WorldWideScience

Sample records for unit peloritani mountains

  1. NEW BIOSTRATIGRAPHIC DATA ON THE FRAZZANO' FORMATION (LONGI-TAORMINA UNIT: CONSEQUENCES ON DEFINING THE DEFORMATION AGE OF THE CALABRIA-PELORITANI ARC SOUTHERN SECTOR

    Directory of Open Access Journals (Sweden)

    PAOLA DE CAPOA

    1997-11-01

    Full Text Available New biostratigraphic data on the Frazzanò Flysch Formation are presented. This unit is the topmost formation of the stratigraphic succession characterizing the Longi-Taormina Unit, which in turn represents the lowest tectonic unit of the Peloritani Mountains and the only unit in the entire southern sector of the Calabria-Peloritani Arc in which cenozoic terrains have been recognized. The age of the Frazzanò Fm., which as yet has not been well defined, is essential to ascertain the time period during which the tectogenetic phase responsible for the stacking (superposition of the nappes in the Peloritani Mountains occurred . Coltro (1967 reported foraminiferal assemblages of Late Eocene age, but subsequently ages ranging between the Middle Eocene and the Oligocene have been pro posed, none of them supported by new biostratigraphic data. The identification of some coccolithid taxa which appear in the Late Oligocene and Early Miocene allowed us to attribute an age not older than Upper Oligocene to the levels that mark the transition between the Frazzanò Fm.and the underlying Militello Formation, and an age not older than Early Aquitanian to the most recent beds of the Frazzanò Formation. Therefore, the tectogenetic phase responsible for the superposition of the nappes in the Peloritani Mountains, very likely started during the Aquitanian. While these data agree with the evolution of homologous units recognised in the Betic and Rifian sectors, they challenge the Late Oligocene age ascribed to the basal levels of the Stilo-Capo d'Orlando Formation, which lies unconformably over all the tectonic units of the Calabria-Peloritani Arc and pro vides a chronological upper limit to their overthrusting.    

  2. Chemical and mineralogical data of the metalliferous mineralization from S. Carlo mine (Peloritani mts, Ne Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Pisacane, G

    2006-05-01

    Full Text Available The mineralization processes in the Peloritani Belt (Southern Sector of the Calabria- Peloritani Arc prevalently developed during the Variscan orogenesis producing Pb, Zn, Fe, As, Sb, Cu, Ag, W, etc. polymetalliferous ore-bearing horizons. This paper focuses on the polymetalliferous mineralization recognised in the ancient S. Carlo Mine, which has already been subject of some studies and is part of an important discordant vein deposits system that are widespread in the Mandanici Unit (MaU. This Unit is characterized by a Variscan low-P, polyphasic and plurifacial metamorphic basement, exhibiting a prograde zoning, from chlorite zone of greenschist facies to oligoclase-almandine zone of amphibolite facies. The Variscan main foliation (Fv2 is irregularly cut by mineralized veins of decimetric to metric width. They are also perpendicular to the Alpine mylonitic shear zones of metric thickness developing along the sub-horizontal tectonic contacts between the tectono-stratigraphic units. These vein deposits formed along late-Alpine systems of fractures and faults, after Peloritani nappe emplacement. Minerographic study reveals a metalliferous mineral association mainly composed of tetrahedrite associated with, in order of decreasing abundance, chalcopyrite, bournonite, pentlandite, stromeyerite, arsenopyrite, scheelite, galena, sphalerite, pyrite, bismuthinite, boulangerite, jamesonite, covellite, bornite and argentite. Quartz, siderite and ankerite among non-metalliferous minerals are predominant. This work has been supported by mineralogical studies and chemical analyses carried out by Atomic Absorption and Inductively Coupled Plasma-Mass Spectrometry on powdered and separated samples of minerals. Geochemical data (major and trace elements have allowed a detailed characterization of the minerals. They have revealed that the most significant minerals with Au contents around 1 ppm are tetrahedrite, sphalerite, chalcopyrite and bournonite. The

  3. Landslide susceptibility assessment in the Peloritani Mts. (Sicily, Italy and clues for tectonic control of relief processes

    Directory of Open Access Journals (Sweden)

    G. De Guidi

    2013-04-01

    Full Text Available Many destructive shallow landslides hit villages in the Peloritani Mountains area (Sicily, Italy on 1 October 2009 after heavy rainfall. The collection of several types of spatial data, together with a landslide inventory, allows the assessment of the landslide susceptibility by applying a statistical technique. The susceptibility model was validated by performing an analysis in a test area using independent landslide information, the results being able to correctly predict more than 70% of the landslides. Furthermore, the susceptibility analysis allowed the identification of which combinations of classes, within the different factors, have greater relevance in slope instability, and afterwards associating the most unstable combinations (with a short–medium term incidence with the endogenic processes acting in the area (huge regional uplift, fault activity. Geological and tectonic history are believed to be key to interpreting morphological processes and landscape evolution. Recent tectonic activity was found to be a very important controlling factor in landscape evolution. A geomorphological model of cyclical relief evolution is proposed in which endogenic processes are directly linked to superficial processes. The results are relevant both to risk reduction and the understanding of active geological dynamics.

  4. The Mt. Moio eruption (Etna): Stratigraphy, petrochemistry and Ar-40/Ar-39 age determination with inferences on the relationship between structural setting and magma intrusion

    NARCIS (Netherlands)

    Del Carlo, P.; Branca, S.; De Beni, E.; Lo Castro, M.D.; Wijbrans, J.R.

    2012-01-01

    Mt. Moio is the most peripheral scoria cone of Etna volcano and rises above the Peloritani Mountains sedimentary basement, 18. km north of the volcano summit.Geological and tephrostratigraphic studies and

  5. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.; Flint, L.E.

    1996-01-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections

  6. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Golden, CO (United States); Flint, L.E. [U.S. Geological Survey, Yucca Mountain Project, Mercury, NV (United States)

    1996-08-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections.

  7. Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations' 2030 Agenda

    Directory of Open Access Journals (Sweden)

    Georg Gratzer

    2017-08-01

    Full Text Available The world is facing numerous and severe environmental, social, and economic challenges. To address these, in September 2015 the General Assembly of the United Nations adopted the resolution Transforming our World: The 2030 Agenda for Sustainable Development. The United Nations' 17 sustainable development goals (SDGs and their 169 targets are ambitious, broadly encompassing, and indivisible. They are intended to guide nations and communities toward attaining healthy and peaceful livelihoods free of poverty and hunger. Collectively the goals envision sound and safe environments, where global threats like climate change are successfully combated through both mitigation and adaptation. Agenda 2030 envisages sustainable production patterns with inclusive, effective economies and institutions. It is of specific relevance to mountain communities, where the population is predominantly rural and half of the rural inhabitants experience food insecurity and are often highly dependent on forest resources. Mountain forests also contribute to human welfare well beyond the local community: through functions such as climate and hydrological services provided at regional and global scales, and harvested commodities traded at multiple economic scales. In this introductory essay we argue that sustainable forest management in mountain areas disproportionately contributes to achieving the SDGs. We discuss (1 the potential of mountain forests to help achieve SDGs in mountainous regions and beyond, (2 the potential of the SDGs to help solve severe socioeconomic and ecological problems in forested mountain areas, and (3 challenges and opportunities associated with implementing the SDGs. We base our argumentation also on the 8 papers presented in this Focus Issue of Mountain Research and Development. Together, they establish a clear connection between sustainable use and protection of mountain forests and vital ecosystem services upon which many regions depend. We

  8. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  9. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  10. Quaternary allostratigraphy of surficial deposit map units at Yucca Mountain, Nevada: A progress report

    International Nuclear Information System (INIS)

    Lundstrom, S.C.; Wesling, J.R.; Swan, F.H.; Taylor, E.M.; Whitney, J.W.

    1993-01-01

    Surficial geologic mapping at Yucca Mountain, Nevada, is relevant to site characterization studies of paleoclimate, tectonics, erosion, flood hazards, and water infiltration. Alluvial, colluvial, and eolian allostratigraphic map units are defined on the basis of age-related surface characteristics and soil development, as well as lithology and sedimentology indicative of provenance and depositional mode. In gravelly alluvial units, which include interbedded debris flows, the authors observe a useful qualitative correlation between surface and soil properties. Map units of estimated middle Pleistocene age typically have a well-developed, varnished desert pavement, and minimal erosional and preserved depositional microrelief, associated with a soil with a reddened Bt horizon and stage 3 carbonate and silica morphology. Older units have greater erosional relief, an eroded argillic horizon and stage 4 carbonate morphology, whereas younger units have greater preservation of depositional morphology, but lack well-developed pavements, rock varnish, and Bt and Kqm soil horizons. Trench and gully-wall exposures show that alluvial, colluvial and eolian dominated surface units are underlain by multiple buried soils separating sedimentologically similar deposits; this stratigraphy increases the potential for understanding the long-term Quaternary paleoenvironmental history of Yucca Mountain. Age estimates for allostratigraphic units, presently based on uranium-trend dating and regional correlation using soil development, will be further constrained by ongoing dating studies that include tephra identification, uranium-series disequilibrium, and thermoluminescence methods

  11. Mountain biking-related injuries treated in emergency departments in the United States, 1994-2007.

    Science.gov (United States)

    Nelson, Nicolas G; McKenzie, Lara B

    2011-02-01

    Injury research on mountain biking has been mostly limited to examining professional riders and off-road biking. Mountain bikes represent the largest segment of bike sales in the United States. Recreational mountain bike use is popular and understudied. To describe the scope, distribution, and trends of mountain bike-related injuries treated in US emergency departments. Descriptive epidemiologic study. A retrospective analysis was conducted with data from the National Electronic Injury Surveillance System of the US Consumer Product Safety Commission for patients aged ≥ 8 years from 1994 through 2007. Sample weights provided by the system were used to calculate national estimates of mountain bike-related injuries based on 4624 cases. Bivariate comparisons between categorical variables were assessed with injury proportion ratios and 95% confidence intervals. Nationwide, an estimated 217 433 patients were treated for mountain bike-related injuries in US emergency departments from 1994 to 2007, an average of 15 531 injuries per year. The annual number of injuries decreased 56%, from a high of 23 177 in 1995 to 10 267 in 2007 (P bike-related injuries decreased from 1994 to 2007. Upper extremity fractures were the most common injury. Girls and women may be more likely than boys and men to sustain more severe injuries requiring hospitalization. Despite the decline over the past decade, more can be done to improve safety and reduce injuries in this popular recreational activity.

  12. Assessment of hydrologic impact of extending exploratory shafts into the Calico Hills nonwelded tuff unit at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.; Rockhold, M.L.

    1991-03-01

    The US Department of Energy (DOE) is performing analyses to address an objection by the US Nuclear Regulatory Commission to plans in the Consultation Draft of the Site Characterization Plan for direct excavation of the Calico Hills nonwelded (CHn) unit within the repository exploration block at Yucca Mountain, Nevada. The excavation was planned as part of site characterization activities for the potential high-level nuclear waste repository at Yucca Mountain. This characterization activities for the potential high-level nuclear waste repository at Yucca Mountain. This characterization activity has been deferred, pending the results of a risk/benefit analysis of alternative methods for obtaining needed characterization data from CHn unit. The benefits from characterizing the CHn unit are generally related to obtaining information leading to improved confidence in predictions of site performance. The risks are generally associated with potential adverse impacts to site performance that result from excavation or other intrusion into the CHn unit. The purpose of the risk/benefit analysis is to produce a recommendation to the Director, Regulatory and Site Evaluation Division. DOE/Yucca Mountain Site Characterization Project Office for a strategy for characterizing the CHn unit. The recommendation will describe characterization activities that are expected to provide the needed information while limiting adverse impacts to site performance to the extent practical. The risk/benefit analysis was supported with scoping calculations to provide a quantitative evaluation of the impacts associated with different strategies. The working group responsible for the risk/benefit analysis requested that these scoping calculations to be supported with more detailed performance assessments for evaluating impacts of different characterization activities. This report summarizes the results of these performance assessment analyses. 9 refs., 30 figs., 1 tab

  13. Geographic variation, genetic structure, and conservation unit designation in the Larch Mountain salamander (Plethodon larselli).

    Science.gov (United States)

    R. Steven Wagner; Mark P. Miller; Charles M. Crisafulli; Susan M. Haig

    2005-01-01

    The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific northwestern United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this...

  14. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales

  15. Distribution of lithostratigraphic units within the central block of Yucca Mountain, Nevada: A three-dimensional computer-based model, Version YMP.R2.0

    International Nuclear Information System (INIS)

    Buesch, D.C.; Nelson, J.E.; Dickerson, R.P.; Drake, R.M. II; San Juan, C.A.; Spengler, R.W.; Geslin, J.K.; Moyer, T.C.

    1996-01-01

    Yucca Mountain, Nevada is underlain by 14.0 to 11.6 Ma volcanic rocks tilted eastward 3 degree to 20 degree and cut by faults that were primarily active between 12.7 and 11.6 Ma. A three-dimensional computer-based model of the central block of the mountain consists of seven structural subblocks composed of six formations and the interstratified-bedded tuffaceous deposits. Rocks from the 12.7 Ma Tiva Canyon Tuff, which forms most of the exposed rocks on the mountain, to the 13.1 Ma Prow Pass Tuff are modeled with 13 surfaces. Modeled units represent single formations such as the Pah Canyon Tuff, grouped units such as the combination of the Yucca Mountain Tuff with the superjacent bedded tuff, and divisions of the Topopah Spring Tuff such as the crystal-poor vitrophyre interval. The model is based on data from 75 boreholes from which a structure contour map at the base of the Tiva Canyon Tuff and isochore maps for each unit are constructed to serve as primary input. Modeling consists of an iterative cycle that begins with the primary structure-contour map from which isochore values of the subjacent model unit are subtracted to produce the structure contour map on the base of the unit. This new structure contour map forms the input for another cycle of isochore subtraction to produce the next structure contour map. In this method of solids modeling, the model units are presented by surfaces (structure contour maps), and all surfaces are stored in the model. Surfaces can be converted to form volumes of model units with additional effort. This lithostratigraphic and structural model can be used for (1) storing data from, and planning future, site characterization activities, (2) preliminary geometry of units for design of Exploratory Studies Facility and potential repository, and (3) performance assessment evaluations

  16. Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011

    Science.gov (United States)

    Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William

    2011-01-01

    We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at

  17. The 2014 assessment of stream quality in the Piedmont and southern Appalachian Mountain region of southeastern United States

    Science.gov (United States)

    Celeste Journey; Paul M. Bradley; Peter Van Metre

    2016-01-01

    During the spring and summer of 2014, the U.S. Geological Survey (USGS) National Water- Quality Assessment Program (NAWQA) assessed stream quality across the Piedmont and southern Appalachian Mountain region in the southeastern United States.

  18. Mountaineering Tourism

    Directory of Open Access Journals (Sweden)

    Patrick Maher

    2016-08-01

    Full Text Available Reviewed: Mountaineering Tourism Edited by Ghazali Musa, James Higham, and Anna Thompson-Carr. Abingdon, United Kingdom: Routledge, 2015. xxvi + 358 pp. Hardcover. US$ 145.00. ISBN 978-1-138-78237-2.

  19. Infantry Small-Unit Mountain Operations

    Science.gov (United States)

    2011-02-01

    should be on the uphill side of grass tussocks, small talus, and other level spots to avoid twisting an ankle or straining an Achilles tendon...should be extremely cautious while traveling on the side of a hill. During side-hill travel personnel are more vulnerable to twisted ankles , back injury...installation in the mountains is the fixed rope system. A fixed rope is a rope anchored in place to assist Soldiers in movement over difficult terrain

  20. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally

  1. Mountain Weather and Climate, Third Edition

    Science.gov (United States)

    Hastenrath, Stefan

    2009-05-01

    For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.

  2. Recent population trends of mountain goats in the Olympic Mountains, Washington

    Science.gov (United States)

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John

    2012-01-01

    Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.

  3. Unit evaluation at Yucca Mountain, Nevada Test Site: summary report and recommendation

    International Nuclear Information System (INIS)

    Johnstone, J.K.; Peters, R.R.; Gnirk, P.F.

    1984-06-01

    Of the four potential repository units, identified at Yucca Mountain, two potential units the welded, devitrified portions of the Bullfrog and Tram Members of the Crater Flat Tuff are below the water table. The welded, devitrified Topopah Spring Member of the Paintbrush Tuff and the nonwelded, zeolitized Tuffaceous Beds of Calico Hills are above the water table. The results of a study of the four potential repository units are to provide a technical basis for selecting a single target repository unit for future test and evaluation. The unit evaluation studies compared the units rather than provided and absolute assessment. The four ranking evaluation criteria used were: radionuclide isolation time; allowable repository gross thermal loading; excavation stability; and relative economics. Considered the most important of the criteria as well as the most difficult, radionuclide isolation times were estimated using the limited existing data. The allowable repository gross thermal loadings determined from near-field calculations, were nearly the same for all four units. The gross thermal loading supported other criteria by providing the heat source for succeeding thermally related evaluation studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations, rock matrix property evaluation, and rock mass classification. Relative economics, a minor criterion, did not play an explicit role in the final ranking. Based on all of the analyses, the final recommendation was that the Topopah Springs be selected as the target unit, followed, in order, by the Calico Hills, Bullfrog, and Tram

  4. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200 0 C, and strain rate from 10 -7 to 10 -2 s -1 . These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests

  5. The development of landscape-scale ecological units and their application to the greater Huachuca Mountains fire planning process

    Science.gov (United States)

    Larry E. Laing; David Gori; James T. Jones

    2005-01-01

    The multi-partner Greater Huachuca Mountains fire planning effort involves over 500,000 acres of public and private lands. This large area supports distinct landscapes that have evolved with fire. Utilizing GIS as a tool, the United States Forest Service (USFS), General Ecosystem Survey (GES), and Natural Resources Conservation Service (NRCS) State Soil Geographic...

  6. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  7. Combat Operations in Mountainous Terrain: Are United States Army Light Infantry Divisions Preparing Properly?

    Science.gov (United States)

    1987-06-05

    Mountain Division, Charles Hauptman, Comeany I. 97th Mountain Infantry Regiment by CPT George Earle, and PFC Hugh Graves (1945), and 10th Mountain...training in this country is believed to depend primarily ’Albert H. Jackman , "The Tenth Mountain Division, A Successful Experiment," The Algine Journal...44-48. Houston, Charles S., Dr. "Altitude Sickness and the Army," 112zard. 2d Qtr 1986: n.p. Jackman , Albert H. "The Tenth Mountain Division, A

  8. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  9. The origins of mountain geoecology

    Directory of Open Access Journals (Sweden)

    Ives, Jack D.

    2012-05-01

    Full Text Available Mountain geoecology, as a sub-discipline of Geography, stems from the life and work of Carl Troll who, in turn, was inspired by the philosophy and mountain travels of Alexander von Humboldt. As founding chair of the IGU Commission on High-Altitude Geoecology (1968, Troll laid the foundations for inter-disciplinary and international mountain research. The paper traces the evolution of the Commission and its close links with the UNESCO Man and Biosphere Programme (1972- and the United Nations University’s mountain Project (1978-. This facilitated the formation of a major force for inclusion of a mountain chapter in AGENDA 21 during the 1992 Rio de Janeiro Herat Summit (UNCED and the related designation by the United Nations of 2002 as the International Year of Mountains. In this way, mountain geoecology not only contributed to worldwide mountain research but also entered the political arena in the struggle for sustainable mountain development and the well-being of mountain people.La geoecología de montaña, como sub-disciplina de la Geografía, entronca con la vida y trabajo de Carl Troll, quien, a su vez, fue inspirado por la filosofía y viajes de Alexander von Humboldt. Como presidente fundador de la comisión de la UGI sobre High Altitude Geoecology (1968, Troll colocó las bases para la investigación interdisciplinar e internacional de las montañas. Este trabajo presenta la evolución de la Comisión y sus estrechas relaciones con el Programa Hombre y Biosfera de UNESCO (1972- y con el Proyecto de montaña de la Universidad de Naciones Unidas (1978-. Esto facilitó la inclusión de un capítulo sobre la montaña en AGENDA 21 durante la Cumbre de la Tierra de Río de Janeiro (UNCED, y la consiguiente designación de 2002 como el Año Internacional de las Montañas por parte de Naciones Unidas. En este sentido, la geoecología de montaña no sólo contribuyó a la investigación de las montañas del mundo sino que también empujó a la pol

  10. Canker and decline caused by Neofusiccocum parvum on Acacia melanoxylon in Italy

    Directory of Open Access Journals (Sweden)

    Sidoti A

    2016-12-01

    Full Text Available In the spring of 2012, in reforested areas of Peloritani Mountains (Sicily, Italy a severe dieback of Acacia melanoxylon R. Brown was observed. The main symptoms on both young and adults plants consisted of elongated cankers on the trunks and epicormic shoots, wilt of the canopy and dieback interested mostly aged trees. The woody tissues showed browning beyond the cankers. Sapwood and heartwood appeared decayed with a brown to gray-greenish discoloration. One fungal species was consistently isolated from infected woody tissues, which was morphologically attributed to Neofusiccocum sp. The sequencing of the ITS regions of a representative isolate allowed to identify (99% similarity the species Neofusiccocum parvum (Pennycook & Samuels Crous, Slippers and Phillips, teleomorph Botryosphaeria parva Pennycook & Samuels. The pathogenicity tests have reproduced symptoms similar to those observed in the field. N. parvum is the aetiologic agent of mortality of australian blackwood observed in Sicily and to our knowledge this is the first report of this fungus on Acacia melanoxylon. It is a generalist pathogen, cosmopolitan, present in many temperate areas, Mediterranean and subtropical. The older Peloritani Mountains populations of australian blackwood seem particularly susceptible to the pathogen, the latter favored by the lack of silvicultural interventions that generate interspecific and intraspecific competition, as well as the increase and spread of the fungus. To minimize the consequential damage is necessary to adopt sanitation measures that would lower the fungal inoculum and program substitutions of this exotic species with others that have multiple functions suited to environments (e.g., Chestnut or encouraging the establishment and development of native species, such as the holm oak and shrub.

  11. Geology of Gable Mountain-Gable Butte Area

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-09-01

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending major fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems

  12. Rocky Mountain Research Station: 2011 Annual Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2011-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  13. Rocky Mountain Research Station: 2010 Research Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2010-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  14. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  15. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  16. Fatal Rocky Mountain spotted fever in the United States, 1999-2007.

    Science.gov (United States)

    Dahlgren, F Scott; Holman, Robert C; Paddock, Christopher D; Callinan, Laura S; McQuiston, Jennifer H

    2012-04-01

    Death from Rocky Mountain spotted fever (RMSF) is preventable with prompt, appropriate treatment. Data from two independent sources were analyzed to estimate the burden of fatal RMSF and identify risk factors for fatal RMSF in the United States during 1999-2007. Despite increased reporting of RMSF cases to the Centers for Disease Control and Prevention, no significant changes in the estimated number of annual fatal RMSF cases were found. American Indians were at higher risk of fatal RMSF relative to whites (relative risk [RR] = 3.9), and children less than 10 years of age (RR=5.1) [corrected] and adults ≥ 70 years of age (RR = 3.0) were also at increased risk relative to other ages. Persons with cases of RMSF with an immunosuppressive condition were at increased risk of death (RR = 4.4). Delaying treatment of RMSF was also associated with increased deaths. These results may indicate a gap between recommendations and practice.

  17. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    McCord, John

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the

  18. Rocky Mountain Research Station: 2012-2013 Annual Report

    Science.gov (United States)

    Cass Cairns

    2013-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...

  19. Arizona/New Mexico Mountains Ecoregion: Chapter 10 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Ruhlman, Jana; Gass, Leila; Middleton, Barry

    2012-01-01

    As the name suggests, the Arizona/New Mexico Mountains Ecoregion includes much of the mountainous regions of these two states, plus a very small part in the Guadalupe Mountains of northwestern Texas. Several isolated areas of higher terrain in Arizona and New Mexico are also included in the ecoregion, which occupies approximately 108,432 km2 (41,866 mi2) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is bounded on the south by the Sonoran Basin and Range, Madrean Archipelago, and Chihuahuan Deserts Ecoregions; to the north, the ecoregion is both bounded and surrounded by the Arizona/New Mexico Plateau Ecoregion (fig. 1). The ecoregion encompasses the largest contiguous ponderosa pine (Pinus ponderosa) forest in the United States (Strom and Fulé, 2007), which stretches from Williams, Arizona, along the Mogollon Rim, Arizona, into southwestern New Mexico, north and west of Silver City, New Mexico.

  20. Rocky Mountain spotted fever in the United States, 1997-2002.

    Science.gov (United States)

    Chapman, Alice S; Murphy, Staci M; Demma, Linda J; Holman, Robert C; Curns, Aaron T; McQuiston, Jennifer H; Krebs, John W; Swerdlow, David L

    2006-01-01

    Rocky Mountain spotted fever (RMSF) is the most commonly reported fatal tick-borne disease in the United States. During 1997-2002, 3,649 cases of RMSF were reported to the Centers for Disease Control and Prevention via the National Electronic Telecommunications System for Surveillance; 2,589 case report forms, providing supplemental information, were also submitted. The average annual RMSF incidence during 1997-2002 was 2.2 cases/million persons. The annual incidence increased during 1997-2002 to a rate of 3.8 cases/million persons in 2002. The incidence was lowest among persons aged<5 and 10-29 years, and highest among adults aged 60-69 years. The overall case-fatality rate was 1.4%; the rate peaked in 1998 at 2.9% and declined to 0.7% in 2001 and 2002. Children<5 years of age had a case-fatality rate (5%) that was significantly greater than the rates for age groups<60 years of age, except for that for 40-49 years of age. Continued national surveillance is needed to assess the effectiveness of prevention efforts and early treatment in decreasing severe morbidity and mortality associated with RMSF.

  1. Fatal Rocky Mountain Spotted Fever in the United States, 1999–2007

    Science.gov (United States)

    Dahlgren, F. Scott; Holman, Robert C.; Paddock, Christopher D.; Callinan, Laura S.; McQuiston, Jennifer H.

    2012-01-01

    Death from Rocky Mountain spotted fever (RMSF) is preventable with prompt, appropriate treatment. Data from two independent sources were analyzed to estimate the burden of fatal RMSF and identify risk factors for fatal RMSF in the United States during 1999–2007. Despite increased reporting of RMSF cases to the Centers for Disease Control and Prevention, no significant changes in the estimated number of annual fatal RMSF cases were found. American Indians were at higher risk of fatal RMSF relative to whites (relative risk [RR] = 3.9), and children 5–9 years of age (RR = 6.0) and adults ≥ 70 years of age (RR = 3.0) were also at increased risk relative to other ages. Persons with cases of RMSF with an immunosuppressive condition were at increased risk of death (RR = 4.4). Delaying treatment of RMSF was also associated with increased deaths. These results may indicate a gap between recommendations and practice. PMID:22492159

  2. Geology of the Saddle Mountains between Sentinel Gap and 119030' longitude

    International Nuclear Information System (INIS)

    Reidel, S.P.

    1978-09-01

    Members and flows of the Grande Ronde, Wanapum, and Saddle Mountains basalts of the Columbia River Basalt Group were mapped in the Saddle Mountains between Sentinel Gap and the eastern edge of Smyrna Bench. The Grande Ronde Basalt consists of the Schwana (low-MgO) and Sentinel Bluffs (high-MgO) members (informal names). The Wanapum Basalt consists of the aphyric and phyric units of the Frenchman Springs Member, the Roza-Like Member, and the Priest Rapids Member. The Saddle Mountains Basalt consists of the Wahluke, Huntzinger, Pomona, Mattawa, and Elephant Mountain basalts. The Wanapum and Saddle Mountains basalts are unevenly distributed across the Saddle Mountains. The Wanapum Basalt thins from south to north and across a northwest-southeast-trending axis at the west end of Smyrna Bench. The Priest Rapids, Roza-Like, and aphyric Frenchman Springs units are locally missing across this zone. The Saddle Mountains basalt has a more irregular distribution and, within an area between Sentinel Gap and Smyrna Bench, is devoid of the basalt. The Wahluke, Huntzinger, and Mattawa flows are locally present, but the Pomona is restricted to the southern flank west of Smyrna Bench, and the Elephant Mountain Basalt only occurs on the flanks and in three structurally controlled basins on the northwest side. The structure of the Saddle Mountains is dominated by an east-west trend and, to a lesser degree, controlled by a northwest-southeast and northeast-southwest trend. The geomorphological expression of the Saddle Mountains results from the east-west fold set and the Saddle Mountains fault along the north side. The oldest structures follow the northwest-southeast trend. The distribution of the flows, combined with the structural features, indicates a complex geologic history for the Saddel Mountains

  3. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-01-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass

  4. Paleogene Sediment Character of Mountain Front Central Sumatra Basin

    Directory of Open Access Journals (Sweden)

    P. A. Suandhi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest, Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.

  5. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  6. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  7. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  8. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  9. Slingram survey at Yucca Mountain on the Nevada Test Site

    International Nuclear Information System (INIS)

    Flanigan, V.J.

    1981-01-01

    Electromagnetic (EM) data presented in this report is part of study by the US Geological Survey aimed at evaluating the Miocene and Pliocene Yucca Mountain Member of various units of the Paintbrush Tuff in the vicinity of Yucca Mountain as a possible repository for nuclear wastes. The survey area is located about 97 km northwest of Las Vegas, Nevada on the Nevada Test Site. Data contained in this report were taken along the eastern edge of Yucca Mountain. The specific purpose of this survey was to determine with EM methods, whether or not northwest-trending valleys in the Yucca Mountain area were fault controlled. Fault and fracture zones in the tuff units were expected to have a somewhat higher conductivity than the unfractured tuff. This is due to the greater porosity, clay and moisture content expected in the fault zones than in unfaulted rock. Depending upon a number of factors, such as the conductivity contrast between fault zones and unfaulted rock, and the depth and conductivity of the overburden, it may be possible to recognize fault zones from surface EM measurements. Several EM methods were tested to determine which one gave the best results in this environment. The methods tried included slingram, Turam and VLF (very low frequency). Slingram data proved to be most diagnostic in delineating a mapped fault on the east edge of Yucca Mountain, and hence was used in the survey traverses crossing the northwest valleys cutting into Yucca Mountain

  10. The Alpini Effect: Why the US Army Should Train Units for Mountain Warfare

    Science.gov (United States)

    2014-05-22

    practical knowledge of the ground, and are very little adapted for mountain warfare.”20 The concept of infantry forces trained in mountain combat was...spearheaded the word of mouth campaign as he said, “It is easier to train a skier to be a soldier than to train a soldier to be a skier .” 30...author’s knowledge from professional experience 51 at Camp Carson from 1942-1944 and the US

  11. Nuclear waste disposal: Gambling on Yucca Mountain

    International Nuclear Information System (INIS)

    Ginsburg, S.

    1995-01-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography

  12. DOE's Yucca Mountain studies

    International Nuclear Information System (INIS)

    1992-12-01

    This booklet is about the disposal of high-level nuclear waste in the United States. It is for readers who have a general rather than a technical background. It discusses why scientists and engineers thinkhigh-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied as a potential repository site and provides basic information about those studies

  13. Mountain-Scale Coupled Processes (TH/THC/THM)

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods

  14. Geohydrologic data and models of Rainier Mesa and their implications to Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Cook, N.G.W.; Wollenberg, H.A.; Carnahan, C.L.; Javandel, I.; Tsang, C.F.

    1993-01-01

    The geohydrologic data collected at Rainier Mesa provide the only extensive observations in tunnels presently available on flow and transport in tuff units similar to those of a potential nuclear waste repository at Yucca Mountain. This information can, therefore, be of great value in planning the Exploratory Studies Facility (ESF) testing in underground drifts at Yucca Mountain. In this paper, we compare the geohydrologic characteristics of tuff units of these two sites and summarize the hydrochemical data indicating the presence of nearly meteoric water in Rainier Mesa tunnels. A simple analytic model is used to evaluate the possibility of propagating transient pulses of water along fractures or faults through the Paintbrush nonwelded tuff unit to reach the tunnel beds below. The results suggest that fast flow could occur without significant mixing between meteoric fracture water and matrix pore water. The implications of these findings on planning for the ESF Calico Hills study at Yucca Mountain are discussed

  15. Rocky Mountain spotted fever in dogs, Brazil.

    Science.gov (United States)

    Labruna, Marcelo B; Kamakura, Orson; Moraes-Filho, Jonas; Horta, Mauricio C; Pacheco, Richard C

    2009-03-01

    Clinical illness caused by Rickettsia rickettsii in dogs has been reported solely in the United States. We report 2 natural clinical cases of Rocky Mountain spotted fever in dogs in Brazil. Each case was confirmed by seroconversion and molecular analysis and resolved after doxycycline therapy.

  16. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Buesch, D.C.; Spengler, R.W.; Moyer, T.C.; Geslin, J.K.

    1996-09-01

    This paper describes the formations of the Paintbrush Group exposed at Yucca Mountain, Nevada, presents a detailed stratigraphic nomenclature for the Tiva Canyon and Topopah spring Tuffs, and discusses the criteria that define lithostratigraphic units. The Tiva Canyon and Topopah Spring Tuffs are divided into zones, subzones, and intervals on the basis of macroscopic features observed in surface exposures and borehole samples. Primary divisions reflect depositional and compositional zoning that is expressed by variations in crystal content, phenocryst assemblage, pumice content and composition, and lithic content. Secondary divisions define welding and crystlalization zones, depositional features, or fracture characteristics. Both formations are divided into crystal-rich and crystal-poor members that have an identical sequency of zones, although subzone designations vary slightly between the two units. The identified lithostratigraphic divisions can be used to approximate thermal-mechanical and hydrogeologic boundaries in the field. Linking these three systems of nomenclature provides a framework within which to correlate these properties through regions of sparse data.

  17. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Buesch, D.C.; Spengler, R.W.; Moyer, T.C.; Geslin, J.K.

    1996-01-01

    This paper describes the formations of the Paintbrush Group exposed at Yucca Mountain, Nevada, presents a detailed stratigraphic nomenclature for the Tiva Canyon and Topopah spring Tuffs, and discusses the criteria that define lithostratigraphic units. The Tiva Canyon and Topopah Spring Tuffs are divided into zones, subzones, and intervals on the basis of macroscopic features observed in surface exposures and borehole samples. Primary divisions reflect depositional and compositional zoning that is expressed by variations in crystal content, phenocryst assemblage, pumice content and composition, and lithic content. Secondary divisions define welding and crystlalization zones, depositional features, or fracture characteristics. Both formations are divided into crystal-rich and crystal-poor members that have an identical sequency of zones, although subzone designations vary slightly between the two units. The identified lithostratigraphic divisions can be used to approximate thermal-mechanical and hydrogeologic boundaries in the field. Linking these three systems of nomenclature provides a framework within which to correlate these properties through regions of sparse data

  18. Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: Data and basic concepts of chemical and physical processes in the mountain

    Science.gov (United States)

    Thorstenson, Donald C.; Weeks, Edwin P.; Haas, Herbert; Busenberg, Eurybiades; Plummer, Niel; Peters, Charles A.

    1998-01-01

    Boreholes open to the unsaturated zone at the crest of Yucca Mountain, Nevada, were variously sampled for CO2 (including 13C and 14C), CH4, N2, O2, Ar, CFC-11, CFC-12, and CFC-113 from 1986 to 1993. Air enters the mountain in outcrops, principally on the eastern slope, is enriched in CO2by mixing with soil gas, and is advected to the mountain crest, where it returns to the atmosphere. The CFC data indicate that travel times of the advecting gas in the shallow Tiva Canyon hydrogeologic unit are ≤5 years. The 14C activities are postbomb to depths of 100 m, indicating little retardation of 14CO2 in the shallow flow systems. The 14C activities from 168 to 404 m in the Topopah Spring hydrogeologic unit are 85–90 pMC at borehole USW-UZ6. The CFC data show that the drilling of USW-UZ6 in 1984 has altered the natural system by providing a conduit through the Paintbrush Nonwelded unit, allowing flow from Topopah Spring outcrops in Solitario Canyon on the west to USW-UZ6, upward in the borehole through the Paintbrush, to the shallow Tiva Canyon flow systems, and out of the mountain.

  19. Basement control of alkalic flood rhyolite magmatism of the Davis Mountains volcanic field, Trans-Pecos Texas, U.S.A.

    Science.gov (United States)

    Parker, Don F.; White, John C.; Ren, Minghua; Barnes, Melanie

    2017-11-01

    Voluminous silicic lava flows, erupted 37.4 Ma from widespread centers within the Davis Mountains Volcanic Field (DMVF), covered approximately 10,000 km2 with an initial volume as great as 1000 km3. Lava flows form three major stratigraphic units: the Star Mountain Rhyolite (minimum 220 km3) of the eastern Davis Mountains and adjacent Barilla Mountains, the Crossen Formation ( 75 km3) of the southern Davis Mountains, and the Bracks Rhyolite ( 75 km3) of the Rim Rock region west of the Davis Mountains proper. Similar extensive rhyolite lava also occurs in slightly younger units (Adobe Canyon Rhyolite, 125 km3, 37.1 Ma), Sheep Pasture Formation ( 125 km3, 36 Ma) and, less voluminously, in the Paisano central volcano ( 36.9 Ma) and younger units in the Davis Mountains. Individual lava flows from these units formed fields as extensive as 55 km and 300-m-thick. Flood rhyolite lavas of the Davis Mountains are marginally peralkaline quartz trachyte to low-silica rhyolite. Phenocrysts include alkali feldspar, clinopyroxene, FeTi oxides, and apatite, and, rarely, fayalite, as well as zircon in less peralkaline units. Many Star Mountain flows may be assigned to one of four geochemical groupings. Temperatures were moderately high, ranging from 911 to 860 °C in quartz trachyte and low silica rhyolite. We suggest that flood rhyolite magma evolved from trachyte magma by filter pressing processes, and trachyte from mafic magma in deeper seated plutons. The Davis Mountains segment of Trans-Pecos Texas overlies Grenville basement and is separated from the older Southern Granite and Rhyolite Province to the north by the Grenville Front, and from the younger Coahuila terrane to the south by the Ouachita Front. We suggest that basement structure strongly influenced the timing and nature of Trans-Pecos magmatism, probably in varying degrees of impeding the ascent of mantle-derived mafic magmas, which were produced by upwelling of asthenospheric mantle above the foundered Farallon slab

  20. The Centre for Mountain Studies: Active From Scottish to Global Scales

    Directory of Open Access Journals (Sweden)

    Amy Woolvin

    2016-11-01

    Full Text Available The Centre for Mountain Studies (CMS, located at Perth College, University of the Highlands and Islands, Scotland, hosts the United Nations Educational, Scientific and Cultural Organization Chair in Sustainable Mountain Development. Since 2000, CMS staff and students have been active in research and knowledge exchange activities at scales from the local—in Scotland—to the global (Price 2011; Glass et al 2013. In addition to hosting the Mountains of our Future Earth conference (Perth III, recent international activities have focused on climate change, biosphere reserves, social innovation, and stakeholder engagement in biodiversity research. Projects in Scotland have mainly addressed land management and local communities. The CMS also runs a part-time online MSc program in Sustainable Mountain Development.

  1. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  2. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  3. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    International Nuclear Information System (INIS)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-01-01

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data

  4. Habitat associations of three crayfish endemic to the Ouachita Mountain Ecoregion

    Science.gov (United States)

    Dyer, Joseph J.; Brewer, Shannon K.

    2018-01-01

    Many crayfish are of conservation concern because of their use of unique habitats and often narrow ranges. In this study, we determined fine-scale habitat use by 3 crayfishes that are endemic to the Ouachita Mountains, in Oklahoma and Arkansas. We sampled Faxonius menae (Mena Crayfish), F. leptogonopodus (Little River Creek Crayfish), and Fallicambarus tenuis (Ouachita Mountain Crayfish) from wet and dry erosional channel units of 29 reaches within the Little River catchment. We compared channel-unit and microhabitat selection for each species. Crayfish of all species and life stages selected erosional channel units more often than depositional units, even though these sites were often dry. Accordingly, crayfish at all life stages typically selected the shallowest available microhabitats. Adult crayfish of all species and juvenile Little River Creek Crayfish selected patches of coarse substrate, and all crayfish tended to use the lowest amount of bedrock available. In general, we showed that these endemic crayfish used erosional channel units of streams, even when the channel units were dry. Conservation efforts that protect erosional channel units and mitigate actions that cause channel downcutting to bedrock would benefit these crayfish, particularly during harsh, summer drying periods.

