our formalism to finite subgroups of the infinite von Dyck groups, such as the modular groups, and find cases that yield an excellent agreement with the best fit values for the mixing angles. We explore the Klein group as the residual symmetry of the neutrino sector and explain the permutation property that appears between the elements of the mixing matrix in this case.

  1. Beyond the standard gauging: gauge symmetries of Dirac Sigma Models

    CERN Document Server

    Chatzistavrakidis, Athanasios; Jonke, Larisa; Strobl, Thomas

    2016-01-01

    In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic sigma-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field th...

  2. Realisation of chiral symmetry in the domain model of QCD

    CERN Document Server

    Kalloniatis, Alexander C

    2003-01-01

    The domain model for the QCD vacuum has previously been developed and shown to exhibit confinement of quarks and strong correlation of the local chirality of quark modes and duality of the background domain-like gluon field. Quark fluctuations satisfy a chirality violating boundary conditions parametrized by a random chiral angle $\\alpha_j$ on the $j-th$ domain. The free energy of an ensemble of $N\\to\\infty$ domains depends on $\\{\\alpha_j, j=1... N\\}$ through the logarithm of the quark determinant. Its parity odd part is given by the axial anomaly. The anomaly contribution to the free energy suppresses continuous axial U(1) degeneracy in the ground state, leaving only a residual axial Z(2) symmetry. This discrete symmetry and flavour $SU(N_f)_L\\times SU(N_f)_R$ chiral symmetry in turn are spontaneously broken with a quark condensate arising due to the asymmetry of the spectrum of Dirac operator. In order to illustrate the splitting between the $\\eta'$ from octet pseudoscalar mesons realised in the domain mode...

  3. Cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research and Dept. of Physics

    2012-11-15

    We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R}>10 GeV.

  4. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    CERN Document Server

    Ivanov, I P

    2012-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the $Z_4$ symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM.

  5. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Igor P. [Universite de Liege, IFPA, Liege (Belgium); Sobolev Institute of Mathematics, Novosibirsk (Russian Federation); Vdovin, E. [Sobolev Institute of Mathematics, Novosibirsk (Russian Federation)

    2013-02-15

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z{sub 4} symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  6. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    Science.gov (United States)

    Ivanov, Igor P.; Vdovin, E.

    2013-02-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized- CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the ℤ4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM.

  7. A model capturing novel strand symmetries in bacterial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sobottka, Marcelo, E-mail: sobottka@mtm.ufsc.br [Departamento de Matematica, Universidade Federal de Santa Catarina (Brazil); Hart, Andrew G., E-mail: ahart@dim.uchile.cl [Departamento de Ingenieria Matematica and Centro de Modelamiento Matematico, Universidad de Chile (Chile)

    2011-07-15

    Highlights: {yields} We propose a simple stochastic model to construct primitive DNA sequences. {yields} The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. {yields} The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. {yields} We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. {yields} We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that the frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.

  8. Entanglement quantification by local unitaries

    CERN Document Server

    Monras, A; Giampaolo, S M; Gualdi, G; Davies, G B; Illuminati, F

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "shield entanglement". They are constructed by first considering the (squared) Hilbert- Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these shield entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary f...

  9. Symmetry in behavior of complex social systems - discussion of models of crowd evacuation organized in agreement with symmetry conditions

    CERN Document Server

    Sikora, W

    2011-01-01

    The evacuation of football stadium scenarios are discussed as model realizing ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which the set of basic vectors of irreducible representation of given group is. The speeds of individuals at every point in the presented model have the same quantity. As the results the times of evacuation and average forces acting on individuals during the evacuation are given. Both parameters are compared with the same parameters got without symmetry considerations. They are calculated in the simulation procedure. The new program (using modified Helbing model) has been elaborated and presented in this work for realization the simulation tasks the.

  10. Non-Perturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2002-03-19

    We here use our non-perturbative, cluster decomposable relativistic scattering formalism to calculate photon-spinor scattering, including the related particle-antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it unitary two-particle amplitude for quantum-particle scattering. We verify that we have done this correctly by showing that our calculated photon-spinor amplitude reduces in the weak coupling limit to the usual lowest order, manifestly covariant (QED) result with the correct normalization. That we are able to successfully do this directly demonstrates that renormalizability need not be a fundamental requirement for all physically viable models.

  11. A "Littlest Higgs" Model with Custodial SU(2) Symmetry

    CERN Document Server

    Chang, S

    2003-01-01

    In this note, a ``littlest higgs'' model is presented which has an approximate custodial SU(2) symmetry. The model is based on the coset space $SO(9)/(SO(5)\\times SO(4))$. The light pseudo-goldstone bosons of the theory include a single higgs doublet below a TeV and a set of three $SU(2)_W$ triplets and an electroweak singlet in the TeV range. All of these scalars obtain approximately custodial SU(2) preserving vacuum expectation values. This model addresses a defect in the earlier $SO(5)\\times SU(2)\\times U(1)$ moose model, with the only extra complication being an extended top sector. Some of the precision electroweak observables are computed and do not deviate appreciably from Standard Model predictions. A wide range of higgs masses is allowed in a large region of parameter space consistent with naturalness.

  12. A Preonic Model with Colour-Spin Symmetry

    CERN Document Server

    Doğangün, Oktay; Ünel, Gökhan

    2011-01-01

    We have constructed a preonic model starting from a coloured fermionic preon and by postulating a new symmetry, MUSY. This new symmetry is defined via the MU number involving colour, charge and spin properties of the preons. We show that all the known fields of the Standard Model (SM) can be constructed using the fermionic preon and 6 preonic scalars, its MUSY partners. As an example, we present well known \\beta-decay process at MUSY level. MUSY also forbids some processes such as proton decay (preserving the baryon number) and hence, it is compatible with current experimental results. In this model the number of SM generations arises to be three naturally. The MUSY generalization of the SUSY algebra is constructed and the MUSY invariant Lagrangian is also explicitly written. Similar to other preonic and supersymmetric models, a number of new particles are predicted. These particles do not interact with any of the SM fermions but only with the gauge bosons. These particles could be dark matter candidates

  13. Discrete Flavor Symmetries and Models of Neutrino Mixing

    CERN Document Server

    Altarelli, Guido

    2010-01-01

    We review the application of non abelian discrete groups to the theory of neutrino masses and mixing, which is strongly suggested by the agreement of the Tri-Bimaximal mixing pattern with experiment. After summarizing the motivation and the formalism, we discuss specific models, based on A4, S4 and other finite groups, and their phenomenological implications, including lepton flavor violating processes, leptogenesis and the extension to quarks. In alternative to Tri-Bimaximal mixing the application of discrete flavor symmetries to quark-lepton complementarity and Bimaximal Mixing is also considered.

  14. Two Higgs doublet models with an $S_3$ symmetry

    CERN Document Server

    Cogollo, D

    2016-01-01

    We study all implementations of the $S_3$ symmetry in the two Higgs doublet model with quarks, consistent with non-zero quark masses and a Cabibbo-Kobayashi-Maskawa (CKM) matrix which is not block diagonal. We study the impact of the various soft-breaking terms and vacuum expectation values, and find an interesting relation between $\\alpha$ and $\\beta$. We also show that, in this minimal setting, only two types of assignments are possible: either all field sectors are in singlets or all field sectors have a doublet.

  15. Symmetry Nonrestoration in a Gross-Neveu Model with Random Chemical Potential

    CERN Document Server

    Hong, S I; Hong, Seok-In; Kogut, John B.

    2001-01-01

    We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with random chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well as Z_2 chiral symmetry. At high temperature the Z_2 chiral symmetry is always restored. In three dimensions the initially broken charge conjugation symmetry is not restored at high temperature, irrespective of the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry undergoes a quantum phase transition from a symmetric state (for weak disorder) to a broken state (for strong disorder) as the disorder strength is varied. For any given value of disorder strength, the high-temperature behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high temperature.

  16. Symmetry-Based Tight Binding Modeling of Halide Perovskite Semiconductors.

    Science.gov (United States)

    Boyer-Richard, Soline; Katan, Claudine; Traoré, Boubacar; Scholz, Reinhard; Jancu, Jean-Marc; Even, Jacky

    2016-10-06

    On the basis of a general symmetry analysis, this paper presents an empirical tight-binding (TB) model for the reference Pm-3m perovskite cubic phase of halide perovskites of general formula ABX3. The TB electronic band diagram, with and without spin orbit coupling effect of MAPbI3 has been determined based on state of the art density functional theory results including many body corrections (DFT+GW). It affords access to various properties, including distorted structures, at a significantly reduced computational cost. This is illustrated with the calculation of the band-to-band absorption spectrum, the variation of the band gap under volumetric strain, as well as the Rashba effect for a uniaxial symmetry breaking. Compared to DFT approaches, this empirical model will help to tackle larger issues, such as the electronic band structure of large nanostructures, including many-body effects, or heterostructures relevant to perovskite device modeling suited to the description of atomic-scale features.

  17. Mixed-Symmetry Shell-Model Calculations in Nuclear Physics

    CERN Document Server

    Gueorguiev, V G

    2010-01-01

    We consider a novel approach to the nuclear shell model. The one-dimensional harmonic oscillator in a box is used to introduce the concept of an oblique-basis shell-model theory. By implementing the Lanczos method for diagonalization of large matrices, and the Cholesky algorithm for solving generalized eigenvalue problems, the method is applied to nuclei. The mixed-symmetry basis combines traditional spherical shell-model states with SU(3) collective configurations. We test the validity of this mixed-symmetry scheme on 24Mg and 44Ti. Results for 24Mg, obtained using the Wilthental USD intersection in a space that spans less than 10% of the full-space, reproduce the binding energy within 2% as well as an accurate reproduction of the low-energy spectrum and the structure of the states - 90% overlap with the exact eigenstates. In contrast, for an m-scheme calculation, one needs about 60% of the full space to obtain compatible results. Calculations for 44Ti support the mixed-mode scheme although the pure SU(3) ca...

  18. Adjoint $SU(5)$ GUT model with $T_{7}$ flavor symmetry

    CERN Document Server

    Arbeláez, Carolina; Kovalenko, Sergey; Schmidt, Iván

    2015-01-01

    We propose an adjoint $SU(5)$ GUT model with a $T_{7}$ family symmetry and an extra $Z_{2}\\otimes Z_{2}^{\\prime }\\otimes Z_{3}\\otimes Z_{4}\\otimes Z_{12}$ discrete group, that successfully describes the prevailing Standard Model (SM) fermion mass and mixing pattern. The observed hierarchy of the charged fermion masses and the quark mixing angles arises from the $Z_{3}\\otimes Z_{4}\\otimes Z_{12}$ symmetry breaking, which occurs near the GUT scale. The light active neutrino masses are generated by type I and type III seesaw mechanisms mediated by the fermionic $SU(5)$ singlet and the adjoint $\\mathbf{24}$-plet. The model predicts the effective Majorana neutrino mass parameter of neutrinoless double beta decay to be $m_{\\beta \\beta }=$ 4 and 50 meV for the normal and the inverted neutrino spectrum, respectively. We construct several benchmark scenarios, which lead to $SU(5)$ gauge coupling unification and are compatible with the known phenomenological constraints originating from the lightness of neutrinos, prot...

  19. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures.

  20. Lie symmetries and exact solutions for a short-wave model

    Institute of Scientific and Technical Information of China (English)

    Chen Ai-Yong; Zhang Li-Na; Wen Shuang-Quan

    2013-01-01

    In this paper,the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model.The symmetries for this equation are given,and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems.The exact parametric representations of four types of traveling wave solutions are obtained.

  1. Symmetry Breaking on Density in Escaping Ants: Experiment and Alarm Pheromone Model

    OpenAIRE

    Geng Li; Di Huan; Bertrand Roehner; Yijuan Xu; Ling Zeng; Zengru Di; Zhangang Han

    2014-01-01

    International audience; The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collectiv...

  2. Three-Triplet Model with Double SU(3) Symmetry

    Science.gov (United States)

    Han, M. Y.; Nambu, Y.

    1965-01-01

    With a view to avoiding some of the kinematical and dynamical difficulties involved in the single triplet quark model, a model for the low lying baryons and mesons based on three triplets with integral charges is proposed, somewhat similar to the two-triplet model introduced earlier by one of us (Y. N.). It is shown that in a U(3) scheme of triplets with integral charges, one is naturally led to three triplets located symmetrically about the origin of I{sub 3} - Y diagram under the constraint that Nishijima-Gell-Mann relation remains intact. A double SU(3) symmetry scheme is proposed in which the large mass splittings between different representations are ascribed to one of the SU(3), while the other SU(3) is the usual one for the mass splittings within a representation of the first SU(3).

  3. Building SO$_{10}$- models with $\\mathbb{D}_{4}$ symmetry

    CERN Document Server

    Laamara, R Ahl; Saidi, E H

    2015-01-01

    Using characters of finite group representations and monodromy of matter curves in F-GUT, we complete partial results in literature by building SO$% _{10}$ models with dihedral $\\mathbb{D}_{4}$ discrete symmetry. We first revisit the $\\mathbb{S}_{4}$-and $\\mathbb{S}_{3}$-models from the discrete group character view, then we extend the construction to $\\mathbb{D}_{4}$.\\ We find that there are three types of $SO_{10}\\times \\mathbb{D}_{4}$ models depending on the ways the $\\mathbb{S}_{4}$-triplets break down in terms of irreducible $\\mathbb{D}_{4}$- representations: $\\left({\\alpha} \\right) $ as $\\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,+}};$ or $\\left({\\beta}\\right) \\boldsymbol{\\ 1}_{_{+,+}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,-}};$ or also $\\left({\\gamma}\\right) $ $\\mathbf{1}_{_{+,-}}\\oplus \\mathbf{2}_{_{0,0}}$. Superpotentials and other features are also given.

  4. Exactly solvable models of scattering with SL(2, C) symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary)

    2002-08-02

    Using the theory of induced representations two exactly solvable models of non-relativistic scattering with SL(2, C) symmetry are presented. The first describes the scattering of a charged particle moving on the Poincare upper half space H under the influence of an SU(2) non-Abelian gauge potential with isospin s. The second deals with a one-dimensional coupled-channel scattering problem for a charged particle in a matrix-valued scalar potential containing Morse-like interaction terms. The coupled channel wavefunctions and the corresponding scattering matrices are calculated. A detailed description of the underlying geometric structures is also given and a generalization for restricting the motion to fundamental domains of H (three manifolds of constant negative sectional curvature) is outlined. Such models provide an interesting generalization to the known ones of multichannel scattering, quantum chaos and chaotic cosmology. (author)

  5. A mathematical model of symmetry based on mathematical definition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disign/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance because of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: (1) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements; after which, the mathematical models of symmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.

  6. Unitary fermions and Lüscher's formula on a crystal

    Science.gov (United States)

    Valiente, Manuel; Zinner, Nikolaj T.

    2016-11-01

    We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the naïve continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak, intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.

  7. de Sitter symmetries and inflationary scalar-vector models

    Directory of Open Access Journals (Sweden)

    Juan P. Beltrán Almeida

    2016-12-01

    Full Text Available In this paper, we study the correspondence between a field theory in de Sitter space in D-dimensions and a dual conformal field theory in a euclidean space in (D − 1-dimensions. In particular, we investigate the form in which this correspondence is established for a system of interacting scalar and a vector fields propagating in de Sitter space. We analyze some necessary (but not sufficient conditions for which conformal symmetry is preserved in the dual theory in (D − 1-dimensions, making possible the establishment of the correspondence. The discussion that we address in this paper is framed on the context of inflationary cosmology. Thusly, the results obtained here pose some relevant possibilities of application to the calculation of the fields’s correlation functions and of the primordial curvature perturbation ζ, in inflationary models including coupled scalar and vector fields.

  8. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  9. Phenomenology of Standard Model in spontaneously broken mirror symmetry

    CERN Document Server

    Dyatlov, Igor T

    2016-01-01

    Violated mirror symmetry (MS) is capable of reproducing observed qualitative properties of weak mixing for quarks and leptons. In violated MS, lepton phenomenology, that is, small neutrino masses and mixing properties different from those of quarks, requires the Dirac nature of neutrinos and existence of processes that change the total lepton number. Such processes involve heavy mirror neutrinos, and therefore occur at very high energies. CP non-conservation would mean here that the parity conserving MS Lagrangian must be non-invariant to both time reversal T and (according to the CPT theorem) the charge conjugation C. All these properties create appropriate conditions for leptogenesis, a mechanism for generating baryon-lepton asymmetry of the Universe in violated MS models.

  10. The Eightfold Way: A Theory of Strong Interaction Symmetry

    Science.gov (United States)

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is ascribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X {sup o} having I = 0. A ninth vector meson coupled to the baryon current can be accommodated naturally in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e {sup -}, and mu {sup -}, which may throw light on the structure of weak interactions. (D. L.C.)

  11. The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    CERN Document Server

    de Adelhart Toorop, Reinier; Merlo, Luca

    2010-01-01

    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry $S_4$ that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can r...

  12. Holographic Fluctuations from Unitary de Sitter Invariant Field Theory

    CERN Document Server

    Banks, Tom; Torres, T J; Wainwright, Carroll L

    2013-01-01

    We continue the study of inflationary fluctuations in Holographic Space Time models of inflation. We argue that the holographic theory of inflation provides a physical context for what is often called dS/CFT. The holographic theory is a quantum theory which, in the limit of a large number of e-foldings, gives rise to a field theory on $S^3$, which is the representation space for a unitary representation of SO(1,4). This is not a conventional CFT, and we do not know the detailed non-perturbative axioms for correlation functions. However, the two- and three-point functions are completely determined by symmetry, and coincide up to a few constants (really functions of the background FRW geometry) with those calculated in a single field slow-roll inflation model. The only significant deviation from slow roll is in the tensor fluctuations. We predict zero tensor tilt and roughly equal weight for all three conformally invariant tensor 3-point functions (unless parity is imposed as a symmetry). We discuss the relatio...

  13. Ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni in the unitary-model-operator approach

    CERN Document Server

    Miyagi, Takayuki; Okamoto, Ryoji; Otsuka, Takaharu

    2015-01-01

    We study the nuclear ground-state properties by using the unitary-model-operator approach (UMOA). Recently, the particle-basis formalism has been introduced in the UMOA and enables us to employ the charge-dependent nucleon-nucleon interaction. We evaluate the ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni with the charge-dependent Bonn potential. The ground-state energy is dominated by the contributions from the one- and two-body cluster terms, while, for the radius, the one-particle-one-hole excitations are more important than the two-particle-two-hole excitations. The calculated results reproduce the trend of experimental data of the saturation property for finite nuclei.

  14. Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2002-03-12

    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum.

  15. Mirror symmetry for two-parameter models, 1

    CERN Document Server

    Candelas, Philip; Font, A; Katz, S; Morrison, Douglas Robert Ogston; Candelas, Philip; Ossa, Xenia de la; Font, Anamaria; Katz, Sheldon; Morrison, David R.

    1994-01-01

    We study, by means of mirror symmetry, the quantum geometry of the K\\"ahler-class parameters of a number of Calabi-Yau manifolds that have $b_{11}=2$. Our main interest lies in the structure of the moduli space and in the loci corresponding to singular models. This structure is considerably richer when there are two parameters than in the various one-parameter models that have been studied hitherto. We describe the intrinsic structure of the point in the (compactification of the) moduli space that corresponds to the large complex structure or classical limit. The instanton expansions are of interest owing to the fact that some of the instantons belong to families with continuous parameters. We compute the Yukawa couplings and their expansions in terms of instantons of genus zero. By making use of recent results of Bershadsky et al. we compute also the instanton numbers for instantons of genus one. For particular values of the parameters the models become birational to certain models with one parameter. The co...

  16. Broken Time Translation Symmetry as a Model for Quantum State Reduction

    Directory of Open Access Journals (Sweden)

    Jasper van Wezel

    2010-04-01

    Full Text Available The symmetries that govern the laws of nature can be spontaneously broken, enabling the occurrence of ordered states. Crystals arise from the breaking of translation symmetry, magnets from broken spin rotation symmetry and massive particles break a phase rotation symmetry. Time translation symmetry can be spontaneously broken in exactly the same way. The order associated with this form of spontaneous symmetry breaking is characterised by the emergence of quantum state reduction: systems which spontaneously break time translation symmetry act as ideal measurement machines. In this review the breaking of time translation symmetry is first compared to that of other symmetries such as spatial translations and rotations. It is then discussed how broken time translation symmetry gives rise to the process of quantum state reduction and how it generates a pointer basis, Born’s rule, etc. After a comparison between this model and alternative approaches to the problem of quantum state reduction, the experimental implications and possible tests of broken time translation symmetry in realistic experimental settings are discussed.

  17. Why is the 3×3 Neutrino Mixing Matrix Almost Unitary in Realistic Seesaw Models?%跷跷板模型中三阶中微子混合矩阵的幺正性破坏

    Institute of Scientific and Technical Information of China (English)

    邢志忠; 周顺

    2006-01-01

    对标准模型的一种简单扩充就是引入n个重的右手中微子且保持其SU(2)L×U(1)Y规范对称性.通过对角化(3+n)×(3+n)阶中微子质量矩阵,得到关于νe,νμ和ντ的有效质量矩阵的精确的解析表达式.结果表明,在轻子带电弱流中出现的3×3中微子混合矩阵V必须不是严格幺正的.如果通过跷跷板机制产生正确的轻的中微子的质量标度,那么V的幺正性破坏的程度非常小,几乎可以忽略.类似的结论同样可以在第二类跷跷板模型中得到.%A simple extension of the standard model is to introduce n heavy right-handed Majorana neutrinos and preserve its SU(2)L×U(1)Y gauge symmetry. Diagonalizing the (3+n)×(3+n) neutrino mass matrix,we obtain an exact analytical expression for the effective mass matrix of νe, νμ and ντ. It turns out that the 3×3 neutrino mixing matrix V, which appears in the leptonic charged-current weak interactions, must not be exactly unitary. The unitarity violation of V is negligibly tiny, however, if the canonical seesaw mechanism works to reproduce the correct mass scale of light Majorana neutrinos. A similar conclusion can be drawn in the realistic Type-Ⅱ seesaw models.

  18. Ubiquitous symmetries

    Science.gov (United States)

    Nucci, M. C.

    2016-09-01

    We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.

  19. Lie Symmetry Analysis of the Black-Scholes-Merton Model for European Options with Stochastic Volatility

    Directory of Open Access Journals (Sweden)

    Andronikos Paliathanasis

    2016-05-01

    Full Text Available We perform a classification of the Lie point symmetries for the Black-Scholes-Merton Model for European options with stochastic volatility, σ, in which the last is defined by a stochastic differential equation with an Orstein-Uhlenbeck term. In this model, the value of the option is given by a linear (1 + 2 evolution partial differential equation in which the price of the option depends upon two independent variables, the value of the underlying asset, S, and a new variable, y. We find that for arbitrary functional form of the volatility, σ ( y , the (1 + 2 evolution equation always admits two Lie point symmetries in addition to the automatic linear symmetry and the infinite number of solution symmetries. However, when σ ( y = σ 0 and as the price of the option depends upon the second Brownian motion in which the volatility is defined, the (1 + 2 evolution is not reduced to the Black-Scholes-Merton Equation, the model admits five Lie point symmetries in addition to the linear symmetry and the infinite number of solution symmetries. We apply the zeroth-order invariants of the Lie symmetries and we reduce the (1 + 2 evolution equation to a linear second-order ordinary differential equation. Finally, we study two models of special interest, the Heston model and the Stein-Stein model.

  20. Lepton Flavour Violation in Models with A4 Flavour Symmetry

    CERN Document Server

    Feruglio, Ferruccio; Lin, Yin; Merlo, Luca

    2008-01-01

    We analyze lepton flavour violating transitions, leptonic magnetic dipole moments (MDMs) and electric dipole moments (EDMs) in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_{FN}, whose choice is motivated by the approximate tri-bimaximal mixing observed in neutrino oscillations. We construct the relevant low-energy effective Lagrangian where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. We separately analyze both a supersymmetric and a general case. While the observed discrepancy delta a_mu in the anomalous MDM of the muon suggests M of order of a few TeV, several data require M above 10 TeV, in particular the limit on EDM of the electron. In the general case also the present limit on BR(mu -> e gamma) requires M >10 TeV, at least. The branching ratios for mu -> e gamma, tau -> mu gamma and tau -> e gamma are all expecte...

