WorldWideScience

Sample records for unit density sphere

  1. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    Science.gov (United States)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  2. Close packing density of polydisperse hard spheres.

    Science.gov (United States)

    Farr, Robert S; Groot, Robert D

    2009-12-28

    The most efficient way to pack equally sized spheres isotropically in three dimensions is known as the random close packed state, which provides a starting point for many approximations in physics and engineering. However, the particle size distribution of a real granular material is never monodisperse. Here we present a simple but accurate approximation for the random close packing density of hard spheres of any size distribution based upon a mapping onto a one-dimensional problem. To test this theory we performed extensive simulations for mixtures of elastic spheres with hydrodynamic friction. The simulations show a general (but weak) dependence of the final (essentially hard sphere) packing density on fluid viscosity and on particle size but this can be eliminated by choosing a specific relation between mass and particle size, making the random close packed volume fraction well defined. Our theory agrees well with the simulations for bidisperse, tridisperse, and log-normal distributions and correctly reproduces the exact limits for large size ratios.

  3. Low-Density Fluid Phase of Dipolar Hard Spheres

    Science.gov (United States)

    Sear, Richard P.

    1996-03-01

    Unexpectedly, recent computer simulation studies [Weis and Levesque, Phys. Rev. Lett. 71, 2729 (1993); Leeuwen and Smit, ibid. 71, 3991 (1993)] failed to find a liquid phase for dipolar hard spheres. We argue that the liquid was not observed because the dipolar spheres form long chains which interact only weakly. To support this argument we derive a simple theory for noninteracting chains of dipolar spheres and show that it provides a reasonable description of the low-density fluid phase.

  4. Lightcone dualities for curves in the lightcone unit 3-sphere

    OpenAIRE

    2013-01-01

    In this paper, we consider the curves in the unit 3-sphere in the lightcone. The unit 3-sphere can be canonically embedded in the lightcone and de Sitter 4-space in Lorentz-Minkowski 5-space. We investigate these curves in the framework of the theory of Legendrian dualities between pseudo-spheres in Lorentz-Minkowski 5-space. (C) 2013 AIP Publishing LLC.

  5. On isometric extension problem between two unit spheres

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres. Some important results of the related problems are outlined and the recent progress is mentioned.

  6. On isometric extension problem between two unit spheres

    Institute of Scientific and Technical Information of China (English)

    Ding GuangGui

    2009-01-01

    In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres.Some important results of the related problems are outlined and the recent progress is mentioned.

  7. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    Science.gov (United States)

    Nygârd, Kim; Sarman, Sten; Hyltegren, Kristin; Chodankar, Shirish; Perret, Edith; Buitenhuis, Johan; van der Veen, J. Friso; Kjellander, Roland

    2016-01-01

    Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  8. Density functional approximation for van der Waals fluids: based on hard sphere density functional approximation

    Institute of Scientific and Technical Information of China (English)

    Zhou Shi-Qi

    2007-01-01

    A universal theoretical approach is proposed which enables all hard sphere density functional approximations(DFAs) applicable to van der Waals fluids. The resultant DFA obtained by combining the universal theoretical approach with any hard sphere DFAs only needs as input a second-order direct correlation function (DCF) of a coexistence bulk fluid, and is applicable in both supercritical and subcritical temperature regions. The associated effective hard sphere density can be specified by a hard wall sum rule. It is indicated that the value of the effective hard sphere density so determined can be universal, i.e. can be applied to any external potentials different from the single hard wall. As an illustrating example, the universal theoretical approach is combined with a hard sphere bridge DFA to predict the density profile of a hard core attractive Yukawa model fluid influenced by diverse external fields; agreement between the present formalism's predictions and the corresponding simulation data is good or at least comparable to several previous DFT approaches. The primary advantage of the present theoretical approach combined with other hard sphere DFAs is discussed.

  9. Density functional for ternary non-additive hard sphere mixtures.

    Science.gov (United States)

    Schmidt, Matthias

    2011-10-19

    Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. © 2011 IOP Publishing Ltd

  10. The isometric extension problem in the unit spheres of lp(

    Institute of Scientific and Technical Information of China (English)

    DING; Guanggui(

    2003-01-01

    [1]Tingley, D., Isometries of the unit sphere, Geometriae Dedicata, 1987, 22: 371-378.[2]Ding Guanggui, On the extension of isometries between unit spheres of E and C(Ω), Acta Math. Sinica, New Series, to appear.[3]Ding Guanggui, The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Science in China, Ser. A, 2002, 45(4): 479-483.[4]Mayer-Nieberg, P., Banach Lattices, Berlin-Heildelberg-NewYork: Springer-Verlag, 1991.[5]Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces Ⅱ, Berlin-Heildelberg-NewYork: Springer-Verlag, 1979.[6]Banach, S., Theoriě des Operations Liněaires, Warszawa: Monografje Matematyczne, 1932.[7]Day, M. M., Normed Linear Spaces, Berlin-Heildelberg-NewYork: Springer-Verlag, 1973.

  11. Rationally convex sets on the unit sphere in ℂ2

    Science.gov (United States)

    Wermer, John

    2008-04-01

    Let X be a rationally convex compact subset of the unit sphere S in ℂ2, of three-dimensional measure zero. Denote by R( X) the uniform closure on X of the space of functions P/ Q, where P and Q are polynomials and Q≠0 on X. When does R( X)= C( X)? Our work makes use of the kernel function for the bar{δ}b operator on S, introduced by Henkin in [5] and builds on results obtained in Anderson Izzo Wermer [3]. We define a real-valued function ɛ X on the open unit ball int B, with ɛ X ( z, w) tending to 0 as ( z, w) tends to X. We give a growth condition on ɛ X ( z, w) as ( z, w) approaches X, and show that this condition is sufficient for R( X)= C( X) (Theorem 1.1). In Section 4, we consider a class of sets X which are limits of a family of Levi-flat hypersurfaces in int B. For each compact set Y in ℂ2, we denote the rationally convex hull of Y by widehat{Y}. A general reference is Rudin [8] or Aleksandrov [1].

  12. The isometric extension of “into” mappings on unit spheres of AL-spaces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we show that if V0 is an isometric mapping from the unit sphere of an AL-space onto the unit sphere of a Banach space E, then V0 can be extended to a linear isometry defined on the whole space.

  13. Density Functional Theory Approach for Charged Hard Sphere Fluids Confined in Spherical Micro-Cavity

    Institute of Scientific and Technical Information of China (English)

    KANG Yan-Shuang; WANG Hai-Jun

    2009-01-01

    Within the framework of the density functional theory for classical fluids,the equilibrium density profiles of charged hard sphere fluid confined in micro-cavity are studied by means of the modified fundamental measure theory.The dimension of micro-cavity,the charge of hard sphere and the applied electric field are found to have significant effects on the density profiles.In particular,it is shown that Coulomb interaction,excluded volume interaction and applied electric Geld play the central role in controlling the aggregated structure of the system.

  14. The influence of third-order interactions on the density profile of associating hard spheres

    Science.gov (United States)

    Henderson, D.; Sokolowski, S.; Zagorski, R.; Trokhymchuk, A.

    Canonical ensemble Monte Carlo simulations and the non-uniform Percus-Yevick (NPY) equation for the local density are used to study the influence of surface mediated thirdorder interactions on the adsorption of associating hard spheres on a hard wall. A comparison of the NPY density profiles with the computer simulations data indicates that this approximation predicts the fluid structure reasonably well.

  15. Monodisperse TiO2 Spheres with High Charge Density and Their Self-Assembly.

    Science.gov (United States)

    Xia, Hongbo; Wu, Suli; Su, Xin; Zhang, Shufen

    2017-01-03

    Titanium dioxide (TiO2 ) spheres are potential candidates to fabricate three-dimensional (3D) photonic crystals owing to their high refractive index and low absorption in the visible and near-infrared regions. Here, TiO2 spheres with both high surface charge density and uniform size, which are necessary for the self-assembly of TiO2 spheres, have been prepared by means of sol-gel methods in ethanol in the presence of thioglycolic acid as ligand. Thioglycolic acid, which contains two functional groups, not only acts as coordinating ligand for stabilizing and controlling the growth of TiO2 spheres but also endows the resulting TiO2 spheres with high charge density as based on ζ-potential analysis when the pH of the TiO2 aqueous dispersion was 6.5 or higher. The SEM images illustrate that the diameter of the prepared TiO2 spheres can be tuned from 100 to 300 nm by simply controlling the concentration of H2 O. FTIR spectra confirm that thioglycolic acid bonded to the surface of TiO2 spheres through carboxylic groups. As anticipated, the obtained TiO2 spheres could self-assemble to form a 3D opal photonic crystal structure by means of a simple gravity sedimentation method. Then the TiO2 spheres in the 3D opal photonic crystal structure were able to transform into a pure anatase phase by annealing at different temperatures.

  16. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations

    Science.gov (United States)

    Klatt, Michael A.; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  17. Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D., E-mail: daniel.ramirez@ucv.c [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Lincot, D. [Institute de Recherche et Developpement sur l' Energie Photovoltaique-IRDEP, 6 Quai Watier 78401, Chatou Cedex (France)

    2010-02-15

    In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (N{sub NR}) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.

  18. EXTENSION OF ISOMETRIES BETWEEN THE UNIT SPHERES OF COMPLEX lp(Γ)(p>1) SPACES

    Institute of Scientific and Technical Information of China (English)

    Jijin YI; Ruidong WANG; Xiaoxiao WANG

    2014-01-01

    In this paper, we study the extension of isometries between the unit spheres of complex Banach spaces lp(Γ) and lp(∆)(p > 1). We first derive the representation of isometries between the unit spheres of complex Banach spaces lp(Γ) and lp(∆). Then we arrive at a conclusion that any surjective isometry between the unit spheres of complex Banach spaces lp(Γ)and lp(∆) can be extended to be a linear isometry on the whole space.

  19. Jammed lattice sphere packings

    OpenAIRE

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-01-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...

  20. Equilibrium Properties of Hard Sphere Fluid in Confined Geometries: a Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    李卫华; 诸蔚朝; 马红孺

    2003-01-01

    One component hard-sphere fluid confined in two planar hard walls is studied by means of density functional theory with Rosenfeld functional and molecular dynamics simulation. The validity of the Rosenfeld functional is examined. Chemical potential, grand potential and free energy as functions of the wall separation are obtained.

  1. Extension of isometries on the unit sphere of l~p (Γ) space

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we obtain that every isometry from the unit sphere S(l p (Γ)) of l p (Γ) (1 < p < ∞,p≠2) onto the unit sphere S(E) of a Banach space E can be extended to be a (real) linear isometry of l p (Γ) onto E,so,we give an affirmative answer to the corresponding Tingley’s problem.

  2. Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training

    Science.gov (United States)

    2016-03-01

    the Army’s foundation. Specifically, the Army’s strong organizational context provides the rules, task definitions , information, and resources needed...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Theory: Using Spheres of Influence to Support Small-unit Climate and Training 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  3. Hard spheres at a planar hard wall: Simulations and density functional theory

    Directory of Open Access Journals (Sweden)

    R.L. Davidchack

    2016-03-01

    Full Text Available Hard spheres are a central and important model reference system for both homogeneous and inhomogeneous fluid systems. In this paper we present new high-precision molecular-dynamics computer simulations for a hard sphere fluid at a planar hard wall. For this system we present benchmark data for the density profile ρ(z at various bulk densities, the wall surface free energy γ, the excess adsorption Γ, and the excess volume v_{ex}, which is closely related to Γ. We compare all benchmark quantities with predictions from state-of-the-art classical density functional theory calculations within the framework of fundamental measure theory. While we find overall good agreement between computer simulations and theory, significant deviations appear at sufficiently high bulk densities.