  5. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  6. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  7. Effects of Faulted Stratigraphy on Saturated Zone Flow Beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cohen, Andrew J.B.; Oldenburg, Curtis M.

    1999-01-01

    The S 4 Z Model (''sub-site-scale saturated zone'') is a 3-D TOUGH2 model that was developed to study the saturated zone (SZ) at Yucca Mountain, Nevada, and to aid in the design and analysis of hydrologic tests. Yucca Mountain is the proposed site for a nuclear waste repository for the United States. The model covers an area of approximately 100 km 2 around Yucca Mountain, as shown in Figure 1. The proposed repository is located in the unsaturated zone, immediately above the area of equidimensional gridblocks east of Solitario Canyon fault, which defines the crest of Yucca Mountain. The finely discretized region near the center of the domain corresponds to the area near a cluster of boreholes used for hydraulic and tracer testing. This discretization facilitates simulation of tests conducted there. The hydrogeologic structure beneath the mountain is comprised of dipping geologic units of variable thickness which are offset by faults. One of the primary objectives of the S 4 Z modeling effort is to study the potential effects of the faulted structure on flow. Therefore, replication of the geologic structure in the model mesh is necessary. This paper summarizes (1) the mesh discretization used to capture the faulted geologic structure, and (2) a model simulation that illustrates the significance of the geologic structure on SZ flow and the resulting macrodispersion

  8. Rocky mountain spotted fever in the United States, 2000-2007: interpreting contemporary increases in incidence.

    Science.gov (United States)

    Openshaw, John J; Swerdlow, David L; Krebs, John W; Holman, Robert C; Mandel, Eric; Harvey, Alexis; Haberling, Dana; Massung, Robert F; McQuiston, Jennifer H

    2010-07-01

    Rocky Mountain spotted fever (RMSF), a potentially fatal tick-borne infection caused by Rickettsia rickettsii, is considered a notifiable condition in the United States. During 2000 to 2007, the annual reported incidence of RMSF increased from 1.7 to 7 cases per million persons from 2000 to 2007, the highest rate ever recorded. American Indians had a significantly higher incidence than other race groups. Children 5-9 years of age appeared at highest risk for fatal outcome. Enzyme-linked immunosorbent assays became more widely available beginning in 2004 and were used to diagnose 38% of cases during 2005-2007. The proportion of cases classified as confirmed RMSF decreased from 15% in 2000 to 4% in 2007. Concomitantly, case fatality decreased from 2.2% to 0.3%. The decreasing proportion of confirmed cases and cases with fatal outcome suggests that changes in diagnostic and surveillance practices may be influencing the observed increase in reported incidence rates.

  9. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  10. Rocky Mountain spotted fever: a clinician's dilemma.

    Science.gov (United States)

    Masters, Edwin J; Olson, Gary S; Weiner, Scott J; Paddock, Christopher D

    2003-04-14

    Rocky Mountain spotted fever is still the most lethal tick-vectored illness in the United States. We examine the dilemmas facing the clinician who is evaluating the patient with possible Rocky Mountain spotted fever, with particular attention to the following 8 pitfalls in diagnosis and treatment: (1) waiting for a petechial rash to develop before diagnosis; (2) misdiagnosing as gastroenteritis; (3) discounting a diagnosis when there is no history of a tick bite; (4) using an inappropriate geographic exclusion; (5) using an inappropriate seasonal exclusion; (6) failing to treat on clinical suspicion; (7) failing to elicit an appropriate history; and (8) failing to treat with doxycycline. Early diagnosis and proper treatment save lives.

  11. Genetic analysis of scats reveals minimum number and sex of recently documented mountain lions

    Science.gov (United States)

    Naidu, Ashwin; Smythe, Lindsay A.; Thompson, Ron W.; Culver, Melanie

    2011-01-01

    Recent records of mountain lions Puma concolor and concurrent declines in desert bighorn sheep Ovis canadensis mexicana on Kofa National Wildlife Refuge in Arizona, United States, have prompted investigations to estimate the number of mountain lions occurring there. We performed noninvasive genetic analyses and identified species, individuals, and sex from scat samples collected from the Kofa and Castle Dome Mountains. From 105 scats collected, we identified a minimum of 11 individual mountain lions. These individuals consisted of six males, two females and three of unknown sex. Three of the 11 mountain lions were identified multiple times over the study period. These estimates supplement previously recorded information on mountain lions in an area where they were historically considered only transient. We demonstrate that noninvasive genetic techniques, especially when used in conjunction with camera-trap and radiocollaring methods, can provide additional and reliable information to wildlife managers, particularly on secretive species like the mountain lion.

  12. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Science.gov (United States)

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  13. Composite Sunrise Butte pluton: Insights into Jurassic–Cretaceous collisional tectonics and magmatism in the Blue Mountains Province, northeastern Oregon

    Science.gov (United States)

    Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.

    2015-01-01

    The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that

  14. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM) MODELS

    International Nuclear Information System (INIS)

    Y.S. Wu

    2005-01-01

    chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures)

  15. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

  16. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  17. Mountain Biking at Tsali: An Assessment of Users, Preferences, Conflicts, and Management Alternatives

    Science.gov (United States)

    J. Michael Bowker; Donald B.K. English

    2002-01-01

    Tsali Recreation Area is part of the Cheoah Ranger District of the Nantahala National Forest. Overlooking the Great Smoky Mountains, it is one of the premier mountain biking sites in the Eastern United States. The results of a 13-month on-site survey of 1,359 Tsali visitors examine the demographics, behavior, current trip profile, and attitudes toward user fees,...

  18. Energy in the Mountain West: Colonialism and Independence

    Energy Technology Data Exchange (ETDEWEB)

    Steven Piet; Lloyd Brown; Robert Cherry; Craig Cooper; Harold Heydt; Richard Holman; Travis McLing

    2007-08-01

    In many ways, the mountain west (Alaska, Arizona, Colorado, Idaho, Montana, New Mexico, Nevada, Utah, Wyoming) is an energy colony for the rest of the United States: it is rich in energy resources that are extracted to fuel economic growth in the wealthier and more populous coastal regions. Federal agencies and global corporations often behave as if the mountain west is a place to be exploited or managed for the benefit of customers and consumers elsewhere. Yet, the area. is not vast empty space with a limitless supply of natural resources, but rather a fast-growing region with a diverse economic base dependent on a limited supply of water. New decision processes and collaborations are slowly changing this situation, but in a piecemeal fashion that places local communities at odds with powerful external interests. Proper planning of major development is needed to insure that the west has a strong economic and cultural future after the fossil energy resources decline, even if that might be a century from now. To encourage the necessary public discussions, this paper identifies key differences between the mountain west and the rest of the United States and suggests some holistic approaches that could improve our future. This paper is designed to provoke thought and discussion; it does not report new analyses on energy resources or usage. It is a summary of a large group effort.

  19. Uncertainty analyses of unsaturated zone travel time at Yucca Mountain

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1993-01-01

    Uncertainty analysis method can be applied to numerical models of ground-water flow to estimate the relative importance of physical and hydrologic input variables with respect to ground-water travel time. Monte Carlo numerical simulations of unsaturated flow in the Calico Hills nonwelded zeolitic (CHnz) layer at Yucca Mountain, Nevada, indicate that variability in recharge, and to a lesser extent in matrix porosity, explains most of the variability in predictions of water travel time through the unsaturated zone. Variations in saturated hydraulic conductivity and unsaturated curve-fitting parameters were not statistically significant in explaining variability in water travel time through the unsaturated CHnz unit. The results of this study suggest that the large uncertainty associated with recharge rate estimates for the Yucca Mountain site is of concern because the performance of the potential repository would be more sensitive to uncertainty in recharge than to any other parameter evaluated. These results are not exhaustive because of the limited site characterization data available and because of the preliminary nature of this study, which is limited to a single stratigraphic unit, one dimension, and does not account for fracture flow or other potential fast pathways at Yucca Mountain

  20. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

    1995-05-01

    Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group.

  1. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994

    International Nuclear Information System (INIS)

    Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

    1995-01-01

    Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group

  2. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  3. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive

  4. Mountains

    Science.gov (United States)

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  5. Rocky Mountain Spotted Fever in the United States, 2000–2007: Interpreting Contemporary Increases in Incidence

    Science.gov (United States)

    Openshaw, John J.; Swerdlow, David L.; Krebs, John W.; Holman, Robert C.; Mandel, Eric; Harvey, Alexis; Haberling, Dana; Massung, Robert F.; McQuiston, Jennifer H.

    2010-01-01

    Rocky Mountain spotted fever (RMSF), a potentially fatal tick-borne infection caused by Rickettsia rickettsii, is considered a notifiable condition in the United States. During 2000 to 2007, the annual reported incidence of RMSF increased from 1.7 to 7 cases per million persons from 2000 to 2007, the highest rate ever recorded. American Indians had a significantly higher incidence than other race groups. Children 5–9 years of age appeared at highest risk for fatal outcome. Enzyme-linked immunosorbent assays became more widely available beginning in 2004 and were used to diagnose 38% of cases during 2005–2007. The proportion of cases classified as confirmed RMSF decreased from 15% in 2000 to 4% in 2007. Concomitantly, case fatality decreased from 2.2% to 0.3%. The decreasing proportion of confirmed cases and cases with fatal outcome suggests that changes in diagnostic and surveillance practices may be influencing the observed increase in reported incidence rates. PMID:20595498

  6. Temporal Damping Effect of the Yucca Mountain Fractured Saturated Rock on Transient Infiltration Pulses

    International Nuclear Information System (INIS)

    K. Zhang; Y.S. Wu; L. Pan

    2006-01-01

    Performance assessment of the Yucca Mountain unsaturated zone (UZ) as the site for an underground repository of high-level radioactive waste relies on the crucial assumption that water percolation processes in the unsaturated zone can be approximated as a steady-state condition. Justification of such an assumption is based on temporal damping effects of several geological units within the unsaturated tuff formation. In particular, the nonwelded tuff of the Paintbrush Group (PTn unit) at Yucca Mountain, because of its highly porous nature, has been conceptualized to have a significant capacity for temporally damping transient percolation fluxes. The objective of this study is to investigate these damping effects, using a three-dimensional (3-D) mountain-scale model as well as several one-dimensional (1-D) models. The 3-D model incorporates a wide variety of the updated field data for the highly heterogeneous unsaturated formation at Yucca Mountain. The model is first run to steady state and calibrated using field-measured data and then transient pulse infiltrations are applied to the model top boundary. Subsequent changes in percolation fluxes at the bottom of and within the PTn unit are examined under episodic infiltration boundary conditions. The 1-D model is used to examine the long-term response of the flow system to higher infiltration pulses, while the damping effect is also investigated through modeling tracer transport in the UZ under episodic infiltration condition. Simulation results show the existence of damping effects within the PTn unit and also indicate that the assumption of steady-state flow conditions below the PTn unit is reasonable. However, the study also finds that some fast flow paths along faults exist, causing vertical-flux quick responses at the PTn bottom to the episodic infiltration at the top boundary

  7. Quaternary sediment thickness and bedrock topography of the glaciated United States east of the Rocky Mountains

    Science.gov (United States)

    Soller, David R.; Garrity, Christopher P.

    2018-01-26

    Beginning roughly 2.6 million years ago, global climate entered a cooling phase known as the Pleistocene Epoch. As snow in northern latitudes compacted into ice several kilometers thick, it flowed as glaciers southward across the North American continent. These glaciers extended across the northern United States, dramatically altering the landscape they covered. East of the Rocky Mountains, the ice coalesced into continental glaciers (called the Laurentide Ice Sheet) that at times blanketed much of the north-central and northeastern United States. To the west of the Laurentide Ice Sheet, glaciers formed in the mountains of western Canada and the United States and coalesced into the Cordilleran ice sheet; this relatively smaller ice mass extended into the conterminous United States in the northernmost areas of western Montana, Idaho, and Washington. Throughout the Pleistocene, landscape alteration occurred by (1) glacial erosion of the rocks and sediments; (2) redeposition of the eroded earth materials in a form substantially different from their source rocks, in terms of texture and overall character; and (3) disruption of preexisting drainage patterns by the newly deposited sediments. In many cases, pre-glacial drainage systems (including, for example, the Mississippi River) were rerouted because their older drainage courses became blocked with glacial sediment.The continental glaciers advanced and retreated many times across those areas. During each ice advance, or glaciation, erosion and deposition occurred, and the landscape was again altered. Through successive glaciations, the landscape and the bedrock surface gradually came to resemble their present configurations. As continental ice sheets receded and the Pleistocene ended, erosion and deposition of sediment (for example in stream valleys) continued to shape the landscape up to the present day (albeit to a lesser extent than during glaciation). The interval of time since the last recession of the glaciers

  8. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  9. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Science.gov (United States)

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  10. Spatial clustering by disease severity among reported Rocky Mountain spotted fever cases in the United States, 2001-2005.

    Science.gov (United States)

    Adjemian, Jennifer Zipser; Krebs, John; Mandel, Eric; McQuiston, Jennifer

    2009-01-01

    Rocky Mountain spotted fever (RMSF) occurs throughout much of the United States, ranging in clinical severity from moderate to fatal infection. Yet, little is known about possible differences among severity levels across geographic locations. To identify significant spatial clusters of severe and non-severe disease, RMSF cases reported to Centers for Disease Control and Prevention (CDC) were geocoded by county and classified by severity level. The statistical software program SaTScan was used to detect significant spatial clusters. Of 4,533 RMSF cases reported, 1,089 hospitalizations (168 with complications) and 23 deaths occurred. Significant clusters of 6 deaths (P = 0.05, RR = 11.4) and 19 hospitalizations with complications (P = 0.02, RR = 3.45) were detected in southwestern Tennessee. Two geographic areas were identified in north-central North Carolina with unusually low rates of severity (P = 0.001, RR = 0.62 and P = 0.001, RR = 0.45, respectively). Of all hospitalizations, 20% were clustered in central Oklahoma (P = 0.02, RR = 1.43). Significant geographic differences in severity were observed, suggesting that biologic and/or anthropogenic factors may be impacting RMSF epidemiology in the United States.

  11. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  12. Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

    2012-12-15

    The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

  13. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  14. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  15. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Cloke, P.L.

    2000-01-01

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO 2 , 76.29; Al 2 O 3 , 12.55; FeO, 0.14; Fe 2 O 3 , 0.97; MgO, 0.13; CaO, 0.50; Na 2 O, 3.52; K 2 O, 4.83; TiO 2 , 0.11; and MnO, 0.07

  16. Advances in global mountain geomorphology

    Science.gov (United States)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  17. Snow hydrology in Mediterranean mountain regions: A review

    Science.gov (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard

    2017-08-01

    Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that

  18. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    McCord, John; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of

  19. Groundwater quality in the Klamath Mountains, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  20. Hydrogeology of the Besparmak (Pentadactilos) Mountains (TRNC) Karstic Aquifer

    International Nuclear Information System (INIS)

    Erduran, B.; Goekmenoglu, O.; Keskin, E.

    2002-01-01

    The Besparmak Mountains are located on the Nothern part of North Cyprus and lay paralel to the sea, 160 km 2 in length 10 km in width. Karstification, potential constituent and the hydro-dynamic structure of the Mesosoic aged carbonate rocks, located at high altitudes of the Besparmak Mountains have been investigated in this study. The Mesosoic aged carbonate rocks; dolomite, dolomitic limestones and recrytallized limestones are yhe units suitable for karstification in the exploration area. Surface area of the carbonate rocks is 84 km 2 . Chemical and isotopic samples have been collected, groundwater fluctuations have been observed and investigation wells have been openned for the definition of the karst aquifer. As the result of the geological, hydrogeological, drilling and geophysical investigations it was found that the Besparmak Mountains Karst Aquifer was formed of independent karstic systems and a total dynamic groundwater potential of aproximately 9 x 10 6 m 3 /year for these systems has been determined

  1. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-care vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  2. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-car vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  3. A thermomechanical far-field model of Yucca Mountain

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1991-04-01

    Thermal and mechanical finite element far-field models have been constructed for a potential repository site in the Topopah Spring Thermal/mechanical Unit at Yucca Mountain on the Nevada Test Site. The models reflect site-specific information that was available at the time of the study on the material properties and structural character of Yucca Mountain. The thermal model simulates transient heat transfer resulting from the emplacement of heat-generating nuclear waste in the repository. Simulation of boiling of the pore water is included in the model. The mechanical model simulates the tuff at Yucca Mountain as being an elastic/plastic, isotropic, heterogeneous continuum with one ubiquitous vertical joint set. The initial conditions of the mechanical model are based on a gravitational stress field. The model uses the temperatures predicted by the thermal finite element model as input to predict thermal stresses and displacements induced by the presence of the repository. Plasticity is incorporated in shear (fracture slip) and tension (fracture opening) by using a Mohr-Coulomb failure criterion. 6 refs., 15 figs., 2 tabs

  4. Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever.

    Science.gov (United States)

    Paddock, Christopher D; Finley, Richard W; Wright, Cynthia S; Robinson, Howard N; Schrodt, Barbara J; Lane, Carole C; Ekenna, Okechukwu; Blass, Mitchell A; Tamminga, Cynthia L; Ohl, Christopher A; McLellan, Susan L F; Goddard, Jerome; Holman, Robert C; Openshaw, John J; Sumner, John W; Zaki, Sherif R; Eremeeva, Marina E

    2008-11-01

    Rickettsia parkeri rickettsiosis, a recently identified spotted fever transmitted by the Gulf Coast tick (Amblyomma maculatum), was first described in 2004. We summarize the clinical and epidemiological features of 12 patients in the United States with confirmed or probable disease attributable to R. parkeri and comment on distinctions between R. parkeri rickettsiosis and other United States rickettsioses. Clinical specimens from patients in the United States who reside within the range of A. maculatum for whom an eschar or vesicular rash was described were evaluated by > or =1 laboratory assays at the Centers for Disease Control and Prevention (Atlanta, GA) to identify probable or confirmed infection with R. parkeri. During 1998-2007, clinical samples from 12 patients with illnesses epidemiologically and clinically compatible with R. parkeri rickettsiosis were submitted for diagnostic evaluation. Using indirect immunofluorescence antibody assays, immunohistochemistry, polymerase chain reaction assays, and cell culture isolation, we identified 6 confirmed and 6 probable cases of infection with R. parkeri. The aggregate clinical characteristics of these patients revealed a disease similar to but less severe than classically described Rocky Mountain spotted fever. Closer attention to the distinct clinical features of the various spotted fever syndromes that exist in the United States and other countries of the Western hemisphere, coupled with more frequent use of specific confirmatory assays, may unveil several unique diseases that have been identified collectively as Rocky Mountain spotted fever during the past century. Accurate assessments of these distinct infections will ultimately provide a more valid description of the currently recognized distribution, incidence, and case-fatality rate of Rocky Mountain spotted fever.

  5. Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Nimick, F.B.

    1984-12-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design, waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely

  6. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  7. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  8. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  9. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  10. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  11. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  12. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  13. Common and uncommon sense about erosional processes in mountain lands

    Science.gov (United States)

    R. M. Rice

    1981-01-01

    Current knowledge of erosional processes in mountainous watersheds is reviewed with emphasis on the west coast of the United States. Appreciation of the relative magnitude of erosional processes may be distorted by the tendency for researchers to study ""problems"" and by the relatively short time span of their records

  14. The status of radioactive waste repository development in the United States - December 2011

    International Nuclear Information System (INIS)

    Hill, David R.

    2012-01-01

    The current state of affairs concerning development in the United States of a permanent repository for disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) is, in a word, uncertain. The President of the United States has asserted that he believes licensing and development of the Yucca Mountain repository should be abandoned, while other important parties believe licensing and development should continue. And not surprisingly, there is a disagreement as to what the law requires and whether the licensing process for the Yucca Mountain repository can be terminated at this point, even if the President would like for that to happen. The future of Yucca Mountain, and the future of radioactive waste disposal in the United States generally, currently are pending before the US Court of Appeals for the District of Columbia Circuit, and eventually the Supreme Court of the United States may decide some of the important legal issues concerning Yucca Mountain's future. The November 2012 US elections also likely will have a significant impact on future radioactive waste repository development

  15. Ecohydrologic process modeling of mountain block groundwater recharge.

    Science.gov (United States)

    Magruder, Ian A; Woessner, William W; Running, Steve W

    2009-01-01

    Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) (Running and Hunt 1993). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) (Running et al. 1987). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m(3) /d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates. Copyright © 2009 The Author(s). Journal compilation © 2009 National Ground Water Association.

  16. ANALYZING THE MOUNTAIN TOURISM DEMAND IN ROMANIA OVER THE LAST TWO DECADES

    Directory of Open Access Journals (Sweden)

    TIGU GABRIELA

    2015-07-01

    Full Text Available Mountain tourism demand fluctuated predominantly downward in the last two decades, as a result of some complex economic, social, and political changes. Tourism demand for the Romanian mountain destinations in the last two decades has been analyzed in quantity and evolution, by processing (also graphically and interpreting the specific tourism indicators (tourist arrivals, tourist structure, tourists’ preference for accommodation, overnight stays, average length of stay, accommodation occupancy rate, also making comparisons with the situation at national level. Mountain tourism demand is an important segment of tourism demand (domestic and international in Romania, with shares between 13.19% (minimum in 1994 and 15.63% (maximum in 2013. The mountain area is ranked second most popular for the Romanian tourists and third place for the foreign tourists. Tourist arrivals in the mountain area recorded the following variations: a period of sharp decline (1994-2002 with a minimum in 2002 (700,000 tourists, a period of growth (2003-2008 with values around 1 million tourists in 2007 and 2008, a decrease of 100,000 tourists corresponding to the economic crisis in 2008-2009, followed by a period (2010-2014 of strong revival with the maximum value of the entire analyzed period (nearly 1,3 million tourists in 2014. The fluctuations of overnight stays were directly proportional to those of arrivals. The increasing demand for mountain destinations resulted from a better promotion of winter sports in recent years, a revival ("fashion" of Romanians’ preferences for winter sports practicing; in parallel, a number of ski areas were arranged or redesigned in many traditional 'white' resorts, and several smaller centers for winter sports emerged or were re-launched. Tourists’ preferences for the mountain accommodation units such as boarding houses, villas and chalets reflected the characteristics of the mountain tourism activities and the corresponding

  17. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America.

    Science.gov (United States)

    Pickering, Catherine Marina; Hill, Wendy; Newsome, David; Leung, Yu-Fai

    2010-01-01

    Hiking, horse riding and mountain biking are popular in protected areas in Australia and the United States of America. To help inform the often contentious deliberations about use of protected areas for these three types of activities, we review recreation ecology research in both countries. Many impacts on vegetation, soils and trails are similar for the three activities, although there can be differences in severity. Impacts include damage to existing trails, soil erosion, compaction and nutrification, changes in hydrology, trail widening, exposure of roots, rocks and bedrock. There can be damage to plants including reduction in vegetation height and biomass, changes in species composition, creation of informal trails and the spread of weeds and plant pathogens. Due to differences in evolutionary history, impacts on soil and vegetation can be greater in Australia than in the USA. There are specific social and biophysical impacts of horses such as those associated with manure and urine, grazing and the construction and use of tethering yards and fences. Mountain bike specific impacts include soil and vegetation damage from skidding and the construction of unauthorised trails, jumps, bridges and other trail technical features. There are gaps in the current research that should be filled by additional research: (1) on horse and mountain bike impacts to complement those on hiking. The methods used need to reflect patterns of actual usage and be suitable for robust statistical analysis; (2) that directly compares types and severity of impacts among activities; and (3) on the potential for each activity to contribute to the spread of weeds and plant pathogens. Additional research will assist managers and users of protected areas in understanding the relative impacts of these activities, and better ways to manage them. It may not quell the debates among users, managers and conservationists, but it will help put it on a more scientific footing. 2009 Elsevier Ltd. All

  18. Habitat-effectiveness index for elk on Blue Mountain Winter Ranges.

    Science.gov (United States)

    Jack Ward Thomas; Donavin A. Leckenby; Mark Henjum; Richard J. Pedersen; Larry D. Bryant

    1988-01-01

    An elk-habitat evaluation procedure for winter ranges in the Blue Mountains of eastern Oregon and Washington is described. The index is based on an interaction of size and spacing of cover and forage areas, roads open to traffic per unit of area, cover quality, and quantity and quality of forage.

  19. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  20. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  1. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hausel, W.D.

    1983-01-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s

  2. Environmental Assessment Addressing the Privatization of Military Family Housing at Mountain Home Air Force Base, Idaho

    Science.gov (United States)

    2011-10-01

    chemical characteristics for producing food, feed, forage, fiber , and oilseed crops, and is also available for these uses. The soil qualities, growing...evidenced at Mountain Home AFB by basaltic and rhyolitic rock formations and by remnant volcanic features, such as cones, vents, and shield volcanoes...These volcanic deposits form the bedrock underlying the region. The thick basaltic lava flows and interbedded sedimentary units around Mountain

  3. Plant invasions in mountains: Global lessons for better management

    Science.gov (United States)

    McDougall, K.L.; Khuroo, A.A.; Loope, L.L.; Parks, C.G.; Pauchard, A.; Reshi, Z.A.; Rushworth, I.; Kueffer, C.

    2011-01-01

    Mountains are one of few ecosystems little affected by plant invasions. However, the threat of invasion is likely to increase because of climate change, greater anthropogenic land use, and continuing novel introductions. Preventive management, therefore, will be crucial but can be difficult to promote when more pressing problems are unresolved and predictions are uncertain. In this essay, we use management case studies from 7 mountain regions to identify common lessons for effective preventive action. The degree of plant invasion in mountains was variable in the 7 regions as was the response to invasion, which ranged from lack of awareness by land managers of the potential impact in Chile and Kashmir to well-organized programs of prevention and containment in the United States (Hawaii and the Pacific Northwest), including prevention at low altitude. In Australia, awareness of the threat grew only after disruptive invasions. In South Africa, the economic benefits of removing alien plants are well recognized and funded in the form of employment programs. In the European Alps, there is little need for active management because no invasive species pose an immediate threat. From these case studies, we identify lessons for management of plant invasions in mountain ecosystems: (i) prevention is especially important in mountains because of their rugged terrain, where invasions can quickly become unmanageable; (ii) networks at local to global levels can assist with awareness raising and better prioritization of management actions; (iii) the economic importance of management should be identified and articulated; (iv) public acceptance of management programs will make them more effective; and (v) climate change needs to be considered. We suggest that comparisons of local case studies, such as those we have presented, have a pivotal place in the proactive solution of global change issues. ?? International Mountain Society.

  4. Cryptic diversity in Ptyodactylus (Reptilia: Gekkonidae from the northern Hajar Mountains of Oman and the United Arab Emirates uncovered by an integrative taxonomic approach.

    Directory of Open Access Journals (Sweden)

    Marc Simó-Riudalbas

    Full Text Available The Hajar Mountains of south-eastern Arabia form an isolated massif surrounded by the sea to the east and by a large desert to the west. As a result of their old geological origin, geographical isolation, complex topography and local climate, these mountains provide an important refuge for endemic and relict species of plants and animals. With 19 species restricted to the Hajar Mountains, reptiles are the vertebrate group with the highest level of endemicity, becoming an excellent model for understanding the patterns and processes that generate and shape diversity in this arid mountain range. The geckos of the Ptyodactylus hasselquistii species complex are the largest geckos in Arabia and are found widely distributed across the Arabian Mountains, constituting a very important component of the reptile mountain fauna. Preliminary analyses suggested that their diversity in the Hajar Mountains may be higher than expected and that their systematics should be revised. In order to tackle these questions, we inferred a nearly complete calibrated phylogeny of the genus Ptyodactylus to identify the origin of the Hajar Mountains lineages using information from two mitochondrial and four nuclear genes. Genetic variability within the Hajar Mountains was further investigated using 68 specimens of Ptyodactylus from 46 localities distributed across the entire mountain range and sequenced for the same genes as above. The molecular phylogenies and morphological analyses as well as niche comparisons indicate the presence of two very old sister cryptic species living in allopatry: one restricted to the extreme northern Hajar Mountains and described as a new species herein; the other distributed across the rest of the Hajar Mountains that can be confidently assigned to the species P. orlovi. Similar to recent findings in the geckos of the genus Asaccus, the results of the present study uncover more hidden diversity in the northern Hajar Mountains and stress once

  5. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the 8,806-square-mile Klamath Mountains (KLAM) study unit was investigated by the U.S. Geological Survey (USGS) from October to December 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The KLAM study unit was the thirty-third study unit to be sampled as part of the GAMA-PBP. The GAMA Klamath Mountains study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined by the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the KLAM study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallower groundwater may be more vulnerable to surficial contamination. In the KLAM study unit, groundwater samples were collected from sites in Del Norte, Siskiyou, Humboldt, Trinity, Tehama, and Shasta Counties, California. Of the 39 sites sampled, 38 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining site was non-randomized (understanding site). The groundwater samples were analyzed for basic field parameters, organic constituents (volatile organic compounds [VOCs] and pesticides and pesticide degradates), inorganic constituents (trace elements, nutrients, major and minor ions, total dissolved solids [TDS]), radon-222, gross alpha and gross beta

  6. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  7. Microendemicity in the northern Hajar Mountains of Oman and the United Arab Emirates with the description of two new species of geckos of the genus Asaccus (Squamata: Phyllodactylidae

    Directory of Open Access Journals (Sweden)

    Salvador Carranza

    2016-08-01

    Full Text Available Background The Hajar Mountains of Oman and the United Arab Emirates (UAE is the highest mountain range in Eastern Arabia. As a result of their old geological origin, geographical isolation, complex topography and local climate, these mountains provide an important refuge for endemic and relict species of plants and animals with strong Indo-Iranian affinities. Among vertebrates, the rock climbing nocturnal geckos of the genus Asaccus represent the genus with the highest number of endemic species in the Hajar Mountains. Recent taxonomic studies on the Zagros populations of Asaccus have shown that this genus is much richer than it was previously thought and preliminary morphological and molecular data suggest that its diversity in Arabia may also be underestimated. Methods A total of 83 specimens originally classified as Asaccus caudivolvulus (including specimens of the two new species described herein, six other Asaccus species from the Hajar and the Zagros Mountains and two representatives of the genus Haemodracon were sequenced for up to 2,311 base pairs including the mitochondrial 12S and cytb and the nuclear c-mos, MC1R and ACM4 genes. Phylogenetic relationships were inferred using both Bayesian and maximum-likelihood approaches and the former method was also used to calibrate the phylogenetic tree. Haplotype networks and phylogenetic trees were inferred from the phased nuclear genes only. Sixty-one alcohol-preserved adult specimens originally classified as Asaccus caudivolvulus from the northern Hajar Mountains were examined for 13 morphometric and the five meristic variables using multivariate methods and were also used to diagnose and describe the two new species. Results The results of the molecular and morphological analyses indicate that the species originally classified as Asaccus caudivolvulus is, in fact, an assemblage of three different species that started diversifying during the Mid-Miocene. The molecular phylogenies consistently

  8. Challenges and issues with building a potential railroad to Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, R.L.

    2004-07-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based

  9. Challenges and issues with building a potential railroad to Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.

    2004-01-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public

  10. Management and research of desert tortoises for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; Cox, M.K.; Doerr, T.B.; Green, R.A.; Mueller, J.M.; O'Farrell, T.P.; Rakestraw, D.L.

    1991-01-01

    A program has been developed for the Yucca Mountain Project (YMP) to manage and study the desert tortoise (Gopherus agassizi), a threatened species that occurs at low densities at Yucca Mountain. The goals of this program are to better understand the biology and status of the desert tortoise population at Yucca Mountain, assess impacts on tortoises of site characterization (SC) activities, and minimize those impacts. The first steps we took to develop this program were to compile the available information on tortoise biology at Yucca Mountain, ascertain what information was lacking, and identify the potential impacts on tortoises of SC. We then developed a technical design for identifying and mitigating direct and cumulative impacts and providing information on tortoise biology. Interrelated studies were developed to achieve these objectives. The primary sampling unit for the impact monitoring studies is radiomarked tortoises. Three populations of tortoises will be sampled: individuals isolated from disturbances (control), individuals near major SC activities (direct effects treatment and worst-case cumulative effects treatment), and individuals from throughout Yucca Mountain (cumulative effects treatment). Impacts will be studied by measuring and comparing survival, reproduction, movements, habitat use, health, and diet of these tortoises. A habitat quality model also will be developed and the efficacy of mitigation techniques, such as relocating tortoises, will be evaluated. 29 refs

  11. Parametric analysis of a TOUGH2 model for the unsaturated zone at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y.; Mishra, S.; Dunlap, B. [CRWMS M& O/INTERA, Inc., Las Vegas, NV (United States)

    1995-03-01

    Yucca Mountain in Nevada is currently being investigated for suitability as a potential site for the disposal of high-level radioactive waste and spent nuclear fuel. As the most important natural barrier against radionuclide migration to the accessible environment, the unsaturated zone at Yucca mountain is a key constituent in assessing the ambient geohydrology. A three-dimensional site-scale TOUGH2 model of the unsaturated zone is currently under development by Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS) consists of six hydrogeologic units - TCw (Tiva Canyon welded), PTn (Paintbrush nonwelded), TSw (Topopah Spring welded), TSv (Topopah Spring welded-vitrophyre), CHnz (Calico Hills nonwelded-vitric), and CHnz (Calico Hills nonwelded-zeolitic), which are further subdivided into seventeen layers to represent additional lithologic detail. Based on the work of Klavetter and Peters, the fractured units TCw and TSw are treated as equivalent continua with specified threshold saturation for triggering fracture flow.

  12. Interpretation of recent gravity profiles over the ophiolite belt, Northern Oman Mountains, United Arab Emirates

    Science.gov (United States)

    Khattab, M. M.

    1993-04-01

    The compiled Bouguer gravity anomaly map over parts of the ophiolite rocks of the Northern Oman Mountains suggests the existence of three partially serpentinized nappes: two along the Gulf of Oman coast with axes near Dadnah, near Fujira and the third 17 km SSE of Masafi. Modeling of the subsurface geology, beneath two gravity profiles (Diba-Kalba and Masafi-Fujira), is based on the occurrence (field evidence) of multiphase low-angle thrusting of the members of the Tethyan lithosphere in northern and Oman Mountains. An assumed crustal model at the Arabian continental margin, beneath the Masafi-Fujira profile, is made to explain an intense gravity gradient. Gravity interpretation is not inconsistent with a gliding mechanism for obduction of the ophiolite on this part of the Arabian continental margin.

  13. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  14. Klamath Mountains Ecoregion: Chapter 13 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Sleeter, Benjamin M.; Calzia, James P.

    2012-01-01

    The Klamath Mountains Ecoregion covers approximately 47,791 km2 (18,452 mi2) of the Klamath and Siskiyou Mountains of northern California and southern Oregon (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is flanked by the Coast Range Ecoregion to the west, the Southern and Central California Chaparral and Oak Woodlands Ecoregion to the south, the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions to the east, and the Willamette Valley Ecoregion to the north. The mild Mediterranean climate of the ecoregion is characterized by hot, dry summers and wet winters; the amount of winter moisture varies within the ecoregion, decreasing from west to east. The Klamath–Siskiyou Mountains region is widely recognized as an important biodiversity hotspot (Whittaker, 1960; Kruckeberg, 1984; Wagner, 1997; DellaSala and others, 1999), containing more than 3,500 plant species, more than 200 of which are endemic (Sawyer, 2007). A biological assessment by DellaSala and others (1999) ranked the Klamath–Siskiyou Mountains region as the fifth richest coniferous forest in terms of species diversity. In addition, the International Union for the Conservation of Nature considers the region an area of notable botanical importance (Wagner, 1997). Twenty-nine different species of conifers can be found in the Klamath Mountains Ecoregion (Sawyer, 1996).

  15. Geologic map of the Providence Mountains in parts of the Fountain Peak and adjacent 7.5' quadrangles, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.

    2017-03-22

    IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.

  16. Stonewall Mountain Volcanic Center, southern Nevada: Stratigraphic, structural, and facies relations of outflow sheets, near-vent tuffs, and intracaldera units

    Science.gov (United States)

    Weiss, Steven I.; Noble, Donald C.

    1989-05-01

    Directly south and southeast of Stonewall Mountain, Nevada, a depression and north facing caldera scarp were formed during and(or) after eruption of the Spearhead Member of the late Miocene Stonewall Flat Tuff. Abundant large lithic and juvenile blocks are present in the Spearhead Member within 0.5 km of this topographic margin but absent elsewhere in the ash-flow sheet, consistent with eruption from vents in the Stonewall Mountain area. Within about 100,000 years, comendite tuff of the overlying Civet Cat Canyon Member of the Stonewall Flat Tuff buried the depression and associated scarp. The Civet Cat Canyon Member is traceable continuously to the north from an outflow sheet capping northwestern Pahute Mesa, into near-vent tuff on the southeastern flank of Stonewall Mountain. Proximal outflow-sheet tuff locally exhibits strong rheomorphic disruption and is overlain without a cooling break by surge, flow, and fall deposits of trachytic composition. Much of Stonewall Mountain is composed of welded tuff and megabreccia interpreted as intracaldera tuff of the Civet Cat Canyon Member, strongly suggesting that the vent area of the member was largely within Stonewall Mountain. Welded tuff of trachytic composition comprises an important part of the intracaldera Civet Cat Canyon Member, which was intruded by dikes and plugs of trachyte and rhyolite. Juvenile inclusions of basalt dispersed in near-vent facies trachyte tuff provide direct evidence for the high-level involvement of basaltic magma in the evolution of the highly potassic Stonewall Mountain center. Complex discordant compaction foliations and the widespread presence of megabreccia within the intracaldera tuff suggest, following Foley (1978), cauldron subsidence by piecemeal collapse during eruption of the Civet Cat Canyon Member. The elevation of intracaldera tuff and intrusions in Stonewall Mountain above the surrounding ashflow sheet suggests a significant amount of magmatic uplift, perhaps involving the

  17. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  18. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  19. TBM tunneling on the Yucca Mountain Project: Proceedings

    International Nuclear Information System (INIS)

    Williamson, G.E.; Gowring, I.M.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long term, high level nuclear waste repository in the United States. Status of this long-term project form the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF), which is being excavated with a 7. 6 m(25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3 to 7.6 m(10 to 25 ft). Prior to construction, extensive constructibility reviews were an interactive part of the final design. Intent was to establish a constructible design that met the long-term stability requirements for radiological safety of a future repository while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  20. MOUNTAIN TOURISM INTERCONNECTIONS. VARIATION OF MOUNTAIN TOURIST FLOW IN SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    George CHEIA

    2013-12-01

    Full Text Available Mountain tourism, in addition to one of the most common types of tourism, is generated by a complex of factors and at the same time, triggers a series of processes involving tourism phenomenon, especially the environment where it is taking place. This paper aims to discuss some of these causal factors, and the relationship between this type of tourism and the tourist area itself (1. By using SPSS analytical methods , it can be practically demonstrated the impact of mountain tourist flow in spas (2 and mountain resorts (3 in Suceava county.

  1. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    Science.gov (United States)

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing

  2. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  3. Preparing to Submit a License Application for Yucca Mountain

    International Nuclear Information System (INIS)

    W.J. Arthur; M.D. Voegele

    2005-01-01

    of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste

  4. Origin and implications of a thrust-bound gypsiferous unit along the western edge of Jabal Sumeini, northern Oman Mountains

    Science.gov (United States)

    Cooper, David J. W.; Ali, Mohammed Y.; Searle, Michael P.