  1. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A. G., E-mail: smirnov@lpi.ru [I. E. Tamm Theory Department, P. N. Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991 (Russian Federation)

    2015-12-15

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.

  2. Unitary Transformation in Quantum Teleportation

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Chuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  3. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.

    Directory of Open Access Journals (Sweden)

    Geng Li

    Full Text Available The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.

  4. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.

    Science.gov (United States)

    Li, Geng; Huan, Di; Roehner, Bertrand; Xu, Yijuan; Zeng, Ling; Di, Zengru; Han, Zhangang

    2014-01-01

    The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.

  5. Quantum groups as generalized gauge symmetries in WZNW models. Part I. The classical model

    Science.gov (United States)

    Hadjiivanov, L.; Furlan, P.

    2017-07-01

    Wess-Zumino-Novikov-Witten (WZNW) models over compact Lie groups G constitute the best studied class of (two dimensional, 2 D) rational conformal field theories (RCFTs). A WZNW chiral state space is a finite direct sum of integrable representations of the corresponding affine (current) algebra, and the correlation functions of primary fields are monodromy invariant combinations of left times right sector conformal blocks solving the Knizhnik-Zamolodchikov equation. However, even in this very well understood case of 2 D RCFT, the "internal" (gauge) symmetry that governs the ensuing fusion rules remains unclear. On the other hand, the canonical approach to the classical chiral WZNW theory developed by Faddeev, Alekseev, Shatashvili, Gawedzki and Falceto reveals its Poisson-Lie symmetry. After a covariant quantization, the latter gives rise to an associated quantum group symmetry which naturally requires an extension of the state space. This paper contains a review of earlier work on the subject with a special emphasis, in the case G = SU( n), on the emerging chiral "WZNW zero modes" which provide an adequate algebraic description of the internal symmetry structure of the model. Combining further left and right zero modes, one obtains a specific dynamical quantum group, the structure of its Fock representation resembling the axiomatic approach to gauge theories in which a "restricted" quantum group plays the role of a generalized gauge symmetry.

  6. Pressure distributions on a 0.04-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley unitary plan wind tunnel

    Science.gov (United States)

    Bradley, P. F.; Siemers, P. M., III; Flanagan, P. F.; Henry, M. W.

    1983-01-01

    Pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The UPWT has two different test sections operating in the continuous mode. Each test section has its own Mach number range. The model was tested at angles of attack from -2.5 deg to 30 deg and angles of sideslip from -5 deg to 5 deg in both test sections. The test Reynolds number was 6.6 x 10 to the 6th power per meter. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data.

  7. All maximally entangling unitary operators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Scott M. [Department of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282 (United States); Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2011-11-15

    We characterize all maximally entangling bipartite unitary operators, acting on systems A and B of arbitrary finite dimensions d{sub A}{<=}d{sub B}, when ancillary systems are available to both parties. Several useful and interesting consequences of this characterization are discussed, including an understanding of why the entangling and disentangling capacities of a given (maximally entangling) unitary can differ and a proof that these capacities must be equal when d{sub A}=d{sub B}.

  8. On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models

    Science.gov (United States)

    Delduc, F.; Lacroix, S.; Magro, M.; Vicedo, B.

    2016-10-01

    Yang-Baxter type models are integrable deformations of integrable field theories, such as the principal chiral model on a Lie group G or σ-models on (semi-)symmetric spaces G/F. The deformation has the effect of breaking the global G-symmetry of the original model, replacing the associated set of conserved charges by ones whose Poisson brackets are those of the q-deformed Poisson-Hopf algebra {{\\mathscr{U}}}q({g}). Working at the Hamiltonian level, we show how this q-deformed Poisson algebra originates from a Poisson-Lie G-symmetry. The theory of Poisson-Lie groups and their actions on Poisson manifolds, in particular the formalism of the non-abelian moment map, is reviewed. For a coboundary Poisson-Lie group G, this non-abelian moment map must obey the Semenov-Tian-Shansky bracket on the dual group {G}* , up to terms involving central quantities. When the latter vanish, we develop a general procedure linking this Poisson bracket to the defining relations of the Poisson-Hopf algebra {{\\mathscr{U}}}q({g}), including the q-Poisson-Serre relations. We consider reality conditions leading to q being either real or a phase. We determine the non-abelian moment map for Yang-Baxter type models. This enables to compute the corresponding action of G on the fields parametrising the phase space of these models.

  9. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  10. Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction

    DEFF Research Database (Denmark)

    Björketun, Mårten E.; Tripkovic, Vladimir; Skúlason, Egill

    2013-01-01

    A scheme for evaluating symmetry factors of elementary electrode reactions using a density functional theory (DFT) based model of the electrochemical double layer is presented. As an illustration, the symmetry factor is determined for hydrogen adsorption via the electrochemical Volmer reaction. T...

  11. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Science.gov (United States)

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  12. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  13. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Science.gov (United States)

    Bicudo, P.; Cardoso, M.

    2016-11-01

    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  14. Pressure distributions obtained on a 0.10-scale model of the Space Shuttle Orbiter's forebody in the Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.

  15. A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan

    2005-01-01

    A generalized Yang-Mills model, which contains, besides the vector part Vμ, also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  16. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  17. A centerless Virasoro algebra of master symmetries for the Ablowitz-Ladik hierarchy

    CERN Document Server

    Haine, Luc

    2011-01-01

    We show that the Ablowitz-Ladik hierarchy admits a centerless Virasoro algebra of master symmetries in the sense of Fuchssteiner. An explicit expression for these symmetries is given in terms of a generalization of the Cantero, Moral and Vel\\'azquez (CMV) matrices (which can also be used to formulate the hierarchy itself) and their action on the tau-functions of the hierarchy is described. The use of the CMV matrices, in contrast with Hessenberg matrices, turns out to be crucial for obtaining a Lax pair representation of the master symmetries. As an application, a new and transparent derivation of the Virasoro constraints satisfied by the unitary matrix model is presented.

  18. On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models

    CERN Document Server

    Delduc, Francois; Magro, Marc; Vicedo, Benoit

    2016-01-01

    Yang-Baxter type models are integrable deformations of integrable field theories, such as the principal chiral model on a Lie group $G$ or $\\sigma$-models on (semi-)symmetric spaces $G/F$. The deformation has the effect of breaking the global $G$-symmetry of the original model, replacing the associated set of conserved charges by ones whose Poisson brackets are those of the $q$-deformed Poisson-Hopf algebra $\\mathscr U_q(\\mathfrak g)$. Working at the Hamiltonian level, we show how this $q$-deformed Poisson algebra originates from a Poisson-Lie $G$-symmetry. The theory of Poisson-Lie groups and their actions on Poisson manifolds, in particular the formalism of the non-abelian moment map, is reviewed. For a coboundary Poisson-Lie group $G$, this non-abelian moment map must obey the Semenov-Tian-Shansky bracket on the dual group $G^*$, up to terms involving central quantities. When the latter vanish, we develop a general procedure linking this Poisson bracket to the defining relations of the Poisson-Hopf algebra...

  19. Lepton flavour violation in models with A flavour symmetry

    Science.gov (United States)

    Feruglio, Ferruccio; Hagedorn, Claudia; Lin, Yin; Merlo, Luca

    2009-03-01

    We analyze lepton flavour violating transitions, leptonic magnetic dipole moments (MDMs) and electric dipole moments (EDMs) in a class of models characterized by the flavour symmetry A×Z×U(1, whose choice is motivated by the approximate tri-bimaximal mixing observed in neutrino oscillations. We construct the relevant low-energy effective Lagrangian where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. We separately analyze both a supersymmetric and a general case. While the observed discrepancy δa in the anomalous MDM of the muon suggests M of order of a few TeV, several data require M above 10 TeV, in particular the limit on EDM of the electron. In the general case also the present limit on BR(μ→eγ) requires M>10 TeV, at least. The branching ratios for μ→eγ, τ→μγ and τ→eγ are all expected to be of the same order. In the supersymmetric case the constraint from μ→eγ is softened and it can be satisfied by a smaller scale M. In this case both the observed δa and the current bound on BR(μ→eγ) can be satisfied, at the price of a rather small value for ||, of the order of a few percents, that reflects on a similar value for θ.

  20. Quintom cosmological model and some possible solutions using Lie and Noether symmetries

    CERN Document Server

    Dutta, Sourav; Chakraborty, Subenoy

    2016-01-01

    The present work deals with a quintom model of dark energy in the framework of a spatially flat isotropic and homogeneous Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. At first, Lie point symmetry is imposed to the system and the unknown coupled potential of the model is determined. Then Noether symmetry, which is also a point like symmetry of the Lagrangian, is imposed on the physical system and the potential takes a general form. It is shown that the Lie algebra of Noether symmetry is a sub-algebra of the corresponding Lie algebra of the Lie symmetry. Finally, a point transformation in the three dimensional augmented space is performed suitably so that one of the variables become cyclic and as a result there is considerable simplification to the physical system. Hence conserved quantities (i.e, constants of motion) are expressed in a compact form and cosmological solutions are evaluated and analyzed in the present context.

  1. Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry

    CERN Document Server

    Chodos, Alan

    2016-01-01

    In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.

  2. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth

    2000-01-01

    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states decrea...

  3. The symmetry breaking phenomenon in anharmonic oscillator model

    CERN Document Server

    Mastine, Antonio Carlos; Natti, Erica Regina Takano

    2010-01-01

    In this article a non-perturbative time-dependent technique is used to treat the initial value problem, in Quantum Mechanics context, for a non-equilibrium self-interacting fermionic system in the presence of an external magnetic field. Particularly, in mean-field regime, we study the dynamical symmetry breaking phenomenon, identifying the physical processes associated.

  4. Complete Pick Positivity and Unitary Invariance

    CERN Document Server

    Bhattacharya, Angshuman

    2009-01-01

    The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel $k_S(z,w) = (1 - z\\ow)^{-1}$ for $|z|, |w| < 1$, by means of $(1/k_S)(T,T^*) \\ge 0$, we consider an arbitrary open connected domain $\\Omega$ in $\\BC^n$, a complete Nevanilinna-Pick kernel $k$ on $\\Omega$ and a tuple $T = (T_1, ..., T_n)$ of commuting bounded operators on a complex separable Hilbert space $\\clh$ such that $(1/k)(T,T^*) \\ge 0$. For a complete Pick kernel the $1/k$ functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with $T$. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples $T$.

  5. Quantum Mutual Information Along Unitary Orbits

    CERN Document Server

    Jevtic, Sania; Rudolph, Terry

    2011-01-01

    Motivated by thermodynamic considerations, we analyse the variation of the quantum mutual information on a unitary orbit of a bipartite system state, with and without global constraints such as energy conservation. We solve the full optimisation problem for the smallest system of two qubits, and explore thoroughly the effect of unitary operations on the space of reduced-state spectra. We then provide applications of these ideas to physical processes within closed quantum systems, such as a generalized collision model approach to thermal equilibrium and a global Maxwell demon playing tricks on local observers. For higher dimensions, the maximization of correlations is relatively straightforward, however the minimisation of correlations displays non-trivial structures. We characterise a set of separable states in which the minimally correlated state resides, and find a collection of classically correlated states admitting a particular "Young tableau" form. Furthermore, a partial order exists on this set with re...

  6. Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors

    CERN Document Server

    Michalski, S

    2006-01-01

    We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...

  7. Symmetry energy and neutron star properties in the saturated Nambu–Jona-Lasinio model

    Directory of Open Access Journals (Sweden)

    Si-Na Wei

    2016-12-01

    Full Text Available In this work, we adopt the Nambu–Jona-Lasinio (NJL model that ensures the nuclear matter saturation properties to study the density dependence of the symmetry energy. With the interactions constrained by the chiral symmetry, the symmetry energy shows novel characters different from those in conventional mean-field models. First, the negative symmetry energy at high densities that is absent in relativistic mean-field (RMF models can be obtained in the RMF approximation by introducing a chiral isovector–vector interaction, although it would be ruled out by the neutron star (NS stability. Second, with the inclusion of the isovector–scalar interaction the symmetry energy exhibits a general softening at high densities even for the large slope parameter of the symmetry energy. The NS properties obtained in the present NJL model can be in accord with the observations. The NS maximum mass obtained with various isovector–scalar couplings and momentum cutoffs is well above the 2M⊙, and the NS radius obtained well meets the limits extracted from recent measurements. In particular, the significant reduction of the canonical NS radius occurs with the moderate decrease of the slope of the symmetry energy.

  8. Low-Scale Leptogenesis and the Domain Wall Problem in Models with Discrete Flavor Symmetries

    CERN Document Server

    Riva, Francesco

    2010-01-01

    We propose a new mechanism for leptogenesis, which is naturally realized in some models with a flavor symmetry based on the discrete group A_4, where the symmetry breaking parameter also controls the Majorana masses for the heavy right handed (RH) neutrinos. During the early universe, for T>TeV, part of the symmetry is restored, due to finite temperature contributions, and the RH neutrinos remain massless and can be produced in thermal equilibrium even at temperatures well below the most conservative gravitino bounds. Below this temperature the phase transition occurs and they become massive, decaying out of equilibrium and producing the necessary lepton asymmetry. Unless the symmetry is broken explicitly by Planck-suppressed terms, the domain walls generated by the symmetry breaking survive till the quark-hadron phase transition, where they disappear due to a small energy splitting between different vacua caused by the QCD anomaly.

  9. Reduction by Lie Group Symmetries in Diffeomorphic Image Registration and Deformation Modelling

    Directory of Open Access Journals (Sweden)

    Stefan Sommer

    2015-05-01

    Full Text Available We survey the role of reduction by symmetry in the large deformation diffeomorphic metric mapping framework for registration of a variety of data types (landmarks, curves, surfaces, images and higher-order derivative data. Particle relabelling symmetry allows the equations of motion to be reduced to the Lie algebra allowing the equations to be written purely in terms of the Eulerian velocity field. As a second use of symmetry, the infinite dimensional problem of finding correspondences between objects can be reduced for a range of concrete data types, resulting in compact representations of shape and spatial structure. Using reduction by symmetry, we describe these models in a common theoretical framework that draws on links between the registration problem and geometric mechanics. We outline these constructions and further cases where reduction by symmetry promises new approaches to the registration of complex data types.

  10. Local conformal symmetry in black holes, standard model, and quantum gravity

    Science.gov (United States)

    Hooft, Gerard ’T.

    The black hole information problem and the firewall problem can be addressed by assuming an extra local symmetry: conformal invariance. It must be an exact symmetry, spontaneously broken by the vacuum, in a way similar to the Brout-Englert-Higgs (BEH) mechanism. We note how this symmetry formally removes the horizon and the singularity inside black holes. For the Standard Model this symmetry is severely restrictive, demanding all coupling constants, masses and even the cosmological constant to be computable, in principle. Finally, this symmetry suggests that the Weyl action (the square of the Weyl curvature) should be added to the Einstein-Hilbert action. The ensuing indefinite metric states are briefly studied, and we conclude with some remarks concerning the interpretation of quantum mechanics.

  11. BETHE ANSATZ FOR SUPERSYMMETRIC MODEL WITH?Uq[osp( 1|2 ) ] SYMMETRY

    Institute of Scientific and Technical Information of China (English)

    杨文力

    2001-01-01

    Using the algebraic Bethe ansatz method, we obtain the eigenvalues of the transfer matrix of the supersymmetric model with Uq[osp(1|2)] symmetry under periodic boundary and twisted boundary conditions.

  12. Test technique development in interference free testing, flow visualization, and remote control model technology at Langley's Unitary Plan wind tunnel

    Science.gov (United States)

    Corlett, W. A.

    1979-01-01

    A metric half-span model is considered as a means of mechanical support for a wind-tunnel model which allows measurement of aerodynamic forces and moments without support interference or model distortion. This technique can be applied to interference-free propulsion models. The vapor screen method of flow visualization at supersonic Mach numbers is discussed. The use of smoke instead of water vapor as a medium to produce the screen is outlined. Vapor screen data are being used in the development of analytical vortex tracking programs. Test results for a remote control model system are evaluated. Detailed control effectiveness and cross-coupling data were obtained with a single run. For the afterbody tail configuration, tested control boundaries at several roll orientations were established utilizing the facility's on-line capability to 'fly' the model in the wind tunnel.

  13. All Majorana Models with Translation Symmetry are Supersymmetric

    CERN Document Server

    Hsieh, Timothy H; Grover, Tarun

    2016-01-01

    We establish results similar to Kramers and Lieb-Schultz-Mattis theorems but involving only translation symmetry and for Majorana modes. In particular, we show that all states are at least doubly degenerate in any one and two dimensional array of Majorana modes with translation symmetry, periodic boundary conditions, and an odd number of modes per unit cell. Moreover, we show that all such systems have an underlying N=2 supersymmetry and explicitly construct the generator of the supersymmetry. Furthermore, we show that there cannot be a unique gapped ground state in such one dimensional systems with anti-periodic boundary conditions. These general results are fundamentally a consequence of the fact that translations for Majorana modes are represented projectively, which in turn stems from the anomalous nature of a single Majorana mode.

  14. A scalar field dark energy model: Noether symmetry approach

    Science.gov (United States)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-04-01

    Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.

  15. All Majorana Models with Translation Symmetry are Supersymmetric

    Science.gov (United States)

    Hsieh, Timothy H.; Halász, Gábor B.; Grover, Tarun

    2016-10-01

    We establish results similar to Kramers and Lieb-Schultz-Mattis theorems but involving only translation symmetry and for Majorana modes. In particular, we show that all states are at least doubly degenerate in any one- and two-dimensional array of Majorana modes with translation symmetry, periodic boundary conditions, and an odd number of modes per unit cell. Moreover, we show that all such systems have an underlying N =2 supersymmetry and explicitly construct the generator of the supersymmetry. Furthermore, we establish that there cannot be a unique gapped ground state in such one-dimensional systems with antiperiodic boundary conditions. These general results are fundamentally a consequence of the fact that translations for Majorana modes are represented projectively, which in turn stems from the anomalous nature of a single Majorana mode. An experimental signature of the degeneracy arising from supersymmetry is a zero-bias peak in tunneling conductance.

  16. Electroweak symmetry breaking and beyond the Standard Model physics – A review

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2009-01-01

    In this talk, I shall first discuss the Standard Model Higgs mechanism and then highlight some of its deficiencies making a case for the need to go beyond the Standard Model (BSM). The BSM tour will be guided by symmetry arguments. I shall pick up four specific BSM scenarios, namely, supersymmetry, little Higgs, gauge-Higgs unification, and the Higgsless approach. The discussion will be confined mainly on their electroweak symmetry breaking aspects.

  17. Unitary pattern: a review of theoretical literature.

    Science.gov (United States)

    Musker, Kathleen M

    2012-07-01

    It is the purpose of this article to illuminate the phenomenon of unitary pattern through a review of theoretical literature. Unitary pattern is a phenomenon of significance to the discipline of nursing because it is manifested in and informs all person-environment health experiences. Unitary pattern was illuminated by: addressing the barriers to understanding the phenomenon, presenting a definition of unitary pattern, and exploring Eastern and Western theoretical literature which address unitary pattern in a way that is congruent with the definition presented. This illumination of unitary pattern will expand nursing knowledge and contribute to the discipline of nursing.

  18. Despair: a unitary appreciative inquiry.

    Science.gov (United States)

    Cowling, W Richard

    2004-01-01

    A unitary appreciative case study method was used to explicate unitary understandings of despair embedded in the unique personal life contexts of the participants. Fourteen women engaged in dialogical, appreciative interviews that led to the creation of profiles of the life pattern or course associated with despair for each woman. Three exemplar cases are detailed including the profiles that incorporate story, metaphor, music, and imagery. The voices of the women provide morphogenic knowledge of the contexts, nature, consequences, and contributions of despair as well as practical guidance for healthcare providers.

  19. Quantum groups as generalized gauge symmetries in WZNW models. Part II. The quantized model

    Science.gov (United States)

    Hadjiivanov, L.; Furlan, P.

    2017-07-01

    This is the second part of a paper dealing with the "internal" (gauge) symmetry of the Wess-Zumino-Novikov-Witten (WZNW) model on a compact Lie group G. It contains a systematic exposition, for G = SU( n), of the canonical quantization based on the study of the classical model (performed in the first part) following the quantum group symmetric approach first advocated by L.D. Faddeev and collaborators. The internal symmetry of the quantized model is carried by the chiral WZNW zero modes satisfying quadratic exchange relations and an n-linear determinant condition. For generic values of the deformation parameter the Fock representation of the zero modes' algebra gives rise to a model space of U q ( sl( n)). The relevant root of unity case is studied in detail for n = 2 when a "restricted" (finite dimensional) quotient quantum group is shown to appear in a natural way. The module structure of the zero modes' Fock space provides a specific duality with the solutions of the Knizhnik-Zamolodchikov equation for the four point functions of primary fields suggesting the existence of an extended state space of logarithmic CFT type. Combining left and right zero modes (i.e., returning to the 2 D model), the rational CFT structure shows up in a setting reminiscent to covariant quantization of gauge theories in which the restricted quantum group plays the role of a generalized gauge symmetry.

  20. Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model

    DEFF Research Database (Denmark)

    Drach, Vincent; Hansen, Martin; Hietanen, Ari;

    2015-01-01

    We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark ...

  1. Radiative Effects and Electroweak Symmetry Breaking in a Supersymmetric Preon Model

    Science.gov (United States)

    Kim, Jongbae

    We construct the low energy effective theory of composite quarks, leptons, and Higgs bosons for a supersymmetric preon model and study the effects of renormalization-group based radiative corrections. The study on the evolution of scalar masses for avoiding color and charge breakings leads us to conclude that Yukawa couplings are bounded from above. The implementation of electroweak symmetry breaking requires that only the purely dynamical symmetry breaking should be needed for the model, but the combined scheme of dynamical and radiative symmetry breaking as well as the purely radiative symmetry breaking scheme be disfavored. Our analysis of (mb)/(m_τ ) including radiative effects shows that, should a discrepancy be found between the observed and the theoretical value of (mb)/(m_τ ) after experimental determination of supersymmetric particle masses, it would imply that the complete quark-lepton universality in the supersymmetric preon model does not hold either for the Yukawa couplings, or for the condensates, or for both.

  2. Unified model of fermion masses with Wilson line flavor symmetry breaking

    CERN Document Server

    Seidl, Gerhart

    2008-01-01

    We present a supersymmetric SU(5) GUT model with a discrete non-Abelian flavor symmetry that is broken by Wilson lines. The model is formulated in 4+3 dimensions compactified on a manifold S^3/Z_n. Symmetry breaking by Wilson lines is topological and allows to realize the necessary flavor symmetry breaking without a vacuum alignment mechanism. The model predicts the hierarchical pattern of charged fermion masses and quark mixing angles. Small normal hierarchical neutrino masses are generated by the type-I seesaw mechanism. The non-Abelian flavor symmetry predicts to leading order exact maximal atmospheric mixing while the solar angle emerges from quark-lepton complementarity. The resulting leptonic mixing matrix is in excellent agreement with current data and could be tested in future neutrino oscillation experiments.

  3. The interplay between grand unified and flavour symmetries in a Pati-Salam x S4 model

    CERN Document Server

    Toorop, Reinier de Adelhart

    2010-01-01

    Both discrete flavour symmetries and Grand Unified symmetries explain apparent structures in the mass sector of the Standard Model. A model that combines both symmetries is therefore very appealing. We construct a model with the $S_4$ flavour symmetry and the Pati-Salam unification. We show that this model can indeed explain many observable relations between the masses of the quarks and leptons and that it is predictive in the neutrino sector. However, the combination of the two symmetries leads to new complications in the Higgs sector and in the running of the renormalisation group equations.

  4. Decay patterns of multi-quasiparticle bands—a model independent test of chiral symmetry

    Science.gov (United States)

    Lawrie, E. A.

    2017-09-01

    Nuclear chiral systems exhibit chiral symmetry bands, built on left-handed and right-handed angular momentum nucleon configurations. The experimental search for such chiral systems revealed a number of suitable candidates, however an unambiguous identification of nuclear chiral symmetry is still outstanding. In this work it is shown that the decay patterns of chiral bands built on multi-quasiparticle configurations are different from those involving different single-particle configurations. It is suggested to use the observed decay patterns of chiral candidates as a new model-independent test of chiral symmetry.