  4. Thermodynamic Properties of Hard-Sphere Fluid under Confined Condition Based on Bridge Density Function

    Institute of Scientific and Technical Information of China (English)

    周世琦

    2003-01-01

    Based on the functional integral procedure, a recently proposed bridge density function [J. Chem. Phys. 112 (2000) 8079] is developed to calculate global thermodynamic properties of non-uniform fluids. The resulting surface tension of a hard wall-hard sphere interface as a function of the bulk hard sphere fluid density is in good agreement with the available simulation data. The proposed numerical procedure from the approximation of non-uniform first=order direct correlation function to a non=uniform system with excess Helmholtz free energy is of fundamental importance for phase behaviour under the confined condition due to the fact that many available simple approximations in classical density functional theory are for non=uniform first=order direct correlation function.

  5. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities.

    Science.gov (United States)

    Hopkins, Adam B; Stillinger, Frank H; Torquato, Salvatore

    2013-08-01

    Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤φ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and explicit construction of binary packings

  6. Density functional theory for colloidal mixtures of hard platelets, rods, and spheres.

    Science.gov (United States)

    Esztermann, Ansgar; Reich, Hendrik; Schmidt, Matthias

    2006-01-01

    A geometry-based density-functional theory is presented for mixtures of hard spheres, hard needles, and hard platelets; both the needles and platelets are taken to be of vanishing thickness. Geometrical weight functions that are characteristic for each species are given, and it is shown how convolutions of pairs of weight functions recover each Mayer bond of the ternary mixture and hence ensure the correct second virial expansion of the excess free-energy functional. The case of sphere-platelet overlap relies on the same approximation as does Rosenfeld's functional for strictly two-dimensional hard disks. We explicitly control contributions to the excess free energy that are of third order in density. Analytic expressions relevant for the application of the theory to states with planar translational and cylindrical rotational symmetry--e.g., to describe behavior at planar smooth walls--are given. For binary sphere-platelet mixtures, in the appropriate limit of small platelet densities, the theory differs from that used in a recent treatment [L. Harnau and S. Dietrich, Phys. Rev. E 71, 011504 (2004)]. As a test case of our approach we consider the isotropic-nematic bulk transition of pure hard platelets, which we find to be weakly first order, with values for the coexistence densities and the nematic order parameter that compare well with simulation results.

  7. An ancient relation between units of length and volume based on a sphere.

    Directory of Open Access Journals (Sweden)

    Elena Zapassky

    Full Text Available The modern metric system defines units of volume based on the cube. We propose that the ancient Egyptian system of measuring capacity employed a similar concept, but used the sphere instead. When considered in ancient Egyptian units, the volume of a sphere, whose circumference is one royal cubit, equals half a hekat. Using the measurements of large sets of ancient containers as a database, the article demonstrates that this formula was characteristic of Egyptian and Egyptian-related pottery vessels but not of the ceramics of Mesopotamia, which had a different system of measuring length and volume units.

  8. Radial distribution function of penetrable sphere fluids to the second order in density.

    Science.gov (United States)

    Santos, Andrés; Malijevský, Alexandr

    2007-02-01

    The simplest bounded potential is that of penetrable spheres, which takes a positive finite value epsilon if the two spheres are overlapped, being zero otherwise. In this paper we derive the cavity function to second order in density and the fourth virial coefficient as functions of T* identical with k(B)T/epsilon (where k(B is the Boltzmann constant and T is the temperature) for penetrable sphere fluids. The expressions are exact, except for the function represented by an elementary diagram inside the core, which is approximated by a polynomial form in excellent agreement with accurate results obtained by Monte Carlo integration. Comparison with the hypernetted-chain (HNC) and Percus-Yevick (PY) theories shows that the latter is better than the former for T* hard sphere limit), the PY solution is not accurate inside the overlapping region, where no practical cancellation of the neglected diagrams takes place. The exact fourth virial coefficient is positive for T* compressibility route is the best one for T* or similar to 0.7.

  9. Monte Carlo Simulations of Density Profiles for Hard-Sphere Chain Fluids Confined Between Surfaces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using extended continuum configurational-bias (ECCB) method. It is shown that the enrichment of beads near surfaces is happened at high densities due to the bulk packing effect, on the contrary, the depletion is revealed at low densities owing to the configurational entropic contribution. Comparisons with those calculated by density functional theory presented by Cai et al. indicate that the agreement between simulations and predictions is good. Compressibility factors of bulk HSCFs calculated using volume fractions at surfaces were also used to test the reliability of various equations of state of HSCFs by different authors.

  10. Uniform electron gases: III. Low-density gases on three-dimensional spheres

    CERN Document Server

    Agboola, Davids; Gill, Peter M W; Loos, Pierre-François

    2015-01-01

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e.~the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems, and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e. the minimum-energy arrangement of $n$ point charges) on the 3-sphere for various values of $n$. We have found 11 special values of $n$ whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids ...

  11. Uniform electron gases. III. Low-density gases on three-dimensional spheres

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au; Loos, Pierre-François, E-mail: pf.loos@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

  12. Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere.

    Science.gov (United States)

    Meyer, Gunnar; Klein, Adrian; Mogdans, Joachim; Bleckmann, Horst

    2012-09-01

    We recorded the responses of lateral line units in the midbrain torus semicircularis of goldfish, Carassius auratus, to a 50-Hz vibrating sphere and determined the unit's spatial receptive fields for various distances between fish and sphere and for different directions of sphere vibration. All but one unit responded to the vibrating sphere with an increase in discharge rate. Only a proportion (25%) of the units exhibited phase-locked responses. Receptive fields were narrow or broad and contained one, two or more areas of increased discharge rate. The data show that the receptive fields of toral lateral line units are in many respects similar to those of brainstem units but differ from those of afferent nerve fibres. The responses of primary afferents represent the pressure gradient pattern generated by a vibrating sphere and provide information about sphere location and vibration direction. Across the array of lateral line neuromasts, the fish brain in principle can derive this information. Nevertheless, toral units tuned to a distinct sphere location or sensitive to a distinct sphere vibration direction were not found. Therefore, it is conceivable that the torus semicircularis uses a population code to determine spatial location and vibration direction of a vibrating sphere.

  13. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  14. Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres

    Science.gov (United States)

    Uhlemann, C.; Codis, S.; Kim, J.; Pichon, C.; Bernardeau, F.; Pogosyan, D.; Park, C.; L'Huillier, B.

    2017-04-01

    We present simple parameter-free analytic bias functions for the two-point correlation of densities in spheres at large separation. These bias functions generalize the so-called Kaiser bias to the mildly non-linear regime for arbitrary density contrasts and grow as b(ρ) - b(1) ∝ (1 - ρ-13/21)ρ1 + n/3 with b(1) = -4/21 - n/3 for a power-law initial spectrum with index n. We carry out the derivation in the context of large-deviation statistics while relying on the spherical collapse model. We use a logarithmic transformation that provides a saddle-point approximation that is valid for the whole range of densities and show its accuracy against the 30 Gpc cube state-of-the-art Horizon Run 4 simulation. Special configurations of two concentric spheres that allow us to identify peaks are employed to obtain the conditional bias and a proxy for the BBKS extremum correlation functions. These analytic bias functions should be used jointly with extended perturbation theory to predict two-point clustering statistics as they capture the non-linear regime of structure formation at the per cent level down to scales of about 10 Mpc h-1 at redshift 0. Conversely, the joint statistics also provide us with optimal dark matter two-point correlation estimates that can be applied either universally to all spheres or to a restricted set of biased (over- or underdense) pairs. Based on a simple fiducial survey, we show that the variance of this estimator is reduced by five times relative to the traditional sample estimator for the two-point function. Extracting more information from correlations of different types of objects should prove essential in the context of upcoming surveys like Euclid, DESI and WFIRST.

  15. Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres

    CERN Document Server

    Uhlemann, C; Kim, J; Pichon, C; Bernardeau, F; Pogosyan, D; Park, C; L'Huillier, B

    2016-01-01

    Simple parameter-free analytic bias functions for the two-point correlation of densities in spheres at large separation are presented. These bias functions generalize the so-called Kaiser bias to the mildly non-linear regime for arbitrary density contrasts. The derivation is carried out in the context of large deviation statistics while relying on the spherical collapse model. A logarithmic transformation provides a saddle approximation which is valid for the whole range of densities and shown to be accurate against the 30 Gpc cube state-of-the-art Horizon Run 4 simulation. Special configurations of two concentric spheres that allow to identify peaks are employed to obtain the conditional bias and a proxy to BBKS extrema correlation functions. These analytic bias functions should be used jointly with extended perturbation theory to predict two-point clustering statistics as they capture the non-linear regime of structure formation at the percent level down to scales of about 10 Mpc/h at redshift 0. Conversely...

  16. Fundamental measure density functional theory study of hard spheres solid-liquid interface

    Science.gov (United States)

    Warshavsky, Vadim

    2005-03-01

    Interfacial free energy is an important characteristic of solid-liquid interface as it is one of the crucial parameters in many formula of interface thermodynamics such the nucleation theory. Previously different aspects of crystal-melt interfaces were intensively studied with simulations [1,2,3], but theoretical studies with Density Functional Theories (DFT) are inconclusive [4,5]. In this report the structure of hard spheres fcc crystal-melt interfaces and the anisotropy of the interfacial free energies are studied using the Rosenfeld's Fundamental Measure DFT as such a functional leads to reliable coexistence results not only for the hard sphere system but also for the Lennard-Jones systems [6]. The parameters of interfacial density profile were calculated by a proper minimization procedure. For the equilibrium density profile the interfacial free energies were compared with simulation results. 1. R.L.Davidchak and B.B.Laird, Phys.Rev.Lett., 85, 4751(2000). 2. J.J. Hoyt, M. Asta and A. Karma, Phys.Rev.Lett., 86, 5530 (2001). 3. J.R.Morris and X.Song, J.Chem.Phys., 119, 3920 (2003). 4. W.A.Curtin, Phys.Rev.B, 39, 6775(1989). 5. R.Ohnesorge, H.Lowen, and H.Wagner, Phys.Rev.E, 50, 4801 (1994). 6. V.Warshavsky and X.Song, Phys.Rev.E, 69, 061113 (2004).

  17. Rescaled density expansions and demixing in hard-sphere binary mixtures.

    Science.gov (United States)

    López de Haro, M; Tejero, C F

    2004-10-08

    The demixing transition of a binary fluid mixture of additive hard spheres is analyzed for different size asymmetries by starting from the exact low-density expansion of the pressure. Already within the second virial approximation the fluid separates into two phases of different composition with a lower consolute critical point. By successively incorporating the third, fourth, and fifth virial coefficients, the critical consolute point moves to higher values of the pressure and to lower values of the partial number fraction of the large spheres. When the exact low-density expansion of the pressure is rescaled to higher densities as in the Percus-Yevick theory, by adding more exact virial coefficients a different qualitative movement of the critical consolute point in the phase diagram is found. It is argued that the Percus-Yevick factor appearing in many empirical equations of state for the mixture has a deep influence on the location of the critical consolute point, so that the resulting phase diagram for a prescribed equation has to be taken with caution.

  18. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    Science.gov (United States)

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus.

  19. A model for the postcollapse equilibrium of cosmological structure truncated isothermal spheres from top-hat density perturbations

    CERN Document Server

    Shapiro, P R; Raga, A C; Shapiro, Paul R.; Iliev, Ilian; Raga, Alejandro C.

    1998-01-01

    The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the nonlinear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological ``top-hat'' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the postcollapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, nonsingular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singu...