    2018-04-01

    The Oman Mountains comprise a series of thrust sheets of Neo-Tethyan oceanic rocks that were emplaced onto the Arabian continental margin during obduction of the Semail Ophiolite during the Late Cretaceous. Three separate groups of anomalous gypsiferous bodies intrude the allochthonous units along faults over a distance of about 150 km in the Hawasina Window, Jabal Qumayrah and Jabal Sumeini. The bodies at Jabal Sumeini form a band about 4 km long and up to 100 m wide along a late-stage thrust that restacks the allochthon over a post-emplacement Maastrichtian-Palaeogene sedimentary succession. The gypsum shows evidence of flow-folding and contains numerous clasts and rafts of a range of quartzose sandstones, but with only a minor component from carbonates from the Neo-Tethyan Sumeini Group in the hanging-wall. Palaeogene limestones from the footwall succession are essentially absent. Strontium isotope ratios are high and intersect with the open ocean-water reference curve for the Late Cambrian-Ordovician and Late Miocene-Pliocene. They are also noticeably higher than the ratios from the two other gypsiferous outcrop areas in the Oman Mountains and from outcrops of Ediacaran-Early Cambrian salt domes in central Oman. However, the regional stratigraphy points towards a source of the gypsum from either an Ediacaran-Early Cambrian Ara Group salt basin or from the Lower Fars Formation (Early-Middle Miocene), and derivation of the sandstone clasts and rafts from thick Lower Palaeozoic clastic sequences. The discrepancy with the ages inferred from the strontium isotope data can be attributed to deposition of the gypsum in restricted conditions not in equilibrium with the prevailing ocean water. Two models are presented, for an Ediacaran-Early Cambrian and an Early-Middle Miocene source. While the latter cannot be wholly discounted, the stratigraphic and structural context point more strongly towards an Ediacaran-Early Cambrian Ara Group source of the gypsum. This was

  5. The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section

    Science.gov (United States)

    Arragoni, S.; Maggi, M.; Cianfarra, P.; Salvini, F.

    2016-06-01

    Newly collected structural data in Eastern Sardinia (Italy) integrated with numerical techniques led to the reconstruction of a 2-D admissible and balanced model revealing the presence of a widespread Cenozoic fold-and-thrust belt. The model was achieved with the FORC software, obtaining a 3-D (2-D + time) numerical reconstruction of the continuous evolution of the structure through time. The Mesozoic carbonate units of Eastern Sardinia and their basement present a fold-and-thrust tectonic setting, with a westward direction of tectonic transport (referred to the present-day coordinates). The tectonic style of the upper levels is thin skinned, with flat sectors prevailing over ramps and younger-on-older thrusts. Three regional tectonic units are present, bounded by two regional thrusts. Strike-slip faults overprint the fold-and-thrust belt and developed during the Sardinia-Corsica Block rotation along the strike of the preexisting fault ramps, not affecting the numerical section balancing. This fold-and-thrust belt represents the southward prosecution of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani Block. Relative ages relate its evolution to the meso-Alpine event (Eocene-Oligocene times), prior to the opening of the Tyrrhenian Sea (Tortonian). Results fill a gap of information about the geodynamic evolution of the European margin in Central Mediterranean, between Corsica and the Calabria-Peloritani Block, and imply the presence of remnants of this double-verging belt, missing in the Southern Tyrrhenian basin, within the Southern Apennine chain. The used methodology proved effective for constraining balanced cross sections also for areas lacking exposures of the large-scale structures, as the case of Eastern Sardinia.

  6. Completion Report for Well ER-16-1 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2006-12-01

    Well ER-16-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June and July 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit, Number 99. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of the Shoshone Mountain area, especially in the older Tertiary and pre-Tertiary strata. The main 46.99-centimeter hole was drilled to a depth of 702.9 meters and cased with 33.97-centimeter casing to 663.7 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to total depth of 1,220.7 meters. A completion string set at the depth of 1,162.4 meters consisted of 13.97-centimeter stainless-steel casing, with one continuous slotted interval open to the lower carbonate aquifer. The fluid level in the borehole soon dropped, so the borehole was deepened in July 2006. To deepen the borehole, the slotted section was cemented and a 12.1-centimeter hole was drilled through the bottom of the completion string to the new total depth of 1,391.7 meters, which is 171.0 meters deeper than the original borehole. A string of 6.03-centimeter carbon-steel tubing with one continuous slotted interval at 1,361.8 to 1,381.4 meters, and open to the lower carbonate aquifer, was installed in the well with no gravel packing or cement, to serve as a monitoring string. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 37 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 646.8 meters of Tertiary volcanic rocks and 744.9 meters

  7. Hemlock resources at risk in the Great Smoky Mountains National Park

    Science.gov (United States)

    Kristine D. Johnson; Fred P. Hain; Katherine S. Johnson; Felton Hastings

    2000-01-01

    Eastern hemlock (Tsuga canadensis (L.) Carr) is the dominant species in a variety of sites in Great Smoky Mountains National Park. Hemlock covers approximately 3820 acres (1528 hectares) or one percent of the Park, which at 524,856 acres is the largest area managed as wilderness in the eastern United States. Since timber was never harvested in about...

  8. YUCCA MOUNTAIN PROJECT - A BRIEFING -

    International Nuclear Information System (INIS)

    2003-01-01

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet

  9. The Geologic Story of the Uinta Mountains

    Science.gov (United States)

    Hansen, Wallace R.

    1969-01-01

    than scientific; his second, more scientific trip was made 2 years later. Powell revisited the Uinta Mountains in 1874 and 1875 to complete the studies begun 6 years earlier. His classic 'Report on the Geology of the Eastern Portion of the Uinta Mountains and a Region of Country Adjacent Thereto' was published in 1876. King's survey?officially 'The United States Geological Exploration of the Fortieth Parallel'?is better known simply as the '40th Parallel Survey.' King began working eastward from California in 1867. The Uinta Mountains region, however, was mapped by S. F. Emmons, under the supervision of King, in the summers of 1869 and 1871. Emmons' work was monumental, and although he emphasized in his letter of transmittal to King the exploratory nature of the work?as the formal title of the report indicates?his maps, descriptions, and conclusions reflect a comprehensive understanding of the country and its rocks. The 40th Parallel report contains the best, most complete early descriptions of the Uinta Mountains. It, indeed, is a treasurechest of information and a landmark contribution to the emerging science of geology. Hayden visited the Uinta Mountains in 1870, descending the valley of Henrys Fork to Flaming Gorge in the fall after having earlier examined the higher part of the range to the west. Most of Hayden's observations were cursory, and he repeatedly expressed regret at having insufficient time for more detailed studies. In reference to the area between Clay Basin and Browns Park, he remarked (Hayden, 1871, p. 67) somewhat dryly that 'the geology of this portion of the Uinta range is very complicated and interesting. To have solved the problem to my entire satisfaction would have required a week or two.' Eighty-odd years later I spent several months there?looking at the same rocks. Powell was perhaps more creative?more intuitive?than either King or Hayden, and his breadth of interest in the fields of geology, physiography, ethnology, an

  10. Statistical analysis of hydrologic data for Yucca Mountain

    International Nuclear Information System (INIS)

    Rutherford, B.M.; Hall, I.J.; Peters, R.R.; Easterling, R.G.; Klavetter, E.A.

    1992-02-01

    The geologic formations in the unsaturated zone at Yucca Mountain are currently being studied as the host rock for a potential radioactive waste repository. Data from several drill holes have been collected to provide the preliminary information needed for planning site characterization for the Yucca Mountain Project. Hydrologic properties have been measured on the core samples and the variables analyzed here are thought to be important in the determination of groundwater travel times. This report presents a statistical analysis of four hydrologic variables: saturated-matrix hydraulic conductivity, maximum moisture content, suction head, and calculated groundwater travel time. It is important to modelers to have as much information about the distribution of values of these variables as can be obtained from the data. The approach taken in this investigation is to (1) identify regions at the Yucca Mountain site that, according to the data, are distinctly different; (2) estimate the means and variances within these regions; (3) examine the relationships among the variables; and (4) investigate alternative statistical methods that might be applicable when more data become available. The five different functional stratigraphic units at three different locations are compared and grouped into relatively homogeneous regions. Within these regions, the expected values and variances associated with core samples of different sizes are estimated. The results provide a rough estimate of the distribution of hydrologic variables for small core sections within each region

  11. Yucca Mountain digital database

    International Nuclear Information System (INIS)

    Daudt, C.R.; Hinze, W.J.

    1992-01-01

    This paper discusses the Yucca Mountain Digital Database (DDB) which is a digital, PC-based geographical database of geoscience-related characteristics of the proposed high-level waste (HLW) repository site of Yucca Mountain, Nevada. It was created to provide the US Nuclear Regulatory Commission's (NRC) Advisory Committee on Nuclear Waste (ACNW) and its staff with a visual perspective of geological, geophysical, and hydrological features at the Yucca Mountain site as discussed in the Department of Energy's (DOE) pre-licensing reports

  12. Recreational mountain biking injuries.

    Science.gov (United States)

    Aitken, S A; Biant, L C; Court-Brown, Charles M

    2011-04-01

    Mountain biking is increasing in popularity worldwide. The injury patterns associated with elite level and competitive mountain biking are known. This study analysed the incidence, spectrum and risk factors for injuries sustained during recreational mountain biking. The injury rate was 1.54 injuries per 1000 biker exposures. Men were more commonly injured than women, with those aged 30-39 years at highest risk. The commonest types of injury were wounding, skeletal fracture and musculoskeletal soft tissue injury. Joint dislocations occurred more commonly in older mountain bikers. The limbs were more commonly injured than the axial skeleton. The highest hospital admission rates were observed with head, neck and torso injuries. Protective body armour, clip-in pedals and the use of a full-suspension bicycle may confer a protective effect.

  13. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  14. Acid-rain induced changes in streamwater quality during storms on Catoctin Mountain, Maryland

    Science.gov (United States)

    Rice, Karen C.; Bricker, O.P.

    1992-01-01

    Catoctin Mountain receives some of the most acidic (lowest pH) rain in the United States. In 1990, the U.S. Geological Survey (USGS), in cooperation with the Maryland Department of the Environment (MDE) and the Maryland Department of Natural Resources (DNR), began a study of the effects of acid rain on the quality of streamwater on the part of Catoctin Mountain within Cunningham Falls State Park, Maryland (fig. 1). Samples of precipitation collected on the mountain by the USGS since 1982 have been analyzed for acidity and concentration of chemical constituents. During 1982-91, the volume-weighted average pH of precipitation was 4.2. (Volume weighting corrects for the effect of acids being washed out of the atmosphere at the beginning of rainfall). The pH value is measured on a logarithmic scale, which means that for each whole number change, the acidity changes by a factor of 10. Thus rain with a pH of 4.2 is more than 10 times as acidic as uncontaminated rain, which has a pH of about 5.6. The acidity of rain during several rainstorms on Catoctin Mountain was more than 100 times more acidic than uncontaminated rain.

  15. Rock mass mechanical property estimation strategy for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Lin, M.; Brechtel, C.E.; Hardy, M.P.; Bauer, S.J.

    1992-01-01

    This paper presents a method of estimating the rock mass properties for the welded and nonwelded tuffs based on currently available information on intact rock and joint characteristics at the Yucca Mountain site. Variability of the expected ground conditions at the potential repository horizon (the TSw2 thermomechanical unit) and in the Calico Hills nonwelded tuffs is accommodated by defining five rock mass quality categories in each unit based upon assumed and observed distributions of the data

  16. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania)

    Science.gov (United States)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2017-03-01

    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  17. Between a Rock and a Blue Chair: David Hockney’s Rocky Mountains and Tired Indians (1965

    Directory of Open Access Journals (Sweden)

    Martin Hammer

    2017-04-01

    Full Text Available Travel and cultural exchange between the United Kingdom and the United States of America became a key feature of the 1960s, shaping the world view of many a British artist, curator, architect, writer, film-maker, and academic. Against that wider backdrop, I offer here a focused reading of David Hockney’s 1965 painting, Rocky Mountains and Tired Indians. With its faux-naive idiom and overt but quirkily un-modern American theme, the work conveys the artist’s singular take on what it felt like to be a Brit at large in the US, an environment at once wondrously exotic and at times strikingly banal. Close analysis discloses Hockney’s rich repertoire of artistic and literary allusions in Rocky Mountains, and the meanings and associations these may have encapsulated.

  18. Rocky Mountain spotted fever

    Science.gov (United States)

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  19. The Participatory Construction of Agro-Ecological Knowledge As A Soil Conservation Strategy In The Mountain Region of Rio de Janeiro State (Brazil

    Directory of Open Access Journals (Sweden)

    de Assis Renato Linhares

    2018-02-01

    Full Text Available Agriculture in the mountain region of Rio de Janeiro State is characterized by intensive soil use and input. Such mountainous environments are vulnerable to climate events; thus, the current article presents a report on methods applied to exchange academic and traditional knowledge. The aim is to expand farmers’ perception about the need of implementing agro-ecological practices, mainly soil management practices, which are important for agricultural sustainability in mountainous environments. The study was conducted in a Nova Friburgo family production unit, in the mountain region of Rio de Janeiro State (Brazil. It consisted of implementing three observation and soil organic-matter management units. The idea was to reduce the incidence of clubroot of crucifers disease caused by Plasmidiophora brassicae. The soil fauna was discussed with local farmers, with emphasis on the association between ecological processes and soil management. The present study improved the discussion with farmers and the need of introducing other innovative conservation practices such as no-tillage system and participatory research based on agro-ecological propositions.

  20. Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)

    Science.gov (United States)

    Avetisyan, M. H.

    2018-01-01

    The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.

  1. Studies on ’Macaca mulatta’ Infected with Rocky Mountain Spotted Fever

    Science.gov (United States)

    1976-09-10

    Mountain spotted fever (RMSF) rickettsiae. The LD50 in monkeys of the yolk-sac-grown seed stock was 10 to the 1.35th power plaque-forming units. Blood...acid glycoprotein, haptoglobin and albumin) were measured during a study in 16 male rhesus monkeys to determine the median lethal dose (LD50) of Rocky

  2. Preparing the Yucca Mountain Multimedia Presentation

    International Nuclear Information System (INIS)

    Larkin, Y.; Hartley, J.; Scott, J.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada for development as a geologic repository for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than 20 years of scientific study and intense public interaction and outreach. The U.S. Department of Energy's (DOE) public involvement activities were driven by two federal regulations-the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. As the Project moves into the next phase--applying for a license to construct a repository-the challenge of public interaction and outreach remains. It has become increasingly important to provide tools to communicate to the public the importance of the Yucca Mountain Project. Sharing the science and engineering research with the general public, as well as teachers, students, and industry professionals, is one of the project's most important activities. Discovering ways to translate project information and communicate this information to local governments, agencies, citizens' groups, schools, the news media, and other stakeholders is critical. With these facts in mind, the authors set out to create a presentation that would bring the ''mountain'' to the public

  3. Conservation Below The Species Level: Suitable Evolutionarily Significant Units Among Mountain Vipers (The Montivipera Raddei Complex) in Iran.

    Science.gov (United States)

    Behrooz, Roozbeh; Kaboli, Mohammad; Arnal, Véronique; Nazarizadeh, Masoud; Asadi, Atefeh; Salmanian, Amin; Ahmadi, Mohsen; Montgelard, Claudine

    2018-02-01

    Northern and western mountains of Iran are among the most important biodiversity and endemism hot spots for reptiles in the Middle East. Among herpetofauna, the montivipers represent an emblematic and fragmented endemic group for which estimating their level of genetic differentiation and defining conservation priorities is urgently needed. Here, we present the most comprehensive phylogenetic study on the Montivipera raddei species group comprising all five known taxa, among which three are endemic to Iran. Based on two mitochondrial genes, phylogenetic and phylogeographic analyses revealed three major lineages each presenting very contrasting distribution area. The Iranian montivipers are highly structured in clades showing low genetic diversity and corresponding to high altitude summits. Molecular dating revealed the role of Quaternary paleo-climatic oscillations and altitudinal movements of montivipers in shaping genetic diversity and differentiation of these sky-island taxa. In addition, the best scenario of historical biogeography allowed identifying three possible refugial areas in Iran most likely arising by vicariance. Based on our mitochondrial results and pending additional data, we recognize three candidate species among the Montivipera raddei complex: M. raddei, M.latifii and M. kuhrangica that are coherent with their geographical distribution. We propose that the most appropriate Evolutionary Significant Units for conservation of the montivipers are represented by thirteen units among which six are recognized as high priority. Finally, we suggest some recommendations to the IUCN as well as to the Iranian conservation policies with respect to conservation prioritization. © The American Genetic Association 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...

  5. An economic assessment of mountain pine beetle timber salvage in the west

    Science.gov (United States)

    Jeffrey P. Prestemon; Karen L. Abt; Kevin M. Potter; Frank H. Koch

    2013-01-01

    The mountain pine beetle has killed lodgepole pine and other species of pines in the western United States in an ongoing epidemic. The most heavily affected states are in the interior West: Colorado, Idaho, Montana, and Wyoming, with smaller losses elsewhere. Timber salvage is one response to the epidemic, which could generate revenues for affected landowners and...

  6. Seasonal distribution and aerial surveys of mountain goats in Mount Rainier, North Cascades, and Olympic National Parks, Washington

    Science.gov (United States)

    Jenkins, Kurt; Beirne, Katherine; Happe, Patricia; Hoffman, Roger; Rice, Cliff; Schaberl, Jim

    2011-01-01

    mountain goat surveys in Mount Rainier National Park, whereas generally greater than 80 and greater than 60 percent of locations were within sampling units delineated in North Cascades and Olympic National Parks, respectively. Presence of GPS-collared mountain goats within the sampling frame of Olympic National Park varied by diurnal period (midday versus crepuscular), survey season (July versus September), and the interaction of diurnal period and survey season. Aerial surveys conducted in developing a sightability model for mountain goat aerial surveys indicated mean detection probabilities of 0.69, 0.76, and 0.87 in North Cascades, Olympic, and Mount Rainier National Parks, respectively. Higher detection probabilities in Mount Rainier likely reflected larger group sizes and more open habitat conditions than in North Cascades and Olympic National Parks. Use of sightability models will reduce biases of population estimates in each park, but resulting population estimates must still be considered minimum population estimates in Olympic and North Cascades National Parks because the current sampling frames do not encompass those populations completely. Because mountain goats were reliably present within the sampling frame in Mount Rainier National Park, we found no compelling need to adjust mountain goat survey boundaries in that park. Expanding survey coverage in North Cascades and Olympic National Parks to more reliably encompass the altitudinal distribution of mountain goats during summer would enhance population estimation accuracy in the future. Lowering the altitude boundary of mountain goat survey units by as little as 100 meters to 1,425 meters in Olympic National Park would increase mountain goat presence within the survey and reduce variation in counts related to movements of mountain goats outside the survey boundaries.

  7. A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States.

    Science.gov (United States)

    vonHoldt, Bridgett M; Stahler, Daniel R; Bangs, Edward E; Smith, Douglas W; Jimenez, Mike D; Mack, Curt M; Niemeyer, Carter C; Pollinger, John P; Wayne, Robert K

    2010-10-01

    The successful re-introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re-introduced founders, for variation in 26 microsatellite loci over the initial 10-year recovery period (1995-2004). The population maintained high levels of variation (H(O) = 0.64-0.72; allelic diversity k=7.0-10.3) with low levels of inbreeding (F(IS) wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity. © 2010 Blackwell Publishing Ltd.

  8. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    Science.gov (United States)

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  9. Linking resource selection and mortality modeling for population estimation of mountain lions in Montana

    Science.gov (United States)

    Robinson, Hugh S.; Ruth, Toni K.; Gude, Justin A.; Choate, David; DeSimone, Rich; Hebblewhite, Mark; Matchett, Marc R.; Mitchell, Michael S.; Murphy, Kerry; Williams, Jim

    2015-01-01

    To be most effective, the scale of wildlife management practices should match the range of a particular species’ movements. For this reason, combined with our inability to rigorously or regularly census mountain lion populations, several authors have suggested that mountain lions be managed in a source-sink or metapopulation framework. We used a combination of resource selection functions, mortality estimation, and dispersal modeling to estimate cougar population levels in Montana statewide and potential population level effects of planned harvest levels. Between 1980 and 2012, 236 independent mountain lions were collared and monitored for research in Montana. From these data we used 18,695 GPS locations collected during winter from 85 animals to develop a resource selection function (RSF), and 11,726 VHF and GPS locations from 142 animals along with the locations of 6343 mountain lions harvested from 1988–2011 to validate the RSF model. Our RSF model validated well in all portions of the State, although it appeared to perform better in Montana Fish, Wildlife and Parks (MFWP) Regions 1, 2, 4 and 6, than in Regions 3, 5, and 7. Our mean RSF based population estimate for the total population (kittens, juveniles, and adults) of mountain lions in Montana in 2005 was 3926, with almost 25% of the entire population in MFWP Region 1. Estimates based on a high and low reference population estimates produce a possible range of 2784 to 5156 mountain lions statewide. Based on a range of possible survival rates we estimated the mountain lion population in Montana to be stable to slightly increasing between 2005 and 2010 with lambda ranging from 0.999 (SD = 0.05) to 1.02 (SD = 0.03). We believe these population growth rates to be a conservative estimate of true population growth. Our model suggests that proposed changes to female harvest quotas for 2013–2015 will result in an annual statewide population decline of 3% and shows that, due to reduced dispersal, changes to

  10. Modeling Approach/Strategy for Corrective Action Unit 99: Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1, with ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2008-06-01

    This document describes an approach for preliminary (Phase I) flow and transport modeling for the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU). This modeling will take place before the planned Phase II round of data collection to better identify the remaining data gaps before the fieldwork begins. Because of the geologic complexity, limited number of borings, and large vertical gradients, there is considerable uncertainty in the conceptual model for flow; thus different conceptual models will be evaluated, in addition to different framework and recharge models. The transport simulations will not be used to formally calculate the Contaminant Boundary at this time. The modeling (Phase II) will occur only after the available data are considered sufficient in scope and quality.

  11. A sightability model for mountain goats

    Science.gov (United States)

    Rice, C.G.; Jenkins, K.J.; Chang, W.-Y.

    2009-01-01

    Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 20042007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n 84), Global Positioning System (GPS) telemetry (n 115), or both (n 6). Aerial survey crews detected 77 and 79 of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied HorvitzThompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85 but ranged 0.750.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.

  12. Mineralogy of drill hole UE-25pnumber1 at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1988-05-01

    Drill hole UE-25p/number sign/1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p/number sign/1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs

  13. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  14. Alternative strategies: A means for saving money and time on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1993-01-01

    The United States Department of Energy (DOE) is undertaking studies to determine the suitability of Yucca Mountain (YM) as a potential site for disposal of high level nuclear waste. Yucca Mountain is located in an arid environment. Many processes that could contribute to mobilization of radionuclides are either absent or minimized in a dry site. Therefore, Yucca Mountain should have the potential of being a veryfavorable site for disposal of waste. The determination of suitability has no precedence, and the characterization of an and site is complex, requiring intensive studies to determine suitability. The studies undertaken by the Yucca Mountain Site Characterization Project (YMP) are very costly. By a process called performance allocation, the YMP determined strategies to satisfy regulations or meet performance while minimizing costs and schedules. Those involved recognized that allocations should be reviewed as additional information became available. The allocation has not been reviewed nor revised since the initial allocation in the Site Characterization Plan (SCP). The purpose of this paper is to outline alternative allocations that the author feels should be considered based on the additional information that is available at this time

  15. Microtectonic-assisted P-T determination on low-grade Alpine metamorphic rocks from the "Tisia Mega-Unit" of the Slavonian Mountains in Croatia

    Science.gov (United States)

    Balen, Dražen; Lihter, Iva; Massonne, Hans-Joachim

    2016-04-01

    The internal structure of the Tisia (Tisza) Mega-Unit in the Alpine-Carpathian-Dinaridic orogenic system encompasses large Alpine nappe systems brought to its present-day position by complex regional-scale movements. The Slavonian Mountains are part of the Bihor nappe system which is below the Codru and above the Mecsek nappe systems. The low-grade metamorphic schist unit of the Slavonian Mountains includes numerous rocks which were previously related to Precambrian and/or Lower Paleozoic orogeneses. However, recent studies (e.g. Balen, 2014, European Geosciences Union General Assembly, EGU 2014-6122) show that the metapelites of this unit should be attributed to the Alpine orogeny and the poorly known P-T conditions, which they experienced, should be refined. Although metapelites can be sensitive to changes of metamorphic conditions and, therefore, be suitable for the P-T estimation of metamorphic event(s), the extraction of mineral assemblages, being in equilibrium, and associated microtectonic data for particular low-grade metamorphic rocks is not straightforward. On the contrary, due to lack of suitable minerals and complex mictotectonic features, one can be faced with a severe problem concerning (dis)equilibrium. To avoid this, the observation scale in the research was set to the sub-mm level taking into account microtectonic positions of minerals. The investigated samples from the Slavonian Mountains are fine-grained schists consisting of chlorite (15-30 vol. %), white mica (15-25 vol. %), quartz (10-25 vol. %), feldspars (albite 10-15 vol. %; some K-feldspar), biotite (<5 vol. %), opaques (<5 vol. %), and accessory minerals (zircon, monazite, xenotime, apatite, chalcopyrite, pyrite, barite, parisite-(Ce), rutile). The schists show complex microtectonic fabric including well-developed foliations, pervasive folding, crenulation and cleavage. Foliations are defined by the preferred orientation of phyllosilicates and thin quartz and feldspar ribbons. Chlorite

  16. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.

    1986-01-01

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression

  17. Effects of prescribed fire on the buried seed bank in mixed-hardwood forests of the southern Appalachian Mountains

    Science.gov (United States)

    Tara L. Keyser; Tracy L. Roof; Jacquelyne L. Adams; Dean Simon; Gordon Warburton

    2012-01-01

    This study characterizes the seed bank prior to and immediately following dormant-season prescribed fire in mature, mixed-Quercus spp. (oak) forests in the southern Appalachian Mountains. Thirty samples from the litter/duff (LD) and the top 5 cm of the mineral soil (MS) were collected from five 5-ha burn units (6 plots per experimental unit) before...

  18. DOE's Yucca Mountain studies: What are they? Why are they being done?

    International Nuclear Information System (INIS)

    1990-12-01

    This booklet is about the disposal of high-level nuclear waste in the United States. It is intended for readers who do not have a technical background. It discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied and provides basic information about those studies

  19. Protection of the Mountain Ridgelines Utilizing GIS

    Science.gov (United States)

    Lee, S.; Lee, M.

    2013-12-01

    Korean peninsula is characterized by numerous hills and mountains. The longest mountain ridgeline starting from Mt. Baekdusan to Mt. Jirisan is called Baekdudaegan which is similar to the continental divide or topographical watershed. In this study, GIS data, such as remotesensing images, national digital map, and watershed map, are used to analyze Korean mountain ridgelines structure and one Baekdudaegan data and nine Ridgelines are extracted. When extracted Baekdudaegan and other Ridgelines are overlaid on geologic maps, granite and gneiss are main components on the mountain ridgelines. The main mountain ridgelines are considered as the spiritual heritage overlapped in the land in Korea. As the environmental state is relatively better than those of other region in Korea, so many mountain ridgelines are legally protected by national legislation. The mountain ridgelines has hierarchical system; Baekdudaegan, Jeongmaek, Gimaek and Jimaek etc. according to their scale and total lengths of ridgelines. As only part of mountain ridgelines are currently protected by law or managed in environmental impact assessment (EIA) procedure, we think that most part of them should be under protection. Considering the environmental state of the ridgelines, we think that some protective measures should be set up nearby 1 km on both sides of them. If there goes a development plan or project near the main mountain ridgelines, topographical change index (TCI) and topographical scale index (TSI) etc. are to be applied in EIA. This study intends: firstly, to analyze the topological characteristics of the Korean mountain ridgelines using GIS, secondly, to analyze the geological characteristics of nearby mountain ridgelines, and lastly, to find a way to utilize the results on EIA.

  20. Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania)

    Science.gov (United States)

    Kounov, Alexandre; Schmid, Stefan M.

    2013-01-01

    New zircon and apatite fission-track (FT) data, including apatite thermal modelling, are combined with an extensive literature survey and reconnaissance-type structural fieldwork in the Eastern Apuseni Mountains. This leads to a better understanding of the complex structural and thermal history of a key area at the boundary between two megatectonic units in the Balkan peninsula, namely the Tisza and Dacia Mega-Units. Following Late Jurassic obduction of the Transylvanian ophiolites onto a part of the Dacia Mega-Unit, that is, the Biharia nappe system, both units were buried to a minimum of 8 km during late Early Cretaceous times when these units were underthrust below the Tisza Mega-Unit consisting of the present-day Codru and Bihor nappe systems. Tisza formed the upper plate during Early Cretaceous (`Austrian') east-facing orogeny. Turonian to Campanian zircon FT cooling ages (95-71 Ma) from the Bihor and Codru nappe systems and the Biharia and Baia de Arieş nappes (at present the structurally lowest part of the Dacia Mega-Unit) record exhumation that immediately followed a second Cretaceous-age (i.e. Turonian) orogenic event. Thrusting during this overprinting event was NW-facing and led to the overall geometry of the present-day nappe stack in the Apuseni Mountains. Zircon FT ages, combined with thermal modelling of the apatite FT data, show relatively rapid post-tectonic cooling induced by a third shortening pulse during the latest Cretaceous (`Laramian' phase), followed by slower cooling across the 120°-60 °C temperature interval during latest Cretaceous to earliest Paleogene times (75-60 Ma). Cenozoic-age slow cooling (60-40 Ma) was probably related to erosional denudation postdating `Laramian' large-scale updoming.

  1. Variability of Cloud Cover and Its Relation to Snowmelt and Runoff in the Mountainous Western United States

    Science.gov (United States)

    Sumargo, E.; Cayan, D. R.; Iacobellis, S.

    2014-12-01

    Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.

  2. The Anaximander Mountains linkages with the Florence Rise in the east and the Pliny-Strabo Trench in the west, eastern Mediterranean

    Science.gov (United States)

    Barnes, Melanie; Hall, Jeremy; Aksu, Ali; Çifçi, Günay

    2014-05-01

    Interpretation of ~4500 km of high-resolution multichannel seismic reflection profiles and correlation with complex multibeam bathymetric features allows us to assess the Neogene tectonics of this area of the Anaximander Mountains at the junction of the Hellenic and Cyprus Arcs. Three seiusmic stratigraphic units are observed in this region and are correlated with exploration wells drilled onland in the Antalya and Kasaba Basins, and DSDP holes 375 and 376: The uppermost Unit (1, Pliocene-Quaternary) is a strongly reflective laterally continuous package of high frequency reflections which extends from the seabed to the M-reflector. Beneath this, Unit 2 (Messinian) is a weakly reflective package displaying complex internal architecture with weak, discontinuous and often chaotic reflections bounded at their top and base by the M- and N-reflectors, respectively. Unit 3 (pre-Messinian Miocene) is a strongly reverberatory, high reflective package of low amplitude reflections with significant lateral continuity. The structural architecture of the Anaximander Mountains (sensu lato) at the junction of the Hellenic and Cyprus Arcs is characterised by two phases of deformation. A protracted interval of contraction in the Miocene created a series of broadly east-west trending and predominantly south-verging structures across the entire eastern Mediterranean. This phase culminated in the latest Miocene and was followed in the Pliocene-Quaternary by an interval of spatially-partitioned strain which resulted in the development of discrete domains characterized by extensional, contractional, transpressional and transtensional structures. The Anaximenes and Anaxagoras Mountains in the east and southeast exhibit contractional/transpressional deformation and form the linkage with the Florence Rise to the southeast. An arcuate and extensively faulted and folded region immediately northwest of the Anaximenes and Anaxagoras Mountains (i.e., the Sırrı Erinç Plateau) forms a 30-40 km

  3. Phytogeography of the tropical north-east African mountains

    Directory of Open Access Journals (Sweden)

    I. Friis

    1983-11-01

    Full Text Available The tropical north-east African mountains are tentatively divided into four phytochoria, the formal rank of which is not defined. The division is based on patterns of distribution and endemism in the region. The recognition of a distinct Afromontane phytochorion is now well established (Chapman & White, 1970; Werger, 1978; White, 1978. However, there is still very little information on the phytogeography of the individual mountains or mountain systems. This study hopes to fill a little of the gap by analysing distribution patterns and patterns of endemism in the flora of the tropical north-east African mountains. The north-east African mountain system is the largest in tropical Africa (see e.g. map in White, 1978. At the core of this system is the large Ethiopian massif, around which are located various mountains and mountain chains. These include the Red Sea Hills in the Sudan, the mountain chain in northern Somalia, the south-west Arabian mountains, and the Imatong mountains of south-east Sudan. The latter are often referred to the East African mountain system (White, 1978 but. as I will point out later, they also have a close connection with the south-west highlands of Ethiopia. The paper presents some results of my study of the mountain flora of tropical north-east Africa, particularly the forest species. Where no source is indicated, the data are from my own unpublished studies.

  4. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    Science.gov (United States)

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  5. Management of Multi-Casualty Incidents in Mountain Rescue: Evidence-Based Guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM).

    Science.gov (United States)

    Blancher, Marc; Albasini, François; Elsensohn, Fidel; Zafren, Ken; Hölzl, Natalie; McLaughlin, Kyle; Wheeler, Albert R; Roy, Steven; Brugger, Hermann; Greene, Mike; Paal, Peter

    2018-02-15

    Blancher, Marc, François Albasini, Fidel Elsensohn, Ken Zafren, Natalie Hölzl, Kyle McLaughlin, Albert R. Wheeler III, Steven Roy, Hermann Brugger, Mike Greene, and Peter Paal. Management of multi-casualty incidents in mountain rescue. High Alt Med Biol. 00:000-000, 2018. Multi-Casualty Incidents (MCI) occur in mountain areas. Little is known about the incidence and character of such events, and the kind of rescue response. Therefore, the International Commission for Mountain Emergency Medicine (ICAR MEDCOM) set out to provide recommendations for the management of MCI in mountain areas. Details of MCI occurring in mountain areas related to mountaineering activities and involving organized mountain rescue were collected. A literature search using (1) PubMed, (2) national mountain rescue registries, and (3) lay press articles on the internet was performed. The results were analyzed with respect to specific aspects of mountain rescue. We identified 198 MCIs that have occurred in mountain areas since 1956: 137 avalanches, 38 ski lift accidents, and 23 other events, including lightning injuries, landslides, volcanic eruptions, lost groups of people, and water-related accidents. General knowledge on MCI management is required. Due to specific aspects of triage and management, the approach to MCIs may differ between those in mountain areas and those in urban settings. Mountain rescue teams should be prepared to manage MCIs. Knowledge should be reviewed and training performed regularly. Cooperation between terrestrial rescue services, avalanche safety authorities, and helicopter crews is critical to successful management of MCIs in mountain areas.

  6. Bankfull Curves for the Temperate Rainforests in the Southern Appalachian Mountains of Western North Carolina

    Directory of Open Access Journals (Sweden)

    MICKEY B. HENSON

    2014-08-01

    Full Text Available Bankfull hydraulic geometry relationships, also called regional curves, relate bankfull stream channel dimensions and discharge to watershed drainage area. This paper describes results of bankfull curve relationships developed for the temperate rainforests of the Southern Appalachian Mountains primarily on Western North Carolina Mountain streams in the Southeastern United States. Gauge stations for small and larger catchments were selected with a range of 10 to 50 years of continuous or peak discharge measurements, no major impoundments, no significant change in land use over the past 10 years, and impervious cover ranges of <20%. Cross-sectional and longitudinal surveys were measured at each study reach to determine channel dimension, pattern, and profile information. Log-Pearson Type III distributions were used to analyze annual peak discharge data for nine small watersheds sites gauged by the United States Department of Agriculture (USDA, Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory and for eleven larger watersheds gauged by the United States Geological Survey (USGS. Power function relationships were developed using regression analyses for bankfull discharge, channel cross-sectional area, mean depth, and width as functions of watershed drainage area.

  7. Mountain Biking Injuries.

    Science.gov (United States)

    Ansari, Majid; Nourian, Ruhollah; Khodaee, Morteza

    With the increasing popularity of mountain biking, also known as off-road cycling, and the riders pushing the sport into extremes, there has been a corresponding increase in injury. Almost two thirds of acute injuries involve the upper extremities, and a similar proportion of overuse injuries affect the lower extremities. Mountain biking appears to be a high-risk sport for severe spine injuries. New trends of injury patterns are observed with popularity of mountain bike trail parks and freeride cycling. Using protective gear, improving technical proficiency, and physical fitness may somewhat decrease the risk of injuries. Simple modifications in bicycle-rider interface areas and with the bicycle (bike fit) also may decrease some overuse injuries. Bike fit provides the clinician with postural correction during the sport. In this review, we also discuss the importance of race-day management strategies and monitoring the injury trends.

  8. Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States

    Science.gov (United States)

    Negussie H. Tedela; Steven C. McCutcheon; Todd C. Rasmussen; Richard H. Hawkins; Wayne T. Swank; John L. Campbell; Mary Beth Adams; C. Rhett Jackson; Ernest W. Tollner

    2012-01-01

    Engineers and hydrologists use the curve number method to estimate runoff from rainfall for different land use and soil conditions; however, large uncertainties occur for estimates from forested watersheds. This investigation evaluates the accuracy and consistency of the method using rainfall-runoff series from 10 small forested-mountainous watersheds in the eastern...

  9. Mountain cedar allergens found in nonpollen tree parts.

    Science.gov (United States)

    Goetz, D W; Goetz, M A; Whisman, B A

    1995-09-01

    Mountain cedar (Juniperus ashei) pollen is the principal aeroallergen in south central Texas from late December through February. The major mountain cedar allergen is a 40-kD glycoprotein, gp40. To identify allergens in mountain cedar wood, leaves, and berries and to detect mountain cedar allergen in smoke from burning male or female trees. SDS-PAGE plus mountain cedar human sIgE and monoclonal antibody immunoblots identified mountain cedar allergens within pollen and nonpollen tree part extracts. IgE immunoblots identified a single wood allergen at 36 kD and three berry allergens at 36, 26-27, and 21 kD, in addition to known pollen allergens. Mountain cedar monoclonal antibody bound an allergen epitope present not only on 40, 33, and 28-kD pollen allergens, but also on 36 and 32-kD wood allergens, and the 26-27-kD berry allergen. Immunoblot studies detected no mountain cedar allergen in leaves and no allergen in smoke from burning male and female trees. Allergens constituted a much smaller percentage of extractable protein in wood and berries than in pollen. Mountain cedar berry allergen content is too small to give credence to the ingestion of berries as a folk medicine treatment of mountain cedar pollinosis. In addition, while smoke from burning mountain cedar trees may be irritating, it contains no allergens that could cause allergic rhinoconjunctivitis.

  10. Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history

    Science.gov (United States)

    Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi

    2018-02-01

    Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.

  11. APPLIED GEOSPATIAL EDUCATION: ACQUISITION AND PROCESSING OF HIGH RESOLUTION AIRBORNE LIDAR AND ORTHOIMAGES FOR THE GREAT SMOKY MOUNTAINS NATIONAL PARK, SOUTHEASTERN UNITED STATES

    Directory of Open Access Journals (Sweden)

    T. R. Jordan

    2012-07-01

    Full Text Available In an innovative collaboration between government, university and private industry, researchers at the University of Georgia and Gainesville State College are collaborating with Photo Science, Inc. to acquire, process and quality control check lidar and or-thoimages of forest areas in the Southern Appalachian Mountains of the United States. Funded by the U.S. Geological Survey, this project meets the objectives of the ARRA initiative by creating jobs, preserving jobs and training students for high skill positions in geospatial technology. Leaf-off lidar data were acquired at 1-m resolution of the Tennessee portion of the Great Smoky Mountain National Park (GRSM and adjacent Foothills Parkway. This 1400-sq. km. area is of high priority for national/global interests due to biodiversity, rare and endangered species and protection of some of the last remaining virgin forest in the U.S. High spatial resolution (30 cm leaf-off 4-band multispectral orthoimages also were acquired for both the Chattahoochee National Forest in north Georgia and the entire GRSM. The data are intended to augment the National Elevation Dataset and orthoimage database of The National Map with information that can be used by many researchers in applications of LiDAR point clouds, high resolution DEMs and or-thoimage mosaics. Graduate and undergraduate students were involved at every stage of the workflow in order to provide then with high level technical educational and professional experience in preparation for entering the geospatial workforce. This paper will present geospatial workflow strategies, multi-team coordination, distance-learning training and industry-academia partnership.

  12. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    Science.gov (United States)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  13. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    Science.gov (United States)

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  14. Quasi-linear analysis of water flow in the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Ross, B.

    1990-01-01

    Philip's method of quasi-linear approximation, applied to the fractured welded tuffs at Yucca Mountain, Nevada, USA, yields simple relations describing groundwater movement in the unsaturated zone. These relations suggest that water flux through the Topopah Spring welded tuff unit, in which a proposed high-level radioactive waste repository would be built, may be fixed at a value close to the saturated hydraulic conductivity of the unit's porous matrix by a capillary barrier at the unit's upper contact. Quasi-linear methods may also be useful for predicting whether free water will enter tunnels excavated in the tuff

  15. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    Science.gov (United States)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  16. Mountains as early warning indicators of climate change

    Science.gov (United States)

    Williams, M. W.