  5. The Effective Kahler Potential, Metastable Vacua and R-Symmetry Breaking in O'Raifeartaigh Models

    CERN Document Server

    Benjamin, Shermane; Kain, Ben

    2010-01-01

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective Kahler potential. We translate known ideas to this framework and construct convenient formulas for computing individual terms in the expanded effective Kahler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous and explicit R-symmetry breaking is allowed in our analysis.

  6. Ordering dynamics of microscopic models with nonconserved order parameter of continuous symmetry

    DEFF Research Database (Denmark)

    Zhang, Z.; Mouritsen, Ole G.; Zuckermann, Martin J.

    1993-01-01

    Numerical Monte Carlo temperature-quenching experiments have been performed on two three-dimensional classical lattice models with continuous ordering symmetry: the Lebwohl-Lasher model [Phys. Rev. A 6, 426 (1972)] and the ferromagnetic isotropic Heisenberg model. Both models describe a transition...... from a disordered phase to an orientationally ordered phase of continuous symmetry. The Lebwohl-Lasher model accounts for the orientational ordering properties of the nematic-isotropic transition in liquid crystals and the Heisenberg model for the ferromagnetic-paramagnetic transition in magnetic...

  7. On multipartite invariant states III. Rotational symmetry

    CERN Document Server

    Chruscinski, D; Chruscinski, Dariusz; Kossakowski, Andrzej

    2006-01-01

    We construct a class of multipartite states possessing rotational SO(3) symmetry -- these are states of K spin-j_A particles and K spin-j_B particles. The construction of symmetric states follows our two recent papers devoted to unitary and orthogonal multipartite symmetry. We study basic properties of multipartite SO(3) symmetric states: separability criteria and multi-PPT conditions.

  8. Froggatt-Nielsen models with a residual Z_4^R symmetry

    CERN Document Server

    Dreiner, Herbi K; Opferkuch, Toby

    2013-01-01

    The Froggatt-Nielsen mechanism provides an elegant explanation for the hierarchies of fermion masses and mixings in terms of a U(1) symmetry. Promoting such a family symmetry to an R-symmetry, we explicitly construct supersymmetric Froggatt-Nielsen models which are gauged, family dependent U(1)_R completions of the Z_4^R symmetry proposed by Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg and Vaudrevange in 2010. Forbidden by Z_4^R, the mu-term is generated around the supersymmetry breaking scale m_3/2 from either the Kahler potential or the superpotential. Neutrinos acquire their mass via the type I seesaw mechanism with three right-handed neutrino superfields. Taking into account the Green-Schwarz anomaly cancellation conditions, we arrive at a total of 3 x 34 distinct phenomenologically viable charge assignments for the standard model fields, most of which feature highly fractional charges.

  9. Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model

    CERN Document Server

    Roan, Shi-shyr

    2013-01-01

    The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.

  10. Conformal Complex Scalar Singlet Extensions of the Standard Model: Symmetry Breaking Patterns and Phenomenology

    CERN Document Server

    Wang, Zhi-Wei; Steele, T G; Mann, R B; Hanif, T

    2016-01-01

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. Two different scenarios depending on whether the global U(1) symmetry is broken or not have been studied. In the unbroken phase, the decay of the complex singlet is protected by the global U(1) symmetry which leads to an ideal cold dark matter candidate. In the broken phase, we are able to provide a second Higgs at $554\\,\\rm{GeV}$. In addition, gauging the global U(1) symmetry, we can construct an asymptotically safe U(1)' leptophobic model. We combine the notion of asymptotic safety with conformal symmetry and use the renormalization group equations as a bridge to connect UV boundary conditions and Electroweak/ TeV scale physics. We also provide a detailed example to show that these boundary conditions will lead to phenomenological signatures such as diboson excesses which could be tested at the LHC.

  11. On permutation symmetries of hopfield model neural network

    Directory of Open Access Journals (Sweden)

    Jiyang Dong

    2001-01-01

    Full Text Available Discrete Hopfield neural network (DHNN is studied by performing permutation operations on the synaptic weight matrix. The storable patterns set stored with Hebbian learning algorithm in a network without losing memories is studied, and a condition which makes sure all the patterns of the storable patterns set have a same basin size of attraction is proposed. Then, the permutation symmetries of the network are studied associating with the stored patterns set. A construction of the storable patterns set satisfying that condition is achieved by consideration of their invariance under a point group.

  12. Cosmological models with spinor and scalar fields by Noether symmetry approach

    CERN Document Server

    Kremer, Gilberto M

    2013-01-01

    General cosmological models with spinor and scalar fields playing the role of gravitational sources are analyzed. The Noether symmetry approach is taken as a criterion to constrain the undefined potentials and couplings of the generic actions. For all the found Noether symmetries the corresponding dynamical systems can be analytically integrated. The obtained cosmological solutions describe the early and late Universe as expected by basing on the known eras of the Universe.

  13. CP violation from flavor symmetry in a lepton quarticity dark matter model

    Science.gov (United States)

    Chuliá, Salvador Centelles; Srivastava, Rahul; Valle, José W. F.

    2016-10-01

    We propose a simple Δ (27) ⊗Z4 model where neutrinos are predicted to be Dirac fermions. The smallness of their masses follows from a type-I seesaw mechanism and the leptonic CP violating phase correlates with the pattern of Δ (27) flavor symmetry breaking. The scheme naturally harbors a WIMP dark matter candidate associated to the Dirac nature of neutrinos, in that the same Z4 lepton number symmetry also ensures dark matter stability.

  14. Predicting CP Violation from Flavor Symmetry in a Lepton Quarticity Dark Matter Model

    CERN Document Server

    Chuliá, Salvador Centelles; Valle, José W F

    2016-01-01

    We propose a simple $\\Delta (27) \\otimes Z_4$ model where neutrinos are predicted to be Dirac fermions. The smallness of their masses follows from a type-I seesaw mechanism and the leptonic CP violating phase correlates with the pattern of $\\Delta (27)$ flavor symmetry breaking. The scheme naturally harbors a WIMP dark matter candidate associated to the Dirac nature of neutrinos, in that the same $Z_4$ lepton number symmetry also ensures dark matter stability.

  15. Provable forst-order transitions for liquid crystal and lattice gauge models with continuous symmetries

    CERN Document Server

    Van Enter, A C D

    2003-01-01

    We consider various sufficiently nonlinear sigma models for nematic ordering of RP^{N-1} type and of lattice gauge type with continous symmetries. We rigorously show that they exhibit a first-order transition in the temperature. The result holds in dimension 2 or more for the RP{N-1} models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibilty of such transitions. For lattice gauge models our methods provide the first prof of a first-order transition in a model with a continous gauge symmetry.

  16. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  17. Anomaly-free U(1) gauge symmetries in neutrino seesaw flavor models

    CERN Document Server

    Cebola, Luis M; Felipe, Ricardo Gonzalez

    2013-01-01

    Adding right-handed neutrino singlets and/or fermion triplets to the particle content of the Standard Model allows for the implementation of the seesaw mechanism to give mass to neutrinos and, simultaneously, for the construction of anomaly-free gauge group extensions of the theory. We consider Abelian extensions based on an extra U(1)_X gauge symmetry, where X is an arbitrary linear combination of the baryon number B and the individual lepton numbers L_{e,mu,tau}. By requiring cancellation of gauge anomalies, we perform a detailed analysis in order to identify the charge assignments under the new gauge symmetry that lead to neutrino phenomenology compatible with current experiments. In particular, we study how the new symmetry can constrain the flavor structure of the Majorana neutrino mass matrix, leading to two-zero textures with a minimal extra fermion and scalar content. The possibility of distinguishing different gauge symmetries and seesaw realizations at colliders is also briefly discussed.

  18. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    CERN Document Server

    Wahlen-Strothman, Jacob M; Hermes, Matthew R; Degroote, Matthias; Qiu, Yiheng; Zhao, Jinmo; Dukelsky, Jorge; Scuseria, Gustavo E

    2016-01-01

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection...

  19. The strong-weak coupling symmetry in 2D Φ4 field models

    Directory of Open Access Journals (Sweden)

    B.N.Shalaev

    2005-01-01

    Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.

  20. Spontaneous symmetry breaking in a non-conserving two-species driven model

    Energy Technology Data Exchange (ETDEWEB)

    Levine, E [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100 (Israel); Willmann, R D [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2004-03-12

    A two-species particle model on an open chain with dynamics which is non-conserving in the bulk is introduced. The dynamical rules which define the model obey a symmetry between the two species. The model exhibits a rich behaviour which includes spontaneous symmetry breaking and localized shocks. The phase diagram in several regions of parameter space is calculated within the mean-field approximation, and compared with Monte Carlo simulations. In the limit where fluctuations in the number of particles in the system are taken to be zero, an exact solution is obtained. We present and analyse a physical picture which serves to explain the different phases of the model.

  1. On symmetries of N=(4,4) sigma models on T^4

    CERN Document Server

    Volpato, Roberto

    2014-01-01

    Motivated by an analogous result for K3 models, we classify all groups of symmetries of non-linear sigma models on a torus T^4 that preserve the N=(4,4) superconformal algebra. The resulting symmetry groups are isomorphic to certain subgroups of the Weyl group of E8, that plays a role similar to the Conway group for the case of K3 models. Our analysis heavily relies on the triality automorphism of the T-duality group SO(4,4,Z). As a byproduct of our results, we discover new explicit descriptions of K3 models as asymmetric orbifolds of torus CFTs.

  2. Noether Symmetries Of A Modified Model In Teleparallel Gravity

    CERN Document Server

    Tajahmad, Behzad

    2016-01-01

    In this paper, we have presented the Noether symmetries of flat FRW spacetime in the context of a new action in Teleparallel Gravity which we construct it based on f(R) version. This modified action contains a coupling between scalar field potential and magnetism. Also, we introduce an innovative approach (B.N.S. Approach) for exact solutions which carry more conserved currents than Noether approach. By data analysis the exact solutions, obtained from Noether approach, late time acceleration and phase crossing are realized, and some deep connections with observational data such as age of universe, the present amount of scale factor, state and deceleration parameters are observed. In B.N.S. approach, we have considered dark energy dominated era.

  3. Precision Spectroscopy and Higher Spin symmetry in the ABJM model

    CERN Document Server

    Bianchi, Massimo; Samsonyan, Marine

    2010-01-01

    We revisit Kaluza-Klein compactification of 11-d supergravity on S^7/Z_k using group theory techniques that may find application in other flux vacua with internal coset spaces. Among the SO(2) neutral states, we identify marginal deformations and fields that couple to the recently discussed world-sheet instanton of Type IIA on CP^3. We also discuss charged states, dual to monopole operators, and the Z_k projection of the Osp(4|8) singleton and its tensor products. In particular, we show that the doubleton spectrum may account for N=6 higher spin symmetry enhancement in the limit of vanishing 't Hooft coupling in the boundary Chern-Simons theory.

  4. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  5. Model dependence of the neutron-skin thickness on the symmetry energy

    Science.gov (United States)

    Mondal, C.; Agrawal, B. K.; Centelles, M.; Colò, G.; Roca-Maza, X.; Paar, N.; Viñas, X.; Singh, S. K.; Patra, S. K.

    2016-06-01

    The model dependence in the correlations of the neutron-skin thickness in heavy nuclei with various symmetry-energy parameters is analyzed by using several families of systematically varied microscopic mean-field models. Such correlations show a varying degree of model dependence once the results for all the different families are combined. Some mean-field models associated with similar values of the symmetry-energy slope parameter at saturation density L , and pertaining to different families, yield a greater-than-expected spread in the neutron-skin thickness of the 208Pb nucleus. The effective value of the symmetry-energy slope parameter Leff, determined by using the nucleon density profiles of the finite nucleus and the density derivative S'(ρ ) of the symmetry energy starting from about saturation density up to low densities typical of the surface of nuclei, seems to account for the spread in the neutron-skin thickness for the models with similar L . The differences in the values of Leff are mainly due to the small differences in the nucleon density distributions of heavy nuclei in the surface region and the behavior of the symmetry energy at subsaturation densities.

  6. Dynamical Electroweak Symmetry Breaking in String Models with D-branes

    CERN Document Server

    Kitazawa, Noriaki

    2009-01-01

    The possibility of dynamical electroweak symmetry breaking by strong coupling gauge interaction in models with D-branes in String Theory is examined. Instead of elementary scalar Higgs doublet fields, the gauge symmetry with strong coupling (technicolor) is introduced. As the first step of this direction, a toy model, which is not fully realistic, is concretely analyzed in some detail. The model consists of D-branes and anti-D-branes at orbifold singularities in (T^2 x T^2 x T^2)/Z_3 which preserves supersymmetry. Supersymmetry is broken through the brane supersymmetry breaking. It is pointed out that the problem of large S parameter in dynamical electroweak symmetry breaking scenario may be solved by natural existence of kinetic term mixings between hypercharge U(1) gauge boson and massive anomalous U(1) gauge bosons. The problems to be solved toward constructing more realistic models are clarified in the analysis.

  7. Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A maximally generalized Yang-Mills model, which contains, besides the vector part Vμ, also an axial-vector part Aμ, a scalar part S, a pseudoscalar part P, and a tensor part Tμv, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  8. A model of neutrino mass and dark matter with an accidental symmetry

    Directory of Open Access Journals (Sweden)

    Amine Ahriche

    2015-06-01

    Full Text Available We present a model of radiative neutrino mass that automatically contains an accidental Z2 symmetry and thus provides a stable dark matter candidate. This allows a common framework for the origin of neutrino mass and dark matter without invoking any symmetries beyond those of the Standard Model. The model can be probed by direct-detection experiments and μ→e+γ searches, and predicts a charged scalar that can appear at the TeV scale, within reach of collider experiments.

  9. Symmetries of 2-lattices and second order accuracy of the Cauchy--Born Model

    CERN Document Server

    Van Koten, Brian

    2012-01-01

    We show that the Cauchy--Born model of a single-species 2-lattice is second order if the atomistic and continuum kinematics are connected in a novel way. Our proof uses a generalization to 2-lattices of the point symmetry of Bravais lattices. Moreover, by identifying similar symmetries in multi-species pair interaction models, we construct a new stored energy density, using shift-gradients but not strain gradients, that is also second order accurate. These results can be used to develop highly accurate continuum models and atomistic/continuum coupling methods for materials such as graphene, hcp metals, and shape memory alloys.

  10. Phase rotation symmetry and the topology of oriented scattering networks

    Science.gov (United States)

    Delplace, Pierre; Fruchart, Michel; Tauber, Clément

    2017-05-01

    We investigate the topological properties of dynamical states evolving on periodic oriented graphs. This evolution, which encodes the scattering processes occurring at the nodes of the graph, is described by a single-step global operator, in the spirit of the Ho-Chalker model. When the successive scattering events follow a cyclic sequence, the corresponding scattering network can be equivalently described by a discrete time-periodic unitary evolution, in line with Floquet systems. Such systems may present anomalous topological phases where all the first Chern numbers are vanishing, but where protected edge states appear in a finite geometry. To investigate the origin of such anomalous phases, we introduce the phase rotation symmetry, a generalization of usual symmetries which only occurs in unitary systems (as opposed to Hamiltonian systems). Equipped with this new tool, we explore a possible explanation of the pervasiveness of anomalous phases in scattering network models, and we define bulk topological invariants suited to both equivalent descriptions of the network model, which fully capture the topology of the system. We finally show that the two invariants coincide, again through a phase rotation symmetry arising from the particular structure of the network model.

  11. A (1 + 2-Dimensional Simplified Keller–Segel Model: Lie Symmetry and Exact Solutions. II

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2017-01-01

    Full Text Available A simplified Keller–Segel model is studied by means of Lie symmetry based approaches. It is shown that a (1 + 2-dimensional Keller–Segel type system, together with the correctly-specified boundary and/or initial conditions, is invariant with respect to infinite-dimensional Lie algebras. A Lie symmetry classification of the Cauchy problem depending on the initial profile form is presented. The Lie symmetries obtained are used for reduction of the Cauchy problem to that of (1 + 1-dimensional. Exact solutions of some (1 + 1-dimensional problems are constructed. In particular, we have proved that the Cauchy problem for the (1 + 1-dimensional simplified Keller–Segel system can be linearized and solved in an explicit form. Moreover, additional biologically motivated restrictions were established in order to obtain a unique solution. The Lie symmetry classification of the (1 + 2-dimensional Neumann problem for the simplified Keller–Segel system is derived. Because Lie symmetry of boundary-value problems depends essentially on geometry of the domain, which the problem is formulated for, all realistic (from applicability point of view domains were examined. Reduction of the the Neumann problem on a strip is derived using the symmetries obtained. As a result, an exact solution of a nonlinear two-dimensional Neumann problem on a finite interval was found.

  12. Unitary equivalence of quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Sandeep K., E-mail: sandeep.goyal@ucalgary.ca [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); Konrad, Thomas [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); National Institute for Theoretical Physics (NITheP), KwaZulu-Natal (South Africa); Diósi, Lajos [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2015-01-23

    Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator.

  13. Nilpotent and absolutely anticommuting symmetries in the Freedman-Townsend model: Augmented superfield formalism

    Science.gov (United States)

    Shukla, A.; Krishna, S.; Malik, R. P.

    2014-12-01

    We derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, corresponding to the (1-form) Yang-Mills (YM) and (2-form) tensorial gauge symmetries of the four (3+1)-dimensional (4D) Freedman-Townsend (FT) model, by exploiting the augmented version of Bonora-Tonin's (BT) superfield approach to BRST formalism where the 4D flat Minkowskian theory is generalized onto the (4, 2)-dimensional supermanifold. One of the novel observations is the fact that we are theoretically compelled to go beyond the horizontality condition (HC) to invoke an additional set of gauge-invariant restrictions (GIRs) for the derivation of the full set of proper (anti-)BRST symmetries. To obtain the (anti-)BRST symmetry transformations, corresponding to the tensorial (2-form) gauge symmetries within the framework of augmented version of BT-superfield approach, we are logically forced to modify the FT-model to incorporate an auxiliary 1-form field and the kinetic term for the antisymmetric (2-form) gauge field. This is also a new observation in our present investigation. We point out some of the key differences between the modified FT-model and Lahiri-model (LM) of the dynamical non-Abelian 2-form gauge theories. We also briefly mention a few similarities.

  14. Symmetry plane model for turbulent flows with vortex generators

    Science.gov (United States)

    Arnaud, Gilles L.; Russell, David A.

    1991-01-01

    An approximate procedure is proposed for predicting the performance of counterrotating vortex-generator installations in incompressible flow. An inviscid calculation that includes the motion of the vortices is used to obtain crossflow velocities at the boundary-layer edge as a function of initial position, spacing, and strength of the vortices, and local values of the spanwise gradient are then folded into an integral turbulent-boundary layer procedure applied in the plane of symmetry. Special attention is paid to the consistency of the approximations and equations used. The two-dimensional aerodynamics of vortex generator installations on a NACA 0016 airfoil at angle-of-attack are estimated in this manner, and the results compared with experiments carried out with a 30-cm chord wing mounted in a 2.4 x 3.6-m cross-section wind tunnel and tested at chord Reynolds numbers of 0.7 and 1.4 x 10 to the 6th. Agreement in the separation location is found for these complex flows for a range of conditions.

  15. Three-Higgs-doublet models: symmetries, potentials and Higgs boson masses

    Energy Technology Data Exchange (ETDEWEB)

    Keus, Venus [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Department of Physics, Royal Holloway, University of London,Egham Hill, Egham TW20 0EX (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2014-01-13

    We catalogue and study three-Higgs-doublet models in terms of all possible allowed symmetries (continuous and discrete, Abelian and non-Abelian), where such symmetries may be identified as flavour symmetries of quarks and leptons. We analyse the potential in each case, and derive the conditions under which the vacuum alignments (0,0,v), (0,v,v) and (v,v,v) are minima of the potential. For the alignment (0,0,v), relevant for dark matter models, we calculate the corresponding physical Higgs boson mass spectrum. Motivated by supersymmetry, we extend the analysis to the case of three up-type Higgs doublets and three down-type Higgs doublets (six doublets in total). Many of the results are also applicable to flavon models where the three Higgs doublets are replaced by three electroweak singlets.

  16. Noether symmetries and anisotropic universe models in f(R, T) gravity

    Science.gov (United States)

    Sharif, M.; Nawazish, Iqra

    2017-08-01

    This paper investigates the existence of Noether symmetries of some anisotropic homogeneous universe models in non-minimally coupled f(R, T) gravity (R and T represent Ricci scalar and trace of the energy-momentum tensor). We evaluate symmetry generators and the corresponding conserved quantities for two models of this theory admitting direct and indirect non-minimal curvature-matter coupling. We also discuss exact solutions for dust as well as non-dust matter distribution and study the physical behavior of some cosmological parameters through these solutions. For dust distribution, the exact solution corresponds to power-law expansion and Einstein universe while exponential expansion appears for non-dust matter. The graphical analysis of these solutions and cosmological parameters provide consistent results with recent observations about accelerated cosmic expansion. We conclude that Noether symmetry generators and conserved quantities exist for both models.

  17. Conformal symmetry of the critical 3D Ising model inside a sphere

    CERN Document Server

    Cosme, Catarina; Penedones, Joao

    2015-01-01

    We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.

  18. Novel local symmetries and chiral-symmetry-broken phases in S = 1/2 triangular-lattice Heisenberg model

    Science.gov (United States)

    Baskaran, G.

    1989-01-01

    Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.

  19. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  20. Quantum transport enhancement by time-reversal symmetry breaking.

    Science.gov (United States)

    Zimborás, Zoltán; Faccin, Mauro; Kádár, Zoltán; Whitfield, James D; Lanyon, Ben P; Biamonte, Jacob

    2013-01-01

    Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.

  1. Crossing symmetry and phenomenological widths in effective Lagrangian models of the pion photoproduction process

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ramirez, C. [Grupo de Fisica Nuclear, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: cesar@nuc2.fis.ucm.es; Moya de Guerra, E. [Grupo de Fisica Nuclear, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)

    2008-02-21

    We investigate the importance of crossing symmetry in effective field models and the effects of phenomenological nucleon resonance widths on the paradigmatic case of pion photoproduction. We use reaction models containing four star resonances up to 1.8 GeV ({delta}(1232), N(1440), N(1520), N(1535), {delta}(1620), N(1650), {delta}(1700), and N(1720)) with different prescriptions for crossed terms and widths, to fit the latest world database on pion photoproduction. We compare {chi}{sup 2} results from selected multipoles and fits. The {chi}{sup 2} is highly dependent on the fulfillment of crossing symmetry and the inclusion of u channels.

  2. A bilayer Double Semion model with symmetry-enriched topological order

    Science.gov (United States)

    Ortiz, L.; Martin-Delgado, M. A.

    2016-12-01

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topological Order with a global spin-flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trivial braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariant under the flavour symmetry and the well-known spin flip symmetry. On the one hand, the Hermele model is constructed with a square lattice in a multilayer structure that forms a quasi-three-dimensional model, but the square lattice cannot support a DS model. (see Appendix C and [39]). On the other hand, the Levin-Gu method is realized on a single hexagonal layer, but we would need a multilayer realization of that construction. This is problematic since the necessary coordination condition (3) is incompatible with a multilayer structure of honeycomb layers. Interestingly enough, we can rephrase this compatibility problem between these two fractionalization methods as a compatibility condition between global symmetries. The key point is to realize that the Levin-Gu method deals with a spin-flip symmetry, e.g. G = Z2fs, explicitly shown in the spin model introduced in Section 4, while the Hermele method is about a spin-flavour symmetry among lattice layers, e.g. G = Z2fv. This spin-favour symmetry is present explicitly in the string model presented in Eq. (26).We hereby summarize briefly some of our main results:i/ We have constructed a bilayer Doubled Semion (bDS) model that has intrinsic topological orders of type G =Z2 and is invariant under the global symmetry group G = Z2fv

  3. Symmetry breaking patterns of the 3-3-1 model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.S. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica de Altas Energias, Rio de Janeiro, RJ (Brazil); Ramos, Rudnei O. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)

    2016-06-15

    We consider the minimal version of an extension of the standard electroweak model based on the SU(3){sub c} x SU(3){sub L} x U(1){sub X} gauge symmetry (the 3-3-1 model). We analyze the most general potential constructed from three scalars in the triplet representation of SU(3){sub L}, whose neutral components develop nonzero vacuum expectation values, giving mass for all the model's massive particles. For different choices of parameters, we obtain the particle spectrum for the two symmetry breaking scales: one where the SU(3){sub L} x U(1){sub X} group is broken down to SU(2){sub L} x U(1){sub Y} and a lower scale similar to the standard model one. Within the considerations used, we show that the model encodes two first-order phase transitions, respecting the pattern of symmetry restoration. The last transition, corresponding to the standard electroweak one, is found to be very weak first-order, most likely turning second-order or a crossover in practice. However, the first transition in this model can be strongly first-order, which might happen at a temperature not too high above the second one. We determine the respective critical temperatures for symmetry restoration for the model. (orig.)