  20. Shells of charge: a density functional theory for charged hard spheres.

    Science.gov (United States)

    Roth, Roland; Gillespie, Dirk

    2016-06-22

    A functional for the electrostatic excess free-energy for charged, hard sphere fluids is proposed. The functional is derived from two complementary, but equivalent, interpretations of the mean spherical approximation (MSA). The first combines fundamental measure theory (FMT) from hard-core interactions with the idea that MSA can be interpreted in terms of the interaction spherical shells of charge. This formulation gives the free-energy density as a function of weighted densities. When all the ions have the same size, the functional adopts an FMT-like form. The second in effect 'functionalizes' the derivation of MSA; that is, it generalizes the MSA as a functional-based version of MSA (fMSA). This formulation defines the free-energy density as a function of a position-dependent MSA screening parameter and the weighted densities of the FMT approach. This FMT/fMSA functional is shown to give accurate density profiles, as compared to Monte Carlo simulations, under a wide range of ion concentrations, size asymmetries, and valences.

  1. Shells of charge: a density functional theory for charged hard spheres

    Science.gov (United States)

    Roth, Roland; Gillespie, Dirk

    2016-06-01

    A functional for the electrostatic excess free-energy for charged, hard sphere fluids is proposed. The functional is derived from two complementary, but equivalent, interpretations of the mean spherical approximation (MSA). The first combines fundamental measure theory (FMT) from hard-core interactions with the idea that MSA can be interpreted in terms of the interaction spherical shells of charge. This formulation gives the free-energy density as a function of weighted densities. When all the ions have the same size, the functional adopts an FMT-like form. The second in effect ‘functionalizes’ the derivation of MSA; that is, it generalizes the MSA as a functional-based version of MSA (fMSA). This formulation defines the free-energy density as a function of a position-dependent MSA screening parameter and the weighted densities of the FMT approach. This FMT/fMSA functional is shown to give accurate density profiles, as compared to Monte Carlo simulations, under a wide range of ion concentrations, size asymmetries, and valences.

  2. Jammed lattice sphere packings.

    Science.gov (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  3. Jammed lattice sphere packings

    Science.gov (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  4. Midpoint sets contained in the unit sphere of a normed space

    CERN Document Server

    Swanepoel, Konrad J

    2010-01-01

    The midpoint set M(S) of a set S of points is the set of all midpoints of pairs of points in S. We study the largest cardinality of a midpoint set M(S) in a finite-dimensional normed space, such that M(S) is contained in the unit sphere, and S is outside the closed unit ball. We show in three dimensions that this maximum (if it exists) is determined by the facial structure of the unit ball. In higher dimensions no such relationship exists. We also determine the maximum for euclidean and sup norm spaces.

  5. Communication: Dynamical density functional theory for dense suspensions of colloidal hard spheres.

    Science.gov (United States)

    Stopper, Daniel; Roth, Roland; Hansen-Goos, Hendrik

    2015-11-14

    We study structural relaxation of colloidal hard spheres undergoing Brownian motion using dynamical density functional theory. Contrary to the partial linearization route [D. Stopper et al., Phys. Rev. E 92, 022151 (2015)] which amounts to using different free energy functionals for the self and distinct part of the van Hove function G(r, t), we put forward a unified description employing a single functional for both components. To this end, interactions within the self part are removed via the zero-dimensional limit of the functional with a quenched self component. In addition, we make use of a theoretical result for the long-time mobility in hard-sphere suspensions, which we adapt to the inhomogeneous fluid. Our results for G(r, t) are in excellent agreement with numerical simulations even in the dense liquid phase. In particular, our theory accurately yields the crossover from free diffusion at short times to the slower long-time diffusion in a crowded environment.

  6. Gap Phenomenon of an Abstract Willmore Type Functional of Hypersurface in Unit Sphere

    Directory of Open Access Journals (Sweden)

    Yanqi Zhu

    2014-01-01

    Full Text Available For an n-dimensional hypersurface in unit sphere, we introduce an abstract Willmore type called Wn,F-Willmore functional, which generalizes the well-known classic Willmore functional. Its critical point is called the Wn,F-Willmore hypersurface, for which the variational equation and Simons’ type integral equalities are obtained. Moreover, we construct a few examples of Wn,F-Willmore hypersurface and give a gap phenomenon characterization by use of our integral formula.

  7. Arbitrary quadratures determination of the monoenergetic neutron density in an homogeneous finite sphere with isotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density

  8. Quasi-Monte Carlo rules for numerical integration over the unit sphere $\\mathbb{S}^2$

    CERN Document Server

    Brauchart, Johann S

    2011-01-01

    We study numerical integration on the unit sphere $\\mathbb{S}^2 \\subset \\mathbb{R}^3$ using equal weight quadrature rules, where the weights are such that constant functions are integrated exactly. The quadrature points are constructed by lifting a $(0,m,2)$-net given in the unit square $[0,1]^2$ to the sphere $\\mathbb{S}^2$ by means of an area preserving map. A similar approach has previously been suggested by Cui and Freeden [SIAM J. Sci. Comput. 18 (1997), no. 2]. We prove three results. The first one is that the construction is (almost) optimal with respect to discrepancies based on spherical rectangles. Further we prove that the point set is asymptotically uniformly distributed on $\\mathbb{S}^2$. And finally, we prove an upper bound on the spherical cap $L_2$-discrepancy of order $N^{-1/2} (\\log N)^{1/2}$ (where $N$ denotes the number of points). Numerical results suggest that the $(0,m,2)$-nets lifted to the sphere $\\mathbb{S}^2$ have spherical cap $L_2$-discrepancy converging with the optimal order of ...

  9. Combined temperature and density series for fluid-phase properties. I. Square-well spheres

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J. Richard [Chemical and Biomolecular Engineering Department, The University of Akron, Akron, Ohio 44325-3906 (United States); Schultz, Andrew J.; Kofke, David A. [Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200 (United States)

    2015-09-21

    Cluster integrals are evaluated for the coefficients of the combined temperature- and density-expansion of pressure: Z = 1 + B{sub 2}(β) η + B{sub 3}(β) η{sup 2} + B{sub 4}(β) η{sup 3} + ⋯, where Z is the compressibility factor, η is the packing fraction, and the B{sub i}(β) coefficients are expanded as a power series in reciprocal temperature, β, about β = 0. The methodology is demonstrated for square-well spheres with λ = [1.2-2.0], where λ is the well diameter relative to the hard core. For this model, the B{sub i} coefficients can be expressed in closed form as a function of β, and we develop appropriate expressions for i = 2-6; these expressions facilitate derivation of the coefficients of the β series. Expanding the B{sub i} coefficients in β provides a correspondence between the power series in density (typically called the virial series) and the power series in β (typically called thermodynamic perturbation theory, TPT). The coefficients of the β series result in expressions for the Helmholtz energy that can be compared to recent computations of TPT coefficients to fourth order in β. These comparisons show good agreement at first order in β, suggesting that the virial series converges for this term. Discrepancies for higher-order terms suggest that convergence of the density series depends on the order in β. With selection of an appropriate approximant, the treatment of Helmholtz energy that is second order in β appears to be stable and convergent at least to the critical density, but higher-order coefficients are needed to determine how far this behavior extends into the liquid.

  10. Combined temperature and density series for fluid-phase properties. I. Square-well spheres

    Science.gov (United States)

    Elliott, J. Richard; Schultz, Andrew J.; Kofke, David A.

    2015-09-01

    Cluster integrals are evaluated for the coefficients of the combined temperature- and density-expansion of pressure: Z = 1 + B2(β) η + B3(β) η2 + B4(β) η3 + ⋯, where Z is the compressibility factor, η is the packing fraction, and the Bi(β) coefficients are expanded as a power series in reciprocal temperature, β, about β = 0. The methodology is demonstrated for square-well spheres with λ = [1.2-2.0], where λ is the well diameter relative to the hard core. For this model, the Bi coefficients can be expressed in closed form as a function of β, and we develop appropriate expressions for i = 2-6; these expressions facilitate derivation of the coefficients of the β series. Expanding the Bi coefficients in β provides a correspondence between the power series in density (typically called the virial series) and the power series in β (typically called thermodynamic perturbation theory, TPT). The coefficients of the β series result in expressions for the Helmholtz energy that can be compared to recent computations of TPT coefficients to fourth order in β. These comparisons show good agreement at first order in β, suggesting that the virial series converges for this term. Discrepancies for higher-order terms suggest that convergence of the density series depends on the order in β. With selection of an appropriate approximant, the treatment of Helmholtz energy that is second order in β appears to be stable and convergent at least to the critical density, but higher-order coefficients are needed to determine how far this behavior extends into the liquid.

  11. Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials

    Science.gov (United States)

    Nemeth, Noel, N.

    2013-01-01

    Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.

  12. A class of singular integrals on the n -complex unit sphere

    Institute of Scientific and Technical Information of China (English)

    Michael; Cowling; 钱涛

    1999-01-01

    The operators on the n-complex unit sphere under study have three forms: the singular integrals with holomorphic kernels, the bounded and holomorphic Fourier multipliers, and the Cauchy-Dunford bounded and holomorphic functional calculus of the radial Dirac operator. The equivalence between the three forms and the strong-type (p, p), 1

  13. A model for the post-collapse equilibrium of cosmological structure: truncated isothermal spheres from top-hat density perturbations

    Science.gov (United States)

    Shapiro, Paul R.; Iliev, Ilian T.; Raga, Alejandro C.

    1999-07-01

    The post-collapse structure of objects that form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the non-linear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological `top-hat' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the post-collapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, non-singular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singular isothermal sphere approximations for the post-collapse objects. The virial temperature that results is more than twice the previously used `standard value' of the post-collapse uniform sphere approximation, but 1.4 times smaller than that of the singular, truncated isothermal sphere approximation. The truncation radius is 0.554 times the radius of the top-hat at maximum expansion, and the ratio of the truncation radius to the core radius is 29.4, yielding a central density that is 514 times greater than at the surface and 1.8x10^4 times greater than that of the unperturbed background density at the epoch of infinite collapse predicted by the top-hat solution. For the top-hat fractional overdensity delta_L predicted by extrapolating the linear solution into the non-linear regime, the standard top-hat model assumes that virialization is instantaneous at delta_Ldelta_c=1.686 i.e. the epoch at which the non-linear top-hat reaches infinite density. The surface

  14. A model for the postcollapse equilibrium of cosmological structure: truncated isothermal spheres from top-hat density perturbations

    Science.gov (United States)

    Iliev, I. T.; Shapiro, P. R.; Raga, A. C.

    1998-12-01

    The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the nonlinear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological ``top-hat'' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the postcollapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, nonsingular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singular isothermal sphere approximations for the postcollapse objects. These results will have a significant effect on a wide range of applications of the Press-Schechter and other semi-analytical models to cosmology. The truncated isothermal sphere solution presented here predicts the virial temperature and integrated mass distribution of the X-ray clusters formed in the CDM model as found by detailed, 3D, numerical gas and N-body dynamical simulations remarkably well. This solution allows us to derive analytically the numerically-calibrated mass-temperature and radius-temperature scaling laws for X-ray clusters which were derived empirically by Evrard, Metzler and Navarro from simulation results for the CDM model.

  15. Kernel density estimation using graphical processing unit

    Science.gov (United States)

    Sunarko, Su'ud, Zaki

    2015-09-01

    Kernel density estimation for particles distributed over a 2-dimensional space is calculated using a single graphical processing unit (GTX 660Ti GPU) and CUDA-C language. Parallel calculations are done for particles having bivariate normal distribution and by assigning calculations for equally-spaced node points to each scalar processor in the GPU. The number of particles, blocks and threads are varied to identify favorable configuration. Comparisons are obtained by performing the same calculation using 1, 2 and 4 processors on a 3.0 GHz CPU using MPICH 2.0 routines. Speedups attained with the GPU are in the range of 88 to 349 times compared the multiprocessor CPU. Blocks of 128 threads are found to be the optimum configuration for this case.