    2015-12-01

    The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.

  17. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine.

    Science.gov (United States)

    Progar, R A; Blackford, D C; Cluck, D R; Costello, S; Dunning, L B; Eager, T; Jorgensen, C L; Munson, A S; Steed, B; Rinella, M J

    2013-02-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of lodgepole pine. The success of verbenone treatments has varied greatly in previous studies because of differences in study duration, beetle population size, tree size, or other factors. To determine the ability of verbenone to protect lodgepole pine over long-term mountain pine beetle outbreaks, we applied verbenone treatments annually for 3 to 7 yr at five western United States sites. At one site, an outbreak did not develop; at two sites, verbenone reduced lodgepole pine mortality in medium and large diameter at breast height trees, and at the remaining two sites verbenone was ineffective at reducing beetle infestation. Verbenone reduced mountain pine beetle infestation of lodgepole pine trees in treated areas when populations built gradually or when outbreaks in surrounding untreated forests were of moderate severity. Verbenone did not protect trees when mountain pine beetle populations rapidly increase.

  18. Injuries in mountain biking.

    Science.gov (United States)

    Gaulrapp, H; Weber, A; Rosemeyer, B

    2001-01-01

    Despite still growing attraction mountain biking as a matter of sports traumatology still lacks relevant data based on large cross-sectional surveys. To obtain an overview of risk factors, types, and main body sites of injuries occurring in mountain biking we assessed the results of a questionnaire answered by 3873 athletes. A total of 8133 single lesions were reported by 3474 athletes, 36% of whom regularly participated in competitions. The incidence of injuries in mountain biking is comparable to that in other outdoor sports, the majority of injuries being minor. Mountain biking athletes were found to have an overall injury risk rate of 0.6% per year and 1 injury per 1000 h of biking. The main risk factors included slippery road surface, cyclist's poor judgement of the situation, and excessive speed, representing personal factors that could be altered by preventive measures. Of all injuries 14% were due to collision with some part of the bike, especially the pedals and the handlebar. While 75% of the injuries were minor, such as skin wounds and simple contusions, 10% were so severe that hospitalization was required. A breakdown of the injuries according to body site and frequency of occurrence is presented.

  19. Extinction of Harrington's mountain goat

    International Nuclear Information System (INIS)

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-01-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters

  20. From coseismic offsets to fault-block mountains

    Science.gov (United States)

    Thompson, George A.; Parsons, Tom

    2017-09-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (˜100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  1. Environmental Assessment (EA): Proposed Emergency Power Unit Overhaul Complex at Little Mountain Test Annex, Utah

    Science.gov (United States)

    2014-03-14

    association with World War II. However, it has been previously mitigated through a memorandum of agreement between the USAF and the Utah SHPO, signed in...goldfinch Carduelis tristis T U * House sparrow Passer domesticus R C *‡ Mountain bluebird Sialia currucoides S U * Northern flicker Colaptes...been mitigated . This information is provided to assist with Section 106 responsibilities as per §36CFR800. If you have questions, please contact me at

  2. THE MOUNTAIN REGIONS IN CONTEXT OF STRATEGY 2020

    Directory of Open Access Journals (Sweden)

    ANTONESCU Daniela

    2014-07-01

    Full Text Available The mountain regions in Romania and European Union represent a special territory of interest, with a huge economic, social, environmental and cultural potential. More, mountain area is considerate a natural-economic region and constitutes an important objective for regional development policy. The main sectors of mountain area are presented in agriculture and tourism fields that lead the key role in safeguarding the sensitive eco-system and thereby maintaining the general living and working space.Mountain areas should have a specific policy defined by the sustainable development principle, which meets the needs of the present without compromising the opportunities of future generations. The specific mountain policy aims to reduce the imbalance between favored and disadvantaged mountain regions, permanently marked by natural, economic, social, cultural and environmental constraints. In previous programming period, mountain regions among have profited from the intensive regional support, in specially, for constructing of and connecting them to fresh water and waste water networks, in particular for increasing of life quality. In context of 2020 Strategy, the Member States will concentrate investments on a small number of thematic objectives. In advanced regions, 60 % of funds will used for only two of these objectives (competitiveness of SME and research/innovation. The all less developed regions will received about 50% of Structural Funds In Romania, mountain representing 29.93% out of the total national surface and 20.14% from UAA (Utilised Agricultural Area of total national. The mountain territory has around 20% of the national population and is overlapping almost 100% with the Carpathian Mountains. Due to these conditions, Romania's regional development policy must take into account the specificities of mountain area, the problems they faced, and the requirements of 2020 Strategy.This paper presents the main aspects to be taken into account

  3. Three-dimensional modeling of unsaturated flow in the vicinity of proposed exploratory shaft facilities at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Sagar, B.; Connelly, M.P.

    1992-04-01

    This report describes the results of a study to investigate the influence of proposed exploratory shafts on the moisture distribution within unsaturated, fractured rock at Yucca Mountain, Nevada. The long-term effects of exploratory shafts at Yucca Mountain are important in the estimation of potential waste migration and fate, while short-term effects may be important in the planning and interpretation of tests performed at the site. The PORFLO-3 computer code was used for simulation of moisture flow through the geologic units adjacent to the ESF. Rather than represent fractures as discrete elements, an equivalent continuum was stipulated, in which the fractured units were assigned equivalent or composite hydrologic properties. Explicit treatment of fractures is not feasible because of the extremely large number of fractures contained in the site-scale problem and the difficulties in characterizing and modeling the fracture geometries

  4. Sustainability and Mountain Tourism: The Millennial’s Perspective

    Directory of Open Access Journals (Sweden)

    Alessandro Bonadonna

    2017-07-01

    Full Text Available Evidence from several studies illustrates the different points of view through which sustainability and mountains have been studied over the years. Nowadays, interest in Millennials is increasing but no research has compared Millennials and sustainability in the mountain context. This study aims at defining sustainability with reference to Millennial perception of both winter and summer mountain sports. By analysing data gathered from a sample of 2292 Millennials (Piedmont area, the authors confirm their high degree of sensitivity towards sustainable issues and, above all, discover that there are differences in the sustainable perception Millennials have of both mountain winter and summer sports. More specifically, Millennial perception is deeply influenced by the place where they are used to living―mountains or cities―and by their gender. From a managerial point of view, results have direct implications on the administrators of mountain institutions who can implement appropriate initiatives in order to correctly sensitise Millennials towards mountain sports. Moreover, from a theoretical perspective, the study opens a new scenario on two important topics linked to sustainability, namely Millennials and mountain sports.

  5. The pre-Cenozoic evolution of the Apuseni Mountains (Romania) in the light of new (thermo)geochronological data

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2013-04-01

    The Apuseni Mountains in Romania occupy a central position within the Alpine-Carpathian-Dinaride system between the Pannonian basin in the West and the Transylvanian basin in the East. Following the final Late-Jurassic obduction of the East Vardar ophiolites, a NW-vergent nappe stack formed, which involves from bottom to top: Tisza- and Dacia-derived units, overlain by the South Apuseni or Transylvanian ophiolite belt (i.e. East Vardar ophiolites according to Schmid et al., 2008). This study addresses the tectonometamorphic evolution of Tisza and Dacia during the Late Jurassic/Cretaceous by means of newly obtained Rb-Sr, Sm-Nd, Ar-Ar and fission track ages together with geothermometric estimates from the eastern part of the Apuseni Mountains. The Tisza unit experienced a polyphase metamorphic evolution (Variscan and Cretaceous) and shows mostly strong retrograde overprinting. Dacia, on the other hand, only underwent lower amphibolite-facies (545°C/7.3 Kbar) metamorphic overprint during the Cretaceous and later retrogression is very moderate. Only the Vidolm Unit, the uppermost nappe within the Dacia nappe stack directly underlying the South Apuseni Ophiolites, recorded a pre-Alpine peak metamorphic event of the uppermost amphibolite-facies (635°C/10.6 Kbar) and therefore yielded older ages. Thus, the Vidolm Unit has to be treated differently from the rest of Dacia, regarding its tectonometamorphic evolution. Garnets from the Iara valley (Tisza unit) yielded an Albian Sm/Nd age (103 Ma), which points towards Mid-Cretaceous peak metamorphism. Ar/Ar ages on muscovite (95-100 Ma) from adjacent samples confirm this observation and are in good agreement with age data from the literature (see Dallmeyer et al., 1999). For the Dacia unit on the other hand, Sm/Nd ages of garnet and Ar/Ar analyses of muscovite (110-117 Ma) yielded lower Cretaceous ages. Additional Rb/Sr analyses of biotite from the Tisza and Dacia units further support the distinct evolution of both units

  6. AHP 35: An Abandoned Mountain Deity

    Directory of Open Access Journals (Sweden)

    Limusishiden (Li Dechun 李得春

    2015-02-01

    Full Text Available Lasizi are cairns where mountain deities dwell, and the same word also refers to the deities that dwell in these cairns. There are many lasizi in Tu areas in Huzhu Tu Autonomous County, Haidong Municipality, Qinghai Province. The most famous are: Chileb, located in the north part of both Danma Town and Donggou Township Durizang, located in the northern part of Wushi Town Lawa, located atop a mountain on the border between Danma Town and Wushi Town. The mountain is referred to as Lawa Lasizi. Lawa Village is located at the foot of Lawa Lasizi's west side, which is within Danma Town territory. Tughuan Village is located at the foot of Lawa Lasizi's east side, which belongs is within Wushi Town jurisdiction. Sughua, located atop a mountain on the border between Danma Town and Dongshan Township. The mountain is locally known as Sughua Lasizi. Qighaan Dawa Village is located at the foot of Sughua Lasizi's west side, which is part of Dongshan Township. Sughua Village is located at the foot of Sughua Lasizi's east side, which is part of belongs Danma Town. Walighuan, located atop a mountain in Hongyazigou Township and Sunduu, located on the border between Songduo and Bazha (two autonomous Tibetan townships in Huzhu County and Ledu Region. ...

  7. A new network on mountain geomorphosites

    Science.gov (United States)

    Giusti, Christian

    2013-04-01

    Since about two decades, the value of geoheritage in mountain areas has been re-discovered in various parts of the Alps (Reynard et al., 2010) and other mountain ranges, and various initiatives (protection of sites worthy of protection, inventories of geomorphosites, geotourist promotion, creation of geoparks, etc.) to conserve or promote mountain geoheritage have been developed. As mountains are recognized as natural areas with a very high geodiversity, and at the same time as areas with a great potential for the development of soft tourism, a new Network on Mountain Geomorphosites was created in October 2012 in conclusion to a workshop organized by the University of Lausanne (Switzerland). The Network is open to all researchers active in geoheritage, geoconservation and geotourism studies in mountain areas. For the first years research will focus on three main issues: - Geoheritage and natural processes: Mountains are very sensitive areas where climate change impacts are very acute and where active geomorphological processes rapidly modify landscapes. It is hypothesized that geoheritage will be highly impacted by global change in the future. Nevertheless, at the moment, very little research is carried out on the evolution of landforms recognized as geoheritage and no specific management measures have been developed. Also, the tourist activities related to geoheritage, especially the trails developed to visit geomorphosites, are sensitive to geomorphological processes in mountain areas in a context of global change, and need, therefore, to be better addressed by geomorphologists. - Geotourism: During the last two decades numerous initiatives have developed geotourism in mountain areas. Nevertheless, studies addressing issues such as the needs of the potential public(s) of geotourism, the evaluation of the quality of the geotourist products developed by scientists and/or local authorities, and the assessment of the economic benefits of geotourism for the regional

  8. Mountains: top down.

    Science.gov (United States)

    Woodwell, George M

    2004-11-01

    Mountainous regions offer not only essential habitat and resources, including water, to the earth's more than 6 billion inhabitants, but also insights into how the global human habitat works, how it is being changed at the moment as global climates are disrupted, and how the disruption may lead to global biotic and economic impoverishment. At least 600 million of the earth's more than 6 billion humans dwell in mountainous regions. Such regions feed water into all the major rivers of the world whose valleys support most of the rest of us. At least half of the valley dwellers receive part or all of their water from montane sources, many from the melt water of glaciers, others from the annual snow melt. Glaciers are retreating globally as the earth warms as a result of human-caused changes in the composition of the atmosphere. Many are disappearing, a change that threatens municipal water supplies virtually globally. The warming is greatest in the higher latitudes where the largest glaciers such as those of Greenland and the Antarctic Continent have become vulnerable. The melting of ice in the northern hemisphere raises serious concerns about the continued flow of the Gulf Stream and the possibility of massive climatic changes in Scandinavia and northern Europe. Mountains are also biotic islands in the sea life, rich in endemism at the ecotype level. The systematic warming of the earth changes the environment out from under these genetically specialized strains (ecotypes) which are then maladapted and vulnerable to diseases of all types. The process is systematic impoverishment in the pattern conspicuous on mountain slopes with increasing exposure to climatic extremes. It is seen now in the increased mortality and morbidity of plants as climatic changes accumulate. The seriousness of the global climatic disruption is especially clear in any consideration of mountains. It can and must be addressed constructively despite the adamancy of the current US administration.

  9. 76 FR 17439 - Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take...

    Science.gov (United States)

    2011-03-29

    ... nonessential experimental population areas for the gray wolf under section 10(j) of the ESA: the Yellowstone...-0000-C3] Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take of Wolves in the West Fork Elk Management Unit of Montana; Draft Environmental Assessment AGENCY...

  10. MOUNTAIN TOURISM-PLEASURE AND NECESSITY

    Directory of Open Access Journals (Sweden)

    Gabriela Corina SLUSARIUC

    2015-07-01

    Full Text Available Tourism has a more and more important role in the economic development of many countries. Mountain tourism is an anti-stress solutions and a type of disconnection from the citadel life style through replacing some activities of media consuming type, games and virtual socializing with therapy through movement, the physical activity being an essential dimension in assuring the high life quality. Mountaineering is searched for: practicing winter sports, its invigorating and comforting, relaxing role, medical spa treatments practicing hiking, alpinism. Mountain tourism generates increased economic benefits for the surrounding areas, improves the life quality of the local communities and can assure the prosperity of some disadvantaged areas, being able to be a remedy for unindustrialised regions. Mountain tourism contributes to the economic development of the region and also to satisfying spiritual and psychological needs of the people, representing a necessity for a touristic area and a pleasure for tourist consumers.

  11. ACUTE MOUNTAIN SICKNESS

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2012-03-01

    Full Text Available This paper presents the most likely pathophysiological causes of the development of acute mountain sickness (AMS, also known as altitude sickness, its pulmonary form i.e. high altitude pulmonary edema (HAPE, and high altitude cerebral edema (HACE. These diseases constitute extraordinary environmental hazards because they are directly connected with low atmospheric pressure, and thus low partial oxygen pressure. The above adverse atmospheric conditions start to affect humans already at an altitude of 2,500 meters above the sea level and, coupled with extreme physical exertion, can quickly lead to respiratory alkalosis, which is not present under any other conditions in the lowlands. Mountaineering above 4,500 m a.s.l. leads to hypoxia of internal organs and, primarily, reduced renal perfusion with all its consequences. The above adverse changes, combined with inadequate acclimatization, can lead to a situation of imminent danger to life and health. This paper describes in detail the consequences of acute mountain sickness, which can ultimately lead to the development of AMS and one of severe forms of HACE and/or HAPE.

  12. Personal and professional profile of mountain medicine physicians.

    Science.gov (United States)

    Peters, Patrick

    2003-01-01

    The purpose of this study was to define and describe the personal and professional profile of mountain medicine physicians including general physical training information and to include a detailed overview of the practice of mountain sports. A group of physicians participating in a specialized mountain medicine education program filled out a standardized questionnaire. The data obtained from this questionnaire were first analyzed in a descriptive way and then by statistical methods (chi2 test, t test, and analysis of variance). Detailed results have been provided for gender, age, marital status, general training frequency and methods, professional status, additional medical qualifications, memberships in professional societies and alpine clubs, mountain sports practice, and injuries sustained during the practice of mountain sports. This study has provided a detailed overview concerning the personal and professional profile of mountain medicine physicians. Course organizers as well as official commissions regulating the education in mountain medicine will be able to use this information to adapt and optimize the courses and the recommendations/requirements as detailed by the UIAA-ICAR-ISMM (Union Internationale des Associations Alpinistes, International Commission for Alpine Rescue, International Society for Mountain Medicine).

  13. Mountains of Our Future Earth: Defining Priorities for Mountain Research—A Synthesis From the 2015 Perth III Conference

    Directory of Open Access Journals (Sweden)

    Erin H. Gleeson

    2016-11-01

    Full Text Available The Perth conferences, held every 5 years in Perth, Scotland, bring together people who identify as mountain researchers and who are interested in issues related to global change in mountain social-ecological systems. These conferences provide an opportunity to evaluate the evolution of research directions within the mountain research community, as well as to identify research priorities. The Future Earth Strategic Research Agenda provides a useful framework for evaluating the mountain research community's progress toward addressing global change and sustainability challenges. Using a process originally set up to analyze contributions to the 2010 conference, the abstracts accepted for the 2015 conference in the context of the Future Earth framework were analyzed. This revealed a continued geographic underrepresentation in mountain research of Africa, Latin America, and South and Southeast Asia but a more even treatment of biophysical and social science themes than in 2010. It also showed that the Perth conference research community strongly focused on understanding system processes (the Dynamic Planet theme of the Future Earth research agenda. Despite the continued bias of conference contributions toward traditional observation- and conservation-oriented research, survey results indicate that conference participants clearly believe that transdisciplinary, transformative research is relevant to mountains. Of the 8 Future Earth focal challenges, those related to safeguarding natural assets, promoting sustainable land use, increasing resilience and understanding the water-energy-food nexus received considerable attention. The challenges related to sustainable consumption, decarbonizing socioeconomic systems, cities, and health were considerably less well represented, despite their relevance to mountain socioeconomic systems. Based on these findings, we outline a proposal for the future directions of mountain research.

  14. Is lodgepole pine mortality due to mountain pine beetle linked to the North American Monsoon?

    Science.gov (United States)

    Sara A. Goeking; Greg C. Liknes

    2012-01-01

    Regional precipitation patterns may have influenced the spatial variability of tree mortality during the recent mountain pine beetle (Dendroctonus ponderosa) (MPB) outbreak in the western United States. Data from the Forest Inventory and Analysis (FIA) Program show that the outbreak was especially severe in the state of Colorado where over 10 million lodgepole pines (...

  15. Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    George, James T.; Sobolik, Steven R.; Lee, Moo Y.; Park, Byoung; Costin, Laurence

    2018-05-01

    The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range of temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.

  16. Reasons for decision in the matter of Trans Mountain Pipeline Inc. (formerly Terasen Pipelines (Trans Mountain) Inc.) : tariffs

    International Nuclear Information System (INIS)

    2007-01-01

    In 2006 and 2007 Terasen Pipelines (Trans Mountain) Inc. (now Trans Mountain Pipeline Inc.) submitted a series of applications to the National Energy Board for revisions to the Trans Mountain Tariffs. They were filed in response to apportionment concerns on the Trans Mountain pipeline. Four of the applications involved pronounced and contentious changes to the capacity allocation procedures on the pipeline system. For ease of reference, the Board amalgamated its 4 decisions on these applications into a single document. A map of the Trans Mountain pipeline system as a whole was presented along with a detailed map indicating the delivery locations served by the system in the lower mainland of British Columbia and the state of Washington. The issues considered by the Board in each of these decisions included capacity allocation for Westridge Dock; capacity allocations to export destinations; common carriage requirements; and the need for creating a new barge subcategory. Relevant sections of the National Energy Board Act referred to in the decisions were highlighted. This document also listed the Trans Mountain Tariffs that have introduced notable revisions to the capacity allocation procedures on the system since September 2003. 16 refs., 2 figs., 3 appendices

  17. Effect of a low-permeability layer on calculated gas flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Lu, Ning; Amter, S.; Ross, B.

    1990-01-01

    Yucca Mountain is being studied to determine its suitability as a location for a high-level nuclear waste repository. Amter and Ross developed a model called TGIF (Topographic Induced Flow) to simulate gas flow under Yucca Mountain. The TGIF model differs significantly from previous gas flow models. It uses a governing equation that is based on the concept of freshwater head, thus avoiding the numerical problems associated with the near-cancellation of the forces due to gravity and the pressure gradient. Unlike most other models, dipping, layered media can be simulated. This paper describes a systematic sensitivity study that was designed to test several aspects of the TGIF model when used to simulate gas flow under Yucca Mountain. Values of three important inputs to the model were systematically varied to form a matrix of 80 runs. The matrix consisted of five values of permeability contrast between a bedded tuff layer and surrounding welded units (in all cases, bulk permeabilities were used to represent the combined effect of both fractures and matrix permeability), four temperature profiles representing different stages of repository cooldown, and four finite-difference grids

  18. Effect of a low-permeability layer on calculated gas flow at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Amter, S.; Ross, B. [Disposal Safety, Inc., Washington, DC (USA)

    1990-12-31

    Yucca Mountain is being studied to determine its suitability as a location for a high-level nuclear waste repository. Amter and Ross developed a model called TGIF (Topographic Induced Flow) to simulate gas flow under Yucca Mountain. The TGIF model differs significantly from previous gas flow models. It uses a governing equation that is based on the concept of freshwater head, thus avoiding the numerical problems associated with the near-cancellation of the forces due to gravity and the pressure gradient. Unlike most other models, dipping, layered media can be simulated. This paper describes a systematic sensitivity study that was designed to test several aspects of the TGIF model when used to simulate gas flow under Yucca Mountain. Values of three important inputs to the model were systematically varied to form a matrix of 80 runs. The matrix consisted of five values of permeability contrast between a bedded tuff layer and surrounding welded units (in all cases, bulk permeabilities were used to represent the combined effect of both fractures and matrix permeability), four temperature profiles representing different stages of repository cooldown, and four finite-difference grids.

  19. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  20. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    Science.gov (United States)

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  1. Estimates of spatial correlation in volcanic tuff, Yucca Mountain, Nevada: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1991-02-01

    The spatial correlation structure of volcanic tuffs at and near the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, is estimated using samples obtained from surface outcrops and drill holes. Data are examined for four rock properties: porosity, air permeability, saturated hydraulic conductivity, and dry bulk density. Spatial continuity patterns are identified in both lateral and vertical (stratigraphic) dimensions. The data are examined for the Calico Hills tuff stratigraphic unit and also without regard for stratigraphy. Variogram models fitted to the sample data from the tuffs of Calico Hills indicate that porosity is correlated laterally over distances of up to 3000 feet. If air permeability and saturated conductivity values are viewed as semi-interchangeable for purposes of identifying spatial structure, the data suggest a maximum range of correlation of 300 to 500 feet without any obvious horizontal to vertical anisotropy. Continuity exists over vertical distances of roughly 200 feet. Similar variogram models fitted to sample data taken from vertical drill holes without regard for stratigraphy suggest that correlation exists over distances of 500 to 800 feet for each rock property examined. Spatial correlation of rock properties violates the sample-independence assumptions of classical statistics to a degree not usually acknowledged. In effect, the existence of spatial structure reduces the ''equivalent'' number of samples below the number of physical samples. This reduction in the effective sampling density has important implications for site characterization for the Yucca Mountain Project. 19 refs., 43 figs., 5 tabs

  2. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1995-01-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system

  3. Stratigraphic and structural framework of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Fox, K.F. Jr.

    1988-01-01

    Yucca Mountain is located within the southwestern Nevada volcanic field, ∼140 km northwest of Las Vegas, Nevada, and 50 km northeast of Death Valley, California. The mountain consist of a series of long, linear, north-trending volcanic ridges that approach an 1800-m maximum elevation near The Prow. The broad intermontane alluviated valleys of Crater Flat, the Amargosa Desert, and Jackass Flats, averaging 800 to 1100 m in elevation, form the western, southern, and eastern margins of Yucca Mountain, respectively. North of The Prow, Yucca Mountain merges with other volcanic highlands that flank the southern rim of the Timber Mountain-Oasis Valley caldera complex. The stratigraphy and structure of the area are discussed. Future geologic studies will attempt to determine if faults extend beneath Yucca Mountain, and, if present, their potential effects on the hydrologic and tectonic regimes

  4. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  5. Mountain biking injuries: a review.

    Science.gov (United States)

    Carmont, Michael R

    2008-01-01

    Mountain biking is a fast, exciting adventure sport with increasing numbers of participants and competitions. A search of PubMed, Medline, CINAHL, DH data, and Embase databases was performed using the following keywords: mountain, biking and injuries. This revealed 2 review articles, 17 case controlled studies, 4 case series and 5 case reports. This review summarises the published literature on mountain biking injuries, discusses injury frequency and common injury mechanisms. Riders are quick to adopt safety measures. Helmet usage is now increasingly common and handlebar adaptations have been discontinued. Although the sport has a reputation for speed and risk with research and awareness, injury prevention measures are being adopted making the sport as safe as possible.

  6. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  7. Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic Monte di Gioiosa mudrocks (Sicily, southern Italy)

    Science.gov (United States)

    Perri, Francesco; Critelli, Salvatore; Mongelli, Giovanni; Cullers, Robert L.

    2011-10-01

    The continental redbeds from the Internal Domains of the central-western Mediterranean Chains have an important role in the palaeogeographic and palaeotectonic reconstructions of the Alpine circum-Mediterranean orogen evolution since these redbeds mark the Triassic-Jurassic rift-valley stage of Tethyan rifting. The composition and the sedimentary evolution of the Middle Triassic to Lowermost Jurassic continental redbeds of the San Marco d'Alunzio Unit (Peloritani Mountains, Southern Italy), based on mineralogical and chemical analyses, suggests that the studied mudrock sediments share common features with continental redbeds that constitute the Internal Domains of the Alpine Mediterranean Chains. Phyllosilicates are the main components in the mudrocks. The 10 Å-minerals (illite and micas), the I-S mixed layers, and kaolinite are the most abundant phyllosilicates. The amount of illitic layers in I-S mixed layers coupled with the illite crystallinity values (IC) are typical of high degree of diagenesis, corresponding to a lithostatic/tectonic loading of about 4-5 km. The mineralogical assemblage coupled with the A-CN-K plot suggest post-depositional K-enrichments. Palaeoweathering proxies (PIA and CIW) record intense weathering at the source area. Further, the studied sediments are affected by reworking and recycling processes and, as consequence, it is likely these proxies monitor cumulative effect of weathering. The climate in the early Jurassic favoured recycling and weathering occurred under hot, episodically humid climate with a prolonged dry season. The source-area is the low-grade Paleozoic metasedimentary basement. Mafic supply is minor but not negligible as suggested by provenance proxies.

  8. From Mountains to Plains: The Hydrogeochemistry of the Boulder Creek Watershed, Colorado during High- and Low-Flow Conditions 2000

    Science.gov (United States)

    Verplanck, P. L.; Murphy, S. F.; McCleskey, R. B.; Barber, L. B.; Roth, D. A.

    2002-05-01

    A hydrogeochemical study of the Boulder Creek watershed was undertaken to evaluate natural and anthropogenic sources of solutes and the geochemical processes that affect stream chemistry. The Boulder Creek watershed, 1160 km{2}, is in the Front Range of the Rocky Mountains in Colorado and can be delineated into five physiographic/land use regions: the headwater region (elev. 4100 to 2600 m, tundra to pine/fir forest, Precambrian and Tertiary gneisses and plutons, sparse habitation), the mountain corridor (elev. 2600 to 1750 m, ponderosa pine, Precambrian and Tertiary gneisses and plutons, small mountain communities), the urban region (elev. 1750 to 1560 m, grassland, Mesozoic sedimentary units, City of Boulder), the wastewater-dominated reach (elev. 1560 to 1540 m, grassland, Mesozoic sedimentary units, sewage treatment plant effluent), and the agriculture region (elev. 1540 to 1480 m, grassland, Mesozoic sedimentary units, mixed urban and agricultural). Potential anthropogenic sources of solutes include: mining (hardrock and aggregate), septic systems, highway runoff, urban wastewater, and agricultural practices. A 70 km reach of Boulder Creek (16 sites) and its major inflows (13 sites) were sampled during high- and low-flow conditions in 2000. At all sites, discharge was measured or estimated, and water samples were analyzed for major and trace elements and organic carbon. At selected sites, analyses also included a suite of pesticides, pharmaceuticals, and wastewater-derived organic compounds and the strontium isotopic composition. Stream water in the headwater region is a dilute Ca-Mg-HCO3-SO4- water, and in the mountain corridor a slight increase in solutes was observed. Within the urban reach solute concentrations increased, with the most dramatic increase below the sewage treatment plant. Many constituents continue to increase in concentration through the urban/agriculture region. Similar trends were observed during high- and low-flow conditions with

  9. Preliminary hydrologic evaluation of the North Horn Mountain coal-resource area, Utah

    Science.gov (United States)

    Graham, M.J.; Tooley, John E.; Price, Don

    1981-01-01

    North Horn Mountain is part of a deeply dissected plateau in central Utah which is characterized by deep, narrow, steep-walled canyons with local relief of more than 1,000 feet. Geologic units exposed in the North Horn Mountain area range in age from Late Cretaceous to Holocene and contain two mineable seams of Cretaceous coal. The area is in the drainage basin of the San Rafael River, in the Colorado River Basin. Runoff from the mountain is ephemeral. This runoff to the San Rafael River is by way of Cottonwood and Perron Creeks and represents less than 10 percent of their average annual runoff. Probable peak discharges (100-year flood) for the ephemeral streams draining North Horn Mountain are estimated to range from 200 to 380 cubic feet per second.The chemical quality of surface water in the area is good. The water is generally of a calcium magnesium bicarbonate type with average dissolved solids less than 500 milligrams per liter. Annual sediment yield in most of the area ranges from 0.1 to 0.2 acre-foot per square mile but locally is as high as 1.0 acre-foot per square mile. Most of the sediment is eroded during cloudbursts.Most of the ground water above the coal on North Horn Mountain probably is in perched aquifers. These aquifers support the flow of small seeps and springs. In some areas, the regional water table appears to extend upward into the coal. The principal source of recharge is precipitation that probably moves to aquifers along faults, joints, or fractures. This movement is apparently quite rapid. The dissolved-solids concentrations of ground water in the North Horn Mountain area range from less than 500 to about 1,000 milligrams per liter.Coal mining on North Horn Mountain should have minor "effects on the quantity and quality of surface water. The maximum predicted decrease in the annual flow of Ferron and Cottonwood Creeks is less than U percent. The sediment loads of affected streams could be significantly increased if construction were to

  10. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt

    Directory of Open Access Journals (Sweden)

    Alfonsina Arriaga-Jiménez

    2018-02-01

    Full Text Available Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled. These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity

  11. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt.

    Science.gov (United States)

    Arriaga-Jiménez, Alfonsina; Rös, Matthias; Halffter, Gonzalo

    2018-01-01

    Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest-shrubland-pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes-a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns

  12. Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain

    International Nuclear Information System (INIS)

    2006-01-01

    Well ER-12-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in March and April 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of central Rainier Mesa, especially in the older Tertiary volcanic rocks and Paleozoic sedimentary rocks. The main 47.0-centimeter hole was drilled to a depth of 799.2 meters and cased with 33.97-centimeter casing to 743.1 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to a total depth of 1,496.0 meters. The completion string consisted of 13.97-centimeter stainless steel casing, with two slotted intervals open to the lower carbonate aquifer, suspended from 19.37-centimeter carbon steel casing. A piezometer string was installed outside the 33.97-centimeter casing to a depth of 467.1 meters to monitor a zone of perched water within the Tertiary volcanic section. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 35 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 674.2 meters of Tertiary volcanic rocks and 821.7 meters of Paleozoic dolomite and limestone. Forty-nine days after the well was completed, but prior to well development and testing, the water level inside the main hole was tagged at the depth of 949.1 meters, and the water level inside the piezometer string was tagged at 379.9 meters

  13. SNL Yucca Mountain Project data report: Density and porosity data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.

    1990-02-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site in southern Nevada, is being evaluated as a potential site for underground disposal of nuclear wastes. At present, the physical, thermal, and mechanical properties of tuffaceous rocks from Yucca Mountain are being determined as part of the Yucca Mountain Project. This report documents experiment data, which have been obtained by Sandia National Laboratories or its contractors, for the density and porosity of tuffaceous rocks that lie above the water table at Yucca Mountain. 7 refs., 2 figs., 3 tabs

  14. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  15. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    Science.gov (United States)

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  16. A Comment on “Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?”

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-04-01

    Full Text Available There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests, or a combination of these treatments. Indirect control is preventive, and designed to reduce the probability and severity of future infestations within treated areas by manipulating stand, forest and/or landscape conditions by reducing the number of susceptible host trees through thinning, prescribed burning, and/or alterations of age classes and species composition. We emphasize that “outbreak suppression” is not the intent or objective of management strategies implemented for mountain pine beetle in the western United States, and that the use of clear, descriptive language is important when assessing the merits of various treatment strategies.

  17. [Life cycles of ground beetles (Coleoptera, Carabidae) from the mountain taiga and mountain forest-steppe in the Eastern Sayan].

    Science.gov (United States)

    Khobrakova, L Ts; Sharova, I Kh

    2005-01-01

    Seasonal dynamics and demographic structure was studied in 15 dominant ground beetle species in the mountain taiga and mountain forest-steppe belts of the Eastern Sayan (Okinskoe Plateau). Life cycles of the dominant ground beetle species were classified by developmental time, seasonal dynamics, and intrapopulation groups with different reproduction timing. The strategies of carabid life cycles adapted to severe mountain conditions of the Eastern Sayan were revealed.

  18. Floristic analysis of the wanda mountain in north eastern china

    International Nuclear Information System (INIS)

    Wang, H.; Xu, L.; Zhang, Z.

    2016-01-01

    The plants of the Wanda Mountain area were investigated between 2009 to 2013. The results show that Wanda Mountain has 95 families of seed plants distributed in 334 genera and 705 species. A geographical component analysis shows that in addition to a small number of cosmopolitan species, cold, temperate and tropical species account for 14.9%, 77.3% and 4.4% of the total species, respectively, indicating that the flora of the Wanda Mountains exhibits a significant temperate nature and includes a small number of tropical components and certain cold components. In addition, the Wanda Mountains show a remarkable level of endemism and are geographically related to other regions in East Asia, particularly Japan. Furthermore, the Wanda Mountains present a complicated species composition, with a total of 14 distribution patterns and 10 variants. The coefficient of similarity between the flora of the Wanda Mountain area and the flora of the Changbai Mountain area is 43.1%, and the coefficient of similarity between the flora of the Wanda Mountain area and the flora of the Lesser Xingan Mountain area is 49.2%, indicating that the plants of the Wanda Mountain area are more common to those of the Lesser Xingan Mountain area. (author)

  19. ACUTE PHASE PROTEIN INCREASE IN HIGH ALTITUDE MOUNTAINEERS

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    Full Text Available ABSTRACT Introduction: Many middle-aged Turks go hiking in mountains to breathe some fresh air or to maintain fitness. Objective: This study investigated the effects of regular high altitude mountain climbing on the metabolic and hematological responses of mountaineers. Methods: Hematological and biochemical parameters were studied, as well as some hormonal values of 21 mountaineers and 16 healthy age-matched sedentary volunteers. Results: The neutrophil to lymphocyte ratio (NLR was significantly lower (p<0.04 in mountaineers compared with the sedentary group. Total protein (p<0.001 and albumin (p<0.001 were lower, while the levels of ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase (p<0.01 were higher in mountaineers. Other hematological and biochemical parameters, i.e., erythrocytes, leukocytes, hemoglobin and hematocrit, did not change significantly. Conclusion: Our results show that regular exposure to high altitude increased the serum levels of some acute phase proteins with anti-inflammatory properties.

  20. An evaluation of seven methods for controlling mountain laurel thickets in the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2017-01-01

    In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) thickets in mixed-oak (Quercus spp.) stands can lead to hazardous fuel situations, forest regeneration problems, and possible forest health concerns. Therefore, land managers need techniques to control mountain laurel thickets and limit...

  1. Remote sensing for environmental site screening and watershed evaluation in Utah Mine lands - East Tintic mountains, Oquirrh mountains, and Tushar mountains

    Science.gov (United States)

    Rockwell, Barnaby W.; McDougal, Robert R.; Gent, Carol A.

    2005-01-01

    Imaging spectroscopy-a powerful remote-sensing tool for mapping subtle variations in the composition of minerals, vegetation, and man-made materials on the Earth's surface-was applied in support of environmental assessments and watershed evaluations in several mining districts in the State of Utah. Three areas were studied through the use of Landsat 7 ETM+ and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data: (1) the Tintic mining district in the East Tintic Mountains southwest of Provo, (2) the Camp Floyd mining district (including the Mercur mine) and the Stockton (or Rush Valley) mining district in the Oquirrh Mountains south of the Great Salt Lake, and (3) the Tushar Mountains and Antelope Range near Marysvale. The Landsat 7 ETM+ data were used for initial site screening and the planning of AVIRIS surveys. The AVIRIS data were analyzed to create spectrally defined maps of surface minerals with special emphasis on locating and characterizing rocks and soils with acid-producing potential (APP) and acid-neutralizing potential (ANP). These maps were used by the United States Environmental Protection Agency (USEPA) for three primary purposes: (1) to identify unmined and anthropogenic sources of acid generation in the form of iron sulfide and (or) ferric iron sulfate-bearing minerals such as jarosite and copiapite; (2) to seek evidence for downstream or downwind movement of minerals associated with acid generation, mine waste, and (or) tailings from mines, mill sites, and zones of unmined hydrothermally altered rocks; and (3) to identify carbonate and other acid-buffering minerals that neutralize acidic, potentially metal bearing, solutions and thus mitigate potential environmental effects of acid generation. Calibrated AVIRIS surface-reflectance data were spectrally analyzed to identify and map selected surface materials. Two maps were produced from each flightline of AVIRIS data: a map of iron-bearing minerals and water having absorption features in the

  2. New age data and geothermobarometric estimates from the Apuseni Mountains (Romania); evidence for Cretaceous amphibolite-facies metamorphism

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2014-05-01

    New Ar-Ar ms, Rb-Sr bt and Sm-Nd grt age data in combination with microprobe analyses and structural data from the Apuseni Mountains provide new constraints for the tectonic evolution of the Tisza and Dacia Mega-Units during the Late Jurassic-Late Cretaceous time interval, which is of special importance for the present day arrangement of tectonic units in the Alpine-Carpathian-Dinaridic region. Late Jurassic obduction of Transylvanian Ophiolites (155 Ma) partially reset Ar-Ar ms ages at the top of the Biharia Nappe System in the Dacia Mega-Unit. New Sm-Nd grt ages and P-T estimates yielded amphibolite-facies conditions of 500°C and about 0.8 GPa during the Early Cretaceous (125 Ma Sm-Nd age) for the Dacia Mega-Unit and during late Early Cretaceous times (104 Ma Sm-Nd age) for the Tisza Mega-Unit. This implies that not only the Dacia Mega-Unit, but also the Tisza Mega-Unit experienced a strong regional metamorphic overprint accompanying Alpine deformation. New 95 Ma Ar-Ar ms and 81 Ma Rb-Sr bt ages from the Bihor Nappe (Tisza Mega-Unit), in combination with fission track ages constrain rapid cooling of more than 20°C/Ma after the thermal maximum. The amplitude of cooling corresponds to data from the Dacia Mega-Unit, which started cooling 20 Ma earlier, but at a rate of only about 12°C/Ma. Kinematic indicators and stretching lineations show NE-directed, in-sequence nappe stacking for the Tisza and Dacia Mega-Units during "Austrian Phase" deformation (125-100 Ma). Following the Austrian Phase, the Dacia Mega-Unit was thrust over the Tisza Mega-Unit during the Turonian Phase (93-89 Ma). Constrained through NW-directed kinematic indicators and 94-80 Ma Rb-Sr bt ages, this tectonic phase is responsible for a pervasive retrograde greenschist-facies overprint and the geometry of the present-day nappe stack in the Apuseni Mountains.