  4. Symmetry-preserving contact interaction model for heavy-light mesons

    CERN Document Server

    Serna, F E; Krein, G

    2016-01-01

    We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interac- tion model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar pion and Kaon mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals.

  5. Non-anomalous flavor symmetries and SU(6) x SU(2) sub R model

    CERN Document Server

    Abe, Y; Hattori, C; Hayashi, T; Ito, M; Matsuda, M; Matsuoka, T

    2002-01-01

    We introduce the flavor symmetry Z sub M x Z sub N x D4 into the SU(6) x SU(2) sub R string-inspired model. The cyclic group Z sub M and the dihedral group D sub 4 are R symmetries, while Z sub N is a non-R symmetry. By imposing the anomaly-free conditions on the model, we obtain a viable solution under many phenomenological constraints coming from the particle spectra. For the neutrino sector, we find a LMA-MSW solution but no SMA-MSW solution. The solution includes phenomenologically acceptable results concerning fermion masses and mixings and also concerning hierarchical energy scales including the GUT scale, the mu scale and the Majorana mass scale of R-handed neutrinos. (author)

  6. External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model

    CERN Document Server

    Johnson, Clifford V

    2008-01-01

    Using the Sakai-Sugimoto model we study the effect of an external magnetic field on the dynamics of fundamental flavours in both the confined and deconfined phases of a large N_c gauge theory. We find that an external magnetic field promotes chiral symmetry breaking, consistent with the ``magnetic catalysis'' observed in the field theory literature, and seen in other studies using holographic duals. The external field increases the separation between the deconfinement temperature and the chiral symmetry restoring temperature. In the deconfined phase we investigate the temperature-magnetic field phase diagram and observe, for example, there exists a maximum critical temperature (at which symmetry is restored) for very large magnetic field. We find that this and certain other phenomena persist for the Sakai-Sugimoto type models with probe branes of diverse dimensions. We comment briefly on the dynamics in the presence of an external electric field.

  7. Classically conformal radiative neutrino model with gauged B−L symmetry

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2016-09-01

    Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  8. Symmetry-preserving contact interaction model for heavy-light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Serna, F. E.; Brito, M. A.; Krein, G. [Instituto de Física Teórica, Universidade Estadual Paulista (Brazil); Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 São Paulo, SP (Brazil)

    2016-01-22

    We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interaction model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar π and K mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals.

  9. Correspondences between WZNW models and CFTs with W-algebra symmetry

    CERN Document Server

    Creutzig, Thomas; Ronne, Peter B

    2015-01-01

    We study theories with W-algebra symmetries and their relation to WZNW models on (super-)groups. Correlation functions of the WZNW models are expressed in terms of correlators of CFTs with W-algebra symmetry. The symmetries of the theories involved in these correspondences are related by the Drinfeld-Sokolov reduction of Lie algebras to W-algebras. The W-algebras considered in this paper are the Bershadsky-Polyakov algebra for sl(3) and the quasi-superconformal algebra for generic sl(N|M). The quantum W-algebras obtained from affine sl(N) are constructed using embeddings of sl(2) into sl(N), and these can in turn be characterized by partitions of N. The above cases correspond to \\underline{N+2} = \\underline{2} + N \\underline{1} and its supergroup extension. Finally, sl(2N) and the correspondence corresponding to \\underline{2N} = N \\underline{2} is also analyzed.

  10. Detailed Description of Mixed Symmetry States in 94Mo Using Interacting Boson Model

    Institute of Scientific and Technical Information of China (English)

    LONG GuiLu; F.H. Al-Khudair

    2002-01-01

    We have investigated the low-lying collective states and electromagnetic transitions in 94Mo within the framework of the interacting boson model. The influence of model parameters on the energy levels and electromagnetic properties has been investigated. The analysis of the obtained results and the parameter values predict that the 23+state is the lowest mixed symmetry state with pure F = Fmax - 1 in this nucleus. The calculated results predicate that the 25+ (two-Q-phonon) mixed symmetry state is closed to the J = 2+ at 2.870 MeV in the experimental data, and the 2.965 MeV state is the lowest mixed symmetry with J = 3+.

  11. Nilpotent and absolutely anticommuting symmetries in the Freedman-Townsend model: augmented superfield formalism

    CERN Document Server

    Shukla, A; Malik, R P

    2013-01-01

    We derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, corresponding to the (1-form) Yang-Mills (YM) and (2-form) tensor gauge symmetries of the four (3 + 1)-dimensional (4D) Freedman-Townsend (FT) model, by exploiting the augmented version of Bonora-Tonin's (BT) superfield approach to BRST formalism where the 4D flat Minkowskian theory is generalized onto the (4, 2)-dimensional supermanifold. One of the novel observations is the fact that we are theoretically compelled to go beyond the horizontality condition (HC) to invoke an additional set of gauge-invariant restrictions (GIRs) for the derivation of the full set of proper (anti-)BRST symmetries. To obtain the (anti-)BRST symmetry transformations, corresponding to the tensorial (2-form) gauge symmetries (within the framework of augmented version of BT-superfield approach), we are theoretically forced to modify the FT-model to incorporate an auxiliary 1-form field and the kineti...

  12. Independent particle model of spontaneous symmetry breaking in planar π-electron systems

    Science.gov (United States)

    Thiamová, G.; Paldus, J.

    2008-03-01

    The singlet stability of symmetry adapted (SA), restricted Hartree-Fock (RHF) solutions, and the implied symmetry breaking for several planar, π-electron systems, is investigated using the semiempirical Pariser-Parr-Pople Hamiltonian in the whole range of the coupling constant. We focus here on highly symmetric cyclic polyenes C10H10 and C14H14 and their various distorted analogues of lower symmetry, in particular on the perimeter models of naphthalene and anthracene (p-naphthalene and p-anthracene) modeling the so-called [n]-annulenes. Relying on earlier results for general systems with conjugated double-bonds, we explore the character and properties of both the SA and broken-symmetry (BS) RHF solutions for these systems and relate their behavior to those of highly symmetric cyclic polyenes and corresponding polyacenes. In this way we are able to provide a better understanding of the spontaneous symmetry breaking in these systems at the Hartree-Fock level of approximation.

  13. Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models

    Energy Technology Data Exchange (ETDEWEB)

    Luhn, C.

    2006-05-15

    Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)

  14. Up and down cascade in a dynamo model: spontaneous symmetry breaking.

    Science.gov (United States)

    Blanter, E M; Narteau, C; Shnirman, M G; Le Mouël, J L

    1999-05-01

    A multiscale turbulent model of dynamo is proposed. A secondary magnetic field is generated from a primary field by a flow made of turbulent helical vortices (cyclones) of different ranges, and amplified by an up and down cascade mechanism. The model displays symmetry breakings of different ranges although the system construction is completely symmetric. Large-scale symmetry breakings for symmetric conditions of the system evolution are investigated for all kinds of cascades: pure direct cascade, pure inverse cascade, and up and down cascade. It is shown that long lived symmetry breakings of high scales can be obtained only in the case of the up and down cascade. The symmetry breakings find expression in intervals of constant polarity of the secondary field (called chrons of the geomagnetic field). Long intervals of constant polarity with quick reversals are obtained in the model; conditions for such a behavior are investigated. Strong variations of the generated magnetic field during intervals of constant polarity are also observed in the model. Possible applications of the model to geodynamo modeling and various directions of future investigation are briefly discussed.

  15. Symmetry: modeling the effects of masking noise, axial cueing and salience.

    Science.gov (United States)

    Chen, Chien-Chung; Tyler, Christopher W

    2010-04-06

    Symmetry detection is an interesting probe of pattern processing because it requires the matching of novel patterns without the benefit of prior recognition. However, there is evidence that prior knowledge of the axis location plays an important role in symmetry detection. We investigated how the prior information about the symmetry axis affects symmetry detection under noise-masking conditions. The target stimuli were random-dot displays structured to be symmetric about vertical, horizontal, or diagonal axes and viewed through eight apertures (1.2 degrees diameter) evenly distributed around a 6 degrees diameter circle. The information about axis orientation was manipulated by (1) cueing of axis orientation before the trial and (2) varying axis salience by including or excluding the axis region within the noise apertures. The percentage of correct detection of the symmetry was measured at for a range of both target and masking noise densities. The threshold vs. noise density function was flat at low noise density and increased with a slope of 0.75-0.8 beyond a critical density. Axis cueing reduced the target threshold 2-4 fold at all noise densities while axis salience had an effect only at high noise density. Our results are inconsistent with an ideal observer or signal-to-noise account of symmetry detection but can be explained by a multiple-channel model is which the response in each channel is the ratio between the nonlinear transform of the responses of sets of early symmetry detectors and the sum of external and intrinsic sources of noise.

  16. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  17. Icosahedral symmetry described by an incommensurately modulated crystal structure model

    DEFF Research Database (Denmark)

    Wolny, Janusz; Lebech, Bente

    1986-01-01

    A crystal structure model of an incommensurately modulated structure is presented. Although six different reciprocal vectors are used to describe the model, all calculations are done in three dimensions making calculation of the real-space structure trivial. Using this model, it is shown that both...

  18. CP and other Symmetries of Symmetries

    CERN Document Server

    Trautner, Andreas

    2016-01-01

    Outer automorphisms of symmetries ("symmetries of symmetries") in relativistic quantum field theories are studied, including charge conjugation (C), space-reflection (P) , and time-reversal (T) transformations. The group theory of outer automorphisms is pedagogically introduced and it is shown that CP transformations are special outer automorphisms of the global, local, and space-time symmetries of a theory. It is shown that certain discrete groups allow for a group theoretical prediction of parameter independent CP violating complex phases with fixed geometrical values. The remainder of this thesis pioneers the study of outer automorphisms which are not related to C, P, or T. It is shown how outer automorphisms, in general, relate symmetry invariants and, in theories with spontaneous symmetry breaking, imply relations between different vacuum expectation values. Thereby, outer automorphisms can give rise to emergent symmetries. An example model with a discrete symmetry and three copies of the Standard Model ...

  19. Model dependence of the neutron-skin thickness on the symmetry energy

    CERN Document Server

    Mondal, C; Centelles, M; Colò, G; Roca-Maza, X; Paar, N; Viñas, X; Singh, S K; Patra, S K

    2016-01-01

    The model dependence in the correlations of the neutron-skin thickness in heavy nuclei with various symmetry energy parameters is analyzed by using several families of systematically varied microscopic mean field models. Such correlations show a varying degree of model dependence once the results for all the different families are combined. Some mean field models associated with similar values of the symmetry energy slope parameter at saturation density $L$, and pertaining to different families, yield a greater-than-expected spread in the neutron-skin thickness of the $^{208}$Pb nucleus. The effective value of the symmetry energy slope parameter $L_{\\rm eff}$, determined by using the nucleon density profiles of the finite nucleus and the density derivative $S^\\prime(\\rho)$ of the symmetry energy starting from about saturation density up to low densities typical of the surface of nuclei, seems to account for the spread in the neutron-skin thickness for the models with similar $L$. The differences in the values...

  20. Amending entanglement-breaking channels via intermediate unitary operations

    Science.gov (United States)

    Cuevas, Á.; De Pasquale, A.; Mari, A.; Orieux, A.; Duranti, S.; Massaro, M.; Di Carli, A.; Roccia, E.; Ferraz, J.; Sciarrino, F.; Mataloni, P.; Giovannetti, V.

    2017-08-01

    We report a bulk optics experiment demonstrating the possibility of restoring the entanglement distribution through noisy quantum channels by inserting a suitable unitary operation (filter) in the middle of the transmission process. We focus on two relevant classes of single-qubit channels consisting in repeated applications of rotated phase-damping or rotated amplitude-damping maps, both modeling the combined Hamiltonian and dissipative dynamics of the polarization state of single photons. Our results show that interposing a unitary filter between two noisy channels can significantly improve entanglement transmission. This proof-of-principle demonstration could be generalized to many other physical scenarios where entanglement-breaking communication lines may be amended by unitary filters.

  1. Non-unitary fusion categories and their doubles via endomorphisms

    CERN Document Server

    Evans, David E

    2015-01-01

    We realise non-unitary fusion categories using subfactor-like methods, and compute their quantum doubles and modular data. For concreteness we focus on generalising the Haagerup-Izumi family of Q-systems. For example, we construct endomorphism realisations of the (non-unitary) Yang-Lee model, and non-unitary analogues of one of the even subsystems of the Haagerup subfactor and of the Grossman-Snyder system. We supplement Izumi's equations for identifying the half-braidings, which were incomplete even in his Q-system setting. We conjecture a remarkably simple form for the modular S and T matrices of the doubles of these fusion categories. We would expect all of these doubles to be realised as the category of modules of a rational VOA and conformal net of factors. We expect our approach will also suffice to realise the non-semisimple tensor categories arising in logarithmic conformal field theories.

  2. Right-unitary transformation theory and applications

    CERN Document Server

    Tang, Z

    1996-01-01

    We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two levels, three levels in Lambda, V and equiv configurations, and up to higher (>3) levels. These interactions have wide applications in atomic physics, quantum optics and quantum electronics. In this paper, we focus on two typical systems: one is a two-level generalized Jaynes-Cummings model, where the cavity field varies with the external source; the other one is the interaction of three-level atom with quantized radiation fields, where the atoms have Lambda-configuration energy levels, and the radiation fields are one-mode...

  3. Symmetry analysis for hyperbolic equilibria using a TB/dengue fever model

    Science.gov (United States)

    Massoukou, R. Y. M.'Pika; Govinder, K. S.

    2016-08-01

    We investigate the interplay between Lie symmetry analysis and dynamical systems analysis. As an example, we take a toy model describing the spread of TB and dengue fever. We first undertake a comprehensive dynamical systems analysis including a discussion about local stability. For those regions in which such analyzes cannot be translated to global behavior, we undertake a Lie symmetry analysis. It is shown that the Lie analysis can be useful in providing information for systems where the (local) dynamical systems analysis breaks down.

  4. Assessing the effects of symmetry on motif discovery and modeling.

    Directory of Open Access Journals (Sweden)

    Lala M Motlhabi

    Full Text Available BACKGROUND: Identifying the DNA binding sites for transcription factors is a key task in modeling the gene regulatory network of a cell. Predicting DNA binding sites computationally suffers from high false positives and false negatives due to various contributing factors, including the inaccurate models for transcription factor specificity. One source of inaccuracy in the specificity models is the assumption of asymmetry for symmetric models. METHODOLOGY/PRINCIPAL FINDINGS: Using simulation studies, so that the correct binding site model is known and various parameters of the process can be systematically controlled, we test different motif finding algorithms on both symmetric and asymmetric binding site data. We show that if the true binding site is asymmetric the results are unambiguous and the asymmetric model is clearly superior to the symmetric model. But if the true binding specificity is symmetric commonly used methods can infer, incorrectly, that the motif is asymmetric. The resulting inaccurate motifs lead to lower sensitivity and specificity than would the correct, symmetric models. We also show how the correct model can be obtained by the use of appropriate measures of statistical significance. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the most commonly used motif-finding approaches usually model symmetric motifs incorrectly, which leads to higher than necessary false prediction errors. It also demonstrates how alternative motif-finding methods can correct the problem, providing more accurate motif models and reducing the errors. Furthermore, it provides criteria for determining whether a symmetric or asymmetric model is the most appropriate for any experimental dataset.

  5. Search for symmetries beyond the Standard Model with ATLAS

    CERN Document Server

    Tal Hod, Noam; The ATLAS collaboration

    2015-01-01

    Searches for new physics beyond the Standard Model (SM) at the LHC are mainly driven by two approaches: a signature-based search where one looks for a deviation from the SM prediction in event yield or kinematic properties, and a more theory-oriented approach where the search is designed to look for specific signatures/topologies predicted by certain beyond standard model (BSM ) scenarios. Extensive searches for such signatures have been performed in ATLAS at LHC Run 1 in the context of Supersymmetry, Extended Gauge models, Technicolor, Little Higgs, Extra Dimensions, Left-Right symmetric models, and many other BSM scenarios. Highlights from these searches are presented.

  6. Phenomenology of the standard model under conditions of spontaneously broken mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dyatlov, I. T., E-mail: dyatlov@thd.pnpi.spb.ru [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)

    2017-03-15

    Spontaneously broken mirror symmetry is able to reproduce observed qualitative properties of weak mixing for quark and leptons. Under conditions of broken mirror symmetry, the phenomenology of leptons—that is, small neutrino masses and a mixing character other than that in the case of quarks—requires the Dirac character of the neutrinos and the existence of processes violating the total lepton number. Such processes involve heavy mirror neutrinos; that is, they proceed at very high energies. Here, CP violation implies that a P-even mirror-symmetric Lagrangian must simultaneously be T-odd and, according to the CPT theorem, C-odd. All these properties create preconditions for the occurrence of leptogenesis, which is a mechanism of the emergence of the baryon–lepton asymmetry of the universe in models featuring broken mirror symmetry.

  7. Formation and local symmetry of the Holstein polaron in the t-J model

    Science.gov (United States)

    Ma, Han; Lee, T. K.; Chen, Yan

    2013-04-01

    The formation and local symmetry of a spin-lattice polaron has been investigated semiclassically in planar Holstein t-J-like models within the exact diagonalization method. Due to the interplay of strong correlations and electron-lattice interaction, the doped hole may either move freely or lead to the localized spin-lattice distortion and form a Holstein polaron. The formation of a polaron breaks the translational symmetry by suppression of antiferromagnetic correlations and inducement of ferromagnetic correlations locally. Moreover, the breaking of local rotational symmetry around the polaron has been shown. The ground state is generically a parity singlet and the first excited state may be a parity doublet. Further consequences of the density of states spectra for comparison with scanning tunneling microscopy experiments are discussed.

  8. The role of conformal symmetry in gravity and the standard model

    CERN Document Server

    Lucat, Stefano

    2016-01-01

    In this paper we consider conformal symmetry in the context of manifolds with general affine connection. We extend the conformal transformation law of the metric to a general metric compatible affine connection, and find that it is a symmetry of both the geodesic equation and the Riemann tensor. We derive the generalised Jacobi equation and Raychaudhuri equation and show that they are both conformally invariant. Using the geodesic deviation~(Jacobi) equation we analyse the behaviour of geodesics in different conformal frames. Since we find that our version of conformal symmetry is exact in classical pure Einstein's gravity, we ask whether one can extend it to the standard model. We find that it is possible to write conformal invariant lagrangians in any dimensions for vector, fermion and scalar fields, but that such lagrangians are only gauge invariant in four dimensions. Provided one introduces a dilaton field, gravity can be conformally coupled to matter.

  9. Contact terms and duality symmetry in the critical dissipative Hofstadter model

    CERN Document Server

    Freed, D E

    1993-01-01

    The dissipative Hofstadter model describes the quantum mechanics of a charged particle in two dimensions subject to a periodic potential, uniform magnetic field, and dissipative force. Its phase diagram exhibits an SL(2,Z) duality symmetry and has an infinite number of critical circles in the dissipation/magnetic field plane. In addition, multi-critical points on a particular critical circle correspond to non-trivial solutions of open string theory. The duality symmetry is expected to provide relations between correlation functions at different multi-critical points. Many of these correlators are contact terms. However we expect them to have physical significance because under duality they transform into functions that are non-zero for large separations of the operators. Motivated by the search for exact, regulator independent solutions for these contact terms, in this paper we derive many properties and symmetries of the coordinate correlation functions at the special multi-critical points. In particular, we...

  10. The role of conformal symmetry in gravity and the standard model

    Science.gov (United States)

    Lucat, Stefano; Prokopec, Tomislav

    2016-12-01

    In this paper we consider conformal symmetry in the context of manifolds with general affine connection. We extend the conformal transformation law of the metric to a general metric compatible affine connection, and find that it is a symmetry of both the geodesic equation and the Riemann tensor. We derive the generalised Jacobi equation and Raychaudhuri equation and show that they are both conformally invariant. Using the geodesic deviation (Jacobi) equation we analyse the behaviour of geodesics in different conformal frames. Since we find that our version of conformal symmetry is exact in classical pure Einstein's gravity, we ask whether one can extend it to the standard model. We find that it is possible to write conformal invariant Lagrangians in any dimensions for vector, fermion and scalar fields, but that such Lagrangians are only gauge invariant in four dimensions. Provided one introduces a dilaton field, gravity can be conformally coupled to matter.

  11. A4 and CP symmetry and a model with maximal CP violation

    Science.gov (United States)

    Li, Cai-Chang; Lu, Jun-Nan; Ding, Gui-Jun

    2016-12-01

    We study a second CP symmetry compatible with the A4 flavor group, which interchanges the representations 1‧ and 1″. We analyze the lepton mixing patterns arising from the A4 and CP symmetry broken to residual subgroups Z3 and Z2 × CP in the charged lepton and neutrino sectors respectively. One phenomenologically viable mixing pattern is found, and it predicts maximal atmospheric mixing angle as well as maximal Dirac CP phase, trivial Majorana phases and the correlation sin2 ⁡θ12cos2 ⁡θ13 = 1 / 3. We construct a concrete model based on the A4 and CP symmetry, the above interesting mixing pattern is achieved, the observed charged lepton mass hierarchy is reproduced, and the reactor mixing angle θ13 is of the correct order.

  12. $A_4$ and CP symmetry and a model with maximal CP violation

    CERN Document Server

    Li, Cai-Chang; Ding, Gui-Jun

    2016-01-01

    We study a second CP symmetry compatible with the $A_4$ flavor group, which interchanges the representations $\\mathbf{1}'$ and $\\mathbf{1}"$. We analyze the lepton mixing patterns arising from the $A_4$ and CP symmetry broken to residual subgroups $Z_3$ and $Z_2\\times CP$ in the charged lepton and neutrino sectors respectively. One phenomenologically viable mixing pattern is found, and it predicts maximal atmospheric mixing angle as well as maximal Dirac CP phase, trivial Majorana phase and the correlation $\\sin^2\\theta_{12}\\cos^2\\theta_{13}=1/3$. We construct a concrete model based on the $A_4$ and CP symmetry, the above interesting mixing pattern is achieved, the observed charged lepton mass hierarchy is reproduced, and the reactor mixing angle $\\theta_{13}$ is of the correct order.

  13. Molecular Quantum Computing by an Optimal Control Algorithm for Unitary Transformations

    CERN Document Server

    Palao, J P; Palao, Jose P.; Kosloff, Ronnie

    2002-01-01

    Quantum computation is based on implementing selected unitary transformations which represent algorithms. A generalized optimal control theory is used to find the driving field that generates a prespecified unitary transformation. The approach is illustrated in the implementation of one and two qubits gates in model molecular systems.

  14. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  15. Collider and dark matter searches in the inert doublet model from Peccei-Quinn symmetry

    Science.gov (United States)

    Alves, Alexandre; Camargo, Daniel A.; Dias, Alex G.; Longas, Robinson; Nishi, Celso C.; Queiroz, Farinaldo S.

    2016-10-01

    Weakly Interacting Massive Particles (WIMPs) and axions are arguably the most compelling dark matter candidates in the literature. Could they coexist as dark matter particles? More importantly, can they be incorporated in a well motivated framework in agreement with experimental data? In this work, we show that this two component dark matter can be realized in the Inert Doublet Model in an elegant and natural manner by virtue of the spontaneous breaking of a Peccei-Quinn U(1) P Q symmetry into a residual {Z}_2 symmetry. The WIMP stability is guaranteed by the {Z}_2 symmetry and a new dark matter component, the axion, arises. There are two interesting outcomes: (i) vector-like quarks needed to implement the Peccei-Quinn symmetry in the model may act as a portal between the dark sector and the SM fields with a supersymmetry-type phenomenology at colliders; (ii) two-component Inert Doublet Model re-opens the phenomenologically interesting 100-500 GeV mass region. We show that the model can successfully realize a two component dark matter framework and at the same time avoid low and high energy physics constraints such as monojet and dijet plus missing energy, as well as indirect and direct dark matter detection bounds.