  16. Two is better than one: joint statistics of density and velocity in concentric spheres as a cosmological probe

    CERN Document Server

    Uhlemann, Cora; Hahn, Oliver; Pichon, Christophe; Bernardeau, Francis

    2016-01-01

    The analytical formalism to obtain the probability distribution functions (PDFs) of spherically-averaged cosmic densities and velocity divergences in the mildly non-linear regime is presented. A large-deviation principle is applied to those cosmic fields assuming their most likely dynamics in spheres is set by the spherical collapse model. We validate our analytical results using state-of-the-art dark matter simulations with a phase-space resolved velocity field finding a 2% percent level agreement for a wide range of velocity divergences and densities in the mildly nonlinear regime (~10Mpc/h at redshift zero), usually inaccessible to perturbation theory. From the joint PDF of densities and velocity divergences measured in two concentric spheres, we extract with the same accuracy velocity profiles and conditional velocity PDF subject to a given over/under-density which are of interest to understand the non-linear evolution of velocity flows. Both PDFs are used to build a simple but accurate maximum likelihood...

  17. Investigation of Fluid-Fluid and Solid-Solid Phase Separation of Symmetric Nonadditive Hard Spheres at High Density.

    Science.gov (United States)

    Góźdź, W T

    2017-08-30

    We have calculated the values of the critical packing fractions for the mixtures of symmetric nonadditive hard spheres at high densities for small values of the nonadditivity parameter. Calculations have been performed for solid-solid and fluid-fluid demixing transitions. A cluster algorithm for Monte Carlo simulations in a semigrand ensemble was used, and the waste recycling method was applied to improve the accuracy of the calculations. The finite size scaling analysis was employed to compute the critical packing fractions for infinite systems with high accuracy.

  18. Two is better than one: joint statistics of density and velocity in concentric spheres as a cosmological probe

    Science.gov (United States)

    Uhlemann, C.; Codis, S.; Hahn, O.; Pichon, C.; Bernardeau, F.

    2017-08-01

    The analytical formalism to obtain the probability distribution functions (PDFs) of spherically averaged cosmic densities and velocity divergences in the mildly non-linear regime is presented. A large-deviation principle is applied to those cosmic fields assuming their most likely dynamics in spheres is set by the spherical collapse model. We validate our analytical results using state-of-the-art dark matter simulations with a phase-space resolved velocity field finding a 2 per cent level agreement for a wide range of velocity divergences and densities in the mildly non-linear regime (∼10 Mpc h-1 at redshift zero), usually inaccessible to perturbation theory. From the joint PDF of densities and velocity divergences measured in two concentric spheres, we extract with the same accuracy velocity profiles and conditional velocity PDF subject to a given over/underdensity that are of interest to understand the non-linear evolution of velocity flows. Both PDFs are used to build a simple but accurate maximum likelihood estimator for the redshift evolution of the variance of both the density and velocity divergence fields, which have smaller relative errors than their sample variances when non-linearities appear. Given the dependence of the velocity divergence on the growth rate, there is a significant gain in using the full knowledge of both PDFs to derive constraints on the equation of state-of-dark energy. Thanks to the insensitivity of the velocity divergence to bias, its PDF can be used to obtain unbiased constraints on the growth of structures (σ8, f) or it can be combined with the galaxy density PDF to extract bias parameters.

  19. Novel negative mass density resonant metamaterial unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Cselyuszka, Norbert, E-mail: cselyu@yahoo.com; Sečujski, Milan, E-mail: secujski@uns.ac.rs; Crnojević-Bengin, Vesna, E-mail: bengin@uns.ac.rs

    2015-01-02

    In this paper a novel resonant unit cell of one-dimensional acoustic metamaterials is presented, which exhibits negative effective mass density. We theoretically analyze the unit cell and develop a closed analytical formula for its effective mass density. Then we proceed to demonstrate left-handed propagation of acoustic waves using the proposed unit cell. Finally, we present its dual-band version, capable of operating at two independent frequencies. - Highlights: • A novel acoustic metamaterial unit cell provides Lorentz-type resonant effective mass density. • Analytical formula for effective mass density is derived. • Acoustic bandstop medium and left-handed metamaterial based on the novel unit cell are presented. • Modified version of the unit cell, operating at two independent frequencies, is proposed.

  20. Encircling the dark: constraining dark energy via cosmic density in spheres

    CERN Document Server

    Codis, S; Bernardeau, F; Uhlemann, C; Prunet, S

    2016-01-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few percent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical collapse dynamics is made available online so as to provide straightforward means of testing the effect of alternative dark energy models and initial power-spectra on the low-redshift matter distribution.

  1. The management in the sphere of physical culture and sport at the level of administrative and territorial units: traditions and innovations

    Directory of Open Access Journals (Sweden)

    Viktor Savchenko

    2016-02-01

    Full Text Available Purpose: to analyze the activity of subjects of management in the sphere of physical culture and sport at the level of territorial administrative units. Material & Methods: the legal analysis of a feature of management in the sphere of physical culture and sport of administrative and territorial units of the various level. Results: the main activities of administrative structures of the governmental authorities and the local governments are allocated. Conclusions: it is revealed that the sphere of physical culture and sport needs the improvement in the conditions of decentralization, offers on its reforming are considered.

  2. Quasisymmetric Spheres

    Directory of Open Access Journals (Sweden)

    Vellis Vyron

    2016-03-01

    Full Text Available Let Ω be a planar Jordan domain and α > 0. We consider double-dome-like surfaces Σ(Ω, tα over Ω where the height of the surface over any point x ∈ Ωequals dist(x, ∂Ωα. We identify the necessary and sufficient conditions in terms of and α so that these surfaces are quasisymmetric to S2 and we show that Σ(Ω, tα is quasisymmetric to the unit sphere S2 if and only if it is linearly locally connected and Ahlfors 2-regular.

  3. A relation between the right triangle and circular tori with constant mean curvature in the unit 3-sphere

    Directory of Open Access Journals (Sweden)

    Abdênago Barros

    2004-12-01

    Full Text Available In this note we will show that the inverse image under the stereographic projection of a circular torus of revolution in the 3-dimensional euclidean space has constant mean curvature in the unit 3-sphere if and only if their radii are the catet and the hypotenuse of an appropriate right triangle.Neste artigo mostraremos que a imagem inversa pela projeção estereográfica de um toro circular de revolução no espaço euclidiano de dimensão 3 tem curvatura média constante se e somente se os seus raios são o cateto e a hipotenusa de um triângulo retângulo apropriado.

  4. Urinary density measurement and analysis methods in neonatal unit care

    Directory of Open Access Journals (Sweden)

    Maria Vera Lúcia Moreira Leitão Cardoso

    2013-09-01

    Full Text Available The objective was to assess urine collection methods through cotton in contact with genitalia and urinary collector to measure urinary density in newborns. This is a quantitative intervention study carried out in a neonatal unit of Fortaleza-CE, Brazil, in 2010. The sample consisted of 61 newborns randomly chosen to compose the study group. Most neonates were full term (31/50.8% males (33/54%. Data on urinary density measurement through the methods of cotton and collector presented statistically significant differences (p<0.05. The analysis of interquartile ranges between subgroups resulted in statistical differences between urinary collector/reagent strip (1005 and cotton/reagent strip (1010, however there was no difference between urinary collector/ refractometer (1008 and cotton/ refractometer. Therefore, further research should be conducted with larger sampling using methods investigated in this study and whenever possible, comparing urine density values to laboratory tests.

  5. Density functional theory of liquid crystals and surface anchoring: hard Gaussian overlap-sphere and hard Gaussian overlap-surface potentials.

    Science.gov (United States)

    Avazpour, A; Avazpour, L

    2010-12-28

    This article applies the density functional theory to confined liquid crystals, comprised of ellipsoidal shaped particles interacting through the hard Gaussian overlap (HGO) potential. The extended restricted orientation model proposed by Moradi and co-workers [J. Phys.: Condens. Matter 17, 5625 (2005)] is used to study the surface anchoring. The excess free energy is calculated as a functional expansion of density around a reference homogeneous fluid. The pair direct correlation function (DCF) of a homogeneous HGO fluid is approximated, based on the optimized sum of Percus-Yevick and Roth DCF for hard spheres; the anisotropy introduced by means of the closest approach parameter, the expression proposed by Marko [Physica B 392, 242 (2007)] for DCF of HGO, and hard ellipsoids were used. In this study we extend an our previous work [Phys. Rev. E 72, 061706 (2005)] on the anchoring behavior of hard particle liquid crystal model, by studying the effect of changing the particle-substrate contact function instead of hard needle-wall potentials. We use the two particle-surface potentials: the HGO-sphere and the HGO-surface potentials. The average number density and order parameter profiles of a confined HGO fluid are obtained using the two particle-wall potentials. For bulk isotropic liquid, the results are in agreement with the Monte Carlo simulation of Barmes and Cleaver [Phys. Rev. E 71, 021705 (2005)]. Also, for the bulk nematic phase, the theory gives the correct density profile and order parameter between the walls.

  6. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    Science.gov (United States)

    Cao, M; Monson, P A

    2009-10-22

    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  7. Population densities of painted buntings in the southeastern United States

    Science.gov (United States)

    Meyers, J. Michael

    2011-01-01

    The eastern population trend of Passerina ciris (Painted Bunting) declined 3.5% annually during the first 30 yrs of the Breeding Bird Survey (BBS, 1966–1996). Recently, the US Fish and Wildlife Service listed Painted Buntings as a focal species. Surveys for this focal species for the next 10 yrs (BBS, 1997–2007), however, are too low (2 in young pine plantations to 42 per km2 in maritime shrub. Effective detection radii for habitats varied from 64 to 90 m and were slightly higher in developed than in undeveloped habitats. Distance sampling is recommended to determine densities of Painted Buntings; however, large sample sizes (70–100 detections/habitat type) are required to monitor Painted Bunting densities in most habitats in the Atlantic coastal region of the southeastern United States. Special attention should be given to maritime shrub habitats, which may be important to maintaining the Painted Bunting population in the southeastern US.

  8. Routh's sphere

    NARCIS (Netherlands)

    Cushman, R.

    2001-01-01

    In this paper we show that the integral map of Rouths sphere has monodromy when the sphere becomes gyroscopically unstable This uses the nonHamiltonian monodromy of Rouths sphere has center of mass not at its geometrical center and moment of inertia tensor with two equal principal moments of inerti

  9. Low-dislocation-density epitatial layers grown by defect filtering by self-assembled layers of spheres

    Science.gov (United States)

    Wang, George T.; Li, Qiming

    2013-04-23

    A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.

  10. Anisotropic pair correlations in binary and multicomponent hard-sphere mixtures in the vicinity of a hard wall: A combined density functional theory and simulation study

    Science.gov (United States)

    Härtel, Andreas; Kohl, Matthias; Schmiedeberg, Michael

    2015-10-01

    The fundamental measure approach to classical density functional theory has been shown to be a powerful tool to predict various thermodynamic properties of hard-sphere systems. We employ this approach to determine not only one-particle densities but also two-particle correlations in binary and six-component mixtures of hard spheres in the vicinity of a hard wall. The broken isotropy enables us to carefully test a large variety of theoretically predicted two-particle features by quantitatively comparing them to the results of Brownian dynamics simulations. Specifically, we determine and compare the one-particle density, the total correlation functions, their contact values, and the force distributions acting on a particle. For this purpose, we follow the compressibility route and theoretically calculate the direct correlation functions by taking functional derivatives. We usually observe an excellent agreement between theory and simulations, except for small deviations in cases where local crystal-like order sets in. Our results set the course for further investigations on the consistency of functionals as well as for structural analysis on, e.g., the primitive model. In addition, we demonstrate that due to the suppression of local crystallization, the predictions of six-component mixtures are better than those in bidisperse or monodisperse systems. Finally, we are confident that our results of the structural modulations induced by the wall lead to a deeper understanding of ordering in anisotropic systems in general, the onset of heterogeneous crystallization, caging effects, and glassy dynamics close to a wall, as well as structural properties in systems with confinement.