  3. Mountain biking injuries: an update.

    Science.gov (United States)

    Kronisch, Robert L; Pfeiffer, Ronald P

    2002-01-01

    This article reviews the available literature regarding injuries in off-road bicyclists. Recent progress in injury research has allowed the description of several patterns of injury in this sport. Mountain biking remains popular, particularly among young males, although sales and participation figures have decreased in the last several years. Competition in downhill racing has increased, while cross-country racing has decreased somewhat in popularity. Recreational riders comprise the largest segment of participants, but little is known about the demographics and injury epidemiology of noncompetitive mountain cyclists. Most mountain bikers participating in surveys reported a history of previous injuries, but prospective studies conducted at mountain bike races have found injury rates of bike racing the risk of injury may be higher for women than men. Minor injuries such as abrasions and contusions occur frequently, but are usually of little consequence. Fractures usually involve the torso or upper extremities, and shoulder injuries are common. Head and face injuries are not always prevented by current helmet designs. Fatal injuries are rare but have been reported. Improvements in safety equipment, rider training and racecourse design are suggested injury prevention measures. The authors encourage continued research in this sport.

  4. Yucca Mountain Milestone

    International Nuclear Information System (INIS)

    Hunt, Rod

    1997-01-01

    The Department of Energy project to determine if the Yucca Mountain site in Nevada is suitable for geologic disposal of high-level nuclear waste reached a major milestone in late April when a 25-foot-diameter tunnel boring machine ''holed through'' completing a five-mile-long, horseshoe-shaped excavation through the mountain. When the cutting-head of the giant machine broke through to daylight at the tunnel's south portal, it ended a 2 1/2-year excavation through the mountain that was completed ahead of schedule and with an outstanding safety record. Video of the event was transmitted live by satellite to Washington, DC, where it was watched by Secretary of Energy Frederico Pena and other high-level DOE officials, signifying the importance of the project's mission to find a repository for high-level nuclear waste and spent nuclear fuel produced by nuclear power plants. This critical undertaking is being performed by DOE's Office of Civilian Radioactive Waste Management (OCRWM). The tunnel is the major feature of the Exploratory Studies Facility (ESF), which serves as an underground laboratory for engineers and scientists to help determine if Yucca Mountain is suitable to serve as a repository for the safe disposal of high-level nuclear waste. Morrison Knudsen's Environmental/Government Group is providing design and construction-management services on the project. The MK team is performing final design for the ESF and viability assessment design for the underground waste repository that will be built only if the site is found suitable for such a mission. In fact, if at anytime during the ESF phase, the site is found unsuitable, the studies will be stopped and the site restored to its natural state

  5. Mountain laurel toxicosis in a dog.

    Science.gov (United States)

    Manhart, Ingrid O; DeClementi, Camille; Guenther, Christine L

    2013-01-01

    To describe a case of mountain laurel (Kalmia latifolia) toxicosis in a dog, including case management and successful outcome. A dog presented for vomiting, hematochezia, bradycardia, weakness, and ataxia, which did not improve with supportive treatment. Mountain laurel ingestion was identified as cause of clinical signs after gastrotomy was performed to remove stomach contents. Supportive treatment was continued and the dog made a full recovery. This report details a case of mountain laurel toxicosis in a dog, including management strategies and outcome, which has not been previously published in the veterinary literature. © Veterinary Emergency and Critical Care Society 2013.

  6. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, March 1994 to June 1994

    International Nuclear Information System (INIS)

    Geslin, J.K.; Moyer, T.C.

    1995-01-01

    This report summarizes lithologic logging of core from boreholes at Yucca Mountain, Nevada, conducted from March 1994 to June 1994. Units encountered during logging include Quaternary-Tertiary alluvium and colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, and Tertiary Calico Hills Formation. Logging results are presented in a table of contact depths for core from unsaturated zone neutron (UZN) boreholes and graphic lithologic logs for core from north ramp geology (NRG) boreholes

  7. Mountain Warfare: The Need for Specialist Training

    National Research Council Canada - National Science Library

    Malik, Muhammad

    2003-01-01

    This study focuses on the need for specialist training for mountain warfare. It analyzes the special characteristics of mountain and high altitude terrain which affect conduct of military operations...

  8. Yucca Mountain Project public interactions

    International Nuclear Information System (INIS)

    Reilly, B.E.

    1990-01-01

    The US Department of Energy (DOE) is committed to keeping the citizens of Nevada informed about activities that relate to the high-level nuclear waste repository program. This paper presents an overview of the Yucca Mountain Project's public interaction philosophy, objectives, activities and experiences during the two years since Congress directed the DOE to conduct site characterization activities only for the Yucca Mountain site

  9. ARCOS Network: A Sustainable Mountain Development Hub for Africa

    Directory of Open Access Journals (Sweden)

    Gilbert Muvunankiko

    2017-05-01

    Full Text Available The African continent is endowed with mountains of high productivity, biodiversity, endemism, and cultural diversity. African mountain ecosystems play an important role in economic development, poverty alleviation, and environmental protection. However, climate change and extreme events, as well as human activities, alter the capacity of mountains to provide such services to millions of Africans who depend on them. Since the creation in 1995 of the Albertine Rift Conservation Society (ARCOS, mountains have been at the core of its programs, and collaboration among stakeholders is a key aspect of its search for sustainable solutions to threats affecting African mountains.

  10. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-10-01

    Full Text Available A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to −50 to + 50 W m−2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m−2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m−2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the

  11. Dynamics calculation with variable mass of mountain self-propelled chassis

    Directory of Open Access Journals (Sweden)

    R.M. Makharoblidze

    2016-12-01

    Full Text Available Many technological processes in the field of agricultural production mechanization, such as a grain crop, planting root-tuber fruits, fertilizing, spraying and dusting, pressing feed materials, harvesting of various cultures, etc. are performed by the machine-tractor units with variable mass of links or processed media and materials. In recent years, are also developing the systems of automatic control, adjusting and control of technological processes and working members in agriculture production. Is studied the dynamics of transition processes of mountain self-propelled chassis with variable mass at real change disconnect or joining masses that is most often used in the function of movement (m(t = ctm(t = ct. Are derived the formulas of change of velocity of movement on displacement of unit and is defined the dependence of this velocity on the tractor and technological machine performance, with taking into account the gradual increase or removing of agricultural materials masses. According to the equation is possible to define a linear movement of machine-tractor unit. According to the obtained expressions we can define the basic operating parameters of machine-tractor unit with variable mass. The results of research would be applied at definition of characteristics of units, at development of new agricultural tractors.

  12. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  13. Borehole and geohydrologic data for test hole USW UZ-6, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Loskot, C.L.; Cope, C.M.

    1993-01-01

    Test hole USW UZ-6, located 1.8 kilometers west of the Nevada Test Site on a major north-trending ridge at Yucca Mountain, was dry drilled in Tertiary tuff to a depth of 575 meters. The area near this site is being considered by the US Department of Energy for potential construction of a high-level, radioactive-waste repository. Test hole USW UZ-6 is one of seven test holes completed in the unsaturated zone as part of the US Geological Survey's Yucca Mountain Project to characterize the potential repository site. Data pertaining to borehole drilling and construction, lithology of geologic units penetrated, and laboratory analyses for hydrologic characteristics of samples of drill-bit cuttings are included in this report

  14. Brushy Basin drilling project, Cedar Mountain, Emergy County, Utah

    International Nuclear Information System (INIS)

    Kiloh, K.D.; McNeil, M.; Vizcaino, H.

    1980-03-01

    A 12-hole drilling program was conducted on the northwestern flank of the San Rafael swell of eastern Utah to obtain subsurface geologic data to evaluate the uranium resource potential of the Brushy Basin Member of the Morrison Formation (Jurassic). In the Cedar Mountain-Castle Valley area, the Brushy Basin Member consists primarily of tuffaceous and carbonaceous mudstones. Known uranium mineralization is thin, spotty, very low grade, and occurs in small lenticular pods. Four of the 12 drill holes penetrated thin intervals of intermediate-grade uranium mineralization in the Brushy Basin. The study confirmed that the unit does not contain significant deposits of intermediate-grade uranium

  15. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation

  16. When did the Penglai orogeny begin on Taiwan?: Geochronological and petrographic constraints on the exhumed mountain belts and foreland-basin sequences

    Science.gov (United States)

    Chen, W. S.; Syu, S. J.; Yeh, J. J.

    2017-12-01

    Foreland basin receives large amounts of synorogenic infill that is eroded from the adjacent exhumed mountain belt, and therefore provides the important information on exhumation evolution. Furthermore, a complete stratigraphic sequence of Taiwan mountain belt consists of five units of Miocene sedimentary rocks (the Western Foothills and the uppermost sequence on the proto-Taiwan mountain belt), Oligocene argillite (the Hsuehshan Range), Eocene quartzite (the Hsuehshan Range), Eocene-Miocene slate and schist (Backbone Range), and Cretaceous schist (Backbone Range) from top to bottom. Based on the progressive unroofing history, the initiation of foreland basin received sedimentary lithic sediments from the uppermost sequence of proto-Taiwan mountain belt, afterwards, and receiving low- to medium-grade metamorphic lithic sediments in ascending order of argillite, quartzite, slate, and schist clasts. Therefore, the sedimentary lithics from mountain belt were deposited which represents the onset of the mountain uplift. In this study, the first appearance of sedimentary lithic sediments occurs in the Hengchun Peninsula at the middle Miocene (ca. 12-10 Ma). Thus, sandstone petrography of the late Miocene formation (10-5.3 Ma) shows a predominantly recycled sedimentary and low-grade metamorphic sources, including sandstone, argillite and quartzite lithic sediments of 10-25% which records erosion to slightly deeper metamorphic terrane on the mountain belt. Based on the results of previous thermogeochronological studies of the Yuli belt, it suggests that the middle Miocene occurred mountain uplift. The occurrence of low-grade metamorphic lithic sediments in the Hengchun Peninsula during late Miocene is coincident with the cooling ages of uplift and denuded Yuli schist belt at the eastern limb of Backbone Range.

  17. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  18. Transport of neptunium through Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Mitchell, A.J.; Overly, C.M.; Lopez, R.M.

    1993-01-01

    Neptunium has a high solubility in groundwaters from Yucca Mountain [1]. Uranium in nuclear reactors produces 237 Np which has a half-life of 2.1 4 x 10 6 years. Consequently, the transport of 237 Np through tuffs is of major importance in assessing the performance of a high-level nuclear waste repository at Yucca Mountain. The objective of this work is to determine the amount of Np retardation that is provided by the minerals in Yucca Mountain tuffs as a function of groundwater chemistry

  19. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bodvarsson, G.; Chen, G.; Haukwa, C.; Kwicklis, E.

    1995-01-01

    The three-dimensional site-scale numerical model o the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km 2 and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them; the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Submodels are used to investigate specific hypotheses and their importance before incorporation into the three-dimensional site-scale model. The primary objectives of the three-dimensional site-scale model are to: (1) quantify moisture, gas and heat flows in the ambient conditions at Yucca Mountain, (2) help in guiding the site-characterization effort (primarily by USGS) in terms of additional data needs and to identify regions of the mountain where sufficient data have been collected, and (3) provide a reliable model of Yucca Mountain that is validated by repeated predictions of conditions in new boreboles and the ESF and has therefore the confidence of the public and scientific community. The computer code TOUGH2 developed by K. Pruess at LBL was used along with the three-dimensional site-scale model to generate these results. In this paper, we also describe the three-dimensional site-scale model emphasizing the numerical grid development, and then show some results in terms of moisture, gas and heat flow

  20. The Correlation of Geo-Ecological Environment and Mountain Urban planning

    Science.gov (United States)

    Yang, Chun; Zeng, Wei

    2018-01-01

    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  1. Mountain tourism development in Serbia and neighboring countries

    Directory of Open Access Journals (Sweden)

    Krunić Nikola

    2010-01-01

    Full Text Available Mountain areas with their surroundings are important parts of tourism regions with potentials for all-season tourism development and complementary activities. Development possibilities are based on size of high mountain territory, nature protection regimes, infrastructural equipment, provided conditions for leisure and recreation as well as involvement of local population in processes of development and protection. This paper analyses the key aspects of tourism development, winter tourism in high-mountain areas of Serbia and some neighboring countries (Slovakia, Romania, Bulgaria, and Greece. Common determinants of cohesion between nature protection and mountain tourism development, national development policies, applied models and concepts and importance of trans-border cooperation are indicated.

  2. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Science.gov (United States)

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  3. Numerical studies of rock-gas flow in Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B.; Amter, S.; Lu, Ning [Disposal Safety, Inc., Washington, DC (United States)

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ``fresh-water head,`` a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface.

  4. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  5. Mountaineering and photography. Contacts between 1880 and 1940

    Directory of Open Access Journals (Sweden)

    Maria Andorno

    2014-12-01

    Full Text Available Since the second half of the nineteenth century, the photograph produced in high altitude mountain (mountaineering photography gives rise to peculiar images that do not belong to the tradition of landscape painting. Mountaineering is similar to the art of performance, if we talk about physical and mental commitment. Therefore, photos taken during the ascent of a peak shows both conceptual and formal values.

  6. Approach to identification and development of mountain tourism regions and destinations in Serbia with special reference to the Stara Planina mountain

    Directory of Open Access Journals (Sweden)

    Milijić Saša

    2010-01-01

    Full Text Available This paper deals with theoretical-methodological issues of tourism offer planning and regulation of settlements in mountain destinations. The basic determinants of the development of mountain tourist regions destinations in EU countries, in which respectable development results have been achieved, first of all in terms of income, together with appropriately adjusted development and environmental management system, have been emphasized. The ongoing transition and structural processes in Serbia will have an impact on application of these experiences. At the same time, a basis for competitiveness of mountain regions will not be determined only by spatial capacity and geological location, but also by creative-innovative developing environment. Taking into account the spatial-functional criteria and criteria for the development and protection, the possible spatial definition of mountain tourist regions/destinations in Serbia are presented. The justifiability and positioning of tourism development projects are analyzed aiming at uniform regional development, where two segments of demand are of particularly importance, i.e. demand for mountain tourism services and for real estates in mountain centers. Furthermore, holders of tourism offer will be analyzed through a contemporary approach which may be defined as the development and noncommercial and market and commercial one. International criteria which are evaluated while selecting city/mountain destination for Winter Olympic Games are particularly analyzed. Considering experience of countries with higher level of development of mountain regions, the main starting point for positioning projects for sustainable development of tourist destinations are defined by specifying them according to specific local and regional conditions. A rational model for spatial organization of tourism offer is shown on the example of the Stara Planina tourist region.

  7. Sensitivity and uncertainty analyses of unsaturated flow travel time in the CHnz unit of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1991-10-01

    This report documents the results of sensitivity and uncertainty analyses conducted to improve understanding of unsaturated zone ground-water travel time distribution at Yucca Mountain, Nevada. The US Department of Energy (DOE) is currently performing detailed studies at Yucca Mountain to determine its suitability as a host for a geologic repository for the containment of high-level nuclear wastes. As part of these studies, DOE is conducting a series of Performance Assessment Calculational Exercises, referred to as the PACE problems. The work documented in this report represents a part of the PACE-90 problems that addresses the effects of natural barriers of the site that will stop or impede the long-term movement of radionuclides from the potential repository to the accessible environment. In particular, analyses described in this report were designed to investigate the sensitivity of the ground-water travel time distribution to different input parameters and the impact of uncertainty associated with those input parameters. Five input parameters were investigated in this study: recharge rate, saturated hydraulic conductivity, matrix porosity, and two curve-fitting parameters used for the van Genuchten relations to quantify the unsaturated moisture-retention and hydraulic characteristics of the matrix. 23 refs., 20 figs., 10 tabs

  8. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  9. Spiders in mountain habitats of the Giant Mountains

    Czech Academy of Sciences Publication Activity Database

    Růžička, Vlastimil; Vaněk, J.; Šmilauer, P.

    2012-01-01

    Roč. 43, č. 4 (2012), s. 341-347 ISSN 1067-4136 Institutional research plan: CEZ:AV0Z50070508 Keywords : Giant Mountains (Krkonoše, Karkonosze) * spider s * anemo-orographic systems Subject RIV: EH - Ecology, Behaviour Impact factor: 0.236, year: 2012 http://www.springerlink.com/content/0k5g721q1155r146/fulltext.pdf

  10. Eastern Arc Mountains and their national and global importance ...

    African Journals Online (AJOL)

    The Eastern Arc Mountains comprise a chain of separate mountain blocks running from southern Kenya through Tanzania in a crescent or arc shape. In Tanzania, the Eastern Arc consists of North and South Pare, East and West Usambaras, Nguru, Ukaguru, Rubeho, Uluguru, Udzungwa and Mahenge Mountains.

  11. Winter Tourism and mountain wetland management and restoration

    Science.gov (United States)

    Gaucherand, S.; Mauz, I.

    2012-04-01

    The degradation and loss of wetlands is more rapid than that of other ecosystems (MEA 2005). In mountains area, wetlands are small and scattered and particularly sensitive to global change. The development of ski resorts can lead to the destruction or the deterioration of mountain wetlands because of hydrologic interferences, fill in, soil compression and erosion, etc. Since 2008, we have studied a high altitude wetland complex in the ski resort of Val Thorens. The aim of our study was to identify the impacts of mountain tourism development (winter and summer tourism) on wetland functioning and to produce an action plan designed to protect, rehabilitate and value the wetlands. We chose an approach based on multi-stakeholder participatory process at every stage, from information gathering to technical choices and monitoring. In this presentation, we show how such an approach can efficiently improve the consideration of wetlands in the development of a ski resort, but also the bottlenecks that need to be overcome. We will also discuss some of the ecological engineering techniques used to rehabilitate or restore high altitude degraded wetlands. Finally, this work has contributed to the creation in 2012 of a mountain wetland observatory coordinated by the conservatory of Haute-Savoie. The objective of this observatory is to estimate ecosystem services furnished by mountain wetlands and to find restoration strategies adapted to the local socio-economical context (mountain agriculture and mountain tourism).

  12. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Science.gov (United States)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  13. Perspectives for an integrated understanding of tropical and temperate high-mountain lakes

    Directory of Open Access Journals (Sweden)

    Jordi Catalan

    2016-03-01

    , high-mountain lake systems are excellent model ecosystems for applying an investigation linking airshed to sediments functional views. Additionally, the study of the mountain lakes districts as functional metacommunity units may reveal key differences in the distribution of organisms of limited (slow dispersal. We propose that limnological studies at tropical and temperate high mountain lakes should adhere to a common general paradigm. In which biogeochemical processes are framed by the airshed-to-sediment continuum concept and the biogeographical processes in the functional lake district concept. The solid understanding of the fundamental limnological processes will facilitate stronger contributions to the assessment of the impacts of the on-going global change in remote areas.

  14. Lithospheric Strength Beneath the Zagros Mountains of Southwestern Iran

    Science.gov (United States)

    Adams, A. N.; Nyblade, A.; Brazier, R.; Rodgers, A.; Al-Amri, A.

    2006-05-01

    The Zagros Mountain Belt of southwestern Iran is among the most seismically active mountain belts in the world. Early seismic studies of this area found that the lithosphere underlying the Zagros Mountains follows the "jelly sandwich" model, having a strong upper crust and a strong lithospheric mantle, separated by a weak lower crust. More recent studies, which analyzed earthquakes originating within the Zagros Mountains that were recorded at teleseismic distances, however, found that these earthquakes occurred only within the upper crust, thus indicating that the strength of the Zagros Mountains' lithosphere lies only within the upper crust, in accordance with the "creme brulee" lithospheric model. Preliminary analysis of regionally recorded earthquakes that originated within the Zagros Mountains is presented here. Using earthquakes recorded at regional distances will allow the analysis of a larger dataset than has been used in previous studies. Preliminary results show earthquakes occurring throughout the crust and possibly extending into the upper mantle.

  15. Rocky Mountain spotted fever in children.

    Science.gov (United States)

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. MOUNTAIN NATURAL BIODIVERSITY CONSERVATION IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Arkady Tishkov

    2012-01-01

    Full Text Available High biodiversity and degree of endemism of mountain biota strengthen the mountain regions’ status for the territorial nature conservation. Analysis of the protected areas’ representativeness in various mountain regions of Russia shows some discrepancy between their quantity, square and regional biodiversity originality. The biggest divergences are marked for the Northern Caucasus. The main problems: small area of the protected territories and also cluster character of their spatial distribution, mostly in the high mountains are not supposed to conform with the highest values of the regional flora’s and fauna’s uniqueness, to compensate representativeness of the protected biota and, in anyway, to correspond with the purpose of nature protection frame—the protected territories ecologic network’s forming. The situation in the Urals, Siberia and the Far East seems to be better. The large areas of the protected territories are in general agreement with the high originality of the nature ecosystems. Nevertheless each concrete case needs analysis of the regional biota’s and ecosystems’ biodiversity distribution within the protected areas, including character and (or unique elements of the regional biodiversity to be held. The development of the effectual territorial conservation of mountain regions needs differential approach. The creation of the large representative parcels of nature landscapes in the key-areas has the considerable meaning in the low-developed regions, difficult to access. And well-developed regions have the necessity of nature protected territories’ network development and the planning of the ecological frame’s forming. The territorial biodiversity conservation, including the system of federal, regional and local levels with protective conservation of the rare species has to be combined with ecosystem’s restoration, especially in the zones disturbed by erosion, recreation and military actions. Also it is

  17. Assessing the Economic Situation of Small-Scale Farm Forestry in Mountain Regions: A Case Study in Austria

    Directory of Open Access Journals (Sweden)

    Philipp Toscani

    2017-08-01

    Full Text Available Austria is one of the few countries with a long tradition of monitoring the economic performance of forest holdings. The national Farm Accountancy Data Network also addresses some forestry-specific issues, given the high significance of farm forestry in this country. However, it is not possible to assess the profitability of small-scale farm forestry in mountainous regions based on a representative sample. In this paper, we demonstrate how information gaps can be overcome by means of economic modeling and present results of this approach for mountain forestry for the first time. In spite of the unfavorable conditions of an alpine setting, forestry tends to be of special significance for the viability and resilience of family farms in these regions. Sustainable forest management that safeguards the ecosystem services provided by forests relies mostly on the profitability of timber production. Thus, the economic development of farm forestry is a key factor in achieving targets 15.1 and 15.4 of the United Nations Sustainable Development Goals in mountain regions.

  18. The Olympic Mountains Experiment (OLYMPEX)

    Energy Technology Data Exchange (ETDEWEB)

    Houze, Robert A. [University of Washington, Seattle, Washington; Pacific Northwest National Laboratory, Richland, Washington; McMurdie, Lynn A. [University of Washington, Seattle, Washington; Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, Alabama; Schwaller, Mathew R. [NASA Goddard Space Flight Center, Greenbelt, Maryland; Baccus, William [Olympic National Park, Port Angeles, Washington; Lundquist, Jessica D. [University of Washington, Seattle, Washington; Mass, Clifford F. [University of Washington, Seattle, Washington; Nijssen, Bart [University of Washington, Seattle, Washington; Rutledge, Steven A. [Colorado State University, Fort Collins, Colorado; Hudak, David R. [Environment and Climate Change Canada, King City, Ontario, Canada; Tanelli, Simone [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; Mace, Gerald G. [University of Utah, Salt Lake City, Utah; Poellot, Michael R. [University of North Dakota, Grand Forks, North Dakota; Lettenmaier, Dennis P. [University of California, Los Angeles, Los Angeles, California; Zagrodnik, Joseph P. [University of Washington, Seattle, Washington; Rowe, Angela K. [University of Washington, Seattle, Washington; DeHart, Jennifer C. [University of Washington, Seattle, Washington; Madaus, Luke E. [National Center for Atmospheric Research, Boulder, Colorado; Barnes, Hannah C. [Pacific Northwest National Laboratory, Richland, Washington

    2017-10-01

    the Olympic Mountains Experiment (OLYMPEX) took place during the 2015-2016 fall-winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S./Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching "atmospheric river" status, warm and cold frontal systems, and postfrontal convection

  19. Rocky Mountain Spotted Fever: Statistics and Epidemiology

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Rocky Mountain Spotted Fever (RMSF) Note: Javascript is disabled or is not ... message, please visit this page: About CDC.gov . Rocky Mountain Spotted Fever (RMSF) Transmission Signs and Symptoms Diagnosis and Testing ...

  20. Fatal Rocky Mountain Spotted Fever along the United States-Mexico Border, 2013-2016.

    Science.gov (United States)

    Drexler, Naomi A; Yaglom, Hayley; Casal, Mariana; Fierro, Maria; Kriner, Paula; Murphy, Brian; Kjemtrup, Anne; Paddock, Christopher D

    2017-10-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health concern near the US-Mexico border, where it has resulted in thousands of cases and hundreds of deaths in the past decade. We identified 4 patients who had acquired RMSF in northern Mexico and subsequently died at US healthcare facilities. Two patients sought care in Mexico before being admitted to US-based hospitals. All patients initially had several nonspecific signs and symptoms, including fever, headache, nausea, vomiting, or myalgia, but deteriorated rapidly without receipt of a tetracycline-class antimicrobial drug. Each patient experienced respiratory failure late in illness. Although transborder cases are not common, early recognition and prompt initiation of appropriate treatment are vital for averting severe illness and death. Clinicians on both sides of the US-Mexico border should consider a diagnosis of RMSF for patients with rapidly progressing febrile illness and recent exposure in northern Mexico.

  1. Evolution of endemism on a young tropical mountain.

    Science.gov (United States)

    Merckx, Vincent S F T; Hendriks, Kasper P; Beentjes, Kevin K; Mennes, Constantijn B; Becking, Leontine E; Peijnenburg, Katja T C A; Afendy, Aqilah; Arumugam, Nivaarani; de Boer, Hugo; Biun, Alim; Buang, Matsain M; Chen, Ping-Ping; Chung, Arthur Y C; Dow, Rory; Feijen, Frida A A; Feijen, Hans; Feijen-van Soest, Cobi; Geml, József; Geurts, René; Gravendeel, Barbara; Hovenkamp, Peter; Imbun, Paul; Ipor, Isa; Janssens, Steven B; Jocqué, Merlijn; Kappes, Heike; Khoo, Eyen; Koomen, Peter; Lens, Frederic; Majapun, Richard J; Morgado, Luis N; Neupane, Suman; Nieser, Nico; Pereira, Joan T; Rahman, Homathevi; Sabran, Suzana; Sawang, Anati; Schwallier, Rachel M; Shim, Phyau-Soon; Smit, Harry; Sol, Nicolien; Spait, Maipul; Stech, Michael; Stokvis, Frank; Sugau, John B; Suleiman, Monica; Sumail, Sukaibin; Thomas, Daniel C; van Tol, Jan; Tuh, Fred Y Y; Yahya, Bakhtiar E; Nais, Jamili; Repin, Rimi; Lakim, Maklarin; Schilthuizen, Menno

    2015-08-20

    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.

  2. A test of the compensatory mortality hypothesis in mountain lions: a management experiment in West-Central Montana

    Science.gov (United States)

    Robinson, Hugh S.; Desimone, Richard; Hartway, Cynthia; Gude, Justin A.; Thompson, Michael J.; Mitchell, Michael S.; Hebblewhite, Mark

    2014-01-01

    Mountain lions (Puma concolor) are widely hunted for recreation, population control, and to reduce conflict with humans, but much is still unknown regarding the effects of harvest on mountain lion population dynamics. Whether human hunting mortality on mountain lions is additive or compensatory is debated. Our primary objective was to investigate population effects of harvest on mountain lions. We addressed this objective with a management experiment of 3 years of intensive harvest followed by a 6-year recovery period. In December 2000, after 3 years of hunting, approximately 66% of a single game management unit within the Blackfoot River watershed in Montana was closed to lion hunting, effectively creating a refuge representing approximately 12% (915 km2) of the total study area (7,908 km2). Hunting continued in the remainder of the study area, but harvest levels declined from approximately 9/1,000 km2 in 2001 to 2/1,000 km2 in 2006 as a result of the protected area and reduced quotas outside. We radiocollared 117 mountain lions from 1998 to 2006. We recorded known fates for 63 animals, and right-censored the remainder. Although hunting directly reduced survival, parameters such as litter size, birth interval, maternity, age at dispersal, and age of first reproduction were not significantly affected. Sensitivity analysis showed that female survival and maternity were most influential on population growth. Life-stage simulation analysis (LSA) demonstrated the effect of hunting on the population dynamics of mountain lions. In our non-hunted population, reproduction (kitten survival and maternity) accounted for approximately 62% of the variation in growth rate, whereas adult female survival accounted for 30%. Hunting reversed this, increasing the reliance of population growth on adult female survival (45% of the variation in population growth), and away from reproduction (12%). Our research showed that harvest at the levels implemented in this study did not

  3. Copper Mountain, Wyoming, a uranium district--rediscovered

    International Nuclear Information System (INIS)

    Cramer, R.T.; Yellich, J.A.; Kendall, R.G.

    1979-01-01

    The Copper Mountain area is physiographically located along the Owl Creek Mountains. Economic uranium mineralization was delineated in the late 1950's with production of approximately 500,000 pounds from 1961-1970. Continued exploration and research has discovered additional resources. 20 refs

  4. Design of a three-dimensional site-scale model for the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wittwer, C.S.; Bodvarsson, G.S.; Chornack, M.P.; Flint, A.L.; Lewis, B.D.; Spengler, R.W.; Flint, L.E.; Rautman, C.A.

    1992-01-01

    A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed. This site-scale model covers an area of about 30 km 2 and is bounded by major faults to the east and west. A detailed numerical grid has been developed based on location of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Different maps, such as contour maps and isopachs maps, are presented for the different infiltration zones, and for the base of the Tiva Canyon, the Paintbrush, and the Topopah Spring hydrogeological units

  5. Yucca Mountain Biological resources monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs

  6. Hydrochemical investigations in characterizing the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Rattray, G.W.; Ferarese, J.S.; Yu, P.; Ryan, J.N.

    1998-01-01

    Hydrochemical and isotopic investigations of ground water at Yucca Mountain, Nevada, site of a potential permanent national nuclear-waste repository, demonstrate that younger rocks are dominated by calcium-sulfate or calcium-chloride water and that older rocks contain sodium-carbonate or sodium-bicarbonate water. Furthermore, unsaturated-zone pore water has significantly larger concentrations of major ions and dissolved solids than does the saturated-zone water. Recharge of perched or saturated-zone water, therefore, requires rapid flow through fractures or permeable regions in the unsaturated zone to avoid mixing with the chemically concentrated water in the unsaturated zone. This conceptual model is consistent with observations of rapidly moved post-bomb (post-1954) tritium and chlorine-36 in the deep unsaturated zone at Yucca Mountain. Presence of post-bomb tritium in matrix water away from fracture zones further indicates that parts of the fast-flow water that moves through fractures have been diverted laterally into nonwelded units. Experimental data show that different lithologic units require specific water-extraction methods for stable-isotope analyses of hydrogen and oxygen to ensure accurate characterization. Vacuum-distillation and compression-extraction methods both can yield accurate data but must be used with specific lithologies. Column experiments demonstrate that percolating water can exchange with pore water of the core as well as water held in zeolite minerals in the core. Exchange rates range from days to months. Pore-water samples from core, therefore, reflect the most recently infiltrated water but do not reflect percolating water of the distant past

  7. Impact of Hypoxia on Man on Mountaineering

    Directory of Open Access Journals (Sweden)

    A. N. Kislitsyn

    2006-01-01

    Full Text Available External respiratory function was studied in those engaged in mountaineering. A negative correlation was found between the intensity of exercise and the changes in vital capacity under mountainous conditions. Changes occurring in the levels of glucose and cholesterol were considered in tourists.

  8. Acute mountain sickness

    Science.gov (United States)

    ... GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Acute mountain sickness URL of this page: //medlineplus.gov/ency/article/ ...

  9. DANGERS AND SAFETY MEASURES IN A MOUNTAIN

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2013-07-01

    Full Text Available Mountaineering and everything that is connected with it is a sport with con¬tro¬lled risk. Mountaineers, alpinists, climbers, cavers and all the others who visit and sojourn in mountains are faced with many risks and dangers, which are caused by na¬ture and also by their own mistakes. The dangers in the mountains, like dangers in any other environment, are mainly predictable, so it is best to deal with them with good esti¬mation, knowledge and skill. One has to be aware of his surroundings – the moun¬tain, to respect it and to know what is dangerous and how much it is dangerous at any moment. The organization of the mountaineering expeditions and leadership per¬haps re¬present the highest level of security control. To develop skills for organizing and lead¬ing a group means to ensure the safety of the entire group – to work pre¬ven¬ti¬ve¬ly at the level of the entire group, not only at the level of an individual. The success of the enti¬re group as well as safety depends on the organization and leadership.

  10. Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database

    Science.gov (United States)

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.

    1997-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  11. 75 FR 29656 - Amendment of Class E Airspace; Mountain View, AR

    Science.gov (United States)

    2010-05-27

    ...-1181; Airspace Docket No. 09-ASW-36] Amendment of Class E Airspace; Mountain View, AR AGENCY: Federal... Mountain View, AR. Decommissioning of the Wilcox non-directional beacon (NDB) at Mountain View Wilcox Memorial Field Airport, Mountain View, AR, has made this action necessary to enhance the safety and...

  12. Downstream effects of stream flow diversion on channel characteristics and riparian vegetation in the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Simeon T. Caskey; Tyanna S. Blaschak; Ellen Wohl; Elizabeth Schnackenberg; David M. Merritt; Kathleen A. Dwire

    2015-01-01

    Flow diversions are widespread and numerous throughout the semi-arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic...

  13. Eruptive history of Mammoth Mountain and its mafic periphery, California

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-07-13

    This report and accompanying geologic map portray the eruptive history of Mammoth Mountain and a surrounding array of contemporaneous volcanic units that erupted in its near periphery. The moderately alkaline Mammoth eruptive suite, basaltic to rhyodacitic, represents a discrete new magmatic system, less than 250,000 years old, that followed decline of the subalkaline rhyolitic system active beneath adjacent Long Valley Caldera since 2.2 Ma (Hildreth, 2004). The scattered vent array of the Mammoth system, 10 by 20 km wide, is unrelated to the rangefront fault zone, and its broad nonlinear footprint ignores both Long Valley Caldera and the younger Mono-Inyo rangefront vent alignment.

  14. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  15. 78 FR 29366 - Green Mountain Power Corporation

    Science.gov (United States)

    2013-05-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TS04-277-002] Green Mountain Power Corporation Notice of Filing Take notice that on May 2, 2013, Green Mountain Power Corporation filed additional information in support of its request for continued waiver of Standards of Conduct. Any...

  16. Mountain Plover [ds109

    Data.gov (United States)

    California Natural Resource Agency — Point locations representing observations of mountain plover (Charadrius montanus) feeding and roosting flocks (and occasional individuals) documented during an...

  17. Origin, development, and impact of mountain laurel thickets on the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2016-01-01

    Throughout forests of the northern hemisphere, some species of ericaceous shrubs can form persistent understories that interfere with forest regeneration processes. In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) may interfere in the regeneration of mixed-oak (Quercus spp.) forests. To...

  18. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-09-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  19. Mountain biking. Breezy ups and traumatic downs

    International Nuclear Information System (INIS)

    Schueller, G.

    2010-01-01

    For more than two decades the popularity of mountain biking as a national pastime as well as a competitive sport has been undiminished. However, its related risks are not monitored as closely as those, for example, of skiing. The injuries caused by mountain biking are specific and cannot be compared with those caused by other cycling sports. This is due not only to the characteristics of the terrain but also to the readiness to assume a higher risk compared to cycle racing. The particular value of radiology is in the acute trauma setting. Most often musculoskeletal lesions must be examined and digital radiography and MRI are the most useful techniques. Severe trauma of the cranium, face, spine, thorax and abdomen are primarily evaluated with CT, particularly in dedicated trauma centers. Therefore, radiology can play a role in the rapid diagnosis and optimal treatment of the trauma-related injuries of mountain biking. Thus, the unnecessarily high economical damage associated with mountain biking can be avoided. (orig.) [de

  20. [Mountain biking : Breezy ups and traumatic downs].

    Science.gov (United States)

    Schueller, G

    2010-05-01

    For more than two decades the popularity of mountain biking as a national pastime as well as a competitive sport has been undiminished. However, its related risks are not monitored as closely as those, for example, of skiing. The injuries caused by mountain biking are specific and cannot be compared with those caused by other cycling sports. This is due not only to the characteristics of the terrain but also to the readiness to assume a higher risk compared to cycle racing.The particular value of radiology is in the acute trauma setting. Most often musculoskeletal lesions must be examined and digital radiography and MRI are the most useful techniques. Severe trauma of the cranium, face, spine, thorax and abdomen are primarily evaluated with CT, particularly in dedicated trauma centers. Therefore, radiology can play a role in the rapid diagnosis and optimal treatment of the trauma-related injuries of mountain biking. Thus, the unnecessarily high economical damage associated with mountain biking can be avoided.

  1. Radiological Programs- Ambient Radon at the Yucca Mountain Site (SCPB:NA)

    International Nuclear Information System (INIS)

    TRW

    1999-01-01

    This report summarizes the results of the ambient radon monitoring activities conducted by the Radiological/Environmental Field Programs Department of the Civilian Radioactive Waste Management and Operating Contractor (CRWMS M and O), Yucca Mountain Site Characterization Office. Overall, outdoor radon concentrations measured at the Yucca Mountain site were within the range of those reported for other areas in Nevada and the continental United States. Though there was some evidence of trends with time at some monitoring sites, regional atmospheric radon concentrations to date, do not appear to have changed significantly since the inception of site characterization activities. A preliminary dose assessment yielded an estimated annual effective dose equivalent of 134 mrem based on a continuous exposure to the average ambient radon concentration measured at the Yucca Mountain site. Concentrations were measured using two types of systems, passive electret ion chambers (EIC) and continuous radon monitors (CRM). The EICs produced time-averaged radon concentration data and the CRMs were used to study radon fluctuations over time. Between 1991 and 1995, the mean radon concentration at the site, as measured by EICs placed one meter above ground level, was 0.32 ± 0.15 pCi L -1 . Radon concentrations varied between monitoring locations and between years. Station NF38, located near the North Portal of the Exploratory Studies Facility (ESF), exhibited the highest overall average radon concentration at 0.55 pCi L -1 (1992 to 1995). Concentrations appear to cycle diurnally, generally peaking in the early morning hours and being lowest in the afternoon. The data also suggested that radon concentrations may fluctuate seasonally. The work accomplished between 1991 and 1995, established radon levels in the general area surrounding Yucca Mountain. It is recommended that further work focus directly on those locations that have the greatest potential for influencing ambient radon levels

  2. Turonian Radiolarians in the Section of Ak Mountain, Crimea

    Science.gov (United States)

    Bragina, L. G.

    2018-01-01

    In the sections from the western and eastern peaks of Ak Mountain, the Patellula selbukhraensis Zone (upper part of the lower Turonian), which is established for the first time in the southwestern Mountainous Crimea, is traced. The first data on the radiolarian distribution in the section of the eastern peak of Ak Mountain, which is stratotypical of the Phaseliforma turovi (middle Turonian, without the upper part) and Actinomma (?) belbekense (upper part of the middle Turonian-upper Turonian) zones, are presented. These zones are also traced in the parallel section of the western peak of Ak Mountain.

  3. Can nuclear waste be stored safely at Yucca mountain?

    International Nuclear Information System (INIS)

    Whipple, C.G.

    1996-01-01

    In 1987 the federal government narrowed to one its long-term options for disposing of nuclear waste: storing it permanently in a series of caverns excavated out of the rock deep below Yucca mountain in southern Nevada. Whether it makes sense at this time to dispose permanently of spent fuel and radioactive waste in a deep geologic repository is hotly disputed. But the Nuclear Waste Policy Act amendements of 1987 decree that waste be consolidated in Yucca Mountain if the mountain is found suitable. Meanwhile the spent fuel continues to pile up across the country, and 1998 looms, adding urgency to the question: What can science tell us about the ability of the mountain to store nuclear waste safely? This paper discusses this issue and describes how studies of the mountain's history and geology can contribute useful insights but not unequivocal conclusions

  4. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    International Nuclear Information System (INIS)

    McGraw, D.; Oberlander, P.