  16. Pion Susceptibilities of the Vacuum in a Modified Global Colour Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; WU Xiao-Hua; DING Xiao-Ping; L0 Xiao-Fu; ZHAO En-Guang

    2001-01-01

    Based on a modified version of the global color symmetry model, the pion susceptibilities of vacuum needed in the QCD sum rule external-field method for the coupling of pseudoscalar current to hadron have bean calculated beyond the vacuum saturation approximation. Comparison with the previous estimations has been given.

  17. Symmetry Reductions of a 1.5-Layer Ocean Circulation Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The (2+1)-dimensional nonlinear 1.5-layer ocean circulation model without external wind stress forcing is analyzed by using the classical Lie group approach. Some Lie point symmetries and their corresponding two-dimensional reduction equations are obtained.

  18. Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Shlosman, Senya B.

    2005-01-01

    We consider various sufficiently nonlinear vector models of ferromagnets, of nematic liquid crystals and of nonlinear lattice gauge theories with continuous symmetries. We show, employing the method of Reflection Positivity and Chessboard Estimates, that they all exhibit first-order transitions in t

  19. Collider and dark matter searches in the inert doublet model from Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Alexandre [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo,Diadema-SP, 09972-270 (Brazil); Camargo, Daniel A.; Dias, Alex G. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas,09210-580, Santo André-SP (Brazil); Longas, Robinson [Instituto de Física, Universidad de Antioquia,Calle 70 No. 52-21, Medellín (Colombia); Nishi, Celso C. [Universidade Federal do ABC, Centro de Matemática, Computação e Cognição Naturais,09210-580, Santo André-SP (Brazil); Queiroz, Farinaldo S. [Max-Planck-Institut fur Kernphysik,Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-10-04

    Weakly Interacting Massive Particles (WIMPs) and axions are arguably the most compelling dark matter candidates in the literature. Could they coexist as dark matter particles? More importantly, can they be incorporated in a well motivated framework in agreement with experimental data? In this work, we show that this two component dark matter can be realized in the Inert Doublet Model in an elegant and natural manner by virtue of the spontaneous breaking of a Peccei-Quinn U(1){sub PQ} symmetry into a residual ℤ{sub 2} symmetry. The WIMP stability is guaranteed by the ℤ{sub 2} symmetry and a new dark matter component, the axion, arises. There are two interesting outcomes: (i) vector-like quarks needed to implement the Peccei-Quinn symmetry in the model may act as a portal between the dark sector and the SM fields with a supersymmetry-type phenomenology at colliders; (ii) two-component Inert Doublet Model re-opens the phenomenologically interesting 100–500 GeV mass region. We show that the model can successfully realize a two component dark matter framework and at the same time avoid low and high energy physics constraints such as monojet and dijet plus missing energy, as well as indirect and direct dark matter detection bounds.

  20. Infinitely many states and stochastic symmetry in a Gaussian Potts-Hopfield model

    NARCIS (Netherlands)

    van Enter, ACD; Schaap, HG

    2002-01-01

    We study a Gaussian Potts-Hopfield model. Whereas for Ising spins and two disorder variables per site the chaotic pair scenario is realized, we find that for q-state Potts spins q (q - 1)-tuples occur. Beyond the breaking of a continuous stochastic symmetry, we study the fluctuations and obtain the

  1. Truncations of random unitary matrices

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Juergen

    1999-01-01

    We analyze properties of non-hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N>M, distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ratio M/N. For the truncated CUE we derive analytically the joint density of eigenvalues from which easily all correlation functions are obtained. For N-M fixed and N--> infinity the universal resonance-width distribution with N-M open channels is recovered.

  2. Symmetry Breaking, Unification, and Theories Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasunori

    2009-07-31

    A model was constructed in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. We have demonstrated that the model can avoid all the phenomenological constraints, while avoiding excessive fine-tuning. We have also studied implications of the model on dark matter physics and collider physics. I have proposed in an extremely simple construction for models of gauge mediation. We found that the {mu} problem can be simply and elegantly solved in a class of models where the Higgs fields couple directly to the supersymmetry breaking sector. We proposed a new way of addressing the flavor problem of supersymmetric theories. We have proposed a new framework of constructing theories of grand unification. We constructed a simple and elegant model of dark matter which explains excess flux of electrons/positrons. We constructed a model of dark energy in which evolving quintessence-type dark energy is naturally obtained. We studied if we can find evidence of the multiverse.

  3. Quantum structure of T-dualized models with symmetry breaking

    CERN Document Server

    Casteill, P Y

    2000-01-01

    We study the principal sigma-models defined on any group manifold GL x GR/GD with breaking of GR, and their T-dual transforms. For abritary breaking we can express the torsion and Ricci tensor of the dual model in terms of the frame geometry of the initial principal model. Using these results, we give necessary and sufficient conditions for the dual model to be torsionless and prove that the one-loop renormalizability of a given principal model is inherited by its dual partner, who shares the same beta-functions. These results are shown to hold also if the principal model is endowed with torsion. As an application we compute the beta-functions for the full Bianchi family and show that for some choices of the breaking parameters the dilaton anomaly is absent: for these choices the dual torsion vanishes. For the dualized Bianchi V model (which is torsionless for any breaking), we take advantage of its simpler structure, to study its two-loops renormalizability.

  4. Hydrodynamics of a unitary Bose gas

    Science.gov (United States)

    Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran

    2016-05-01

    In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.

  5. Direct dialling of Haar random unitary matrices

    Science.gov (United States)

    Russell, Nicholas J.; Chakhmakhchyan, Levon; O’Brien, Jeremy L.; Laing, Anthony

    2017-03-01

    Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.

  6. Singular Value Decomposition for Unitary Symmetric Matrix

    Institute of Scientific and Technical Information of China (English)

    ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda

    2003-01-01

    A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.

  7. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Babak, E-mail: b-vakili@iauc.ac.ir

    2014-11-10

    We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW) model, a scalar field with potential function V(ϕ) with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ). Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  8. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  9. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    CERN Document Server

    Vakili, Babak

    2014-01-01

    We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann-Robertson-Walker (FRW) model, a scalar field with potential function $V(\\phi)$ with which the gravity part of the action is minimally coupled and a vector field its kinetic energy is coupled with the scalar field by a coupling function $f(\\phi)$. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology i...

  10. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Science.gov (United States)

    Vakili, Babak

    2014-11-01

    We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann-Robertson-Walker (FRW) model, a scalar field with potential function V (ϕ) with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f (ϕ). Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  11. Natural PQ symmetry in the 3-3-1 model with a minimal scalar sector

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Bruce Lehmann Sanchez; Garcia, Juan Carlos Montero [Instituto de Fisica Teorica (IFT/UNESP), SP (Brazil)

    2011-07-01

    Full text: In the framework of a 3-3-1 model with a minimal scalar sector we make a detailed study concerning the implementation of the PQ symmetry in order to solve the strong CP problem. For the original version of the model, with only two scalar triplets, we show that the entire Lagrangian is invariant under a PQ-like symmetry but no axion is produced since an U(1) subgroup remains unbroken. Although in this case the strong CP problem can still be solved, the solution is largely disfavored since three quark states are left massless to all orders in perturbation theory. The addition of a third scalar triplet removes the massless quark states but the resulting axion is visible. In order to become realistic the model must be extended to account for massive quarks and invisible axion. We show that the addition of a scalar singlet together with a ZN discrete gauge symmetry can successfully accomplish these tasks and protect the axion field against quantum gravitational effects. To make sure that the protecting discrete gauge symmetry is anomaly free we use a discrete version of the Green-Schwarz mechanism. (author)

  12. Symmetry-Breaking in a Rate Model for a Biped Locomotion Central Pattern Generator

    Directory of Open Access Journals (Sweden)

    Ian Stewart

    2014-01-01

    Full Text Available The timing patterns of animal gaits are produced by a network of spinal neurons called a Central Pattern Generator (CPG. Pinto and Golubitsky studied a four-node CPG for biped dynamics in which each leg is associated with one flexor node and one extensor node, with Ζ2 x Ζ2 symmetry. They used symmetric bifurcation theory to predict the existence of four primary gaits and seven secondary gaits. We use methods from symmetric bifurcation theory to investigate local bifurcation, both steady-state and Hopf, for their network architecture in a rate model. Rate models incorporate parameters corresponding to the strengths of connections in the CPG: positive for excitatory connections and negative for inhibitory ones. The three-dimensional space of connection strengths is partitioned into regions that correspond to the first local bifurcation from a fully symmetric equilibrium. The partition is polyhedral, and its symmetry group is that of a tetrahedron. It comprises two concentric tetrahedra, subdivided by various symmetry planes. The tetrahedral symmetry arises from the structure of the eigenvalues of the connection matrix, which is involved in, but not equal to, the Jacobian of the rate model at bifurcation points. Some of the results apply to rate equations on more general networks.

  13. Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization

    Science.gov (United States)

    2010-06-01

    AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c

  14. Modeling outer-sphere disorder in the symmetry breaking of PPV.

    Science.gov (United States)

    Liu, L Angela; Yaron, David J

    2009-04-21

    Disorder plays an important role in the photophysics of conjugated polymers such as poly(para-phenylene vinylene) (PPV). The dipole moments measured by electroabsorption spectroscopy for a centrosymmetric system such as PPV provide a direct quantitative measure of disorder-induced symmetry breaking. Although inner-sphere (structural) disorder is present, outer-sphere (environmental) disorder dominates the symmetry breaking in PPV. This paper develops and compares six models of outer-sphere disorder that differ in their representation of the electrostatic environment of PPV in glassy solvents. The most detailed model is an all-atom description of the solvent glass and this model forms the basis for comparison of the less detailed models. Four models are constructed in which multipoles are placed at points on a lattice. These lattice models differ in the degree to which they include correlation between the lattice spacings and the orientations of the multipoles. A simple model that assigns random Gaussian-distributed electrostatic potentials to each atom in the PPV molecule is also considered. Comparison of electronic structure calculations of PPV in these electrostatic environments using the all-atom model as a benchmark reveals that dipole and quadrupole lattices provide reasonable models of organic glassy solvents. Including orientational correlation among the solvent molecules decreases the effects of outer-sphere disorder, whereas including correlation in the lattice spacings increases the effects. Both the dipole and quadrupole moments of the solvent molecules can have significant effects on the symmetry breaking and these effects are additive. This additivity provides a convenient means for predicting the effects of various glassy solvents based on their multipole moments. The results presented here suggest that electrostatic disorder can account for the observed symmetry breaking in organic glasses. Furthermore, the lattice models are in general agreement

  15. Twisted spectral triple for the Standard Model and spontaneous breaking of the Grand Symmetry

    CERN Document Server

    Devastato, Agostino

    2014-01-01

    Grand symmetry models in noncommutative geometry have been introduced to explain how to generate minimally (i.e. without adding new fermions) an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use Connes-Moscovici twisted spectral triples to cure a technical problem of the grand symmetry, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded, and also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutative geometry of the standard model, with two Higgs-like fields: scalar and vector.

  16. Interplay between sign problem and Z_3 symmetry in three-dimensional Potts model

    CERN Document Server

    Hirakida, Takehiro; Takahashi, Junichi; Yahiro, Masanobu

    2016-01-01

    We construct four kinds of Z3-symmetric three-dimentional (3-d) Potts models, each with different number of states at each site on a 3-d lattice, by extending the 3-d three-state Potts model. Comparing the ordinary Potts model with the four Z3-symmetric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the $\\mu-\\kappa$ plane as the number of states increases, where $\\mu$ $(\\kappa)$ plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger $\\mu$-dependence with respect to increasing the number of states.

  17. Interplay between sign problem and Z3 symmetry in three-dimensional Potts models

    Science.gov (United States)

    Hirakida, Takehiro; Kouno, Hiroaki; Takahashi, Junichi; Yahiro, Masanobu

    2016-07-01

    We construct four kinds of Z3 -symmetric three-dimensional (3D) Potts models, each with a different number of states at each site on a 3D lattice, by extending the 3D 3-state Potts model. Comparing the ordinary Potts model with the four Z3-symmetric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the μ -κ plane as the number of states increases, where μ (κ ) plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger μ dependence with respect to increasing the number of states.

  18. Spontaneous symmetry breaking in the O(4) scalar model on a lattice

    CERN Document Server

    Demchik, Vadim; Skalozub, Vladimir

    2014-01-01

    The spontaneous symmetry breaking in the four component scalar $\\lambda \\phi^4$ model (O(4) model) is investigated on a lattice dependently on the value of the coupling constant $\\lambda$. A general approach for dealing with this phenomenon is developed. In the spherical coordinates in the internal space of the scalar field, the Goldstone modes are integrated out by the saddle point method that reduces the functional integral of the model to the effective one component theory convenient for lattice investigations. The partition function of the model is calculated analytically up to the one-loop order. Monte Carlo simulations are performed with a QCDGPU software package on a HGPU cluster. It is shown that for $\\lambda < 10^{-5}$ the scalar field condensate does not create. For larger values of coupling symmetry breaking happens. Qualitatively, this is similar to that of observed already in the O(1) model.

  19. Phase diagram of model anisotropic particles with octahedral symmetry

    OpenAIRE

    Noya, E. G.; Vega, C.; Doye, J. P. K.; Louis, A. A.

    2007-01-01

    We computed the phase diagram for a system of model anisotropic particles with six attractive patches in an octahedral arrangement. We chose to study this model for a relatively narrow value of the patch width where the lowest-energy configuration of the system is a simple cubic crystal. At this value of the patch width, there is no stable vapour-liquid phase separation, and there are three other crystalline phases in addition to the simple cubic crystal that is most stable at low pressure. F...

  20. N=2 superconformal symmetry in super coset models

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas; Roenne, Peter B.; Schomerus, Volker [DESY, Hamburg (Germany). DESY Theory Group

    2009-07-15

    We extend the Kazama-Suzuki construction of models with N=(2,2) world-sheet supersymmetry to cosets S/K of supergroups. Among the admissible target spaces that allow for an extension to N=2 superconformal algebras are some simple Lie supergroups, including PSL(N vertical stroke N). Our general analysis is illustrated at the example of the N=1 WZNW model on GL(1 vertical stroke 1). After constructing its N=2 superconformal algebra we determine the (anti-)chiral ring of the theory. It exhibits an interesting interplay between world-sheet and target space supersymmetry. (orig.)

  1. Symmetries of preon interactions modeled as a finite group

    Science.gov (United States)

    Bellinger, James N.

    1997-07-01

    I model preon interactions as a finite group. Treating the elements of the group as the bases of a vector space, I examine those linear mappings under which the transformed bases may be treated as members of a group isomorphic to the original. In some cases these mappings are continuous Lie groups.

  2. Symmetries of preon interactions modeled as a finite group

    Energy Technology Data Exchange (ETDEWEB)

    Bellinger, J.N. [University of Wisconsin at Madison, Madison, Wisconsin 53706 (United States)

    1997-07-01

    I model preon interactions as a finite group. Treating the elements of the group as the bases of a vector space, I examine those linear mappings under which the transformed bases may be treated as members of a group isomorphic to the original. In some cases these mappings are continuous Lie groups. {copyright} {ital 1997 American Institute of Physics.}

  3. An algebraic study of unitary one dimensional quantum cellular automata

    CERN Document Server

    Arrighi, P

    2005-01-01

    We provide algebraic characterizations of unitary one dimensional quantum cellular automata. We do so both by algebraizing existing decision procedures, and by adding constraints into the model which do not change the quantum cellular automata's computational power. The configurations we consider have finite but unbounded size.

  4. Establishing the Unitary Classroom: Organizational Change and School Culture.

    Science.gov (United States)

    Eddy, Elizabeth M.; True, Joan H.

    1980-01-01

    This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…

  5. Electro symmetry breaking and beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Dawson, S. [Brookhaven National Lab., Upton, NY (United States); Haber, H.E. [California Univ., Santa Cruz, CA (United States). Inst. for Particle Physics; Siegrist, J. [Lawrence Berkeley Lab., CA (United States)

    1995-05-01

    The development of the Standard Model of particle physics is a remarkable success story. Its many facets have been tested at present day accelerators; no significant unambiguous deviations have yet been found. In some cases, the model has been verified at an accuracy of better than one part in a thousand. This state of affairs presents our field with a challenge. Where do we go from here? What is our vision for future developments in particle physics? Are particle physicists` recent successes a signal of the field`s impending demise, or do real long-term prospects exist for further progress? We assert that the long-term health and intellectual vitality of particle physics depends crucially on the development of a new generation of particle colliders that push the energy frontier by an order of magnitude beyond present capabilities. In this report, we address the scientific issues underlying this assertion.

  6. A Democratic Gauge Model for Dark/Visible Matter Symmetry

    CERN Document Server

    Oliveira, O; Hussein, M S; de Paula, W; Frederico, T

    2011-01-01

    We develop a model for visible matter-dark matter interaction based on the exchange of a weakly interacting massive gauge boson called herein the WIMG. Our model hinges on the assumption that all known particles in the visible matter have their counterparts in the dark matter. We postulate six families of particles five of which are dark. This leads to the unavoidable postulation of six parallel worlds, the visible one and five invisible worlds. We give arguments on particle decays and lifetimes that set a limit on the mass of the WIMG, the gray boson responsible for the very meager communication among these worlds. The 5:1 ratio of dark to visible matter is taken for granted.

  7. A mathematical model of symmetry based on mathematical definition

    Institute of Scientific and Technical Information of China (English)

    刘玉生; 杨将新; 吴昭同; 高曙明

    2002-01-01

    Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disignd/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance beeanse of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: ( 1 ) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements ; after which, the mathematical models of syrmmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.

  8. Scalar products in generalized models with SU(3)-symmetry

    OpenAIRE

    Wheeler, M.

    2012-01-01

    We consider a generalized model with SU(3)-invariant R-matrix, and review the nested Bethe Ansatz for constructing eigenvectors of the transfer matrix. A sum formula for the scalar product between generic Bethe vectors, originally obtained by Reshetikhin [11], is discussed. This formula depends on a certain partition function Z(\\{\\lambda\\},\\{\\mu\\}|\\{w\\},\\{v\\}), which we evaluate explicitly. In the limit when the variables \\{\\mu\\} or \\{v\\} approach infinity, this object reduces to the domain w...

  9. Two viable large scalar multiplet models with an accidental Z2 symmetry

    CERN Document Server

    Earl, Kevin; Logan, Heather E; Pilkington, Terry

    2013-01-01

    Models in which the Higgs sector is extended by a single scalar electroweak multiplet Z will possess an accidental global Z2 symmetry if Z has isospin T=5/2 (sextet) or 7/2 (octet) and carries the same hypercharge as the Standard Model Higgs doublet. This Z2 symmetry keeps the lightest (neutral) member of Z stable and has interesting implications for phenomenology. We determine the constraints on these models from precision electroweak measurements and Higgs boson decays to two photons. We compute the thermal relic density of the stable member of Z and show that, for masses below 1 TeV, it can make up at most 1% of the dark matter in the universe. We also show that current dark matter direct detection experiments do not constrain the models, but future ton-scale experiments will probe their parameter space.

  10. Implications of Lorentz symmetry violation on a 5D supersymmetric model

    CERN Document Server

    García-Aguilar, J D

    2016-01-01

    Field models with $n$ extra spatial dimensions have a larger $SO(1,3+n)$ Lorentz symmetry which is broken down to the standard $SO(1,3)$ four dimensional symmetry by the compactification process. By considering all Lorentz violating operators in a $5D$ supersymmetric Wess-Zumino mo\\-del, which otherwise conserve standard Poincare invariance in four dimensions, we show that Supersymmetry can be restored upon a simple deformation of the supersymmetric transformations. However, Supersymmetry shall not be preserved in the effective $4D$ theory that arises after compactification when the $5D$ Lorentz violating operators do not preserve $Z_2: y\\rightarrow -y$ bulk parity. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.

  11. On the stability of the parity symmetry of the scotogenic model

    Energy Technology Data Exchange (ETDEWEB)

    Merle, Alexander; Platscher, Moritz [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    We study the 1-loop structure of the scotogenic model - a simple extension of the SM by an inert scalar doublet and heavy singlet Majorana neutrino fields, all having odd charge under a Z{sub 2} symmetry. This model can account for a variety of phenomena, such as small neutrino masses, lepton flavour violation and Dark Matter. In addition to the well-known theoretical and experimental bounds on the model's scalar sector, we consider the issue of naturalness which arises as the heavy Majorana fermions are coupled to the inert doublet and give rise to potentially large negative corrections to the corresponding scalar mass parameter. Thus, the right choice of model parameters is indispensable to keep the central parity symmetry intact.

  12. Precision measurements of {\\theta}12 for testing models of discrete leptonic flavour symmetries

    CERN Document Server

    Ballett, Peter; Luhn, Christoph; Pascoli, Silvia; Schmidt, Michael A

    2014-01-01

    Models of leptonic flavour with discrete symmetries can provide an attractive explanation of the pattern of elements found in the leptonic mixing matrix. The next generation of neutrino oscillation experiments will allow the mixing parameters to be tested to a new level of precision, crucially measuring the CP violating phase {\\delta} for the first time. In this contribution, we present results of a systematic survey of the predictions of a class of models based on residual discrete symmetries and the prospects for excluding such models at medium- and long-term oscillation experiments. We place particular emphasis on the complementary role that a future circa 50 km reactor experiment, e.g. JUNO, can play in constraining these models.

  13. Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain

    Science.gov (United States)

    Belliard, Samuel; Pimenta, Rodrigo A.

    2015-12-01

    We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation.

  14. Natural R parity conservation with horizontal symmetries a four generation model

    CERN Document Server

    Berezhiani, Z G; Berezhiani, Zurab; Nardi, Enrico

    1995-01-01

    The absence of R parity violating operators can be naturally ensured in the presence of a SU(N)_H\\ (N=4,6...) horizontal gauge symmetry, independently of the vertical gauge group. We study an extension of the supersymmetric standard model with four families and gauged SU(4)_H. Beyond preserving R parity, the model gives rise to the realistic fermion mass matrices which naturally ensure the heaviness of the fourth family fermions b',t',\\tau',\

  15. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  16. Canalization and symmetry in Boolean models for genetic regulatory networks

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, C J Olson [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bassler, Kevin E [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States)

    2007-04-20

    Canalization of genetic regulatory networks has been argued to be favoured by evolutionary processes due to the stability that it can confer to phenotype expression. We explore whether a significant amount of canalization and partial canalization can arise in purely random networks in the absence of evolutionary pressures. We use a mapping of the Boolean functions in the Kauffman N-K model for genetic regulatory networks onto a k-dimensional Ising hypercube (where k = K) to show that the functions can be divided into different classes strictly due to geometrical constraints. The classes can be counted and their properties determined using results from group theory and isomer chemistry. We demonstrate that partially canalizing functions completely dominate all possible Boolean functions, particularly for higher k. This indicates that partial canalization is extremely common, even in randomly chosen networks, and has implications for how much information can be obtained in experiments on native state genetic regulatory networks.

  17. Covariance in models of loop quantum gravity: Spherical symmetry

    CERN Document Server

    Bojowald, Martin; Reyes, Juan D

    2015-01-01

    Spherically symmetric models of loop quantum gravity have been studied recently by different methods that aim to deal with structure functions in the usual constraint algebra of gravitational systems. As noticed by Gambini and Pullin, a linear redefinition of the constraints (with phase-space dependent coefficients) can be used to eliminate structure functions, even Abelianizing the more-difficult part of the constraint algebra. The Abelianized constraints can then easily be quantized or modified by putative quantum effects. As pointed out here, however, the method does not automatically provide a covariant quantization, defined as an anomaly-free quantum theory with a classical limit in which the usual (off-shell) gauge structure of hypersurface deformations in space-time appears. The holonomy-modified vacuum theory based on Abelianization is covariant in this sense, but matter theories with local degrees of freedom are not. Detailed demonstrations of these statements show complete agreement with results of ...