  11. The equation of state of flexible chains of tangent hard spheres at high-density region from simulation and thermodynamic perturbation theory.

    Science.gov (United States)

    Alavi, Farzad; Feyzi, Farzaneh

    2013-01-14

    Radial and triplet correlation functions of the reference hard sphere system are determined at several solid densities by canonical Monte Carlo (MC) simulations. These customized data are used to extend the second order thermodynamic perturbation theory (TPT) to the solid phase of flexible hard chain systems. In order to test the accuracy of the TPT equation of state (EOS) for hard chains, MC simulations are carried out for systems of chain length 4 to 15. Several simulations are performed in the isobaric-isothermal ensemble to obtain the high-density EOS of hard chains in the fluid and solid phases. To determine solid-fluid equilibrium (SFE), Helmholtz free energies of solid crystals at a reference density are determined in a series of canonical MC simulations. As the chain length increases, asymptotic behaviors are observed in the coexistence pressure and densities of fluid and solid phases. It is found that the accuracy of TPT for EOS and SFE in systems of hard chains greatly improves by extending it to second order.

  12. Description of hard-sphere crystals and crystal-fluid interfaces: a comparison between density functional approaches and a phase-field crystal model.

    Science.gov (United States)

    Oettel, M; Dorosz, S; Berghoff, M; Nestler, B; Schilling, T

    2012-08-01

    In materials science the phase-field crystal approach has become popular to model crystallization processes. Phase-field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase-field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three-dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a second-order Taylor expansion thereof, and a minimal phase-field crystal model. We have computed coexistence densities, vacancy concentrations in the crystalline phase, interfacial tensions, and interfacial order parameter profiles, and we compare these quantities to simulation results. We also suggest a procedure to fit the free parameters of the phase-field crystal model. Thereby it turns out that the order parameter of the phase-field crystal model is more consistent with a smeared density field (shifted and rescaled) than with the shifted and rescaled density itself. In brief, we conclude that fundamental measure theory is very accurate and can serve as a benchmark for the other theories. Taylor expansion strongly affects free energies, surface tensions, and vacancy concentrations. Furthermore it is phenomenologically misleading to interpret the phase-field crystal model as stemming directly from Taylor-expanded density functional theory.

  13. Collapse and Fragmentation of Magnetic Molecular Cloud Cores with the Enzo AMR MHD Code. I. Uniform Density Sphere

    CERN Document Server

    Boss, Alan P

    2013-01-01

    Magnetic fields are important contributers to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement (AMR) code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer (1979) standard isothermal test case for three dimensional (3D) hydrodynamics (HD) codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) c...

  14. 从硬球密度泛函近似到非硬球密度泛函近似的普适性理论方案:可应用于超临界与亚临界区域(Ⅰ)%Density Functional Approximation for Non-hard Sphere Fluids: Based on Hard Sphere Density Functional Approximation

    Institute of Scientific and Technical Information of China (English)

    周世琦

    2005-01-01

    A universal theoretical way is proposed which enables all of hard sphere density functional approximations (DFAs) applicable to non-hard sphere fluids.The resultant DFA by combining the universal theoretical way with any hard sphere DFAs only needs as input a second order direct correlation function (DCF) of a coexistence bulk fluid,and can be applicable to both supercitical and subcritical temperature regions.The associated effective hard sphere density can be specified by a hard wall sum rule. It is indicated that so determined value of the effective hard sphere density can be universal,i.e. can be applied for any external potentials different from the single hard wall. As an illustrating example,the universal theoretical way is combined with a hard sphere BDFA to predict density profile of a hard core attractive Yukawa model fluid influenced by diverse external fields,agreement between the present formalism predictions and the corresponding simulation data is very good or at least comparable with several previous DFT approaches. The most advantage of the present theoretical way combined with other hard sphere DFAs is discused.%提出了一个普适性的理论方案,该方案使一切硬球密度泛函近似能被扩展到非硬球流体的情形.将该普适性理论方案与任意硬球密度泛函近似结合所形成的非硬球密度泛函近似,仅仅需要共存体相流体的二阶直接相关函数作为输入,因而能用于超临界与亚临界区域的情形.其中的有效硬球密度可由硬墙Sum规则确定.结果表明,如此确定的有效硬球密度可用于任意外势情形.作为代表性的例子,我们将该普适性理论方案与一个最近提出的桥密度泛函近似结合,用以预言硬核吸引汤川势流体在几个不同的外场影响下的密度分布.此理论与相应的计算机模拟数据符合很好,或至少与以前的几个密度泛函近似相当.并讨论了该方法相比于以前的几个方法所具有的优点.

  15. A Note on Linearly Isometric Extension for 1-Lipschitz and Anti-1-Lipschitz Mappings between Unit Spheres of ALp(μ, H) Spaces

    Institute of Scientific and Technical Information of China (English)

    Zihou ZHANG; Chunyan LIU

    2013-01-01

    In this paper,we show that if V0 is a 1-Lipschitz mapping between unit spheres of Lp (μ,H) and Lp(v,H)(p > 2,H is a Hilbert space),and-Vo(S(Lp(μ,H))) (∪) Vo(S(Lp(μ,H))),then V0 can be extended to a linear isometry defined on the whole space.If 1 < p < 2 and V0 is an "anti-1-Lipschitz" mapping,then Vo can also be linearly and isometrically extended.

  16. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Zhenguo An; Bing Li; Jinjie Zhang

    2012-01-01

    Anatase TiO2 shells assembled on hollow glass microspheres (HGM) with tunable morphologies were successfully prepared through a controllable chemical precipitation method with urea as the precipitator.Thus,glass/TiO2 core/shell composite hollow spheres with low particle density (0.40 g/cm3) were fabricated.The phase structures,morphologies,particle sizes,shell thicknesses,and chemical compositions of the composite microspheres were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),and energy dispersive X-ray spectroscopy (EDS).The morphology of the TiO2 shell can be tailored by properly monitoring the reaction system component and parameters.The probable growth mechanism and fabrication process of the core/shell products involving the nucleation and oriented growth of TiO2 nanocrystals on hollow glass microspheres was proposed.A low infrared radiation study revealed that the radiation properties of the products are greatly influenced by the unique product shell structures.A thermal conductivity study showed that the TiO2/HGM possess low thermal conductivity that is similar to that of the pristine HGMs.This work provides an additional strategy to prepare low-density thermal insulating particles with tailored morphologies and properties.

  17. Density anomaly of charged hard spheres of different diameters in a mixture with core-softened model solvent. Monte Carlo simulation results

    Directory of Open Access Journals (Sweden)

    B. Hribar-Lee

    2013-01-01

    Full Text Available Very recently the effect of equisized charged hard sphere solutes in a mixture with core-softened fluid model on the structural and thermodynamic anomalies of the system has been explored in detail by using Monte Carlo simulations and integral equations theory (J. Chem. Phys., Vol. 137, 244502 (2012. Our objective of the present short work is to complement this study by considering univalent ions of unequal diameters in a mixture with the same soft-core fluid model. Specifically, we are interested in the analysis of changes of the temperature of maximum density (TMD lines with ion concentration for three model salt solutes, namely sodium chloride, potassium chloride and rubidium chloride models. We resort to Monte Carlo simulations for this purpose. Our discussion also involves the dependences of the pair contribution to excess entropy and of constant volume heat capacity on the temperature of maximum density line. Some examples of the microscopic structure of mixtures in question in terms of pair distributions functions are given in addition.

  18. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  19. Density of Line Features in the Western United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Density of linear features, such as roads, power lines, telephone lines, and railroad tracks have been shown to influence synanthropic predator abundance patterns...

  20. Public Sphere

    DEFF Research Database (Denmark)

    Trenz, Hans-Jörg

    2015-01-01

    of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....

  1. Public Sphere

    DEFF Research Database (Denmark)

    Trenz, Hans-Jörg

    2015-01-01

    In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically...

  2. Spinning the fuzzy sphere

    Energy Technology Data Exchange (ETDEWEB)

    Berenstein, David [Department of Applied Mathematics and Theoretical Physics,University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Department of Physics, University of California Santa Barbara,Santa Barbara, California 93106 (United States); Dzienkowski, Eric; Lashof-Regas, Robin [Department of Physics, University of California Santa Barbara,Santa Barbara, California 93106 (United States)

    2015-08-27

    We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1{sup ∗} field theory with a non-trivial charge density. The solutions we construct have a ℤ{sub N} symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.

  3. Absolute Stability Limit for Relativistic Charged Spheres

    CERN Document Server

    Giuliani, Alessandro

    2007-01-01

    We find an exact solution for the stability limit of relativistic charged spheres for the case of constant gravitational mass density and constant charge density. We argue that this provides an absolute stability limit for any relativistic charged sphere in which the gravitational mass density decreases with radius and the charge density increases with radius. We then provide a cruder absolute stability limit that applies to any charged sphere with a spherically symmetric mass and charge distribution. We give numerical results for all cases. In addition, we discuss the example of a neutral sphere surrounded by a thin, charged shell.

  4. High-contrast imaging of Sirius~A with VLT/SPHERE: Looking for giant planets down to one astronomical unit

    CERN Document Server

    Vigan, A; Salter, G; Mesa, D; Homeier, D; Moutou, C; Allard, F

    2015-01-01

    Sirius has always attracted a lot of scientific interest, especially after the discovery of a companion white dwarf at the end of the 19th century. Very early on, the existence of a potential third body was put forward to explain some of the observed properties of the system. We present new coronagraphic observations obtained with VLT/SPHERE that explore, for the very first time, the innermost regions of the system down to 0.2" (0.5 AU) from Sirius A. Our observations cover the near-infrared from 0.95 to 2.3 $\\mu$m and they offer the best on-sky contrast ever reached at these angular separations. After detailing the steps of our SPHERE/IRDIFS data analysis, we present a robust method to derive detection limits for multi-spectral data from high-contrast imagers and spectrographs. In terms of raw performance, we report contrasts of 14.3 mag at 0.2", ~16.3 mag in the 0.4-1.0" range and down to 19 mag at 3.7". In physical units, our observations are sensitive to giant planets down to 11 $M_{Jup}$ at 0.5 AU, 6-7 $...

  5. Haphazard Packing of Unequal Spheres

    Institute of Scientific and Technical Information of China (English)

    叶大年; 张金民

    1991-01-01

    Haphazard packing of equal and unequal spheres can be performed for the spheres of molecular sieve material with a density of 1.80.The packing of such spheres in air is equivalent to that of nat-ural grains in water.Packing concentrations of equal spheres have been obtained for different pac-king intensities.Unequal spheres can be regarded as equal ones in a wide range of diameter ratios,so far as the packing concentration is concerned.A threshold of diameter ratio exists at 0.70,be-low which the packing concentration is expected to increase.The variation curves of concentration vs.diameter ratio were established in the experiment.The result will help us to understand the process of sedimentation and the concentration of voids in sedimentary rocks.

  6. Multiple reentrant glass transitions of soft spheres at high densities: monotonicity of the curves of constant relaxation time in jamming phase diagrams depending on temperature over pressure and pressure.

    Science.gov (United States)

    Schmiedeberg, Michael

    2013-05-01

    By using molecular-dynamics simulations, we determine the jamming phase diagrams at high densities for a bidisperse mixture of soft spheres that interact according to repulsive power-law pair potentials. We observe that the relaxation time varies nonmonotonically as a function of density at constant temperature. Therefore, the jamming phase diagrams contain multiple reentrant glass transitions if temperature and density are used as control parameters. However, if we consider a new formulation of the jamming phase diagrams where temperature over pressure and pressure are employed as control parameters, no nonmonotonic behavior is observed.