    2007-01-01

    The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a)), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The

  5. The mountains influence on Turkey Climate

    International Nuclear Information System (INIS)

    Sensoy, Serhat

    2004-01-01

    Since the Black sea mountains at the north of the country and the Taurus mountains in the south lay parallel to the seashore and rise very sharply rain clouds can not penetrate to the internal part of the country. Rain clouds drops most of their water on the slopes opposite the sea. As rain clouds pass over the mountains and reach Central Anatolia they have no significant capability of rain. For this reason, the Central Anatolia does not have very much precipitation. The difference between the rates of precipitation on the inner and outer slopes seems to be effective on the expansion of plants. For example, there is a subtropical climate prevailing on the Black sea shore between Sinop and Batum where precipitation is more than 1000-2000 mm yearly. Going from Sinop to the mouth of the Sakarya River the rate of precipitation goes down to 800-1250 mm in a year. Running from the Sakarya River to the western area covering Thrace the climate seems to be continental, and in the area dominant plant cover is of the Mediterranean type. Since the succession of the mountains in Western Anatolia lay perpendicular to the seashore, rain clouds penetrate towards the inner regions for about 400 km. The continental climate with long, dry and summer affects this area. In the Eastern region of Anatolia, since the elevation of the mountains exceeds 2500-3000 m, valleys are disorderly scattered and located at high elevations, and the northern Black sea mountains and Caucasian mountains hold the rain clouds, the area is effected by the continental climate with long and very cold winters. Consequently precipitation at the lgdir River goes down to 300 mm while it is 500-800 mm in most of areas and 1000-1500 mm in some regions towards northern Mu and Bingol provinces. As mentioned above, high mountains, which hold rain clouds, surround the Central Anatolia, which has caused drought in this region. In the central Anatolia covering Afyon, Eski hir, Ankara, Qankiri, Qorum, Amasya, Kayseri

  6. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    Science.gov (United States)

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  7. Geoethics and pedagogy of mountain and risk: the case of transhumance in Sila (Southern Italy)

    Science.gov (United States)

    Bernardo, Marcello; Muto, Francesco; De Pascale, Francesco

    2015-04-01

    Geoethics and Geography, as "channels" between the social and physical sciences, interact between areas of knowledge which allow quantitative measurement and others which instead mainly rely on qualitative considerations. Due to their educational values and the methodological possibilities they open up, such possibilities for interaction would be most valuable in educational environment, as they would represent a significant step toward educational-methodological settings that permit the acquisition of skills and competencies of immediate spendability, for example the importance of "knowing how to translate quantitative elements into qualitative and vice-verse". In a context of alternation between quantity and quality, the concept of resource is open to a multiplicity of ideas. If we consider the mountains as a resource, ideas develop from that of the riches of the mountains as being measurable through quantitative indexes (but not always) and reach one of the mountains as a whole as a resource, valuable mainly through qualitative criteria (but not only). This game between quantity and quality leads to informed evaluation of environmental conditions and human actions. In addition, the signs of the past, etiche into the mountains and often still influential in the present, constitute the fourth dimension of space, of which the teaching of Geography can not do without. However, the exploration of time also concerns the future, especially with regard the ethics of responsibility: it investigates the consequences of choices made in the present and how they can affect the future. Due to its many specificities (especially, but not exclusively, in terms of resources and risks), planning for a mountainous territory lends to an inexhaustible series of educational applications. The building of an "education about the mountains" project for primary and secondary school children through a series of learning units, from direct and indirect observation to territorial analysis

  8. Mountains and energy transition. Status of use of renewable energies and challenges for their development in mountain areas - Renewable energies Volume 1

    International Nuclear Information System (INIS)

    Peguin, Marion; Moncorps, Sebastien; Fourcade, Michel; Denis, Helene

    2013-10-01

    After an overview of challenges related to the development of renewable energies in mountain areas (conservation of biodiversity and landscapes, main legal measures regarding biodiversity and landscapes), this report proposes an overview of the status and potentials of the different renewable energies (solar, wind, hydroelectricity, bio-energies, geothermal) in mountain areas. It proposes an assessment (strengths and weaknesses) and recommendations for solar, wind, hydroelectricity and bio energies in mountain areas

  9. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  10. Sport and Recreation Influence upon Mountain Area and Sustainable Tourism Development

    Directory of Open Access Journals (Sweden)

    Jelica J. MARKOVIĆ

    2013-10-01

    Full Text Available In contemporary tourism, sport and recreation are increasingly becoming the dominant motives for undertaking the journey, and as a result of modern living, active holidays are more frequent. Mountain areas have always been attractive to deal with the various sports activities. Winter sports were the initiators of the development of mountain resorts. Mountain resorts invest in construction of hotels, ski lifts, snowmaking equipment, for the sake of attracting a growing number of tourist clientele. On the other hand, sport and recreation also serve to promote summer mountain tourism. Tennis, golf, swimming, horseback riding are key tools to attract visitors in the summer months toward the resorts facilities. The main problems regarding the development of mountain tourism centers come in the form of the growing concern for the preservation of the environment, of the human and traffic congestion in the mountains and the intensive use of natural resources by tourists. This paper aims to highlight the positive and negative impacts of sport and recreation in the development of mountain tourism and to present possible solutions to reduce negative impacts. Methodology is based on document review of many bibliographic resources, which are related with skiing and mountain biking as examples of winter and summer sport activities on mountains.

  11. CURRENT MICROBIOLOGICAL ASPECTS IN HIGH MOUNTAIN

    OpenAIRE

    KURT HANSELMANN; MUNTI YUHANA

    2006-01-01

    Remote and normally unpolluted high mountain lakes provide habitats with no or very limited anthropogenic influences and, therefore, their hydrodynamics are mostly regulated by the natural c onditions. Researches in high mountain lakes deal with measuring and modeling the response of the habitats to environmental changes especially correlated to acid deposition, pollutants influx and climatic variability. The microbial world has also become a focus in many studies of these extreme ecosystem...

  12. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  13. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Kessler, John H.; Kemeny, John; King, Fraser; Ross, Alan M.; Ross, Benjamen

    2006-01-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF (∼260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit (∼570,000 MTHM) could be emplaced. (authors)

  14. The White Mountain Recreational Enterprise: Bio-Political Foundations for White Mountain Apache Natural Resource Control, 1945–1960

    Directory of Open Access Journals (Sweden)

    David C. Tomblin

    2016-07-01

    Full Text Available Among American Indian nations, the White Mountain Apache Tribe has been at the forefront of a struggle to control natural resource management within reservation boundaries. In 1952, they developed the first comprehensive tribal natural resource management program, the White Mountain Recreational Enterprise (WMRE, which became a cornerstone for fighting legal battles over the tribe’s right to manage cultural and natural resources on the reservation for the benefit of the tribal community rather than outside interests. This article examines how White Mountain Apaches used the WMRE, while embracing both Euro-American and Apache traditions, as an institutional foundation for resistance and exchange with Euro-American society so as to reassert control over tribal eco-cultural resources in east-central Arizona.

  15. Mountain-Plains Curriculum.

    Science.gov (United States)

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  16. Conservation of biodiversity in mountain ecosystems -- At a glance

    OpenAIRE

    MacKinnon, K.

    2002-01-01

    Metadata only record Mountains are especially important for biodiversity conservation since many harbor unique assemblages of plants and animals, including high levels of endemic species. Mountain biodiversity and natural habitats bestow multiple ecosystem, soil conservation, and watershed benefits. Mountains are often centers of endemism, where species are prevalent in or peculiar to a particular region, and Pleistocene refuges, which are hypothesized to have high levels of diversity wher...

  17. Small fishes crossed a large mountain range: Quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains.

    Science.gov (United States)

    Kim, Daemin; Hirt, M Vincent; Won, Yong-Jin; Simons, Andrew M

    2017-07-01

    The Taebaek Mountains in Korea serve as the most apparent biogeographic barrier for Korean freshwater fishes, resulting in 2 distinct ichthyofaunal assemblages on the eastern (East/Japan Sea slope) and western (Yellow Sea and Korea Strait slopes) sides of the mountain range. Of nearly 100 species of native primary freshwater fishes in Korea, only 18 species occur naturally on both sides of the mountain range. Interestingly, there are 5 rheophilic species (Phoxinus phoxinus, Coreoleuciscus splendidus, Ladislavia taczanowskii, Iksookimia koreensis and Koreocobitis rotundicaudata) found on both sides of the Taebaek Mountains that are geographically restricted to the Osip River (and several neighboring rivers, for L. taczanowskii and I. koreensis) on the eastern side of the mountain range. The Osip River and its neighboring rivers also shared a rheophilic freshwater fish, Liobagrus mediadiposalis, with the Nakdong River on the western side of the mountain range. We assessed historical biogeographic hypotheses on the presence of these rheophilic fishes, utilizing DNA sequence data from the mitochondrial cytochrome b gene. Results of our divergence time estimation indicate that ichthyofaunal transfers into the Osip River (and several neighboring rivers in East Sea slope) have occurred from the Han (Yellow Sea slope) and Nakdong (Korea Strait slope) Rivers since the Late Pleistocene. The inferred divergence times for the ichthyofaunal transfer across the Taebaek Mountains were consistent with the timing of hypothesized multiple reactivations of the Osip River Fault (Late Pleistocene), suggesting that the Osip River Fault reactivations may have caused stream capture events, followed by ichthyofaunal transfer, not only between the Osip and Nakdong Rivers, but also between the Osip and Han Rivers. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  18. Multitemporal Snow Cover Mapping in Mountainous Terrain for Landsat Climate Data Record Development

    Science.gov (United States)

    Crawford, Christopher J.; Manson, Steven M.; Bauer, Marvin E.; Hall, Dorothy K.

    2013-01-01

    A multitemporal method to map snow cover in mountainous terrain is proposed to guide Landsat climate data record (CDR) development. The Landsat image archive including MSS, TM, and ETM+ imagery was used to construct a prototype Landsat snow cover CDR for the interior northwestern United States. Landsat snow cover CDRs are designed to capture snow-covered area (SCA) variability at discrete bi-monthly intervals that correspond to ground-based snow telemetry (SNOTEL) snow-water-equivalent (SWE) measurements. The June 1 bi-monthly interval was selected for initial CDR development, and was based on peak snowmelt timing for this mountainous region. Fifty-four Landsat images from 1975 to 2011 were preprocessed that included image registration, top-of-the-atmosphere (TOA) reflectance conversion, cloud and shadow masking, and topographic normalization. Snow covered pixels were retrieved using the normalized difference snow index (NDSI) and unsupervised classification, and pixels having greater (less) than 50% snow cover were classified presence (absence). A normalized SCA equation was derived to independently estimate SCA given missing image coverage and cloud-shadow contamination. Relative frequency maps of missing pixels were assembled to assess whether systematic biases were embedded within this Landsat CDR. Our results suggest that it is possible to confidently estimate historical bi-monthly SCA from partially cloudy Landsat images. This multitemporal method is intended to guide Landsat CDR development for freshwaterscarce regions of the western US to monitor climate-driven changes in mountain snowpack extent.

  19. A measure for the promotion of mountain ecological villages in South Korea: focus on the national mountain ecological village investigation of 2014

    OpenAIRE

    Choi, Soo Im; Kang, Hag Mo; Kim, Hyun; Lee, Chang Heon; Lee, Chong Kyu

    2016-01-01

    Background Although South Korean mountain villages occupy 44 and 55?% of land and forest areas, respectively, these villages account for only 3?% of the national population and they suffer from a declining workforce owing to aging, wage inflation, and low forestry productivity. As a result, the South Korean government implemented a mountain ecological village development project from 1995 to 2013 in 312 of the 4972 mountain villages and investigated project performance in 2014. The present st...

  20. The Mountains of Io: Global and Geological Perspectives from Voyager and Galileo

    Science.gov (United States)

    Schenk, Paul; Hargitai, Henrik; Wilson, Ronda; McEwen, Alfred; Thomas, Peter; Bredekamp, Joe (Technical Monitor)

    2001-01-01

    To search for local and global scale geologic associations that may be related to the internal dynamics of Io, we have completed a global catalog of all mountains and volcanic centers. We have identified 115 mountain structures (covering approx. 3% of the surface) and 541 volcanic centers, including paterae (calderas and dark spots) and shield volcanoes. The average length of an Ionian mountain is 157 km, with the longest being 570 km. The mean height of Ionian mountains is 6.3 km, and the highest known mountain is Boosaule Montes (17.5 +/- 3 km). Five basic morphologic types of mountains have been identified; mesa, plateau peak, ridge, and massif. Very few mountains bear any physical similarity. to classic volcanic landforms, but many resemble flatiron mountains on Earth and are interpreted as tilted crustal blocks. This would be consistent with the hypothesis that most mountains are thrust blocks formed as a result of compressive stresses built up in the lower crust due to the global subsidence of volcanic layers as they are buried over time. More than one mechanism may be responsible for all Ionian mountains, however. The proximity of some mountains to paterae may indicate a direct link between some mountains and volcanism, although it is not always clear which came first. In contrast to earlier studies, a pronounced bimodal pattern is observed in the global distribution of both mountains and volcanic centers. The regions of highest areal densities of volcanic centers are near the sub- and anti-Jovian regions, but are offset roughly 90deg in longitude from the two, regions of greatest concentration of mountains. This anticorrelation may indicate the overprinting of a second stress field on the global compressive stresses due to subsidence. The bimodal distribution of volcanic centers and mountains is consistent with models of asthenospheric tidal heating and internal convection developed by Tackley et al.Over regions of mantle upwelling, compressive stresses in

  1. Preliminary Geologic Map of the the Little Piute Mountains, San Bernardino County, California

    Science.gov (United States)

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl E.; Phelps, Geoffrey A.

    1995-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  2. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  3. 75 FR 29686 - Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area

    Science.gov (United States)

    2010-05-27

    ... states that local growers report that Pine Mountain vineyards are naturally free of mildew, a vineyard... often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other areas. Pine..., these mountain soils include large amounts of sand and gravel. Pine Mountain soils are generally less...

  4. Estimating abundance of mountain lions from unstructured spatial sampling

    Science.gov (United States)

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and

  5. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Science.gov (United States)

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  6. Winter severity and snowiness and their multiannual variability in the Karkonosze Mountains and Jizera Mountains

    Science.gov (United States)

    Urban, Grzegorz; Richterová, Dáša; Kliegrová, Stanislava; Zusková, Ilona; Pawliczek, Piotr

    2017-09-01

    This paper analyses winter severity and snow conditions in the Karkonosze Mountains and Jizera Mountains and examines their long-term trends. The analysis used modified comprehensive winter snowiness (WSW) and winter severity (WOW) indices as defined by Paczos (1982). An attempt was also made to determine the relationship between the WSW and WOW indices. Measurement data were obtained from eight stations operated by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB), from eight stations operated by the Czech Hydrological and Meteorological Institute (CHMI) and also from the Meteorological Observatory of the University of Wrocław (UWr) on Mount Szrenica. Essentially, the study covered the period from 1961 to 2015. In some cases, however, the period analysed was shorter due to the limited availability of data, which was conditioned, inter alia, by the period of operation of the station in question, and its type. Viewed on a macroscale, snow conditions in the Karkonosze Mountains and Jizera Mountains (in similar altitude zones) are clearly more favourable on southern slopes than on northern ones. In the study area, negative trends have been observed with respect to both the WSW and WOW indices—winters have become less snowy and warmer. The correlation between the WOW and WSW indices is positive. At stations with northern macroexposure, WOW and WSW show greater correlation than at ones with southern macroexposure. This relationship is the weakest for stations that are situated in the upper ranges (Mount Śnieżka and Mount Szrenica).

  7. Yucca Mountain Biological Resources Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  8. Computation of spatial significance of mountain objects extracted from multiscale digital elevation models

    International Nuclear Information System (INIS)

    Sathyamoorthy, Dinesh

    2014-01-01

    The derivation of spatial significance is an important aspect of geospatial analysis and hence, various methods have been proposed to compute the spatial significance of entities based on spatial distances with other entities within the cluster. This paper is aimed at studying the spatial significance of mountain objects extracted from multiscale digital elevation models (DEMs). At each scale, the value of spatial significance index SSI of a mountain object is the minimum number of morphological dilation iterations required to occupy all the other mountain objects in the terrain. The mountain object with the lowest value of SSI is the spatially most significant mountain object, indicating that it has the shortest distance to the other mountain objects. It is observed that as the area of the mountain objects reduce with increasing scale, the distances between the mountain objects increase, resulting in increasing values of SSI. The results obtained indicate that the strategic location of a mountain object at the centre of the terrain is more important than its size in determining its reach to other mountain objects and thus, its spatial significance

  9. Fatal Rocky Mountain Spotted Fever along the United States–Mexico Border, 2013–2016

    Science.gov (United States)

    Yaglom, Hayley; Casal, Mariana; Fierro, Maria; Kriner, Paula; Murphy, Brian; Kjemtrup, Anne; Paddock, Christopher D.

    2017-01-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health concern near the US–Mexico border, where it has resulted in thousands of cases and hundreds of deaths in the past decade. We identified 4 patients who had acquired RMSF in northern Mexico and subsequently died at US healthcare facilities. Two patients sought care in Mexico before being admitted to US-based hospitals. All patients initially had several nonspecific signs and symptoms, including fever, headache, nausea, vomiting, or myalgia, but deteriorated rapidly without receipt of a tetracycline-class antimicrobial drug. Each patient experienced respiratory failure late in illness. Although transborder cases are not common, early recognition and prompt initiation of appropriate treatment are vital for averting severe illness and death. Clinicians on both sides of the US–Mexico border should consider a diagnosis of RMSF for patients with rapidly progressing febrile illness and recent exposure in northern Mexico. PMID:28930006

  10. Interpretation of chemical and isotopic data from boreholes in the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Rattray, G.W.; Yu, P.

    1996-01-01

    Analyses of pore water from boreholes at Yucca Mountain indicate that unsaturated-zone pore water has significantly larger concentrations of chloride and dissolved solids than the saturated-zone water or perched-water bodies. Chemical compositions are of the calcium sulfate or calcium chloride types in the Paintbrush Group (Tiva Canyon, Yucca Mountain, Pah Canyon, and bedded tuffs), and sodium carbonate or bicarbonate type water in the Calico Hills Formation. Tritium profiles from boreholes at Yucca Mountain indicate tritium-concentration inversions (larger tritium concentrations are located below the smaller tritium concentration in a vertical profile) occur in many places. These inversions indicate preferential flow through fractures. Rock-gas compositions are similar to that of atmospheric air except that carbon dioxide concentrations are generally larger than those in the air. The delta carbon-13 values of gas are fairly constant from surface to 365.8 meters, indicating little interaction between the gas CO 2 and caliche in the soil. Model calculations indicate that the gas transport in the unsaturated zone at Yucca Mountain agrees well with the gas-diffusion process. Tritium-modeling results indicate that the high tritium value of about 100 tritium units in the Calico Hills Formation of UZ-16 is within limits of a piston-flow model with a water residence time of 32 to 35 years. The large variations in tritium concentrations with narrow peaks imply piston flow or preferential fracture flow rather than matrix flow. In reality, the aqueous-phase flow in the unsaturated zone is between piston and well-mixed flows but is closer to a piston flow

  11. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  12. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  13. Aspen biology, community classification, and management in the Blue Mountains

    Science.gov (United States)

    David K. Swanson; Craig L. Schmitt; Diane M. Shirley; Vicky Erickson; Kenneth J. Schuetz; Michael L. Tatum; David C. Powell

    2010-01-01

    Quaking aspen (Populus tremuloides Michx.) is a valuable species that is declining in the Blue Mountains of northeastern Oregon. This publication is a compilation of over 20 years of aspen management experience by USDA Forest Service workers in the Blue Mountains. It includes a summary of aspen biology and occurrence in the Blue Mountains, and a...

  14. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs

  15. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests, and potentially large-scale lab. demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well-quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs

  16. A SPECIAL FOEHN CASE IN NORTH-EASTERN APUSENI MOUNTAINS

    Directory of Open Access Journals (Sweden)

    T. TUDOSE

    2016-03-01

    Full Text Available The paper presents a case study for the 9-10 January 2015 period, when foehn processes were occurred on the eastern slope of the Apuseni Mountains. With a view to establishing the synoptic context in which the phenomenon was manifested, an analysis of the atmospheric fields was used, while for determining the intensity of the process several meteorological parameters (temperature, wind and relative humidity were analyzed along three west-east profiles across the Apuseni Mountains. The analysis points out the presence of foehn processes on the eastern part of the Apuseni Mountains, the highest thermal and hygric differences being recorded on the north-eastern part of the mountains. The most important effect of this synoptic situation was the reduction of the snow cover depth.

  17. Respiratory disease, behavior, and survival of mountain goat kids

    Science.gov (United States)

    Blanchong, Julie A.; Anderson, Christopher A.; Clark, Nicholas J.; Klaver, Robert W.; Plummer, Paul J.; Cox, Mike; Mcadoo, Caleb; Wolff, Peregrine L.

    2018-01-01

    Bacterial pneumonia is a threat to bighorn sheep (Ovis canadensis) populations. Bighorn sheep in the East Humboldt Mountain Range (EHR), Nevada, USA, experienced a pneumonia epizootic in 2009–2010. Testing of mountain goats (Oreamnos americanus) that were captured or found dead on this range during and after the epizootic detected bacteria commonly associated with bighorn sheep pneumonia die‐offs. Additionally, in years subsequent to the bighorn sheep epizootic, the mountain goat population had low kid:adult ratios, a common outcome for bighorn sheep populations that have experienced a pneumonia epizootic. We hypothesized that pneumonia was present and negatively affecting mountain goat kids in the EHR. From June–August 2013–2015, we attempted to observe mountain goat kids with marked adult females in the EHR at least once per week to document signs of respiratory disease; identify associations between respiratory disease, activity levels, and subsequent disappearance (i.e., death); and estimate weekly survival. Each time we observed a kid with a marked adult female, we recorded any signs of respiratory disease and collected behavior data that we fit to a 3‐state discrete hidden Markov model (HMM) to predict a kid's state (active vs. sedentary) and its probability of disappearing. We first observed clinical signs of respiratory disease in kids in late July–early August each summer. We observed 8 of 31 kids with marked adult females with signs of respiratory disease on 13 occasions. On 11 of these occasions, the HMM predicted that kids were in the sedentary state, which was associated with increased probability of subsequent death. We estimated overall probability of kid survival from June–August to be 0.19 (95% CI = 0.08–0.38), which was lower than has been reported in other mountain goat populations. We concluded that respiratory disease was present in the mountain goat kids in the EHR and negatively affected their activity levels and survival

  18. Sustaining Rocky Mountain landscapes: Science, policy and management for the Crown of the Continent ecosystem

    Science.gov (United States)

    Prato, Tony; Fagre, Daniel B.

    2007-01-01

    Prato and Fagre offer the first systematic, multi-disciplinary assessment of the challenges involved in managing the Crown of the Continent Ecosystem ( CCE), an area of the Rocky Mountains that includes northwestern Montana, southwestern Alberta, and southeastern British Columbia. The spectacular landscapes, extensive recreational options, and broad employment opportunities of the CCE have made it one of the fastest growing regions in the United States and Canada, and have lead to a shift in its economic base from extractive resource industries to service-oriented recreation and tourism industries. In the process, however, the amenities and attributes that draw people to this “New West” are under threat. Pastoral scenes are disappearing as agricultural lands and other open spaces are converted to residential uses, biodiversity is endangered by the fragmentation of fish and wildlife habitats, and many areas are experiencing a decline in air and water quality. Sustaining Rocky Mountain Landscapes provides a scientific basis for communities to develop policies for managing the growth and economic transformation of the CCE without sacrificing the quality of life and environment for which the land is renowned. This forthcoming edited volume focuses on five aspects of sustaining mountain landscapes in the CCE and similar regions in the Rocky Mountains. The five aspects are: 1) how social, economic, demo graphic and environmental forces are transforming ecosystem structure and function, 2) trends in use and conditions for human and environmental resources, 3) activating science, policy and education to enhance sustainable landscape management, 4) challenges to sustainable management of public and private lands, and 5) future prospects for achieving sustainable landscapes.

  19. Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains

    Science.gov (United States)

    Trifonova, Tatiana

    2014-05-01

    Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since

  20. Climate Change Adaptation in the Carpathian Mountain Region

    NARCIS (Netherlands)

    Werners, Saskia Elisabeth; Szalai, Sándor; Zingstra, Henk; Kőpataki, Éva; Beckmann, Andreas; Bos, Ernst; Civic, Kristijan; Hlásny, Tomas; Hulea, Orieta; Jurek, Matthias; Koch, Hagen; Kondor, Attila Csaba; Kovbasko, Aleksandra; Lakatos, M.; Lambert, Stijn; Peters, Richard; Trombik, Jiří; De Velde, Van Ilse; Zsuffa, István

    2016-01-01

    The Carpathian mountain region is one of the most significant natural refuges on the European continent. It is home to Europe’s most extensive tracts of montane forest, the largest remaining virgin forest and natural mountain beech-fir forest ecosystems. Adding to the biodiversity are semi-natural

  1. The physiology of mountain biking.

    Science.gov (United States)

    Impellizzeri, Franco M; Marcora, Samuele M

    2007-01-01

    Mountain biking is a popular outdoor recreational activity and an Olympic sport. Cross-country circuit races have a winning time of approximately equal 120 minutes and are performed at an average heart rate close to 90% of the maximum, corresponding to 84% of maximum oxygen uptake (VO2max). More than 80% of race time is spent above the lactate threshold. This very high exercise intensity is related to the fast starting phase of the race; the several climbs, forcing off-road cyclists to expend most of their effort going against gravity; greater rolling resistance; and the isometric contractions of arm and leg muscles necessary for bike handling and stabilisation. Because of the high power output (up to 500W) required during steep climbing and at the start of the race, anaerobic energy metabolism is also likely to be a factor of off-road cycling and deserves further investigation. Mountain bikers' physiological characteristics indicate that aerobic power (VO2max >70 mL/kg/min) and the ability to sustain high work rates for prolonged periods of time are prerequisites for competing at a high level in off-road cycling events. The anthropometric characteristics of mountain bikers are similar to climbers and all-terrain road cyclists. Various parameters of aerobic fitness are correlated to cross-country performance, suggesting that these tests are valid for the physiological assessment of competitive mountain bikers, especially when normalised to body mass. Factors other than aerobic power and capacity might influence off-road cycling performance and require further investigation. These include off-road cycling economy, anaerobic power and capacity, technical ability and pre-exercise nutritional strategies.

  2. Risk management among mountain bikers in selected clubs in ...

    African Journals Online (AJOL)

    Risk management among mountain bikers in selected clubs in Malaysia. ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT ... is more risky. Keywords: mountain biking, risk management, event management, Malaysia ...

  3. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  4. The mountain Cer: Potentials for tourism development

    Directory of Open Access Journals (Sweden)

    Grčić Mirko D.

    2003-01-01

    Full Text Available In northwest of Serbia in the meridians directions an elongated mountain range of Cer with Iverak and Vlašić stretches itself. On the north it goes down to Mačva and Posavina, on the west to Podrinje, on the east to the valley of Kolubara, on the south to the basins and valleys of Jadar and upper Kolubara, which separate it from the mountains of Valjevo and Podrinje area. Cer mountain offers extremely good condition for development of eco-tourism. The variety of relief with gorgeous see-sites, natural rarities, convenient bio-climatic conditions, significant water resources, forest complexes, medieval fortresses, cultural-historic monuments, richness of flora and fauna, preserved rural environment, traditions and customs of local population, were all neglected as strategic factors in the development of tourism. This mountain’s potentials are quite satisfactory for the needs of eco-tourism, similar to the National Park of Fruška Gora, but it has lacked an adequate ecotourist strategy so far. This study aims to pointing to the potential and possibilities of ecotourist valorization of this mountain.

  5. Raising the veil: mountains from a masculine and a feminine angle

    OpenAIRE

    2012-01-01

    Context The present call for papers seeks to offer a feminine/masculine reading of mountains. Many works have already analysed the roles of human activity in mountain spaces, in agricultural production, the travel trade, the economy and the arts. But such investigation has often focused on the masculine side, revealing the practices, customs and narratives of men in the mountains. However the relations between humans and mountains do not all take a masculine form, their feminine side being eq...

  6. The status of Yucca Mountain site characterization activities

    International Nuclear Information System (INIS)

    Gertz, Carl P.; Larkin, Erin L.; Hamner, Melissa

    1992-01-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is continuing its studies to determine if Yucca Mountain, Nevada, can safely isolate high-level nuclear waste for the next ten thousand years. As mandated by Congress in 1987, DOE is studying the rocks, the climate, and the water table at Yucca Mountain to ensure that the site is suitable before building a repository adopt 305 meters below the surface. Yucca Mountain, located 160.9 kilometers northwest of Las Vegas, lies on the western edge of the Nevada Test Site. Nevada and DOE have been in litigation over environmental permits needed to conduct studies, but recent court decisions have allowed limited new work to begin. This paper will examine progress made on the Yucca Mountain Site Characterization Project (YMP) during 1991 and continuing into 1992, discuss the complex legal issues and describe new site drilling work. Design work on the underground exploratory studies facility (ESF) will also be discussed. (author)

  7. An Investigation of the Impacts of Climate and Environmental Change on Alpine Lakes in the Uinta Mountains, Utah

    Science.gov (United States)

    Moser, K. A.; Hundey, E. J.; Porinchu, D. F.

    2007-12-01

    Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant

  8. Yucca Mountain biological resources monitoring program

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  9. Rocky Mountain High.

    Science.gov (United States)

    Hill, David

    2001-01-01

    Describes Colorado's Eagle Rock School, which offers troubled teens a fresh start by transporting them to a tuition- free campus high in the mountains. The program encourages spiritual development as well as academic growth. The atmosphere is warm, loving, structured, and nonthreatening. The article profiles several students' experiences at the…

  10. Strategic Plan for Coordinating Rural Intelligent Transportation System (ITS) Transit Development in the Great Smoky Mountains National Park

    Energy Technology Data Exchange (ETDEWEB)

    Truett, L.F.

    2002-12-19

    The Great Smoky Mountains National Park, located along the border between North Carolina and Tennessee, is the most visited national park in the United States. This rugged, mountainous area presents many transportation challenges. The immense popularity of the Smokies and the fact that the primary mode of transportation within the park is the personal vehicle have resulted in congestion, damage to the environment, impacts on safety, and a degraded visitor experience. Access to some of the Smokies historical, cultural, and recreational attractions via a mass transit system could alleviate many of the transportation issues. Although quite a few organizations are proponents of a mass transit system for the Smokies, there is a lack of coordination among all parties. In addition, many local residents are not completely comfortable with the idea of transit in the Smokies. This document provides a brief overview of the current transportation needs and limitations in the Great Smoky Mountains National Park, identifies agencies and groups with particular interests in the Smokies, and offers insights into the benefits of using Intelligent Transportation Systems (ITS) technologies in the Smokies. Recommendations for the use of rural ITS transit to solve two major transportation issues are presented.

  11. Internal Migration and Land Use and Land Cover Changes in the Middle Mountains of Nepal

    Directory of Open Access Journals (Sweden)

    Bhawana KC

    2017-11-01

    Full Text Available The movement of rural households from remote uplands to valley floors and to semiurban and urban areas (internal migration is a common phenomenon in the middle mountain districts of Nepal. Understanding the causes and effects of internal migration is critical to the development and implementation of policies that promote land use planning and sustainable resource management. Using geospatial information technologies and social research methods, we investigated the causes and effects of internal migration on land use and land cover patterns in a western mountain district of Nepal between 1998 and 2013. The results show a decreasing number of households at high elevations (above 1400 m, where an increase in forest cover has been observed with a consequent decrease in agricultural land and shrub- or grassland. At lower elevations (below 1400 m, forest cover has remained constant over the last 25 years, and the agricultural land area has increased but has become geometrically complex to meet the diverse needs and living requirements of the growing population. Our findings indicate that internal migration plays an important role in shaping land use and land cover change in the middle mountains of Nepal and largely determines the resource management, utilization, and distribution patterns within a small geographic unit. Therefore, land use planning must take an integrated and interdisciplinary approach rather than considering social, environmental, and demographic information in isolation.

  12. Modeling the Biophysical Impacts of Global Change in Mountain Biosphere Reserves

    NARCIS (Netherlands)

    Bugmann, H.; Björnsen Gurung, A.; Ewert, F.; Haeberli, W.; Guisan, A.; Fagre, D.; Kääb, A.

    2007-01-01

    Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of

  13. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from January 1, 1990, through December 31, 1991

  14. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  15. Geographic Expansion of Lyme Disease in the Southeastern United States, 2000-2014.

    Science.gov (United States)

    Lantos, Paul M; Nigrovic, Lise E; Auwaerter, Paul G; Fowler, Vance G; Ruffin, Felicia; Brinkerhoff, R Jory; Reber, Jodi; Williams, Carl; Broyhill, James; Pan, William K; Gaines, David N

    2015-12-01

    Background.  The majority of Lyme disease cases in the United States are acquired on the east coast between northern Virginia and New England. In recent years the geographic extent of Lyme disease has been expanding, raising the prospect of Lyme disease becoming endemic in the southeast. Methods.  We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Virginia Department of Health and North Carolina Department of Public Health and entered them in a geographic information system. We performed spatial and spatiotemporal cluster analyses to characterize Lyme disease expansion. Results.  There was a marked increase in Lyme disease cases in Virginia, particularly from 2007 onwards. Northern Virginia experienced intensification and geographic expansion of Lyme disease cases. The most notable area of expansion was to the southwest along the Appalachian Mountains with development of a new disease cluster in the southern Virginia mountain region. Conclusions.  The geographic distribution of Lyme disease cases significantly expanded in Virginia between 2000 and 2014, particularly southward in the Virginia mountain ranges. If these trends continue, North Carolina can expect autochthonous Lyme disease transmission in its mountain region in the coming years.

  16. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites

  17. Landforms of High Mountains

    Directory of Open Access Journals (Sweden)

    Derek A. McDougall

    2016-05-01

    Full Text Available Reviewed: Landforms of High Mountains. By Alexander Stahr and Ewald Langenscheidt. Heidelberg, Germany: Springer, 2015. viii + 158 pp. US$ 129.99. Also available as an e-book. ISBN 978-3-642-53714-1.

  18. High Resolution Forecasting System for Mountain area based on KLAPS-WRF

    Science.gov (United States)

    Chun, Ji Min; Rang Kim, Kyu; Lee, Seon-Yong; Kang, Wee Soo; Park, Jong Sun; Yi, Chae Yeon; Choi, Young-jean; Park, Eun Woo; Hong, Soon Sung; Jung, Hyun-Sook

    2013-04-01

    This paper reviews the results of recent observations and simulations on the thermal belt and cold air drainage, which are outstanding in local climatic phenomena in mountain areas. In a mountain valley, cold air pool and thermal belt were simulated with the Weather and Research Forecast (WRF) model and the Korea Local Analysis and Prediction System (KLAPS) to determine the impacts of planetary boundary layer (PBL) schemes and topography resolution on model performance. Using the KLAPS-WRF models, an information system was developed for 12 hour forecasting of cold air damage in orchard. This system was conducted on a three level nested grid from 1 km to 111 m horizontal resolution. Results of model runs were verified by the data from automated weather stations, which were installed at twelve sites in a valley at Yeonsuri, Yangpyeonggun, Gyeonggido to measure temperature and wind speed and direction during March to May 2012. The potential of the numerical model to simulate these local features was found to be dependent on the planetary boundary layer schemes. Statistical verification results indicate that Mellor-Yamada-Janjic (MYJ) PBL scheme was in good agreement with night time temperature, while the no-PBL scheme produced predictions similar to the day time temperature observation. Although the KLAPS-WRF system underestimates temperature in mountain areas and overestimates wind speed, it produced an accurate description of temperature, with an RMSE of 1.67 ˚C in clear daytime. Wind speed and direction were not forecasted well in precision (RMSE: 5.26 m/s and 10.12 degree). It might have been caused by the measurement uncertainty and spatial variability. Additionally, the performance of KLAPS-WRF was performed to evaluate for different terrain resolution: Topography data were improved from USGS (United States Geological Survey) 30" to NGII (National Geographic Information Institute) 10 m. The simulated results were quantitatively compared to observations and

  19. Yucca Mountain Project bibliography, January--June 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1990 through June 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  20. Operational aerial snow surveying in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Peck, E L; Carroll, T R; Vandemark, S C

    1980-03-01

    An airborne gamma radiation detector and data acquisition system has been designed for rapid measurement of the snow cover water equivalent over large open areas. Research and field tests conducted prior to the implementation of an operational snow measurement system in the United States are reviewed. Extensive research test flights were conducted over large river basins of the north-central plains and in the high mountain valleys of the inter-mountain West. Problems encountered during development include: (1) error in the gross gamma flux produced by atmospheric radon gas daughters; (2) spatial and temporal variability in soil moisture; and (3) errors in gamma radiation count rate introduced by aircraft and cosmic background radiation. Network design of operational flight line and ground observation data used in a river forecasting system are discussed. 22 references, 4 figures, 2 tables.

  1. Education and Yucca Mountain

    International Nuclear Information System (INIS)

    Lamont, M.A.

    1995-01-01

    This paper outlines a middle school social studies curriculum taught in Nevada. The curriculum was designed to educate students about issues related to the Yucca Mountain project. The paper focuses on the activities used in the curriculum

  2. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  3. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  4. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  5. Refresher Course on Mountain Hydrology and Climate Change

    Indian Academy of Sciences (India)

    IAS Admin

    2016-01-29

    Jan 29, 2016 ... The programme focuses on hydrology of mountains, which provide water around 40 % of the world population. Changes in temperature and precipitation have in recent years led to the retreat of glaciers in mountains. Climatic changes do not only affect glaciers or the nival zone; a change in climatic ...

  6. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  7. Assessment and monitoring of recreation impacts and resource conditions on mountain summits: examples from the Northern Forest, USA

    Science.gov (United States)

    Monz, Christopher A.; Marion, Jeffrey L.; Goonan, Kelly A.; Manning, Robert E.; Wimpey, Jeremy; Carr, Christopher

    2010-01-01

    Mountain summits present a unique challenge to manage sustainably: they are ecologically important and, in many circumstances, under high demand for recreation and tourism activities. This article presents recent advances in the assessment of resource conditions and visitor disturbance in mountain summit environments, by drawing on examples from a multiyear, interdisciplinary study of summits in the northeastern United States. Primary impact issues as a consequence of visitor use, such as informal trail formation, vegetation disturbance, and soil loss, were addressed via the adaption of protocols from recreation ecology studies to summit environments. In addition, new methodologies were developed that provide measurement sensitivity to change previously unavailable through standard recreation monitoring protocols. Although currently limited in application to the northeastern US summit environments, the methods presented show promise for widespread application wherever summits are in demand for visitor activities.

  8. Efficacy of Residence at Moderate Versus Low Altitude on Reducing Acute Mountain Sickness in Men Following Rapid Ascent to 4300 m

    Science.gov (United States)

    2013-01-01

    reduced AMS after rapid ascent to high altitude. Key Words: acute mountain sickness, hypobaric hypoxia, acclimatization, fluid balance, ventilatory...response to hypoxia Introduction Altitude acclimatization refers to a series of phys-iologic responses to prolonged exposure to hypobaric hypoxia in low...Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts. 2Center for Aerospace and Hyperbaric Medicine

  9. Productivity of Mountain Reedbugk Redunca Fulvorufula (Afzelius, 1815 at the Mountain Zebra National Park

    Directory of Open Access Journals (Sweden)

    J. D Skinner

    1980-12-01

    Full Text Available Eighty two adult mountain reedbuck Redunca fulvoru- fula were collected during four seasons, autumn, winter, spring and summer at the Mountain Zebra National Park mainly during 1975 and 1976. Body mass and carcass characteristics varied little with season, body mass varying from 24,0-35,5 kg for all buck shot and dressing percentage always exeeded 50. According to KFI animals were all in fair to good condition. Sixty four percent of all ewes were pregnant and 38,5 lactating. Females and males bred throughout the year but there was a peak in births during mid-summer. The species is highly productive, well adapted to the niche it occupies and lends itself to exploitation for meat production.

  10. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  11. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  12. The interaction of katabatic winds and mountain waves

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Gregory Steve [Colorado State Univ., Fort Collins, CO (United States)

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  13. Cosine components in water levels at Yucca Mountain

    International Nuclear Information System (INIS)

    Rice, J.; Lehman, L.; Keen, K.