  18. Verifying three-dimensional skull model reconstruction using cranial index of symmetry.

    Directory of Open Access Journals (Sweden)

    Woon-Man Kung

    Full Text Available BACKGROUND: Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS. MATERIALS AND METHODS: From January 2011 to June 2012, decompressive craniectomy (DC was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. RESULTS: CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47-99.84. CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test. These data evidenced the highly accurate symmetry of these CAD models with regular contours. CONCLUSIONS: CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation.

  19. Complex positive maps and quaternionic unitary evolution

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Scolarici, G [Dipartimento di Fisica dell' Universita di Lecce and INFN, Sezione di Lecce, I-73100 Lecce (Italy)

    2006-08-04

    The complex projection of any n-dimensional quaternionic unitary dynamics defines a one-parameter positive semigroup dynamics. We show that the converse is also true, i.e. that any one-parameter positive semigroup dynamics of complex density matrices with maximal rank can be obtained as the complex projection of suitable quaternionic unitary dynamics.

  20. Composed ensembles of random unitary ensembles

    CERN Document Server

    Pozniak, M; Kus, M; Pozniak, Marcin; Zyczkowski, Karol; Kus, Marek

    1997-01-01

    Composed ensembles of random unitary matrices are defined via products of matrices, each pertaining to a given canonical circular ensemble of Dyson. We investigate statistical properties of spectra of some composed ensembles and demonstrate their physical relevance. We discuss also the methods of generating random matrices distributed according to invariant Haar measure on the orthogonal and unitary group.

  1. Tensor Products of Random Unitary Matrices

    CERN Document Server

    Tkocz, Tomasz; Kus, Marek; Zeitouni, Ofer; Zyczkowski, Karol

    2012-01-01

    Tensor products of M random unitary matrices of size N from the circular unitary ensemble are investigated. We show that the spectral statistics of the tensor product of random matrices becomes Poissonian if M=2, N become large or M become large and N=2.

  2. Approximate flavor symmetries

    OpenAIRE

    Rašin, Andrija

    1994-01-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  3. S-Matrices and Quantum Group Symmetry of q-Deformed Sigma Models

    CERN Document Server

    Hollowood, Timothy J; Schmidtt, David M

    2015-01-01

    Recently, several kinds of integrable deformations of the string world sheet theory in the gauge/gravity correspondence have been constructed. One class of these, the q-deformations with q a root of unity, has been shown to be related to a particular discrete deformation of the principal chiral models and (semi-)symmetric space sigma models involving a gauged WZW model. We conjecture a form for the exact S-matrices of the bosonic integrable field theories of this type. The S-matrices imply that the theories have a hidden infinite dimensional affine quantum group symmetry. We provide some evidence, via quantum inverse scattering techniques, that the theories do indeed possess the finite-dimensional part of this quantum group symmetry.

  4. S-matrices and quantum group symmetry of k-deformed sigma models

    Science.gov (United States)

    Hollowood, Timothy J.; Miramontes, J. Luis; Schmidtt, David M.

    2016-11-01

    Recently, two kinds of integrable deformations of the string world sheet theory in the gauge/gravity correspondence have been constructed (Delduc et al 2014 Phys. Rev. Lett. 112 051601; Hollowood et al 2014 J. Phys. A: Math. Theor. 47 495402). One class of these, the k deformations associated to the more general q deformations but with q={{{e}}}{{i}π /k} a root of unity, has been shown to be related to a particular discrete deformation of the principal chiral models and (semi-)symmetric space sigma models involving a gauged WZW model. We conjecture a form for the exact S-matrices of the bosonic integrable field theories of this type. The S-matrices imply that the theories have a hidden infinite dimensional affine quantum group symmetry. We provide some evidence, via quantum inverse scattering techniques, that the theories do indeed possess the finite-dimensional part of this quantum group symmetry.

  5. More on cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques; Ookouchi, Yutaka [Kyushu Univ., Fukuoka (Japan). Faculty of Arts and Science

    2013-10-15

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a}<10{sup 12-14} GeV regardless of the value of R-axion mass.

  6. More on cosmological constraints on spontaneous R-symmetry breaking models

    CERN Document Server

    Hamada, Yuta; Kobayashi, Tatsuo; Ookouchi, Yutaka

    2014-01-01

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the $U(1)_R$ breaking scale $f_a$ is constrained as $f_a<10^{12-14}\\GeV$ regardless of the value of R-axion mass.

  7. More on cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Department of Physics, Kyoto University, Kyoto, 606-8502 (Japan); Kamada, Kohei [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, D-22607 (Germany); Ookouchi, Yutaka, E-mail: hamada@gauge.scphys.kyoto-u.ac.jp, E-mail: kohei.kamada@epfl.ch, E-mail: kobayash@gauge.scphys.kyoto-u.ac.jp, E-mail: yutaka.ookouchi@artsci.kyushu-u.ac.jp [Faculty of Arts and Science, Kyushu University, Fukuoka, 819–0395 (Japan)

    2014-01-01

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a} < 10{sup 12−14} GeV regardless of the value of R-axion mass.

  8. Neutrino Masses from an A4 Symmetry in Holographic Composite Higgs Models

    CERN Document Server

    del Aguila, Francisco; Santiago, Jose

    2010-01-01

    We show that holographic composite Higgs Models with a discrete A4 symmetry naturally predict hierarchical charged lepton masses and an approximate tri-bimaximal lepton mixing with the correct scale of neutrino masses. They also satisfy current constraints from electroweak precision tests, lepton flavor violation and lepton mixing in a large region of parameter space. Two phenomenologically relevant features arise in these models. First, an extra suppression on the lepton Yukawa couplings makes the tau lepton more composite than naively expected from its mass. As a consequence new light leptonic resonances, with masses as low as few hundreds of GeV, large couplings to tau and a very characteristic collider phenomenology, are quite likely. Second, the discrete symmetry A4 together with the model structure provide a double-layer of flavor protection that allows to keep tree-level mediated processes below present experimental limits. One-loop processes violating lepton flavor, like mu -> e gamma, may be however ...

  9. Lepton-flavour violation in a Pati-Salam model with gauged flavour symmetry

    CERN Document Server

    Feldmann, Thorsten; Moch, Paul

    2016-01-01

    Combining Pati-Salam (PS) and flavour symmetries in a renormalisable setup, we devise a scenario which produces realistic masses for the charged leptons. Flavour-symmetry breaking scalar fields in the adjoint representations of the PS gauge group are responsible for generating different flavour structures for up- and down-type quarks as well as for leptons. The model is characterised by new heavy fermions which mix with the Standard Model quarks and leptons. In particular, the partners for the third fermion generation induce sizeable sources of flavour violation. Focusing on the charged-lepton sector, we scrutinise the model with respect to its implications for lepton-flavour violating processes such as $\\mu \\rightarrow e\\gamma$, $\\mu\\rightarrow 3e$ and muon conversion in nuclei.

  10. Electroweak symmetry breaking through bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    CERN Document Server

    Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2015-01-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. We analyze the renormalization group evolutions for all model couplings, and find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. The requirements for the perturbativity of the running c...

  11. On the particle-hole symmetry of the fermionic spinless Hubbard model in D=1

    Directory of Open Access Journals (Sweden)

    M.T. Thomaz

    2014-06-01

    Full Text Available We revisit the particle-hole symmetry of the one-dimensional (D=1 fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon comparing two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the XXZ Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V, which describes the attractive/null/repulsive interaction of neighboring fermions.

  12. A heterotic standard model with B−L symmetry and a stable proton

    Energy Technology Data Exchange (ETDEWEB)

    Buchbinder, Evgeny I. [The University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Constantin, Andrei; Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2014-06-17

    We consider heterotic Calabi-Yau compactifications with S(U(4)×U(1)) background gauge fields. These models lead to gauge groups with an additional U(1) factor which, under certain conditions, can combine with hypercharge to a B−L symmetry. The associated gauge boson is automatically super-massive and, hence, does not constitute a phenomenological problem. We illustrate this class of compactifications with a model based on the monad construction, which leads to a supersymmetric standard model with three families of quarks and leptons, one pair of Higgs doublets, three right-handed neutrinos and no exotics charged under the standard model group. The presence of the B−L symmetry means that the model is safe from proton decay induced by dimension four operators. Due to the presence of a special locus in moduli space where the bundle structure group is Abelian and the low-energy symmetry enhances we can also show the absence of dimension five proton-decay inducing operators.

  13. Yukawa textures or dark doublets from Two Higgs Doublet Models with $Z_3$ symmetry

    CERN Document Server

    Aranda, Alfredo; Noriega-Papaqui, Roberto; Vaquera-Araujo, Carlos A

    2014-01-01

    The effect of $Z_3$ symmetry on the general Two Higgs Doublet Model is explored. Of particular interest is the question of what can a $Z_3$ symmetry do beyond the usual case with $Z_2$. There are two independent scenarios that give some interesting results: first, by giving non-trivial charges to the Standard Model fermions, it is possible to use the $Z_3$ symmetry of the scalar potential to generate potentially useful Yukawa textures. This is not possible with $Z_2$. A series of possibilities is presented where their viability is addressed and a specific example in the quark sector is given for concreteness. The second venue of interest is in the area of inert doublets. It is shown that by considering the Standard Model plus two additional inert doublet scalars, i.e. a Dark Two Higgs Doublet Model, together with $Z_3$, a scenario can be obtained that differs from the $Z_2$ case. Some general comments are presented on the potentially interesting phenomenology of such model.

  14. Vacuum stability and radiative electroweak symmetry breaking in an SO(10) dark matter model

    Science.gov (United States)

    Mambrini, Yann; Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2016-06-01

    Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about 1010 GeV . We consider a nonsupersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, Gint=SU (3 )C⊗SU (2 )L⊗SU (2 )R⊗U (1 )B -L . Gint is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the seesaw mechanism but also preserves a discrete Z2 that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16 . We show that in addition to these features the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126 . We also show that the Higgs mass squared runs negative, triggering electroweak symmetry breaking. Thus, the vacuum stability is achieved along with radiative electroweak symmetry breaking and captures two more important elements of supersymmetric models without low-energy supersymmetry. The conditions for perturbativity of quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be probed in future direct detection experiments.

  15. A Heterotic Standard Model with B-L Symmetry and a Stable Proton

    CERN Document Server

    Buchbinder, Evgeny I; Lukas, Andre

    2014-01-01

    We consider heterotic Calabi-Yau compactifications with S(U(4)xU(1)) background gauge fields. These models lead to gauge groups with an additional U(1) factor which, under certain conditions, can combine with hypercharge to a B-L symmetry. The associated gauge boson is automatically super-massive and, hence, does not constitute a phenomenological problem. We illustrate this class of compactifications with a model based on the monad construction, which leads to a supersymmetric standard model with three families of quarks and leptons, one pair of Higgs doublets, three right-handed neutrinos and no exotics charged under the standard model group. The presence of the B-L symmetry means that the model is safe from proton decay induced by dimension four operators. Due to the presence of a special locus in moduli space where the bundle structure group is Abelian and the low-energy symmetry enhances we can also show the absence of dimension five proton-decay inducing operators.

  16. Unitary air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-07-01

    This technology evaluation covers commercially available unitary heat pumps ranging from nominal capacities of 1/sup 1///sub 2/ to 45 tons. The nominal COP of the heat pump models, selected as representative, vary from 2.4 to 2.9. Seasonal COPs for heat pump installations and single-family dwellings are reported to vary from 2.5 to 1.1, depending on climate. For cooling performance, the nominal EER's vary from 6.5 to 8.7. Representative part-load performance curves along with cost estimating and reliability data are provided to aid: (1) the systems design engineer to select suitably sized heat pumps based on life-cycle cost analyses, and (2) the computer programmer to develop a simulation code for heat pumps operating in an Integrated Community Energy System.

  17. Energy Transfer Using Unitary Transformations

    Directory of Open Access Journals (Sweden)

    Winny O'Kelly de Galway

    2013-11-01

    Full Text Available We study the unitary time evolution of a simple quantum Hamiltonian describing two harmonic oscillators coupled via a three-level system. The latter acts as an engine transferring energy from one oscillator to the other and is driven in a cyclic manner by time-dependent external fields. The S-matrix (scattering matrix of the cycle is obtained in analytic form. The total number of quanta contained in the system is a conserved quantity. As a consequence, the spectrum of the S-matrix is purely discrete, and the evolution of the system is quasi-periodic. The explicit knowledge of the S-matrix makes it possible to do accurate numerical evaluations of the time-dependent wave function. They confirm the quasi-periodic behavior. In particular, the energy flows back and forth between the two oscillators in a quasi-periodic manner.

  18. Universal Loss Dynamics in a Unitary Bose Gas

    Science.gov (United States)

    Eismann, Ulrich; Khaykovich, Lev; Laurent, Sébastien; Ferrier-Barbut, Igor; Rem, Benno S.; Grier, Andrew T.; Delehaye, Marion; Chevy, Frédéric; Salomon, Christophe; Ha, Li-Chung; Chin, Cheng

    2016-04-01

    The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary 133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body recombination rate in the low-temperature domain. We develop a theoretical model that describes the dynamic competition between two-body evaporation and three-body recombination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal "magic" trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined 133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1 /T2 temperature universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter η*=0.098 (7 ) for the 47.8-G d -wave Feshbach resonance in 133Cs. Our result supports the universal loss dynamics of trapped unitary Bose gases up to a single parameter η*.

  19. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  20. Neutrinos and flavor symmetries

    Science.gov (United States)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  1. Neutrinos and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  2. Permutation Symmetry Determines the Discrete Wigner Function

    Science.gov (United States)

    Zhu, Huangjun

    2016-01-01

    The Wigner function provides a useful quasiprobability representation of quantum mechanics, with applications in various branches of physics. Many nice properties of the Wigner function are intimately connected with the high symmetry of the underlying operator basis composed of phase point operators: any pair of phase point operators can be transformed to any other pair by a unitary symmetry transformation. We prove that, in the discrete scenario, this permutation symmetry is equivalent to the symmetry group being a unitary 2 design. Such a highly symmetric representation can only appear in odd prime power dimensions besides dimensions 2 and 8. It suffices to single out a unique discrete Wigner function among all possible quasiprobability representations. In the course of our study, we show that this discrete Wigner function is uniquely determined by Clifford covariance, while no Wigner function is Clifford covariant in any even prime power dimension.

  3. Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model

    Science.gov (United States)

    Malik, Tuhin; Banerjee, Kinjal; Jha, T. K.; Agrawal, B. K.

    2017-09-01

    The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energy. The nuclear symmetry energy as well as its slope and curvature parameters at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation of state for pure neutron matter at subsaturation densities is also in accordance with the ones obtained from different microscopic models. The maximum mass of a neutron star is consistent with the measurement, and the radius at the canonical mass of the neutron star is within the empirical bounds.

  4. Connecting an effective model of confinement and chiral symmetry to lattice QCD

    CERN Document Server

    Fraga, E; Fraga, Eduardo; Mocsy, Agnes

    2007-01-01

    We construct an effective model for the chiral field and the Polyakov loop in which we can investigate the interplay between the approximate chiral symmetry restoration and the deconfinement of color in a thermal SU(3) gauge theory with three flavors of massive quarks. The phenomenological couplings between these two sectors can then be related to the recent lattice data on the renormalized Polyakov loop and the chiral condensate close to the critical region.

  5. From Exact to Partial Dynamical Symmetries: Lessons From the Interacting Boson Model

    CERN Document Server

    Leviatan, A

    2012-01-01

    We exploit the rich algebraic structure of the interacting boson model to explain the notion of partial dynamical symmetry (PDS), and present a procedure for constructing Hamiltonians with this property. We demonstrate the relevance of PDS to various topics in nuclear spectroscopy, including K-band splitting, odd-even staggering in the gamma-band and anharmonicity of excited vibrational bands. Special emphasis in this construction is paid to the role of higher-order terms.

  6. Scotogenic $Z_2$ or $U(1)_D$ Model of Neutrino Mass with $\\Delta(27)$ Symmetry

    CERN Document Server

    Ma, Ernest

    2014-01-01

    The scotogenic model of radiative neutrino mass with $Z_2$ or $U(1)_D$ dark matter is shown to accommodate $\\Delta(27)$ symmetry naturally. The resulting neutrino mass matrix is identical to either of two forms, one proposed in 2006, the other in 2008. These two structures are studied in the context of present neutrino data, with predictions of $CP$ violation and neutrinoless double beta decay.

  7. Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Marcel, E-mail: marcel.novaes@gmail.com

    2015-10-15

    We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.

  8. Neutrinos Masses in a Multi-Higgs Model with A4 symmetry

    Science.gov (United States)

    Machado, A. C. B.; Montero, J. C.; Pleitez, V.

    2012-08-01

    Presently it is well known that neutrino oscillation data are well described by massive neutrinos and their mixing. This suggests changes in the standard model (SM) and makes the flavor physics even more interesting. Recently, it has been proposed a multi-Higgs extension of the SM with Abelian and non-Abelian discrete symmetries which seeks to explain the origin of the masses and mixing matrices in all charge sectors.

  9. The subtle danger of symmetry restrictions in time series regressions, with application to fertility models.

    Science.gov (United States)

    Haynes, S E

    1983-10-01

    It is widely known that linear restrictions involve bias. What is not known is that some linear restrictions are especially dangerous for hypothesis testing. For some, the expected value of the restricted coefficient does not lie between (among) the true unconstrained coefficients, which implies that the estimate is not a simple average of these coefficients. In this paper, the danger is examined regarding the additive linear restriction almost universally imposed in statistical research--the restriction of symmetry. Symmetry implies that the response of the dependent variable to a unit decrease in an expanatory variable is identical, but of opposite sign, to the response to a unit increase. The 1st section of the paper demonstrates theoretically that a coefficient restricted by symmetry (unlike coefficients embodying other additive restrictions) is not a simple average of the unconstrained coefficients because the relevant interacted variables are inversly correlated by definition. The next section shows that, under the restriction of symmetry, fertility in Finland from 1885-1925 appears to respond in a prolonged manner to infant mortality (significant and positive with a lag of 4-6 years), suggesting a response to expected deaths. However, unscontrained estimates indicate that this finding is spurious. When the restriction is relaxed, the dominant response is rapid (significant and positive with a lag of 1-2 years) and stronger for declines in mortality, supporting an aymmetric response to actual deaths. For 2 reasons, the danger of the symmetry restriction may be especially pervasive. 1st, unlike most other linear constraints, symmetry is passively imposed merely by ignoring the possibility of asymmetry. 2nd, modles in a wide range of fields--including macroeconomics (e.g., demand for money, consumption, and investment models, and the Phillips curve), international economics (e.g., intervention models of central banks), and labor economics (e.g., sticky wage

  10. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  11. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  12. Topological Symmetry, Spin Liquids and CFT Duals of Polyakov Model with Massless Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat

    2008-04-30

    We prove the absence of a mass gap and confinement in the Polyakov model with massless complex fermions in any representation of the gauge group. A U(1){sub *} topological shift symmetry protects the masslessness of one dual photon. This symmetry emerges in the IR as a consequence of the Callias index theorem and abelian duality. For matter in the fundamental representation, the infrared limits of this class of theories interpolate between weakly and strongly coupled conformal field theory (CFT) depending on the number of flavors, and provide an infinite class of CFTs in d = 3 dimensions. The long distance physics of the model is same as certain stable spin liquids. Altering the topology of the adjoint Higgs field by turning it into a compact scalar does not change the long distance dynamics in perturbation theory, however, non-perturbative effects lead to a mass gap for the gauge fluctuations. This provides conceptual clarity to many subtle issues about compact QED{sub 3} discussed in the context of quantum magnets, spin liquids and phase fluctuation models in cuprate superconductors. These constructions also provide new insights into zero temperature gauge theory dynamics on R{sup 2,1} and R{sup 2,1} x S{sup 1}. The confined versus deconfined long distance dynamics is characterized by a discrete versus continuous topological symmetry.

  13. Multipartite invariant states. II. Orthogonal symmetry

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2006-06-01

    We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.

  14. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Science.gov (United States)

    Cheng, Meng; Zaletel, Michael; Barkeshli, Maissam; Vishwanath, Ashvin; Bonderson, Parsa

    2016-10-01

    The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a "spinon" excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of "anyonic spin-orbit coupling," which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  15. Symplectic Symmetry and the Ab Initio No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P.; Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul; /Louisiana State U.; Vary, James P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-03-14

    The symplectic symmetry of eigenstates for the 0{sub gs}{sup +} in {sup 16}O and the 0{sub gs}{sup +} and lowest 2{sup +} and 4{sup +} configurations of {sup 12}C that are well-converged within the framework of the no-core shell model with the JISP16 realistic interaction is examined. These states are found to project at the 85-90% level onto very few symplectic representations including the most deformed configuration, which confirms the importance of a symplectic no-core shell model and reaffirms the relevance of the Elliott SU(3) model upon which the symplectic scheme is built.

  16. Teleparallel dark energy model with a fermionic field via Noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kucukakca, Yusuf [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)

    2014-10-15

    In the present work, we consider a model with a fermionic field that is non-minimally coupled to gravity in the framework of teleparallel gravity. In order to determine the forms of the coupling and potential function of fermionic field for the considered model, we use the Noether symmetry approach. By applying this approach, for the Friedman-Robertson-Walker metric, we obtain the respective potential and coupling functions as a linear and power-law form of the bilinear Ψ. Furthermore, we search for the exact cosmological solution of the model. It is shown that the fermionic field plays the role of dark energy. (orig.)

  17. Nuclear symmetry energy in a modified quark-meson coupling model

    Science.gov (United States)

    Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.

    2015-10-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. We find an analytic expression for the symmetry energy Esym as a function of its slope L . Our result establishes a linear correlation between L and Esym. We also analyze the constraint on neutron star radii in (p n ) matter with β equilibrium.

  18. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  19. Correspondences between WZNW models and CFTs with W-algebra symmetry

    Science.gov (United States)

    Creutzig, Thomas; Hikida, Yasuaki; Rønne, Peter B.

    2016-02-01

    We study theories with W-algebra symmetries and their relation to WZNW-type models on (super-)groups generalizing the H 3 + WZNW to Liouville correspondence. Correlation functions of the WZNW models are expressed in terms of correlators of CFTs with W-algebra symmetry. The symmetries of the theories involved in these correspondences are related by the Drinfeld-Sokolov reduction of Lie algebras to W-algebras. The W-algebras considered in this paper are the Bershadsky-Polyakov algebra for sl(3) and the quasi-superconformal algebra for generic sl( N| M). The quantum W-algebras obtained from affine sl( N) are constructed using embeddings of sl(2) into sl( N), and these can in turn be characterized by partitions of N. The above cases correspond to N + 2 = 2 + N 1 and its supergroup extension. Finally, sl(2 N) and the correspondence corresponding to 2 N = N 2 is also analyzed. These are all W-algebras that are generated by fields of at most dimension two.

  20. Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model

    Science.gov (United States)

    Krishna, S.; Shukla, D.; Malik, R. P.

    2016-07-01

    In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.

  1. Extremal spacings of random unitary matrices

    CERN Document Server

    Smaczynski, Marek; Kus, Marek; Zyczkowski, Karol

    2012-01-01

    Extremal spacings between unimodular eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Probability distributions for the minimal spacing for various ensembles are derived for N=4. We show that for large matrices the average minimal spacing s_min of a random unitary matrix behaves as N^(-1/(1+B)) for B equal to 0,1 and 2 for circular Poisson, orthogonal and unitary ensembles, respectively. For these ensembles also asymptotic probability distributions P(s_min) are obtained and the statistics of the largest spacing s_max are investigated.

  2. Dynamical symmetry restoration for a higher-derivative four-fermion model in an external electromagnetic field

    CERN Document Server

    Elizalde, E; Odintsov, S D; Shilnov, Yu I; Shil'nov, Yu. I.

    1998-01-01

    A four-fermion model with additional higher-derivative terms is investigated in an external electromagnetic field. The effective potential in the leading order of large-N expansion is calculated in external constant magnetic and electric fields. It is shown that, in contrast to the former results concerning the universal character of "magnetic catalysis" in dynamical symmetry breaking, in the present higher-derivative model the magnetic field restores chiral symmetry broken initially on the tree level. Numerical results describing a second-order phase transition that accompanies the symmetry restoration at the quantum level are presented.