  7. POLITICAL PARTY “UNITED RUSSIA” IN 2003-2014: CREATING OF NEW POLITICAL SPACE AND MODERNIZATION OF ECONOMY, BUSINESS AND SOCIAL SPHERE

    Directory of Open Access Journals (Sweden)

    V. E. Poletaev

    2015-01-01

    Full Text Available The article is devoted to the activities of the political party «United Russia» in the sphere of development and implementation of programs of socio-economic modernization, and reveals the essential role of the political party «United Russia» in the formation of mechanisms of interaction between government and business-community of Russia in 2003-2014. The author on the basis of the study notes that the political party «United Russia» in the period under review, highest priority attention to the formation in Russian Federation of a new political and business consciousness that is the key to further successful development of Russian innovative economy and business. The importance of the party «United Russia» gives the implementation of social programs of support, which aims to improve the social fabric of society, to promote training of highly qualified personnel, young specialists – managers, entrepreneurs, scientists, business managers, etc. a Special attention of the political party «United Russia» pays the elaboration of the strategy of innovative development, introduction in manufacture of nanotechnology, the development of fundamental science as a basis for future modernization breakthrough. The leadership of the party «United Russia» called for increased dialogue between government and business, strengthens constructive corporate engagement of business organizations and party structures in order to intensify the modernization process in the field of business and economics as well as to solve the strategic task – creation of innovative economy and knowledge-based business, modernization of Russia in the XXI century.

  8. United abominations: Density functional studies of heavy metal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schoendorff, George [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Carbonyl and nitrile addition to uranyl (UO22+) are studied. The competition between nitrile and water ligands in the formation of uranyl complexes is investigated. The possibility of hypercoordinated uranyl with acetone ligands is examined. Uranyl is studied with diactone alcohol ligands as a means to explain the apparent hypercoordinated uranyl. A discussion of the formation of mesityl oxide ligands is also included. A joint theory/experimental study of reactions of zwitterionic boratoiridium(I) complexes with oxazoline-based scorpionate ligands is reported. A computational study was done of the catalytic hydroamination/cyclization of aminoalkenes with zirconium-based catalysts. Techniques are surveyed for programming for graphical processing units (GPUs) using Fortran.

  9. Determinantal point process models on the sphere

    DEFF Research Database (Denmark)

    Møller, Jesper; Nielsen, Morten; Porcu, Emilio

    defined on Sd × Sd . We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd , where it becomes essential to specify the eigenvalues......We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function...

  10. SURFACES OF HARD-SPHERE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  11. Dyson Spheres around White Dwarfs

    CERN Document Server

    Semiz, İbrahim

    2015-01-01

    A Dyson Sphere is a hypothetical structure that an advanced civilization might build around a star to intercept all of the star's light for its energy needs. One usually thinks of it as a spherical shell about one astronomical unit (AU) in radius, and surrounding a more or less Sun-like star; and might be detectable as an infrared point source. We point out that Dyson Spheres could also be built around white dwarfs. This type would avoid the need for artificial gravity technology, in contrast to the AU-scale Dyson Spheres. In fact, we show that parameters can be found to build Dyson Spheres suitable --temperature- and gravity-wise-- for human habitation. This type would be much harder to detect.

  12. Electrostatic-Induced Assembly of Graphene-Encapsulated Carbon@Nickel-Aluminum Layered Double Hydroxide Core-Shell Spheres Hybrid Structure for High-Energy and High-Power-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Wu, Shuxing; Hui, Kwan San; Hui, Kwun Nam; Kim, Kwang Ho

    2017-01-18

    Achieving high energy density while retaining high power density is difficult in electrical double-layer capacitors and in pseudocapacitors considering the origin of different charge storage mechanisms. Rational structural design became an appealing strategy in circumventing these trade-offs between energy and power densities. A hybrid structure consists of chemically converted graphene-encapsulated carbon@nickel-aluminum layered double hydroxide core-shell spheres as spacers among graphene layers (G-CLS) used as an advanced electrode to achieve high energy density while retaining high power density for high-performance supercapacitors. The merits of the proposed architecture are as follows: (1) CLS act as spacers to avoid the close restacking of graphene; (2) highly conductive carbon sphere and graphene preserve the mechanical integrity and improve the electrical conductivity of LDHs hybrid. Thus, the proposed hybrid structure can simultaneously achieve high electrical double-layer capacitance and pseudocapacitance resulting in the overall highly active electrode. The G-CLS electrode exhibited high specific capacitance (1710.5 F g(-1) at 1 A g(-1)) under three-electrode tests. An ASC fabricated using the G-CLS as positive electrode and reduced graphite oxide as negative electrode demonstrated remarkable electrochemical performance. The ASC device operated at 1.4 V and delivered a high energy density of 35.5 Wh kg(-1) at a 670.7 W kg(-1) power density at 1 A g(-1) with an excellent rate capability as well as a robust long-term cycling stability of up to 10 000 cycles.

  13. [Reducing patient pressure sore incidence density in the pediatric surgical intensive care unit].

    Science.gov (United States)

    Huang, Wei-Chen; Chang, Shiow-Ru; Tang, Chi-Min

    2014-04-01

    Our unit recorded 21 cases of pressure sores from January 2011 to June 2011. The resulting pressure-sore incidence density of 0.74% exceeded the Taiwan Clinical Performance Indicator (TCPI) for medical centers (0.62%) as well as the mean incidence density for our unit (0.55%) during the same period in 2010. We developed this project to decrease the incidence density of pressure sores at our pediatric-surgical-intensive-care unit from 0.74% to 0.31%. Strategies implemented included: 1. providing on-the-job education; 2. providing bedside teaching; 3. developing a series of pictures to illustrate proper sitting, lying, and changing positions and the proper fixation of catheters; 4. implementing a reminder mechanism; 5. introducing pressure-preventing devices; 6. and establishing an audit team. Incidence density decreased from 0.74% (Jan. to Jun. 2011) to 0.18% (Mar. to Jul. 2012). We demonstrated that the developed improvement program effectively reduced the incidence density of pressure sores and increased the quality of nursing care.

  14. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    Science.gov (United States)

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  15. Plasmonic lateral forces on chiral spheres

    CERN Document Server

    Canaguier-Durand, Antoine

    2015-01-01

    We show that the optical force exerted on a finite size chiral sphere by a surface plasmon mode has a component along a direction perpendicular to the plasmon linear momentum. We reveal how this chiral lateral force, pointing in opposite directions for opposite enantiomers, stems from an angular-to-linear crossed momentum transfer involving the plasmon transverse spin angular momentum density and mediated by the chirality of the sphere. Our multipolar approach allows us discussing the inclusion of the recoil term in the force on a small sphere taken in the dipolar limit and observing sign inversions of the lateral chiral force when the size of the sphere increases.

  16. Effective Depletion Potential of Colloidal Spheres

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Hua; MA Hong-Ru

    2004-01-01

    @@ A new semianalytical method, which is a combination of the density functional theory with Rosenfeld density functional and the Ornstein-Zernike equation, is proposed for the calculation of the effective depletion potentials between a pair of big spheres immersed in a small hard sphere fluid. The calculated results are almost identical to the integral equation method with the Percus-Yevick approximation, and are also in agreement well with the Monte Carlo simulation results.

  17. Depletion induced demixing in polydisperse mixtures of hard spheres

    OpenAIRE

    Sear, RP

    1998-01-01

    Polydisperse mixtures are those in which components with a whole range of sizes are present. It is shown that the fluid phase of polydisperse hard spheres is thermodynamically unstable unless the density of large spheres decreases at least exponentially as their size increases. The instability is with respect to the large spheres crystallising out into multiple solid phases.

  18. Retrospective Assessment of Follicular Unit Density in Asian Men With Androgenetic Alopecia.

    Science.gov (United States)

    Ortega-Castillejos, Dell Kristie A; Pathomvanich, Damkerng

    2017-05-01

    Hair density, together with hair diameter has a tremendous impact on the cosmetic outcome of hair transplantation surgery. This retrospective study aims to assess the average number of follicular unit (FU) grafts in the donor area of Asian men with androgenetic alopecia. Seventy patients (ages 24-65 years old) with virgin scalp who had their first hair transplantation were included. During the harvesting procedure, a 2- to 3-cm-wide area of the donor site was shaved from ear to ear with 5 specific areas assigned as reference points for the study namely the central occipital area, left and right parietal and temporal areas. A video microscope was used to capture the field of each reference point. Follicular units in each area were counted and the number of 1-hair, 2-hair, and 3-hair follicular groupings was recorded. East and Southeast Asians had an average of 61.1 FU/cm (111.2 hairs/cm); West Asians had an average density of 63.6 FU/cm (126.8 hairs/cm); South Asians were noted to have an average density of 63.5 FU/cm (126.8 hairs/cm). Asian hair density has slight variations in the number of FU grafts in each donor area.

  19. Quantifying Slope Effects and Variations in Crater Density across a Single Geologic Unit

    Science.gov (United States)

    Meyer, Heather; Mahanti, Prasun; Robinson, Mark; Povilaitis, Reinhold

    2016-10-01

    Steep underlying slopes (>~5°) significantly increase the rate of degradation of craters [1-3]. As a result, the density of craters is less on steeper slopes for terrains of the same age [2, 4]. Thus, when age-dating a planetary surface, an area encompassing one geologic unit of constant low slope is chosen. However, many key geologic units, such as ejecta blankets, lack sufficient area of constant slope to derive robust age estimates. Therefore, accurate age-dating of such units requires an accurate understanding of the effects of slope on age estimates. This work seeks to determine if the observed trend of decreasing crater density with increasing slopes [2] holds for craters >1 km and to quantify the effect of slope for craters of this size, focusing on the effect of slopes over the kilometer scale. Our study focuses on the continuous ejecta of Orientale basin, where we measure craters >1 km excluding secondaries that occur as chains or clusters. Age-dating via crater density measurements relies on uniform cratering across a single geologic unit. In the case of ejecta blankets and other impact related surfaces, this assumption may not hold due to the formation of auto- secondary craters. As such, we use LRO WAC mosaics [5], crater size-frequency distributions, absolute age estimates, a 3 km slope map derived from the WAC GLD100 [6], and density maps for various crater size ranges to look for evidence of non-uniform cratering across the continuous ejecta of Orientale and to determine the effect of slope on crater density. Preliminary results suggest that crater density does decrease with increasing slope for craters >1 km in diameter though at a slower rate than for smaller craters.References: [1] Trask N. J. and Rowan L. C. (1967) Science 158, 1529-1535. [2] Basilevsky (1976) Proc. Lunar Sci. Conf. 7th, p. 1005-1020. [3] Pohn and Offield (1970) USGS Prof. Pap., 153-162. [4] Xiao et al. (2013) Earth and Planet. Sci. Lett., 376, pgs. 1-11. doi:10.1016/j.epsl.2013

  20. Phase diagram of elastic spheres.

    Science.gov (United States)

    Athanasopoulou, L; Ziherl, P

    2017-02-15

    Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.

  1. Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures.

    Science.gov (United States)

    Genovese, Luigi; Ospici, Matthieu; Deutsch, Thierry; Méhaut, Jean-François; Neelov, Alexey; Goedecker, Stefan

    2009-07-21

    We present the implementation of a full electronic structure calculation code on a hybrid parallel architecture with graphic processing units (GPUs). This implementation is performed on a free software code based on Daubechies wavelets. Such code shows very good performances, systematic convergence properties, and an excellent efficiency on parallel computers. Our GPU-based acceleration fully preserves all these properties. In particular, the code is able to run on many cores which may or may not have a GPU associated, and thus on parallel and massive parallel hybrid machines. With double precision calculations, we may achieve considerable speedup, between a factor of 20 for some operations and a factor of 6 for the whole density functional theory code.