    1990-01-01

    Water-level records from wells at Yucca Mountain, Nevada are analyzed periodically to determine if they contain periodic (cosine) components. Water-level data from selected wells are input to an iterative numerical procedure that determines a best fitting cosine function. The available water-level data, with coverage of up to 5 years, appear to be representative of the natural water-level changes. From our analysis of 9 water-level records, it appears that there may be periodic components (periods of 2-3 years) in the groundwater-level fluctuations at Yucca Mountain, Nevada, although some records are fit better than others by cosine functions. It also appears that the periodic behavior has a spatial distribution. Wells west of Yucca Mountain have different periods and phase shifts from wells on and east of Yucca Mountain. Interestingly, a similar spatial distribution of groundwater chemistry at Yucca Mountain is reported by Matuska (1988). This suggests a physical cause may underlie the different physical and chemical groundwater conditions. Although a variety of natural processes could cause water-level fluctuations, hydrologic processes are the most likely, because the periodicities are only a few years. A possible cause could be periodic recharge related to a periodicity in precipitation. It is interesting that Cochran et al., (1988), show a crude two-year cycle of precipitation for 1961 to 1970 in southern Nevada. Why periods and phase shifts may differ across Yucca Mountain is unknown. Different phase shifts could indicate different lag times of response to hydrologic stimuli. Difference in periods could mean that the geologic media is heterogeneous and displays heterogeneous response to a single stimulus, or that stimuli differ in certain regions, or that a hydraulic barrier separates the groundwater system into two regions having different water chemistry and recharge areas. 13 refs., 5 figs., 1 tab

  14. Exploring Conservation Options in the Broad-Leaved Korean Pine Mixed Forest of the Changbai Mountain Region

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2015-05-01

    Full Text Available The broad-leaved Korean pine (Pinus koraiensis mixed forest (BKPF is one of the most biodiverse zonal communities in the northern temperate zone. Changbai Mountain in northeastern China contains one of the largest BKPFs in the region. The government of China has established a network of 23 nature reserves to protect the BKPF and the species that depend on it for habitat, including the endangered Siberian tiger (Panthera tigris altaica. This study used the conservation planning software C-Plan to calculate the irreplaceability value of each unit to assess how efficiently and comprehensively the existing conservation network supports biodiversity and to identify gap areas that, if integrated into the network, would expand its protection capability. Results show a number of high-conservation-value planning units concentrated along certain ridges. The existing conservation network is structured such that the habitats of only 24 species (out of a total of 75 achieve established conservation targets. Of the other 51 species, 20 achieve less than 50% of their conservation targets. However, expanding the network to include high-conservation-value gap areas could achieve conservation targets for 64 species and could provide different degrees of protection to the other 11 species. Using C-Plan software can guide decision-making to expand the conservation network in this most precious of mountainous ecological zones.

  15. Eye problems in mountain and remote areas: prevention and onsite treatment--official recommendations of the International Commission for Mountain Emergency Medicine ICAR MEDCOM.

    Science.gov (United States)

    Ellerton, John A; Zuljan, Igor; Agazzi, Giancelso; Boyd, Jeffrey J

    2009-01-01

    Although eyes are not frequently injured in the mountains, they are exposed to many adverse factors from the environment. This article, intended for first responders, paramedics, physicians, and mountaineers, is the consensus opinion of the International Commission for Mountain Emergency Medicine (ICAR-MEDCOM). Its aim is to give practical advice on the management of eye problems in mountainous and remote areas. Snow blindness and minor injuries, such as conjunctival and corneal foreign bodies, could immobilize a person and put him or her at risk of other injuries. Blunt or penetrating trauma can result in the loss of sight in the eye; this may be preventable if the injury is managed properly. In almost all cases of severe eye trauma, protecting the eye and arranging an immediate evacuation are necessary. The most common eye problems, however, are due to ultraviolet light and high altitude. People wearing contact lenses and with previous history of eye diseases are more vulnerable. Any sight-threatening eye problem or unexplained visual loss at high altitude necessitates descent. Wearing appropriate eye protection, such as sunglasses with sidepieces and goggles with polarized or photochromic lenses, could prevent most of the common eye problems in mountaineering.

  16. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    Science.gov (United States)

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the

  17. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    International Nuclear Information System (INIS)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  18. Data Qualification Report: Precipitation and Surface Geology Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The unqualified data addressed in this qualification report have been cited in an Analysis Model Report (AMR) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high-level radioactive waste. The unqualified data include precipitation volumes and surface geology maps The precipitation data consist of daily precipitation volumes measured at Yucca Mountain. The surface geology data include identification of the types and surface expressions of geologic units and associated structural features such as faults. These data were directly used in AMR U0010, Simulation of Net Infiltration for Modern and Potential Future Climates, ANL-NBS-HS-000032 (Hevesi et al. 2000), to estimate net infiltration into Yucca Mountain. This report evaluates the unqualified data within the context of supporting studies of this type for the Yucca Mountain Site Characterization Project (YMP). The purpose of this report is to identify data that can be cited as qualified for use in technical products to support the YMP Site Recommendation and that may also be used to support the License Application. The qualified data may either be retained in the original Data Tracking Number (DTN) or placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this report. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 02, Managing Technical Product Inputs, it has been determined that the unqualified precipitation and surface geology data are not used in the direct calculation of Principal Factors for postclosure safety or disruptive events. References to tables, figures, and sections from Hevesi et al. (2000) are based on Rev. 00 of that document

  19. Mountain Plant Community Sentinels: AWOL

    Science.gov (United States)

    Malanson, G. P.

    2017-12-01

    Mountain plant communities are thought to be sensitive to climate change. Because climatic gradients are steep on mountain slopes, the spatial response of plant communities to climate change should be compressed and easier to detect. These expectations have led to identifying mountain plant communities as sentinels for climate change. This idea has, however, been criticized. Two critiques, for alpine treeline and alpine tundra, are rehearsed and supplemented. The critique of alpine treeline as sentinel is bolstered with new model results on the confounding role of dispersal mechanisms and sensitivity to climatic volatility. In alpine tundra, for which background turnover rates have yet to be established, community composition may reflect environmental gradients only for extremes where effects of climate are most indirect. Both plant communities, while primarily determined by energy at broad scales, may respond to water as a proximate driver at local scales. These plant communities may not be in equilibrium with climate, and differently scaled time lags may mean that ongoing vegetation change may not signal ongoing climate change (or lack thereof). In both cases a double-whammy is created by scale dependence for time lags and for drivers leading to confusion, but these cases present opportunities for insights into basic ecology.

  20. Rethinking risk and disasters in mountain areas

    OpenAIRE

    Hewitt, Kenneth; Mehta, Manjari

    2012-01-01

    This chapter presents a view of risk and disaster in the mountains that finds them fully a part of public safety issues in modern states and developments, rather than separated from them. This contrasts with prevailing approaches to disaster focused on natural hazards, “unscheduled” or extreme events, and emergency preparedness; approaches strongly reinforced by mountain stereotypes. Rather, we find the legacies of social and economic histories, especially relations to down-country or metropo...

  1. Mechanisms of carbon storage in mountainous headwater rivers

    Science.gov (United States)

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  2. GEOLOGICAL ANDGEOMORPHOLOGICAL MAPPING ARCHAEOLOGICAL MONUMENTS OF MOUNTAIN ALTAI

    Directory of Open Access Journals (Sweden)

    G. Y. Baryshnikov

    2015-01-01

    Full Text Available The article discusses the results of geological and geomorphological mapping of archaeological monument, mainly Paleolithic age, the location of which is confined to low-mountain spaces of the Mountain Altai. Using this mapping would greatly clarify the sequence of relief habitat of ancient people and more objectively determine the age characteristics of archaeological monument. 

  3. Yucca Mountain and the environmental issue

    International Nuclear Information System (INIS)

    Gertz, C.P.

    1991-01-01

    The scientists and engineers who work on the Yucca Mountain Project keenly feel their responsibility - to solve an important national environmental issue. Addressing the issue of nuclear waste disposal may also help keep the nuclear option viable. Under congressional mandate, they are working to find that solution despite tough opposition from the state of Nevada. Nevada and the US Department of Energy (DOE) have been litigating the issue of environmental permits for almost 2 years now, and the court decisions have all favored DOE. The DOE's site characterization efforts are designed to determine whether Yucca Mountain can safely store spent nuclear fuel for the next 10,000 yr. DOE is studying the rocks, the climate, and the water table to make sure that the site is suitable before anything is built there. The success of the Yucca Mountain Project is vital to settling existing environmental issues as well as maintaining the viability of nuclear energy. Through efforts in Congress and outreach programs in Nevada, DOE hopes to inform the public of the mission and begin the process of site characterization

  4. Yucca Mountain Project bibliography, 1988--1989

    International Nuclear Information System (INIS)

    Lorenz, J.J.

    1990-11-01

    This bibliography contains information on the Yucca Mountain Project that was added to the Department of Energy's Energy Data Base from January 1988 through December 1989. This supplement also includes a new section which provides information about publications on the Energy Data Base that were not sponsored by the project but have some relevance to it. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Indexes are provided for Corporate Author, Personal Author, Subject, Contract Number, Report Number, Order Number Correlation, and Key Word in Context. All entries in the Yucca Mountain Project bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE). Technical reports on the Yucca Mountain Project are on display in special open files at participating Nevada Libraries and in the Public Document Room of the US Department of Energy, Nevada Operations Office, in Las Vegas

  5. Geologic map of the Ute Mountain 7.5' quadrangle, Taos County, New Mexico, and Conejos and Costilla Counties, Colorado

    Science.gov (United States)

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    The Ute Mountain 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Ute Mountain has the distinction of being one of the largest intermediate composition eruptive centers of the Taos Plateau, a largely volcanic tableland occupying the southern portion of the San Luis Basin. Ute Mountain rises to an elevation in excess of 3,000 m, nearly 700 m above the basaltic plateau at its base, and is characterized by three distinct phases of Pliocene eruptive activity recorded in the stratigraphy exposed on the flanks of the mountain and in the Rio Grande gorge. Unconformably overlain by largely flat-lying lava flows of Servilleta Basalt, the area surrounding Ute Mountain records a westward thickening of basin-fill volcanic deposits interstratified in the subsurface with Pliocene basin-fill sedimentary deposits derived from older Tertiary and Precambrian sources to the east. Superimposed on this volcanic stratigraphy are alluvial and colluvial deposits derived from the flanks of Ute Mountain and more distally-derived alluvium from the uplifted Sangre de Cristo Mountains to the east, that record a complex temporal and stratigraphic succession of Quaternary basin deposition and erosion. Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens. These poorly exposed fault scarps cutting lava flows of Ute Mountain volcano. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2

  6. Rocky Mountain Riparian Digest

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Rocky Mountain Riparian Digest presents the many facets of riparian research at the station. Included are articles about protecting the riparian habitat, the social and economic values of riparian environments, watershed restoration, remote sensing tools, and getting kids interested in the science.

  7. Three-dimensional model of reference thermal/mechanical and hydrological stratigraphy at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Ortiz, T.S.; Williams, R.L.; Nimick, F.B.; Whittet, B.C.; South, D.L.

    1985-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is currently examining the feasibility of constructing a nuclear waste repository in the tuffs beneath Yucca Mountain. A three-dimensional model of the thermal/mechanical and hydrological reference stratigraphy at Yucca Mountain has been developed for use in performance assessment and repository design studies involving material properties data. The reference stratigraphy defines units with distinct thermal, physical, mechanical, and hydrological properties. The model is a collection of surface representations, each surface representing the base of a particular unit. The reliability of the model was evaluated by comparing the generated surfaces, existing geologic maps and cross sections, drill hole data, and geologic interpolation. Interpolation of surfaces between drill holes by the model closely matches the existing information. The top of a zone containing prevalent zeolite is defined and superimposed on the reference stratigraphy. Interpretation of the geometric relations between the zeolitic and thermal/mechanical and hydrological surfaces indicates that the zeolitic zone was established before the major portion of local fault displacement took place; however, faulting and zeolitization may have been partly concurrent. The thickness of the proposed repository host rock, the devitrified, relatively lithophysal-poor, moderately to densely welded portion of the Topopah Spring Member of the Paintbrush Tuff, was evaluated and varies from 400 to 800 ft in the repository area. The distance from the repository to groundwater level was estimated to vary from 700 to 1400 ft. 13 figs., 1 tab

  8. Overview of the status of the Cheat Mountain salamander

    Science.gov (United States)

    Thomas K. Pauley

    2010-01-01

    Plethodon nettingi, the Cheat Mountain salamander, is endemic to the high elevations of the Allegheny Mountains in eastern West Virginia. In 1938, N.B. Green named the species from specimens collected at Barton Knob, Randolph County, in honor of his friend and colleague Graham Netting.

  9. A case of Rocky Mountain spotted fever.

    Science.gov (United States)

    Rubel, Barry S

    2007-01-01

    Rocky Mountain spotted fever is a serious, generalized infection that is spread to humans through the bite of infected ticks. It can be lethal but it is curable. The disease gets its name from the Rocky Mountain region where it was first identified in 1896. The fever is caused by the bacterium Rickettsia rickettsii and is maintained in nature in a complex life cycle involving ticks and mammals. Humans are considered to be accidental hosts and are not involved in the natural transmission cycle of this pathogen. The author examined a 47-year-old woman during a periodic recall appointment. The patient had no dental problems other than the need for routine prophylaxis but mentioned a recent problem with swelling of her extremities with an accompanying rash and general malaise and soreness in her neck region. Tests were conducted and a diagnosis of Rocky Mountain spotted fever was made.

  10. Preliminary conceptual model for mineral evolution in Yucca Mountain

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-12-01

    A model is presented for mineral alteration in Yucca Mountain, Nevada, that suggests that the mineral transformations observed there are primarily controlled by the activity of aqueous silica. The rate of these reactions is related to the rate of evolution of the metastable silica polymorphs opal-CT and cristobalite assuming that a SiO 2(aq) is fixed at the equilibrium solubility of the most soluble silica polymorph present. The rate equations accurately predict the present depths of disappearance of opal-CT and cristobalite. The rate equations have also been used to predict the extent of future mineral alteration that may result from emplacement of a high-level nuclear waste repository in Yucca Mountain. Relatively small changes in mineralogy are predicted, but these predictions are based on the assumption that emplacement of a repository would not increase the pH of water in Yucca Mountain nor increase its carbonate content. Such changes may significantly increase mineral alteration. Some of the reactions currently occurring in Yucca Mountain consume H + and CO 3 2- . Combining reaction rate models for these reactions with water chemistry data may make it possible to estimate water flux through the basal vitrophyre of the Topopah Spring Member and to help confirm the direction and rate of flow of groundwater in Yucca Mountain

  11. The Table Mountain Field Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Table Mountain Field Site, located north of Boulder, Colorado, is designated as an area where the magnitude of strong, external signals is restricted (by State...

  12. Stream capture to form Red Pass, northern Soda Mountains, California

    Science.gov (United States)

    Miller, David; Mahan, Shannon

    2014-01-01

    Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.

  13. Public Interaction and Educational Outreach on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Benson, A.; Riding, Y.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public, which in turn resulted in

  14. Wild mountains, wild rivers: Keeping the sacred origins

    Science.gov (United States)

    Linda Moon Stumpff

    2007-01-01

    For many indigenous peoples in North America, wild mountains and rivers and other natural formations exist as physical beings formed as part of a whole by forces that interconnect people with them. This perspective frames a discussion around an idea that expresses time and space as wrapped up in the mountain. If time is within the being of place and space within the...

  15. Eradication of non-native fish from a small mountain lake: gill netting as a non-toxic alternative to the use of rotenone.

    Science.gov (United States)

    R.A. Knapp; K.R. Matthews

    1998-01-01

    Nearly all mountain lakes in the western United States were historically fishless, but most now contain introduced trout populations. As a result of the impacts of these introductions on ecosystem structure and function, there is increasing interest in restoring some lakes to a fishless condition. To date, however, the only effective method of fish eradication is the...

  16. Regeneration in United States Department of Agriculture Forest Service mixed conifer partial cuttings in the Blue Mountains of Oregon and Washington.

    Science.gov (United States)

    K.W. Seidel; S. Conrade. Head

    1983-01-01

    A survey in the Blue Mountains of north-eastern Oregon and southeastern Washington showed that, on the average, partial cuts in the grand fir/big huckleberry community were well stocked with a mixture of advance, natural post-harvest, and planted reproduction of a number of species. Partial cuts in the mixed conifer/pinegrass community had considerably fewer seedlings...

  17. Managing Rocky Mountain spotted fever.

    Science.gov (United States)

    Minniear, Timothy D; Buckingham, Steven C

    2009-11-01

    Rocky Mountain spotted fever is caused by the tick-borne bacterium Rickettsia rickettsii. Symptoms range from moderate illness to severe illness, including cardiovascular compromise, coma and death. The disease is prevalent in most of the USA, especially during warmer months. The trademark presentation is fever and rash with a history of tick bite, although tick exposure is unappreciated in over a third of cases. Other signature symptoms include headache and abdominal pain. The antibiotic therapy of choice for R. rickettsii infection is doxycycline. Preventive measures for Rocky Mountain spotted fever and other tick-borne diseases include: wearing long-sleeved, light colored clothing; checking for tick attachment and removing attached ticks promptly; applying topical insect repellent; and treating clothing with permethrin.

  18. Triaxial-compression extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Turner, A.K.; Sayre, T.M.; Montazer, P.

    1988-01-01

    The purpose of this experiment was to design and validate methods for extracting uncontaminated pore water from nonwelded parts of this tuff. Pore water is needed for chemical analysis to help characterize the local hydrologic system. A standard Hoek-Franklin triaxial cell was modified to create a chemically inert pore-water-extraction system. Experimentation was designed to determine the optimum stress and duration of triaxial compression for efficient extraction of uncontaminated pore water. Experimental stress paths consisted of a series of increasing stress levels. Trial axial stress levels ranged from 41 to 190 megapascals with lateral confining stresses of 34 to 69 megapascals. The duration of compression at any given stress level lasted from 10 minutes to 15 hours. A total of 40 experimental extraction trials were made. Tuff samples used in these tests were collected from drill-hole core from the Paintbrush nonwelded unit at Yucca Mountain. Pore water was extracted from tuff samples that had a water content greater than 13 percent by weight. Two stress paths have been determined to be applicable for future pore-water extraction from nonwelded tuff at Yucca Mountain. The initial water content of a sample affects the selection of an appropriate period of compression. 39 refs., 55 figs

  19. [Paleoclimatology studies for Yucca Mountain site characterization]. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of two separate papers: Fernley Basin studies; and Influence of sediment supply and climate change on late Quaternary eolian accumulation patterns in the Mojave Desert. The first study involved geologic mapping of late Quaternary sediments and lacustrine features combined with precise control of elevations and descriptions of sediments for each of the major sedimentary units. The second paper documents the response of a major eolian sediment transport system in the east-central Mojave Desert: that which feeds the Kelso Dune field. Information from geomorphic, stratigraphic, and sedimentologic studies of eolian deposits and landforms is combined with luminescence dating of these deposits to develop a chronology of periods of eolian deposition. Both studies are related to site characterization studies of Yucca Mountain and the forecasting of rainfall patterns possible for the high-level radioactive waste repository lifetime

  20. The Dilemma of Mountain Roads

    Science.gov (United States)

    Mountain roads and trails are proliferating throughout developing Southeast Asia with severe but largely unrecognized long-term consequences related to effects of landslides and surface erosion on communities and downstream resources.

  1. The development of mountain risk governance: challenges for application

    Science.gov (United States)

    Link, S.; Stötter, J.

    2015-01-01

    The complexity the management of mountain risks in the Alps has considerably increased since its institutionalisation in the late nineteenth century. In the history of approaches to dealing with mountain risks four successive paradigms can be distinguished on the basis of key indicators such as guiding principles, characteristic elements and typical instruments: "hazard protection", "hazard management", "risk management", and "risk governance". In this contribution, special attention is paid to the development of hazard zone planning and the growing importance of communication and participation over the course of this transformation. At present, the risk management paradigm has reached maturity. In the Alps, risk governance frameworks are not yet applied to risks from natural hazards. Based on a historical analysis, the suitability and applicability of general risk governance frameworks in the context of mountain risks are discussed. Necessary adaptations (e.g., in administration, educational, and legal structures) are proposed for the upcoming transformation towards mountain risk governance.

  2. Ecology of Land Cover Change in Glaciated Tropical Mountains

    Directory of Open Access Journals (Sweden)

    Kenneth R. Young

    2014-12-01

    Full Text Available Tropical mountains contain unique biological diversity, and are subject to many consequences of global climate change, exasperated by concurrent socioeconomic shifts. Glaciers are in a negative mass balance, exposing substrates to primary succession and altering downslope wetlands and streams. A review of recent trends and future predictions suggests a likely reduction in areas of open habitat for species of high mountains due to greater woody plant cover, accompanied by land use shifts by farmers and pastoralists along the environmental gradients of tropical mountains. Research is needed on the biodiversity and ecosystem consequences of successional change, including the direct effects of retreating glaciers and the indirect consequences of combined social and ecological drivers in lower elevations. Areas in the high mountains that are protected for nature conservation or managed collectively by local communities represent opportunities for integrated research and development approaches that may provide ecological spaces for future species range shifts.

  3. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations.

    Directory of Open Access Journals (Sweden)

    Riikka Levänen

    Full Text Available In Fennoscandia, mountain hare (Lepus timidus and brown hare (Lepus europaeus hybridize and produce fertile offspring, resulting in gene flow across the species barrier. Analyses of maternally inherited mitochondrial DNA (mtDNA show that introgression occur frequently, but unavailability of appropriate nuclear DNA markers has made it difficult to evaluate the scale- and significance for the species. The extent of introgression has become important as the brown hare is continuously expanding its range northward, at the apparent expense of the mountain hare, raising concerns about possible competition. We report here, based on analysis of 6833 SNP markers, that the introgression is highly asymmetrical in the direction of gene flow from mountain hare to brown hare, and that the levels of nuclear gene introgression are independent of mtDNA introgression. While it is possible that brown hares obtain locally adapted alleles from the resident mountain hares, the low levels of mountain hare alleles among allopatric brown hares suggest that hybridization is driven by stochastic processes. Interspecific geneflow with the brown hare is unlikely to have major impacts on mountain hare in Fennoscandia, but direct competition may.

  4. Glacial erosion, rock, and peak uplift within the central Transantarctic Mountains

    International Nuclear Information System (INIS)

    Stern, T.A.; Baxter, A.K.

    2002-01-01

    About 1500 m of peak elevation can be ascribed to the isostatic response of valley incision within the central Transantarctic Mountains. This estimate, based on a 3D analysis of topography, and on rock uplift history, represents c. 33% of the maximum peak elevation within the Transantarctic Mountains. Input to the calculation includes a previoulsy published estimate for the variation of flexural rigidity across the western margin of East Antarctica, and a lithospheric free-edge at the Transantarctic Mountains Front. The rebound response is a complex function of lithospheric rigidity, wavelength or erosion, and lithospheric boundary conditions. We also calculate a maximum 4000 m of total rebound due to both valley incision and erosion of mountain tops. This represents 60% of the maximum rock uplift inferred for the mountain front on the bases of fission track data and flexure analysis. (author). 34 refs., 5 figs., 3 tabs

  5. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  6. A synoptic survey of ecosystem services from headwater catchments in the United States

    Science.gov (United States)

    Brian H. Hill; Randall K. Kolka; Frank H. McCormick; Matthew A. Starry

    2014-01-01

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Results are reported for nine USA ecoregions. Headwater streams represented 74-80% of total catchment stream length. Water supply per unit catchment area was highest in the Northern Appalachian Mountains ecoregion...

  7. 75 FR 12163 - Class E Airspace; Mountain View, AR

    Science.gov (United States)

    2010-03-15

    ...-1181; Airspace Docket No. 09-ASW-36] Class E Airspace; Mountain View, AR AGENCY: Federal Aviation... Class E airspace at Mountain View, AR. Decommissioning of the Wilcox non-directional beacon (NDB) at... View, AR. Airspace reconfiguration is necessary due to the decommissioning of the Wilcox NDB and the...

  8. Rural measurements of the chemical composition of airborne particles in the Eastern United States

    International Nuclear Information System (INIS)

    Wolff, G.T.; Kelly, N.A.; Ferman, M.A.; Morrissey, M.L.

    1983-01-01

    Quantitative measurements of particulate composition was made at three rural sites: in central South Dakota, on the Louisiana Gulf Coastal, and in the Blue Ridge Mountains of Virginia. The first two sites were selected to determine background concentrations in continental polar and maritime tropical air masses, respectively, which affect the eastern United State during the summer. The Virginia site was selected as a receptor site, downwind of the midwestern source area. The South Dakota data established the background concentrations. These concentrations were similar to the levels in Louisiana when air parcels arrived from the Gulf of Mexico, without recently passing over the United States. Levels of fine particles (diameters less than 2.5 μm) were highest in Virginia and were due chiefly to sulfate. Using trajectory and statistical analyses, it is shown that the residence time of an air parcel over the midwestern source area was the most important variable in determining the sulface levels in the Blue Ridge Mountains

  9. 76 FR 66629 - Establishment of the Pine Mountain-Cloverdale Peak Viticultural Area

    Science.gov (United States)

    2011-10-27

    ... explains. The petition states that local growers report that Pine Mountain vineyards are naturally free of.... Southern storms often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other..., and very well to excessively well-drained. Also, these mountain soils include large amounts of sand...

  10. The Army Ground Forces Training for Mountain and Winter Warfare - Study No. 23

    National Research Council Canada - National Science Library

    Govan, Thomas

    1946-01-01

    This general study of the experiments in mountain and winter warfare training from 1940 to 1944 is designed as an introduction to the histories of the Mountain Training Center and The 10th Mountain...

  11. Atmospheric Research and Public Outreach Activities at Grandfather Mountain, North Carolina

    Science.gov (United States)

    Perry, B.; Pope, J.; Kelly, G.; Sherman, J. P.; Taubman, B.

    2012-12-01

    Promoting scientific and public understanding of mountain meteorological processes, particularly in the context of climate variability and change, remains a formidable challenge. Mountain environments present considerable difficulties in the collection of surface and atmospheric observations due to complex topography and resulting high spatial and temporal variability of the atmospheric processes. A collaborative partnership between Appalachian State University (ASU) and the Grandfather Mountain Stewardship Foundation (GMSF) in the southern Appalachian Mountains of North Carolina has provided an outstanding opportunity to integrate atmospheric research and outreach activities. The NASA-funded Climate Action Network through Direct Observations and Outreach (CAN-DOO) project directly supports the research and education activities and places them in the context of climate variability and change. This paper introduces the manual observations and citizen science activities, automated meteorological measurements, and public outreach initiatives on Grandfather Mountain and presents preliminary findings. In support of project objectives, GMSF staff makes daily measurements of precipitation, snow water equivalent, snow depth, and aerosol optical depth, while also encouraging citizen scientists to participate in the daily meteorological measurements. Team members have developed real-time displays of meteorological conditions for the two main visitor's centers and website, and have also created interactive climate science public displays. ASU scientists and GMSF staff have worked together to install and operate two research-quality meteorological stations at 1609 m asl that measure temperature, relative humidity, wind speed and direction, pressure, precipitation, and present weather. Preliminary results of research activities suggest that extreme wind gusts >50 m s -1 and severe icing due to riming and freezing rain are a frequent occurrence on Grandfather Mountain

  12. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis in the Tsinling and Daba Mountain region of northern China

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2009-04-01

    Full Text Available Abstract Background Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Results Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. Conclusion The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high

  13. Identification of conservation units of the hynobiid salamander Pachyhynobius shangchengensis.

    Science.gov (United States)

    Su, L-N; Zhao, Y-Y; Wu, X-M; Zhang, H-F; Li, X-C

    2015-08-19

    The evolutionary significant units (ESUs) of the salamander Pachyhynobius shangchengensis (Hynobiidae) in the Dabieshan mountains, southeastern China, were identified based on mitochondrial DNA data. We used methods for detecting cryptic species, such as the minimum spanning tree, the automatic barcode gap discovery, and the generalized mixed Yule-coalescent model; geographical partitioning was also used to identify the ESUs. A total of four ESUs were identified.

  14. Central nervous system dysfunction associated with Rocky Mountain spotted fever infection in five dogs.

    Science.gov (United States)

    Mikszewski, Jessica S; Vite, Charles H

    2005-01-01

    Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.

  15. DETERMINATION OF CHARACTERISTICS MAXIMAL RUNOFF MOUNTAIN RIVERS IN CRIMEA

    Directory of Open Access Journals (Sweden)

    V. A. Ovcharuk

    2016-05-01

    Full Text Available This article has been examined maximum runoff of the rivers of theCrimeanMountains. The rivers flow through the western and eastern part of the northern slope Crimean Mountains, and on its southern coast. The largest of them: Belbek, Alma, Salgir, Su-Indol and others. To characterize the maximum runoff of rain floods (the layers of rain floods and maximum discharge of water on the rivers of the Crimean Mountains were used materials of observations for long-term period (from the beginning of observations to 2010 inclusive on 54 of streamflow station with using a the so-called «operator» model for maximum runoff formation.

  16. Ride with Abandon: Practical Ideas to Include Mountain Biking in Physical Education

    Science.gov (United States)

    Palmer, Steve

    2006-01-01

    Cycling and mountain biking are among the most popular fitness activities in America. Considering that the purpose of physical education is to encourage lifelong activity for all, it is logical to include lifetime activities such as mountain biking in physical education programs. Many perceived barriers to adding mountain biking in physical…

  17. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Science.gov (United States)

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  18. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    Science.gov (United States)

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  19. Faith Moves Mountains-Mountains Move Faith: Two Opposite Epidemiological Forces in Research on Religion and Health.

    Science.gov (United States)

    Hvidt, N C; Hvidtjørn, D; Christensen, K; Nielsen, J B; Søndergaard, J

    2017-02-01

    Research suggests opposite epidemiological forces in religion and health: (1). Faith seems to move mountains in the sense that religion is associated with positive health outcomes. (2). Mountains of bad health seem to move faith. We reflected on these forces in a population of 3000 young Danish twins in which all religiosity measures were associated with severe disease. We believe the reason for this novel finding is that the sample presents as a particularly secular population-based study and that the second epidemiological force has gained the upper hand in this sample. We suggest that all cross-sectional research on religion and health should be interpreted in light of such opposite epidemiological forces potentially diluting each other.

  20. Glaciological studies near the Soer Rondane Mountains, East Antarctica

    Directory of Open Access Journals (Sweden)

    Hideaki Motoyama

    1997-03-01

    Full Text Available In the area west of Mizuho Plateau, outflow of the ice sheet is hindered by a chain of mountains (Sor Rondane, Belgica and Yamato Mountains etc. lying along the coast of the continent and ice shelves are developing at the margin of the ice sheet. Therefore the ice sheet geomorphology and dynamical behavior in this area are quite different from those on the Mizuho Plateau. In order to describe the response of the East Antarctic ice sheet to climatic change, we need to know the influence of the presence of mountains on stability of the ice sheet. This glaciological study aims to investigate whether the ice sheet and the ice shelf in this area are now increasing or decreasing in size possibly, in response to atmospheric warming, how far this part of the ice sheet departs from a steady state, and how the influence of climatic change is left inside the ice sheet and the ice shelf. For this purpose the following studies were performed in 1988 and 1989. 1 A series of shallow drillings along a selected flow line upstream of the Sor Rondane Mountains to Breid Bay. 2 Surface flow velocity, strain and mass balance measurements on the flow line. 3 Monitoring of a valley glacier in the Sor Rondane Mountains.

  1. The Mountaineer-Malaysia Connection.

    Science.gov (United States)

    Young, Jeff

    1997-01-01

    A 26-day summer field course of West Virginia University's (WVU) Recreation and Parks Department took students to Malaysia's mountains and rainforests to observe how Malaysians are managing national parks, problem elephants, and population pressures on parks. The adventure provided powerful learning experiences. Further exchanges between WVU and…

  2. Convective boundary layer heights over mountainous terrain - A review of concepts -

    Science.gov (United States)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  3. Road Cycling and Mountain Biking Produces Adaptations on the Spine and Hamstring Extensibility.

    Science.gov (United States)

    Muyor, J M; Zabala, M

    2016-01-01

    The purposes of this study were as follows: 1) to analyse the influence of training in road cycling or cross-country mountain biking on sagittal spinal curvatures, pelvic tilt and trunk inclination in cyclists of both cycling modalities; 2) to evaluate the specific spinal posture and pelvic tilt adopted on the road bicycle and cross-country mountain bike; and 3) to compare the spinal sagittal capacity of flexion and pelvic tilt mobility as well as hamstring muscle extensibility among road cyclists, cross-country mountain bikers and non-cyclists. Thirty matched road cyclists, 30 mountain bikers and 30 non-cyclists participated in this study. The road cyclists showed significantly greater thoracic kyphosis and trunk inclination than did the mountain bikers and non-cyclists in a standing posture. On the bicycle, the road bicycling posture was characterised by greater lumbar flexion and more significant anterior pelvic tilt and trunk inclination compared with the mountain biking posture. The thoracic spine was more flexed in mountain biking than in road cycling. Road cyclists had significantly greater hamstring muscle extensibility in the active knee extension test, and showed greater anterior pelvic tilt and trunk inclination capacity in the sit-and-reach test, compared with mountain bikers and non-cyclists. © Georg Thieme Verlag KG Stuttgart · New York.

  4. "Christ is the Mountain"

    Directory of Open Access Journals (Sweden)

    Carl Hallencreutz

    1979-01-01

    Full Text Available In this paper the author focuses on the religious function of symbols in the encounter and interaction of Christianity and other religions. Some observations on the religious function of the symbol of the Holy Mountain in different African contexts are presented. These contexts are a traditional Kikuyu religion, b a Christian hymn from Northern Tanzania, and c the New Year's Fiest of the independent Nazaretha Church among Zulu in South Africa. The examples of how the symbol of the holy mountain is used in different religious contexts in Africa are, of course, too limited to provide a basis for far-reaching generalizations on how symbols function religiously in the encounter of Christianity and other religions. However, this kind of analysis can be applied also when studying other encounters of religions inside and outside Africa. The symbol functions both as a carrier of a new religious message and as an indigenous means to appropriate this message locally and give it adequate form in different milieus. The symbols, which most likely have the religious functions are those which are of a general nature; light, way, living water, and which some are tempted to speak of as archetypes. Yet the comparison between the Chagga-hymn to the holy mountain and Shembe's interpretation of the blessing of the New Year's Fiest on Inhlangakozi indicates, that in the encounter of Christianity and other religions it is not only the symbols as such which produce the local appropriation of the new religious message and give it adequate localized form. Not even in the encounter of Christianity and other religions the symbols function religiously without human beings as actors in the historical process.

  5. Policies for the environment and rural development in the mountain area of Austria

    OpenAIRE

    Hovorka, Gerhard

    1998-01-01

    38th European Regional Science Association ? Congress 1998 Topic G: Environmental Management, Sustainability and Development Policies for the Environment and Rural Development in the Mountain Area of Austria (Abstract) by Gerhard Hovorka The cultural landscape in Austria is characterised by the high proportion of mountain areas. Mountain agriculture bears the key role in safeguarding the sensitive eco-system in the mountain areas and thereby maintaining the general living and working space as...

  6. Mechanical degradation of Emplacement Drifts at Yucca Mountain - A Modeling Case Study. Part I: Nonlithophysal Rock

    International Nuclear Information System (INIS)

    M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

    2006-01-01

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation

  7. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  8. Baboquivari Mountain plants: Identification, ecology, and ethnobotany [Book Review

    Science.gov (United States)

    Rosemary L. Pendleton

    2011-01-01

    The Sky Islands of southern Arizona and northwestern Mexico make up a region that is rich, both biologically and culturally. These isolated mountain ranges, separated by desert "seas," contain a unique and diverse flora and have long been home to indigenous peoples of the southwestern US. This book, Baboquivari Mountain Plants: Identification, Ecology, and...

  9. Discussing the Future of U. S. Western Mountains, Climate Change, and Ecosystems

    Science.gov (United States)

    Henry F. Diaz; Constance I. Millar

    2004-01-01

    Mountain regions are uniquely sensitive to changes in climate, and are especially vulnerable to climate effects acting on many biotic systems and the physical settings. Because mountain regions serve as sources of needed natural resources (e.g.,water, forests) and as foundations for desired human activities (e.g., tourism, places to live),changes in mountain systems...

  10. Mountain lions prey selectively on prion-infected mule deer

    Science.gov (United States)

    Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.

    2010-01-01

    The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (≥2 years old) deer with prevalence among sympatric deer taken by hunters in the vicinity of kill sites. Hunter-killed female deer were less likely to be infected than males (odds ratios (OR) = 0.2, 95% confidence intervals (CI) = 0.1–0.6; p = 0.015). However, both female (OR = 8.5, 95% CI = 2.3–30.9) and male deer (OR = 3.2, 95% CI = 1–10) killed by a mountain lion were more likely to be infected than same-sex deer killed in the vicinity by a hunter (p < 0.001), suggesting that mountain lions in this area actively selected prion-infected individuals when targeting adult mule deer as prey items. PMID:19864271

  11. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Science.gov (United States)

    Bresciani, Etienne; Cranswick, Roger H.; Banks, Eddie W.; Batlle-Aguilar, Jordi; Cook, Peter G.; Batelaan, Okke

    2018-03-01

    Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream-aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  12. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Directory of Open Access Journals (Sweden)

    E. Bresciani

    2018-03-01

    Full Text Available Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR or subsurface flow from the mountain (mountain-block recharge, MBR. While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream–aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  13. Succession status on mountain farms in Slovenia

    Directory of Open Access Journals (Sweden)

    Boštjan Kerbler-Kefo

    2008-12-01

    Full Text Available This paper is based on the hypothesis that the offi cial statistical data does not refl ect actual succession status on mountain farms in Slovenia and also on Slovene farms in general, since the census criteria defi ning succession are still incomplete. With the purpose of confi rming our assumption, we formulated more accurate criteria and also determined as to what is the real status of succession on mountain farms in Slovenia. It has proved to be more favourable, than it is presented by the offi cial statistics.

  14. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    Science.gov (United States)

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  15. Investigation of uranium 238 level in phosphate rock samples from kurun mountain Eastern Nuba Mountains in the State of Kordfan (western Sudan)

    International Nuclear Information System (INIS)

    Yagoub, N. H. M.

    2014-06-01

    The natural radionuclide content of 20 samples collected from Kurun Mountain, western Sudan, has been determined using gamma spectrometry. The data showed that ''2''3 8 U and its decay products were the principal contributors of radioactivity in phosphate deposits. The range of the activity concentration was measured in apatite phosphate rock samples was 378.03-1332.58 Bq/Kg with a mean value of 815.46 Bq/Kg and the data showed that most of samples concentrated in medial comparable with top and bottom of mountain. The distribution of samples indicated that the weathering effect and the rainfall may be the main reasons to enhance the mobility and solubility of uranium from top to bottom of mountain.(Author)

  16. Yucca Mountain Site Characterization Project Summary of Socioeconomic Data Analysis Conducted in Support of the Radiological Monitoring Program, During FY 2001

    International Nuclear Information System (INIS)

    L.K. Roe

    2001-01-01

    This report is a summary of socioeconomic data analyses conducted in support of the Radiological Monitoring Program during fiscal year 2001. Socioeconomic data contained in this report include estimates for the years 2000 and 2001 of the resident population in the vicinity of Yucca Mountain. The estimates presented in this report are based on selected Census 2000 statistics, and housing and population data that were acquired and developed in accordance with LP-RS-00 1 Q-M and 0, Scientific Investigation of Economic, Demographic, and Agricultural Characteristics in the Vicinity of Yucca Mountain. The study area from which data were collected is delineated by a radial grid, consisting of 160 grid cells, that is suitable for evaluating the pathways and potential impacts of a release of radioactive materials to the environment within a distance of 84 kilometers from Yucca Mountain. Data are presented in a tabular format by the county, state, area, and grid cell in which housing units, households, and resident population are located. Also included is a visual representation of the distribution of the 2000 residential populations within the study area, showing Census 2000 geography, county boundaries, and taxing district boundaries for selected communities

  17. Minerals in the foods eaten by mountain gorillas (Gorilla beringei.

    Directory of Open Access Journals (Sweden)

    Emma C Cancelliere

    Full Text Available Minerals are critical to an individual's health and fitness, and yet little is known about mineral nutrition and requirements in free-ranging primates. We estimated the mineral content of foods consumed by mountain gorillas (Gorilla beringei beringei in the Bwindi Impenetrable National Park, Uganda. Mountain gorillas acquire the majority of their minerals from herbaceous leaves, which constitute the bulk of their diet. However, less commonly eaten foods were sometimes found to be higher in specific minerals, suggesting their potential importance. A principal component analysis demonstrated little correlation among minerals in food items, which further suggests that mountain gorillas might increase dietary diversity to obtain a full complement of minerals in their diet. Future work is needed to examine the bioavailability of minerals to mountain gorillas in order to better understand their intake in relation to estimated needs and the consequences of suboptimal mineral balance in gorilla foods.