  3. Particle-Hole Symmetry in Generalized Seniority, Microscopic Interacting Boson (Fermion) Model, Nucleon-Pair Approximation, and Others

    CERN Document Server

    Jia, L Y

    2016-01-01

    The particle-hole symmetry (equivalence) of the full shell-model Hilbert space is straightforward and routinely used in practical calculations. In this work we show that this symmetry is preserved in the subspace truncated at a certain generalized seniority, and give the explicit transformation between the states in the two types (particle and hole) of representations. Based on the results, we study the particle-hole symmetry in popular theories that could be regarded as further truncations on top of the generalized seniority, including the microscopic interacting boson (fermion) model, the nucleon-pair approximation, and others.

  4. Intercept Capacity: Unknown Unitary Transformation

    Directory of Open Access Journals (Sweden)

    Bill Moran

    2008-11-01

    Full Text Available We consider the problem of intercepting communications signals between Multiple-Input Multiple-Output (MIMO communication systems. To correctly detect a transmitted message it is necessary to know the gain matrix that represents the channel between the transmitter and the receiver. However, even if the receiver has knowledge of the message symbol set, it may not be possible to estimate the channel matrix. Blind Source Separation (BSS techniques, such as Independent Component Analysis (ICA can go some way to extracting independent signals from individual transmission antennae but these may have been preprocessed in a manner unknown to the receiver. In this paper we consider the situation where a communications interception system has prior knowledge of the message symbol set, the channel matrix between the transmission system and the interception system and is able to resolve the transmissionss from independent antennae. The question then becomes: what is the mutual information available to the interceptor when an unknown unitary transformation matrix is employed by the transmitter.

  5. Cumulants of the three-state Potts model and of nonequilibrium models with C{sub 3v} symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tome, Tania [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Petri, Alberto [Istituto di Acustica O M Corbino, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, Rome (Italy)

    2002-07-05

    The critical behaviour of two-dimensional stochastic lattice gas models with C{sub 3v} symmetry is analysed. We study the cumulants of the order parameter for the three-state (equilibrium) Potts model and for two irreversible models whose dynamic rules are invariant under the symmetry operations of the point group C{sub 3v}. By means of extensive numerical analysis of the phase transition we show that irreversibility does not affect the critical behaviour of the systems. In particular, we find that the Binder reduced fourth-order cumulant takes a universal value U* which is the same for the three-state Potts model and for the irreversible models. The same universal behaviour is observed for the reduced third-order cumulant. (author)

  6. Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory

    Directory of Open Access Journals (Sweden)

    D. Shukla

    2016-01-01

    Full Text Available We exploit the standard techniques of the supervariable approach to derive the nilpotent Becchi-Rouet-Stora-Tyutin (BRST and anti-BRST symmetry transformations for a toy model of the Hodge theory (i.e., a rigid rotor and provide the geometrical meaning and interpretation to them. Furthermore, we also derive the nilpotent (anti-co-BRST symmetry transformations for this theory within the framework of the above supervariable approach. We capture the (anti-BRST and (anti-co-BRST invariance of the Lagrangian of our present theory within the framework of augmented supervariable formalism. We also express the (anti-BRST and (anti-co-BRST charges in terms of the supervariables (obtained after the application of the (dual-horizontality conditions and (anti-BRST and (anti-co-BRST invariant restrictions to provide the geometrical interpretations for their nilpotency and anticommutativity properties. The application of the dual-horizontality condition and ensuing proper (i.e., nilpotent and absolutely anticommuting fermionic (anti-co-BRST symmetries are completely novel results in our present investigation.

  7. A Three-Loop Neutrino Model with Global $U(1)$ Symmetry

    CERN Document Server

    Hatanaka, Hisaki; Okada, Hiroshi; Orikasa, Yuta

    2014-01-01

    We study a three-loop induced neutrino model with a global $U(1)$ symmetry at TeV scale, in which we naturally accommodate a bosonic dark matter candidate. We discuss the allowed regions of masses and quartic couplings for charged scalar bosons as well as the dark matter mass on the analogy of the original Zee-Babu model, and show the difference between them. We also discuss the possibility of the collider searches, in which future like-sign electron liner collider could be promising.

  8. Spontaneous symmetry breaking in three-Higgs-doublet S 3-symmetric models

    Science.gov (United States)

    Emmanuel-Costa, D.; Ogreid, O. M.; Osland, P.; Rebelo, M. N.

    2017-07-01

    The talk summarises work done by the authors consisting of a detailed study of the possible vacua in models with three Higgs doublets with S 3 symmetry and without explicit CP violation. Different vacua require special regions of the parameter space which were analysed in our work. We establish the possibility of spontaneous CP violation in this framework and we also show which complex vacua conserve CP. In our work we discussed constraints from vacuum stability. The results presented here are relevant for model building.

  9. The 750 GeV Diphoton excess in a $U(1)$ hidden symmetry model

    CERN Document Server

    Das, Kasinath

    2015-01-01

    Recent results from the experimental collaborations at LHC give hints of a resonance in the diphoton channel at an invariant mass of 750 GeV. We show that such a scalar resonance would be possible in an $U(1)$ extension of the SM where the extended symmetry is hidden and yet to be discovered. We explore the possibilities of accommodating this excess by introducing a minimal extension to the matter content and highlight the parameter space that can accommodate the observed diphoton resonance in the model. The model also predicts new interesting signals that may be observed at the current LHC run.

  10. Predictivity of models with spontaneously broken non-Abelian discrete flavor symmetries

    Science.gov (United States)

    Chen, Mu-Chun; Fallbacher, Maximilian; Omura, Yuji; Ratz, Michael; Staudt, Christian

    2013-08-01

    In a class of supersymmetric flavor models predictions are based on residual symmetries of some subsectors of the theory such as those of the charged leptons and neutrinos. However, the vacuum expectation values of the so-called flavon fields generally modify the Kähler potential of the setting, thus changing the predictions. We derive simple analytic formulae that allow us to understand the impact of these corrections on the predictions for the masses and mixing parameters. Furthermore, we discuss the effects on the vacuum alignment and on flavor changing neutral currents. Our results can also be applied to non-supersymmetric flavor models.

  11. Predictivity of models with spontaneously broken non-Abelian discrete flavor symmetries

    CERN Document Server

    Chen, Mu-Chun; Omura, Yuji; Ratz, Michael; Staudt, Christian

    2013-01-01

    In a class of supersymmetric flavor models predictions are based on residual symmetries of some subsectors of the theory such as those of the charged leptons and neutrinos. However, the vacuum expectation values of the so-called flavon fields generally modify the K\\"ahler potential of the setting, thus changing the predictions. We derive simple analytic formulae that allow us to understand the impact of these corrections on the predictions for the masses and mixing parameters. Furthermore, we discuss the effects on the vacuum alignment and on flavor changing neutral currents. Our results can also be applied to non--supersymmetric flavor models.

  12. A three-loop neutrino model with global U(1 symmetry

    Directory of Open Access Journals (Sweden)

    Hisaki Hatanaka

    2015-05-01

    Full Text Available We study a three-loop induced neutrino model with a global U(1 symmetry at TeV scale, in which we naturally accommodate a bosonic dark matter candidate. We discuss the allowed regions of masses and quartic couplings for charged scalar bosons as well as the dark matter mass on the analogy of the original Zee–Babu model, and show the difference between them. We also discuss that the possibility of the collider searches in a future like-sign electron liner collider could be promising.

  13. Unitary Approximations in Fault Detection Filter Design

    Directory of Open Access Journals (Sweden)

    Dušan Krokavec

    2016-01-01

    Full Text Available The paper is concerned with the fault detection filter design requirements that relax the existing conditions reported in the previous literature by adapting the unitary system principle in approximation of fault detection filter transfer function matrix for continuous-time linear MIMO systems. Conditions for the existence of a unitary construction are presented under which the fault detection filter with a unitary transfer function can be designed to provide high residual signals sensitivity with respect to faults. Otherwise, reflecting the emplacement of singular values in unitary construction principle, an associated structure of linear matrix inequalities with built-in constraints is outlined to design the fault detection filter only with a Hurwitz transfer function. All proposed design conditions are verified by the numerical illustrative examples.

  14. Quantum unitary dynamics in cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2015-12-15

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  15. Asymptotic Evolution of Random Unitary Operations

    CERN Document Server

    Novotny, J; Jex, I

    2009-01-01

    We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator. We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.

  16. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  17. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model

    Science.gov (United States)

    Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; Neupert, Titus; Maciejko, Joseph

    2016-08-01

    We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1 /2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d -density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionic symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.

  18. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  19. Tadpole-Induced Electroweak Symmetry Breaking and pNGB Higgs Models

    CERN Document Server

    Harnik, Roni; Kearney, John

    2016-01-01

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \\ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\\sim v_H^2/f_H^2$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $f_\\Sigma \\ll v_H$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $f_H \\sim 1$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $f_H$, with a natural hierarchy $f_\\Sigma \\ll v_H \\ll ...

  20. Tadpole-Induced Electroweak Symmetry Breaking and pNGB Higgs Models

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni [Fermilab; Howe, Kiel [Fermilab; Kearney, John [Fermilab

    2016-03-11

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \\ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\\sim v_H^2/f_H^2$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $f_\\Sigma \\ll v_H$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $f_H \\sim 1$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $f_H$, with a natural hierarchy $f_\\Sigma \\ll v_H \\ll f_H \\sim{\\rm TeV}$. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.

  1. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  2. Right-unitary transformation theory and applications

    OpenAIRE

    Tang, Zhong

    1996-01-01

    We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two le...

  3. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  4. Participatory dreaming: a conceptual exploration from a unitary appreciative inquiry perspective.

    Science.gov (United States)

    Repede, Elizabeth J

    2009-10-01

    Dreaming is a universal phenomenon in human experience and one that carries multiple meanings in the narrative discourse across disciplines. Dreams can be collective, communal, and emancipatory, as well as individual. While individual dreaming has been extensively studied in the literature, the participatory nature of dreaming as a unitary phenomenon is limited. The concept of participatory dreaming within a unitary appreciative framework for healing is explored from perspectives in anthropology, psychology, and nursing. A participatory model of dreaming is proposed from a synthesis of the literature for use in future research using unitary appreciative inquiry.

  5. Participatory dreaming: a unitary appreciative inquiry into healing with women abused as children.

    Science.gov (United States)

    Repede, Elizabeth

    2011-01-01

    Unitary appreciative inquiry was used to explore healing in the lives of 11 women abused as children using a model of participatory dreaming. Aesthetics, imagery, and journaling were used in a participatory design aimed at the appreciation of healing in the lives of the participants as it related to the abuse. Using Cowling's theory of unitary healing, research and practice were combined within a unitary-transformative framework. Participatory dreaming was useful in illuminating the life patterning in the lives of the women and promoted the development of new knowledge and skills that led to change and transformation, both individually and collectively.

  6. All unitary cubic curvature gravities in D dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, Tahsin Cagri; Guellue, Ibrahim; Tekin, Bayram, E-mail: sisman@metu.edu.tr, E-mail: e075555@metu.edu.tr, E-mail: btekin@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2011-10-07

    We construct all the unitary cubic curvature gravity theories built on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom, which greatly simplifies the highly complicated problem of finding the propagator of cubic curvature theories in constant curvature backgrounds. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories using different techniques and the string generated cubic curvature gravity model. We also study the scattering in critical gravity and give its cubic curvature extensions.

  7. (12) limit and complete classification of symmetry schemes in proton–neutron interacting boson model

    Indian Academy of Sciences (India)

    V K B Kota

    2003-01-01

    It is shown that the proton–neutron interacting boson model (pnIBM) admits new symmetry limits with (12) algebra which break spin but preserves the quantum number . The generators of (12) are derived and the quantum number of (12) for a given boson number is determined by identifying the corresponding quasi-spin algebra. The (12) algebra generates two symmetry schemes and for both of them, complete classification of the basis states and typical spectra are given. With the (12) algebra identified, complete classification of pnIBM symmetry limits with good is established.

  8. The effective Kaehler potential, metastable vacua and R-symmetry breaking in O'Raifeartaigh models

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Shermane; Freund, Christopher [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States); Kain, Ben, E-mail: kain@rowan.ed [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States)

    2011-01-21

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective Kaehler potential. We translate known ideas to this framework and construct convenient formulas for computing individual terms in the expanded effective Kaehler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous and explicit R-symmetry breaking is allowed in our analysis.

  9. Non-chiral fusion rules, structure constants of $D_{m}$ minimal models

    CERN Document Server

    Rida, A

    1999-01-01

    We present a technique to construct, for $D_{m}$ unitary minimal models, the non-chiral fusion rules which determines the operator content of the operator product algebra. Using these rules we solve the bootstrap equations and therefore determine the structure constants of these models. Through this approach we emphasize the role played by some discrete symmetries in the classification of minimal models.

  10. The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    NARCIS (Netherlands)

    Kondratyuk, S; Kubodera, K; Myhrer, F; Scholten, O

    2004-01-01

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: (1) by evaluating the scattering amplitude at the corresponding low-energy kinematics and (2) by

  11. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2016-01-01

    Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  12. Muon-Tau Symmetry and Leptogenesis in the Minimal Seesaw Model

    CERN Document Server

    Ostrosky, Daniel Wegman

    2008-01-01

    The measured values for the mixture angles in neutrino oscillations suggest the existence of a symmetry of interchange of flavor between muon and tau neutrinos. Using this symmetry we analyzed the minimal seesaw model for neutrino masses, where the Majorana mass was diagonalized, and it is demonstrated that the model supports at most 3 CP violation phases and 5 real masses at high energies. Nevertheless, at low energies, only 4 parameters of mass and one relative Majorana CP phase remain. Therefore using the experimental values of the masses square differences, the mixture angles and the hierarchy, we can determine some parameters of the model but not all. Also we propose the use of the parameter of baryonic asymmetry of the universe due to leptogenesis to determine one more phase of the model. Finally we used a normal hierarchy for the masses of the right handed neutrinos to make an approximation, that allowed us to completely reconstruct the mass matrix for left handed neutrinos. In special the value of mee...

  13. Radiative Symmetry Breaking in the Supersymmetric Minimal B-L Extended Standard Model

    CERN Document Server

    Burell, Zachary

    2016-01-01

    The Standard Model (SM) of particle physics is a precise model of electroweak interactions, however there is growing tension between the SM and observations (neutrino oscillations, dark matter, dark energy, baryogenesis, among others). There is no reason to expect the validity of the ad hoc SM to remain intact at energy scales above a few TeV, thus a more fundamental theory will almost certainly be required. Motivated by these considerations, we investigate a Supersymmetric version of a natural extension of the SM, the $U(1)_{B-L}$ model, that is obtained by gauging the accidental B-L symmetry that exists in the ordinary SM. The Supersymmetric $U(1)_{B-L}$ extended SM can resolve the neutrino mass problem, the dark matter problem, the hierarchy problem, and provides a mechanism for establishing the observed baryon asymmetry of the Universe. When we include quantum corrections to the Higgs potential of the model, we find that Radiative $B-L$ symmetry breaking occurs through the interplay between large Majorana...

  14. An Informal Overview of the Unitary Group Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sonnad, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kruse, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, R. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy

    2016-06-13

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.

  15. Symmetry Breaking and Adaptation Evidence from a Toy Model of a Virus

    CERN Document Server

    Mora, J; Waelbroeck, H

    1997-01-01

    We argue that the phenomenon of symmetry breaking in genetics can enhance the adaptability of a species to changes in the environment. In the case of a virus, the claim is that the codon bias in the neutralization epitope improves the virus' ability to generate mutants that evade the induced immune response. We support our claim with a simple ``toy model'' of a viral epitope evolving in competition with the immune system. The effective selective advantage of a higher mutability leads to a dominance of codons that favour non-synonymous mutations. The results in this paper suggest the possibility of emergence of an algorithmic language in more complicated systems.

  16. Scalar sector properties of two-Higgs-doublet models with a global U(1) symmetry

    CERN Document Server

    Bhattacharyya, Gautam; Pal, Palash B; Rebelo, M N

    2013-01-01

    We analyze the scalar sector properties of a general class of two-Higgs-doublet models which has a global U(1) symmetry in the quartic terms. We find constraints on the parameters of the potential from the considerations of unitarity of scattering amplitudes, the global stability of the potential and the $\\rho$-parameter. We concentrate on the spectrum of the non-standard scalar masses in the decoupling limit which is preferred by the Higgs data at the LHC. We exhibit charged-Higgs induced contributions to the diphoton decay width of the 125\\,GeV Higgs boson and its correlation with the corresponding $Z\\gamma$ width.

  17. Scalar sector properties of two-Higgs-doublet models with a global U(1) symmetry

    OpenAIRE

    Bhattacharyya, Gautam; Das, Dipankar; Pal, Palash B.; Rebelo, M. N.

    2013-01-01

    We analyze the scalar sector properties of a general class of two-Higgs-doublet models which has a global U(1) symmetry in the quartic terms. We find constraints on the parameters of the potential from the considerations of unitarity of scattering amplitudes, the global stability of the potential and the $\\rho$-parameter. We concentrate on the spectrum of the non-standard scalar masses in the decoupling limit which is preferred by the Higgs data at the LHC. We exhibit charged-Higgs induced co...

  18. A study of symmetry restoration at finite temperature in the O(4) model using anisotropic lattices

    Science.gov (United States)

    Gavai, R. V.; Heller, U. M.; Karsch, F.; Plache, B.; Neuhaus, T.

    Results of investigations of the O(4) spin model at finite temperature using anisotropic lattices are presented. In both the large N approximation and the numerical simulations using the Wolff cluster algorithm we find that the ratio of the symmetry restoration temperature TSR to the Higgs mass mH is independent of the anisotropy. We obtain a lower bound of 0.59 ± 0.04 for the ratio, T SR/m H, at m H ⋍ 0.5 , which is lowered furhter by about 10% at m Ha ⋍ 1 .

  19. A study of symmetry restoration at finite temperature in the O(4) model using anisotropic lattices

    CERN Document Server

    Gavai, R V; Karsch, Frithjof; Plache, B; Neuhaus, T

    1992-01-01

    Results of investigations of the $O(4)$ spin model at finite temperature using anisotropic lattices are presented. In both the large $N$ approximation and the numerical simulations using the Wolff cluster algorithm we find that the ratio of the symmetry restoration temperature $T_{\\rm SR}$ to the Higgs mass $m_{\\rm H}$ is independent of the anisotropy. We obtain a lower bound of $0.59 \\pm 0.04$ for the ratio, $T_{\\rm SR}/m_{\\rm H}$, at $m_{\\rm H}a \\simeq 0.5$, which is lowered further by about $10 \\%$ at $m_{\\rm H}a \\simeq 1.$

  20. Spontaneously Symmetry-Breaking States in the Attractive SU(N) Hubbard Model

    Science.gov (United States)

    Koga, Akihisa; Yanatori, Hiromasa

    2017-03-01

    We investigate spontaneously symmetry-breaking states in the attractive SU(N) Hubbard model at half filling. Combining dynamical mean-field theory with the continuous-time quantum Monte Carlo method, we obtain finite-temperature phase diagrams for the superfluid state. When N > 2, a second-order phase transition occurs in the weak coupling region, while a first-order phase transition with hysteresis appears in the strong coupling region. We also discuss the stability of the density wave state and clarify the component dependence of the maximum critical temperature.

  1. Theoretical modeling of inorganic nanostructures symmetry and ab-initio calculations of nanolayers, nanotubes and nanowires

    CERN Document Server

    Evarestov, RA

    2015-01-01

    This book deals with the theoretical and computational simulation of monoperiodic nanostructures for different classes of inorganic substances. These simulations are related to their synthesis and experimental studies. A theoretical formalism is developed to describe 1D nanostructures with symmetric shapes and morphologies. Three types of models are considered for this aim: (i) nanotubes (rolled from 2D nanolayers and described within the formalism of line symmetry groups); (ii) nanoribbons (obtained from 2D nanolayers by their cutting along the chosen direction of translation); (iii) nanowire

  2. Weyl-invariant Higher Curvature Gravity Theories in n Dimensions and Mass Generation by Symmetry Breaking

    CERN Document Server

    Dengiz, Suat

    2014-01-01

    Weyl-invariant extensions of three-dimensional New Massive Gravity, generic n-dimensional Quadratic Curvature Gravity theories and three-dimensional Born-Infeld gravity theory are analyzed in details. As required by Weyl-invariance, the actions of these gauge theories do not contain any dimensionful parameter hence the local symmetry is spontaneously broken in (Anti) de Sitter vacua in complete analogy with the Standard Model Higgs mechanism. In flat vacuum, symmetry breaking mechanism is more complicated: The dimensionful parameters come from dimensional transmutation in the quantum field theory; therefore, the conformal symmetry is radiatively broken (at two loop level in 3-dimensions and at one-loop level in 4-dimensions) \\`{a} la Coleman-Weinberg mechanism. In the broken phases, save for New Massive Gravity, the theories generically propagate with a unitary (tachyon and ghost-free) massless tensor, massive (or massless) vector and massless scalar particles for the particular intervals of the dimensionless...

  3. Symmetry fractionalization in the topological phase of the spin-1/2 J1-J2 triangular Heisenberg model

    Science.gov (United States)

    Saadatmand, S. N.; McCulloch, I. P.

    2016-09-01

    Using density-matrix renormalization-group calculations for infinite cylinders, we elucidate the properties of the spin-liquid phase of the spin-1/2 J1-J2 Heisenberg model on the triangular lattice. We find four distinct ground states characteristic of a nonchiral, Z2 topologically ordered state with vison and spinon excitations. We shed light on the interplay of topological ordering and global symmetries in the model by detecting fractionalization of time-reversal and space-group dihedral symmetries in the anyonic sectors, which leads to the coexistence of symmetry protected and intrinsic topological order. The anyonic sectors, and information on the particle statistics, can be characterized by degeneracy patterns and symmetries of the entanglement spectrum. We demonstrate the ground states on finite-width cylinders are short-range correlated and gapped; however, some features in the entanglement spectrum suggest that the system develops gapless spinonlike edge excitations in the large-width limit.

  4. Toward minimal renormalizable SUSY SU(5) Grand Unified Model with tribimaximal mixing from A4 Flavor symmetry

    CERN Document Server

    Ciafaloni, Paolo; Torrente-Lujan, Emilio; Urbano, Alfredo

    2009-01-01

    We address the problem of rationalizing the pattern of fermion masses and mixings by adding a nonabelian flavor symmetry in a grand unified framework. With this purpose, we include an A4 flavor symmetry into a unified renormalizable SUSY GUT SU(5) model. With the help of the "Type II Seesaw" mechanism we are able to obtain the pattern of observed neutrino mixings in a natural way, through the so called tribimaximal matrix.

  5. Symanzik-Becchi-Rouet-Stora lessons on renormalizable models with broken symmetry: the case of Lorentz violation

    CERN Document Server

    Del Cima, Oswaldo M; Piguet, Olivier

    2016-01-01

    In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: "{\\it Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.}"

  6. General N=2 supersymmetric quantum mechanical model: Supervariable approach to its off-shell nilpotent symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, S., E-mail: skrishna.bhu@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); Shukla, A., E-mail: ashukla038@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); Malik, R.P., E-mail: rpmalik1995@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); DST-CIMS, Faculty of Science, BHU-Varanasi-221 005 (India)

    2014-12-15

    Using the supersymmetric (SUSY) invariant restrictions on the (anti-)chiral supervariables, we derive the off-shell nilpotent symmetries of the general one (0+1)-dimensional N=2 SUSY quantum mechanical (QM) model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables θ and θ-bar with θ{sup 2}=(θ-bar){sup 2}=0,θ(θ-bar)+(θ-bar)θ=0). We provide the geometrical meanings to the two SUSY transformations of our present theory which are valid for any arbitrary type of superpotential. We express the conserved charges and Lagrangian of the theory in terms of the supervariables (that are obtained after the application of SUSY invariant restrictions) and provide the geometrical interpretation for the nilpotency property and SUSY invariance of the Lagrangian for the general N=2 SUSY quantum theory. We also comment on the mathematical interpretation of the above symmetry transformations. - Highlights: • A novel method has been proposed for the derivation of N=2 SUSY transformations. • General N=2 SUSY quantum mechanical (QM) model with a general superpotential, is considered. • The above SUSY QM model is generalized onto a (1, 2)-dimensional supermanifold. • SUSY invariant restrictions are imposed on the (anti-)chiral supervariables. • Geometrical meaning of the nilpotency property is provided.