  2. Thermodynamic properties of lattice hard-sphere models.

    Science.gov (United States)

    Panagiotopoulos, A Z

    2005-09-08

    Thermodynamic properties of several lattice hard-sphere models were obtained from grand canonical histogram- reweighting Monte Carlo simulations. Sphere centers occupy positions on a simple cubic lattice of unit spacing and exclude neighboring sites up to a distance sigma. The nearestneighbor exclusion model, sigma = radical2, was previously found to have a second-order transition. Models with integer values of sigma = 1 or 2 do not have any transitions. Models with sigma = radical3 and sigma = 3 have weak first-order fluid-solid transitions while those with sigma = 2 radical2, 2 radical3, and 3 radical2 have strong fluid-solid transitions. Pressure, chemical potential, and density are reported for all models and compared to the results for the continuum, theoretical predictions, and prior simulations when available.

  3. Instability of Extremal Relativistic Charged Spheres

    CERN Document Server

    Anninos, P; Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question, ``Can relativistic charged spheres form extremal black holes?" in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstr\\"om solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal ($Q = M$) limit and the black hole limit ($R = R_+$). That is, we find that charged spheres undergo gravitational collapse before they reach $Q = M$, suggesting that extremal Reissner-Nordtr\\"om black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, ...

  4. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  5. Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.

    Science.gov (United States)

    Cawkwell, M J; Sanville, E J; Mniszewski, S M; Niklasson, Anders M N

    2012-11-13

    The self-consistent solution of a Schrödinger-like equation for the density matrix is a critical and computationally demanding step in quantum-based models of interatomic bonding. This step was tackled historically via the diagonalization of the Hamiltonian. We have investigated the performance and accuracy of the second-order spectral projection (SP2) algorithm for the computation of the density matrix via a recursive expansion of the Fermi operator in a series of generalized matrix-matrix multiplications. We demonstrate that owing to its simplicity, the SP2 algorithm [Niklasson, A. M. N. Phys. Rev. B2002, 66, 155115] is exceptionally well suited to implementation on graphics processing units (GPUs). The performance in double and single precision arithmetic of a hybrid GPU/central processing unit (CPU) and full GPU implementation of the SP2 algorithm exceed those of a CPU-only implementation of the SP2 algorithm and traditional matrix diagonalization when the dimensions of the matrices exceed about 2000 × 2000. Padding schemes for arrays allocated in the GPU memory that optimize the performance of the CUBLAS implementations of the level 3 BLAS DGEMM and SGEMM subroutines for generalized matrix-matrix multiplications are described in detail. The analysis of the relative performance of the hybrid CPU/GPU and full GPU implementations indicate that the transfer of arrays between the GPU and CPU constitutes only a small fraction of the total computation time. The errors measured in the self-consistent density matrices computed using the SP2 algorithm are generally smaller than those measured in matrices computed via diagonalization. Furthermore, the errors in the density matrices computed using the SP2 algorithm do not exhibit any dependence of system size, whereas the errors increase linearly with the number of orbitals when diagonalization is employed.

  6. 关于切丛和单位切球丛的度量的一个注记%A Note on Some Metrics on Tangent Bundles and Unit Tangent Sphere Bundles

    Institute of Scientific and Technical Information of China (English)

    李兴校; 齐学荣

    2008-01-01

    In this paper we study a class of metrics with some compatible almost complex structures on the tangent bundle TM of a Riemannian manifold(M,g),which are parallel to those in [10].These metrics generalize the classical Sasaki metric and Cheeger-Gromoll metric.We prove that the tangent bundle TM endowed with each pair of the above metrics and the corresponding almost complex structures is a locally conformal almost K(a)ihler manifold.We also find that,when restricted to the unit tangent sphere bundle,these metrics and corresponding almost complex structures define new examples of contact metric structures.

  7. On sphere-filling ropes

    CERN Document Server

    Gerlach, Henryk

    2010-01-01

    What is the longest rope on the unit sphere? Intuition tells us that the answer to this packing problem depends on the rope's thickness. For a countably infinite number of prescribed thickness values we construct and classify all solution curves. The simplest ones are similar to the seamlines of a tennis ball, others exhibit a striking resemblance to Turing patterns in chemistry, or to ordered phases of long elastic rods stuffed into spherical shells.

  8. Self-Expanded Clustering Algorithm Based on Density Units with Evaluation Feedback Section

    Institute of Scientific and Technical Information of China (English)

    YU Yongqian; ZHAO Xiangguo; CHEN Hengyue; WANG Bin; YU Ge; WANG Guoren

    2006-01-01

    This paper presents an effective clustering mode and a novel clustering result evaluating mode. Clustering mode has two limited integral parameters. Evaluating mode evaluates clustering results and gives each a mark. The higher mark the clustering result gains, the higher quality it has. By organizing two modes in different ways, we can build two clustering algorithms: SECDU(Self-Expanded Clustering Algorithm based on Density Units) and SECDUF(Self-Expanded Clustering Algorithm Based on Density Units with Evaluation Feedback Section). SECDU enumerates all value pairs of two parameters of clustering mode to process data set repeatedly and evaluates every clustering result by evaluating mode. Then SECDU output the clustering result that has the highest evaluating mark among all the ones. By applying "hill-climbing algorithm", SECDUF improves clustering efficiency greatly. Data sets that have different distribution features can be well adapted to both algorithms. SECDU and SECDUF can output high-quality clustering results. SECDUF tunes parameters of clustering mode automatically and no man's action involves through the whole process. In addition, SECDUF has a high clustering performance.

  9. Density functional theory calculations on the active site of biotin synthase: mechanism of S transfer from the Fe(2)S(2) cluster and the role of 1st and 2nd sphere residues.

    Science.gov (United States)

    Rana, Atanu; Dey, Subal; Agrawal, Amita; Dey, Abhishek

    2015-10-01

    Density functional theory (DFT) calculations are performed on the active site of biotin synthase (BS) to investigate the sulfur transfer from the Fe(2)S(2) cluster to dethiobiotin (DTB). The active site is modeled to include both the 1st and 2nd sphere residues. Molecular orbital theory considerations and calculation on smaller models indicate that only an S atom (not S²⁻) transfer from an oxidized Fe(2)S(2) cluster leads to the formation of biotin from the DTB using two adenosyl radicals generated from S-adenosyl-L-methionine. The calculations on larger protein active site model indicate that a 9-monothiobiotin bound reduced cluster should be an intermediate during the S atom insertion from the Fe(2)S(2) cluster consistent with experimental data. The Arg260 bound to Fe1, being a weaker donor than cysteine bound to Fe(2), determines the geometry and the electronic structure of this intermediate. The formation of this intermediate containing the C9-S bond is estimated to have a ΔG(≠) of 17.1 kcal/mol while its decay by the formation of the 2nd C6-S bond is calculated to have a ΔG(≠) of 29.8 kcal/mol, i.e. the 2nd C-S bond formation is calculated to be the rate determining step in the cycle and it leads to the decay of the Fe(2)S(2) cluster. Significant configuration interaction (CI), present in these transition states, helps lower the barrier of these reactions by ~30-25 kcal/mol relative to a hypothetical outer-sphere reaction. The conserved Phe285 residue near the Fe(2)S(2) active site determines the stereo selectivity at the C6 center of this radical coupling reaction. Reaction mechanism of BS investigated using DFT calculations. Strong CI and the Phe285 residue control the kinetic rate and stereochemistry of the product.

  10. DISE: directed sphere exclusion.

    Science.gov (United States)

    Gobbi, Alberto; Lee, Man-Ling

    2003-01-01

    The Sphere Exclusion algorithm is a well-known algorithm used to select diverse subsets from chemical-compound libraries or collections. It can be applied with any given distance measure between two structures. It is popular because of the intuitive geometrical interpretation of the method and its good performance on large data sets. This paper describes Directed Sphere Exclusion (DISE), a modification of the Sphere Exclusion algorithm, which retains all positive properties of the Sphere Exclusion algorithm but generates a more even distribution of the selected compounds in the chemical space. In addition, the computational requirement is significantly reduced, thus it can be applied to very large data sets.

  11. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  12. Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography

    Science.gov (United States)

    Martinez‐Valdes, E.; Negro, F.; Laine, C. M.; Falla, D.; Mayer, F.

    2017-01-01

    Key points Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders.We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography.The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity.These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions.The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. Abstract A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be

  13. MINIMAL IMMERSIONS OF SPHERES INTO SPHERES

    Science.gov (United States)

    Do Carmo, Manfredo P.; Wallach, Nolan R.

    1969-01-01

    In this paper we announce a qualitative description of an important class of closed n-dimensional submanifolds of the m-dimensional sphere, namely, those which locally minimize the n-area in the same way that geodesics minimize the arc length and are themselves locally n-spheres of constant radius r; those r that may appear are called admissible. It is known that for n = 2 each admissible r determines a unique element of the above class. The main result here is that for each n ≥ 3 and each admissible r ≥ [unk]8 there exists a continuum of distinct such submanifolds. PMID:16591771

  14. Spatial association between dissection density and environmental factors over the entire conterminous United States

    Science.gov (United States)

    Luo, Wei; Jasiewicz, Jaroslaw; Stepinski, Tomasz; Wang, Jinfeng; Xu, Chengdong; Cang, Xuezhi

    2016-01-01

    Previous studies of land dissection density (D) often find contradictory results regarding factors controlling its spatial variation. We hypothesize that the dominant controlling factors (and the interactions between them) vary from region to region due to differences in each region's local characteristics and geologic history. We test this hypothesis by applying a geographical detector method to eight physiographic divisions of the conterminous United States and identify the dominant factor(s) in each. The geographical detector method computes the power of determinant (q) that quantitatively measures the affinity between the factor considered and D. Results show that the factor (or factor combination) with the largest q value is different for physiographic regions with different characteristics and geologic histories. For example, lithology dominates in mountainous regions, curvature dominates in plains, and glaciation dominates in previously glaciated areas. The geographical detector method offers an objective framework for revealing factors controlling Earth surface processes.

  15. A high speed compact microwave interferometer for density fluctuation measurements in Sino-UNIted Spherical Tokamak

    Science.gov (United States)

    Zhong, H.; Tan, Y.; Liu, Y. Q.; Xie, H. Q.; Gao, Z.

    2016-11-01

    A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector, without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer's capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.

  16. Relationship of Terminal Duct Lobular Unit Involution of the Breast with Area and Volume Mammographic Densities

    Science.gov (United States)

    Gierach, Gretchen L.; Patel, Deesha A.; Pfeiffer, Ruth M.; Figueroa, Jonine D.; Linville, Laura; Papathomas, Daphne; Johnson, Jason M.; Chicoine, Rachael E.; Herschorn, Sally D.; Shepherd, John A.; Wang, Jeff; Malkov, Serghei; Vacek, Pamela M.; Weaver, Donald L.; Fan, Bo; Mahmoudzadeh, Amir Pasha; Palakal, Maya; Xiang, Jackie; Oh, Hannah; Horne, Hisani N.; Sprague, Brian L.; Hewitt, Stephen M.; Brinton, Louise A.; Sherman, Mark E.