  18. Minerals in the foods eaten by mountain gorillas (Gorilla beringei).

    Science.gov (United States)

    Cancelliere, Emma C; DeAngelis, Nicole; Nkurunungi, John Bosco; Raubenheimer, David; Rothman, Jessica M

    2014-01-01

    Minerals are critical to an individual's health and fitness, and yet little is known about mineral nutrition and requirements in free-ranging primates. We estimated the mineral content of foods consumed by mountain gorillas (Gorilla beringei beringei) in the Bwindi Impenetrable National Park, Uganda. Mountain gorillas acquire the majority of their minerals from herbaceous leaves, which constitute the bulk of their diet. However, less commonly eaten foods were sometimes found to be higher in specific minerals, suggesting their potential importance. A principal component analysis demonstrated little correlation among minerals in food items, which further suggests that mountain gorillas might increase dietary diversity to obtain a full complement of minerals in their diet. Future work is needed to examine the bioavailability of minerals to mountain gorillas in order to better understand their intake in relation to estimated needs and the consequences of suboptimal mineral balance in gorilla foods.

  19. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  20. Habitat use by mountain nyala Tragelaphus buxtoni determined using stem bite diameters at point of browse, bite rates, and time budgets in the Bale Mountains National Park, Ethiopia

    Directory of Open Access Journals (Sweden)

    Solomon A. TADESSE, Burt P. KOTLER

    2013-12-01

    Full Text Available We studied the habitat use of mountain nyala Tragelaphus buxtoni in the northern edge of the Bale Mountains National Park, Ethiopia. The aims of this study were to: (1 measure and quantify habitat-specific stem bite diameters of mountain nyala foraging on common natural plant species in two major habitat types (i.e. grasslands versus woodlands, and (2 quantify the bite rates (number of bites per minute and the activity time budgets of mountain nyala as functions of habitat type and sex-age category. We randomly laid out three transects in each habitat type. Following each transect, through focal animal observations, we assessed and quantified stem diameters at point of browse (dpb, bite rates, and time budgets of mountain nyala in grasslands versus woodlands. Stem dpb provide a measure of natural giving-up densities (GUDs and can be used to assess foraging costs and efficiencies, with greater stem dpb corresponding to lower costs and greater efficiencies. The results showed that stem dpb, bite rates, induced vigilance, and proportion of time spent in feeding differed between habitats. In particular, mountain nyala had greater stem dpb, higher bite rates, and spent a greater proportion of their time in feeding and less in induced vigilance in the grasslands. In addition, adult females had the highest bite rates, and the browse species Solanum marginatum had the greatest stem dpb. Generally, grasslands provide the mountain nyala with several advantages over the woodlands, including offering lower foraging costs, greater safety, and more time for foraging. The study advocates how behavioural indicators and natural GUDs are used to examine the habitat use of the endangered mountain nyala through applying non-invasive techniques. We conclude that the resulting measures are helpful for guiding conservation and management efforts and could be applicable to a number of endangered wildlife species including the mountain nyala [Current Zoology 59 (6 : 707

  1. Mountains of the world: vulnerable water towers for the 21st century.

    Science.gov (United States)

    Messerli, Bruno; Viviroli, Daniel; Weingartner, Rolf

    2004-11-01

    Mountains as "Water Towers" play an important role for the surrounding lowlands. This is particularly true of the world's semiarid and arid zones, where the contributions of mountains to total discharge are 50-90%. Taking into account the increasing water scarcity in these regions, especially for irrigation and food production, then today's state of knowledge in mountain hydrology makes sustainable water management and an assessment of vulnerability quite difficult. Following the IPCC report, the zone of maximum temperature increase in a 2 x CO2 state extends from low elevation in the arctic and sub-arctic to high elevation in the tropics and subtropics. The planned GCOS climate stations do not reach this elevation of high temperature change, although there are many high mountain peaks with the necessary sensitive and vulnerable ecosystems. Worldwide, more than 700 million people live in mountain areas, of these, 625 million are in developing countries. Probably more than half of these 625 million people are vulnerable to food insecurity. Consequences of this insecurity can be emigration or overuse of mountain ecosystems. Overuse of the ecosystems will, ultimately, have negative effects on the environment and especially on water resources. New research initiatives and new high mountain observatories are needed in order to understand the ongoing natural and human processes and their impacts on the adjacent lowlands.

  2. 75 FR 30282 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    Science.gov (United States)

    2010-06-01

    ... Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This AD requires you... reference of certain publications listed in this AD. ADDRESSES: Quartz Mountain Aerospace, Inc. is in...

  3. Investigating a high ozone episode in a rural mountain site

    International Nuclear Information System (INIS)

    Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; Friese, E.; Elbern, H.

    2012-01-01

    A very high ozone episode with observed hourly values above 350 μg m −3 occurred in July 2005 at the Lamas d’Olo air quality monitoring station, located in a mountainous area in the north of Portugal. Aiming to identify the origin and formation of this ozone-rich episode, a statistical analysis and a modelling approach were applied. A cross-spectrum analysis in the frequency domain and a synoptic analysis of the meteorological and air quality time series were performed. In order to go further in this analysis, a numerical modelling approach was applied. The results indicate that the transport of ozone and its precursors is the main responsible for the high ozone concentrations. Together with the local mountain breeze and subsidence conditions, the sea-breeze circulation transporting pollutants from the coastal urban and industrialized areas that reach the site during late afternoon turn out to be the driving forces for the ozone peaks. - Highlights: ► A very high ozone episode occurred in a rural mountain site of Portugal in 2004. ► Data cross-spectrum analysis in the frequency domain was performed. ► A numerical modelling approach was also applied. ► The sea-breeze circulation transported pollutants from the urban and industrialized coast. ► The mountain breeze and subsidence conditions were also driving forces for ozone peaks. - The sea-breeze transporting pollutants from the coast, the mountain breeze and subsidence conditions, were the driving forces for the ozone episode occurred in a rural mountain site.

  4. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Science.gov (United States)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  5. A vegetation description and floristic analyses of the springs on the Kammanassie Mountain, Western Cape

    OpenAIRE

    G. Cleaver; L.R. Brown; G.J. Bredenkamp

    2004-01-01

    The Kammanassie Mountain is a declared mountain catchment area and a Cape mountain zebra Equus zebra zebra population is preserved on the mountain. The high number of springs on the mountain not only provides water for the animal species but also contributes to overall ecosystem functioning. Long-term conservation of viable ecosystems requires a broader understanding of the ecological processes involved. It was therefore decided that a classification, description and mapping of the spring veg...

  6. OS X Mountain Lion Portable Genius

    CERN Document Server

    Spivey, Dwight

    2012-01-01

    Essential tips and techniques on the Mac OS X features you use most! If you want the kind of hip, friendly help you'd get from friends on how to get the most of out of Mac OS X Mountain Lion, this is the guide you need. Jump right into the coolest new Mac OS X features like Game Center, Messages, and Notification, or get a better handle on the basic tools and shortcuts that will help keep your mountain cat purring. From customizing to using multimedia to syncing your Mac to other devices, this book saves you time and hassle, avoids fluff, and covers what you want to know most. New addition t

  7. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  8. Evaluating Risk Perception based on Gender Differences for Mountaineering Activity

    Science.gov (United States)

    Susanto, Novie; Susatyo, Nugroho W. P.; Rizkiyah, Ega

    2018-02-01

    In average 26 death events in mountaineering per year for the time span from 2003 to 2012 is reported. The number of women dying during the mountaineering is significantly smaller than males (3.5 deaths male for one female death). This study aims to analyze the differences of risk perception based on gender and provide recommendations as education basic to prevent accidents in mountaineering. This study utilizes the Kruskal-Wallis test and the Delphi Method. A total of 200 mountaineer respondents (100 males and 100 females) participated in this study. The independent variable in this study was gender. The dependent variable was risk perception including perception toward the serious accident, perception toward the probability of accident event as well as anxiety level and perception of efficacy and self-efficacy. The study result showed that the risk perception of women is higher than men with significant difference (p-value = 0.019). The recommendations from Delphi method result are by developing a positive mental attitude, showing about the risks that exist in nature, implementing Cognitive Behaviour Therapy (CBT) to raise awareness of the safety of ownself, following the climbing or mountaineer school, and using instructors to give lessons about safety in outdoor activities.

  9. Evaluating Risk Perception based on Gender Differences for Mountaineering Activity

    Directory of Open Access Journals (Sweden)

    Susanto Novie

    2018-01-01

    Full Text Available In average 26 death events in mountaineering per year for the time span from 2003 to 2012 is reported. The number of women dying during the mountaineering is significantly smaller than males (3.5 deaths male for one female death. This study aims to analyze the differences of risk perception based on gender and provide recommendations as education basic to prevent accidents in mountaineering. This study utilizes the Kruskal-Wallis test and the Delphi Method. A total of 200 mountaineer respondents (100 males and 100 females participated in this study. The independent variable in this study was gender. The dependent variable was risk perception including perception toward the serious accident, perception toward the probability of accident event as well as anxiety level and perception of efficacy and self-efficacy. The study result showed that the risk perception of women is higher than men with significant difference (p-value = 0.019. The recommendations from Delphi method result are by developing a positive mental attitude, showing about the risks that exist in nature, implementing Cognitive Behaviour Therapy (CBT to raise awareness of the safety of ownself, following the climbing or mountaineer school, and using instructors to give lessons about safety in outdoor activities.

  10. A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation

    International Nuclear Information System (INIS)

    Freifeld, Barry; Tsang, Yvonne

    2006-01-01

    Confirmation of the performance of Yucca Mountain is required by 10 CFR Part 63.131 to indicate, where practicable, that the natural system acts as a barrier, as intended. Hence, performance confirmation monitoring and testing would provide data for continued assessment during the pre-closure period. In general, to carry out testing at a relevant scale is always important, and in the case of performance confirmation, it is particularly important to be able to test at the scale of the repository. We view the large perturbation caused by construction of the repository at Yucca Mountain as a unique opportunity to study the large-scale behavior of the natural barrier system. Repository construction would necessarily introduce traced fluids and result in the creation of leachates. A program to monitor traced fluids and construction leachates permits evaluation of transport through the unsaturated zone and potentially downgradient through the saturated zone. A robust sampling and monitoring network for continuous measurement of important parameters, and for periodic collection of agrochemical samples, is proposed to observe thermo-hydrogeochemical changes near the repository horizon and down to the water table. The sampling and monitoring network can be used to provide data to (1) assess subsurface conditions encountered and changes in those conditions during construction and waste emplacement operations; and (2) for modeling to determine that the natural system is functioning as intended

  11. Holocene earthquakes of magnitude 7 during westward escape of the Olympic Mountains, Washington

    Science.gov (United States)

    Nelson, Alan R.; Personius, Stephen; Wells, Ray; Schermer, Elizabeth R.; Bradley, Lee-Ann; Buck, Jason; Reitman, Nadine G.

    2017-01-01

    The Lake Creek–Boundary Creek fault, previously mapped in Miocene bedrock as an oblique thrust on the north flank of the Olympic Mountains, poses a significant earthquake hazard. Mapping using 2015 light detection and ranging (lidar) confirms 2004 lidar mapping of postglacial (≥14  km along a splay fault, the Sadie Creek fault, west of Lake Crescent. Scarp morphology suggests repeated earthquake ruptures along the eastern section of the Lake Creek–Boundary Creek fault and the Sadie Creek fault since ∼13  ka">∼13  ka. Right‐lateral (∼11–28  m">∼11–28  m) and vertical (1–2 m) cumulative fault offsets suggest slip rates of ∼1–2  mm/yr">∼1–2  mm/yr Stratigraphic and age‐model data from five trenches perpendicular to scarps at four sites on the eastern section of the fault show evidence of 3–5 surface‐rupturing earthquakes. Near‐vertical fault dips and upward‐branching fault patterns in trenches, abrupt changes in the thickness of stratigraphic units across faults, and variations in vertical displacement of successive stratigraphic units along fault traces also suggest a large lateral component of slip. Age models suggest two earthquakes date from 1.3±0.8">1.3±0.8 and 2.9±0.6  ka">2.9±0.6  ka; evidence and ages for 2–3 earlier earthquakes are less certain. Assuming 3–5 postglacial earthquakes, lateral and vertical cumulative fault offsets yield average slip per earthquake of ∼4.6  m">∼4.6  m, a lateral‐to‐vertical slip ratio of ∼10:1">∼10:1, and a recurrence interval of 3.5±1.0  ka">3.5±1.0  ka. Empirical relations yield moment magnitude estimates of M 7.2–7.5 (slip per earthquake) and 7.1–7.3 (56 km maximum rupture length). An apparent left‐lateral Miocene to right‐lateral Holocene slip reversal on the faults is probably related to overprinting of east‐directed, accretion‐dominated deformation in the eastern core of the Olympic

  12. A computer simulation model to compute the radiation transfer of mountainous regions

    Science.gov (United States)

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  13. Modeling the biophysical impacts of global change in mountain biosphere reserves

    Science.gov (United States)

    Bugmann, H.K.M.; Bjornsen, F. Ewert; Haeberli, W.; Guisan, Antoine; Fagre, Daniel B.; Kaab, A.

    2007-01-01

    Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.

  14. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  15. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  16. Rocky Mountain spotted fever from an unexpected tick vector in Arizona.

    Science.gov (United States)

    Demma, Linda J; Traeger, Marc S; Nicholson, William L; Paddock, Christopher D; Blau, Dianna M; Eremeeva, Marina E; Dasch, Gregory A; Levin, Michael L; Singleton, Joseph; Zaki, Sherif R; Cheek, James E; Swerdlow, David L; McQuiston, Jennifer H

    2005-08-11

    Rocky Mountain spotted fever is a life-threatening, tick-borne disease caused by Rickettsia rickettsii. This disease is rarely reported in Arizona, and the principal vectors, Dermacentor species ticks, are uncommon in the state. From 2002 through 2004, a focus of Rocky Mountain spotted fever was investigated in rural eastern Arizona. We obtained blood and tissue specimens from patients with suspected Rocky Mountain spotted fever and ticks from patients' homesites. Serologic, molecular, immunohistochemical, and culture assays were performed to identify the causative agent. On the basis of specific laboratory criteria, patients were classified as having confirmed or probable Rocky Mountain spotted fever infection. A total of 16 patients with Rocky Mountain spotted fever infection (11 with confirmed and 5 with probable infection) were identified. Of these patients, 13 (81 percent) were children 12 years of age or younger, 15 (94 percent) were hospitalized, and 2 (12 percent) died. Dense populations of Rhipicephalus sanguineus ticks were found on dogs and in the yards of patients' homesites. All patients with confirmed Rocky Mountain spotted fever had contact with tick-infested dogs, and four had a reported history of tick bite preceding the illness. R. rickettsii DNA was detected in nonengorged R. sanguineus ticks collected at one home, and R. rickettsii isolates were cultured from these ticks. This investigation documents the presence of Rocky Mountain spotted fever in eastern Arizona, with common brown dog ticks (R. sanguineus) implicated as a vector of R. rickettsii. The broad distribution of this common tick raises concern about its potential to transmit R. rickettsii in other settings. Copyright 2005 Massachusetts Medical Society.

  17. SP mountain data analysis

    Science.gov (United States)

    Rawson, R. F.; Hamilton, R. E.; Liskow, C. L.; Dias, A. R.; Jackson, P. L.

    1981-01-01

    An analysis of synthetic aperture radar data of SP Mountain was undertaken to demonstrate the use of digital image processing techniques to aid in geologic interpretation of SAR data. These data were collected with the ERIM X- and L-band airborne SAR using like- and cross-polarizations. The resulting signal films were used to produce computer compatible tapes, from which four-channel imagery was generated. Slant range-to-ground range and range-azimuth-scale corrections were made in order to facilitate image registration; intensity corrections were also made. Manual interpretation of the imagery showed that L-band represented the geology of the area better than X-band. Several differences between the various images were also noted. Further digital analysis of the corrected data was done for enhancement purposes. This analysis included application of an MSS differencing routine and development of a routine for removal of relief displacement. It was found that accurate registration of the SAR channels is critical to the effectiveness of the differencing routine. Use of the relief displacement algorithm on the SP Mountain data demonstrated the feasibility of the technique.

  18. A mountain of millipedes IV

    DEFF Research Database (Denmark)

    Enghoff, Henrik

    2016-01-01

    Two species of the genus Prionopetalum Attems, 1909, are recorded from the Udzungwa Mountains: P. asperginis sp. nov. and P. kraepelini (Attems, 1896). Prionopetalum stuhlmanni Attems, 1914, is synonymized under P. kraepelini. Odontopyge fasciata Attems, 1896, is transferred from Prionopetalum...

  19. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain

  20. The Haptic Sublime and the ‘cold stony reality’ of Mountaineering

    Directory of Open Access Journals (Sweden)

    Alan McNee

    2014-10-01

    Full Text Available This article looks at how the Victorian sport of mountaineering, and the new genre of literature associated with it, mirrored the wider societal preoccupation with physicality and tactility. It traces the various ways in which developments in physiology, psychophysiology, and aesthetics in the late nineteenth century were reflected in the accounts of mountaineers, and suggests that a new aesthetic of mountain appreciation - the ‘haptic sublime’ - emerged in this period, as an expression of this new emphasis on physical engagement.

  1. Analysis of photo linear elements, Laramie Mountains, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.

  2. The age-related performance decline in ultraendurance mountain biking.

    Science.gov (United States)

    Haupt, Samuel; Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2013-01-01

    The age-related changes in ultraendurance performance have been previously examined for running and triathlon but not mountain biking. The aims of this study were (i) to describe the performance trends and (ii) to analyze the age-related performance decline in ultraendurance mountain biking in a 120-km ultraendurance mountain bike race the "Swiss Bike Masters" from 1995 to 2009 in 9,325 male athletes. The mean (±SD) race time decreased from 590 ± 80 min to 529 ± 88 min for overall finishers and from 415 ± 8 min to 359 ± 16 min for the top 10 finishers, respectively. The mean (±SD) age of all finishers significantly (P Bike Masters" appears to start earlier compared with other ultraendurance sports.

  3. Ongoing Cerebral Vasculitis During Treatment of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Sun, Lisa R; Huisman, Thierry A G M; Yeshokumar, Anusha K; Johnston, Michael V

    2015-11-01

    Rocky Mountain spotted fever is a tickborne infection that produces a systemic small-vessel vasculitis; its prognosis is excellent if appropriate treatment is initiated early. Because the advent of effective antirickettsial therapies predates the widespread use of brain magnetic resonance imaging, there are limited data on the effect of untreated Rocky Mountain spotted fever infection on neuroimaging studies. We describe a 7-year-old girl with delayed treatment of Rocky Mountain spotted fever who suffered severe neurological impairment. Serial brain magnetic resonance images revealed a progressive "starry sky appearance," which is proposed to result from the same small vessel vasculitis that causes the characteristic skin rash of this infection. Neurological injury can continue to occur despite specific antirickettsial therapy in Rocky Mountain spotted fever. This child's clinical features raise questions about the optimal management of this infection, particularly the utility of immune modulating therapies in cases of delayed treatment and neurological involvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Reaching for the Sky: The Growth of Mountain Tourism in Switzerland.

    Science.gov (United States)

    Rothwell, Jennifer Truran

    1999-01-01

    Addresses the beginnings of Swiss tourism, its barriers, and the development and role of transportation in mountain tourism. Considers the environmental problems caused by mountain tourism in Switzerland and provides seven teaching ideas. (CMK)

  5. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  6. Flash Flood Type Identification within Catchments in Beijing Mountainous Area

    Science.gov (United States)

    Nan, W.

    2017-12-01

    Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant

  7. Mountain Wave Analysis Using Fourier Methods

    National Research Council Canada - National Science Library

    Roadcap, John R

    2007-01-01

    ...) their requirements for only a coarse horizontal background state. Common traits of Fourier mountain wave models include use of the Boussinesq approximation and neglect of moisture and Coriolis terms...

  8. VT Green Mountain Power Pole Data

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Green Mountain Power (GMP) pole and OVERHEAD linear distribution/sub-transmission model data. THE LINEAR DISTRIBUTION LAYER ONLY INCLUDES OVERHEAD...

  9. Assessing the potential for rainbow trout reproduction in tributaries of the Mountain Fork River below Broken Bow Dam, southeastern Oklahoma

    Science.gov (United States)

    Long, James M.; Starks, Trevor A.; Farling, Tyler; Bastarache, Robert

    2016-01-01

    Stocked trout (Salmonidae) in reservoir tailwater systems in the Southern United States have been shown to use tributary streams for spawning and rearing. The lower Mountain Fork of the Little River below Broken Bow Dam is one of two year-round tailwater trout fisheries in Oklahoma, and the only one with evidence of reproduction by stocked rainbow trout (Oncorhynchus mykiss). Whether stocked trout use tributaries in this system for spawning is unknown. Furthermore, an

  10. Ecological Effects of Grazing in the Northern Tianshan Mountains

    Directory of Open Access Journals (Sweden)

    Xiaotao Huang

    2017-11-01

    Full Text Available Identifying the effects of grazing is critical for the conservation, protection and sustainable use of arid grassland ecosystems. However, research regarding the ecological effects of grazing along mountainous elevation gradients is limited in arid areas, particularly at the regional scale. Using the Biome-BGC grazing model, we explored the effects of grazing on grassland net primary productivity (NPP, evapotranspiration (ET and water use efficiency (WUE from 1979 to 2012 along an elevation gradient in the northern Tianshan Mountains. The NPP, ET and WUE values were generally lower under the grazing scenario than under the ungrazed scenario; the differences between the grazing and ungrazed scenarios showed increasing trends over time; and distinct spatial heterogeneity in these differences was observed. Distinct decreases in NPP and WUE under the grazing scenario mainly occurred in regions with high livestock consumption. The decrease in ET was greater in mountainous areas with high grazing intensity due to decreased transpiration and increased surface runoff. This study contributes to a better understanding of the ecological effects of grazing along an elevation gradient in the northern Tianshan Mountains and provides data to support the scientific management of grassland ecosystems.

  11. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Science.gov (United States)

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of...: Background Information: The Grey's Mountain Ecosystem Restoration Project (Madera County, California) lies... vegetation. Currently, vegetation within the Grey's Mountain Ecosystem Restoration Project has changed from...

  12. Environmental and hydrologic setting of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma

    Science.gov (United States)

    Adamski, James C.; Petersen, James C.; Freiwald, David A.; Davis, Jerri V.

    1995-01-01

    The environmental and hydrologic setting of the Ozark Plateaus National Water-Quality Assessment (NAWQA) study unit and the factors that affect water quality are described in this report. The primary natural and cultural features that affect water- quality characteristics and the potential for future water-quality problems are described. These environmental features include climate, physio- graphy, geology, soils, population, land use, water use, and surface- and ground-water flow systems. The study-unit area is approximately 47,600 square miles and includes most of the Ozark Plateaus Province and parts of the adjacent Osage Plains and Mississippi Alluvial Plain in parts of Arkansas, Kansas, Missouri, and Oklahoma. The geology is characterized by basement igneous rocks overlain by a thick sequence of dolomites, limestones, sandstones, and shales of Paleozoic age. Land use in the study unit is predominantly pasture and forest in the southeastern part, and pasture and cropland in the northwestern part. All or part of the White, Neosho-lllinois, Osage, Gasconade, Meramec, St. Francis, and Black River Basins are within the study unit. Streams in the Boston Mountains contain the least mineralized water, and those in the Osage Plains contain the most mineralized water. The study unit contains eight hydrogeologic units including three major aquifers--the Springfield Plateau, Ozark, and St. Francois aquifers. Streams and aquifers in the study unit generally contain calcium or calcium-magnesium bicarbonate waters. Ground- and surface-water interactions are greatest in the Salem and Springfield Plateaus and least in the Boston Mountains and Osage Plains. Geology, land use, and population probably are the most important environmental factors that affect water quality.

  13. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    Science.gov (United States)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  15. Radioecological situation in the Khibiny mountains

    International Nuclear Information System (INIS)

    Sedova, N.B.

    2008-01-01

    Radioecological situation in the Khibiny Mountains is considered. Two former areas of engineering nuclear explosions are monitored. The accumulation and migration of radionuclides in soil, vegetation and snow are examined.

  16. Mountain biking: downhill for the environment or chance to up a gear?

    OpenAIRE

    Hardiman, Nigel; Burgin, Shelley

    2013-01-01

    The paper examines mountain biking as an increasingly popular adventure recreation activity. Some of its extreme derivatives have been incorporated into international events (e.g. Olympics). We review trends in mountain biking, consider the appropriateness of this activity in public natural areas with a conservation mandate (e.g. national parks, nature reserves) and consider alternative locations. We conclude that (1) mountain biking will continue to increase in popularity; and (2...

  17. Research on Structure Innovation of Agricultural Organization in China's Southwestern Mountainous Regions

    OpenAIRE

    Du, Qiang; Luo, Min; Wang, Ping

    2012-01-01

    Taking agricultural organization in China's southwestern mountainous regions as research object, on the basis of analysis of the status quo of agricultural organization development in China's southwestern mountainous regions, we use related theoretical knowledge on economics and organization science, we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China's southwestern mountainous regions over the past 30 years. Finally w...

  18. Mountainous areas and decentralized energy planning: Insights from Greece

    International Nuclear Information System (INIS)

    Katsoulakos, Nikolas M.; Kaliampakos, Dimitris C.

    2016-01-01

    Mountainous areas have particular characteristics, whose influence on energy planning is explored in this paper, through a suitably tailored methodology applied to the case of Greece. The core element of the methodology is a linear optimization model with a “total cost” objective function, which includes financial, as well as external costs and benefits. Altitude proves to have decisive influence on energy optimization results, because it affects energy demand. The improvement of local energy systems provides greater socioeconomic benefits in mountainous settlements, due to the high shares of renewables and energy efficiency interventions in the optimal solutions. Energy poverty can be alleviated by redesigning local energy systems and the structure of the energy market. However, spatial and aesthetic restrictions, presented often in mountainous settlements, may affect the operational costs of energy systems, which is a crucial parameter for confronting energy poverty. Furthermore, the study indicates that it could be better to electrify remote areas, far from electricity grids, by decentralized systems than by grid expansion. The results of this study and the assumptions made about the way in which energy market should function, could be utilized for reconsidering energy policy measures, aiming at supporting sensitive societies to improve their development perspectives. - Highlights: •The influence of mountains' characteristics on energy planning was analyzed. •Optimal energy solutions present differentiations with respect to altitude. •Greater socioeconomic benefits by energy optimization in mountainous areas. •Remoteness favors the development of decentralized energy systems. •The study is based on data from Greece.

  19. Myocardial involvement in rocky mountain spotted fever: a case report and review.

    Science.gov (United States)

    Doyle, Amy; Bhalla, Karan S; Jones, James M; Ennis, David M

    2006-10-01

    Rocky Mountain Spotted Fever (RMSF), caused by Rickettia rickettsii, is a serious tickborne illness that is endemic in the southeastern United States. Although it is most commonly known as a cause of fever and rash, it can have systemic manifestations. The myocardium may rarely be involved, with symptoms that can mimic those of acute coronary syndromes. This report describes a case of serologically proven RMSF causing symptomatic myocarditis, manifested by chest pain, elevated cardiac enzyme levels, and decrease myocardial function. After treatment with antibiotics, the myocarditis resolved. Thus, although unusual, the clinician should be aware of myocardial disease in patients with appropriate exposure histories or other clinical signs of RMSF. Close monitoring and an aggressive approach are essential to reduce mortality rates.

  20. Engineering report on the drilling in the Spor Mountain area of Utah

    International Nuclear Information System (INIS)

    1979-07-01

    The Spor Mountain Drilling Project was conducted by Bendix Field Engineering Corporation in support of the United States Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program. This project consisted of 30 drill holes, ranging in depth from 372 feet (113.39 m) to 2,525 feet (769.62 m). A total of 33,143 feet (10,101.99 m) were drilled, of which 11,579 feet (3,529.28 m) were cored. The objective of the project was to test the continuity of uranium bearing host rocks, including the Beryllium Tuff and Yellow Chief sandstones, in several geologically favorable areas of the Thomas Range. This project began June 22, 1978, and continued through May 1979 with final site restoration and cleanup

  1. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

  2. Early Bronze Age migrants and ethnicity in the Middle Eastern mountain zone

    Science.gov (United States)

    Rothman, Mitchell S.

    2015-01-01

    The Kura-Araxes cultural tradition existed in the highlands of the South Caucasus from 3500 to 2450 BCE (before the Christian era). This tradition represented an adaptive regime and a symbolically encoded common identity spread over a broad area of patchy mountain environments. By 3000 BCE, groups bearing this identity had migrated southwest across a wide area from the Taurus Mountains down into the southern Levant, southeast along the Zagros Mountains, and north across the Caucasus Mountains. In these new places, they became effectively ethnic groups amid already heterogeneous societies. This paper addresses the place of migrants among local populations as ethnicities and the reasons for their disappearance in the diaspora after 2450 BCE. PMID:26080417

  3. Protecting the Sacred Water Bundle: Education about Fracking at Turtle Mountain Community College

    Science.gov (United States)

    Blue, Stacie

    2017-01-01

    Leaving the plains of North Dakota and entering the hills known as the Turtle Mountains, the Turtle Mountain Band of Chippewa Indians (TMBCI) reservation is found. Located on the TMBCI reservation, Turtle mountain Community College (TMCC) has provided opportunities for all interested parties to learn about fracking and why the tribe banned it.…

  4. A measure for the promotion of mountain ecological villages in South Korea: focus on the national mountain ecological village investigation of 2014.

    Science.gov (United States)

    Choi, Soo Im; Kang, Hag Mo; Kim, Hyun; Lee, Chang Heon; Lee, Chong Kyu

    2016-01-01

    Although South Korean mountain villages occupy 44 and 55 % of land and forest areas, respectively, these villages account for only 3 % of the national population and they suffer from a declining workforce owing to aging, wage inflation, and low forestry productivity. As a result, the South Korean government implemented a mountain ecological village development project from 1995 to 2013 in 312 of the 4972 mountain villages and investigated project performance in 2014. The present study establishes a measure for the promotion of mountain ecological villages by comparing the situation before and after the project. The analysis found a threefold increase in the inflow of farm/rural-returning and multicultural households compared with before the project, while the average income per farm, local product sales, and experience tourism revenue also grew remarkably every year. In addition, households utilizing forest resources increased by about 30 %, but 45.8 % of the 312 villages had no long-term plan for village development and villagers experienced low satisfaction with job creation and village income. A systematic revision of agroforestry production and forest administration is needed to define the characteristics of farm/rural-returning populations clearly, reorganize urban-rural exchange and experience programs, and reinforce tangible/intangible cultural assets and religious traditions.

  5. Urban hydrology in mountainous middle eastern cities

    Science.gov (United States)

    Grodek, T.; Lange, J.; Lekach, J.; Husary, S.

    2011-03-01

    The Mediterranean climate together with the type of urban setting found in mountainous Middle Eastern cities generate much lower runoff yields than previously reported and than usually estimated for urban design. In fact, a close analysis shows that most of the rainwater remains within the cities as a possible source for urban groundwater recharge. The present study examined two locales - Ramallah, an old traditional Palestinian Arab town, and Modiin, a new township in Israel - both situated on the karstic Yarkon Taninim aquifer. This aquifer supplies the only high-quality drinking water in the region (one quarter of the Israeli-Palestinian water demand), which is characterized by dense populations and limited water resources. This paper provides the first measured information on the hydrological effects of urbanization in the area. It was found that the shift of the mountainous natural steep slopes into a series of closed-terraces with homes and gardens create areas that are disconnected from the urban runoff response. Roofs drained into the attached gardens create favorable recharge units. Mainly low-gradient roads became the principal source for urban runoff already following 1-4 mm of rainfall. Parallel roads converted single peak hydrographs towards multi-peak runoff responses, increasing flow duration and reducing peak discharges. The remaining urban area (public parks, natural areas, etc.) generated runoff only as a result of high-magnitude rainstorms. All of the above conditions limited urban runoff coefficients to an upper boundary of only 35% and 30% (Ramallah and Modiin, respectively). During extreme rainstorms (above 100 mm) similar runoff coefficients were measured in urban and natural catchments as a result of the limited areas contributing to runoff in the urban areas, while natural terrain does not have these artificial limits. Hence, the effects of urbanization decrease with event magnitude and there is significant potential for urban groundwater

  6. Urban hydrology in mountainous middle eastern cities

    Directory of Open Access Journals (Sweden)

    T. Grodek

    2011-03-01

    Full Text Available The Mediterranean climate together with the type of urban setting found in mountainous Middle Eastern cities generate much lower runoff yields than previously reported and than usually estimated for urban design. In fact, a close analysis shows that most of the rainwater remains within the cities as a possible source for urban groundwater recharge. The present study examined two locales – Ramallah, an old traditional Palestinian Arab town, and Modiin, a new township in Israel – both situated on the karstic Yarkon Taninim aquifer. This aquifer supplies the only high-quality drinking water in the region (one quarter of the Israeli-Palestinian water demand, which is characterized by dense populations and limited water resources.

    This paper provides the first measured information on the hydrological effects of urbanization in the area. It was found that the shift of the mountainous natural steep slopes into a series of closed-terraces with homes and gardens create areas that are disconnected from the urban runoff response. Roofs drained into the attached gardens create favorable recharge units. Mainly low-gradient roads became the principal source for urban runoff already following 1–4 mm of rainfall. Parallel roads converted single peak hydrographs towards multi-peak runoff responses, increasing flow duration and reducing peak discharges. The remaining urban area (public parks, natural areas, etc. generated runoff only as a result of high-magnitude rainstorms. All of the above conditions limited urban runoff coefficients to an upper boundary of only 35% and 30% (Ramallah and Modiin, respectively. During extreme rainstorms (above 100 mm similar runoff coefficients were measured in urban and natural catchments as a result of the limited areas contributing to runoff in the urban areas, while natural terrain does not have these artificial limits. Hence, the effects of urbanization decrease with event magnitude and there is significant

  7. Technical correspondence in support of an evaluation of the hydrologic effects of exploratory shaft facility construction at Yucca Mountain

    International Nuclear Information System (INIS)

    Peterson, A.C.; Eaton, R.R.; Russo, A.J.; Lewin, J.A.

    1988-12-01

    This document comprises four letter reports containing information that has been used in preparing the plan to characterize the site of the prospective repository at Yucca Mountain. The Yucca Mountain Project is studying the feasibility of constructing a high-level nuclear waste repository in the Topopah Spring Unit of the Paintbrush Tuff. One activity of site characterization is the construction of two exploratory shafts. The information in this report pertains to (1) engineering calculations of the potential distribution of residual water from constructing the exploratory shafts and drifts, (2) numerical calculations predicting the movement of the residual construction water from the shaft walls into the rock, (3) numerical calculations of the movement of the residual water and how the movement is affected by ventilation, and (4) measurement of the movement of water into a welded tuff core when a pulse of water pressure is applied to a laboratory test sample for a short time (100 min)

  8. Biodiversity and management of the Madrean Archipelago: The Sky Islands of southwestern United States and northwestern Mexico

    Science.gov (United States)

    Leonard H. DeBano; Peter H. Ffolliott; Alfredo Ortega-Rubio; Gerald J. Gottfried; Robert H. Hamre; Carleton B. Edminster

    1995-01-01

    This conference brought together scientists and managers from government, universities, and private organizations to examine the biological diversity and management challenges of the unique "sky island" ecosystems of the mountains of the southwestern United States and northwestern Mexico. Session topics included: floristic resources, plant ecology,...

  9. Public Interaction and Educational Outreach on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    A. Benson; Y. Riding

    2002-11-14

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public

  10. Dental injuries in mountain biking--a survey in Switzerland, Austria, Germany and Italy.

    Science.gov (United States)

    Müller, Kathrin E; Persic, Robert; Pohl, Yango; Krastl, Gabriel; Filippi, Andreas

    2008-10-01

    Mountain biking is considered an extreme sport, causing not only head and neck injuries, but also injuries to every part of the body. Using standardised interview, the aim of this work was to survey the frequency of dental injuries in mountain biking, as well as the behaviour of athletes after experiencing dental trauma, depending on their intensity level. Furthermore, habits of wearing helmets and mouthguards as well as knowledge about the tooth rescue kit were investigated. A total of 423 male mountain bikers from Germany, Italy, Austria and Switzerland were surveyed for this study, including 50 juniors from Switzerland. 27 athletes (5.7%) had endured tooth accidents in mountain biking. Only 246 (52%) were aware of the fact that avulsed teeth can be replanted, and only 30 individuals knew about the tooth rescue kit (6.3%). 71.9% (n=340) were familiar with mouthguards; however, only 21 individuals (4.4%) used mouthguards while mountain biking. The results show that where mountain biking is concerned, more information about prevention is required.

  11. Drug Use and Misuse in the Mountains: A UIAA MedCom Consensus Guide for Medical Professionals

    NARCIS (Netherlands)

    Donegani, Enrico; Paal, Peter; Küpper, Thomas; Hefti, Urs; Basnyat, Buddha; Carceller, Anna; Bouzat, Pierre; van der Spek, Rianne; Hillebrandt, David

    2016-01-01

    Aims: The aim of this review is to inform mountaineers about drugs commonly used in mountains. For many years, drugs have been used to enhance performance in mountaineering. It is the UIAA (International Climbing and Mountaineering Federation-Union International des Associations d'Alpinisme)

  12. VT Green Mountain National Forest - Roads

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of...

  13. VT Green Mountain National Forest - Trails

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of...

  14. S-40: Acute Phase Protein Increse in High Altitude Mountaineers

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    2017-03-01

    Full Text Available “Erciyes Tigers” are an elite group of high altitude climbers. They have been climbing ErciyesMountain (3500 m, in Kayseri, Turkey once a week at least for ten years. When they climb Erciyes in winter, they also take a snow bath. This study investigated the effects of regular high altitude climbing on the metabolic and hematological responses of mountaineers. Venous blood samples were taken to investigate hematological, biochemical parameters and some hormone values from 21 mountaineers and 16 healthy age-matched sedentary volunteers at resting condition. The neutrophil/lymphocyte (N/L ratio was calculated. The N/L was associated with an increased risk of long-term mortality and it could provide a good measure of exercise stress and subsequent recovery. Most of the hematological and biochemical parameters i.e., erythrocyte, leukocyte, hemoglobin and hematocrit values did not change significantly. The neutrophil to lymphocyte (N/L ratio was significantly (p<0.04 decreased in the mountaineer compared with the sedentary group. Total protein (p<0.000 and albumin (0.001 were lower, while ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase levels (p<0.01 were higher in mountaineers. Our results show that regular high altitude climbing increased serum levels of some acute-phase proteins and these increments were not transient.

  15. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  16. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  17. The medicinal plants of Chepan Mountain (Western Bulgaria)

    Science.gov (United States)

    Zahariev, Dimcho

    2015-12-01

    Bulgaria is one of the European countries with the greatest biodiversity, including biodiversity of medicinal plants. The object of this study is Chepan Mountain. It is located in Western Bulgaria and it is part of Balkan Mountain. On the territory of the Chepan Mountain (only 80 km2) we found 344 species of medicinal plants from 237 genera and 83 families. The floristic analysis indicates, that the most of the families and the genera are represented by a small number of inferior taxa. The hemicryptophytes dominate among the life forms with 49.71%. The biological types are represented mainly by perennial herbaceous plants (60.47%). There are 7 types of floristic elements divided in 27 groups. The largest percentage of species are of the European type (58.43%). Among the medicinal plants, there are two Balkan endemic species and 18 relic species. We described 23 species with protection statute. The anthropophytes among the medicinal plants are 220 species (63.95%).

  18. The terrestrial ecosystem program for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ostler, W.K.; O'Farrell, T.P.

    1994-01-01

    DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain

  19. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    Lorenz, J.J.; Stephan, P.M.

    1991-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1991 through June 1991. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  20. Yucca Mountain Site Characterization Project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1993, through June 30, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it