  7. Symmetry classes of alternating sign matrices in a nineteen-vertex model

    Science.gov (United States)

    Hagendorf, Christian; Morin-Duchesne, Alexi

    2016-05-01

    The nineteen-vertex model of Fateev and Zamolodchikov on a periodic lattice with an anti-diagonal twist is investigated. Its inhomogeneous transfer matrix is shown to have a simple eigenvalue, with the corresponding eigenstate displaying intriguing combinatorial features. Similar results were previously found for the same model with a diagonal twist. The eigenstate for the anti-diagonal twist is explicitly constructed using the quantum separation of variables technique. A number of sum rules and special components are computed and expressed in terms of Kuperberg’s determinants for partition functions of the inhomogeneous six-vertex model. The computations of some components of the special eigenstate for the diagonal twist are also presented. In the homogeneous limit, the special eigenstates become eigenvectors of the Hamiltonians of the integrable spin-one XXZ chain with twisted boundary conditions. Their sum rules and special components for both twists are expressed in terms of generating functions arising in the weighted enumeration of various symmetry classes of alternating sign matrices (ASMs). These include half-turn symmetric ASMs, quarter-turn symmetric ASMs, vertically symmetric ASMs, vertically and horizontally perverse ASMs and double U-turn ASMs. As side results, new determinant and pfaffian formulas for the weighted enumeration of various symmetry classes of alternating sign matrices are obtained.

  8. Astrophysical Constraints on the scale of Left-Right Symmetry in Inverse Seesaw Models

    CERN Document Server

    Borah, Debasish

    2012-01-01

    We revisit the recently studied supersymmetric gauged inverse seesaw model \\cite{An:2011uq} to incorporate astrophysical constraints on lightest supersymmetric particle (LSP) lifetime such that LSP constitutes the dark matter of the Universe. The authors in \\cite{An:2011uq} considered light sneutrino LSP that can play the role of inelastic dark matter (iDM) such that desired iDM mass splitting and tiny Majorana masses of neutrinos can have a common origin. Here we point out that due to spontaneous R-parity $(R_p = (-1)^{3(B-L)+2s})$ breaking in such generic supersymmetric gauged inverse seesaw models, LSP can not be perfectly stable but decays to standard model particles after non-renormalizable operators allowed by the gauge symmetry are introduced. We show that strong astrophysical constraints on LSP lifetime makes sneutrino dark matter more natural than standard neutralino dark matter. We also show that long-livedness of sneutrino dark matter constrains the left right symmetry breaking scale $M_R < 10^4...

  9. Lepton Flavour Violation in a Supersymmetric Model with A4 Flavour Symmetry

    CERN Document Server

    Feruglio, Ferruccio; Lin, Yin; Merlo, Luca

    2009-01-01

    We compute the branching ratios for mu-> e gamma, tau-> mu gamma and tau -> e gamma in a supersymmetric model invariant under the flavour symmetry group A4 X Z3 X U(1)_{FN}, in which near tri-bimaximal lepton mixing is naturally predicted. At leading order in the small symmetry breaking parameter u, which is of the same order as the reactor mixing angle theta_{13}, we find that the branching ratios generically scale as u^2. Applying the current bound on the branching ratio of mu -> e gamma shows that small values of u or tan(beta) are preferred in the model for mass parameters m_{SUSY} and m_{1/2} smaller than 1000 GeV. The bound expected from the on-going MEG experiment will provide a severe constraint on the parameter space of the model either enforcing u approx 0.01 and small tan(beta) or m_{SUSY} and m_{1/2} above 1000 GeV. In the special case of universal soft supersymmetry breaking terms in the flavon sector a cancellation takes place in the amplitudes and the branching ratios scale as u^4, allowing for...

  10. On the stability of multiscale models of dynamical symmetry breaking from holography

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Anton F. [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales (United Kingdom); Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Piai, Maurizio; Schofield, Daniel [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales (United Kingdom)

    2014-03-15

    We consider two classes of backgrounds of Type IIB supergravity obtained by wrapping D5-branes on a two-cycle inside the conifold. The field theory dual exhibits confinement and, in addition, a region in which the dynamics is walking, at least in the weak sense that the running of the coupling is anomalously slow. We introduce quenched matter in the fundamental, modeled by probe D7-branes which wrap an internal three-dimensional manifold and lie at the equator of the transverse two-sphere. In the space spanned by the remaining internal angle and the radial coordinate, the branes admit two embeddings. The first one is U-shaped: the branes merge at some finite value of the radius. The second one is disconnected and extends along the entire radial direction at fixed angular separation. We interpret these two configurations as corresponding to chiral-symmetry breaking and preserving phases, respectively. We present a simple diagnostic tool to examine the classical stability of the embedding, based on the concavity/convexity conditions for the relevant thermodynamic potentials. We use this criterion to show that U-shaped probes that explore the walking region are unstable, hence providing a dynamical origin for the tachyonic mode found in the literature. Whenever this occurs, the disconnected solution becomes favored energetically. We find that in one of the two classes of backgrounds the U-shaped embedding is always unstable, and thus never realized dynamically. Consequently, these models cannot be used to describe chiral-symmetry breaking. In the second category of solutions, our analysis reveals the presence of a first-order phase transition between chiral-symmetry broken and restored phases. Interestingly, this is in the same class that contains a parametrically light scalar in the spectrum of glueballs of the dual field theory.

  11. A model of quarks with Δ(6N{sup 2}) family symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Ishimori, Hajime [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2014-07-30

    We propose a first model of quarks based on the discrete family symmetry Δ(6N{sup 2}) in which the Cabibbo angle is correctly determined by a residual Z{sub 2}×Z{sub 2} subgroup, and the smaller quark mixing angles may be qualitatively understood from the model. The present model of quarks may be regarded as a first step towards formulating a complete model of quarks and leptons based on Δ(6N{sup 2}), in which the lepton mixing matrix is fully determined by a Klein subgroup. For example, the choice N=28 provides an accurate determination of both the reactor angle and the Cabibbo angle.

  12. Evidence for Symplectic Symmetry in Ab Initio No-Core Shell Model Results for Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul; Draayer, Jerry P.; /Louisiana State U.; Vary, James P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-04-24

    Clear evidence for symplectic symmetry in low-lying states of {sup 12}C and {sup 16}O is reported. Eigenstates of {sup 12}C and {sup 16}O, determined within the framework of the no-core shell model using the JISP16 NN realistic interaction, typically project at the 85-90% level onto a few of the most deformed symplectic basis states that span only a small fraction of the full model space. The results are nearly independent of whether the bare or renormalized effective interactions are used in the analysis. The outcome confirms Elliott's SU(3) model which underpins the symplectic scheme, and above all, points to the relevance of a symplectic no-core shell model that can reproduce experimental B(E2) values without effective charges as well as deformed spatial modes associated with clustering phenomena in nuclei.

  13. Implications of Lorentz symmetry violation on a 5D supersymmetric model

    Science.gov (United States)

    García-Aguilar, J. D.; Pérez-Lorenzana, A.

    2017-04-01

    Field models with n extra spatial dimensions have a larger SO(1, 3 + n) Lorentz symmetry which is broken down to the standard SO(1, 3) four-dimensional one by the compactification process. By considering Lorentz violating operators in a 5D supersymmetric Wess-Zumino model, which otherwise conserve the standard four-dimensional Poincaré invariance, we show that supersymmetry (SUSY) can be restored upon a simple deformation of the supersymmetric transformations. However, SUSY is not preserved in the effective 4D theory that arises after compactification when the 5D Lorentz violating operators do not preserve Z2 : y →-y bulk parity. Our mechanism unveils a possible connection among Lorentz violation and the Scherk-Schwarz mechanism. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.

  14. A model for the implementation of symmetry breaking from B-to-Z-DNA configurations

    Science.gov (United States)

    Reséndiz-Antonio, M.; Godina-Nava, J. J.

    2012-02-01

    Supported in the helicoidal model performed by M. Barbi et al, we propose a extended Morse potential version to study the symmetry breaking in a simple non-linear DNA model based in two plane base rotors. The intention is study the development of the intermediate states appearing in the junction B-to-Z DNA, useful for understanding its biological function, once is characterized the phase transition involved. With this model, we make a comparison between the non-linear dynamics of a handedness homogeneous base-pair winding in a right-handed sense and a left handed sense. Numerical results determine that the right-handed sense is the preferential direction of winding of our spring's model that can emulate the common DNA behavior.

  15. Unitary Noise and the Mermin-GHZ Game

    CERN Document Server

    Fialík, Ivan

    2010-01-01

    Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.

  16. Unitary Noise and the Mermin-GHZ Game

    Institute of Scientific and Technical Information of China (English)

    Ivan Fialík

    2011-01-01

    Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.

  17. Unitary Noise and the Mermin-GHZ Game

    Directory of Open Access Journals (Sweden)

    Ivan Fialík

    2010-06-01

    Full Text Available Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.

  18. Results of Experimental Investigations to Determine External Tank Protuberance Loads Using a 0.03-Scale Model of the Space Shuttle Launch Configuration (Model 47-OTS) in the NASA/ARC Unitary Plan Wind Tunnel, Volume 2

    Science.gov (United States)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA19OA/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA19OA) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA19OB). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline; (2) GO2 pressure line; (3) LO2 antigeyser line; (4) GH2 pressure line; (5) LH2 tank cable tray; (6) LO2 tank cable tray; (7) Bipod; (8) ET/SRB cable tray; and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above; 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements; Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures; and Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  19. Results of experimental investigations to determine external tank protuberance loads using a 0.03-scale model of the Space Shuttle launch configuration (model 47-OTS) in the NASA/ARC unitary plan wind tunnel, volume 1

    Science.gov (United States)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  20. Superfield Approach to Nilpotent Symmetries of the Freedman-Townsend Model: Novel Features

    Science.gov (United States)

    Malik, R. P.

    2012-09-01

    We perform the Becchi-Rouet-Stora-Tyutin (BRST) analysis of the Freedman-Townsend (FT) model of topologically massive non-Abelian theory by exploiting its (1-form) Yang-Mills (YM) gauge transformations to show the existence of some novel features that are totally different from the results obtained in such a kind of consideration carried out for the dynamical non-Abelian 2-form theory. We tap here the potential and power of the augmented version of Bonora-Tonin's superfield approach to BRST formalism to derive the full set of off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations where, in addition to the horizontality condition (HC), we are theoretically compelled to exploit the appropriate gauge-invariant restrictions (GIRs) on the (super)fields for the derivation of the appropriate symmetry transformations for all the relevant fields. We compare our key results with that of the other such attempt for the discussion of the present model within the framework of BRST formalism.

  1. Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kiwoon, E-mail: kchoi@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2010-11-01

    There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.

  2. Statistical Models, Yang-Baxter Equation and Related Topics - Proceedings of the Satellite MEeting of STATPHYS-19; Symmetry, Statistical, Mechanical Models and Applications - Proceedings of the Seventh Nankai Workshop

    Science.gov (United States)

    Ge, M. L.; et al.

    1996-09-01

    Particles * Hyperbolic Coxeter Group Invariants for Lattice Statistical Mechanics * Unitary Quantum Groups and Mutant Knots * Gauge Model of QED and Unification of Statistical and Quantum Physics * The Method of Gauge Transformation in Random Spin Systems * Surface Free Energies and Surface Critical Behaviour of the ABF Models with Fixed Boundaries * Stochastic Reaction-Diffusion Processes, Operator Algebras and Integrable Quantum Spin Chains * Vertex-Face Correspondence in Elliptic Solutions of the Yang-Baxter Equation * Logarithmic Anomalies of Susceptibility for Solvable Models * Numerical Analysis on Topological Entanglements of Random Polygons * On Chiral Hubbard Model at Strong Interaction * Soluble Free-Fermion Models in d Dimensions * Bosonization Based on Bethe Ansatz Equations and Proof of the Conformal Conjecture * Fusion Hierarchies with Open Boundaries and Exactly Solvable Models * Part II: The Seventh Nankai Workshop * Non-Minimal q-Deformations and Orthogonal Symmetries: uq(SO(5)) Example * Quantum Field Theory Under Hypertranscendental Action * Corner Transfer Matrix of Asymmetric Vertex Models * Scaling Properties of the Ising Model in a Field * One Dimensional Lattice Models of Electrons with r-2 Hopping and Exchange * On the Phase Diagram of the q → 1 Extended Potts Model and Lattice Animal Collapse * Solving Higher Simplex Equations Using Computer Algebra * Symmetry Group Invariants for Spontaneous Magnetization * Experimental Realizations of Integrable Reaction-Diffusion Processes in Biological and Chemical Systems * Zamolodchikov-Faddeev Algebra in 2-Component Anyons * Author Index

  3. Uncertainty relations for general unitary operators

    Science.gov (United States)

    Bagchi, Shrobona; Pati, Arun Kumar

    2016-10-01

    We derive several uncertainty relations for two arbitrary unitary operators acting on physical states of a Hilbert space. We show that our bounds are tighter in various cases than the ones existing in the current literature. Using the uncertainty relation for the unitary operators, we obtain the tight state-independent lower bound for the uncertainty of two Pauli observables and anticommuting observables in higher dimensions. With regard to the minimum-uncertainty states, we derive the minimum-uncertainty state equation by the analytic method and relate this to the ground-state problem of the Harper Hamiltonian. Furthermore, the higher-dimensional limit of the uncertainty relations and minimum-uncertainty states are explored. From an operational point of view, we show that the uncertainty in the unitary operator is directly related to the visibility of quantum interference in an interferometer where one arm of the interferometer is affected by a unitary operator. This shows a principle of preparation uncertainty, i.e., for any quantum system, the amount of visibility for two general noncommuting unitary operators is nontrivially upper bounded.

  4. Quantum Entanglement Growth Under Random Unitary Dynamics

    CERN Document Server

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2016-01-01

    Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...

  5. Error correcting codes for binary unitary channels on multipartite quantum systems

    CERN Document Server

    Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol

    2006-01-01

    We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.

  6. Black holes, quantum information, and unitary evolution

    CERN Document Server

    Giddings, Steven B

    2012-01-01

    The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tenso...

  7. CP-odd invariants for multi-Higgs models: applications with discrete symmetry

    CERN Document Server

    Varzielas, Ivo de Medeiros; Luhn, Christoph; Neder, Thomas

    2016-01-01

    CP-odd invariants provide a basis independent way of studying the CP properties of Lagrangians. We propose powerful methods for constructing basis invariants and determining whether they are CP-odd or CP-even, then systematically construct all of the simplest CP-odd invariants up to a given order, finding many new ones. The CP-odd invariants are valid for general potentials when expressed in a standard form. We then apply our results to scalar potentials involving three (or six) Higgs fields which form irreducible triplets under a discrete symmetry, including invariants for both explicit as well as spontaneous CP violation. The considered cases include one triplet of Standard Model (SM) gauge singlet scalars, one triplet of SM Higgs doublets, two triplets of SM singlets, and two triplets of SM Higgs doublets. For each case we study the potential symmetric under one of the simplest discrete symmetries with irreducible triplet representations, namely $A_4$, $S_4$, $\\Delta(27)$ or $\\Delta(54)$, as well as the in...

  8. Photons emerging as Goldstone bosons from spontaneous Lorentz symmetry breaking: The Abelian Nambu model

    CERN Document Server

    Escobar, C A

    2015-01-01

    After imposing current conservation together with the Gauss law as initial conditions on the Abelian Nambu model, we prove that the resulting theory is equivalent to standard QED in the non-linear gauge $\\left(A_{\\mu }A^{\\mu }-n^{2}M^{2}\\right)=0$, to all orders in perturbation theory. We show this by writing both models in terms of the same variables, which produce identical Feynman rules for the interactions and propagators. A crucial point is to verify that the Faddeev-Popov ghosts arising from the gauge fixing procedure in the QED sector decouple to all orders. We verify this decoupling by following a method like that employed in Yang-Mills theories when investigating the behavior of axial gauges. The equivalence between the two theories supports the idea that gauge particles can be envisaged as the Goldstone bosons originating from spontaneous Lorentz symmetry breaking.

  9. The nuclear symmetry energy, the inner crust, and global neutron star modeling

    CERN Document Server

    Newton, William G; Hooker, Josh; Li, Bao-An

    2011-01-01

    The structure and composition of the inner crust of neutron stars, as well as global stellar properties such as radius and moment of inertia, have been shown to correlate with parameters characterizing the symmetry energy of nuclear matter such as its magnitude J and density dependence L at saturation density. It is thus mutually beneficial to nuclear physicists and astrophysicists to examine the combined effects of such correlations on potential neutron star observables in the light of recent experimental and theoretical constraints on J, L, and relationships between them. We review some basic correlations between these nuclear and astrophysical observables, and illustrate the impact of recent progress in constraining the J-L parameter space on the composition of the inner crust, crust-core transition density and pressure, and extent of the hypothesized pasta region. We use a simple compressible liquid drop model in conjunction with a simple model of nuclear matter which allows for independent, smooth, varia...

  10. Quantum Local Symmetry of the D-Dimensional Non-Linear Sigma Model: A Functional Approach

    Directory of Open Access Journals (Sweden)

    Andrea Quadri

    2014-04-01

    Full Text Available We summarize recent progress on the symmetric subtraction of the Non-Linear Sigma Model in D dimensions, based on the validity of a certain Local Functional Equation (LFE encoding the invariance of the SU(2 Haar measure under local left transformations. The deformation of the classical non-linearly realized symmetry at the quantum level is analyzed by cohomological tools. It is shown that all the divergences of the one-particle irreducible (1-PI amplitudes (both on-shell and off-shell can be classified according to the solutions of the LFE. Applications to the non-linearly realized Yang-Mills theory and to the electroweak theory, which is directly relevant to the model-independent analysis of LHC data, are briefly addressed.

  11. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Marcotte, Christopher D.; Grigoriev, Roman O. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-06-15

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  12. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    CERN Document Server

    Antonov, A N; Sarriguren, P; de Guerra, E Moya

    2016-01-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.

  13. Atomki anomaly and dark matter in a radiative seesaw model with gauged $B-L$ symmetry

    CERN Document Server

    Seto, Osamu

    2016-01-01

    Motivated by recently reported anomalies in a decay of an excited state of beryllium by the Atomki collaboration, we study a radiative seesaw model with gauged $B-L$ symmetry and a $Z_2$ parity. Assuming that the anomalies originate from the decay of the $B-L$ gauge boson followed by the nuclear decay, the mass of the lightest right-handed neutrino or the dark matter candidate can be determined below $10$ GeV. We show that for this mass range, the model can explain the anomalies in the beryllium decay and the relic dark matter abundance consistent with neutrino masses. We also predict its spin-independent cross section in direct detection experiments for this mass range.

  14. Non-zero $\\theta_{13}$ and CP violation in a model with $A_4$ flavor symmetry

    CERN Document Server

    Ahn, Y H

    2012-01-01

    Motivated by $5.2\\sigma$ observation of non-zero $\\theta_{13}$ from the Daya Bay experiment, we propose a renormalizable neutrino model with $A_4$ discrete symmetry accounting for deviations from the tri-bimaximal (TBM) mixing pattern of neutrino mixing matrix indicated by neutrino oscillation data. In the model, the light neutrino masses can be generated by radiative corrections, and we show how the light neutrino mass matrix can be diagonalized by the PMNS mixing matrix whose entries are determined by the current neutrino data including the Daya Bay result. We show that the origin of the deviations from the TBM mixing is non-degeneracy of the neutrino Yukawa coupling constants, and unremovable CP phases in the neutrino Yukawa matrix give rise to the low energy CP violation measurable from neutrino oscillation as well as high energy CP violation required for leptogenesis.

  15. Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models

    Science.gov (United States)

    Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.

    2016-04-01

    To explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine-tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic C P violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.

  16. Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models

    CERN Document Server

    Albright, Carl H; Kephart, Thomas W

    2016-01-01

    To explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.

  17. Symmetries in atmospheric sciences

    CERN Document Server

    Bihlo, Alexander

    2009-01-01

    Selected applications of symmetry methods in the atmospheric sciences are reviewed briefly. In particular, focus is put on the utilisation of the classical Lie symmetry approach to derive classes of exact solutions from atmospheric models. This is illustrated with the barotropic vorticity equation. Moreover, the possibility for construction of partially-invariant solutions is discussed for this model. A further point is a discussion of using symmetries for relating different classes of differential equations. This is illustrated with the spherical and the potential vorticity equation. Finally, discrete symmetries are used to derive the minimal finite-mode version of the vorticity equation first discussed by E. Lorenz (1960) in a sound mathematical fashion.

  18. Color Energy Of A Unitary Cayley Graph

    Directory of Open Access Journals (Sweden)

    Adiga Chandrashekar

    2014-11-01

    Full Text Available Let G be a vertex colored graph. The minimum number χ(G of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G and computed the color energy of few families of graphs with χ(G colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xnc and some gcd-graphs.

  19. Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries

    Science.gov (United States)

    Lan, Tian; Kong, Liang; Wen, Xiao-Gang

    2017-06-01

    In 2+1-dimensional space-time, gapped quantum states are always gapped quantum liquids (GQL) which include both topologically ordered states (with long range entanglement) and symmetry protected topological (SPT) states (with short range entanglement). In this paper, we propose a classification of 2+1D GQLs for both bosonic and fermionic systems: 2+1D bosonic/fermionic GQLs with finite on-site symmetry are classified by nondegenerate unitary braided fusion categories over a symmetric fusion category (SFC) E , abbreviated as UMTC/E, together with their modular extensions and total chiral central charges. In our classification, SFC E describes the symmetry, which is Rep(G ) for bosonic symmetry G , or sRep(Gf) for fermionic symmetry Gf. As a special case of the above result, we find that the modular extensions of Rep(G ) classify the 2+1D bosonic SPT states of symmetry G , while the c =0 modular extensions of sRep(Gf) classify the 2+1D fermionic SPT states of symmetry Gf. Many fermionic SPT states are studied based on the constructions from free-fermion models. But free-fermion constructions cannot produce all fermionic SPT states. Our classification does not have such a drawback. We show that, for interacting 2+1D fermionic systems, there are exactly 16 superconducting phases with no symmetry and no fractional excitations (up to E8 bosonic quantum Hall states). Also, there are exactly 8 Z2×Z2f -SPT phases, 2 Z8f-SPT phases, and so on. Besides, we show that two topological orders with identical bulk excitations and central charge always differ by the stacking of the SPT states of the same symmetry.

  20. Effective theory and emergent SU(2 ) symmetry in the flat bands of attractive Hubbard models

    Science.gov (United States)

    Tovmasyan, Murad; Peotta, Sebastiano; Törmä, Päivi; Huber, Sebastian D.

    2016-12-01

    In a partially filled flat Bloch band electrons do not have a well defined Fermi surface and hence the low-energy theory is not a Fermi liquid. Nevertheless, under the influence of an attractive interaction, a superconductor well described by the Bardeen-Cooper-Schrieffer (BCS) wave function can arise. Here we study the low-energy effective Hamiltonian of a generic Hubbard model with a flat band. We obtain an effective Hamiltonian for the flat band physics by eliminating higher-lying bands via the perturbative Schrieffer-Wolff transformation. At first order in the interaction energy we recover the usual procedure of projecting the interaction term onto the flat band Wannier functions. We show that the BCS wave function is the exact ground state of the projected interaction Hamiltonian, if a simple uniform pairing condition on the single-particle states is satisfied, and that the compressibility is diverging as a consequence of an emergent SU(2 ) symmetry. This symmetry is broken by second-order interband transitions resulting in a finite compressibility, which we illustrate for a one-dimensional ladder with two perfectly flat bands. These results motivate a further approximation leading to an effective ferromagnetic Heisenberg model. The gauge-invariant result for the superfluid weight of a flat band can be obtained from the ferromagnetic Heisenberg model only if the maximally localized Wannier functions in the Marzari-Vanderbilt sense are used. Finally, we prove an important inequality D ≥W2 between the Drude weight D and the winding number W , which guarantees ballistic transport for topologically nontrivial flat bands in one dimension.