    2016-01-01

    Elevated mammographic density (MD) is an established breast cancer risk factor. Reduced involution of terminal duct lobular units (TDLUs), the histologic source of most breast cancers, has been associated with higher MD and breast cancer risk. We investigated relationships of TDLU involution with area and volumetric MD, measured throughout the breast and surrounding biopsy targets (peri-lesional). Three measures inversely related to TDLU involution (TDLU count/mm2, median TDLU span, median acini count/TDLU) assessed in benign diagnostic biopsies from 348 women, ages 40–65, were related to MD area (quantified with thresholding software) and volume (assessed with a density phantom) by analysis of covariance, stratified by menopausal status and adjusted for confounders. Among premenopausal women, TDLU count was directly associated with percent peri-lesional MD (P-trend=0.03), but not with absolute dense area/volume. Greater TDLU span was associated with elevated percent dense area/volume (P-trendbreast cancer risk suggest that associations of MD with breast cancer may partly reflect amounts of at-risk epithelium. If confirmed, these results could suggest a prevention paradigm based on enhancing TDLU involution and monitoring efficacy by assessing MD reduction. PMID:26645278

  17. Design of high energy density thermoelectric energy conversion unit by using FGM compliant pads

    CERN Document Server

    Kambe, M

    1999-01-01

    In order to provide increasingly large amounts of electrical power to space and terrestrial systems with a sufficiently high level of reliability at a reasonable cost, thermoelectric (TE) energy conversion system by using $9 functionally graded material (FGM) compliant pads has been focused. To achieve high thermal energy density in TE power conversion systems, conductively coupling the TE units to the hot and cold heat exchangers is the most effective $9 configuration. This is accomplished by two sets of FGM compliant pads. This design strategy provides (1) a high flux, direct conduction path to heat source and heat sink, (2) the structural flexibility to protect the cell from high $9 stress due to thermal expansion, (3) an extended durability by a simple FGM structure, and (4) manufacturing cost reduction by spark plasma sintering. High thermal energy density of ten times as much as conventional radioisotope $9 thermoelectric generator is expected. Manufacturing of Cu/Al/sub 2/O/sub 3//Cu symmetrical FGM co...

  18. Computer simulation of rod-sphere mixtures

    CERN Document Server

    Antypov, D

    2003-01-01

    Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both...

  19. ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE

    National Research Council Canada - National Science Library

    Rosemarie HAINES

    2013-01-01

    The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being...

  20. Hard sphere packings within cylinders.

    Science.gov (United States)

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  1. SPHERES National Lab Facility

    Science.gov (United States)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  2. Molecular dynamics of a dense fluid of polydisperse hard spheres

    OpenAIRE

    Sear, Richard P.

    2000-01-01

    Slow dynamics in a fluid are studied in one of the most basic systems possible: polydisperse hard spheres. Monodisperse hard spheres cannot be studied as the slow down in dynamics as the density is increased is preempted by crystallisation. As the dynamics slow they become more heterogeneous, the spread in the distances traveled by different particles in the same time increases. However, the dynamics appears to be less heterogeneous than in hard-sphere-like colloids at the same volume fractio...

  3. Experiment SPHERE status 2008

    Energy Technology Data Exchange (ETDEWEB)

    Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I. [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I. [Skobeltsyn Institute of Nuclear Physics, Lomonosov State University, Moscow 119992 (Russian Federation); Tkaczyk, W. [Department of Experimental Physics of University of Lodz (Poland); Finger, M. [Karlov University, Prague (Czech Republic); Sonsky, M. [COMPAS Consortium, Turnov (Czech Republic)

    2009-12-15

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10{sup 16}-10{sup 18} eV.

  4. Modelling anisotropic fluid spheres in general relativity

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2015-01-01

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  5. Continuous Learning Graphical Knowledge Unit for Cluster Identification in High Density Data Sets

    Directory of Open Access Journals (Sweden)

    K.K.L.B. Adikaram

    2016-12-01

    Full Text Available Big data are visually cluttered by overlapping data points. Rather than removing, reducing or reformulating overlap, we propose a simple, effective and powerful technique for density cluster generation and visualization, where point marker (graphical symbol of a data point overlap is exploited in an additive fashion in order to obtain bitmap data summaries in which clusters can be identified visually, aided by automatically generated contour lines. In the proposed method, the plotting area is a bitmap and the marker is a shape of more than one pixel. As the markers overlap, the red, green and blue (RGB colour values of pixels in the shared region are added. Thus, a pixel of a 24-bit RGB bitmap can code up to 224 (over 1.6 million overlaps. A higher number of overlaps at the same location makes the colour of this area identical, which can be identified by the naked eye. A bitmap is a matrix of colour values that can be represented as integers. The proposed method updates this matrix while adding new points. Thus, this matrix can be considered as an up-to-time knowledge unit of processed data. Results show cluster generation, cluster identification, missing and out-of-range data visualization, and outlier detection capability of the newly proposed method.

  6. Affine Sphere Relativity

    Science.gov (United States)

    Minguzzi, E.

    2016-11-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  7. Chinese Armillary Spheres

    Science.gov (United States)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  8. Hard-sphere limit of soft-sphere model for granular materials: Stiffness dependence of steady granular flow

    OpenAIRE

    Mitarai, Namiko; Nakanishi, Hiizu

    2002-01-01

    Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard sphere limit of the soft sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the collisional flow and the frictional flow. In the collisional flow, the hard sphere limit is straightforward; the number of collisions per particle per unit time converges to a finite value and the total contact time fraction with other particles goes to zero. For the frictional...

  9. Depletion potential in colloidal mixtures of hard spheres and platelets.

    Science.gov (United States)

    Harnau, L; Dietrich, S

    2004-05-01

    The depletion potential between two hard spheres in a solvent of thin hard disclike platelets is investigated by using either the Derjaguin approximation or density functional theory. Particular attention is paid to the density dependence of the depletion potential. A second-order virial approximation is applied, which yields nearly exact results for the bulk properties of the hard-platelet fluid at densities two times smaller than the density of the isotropic fluid at isotropic-nematic phase coexistence. As the platelet density increases, the attractive primary minimum of the depletion potential deepens and an additional small repulsive barrier at larger sphere separations develops. Upon decreasing the ratio of the radius of the spheres and the platelets, the primary minimum diminishes and the position of the small repulsive barrier shifts to smaller values of the sphere separation.

  10. Evolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres.

    Science.gov (United States)

    Jin, Weiwei; Lu, Peng; Li, Shuixiang

    2015-10-22

    Particle shape plays a crucial role in determining packing characteristics. Real particles in nature usually have rounded corners. In this work, we systematically investigate the rounded corner effect on the dense packings of spherotetrahedral particles. The evolution of dense packing structure as the particle shape continuously deforms from a regular tetrahedron to a sphere is investigated, starting both from the regular tetrahedron and the sphere packings. The dimer crystal and the quasicrystal approximant are used as initial configurations, as well as the two densest sphere packing structures. We characterize the evolution of spherotetrahedron packings from the ideal tetrahedron (s = 0) to the sphere (s = 1) via a single roundness parameter s. The evolution can be partitioned into seven regions according to the shape variation of the packing unit cell. Interestingly, a peak of the packing density Φ is first observed at s ≈ 0.16 in the Φ-s curves where the tetrahedra have small rounded corners. The maximum density of the deformed quasicrystal approximant family (Φ ≈ 0.8763) is slightly larger than that of the deformed dimer crystal family (Φ ≈ 0.8704), and both of them exceed the densest known packing of ideal tetrahedra (Φ ≈ 0.8563).

  11. Relationships among Alcohol Outlet Density, Alcohol Use, and Intimate Partner Violence Victimization among Young Women in the United States

    Science.gov (United States)

    Waller, Martha W.; Iritani, Bonita J.; Christ, Sharon L.; Clark, Heddy Kovach; Moracco, Kathryn E.; Halpern, Carolyn Tucker; Flewelling, Robert L.

    2012-01-01

    Greater access to alcohol has been widely found to be associated with many negative outcomes including violence perpetration. This study examines the relationship between alcohol outlet density, alcohol use, and intimate partner violence (IPV) victimization among young women in the United States. A direct association between alcohol outlet density…

  12. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2009-01-01

    The aim of this study was to investigate motor unit (MU) characteristics of the biceps brachii in post-stroke patients, using high-density surface electromyography (sEMG). Eighteen chronic hemiparetic stroke patients took part. The Fugl-Meyer score for the upper extremity was assessed. Subjects

  13. Anomalous Sinking of Spheres due to Local Fluidization of Apparently Fixed Powder Beds.

    Science.gov (United States)

    Oshitani, Jun; Sasaki, Toshiki; Tsuji, Takuya; Higashida, Kyohei; Chan, Derek Y C

    2016-02-12

    The sinking of an intruder sphere into a powder bed in the apparently fixed bed regime exhibits complex behavior in the sinking rate and the final depth when the sphere density is close to the powder bed density. Evidence is adduced that the intruder sphere locally fluidizes the apparently fixed powder bed, allowing the formation of voids and percolation bubbles that facilitates spheres to sink slower but deeper than expected. By adjusting the air injection rate and the sphere-to-powder bed density ratio, this phenomenon provides the basis of a sensitive large particle separation mechanism.

  14. Anomalous Sinking of Spheres due to Local Fluidization of Apparently Fixed Powder Beds

    Science.gov (United States)

    Oshitani, Jun; Sasaki, Toshiki; Tsuji, Takuya; Higashida, Kyohei; Chan, Derek Y. C.

    2016-02-01

    The sinking of an intruder sphere into a powder bed in the apparently fixed bed regime exhibits complex behavior in the sinking rate and the final depth when the sphere density is close to the powder bed density. Evidence is adduced that the intruder sphere locally fluidizes the apparently fixed powder bed, allowing the formation of voids and percolation bubbles that facilitates spheres to sink slower but deeper than expected. By adjusting the air injection rate and the sphere-to-powder bed density ratio, this phenomenon provides the basis of a sensitive large particle separation mechanism.

  15. Weighted Approximation for Jackson-Matsuoka Polynomials on the Sphere

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2012-01-01

    Full Text Available We consider the best approximation by Jackson-Matsuoka polynomials in the weighted Lp space on the unit sphere of Rd. Using the relation between K-functionals and modulus of smoothness on the sphere, we obtain the direct and inverse estimate of approximation by these polynomials for the h-spherical harmonics.

  16. AlphaSphere

    OpenAIRE

    Place, A.; Lacey, L.; Mitchell, T.

    2013-01-01

    The AlphaSphere is an electronic musical instrument featuring a series of tactile, pressure sensitive touch pads arranged in a spherical form. It is designed to offer a new playing style, while allowing for the expressive real-time modulation of sound available in electronic-based music. It is also designed to be programmable, enabling the flexibility to map a series of different notational arrangements to the pad-based interface.\\ud \\ud The AlphaSphere functions as an HID, MIDI and OSC devic...

  17. Computer simulation of rod-sphere mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Antypov, Dmytro

    2003-07-01

    Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both the mixing-demixing behaviour and the transitions between the isotropic and any LC phases have been studied for four systems which differ in the interaction potential between unlike particles. A range of contrasting microphase separated structures including bicontinuous, cubic, and micelle-like arrangement have been observed in bulk. Thirdly, the four types of mixtures previously studied in bulk are subjected to a static magnetic field. A variety of novel phases are observed for the cases of positive and negative anisotropy in the magnetic susceptibility. These include a lamellar structure, in which layers of rods are separated by layers of spheres, and a configuration with a self-assembling hexagonal array of spheres. Finally, two new models are presented to study liquid crystal mixtures in the presence of curved substrates. These are implemented for the cases of convex and concave spherical surfaces. The simulation results obtained in these geometries

  18. The Moyal Sphere

    CERN Document Server

    Eckstein, Michał; Wulkenhaar, Raimar

    2016-01-01

    We construct a family of constant curvature metrics on the Moyal plane and compute the Gauss-Bonnet term for each of them. They arise from the conformal rescaling of the metric in the orthonormal frame approach. We find a particular solution, which corresponds to the Fubini-Study metric and which equips the Moyal algebra with the geometry of a noncommutative sphere.

  19. The Moyal sphere

    Science.gov (United States)

    Eckstein, Michał; Sitarz, Andrzej; Wulkenhaar, Raimar

    2016-11-01

    We construct a family of constant curvature metrics on the Moyal plane and compute the Gauss-Bonnet term for each of them. They arise from the conformal rescaling of the metric in the orthonormal frame approach. We find a particular solution, which corresponds to the Fubini-Study metric and which equips the Moyal algebra with the geometry of a noncommutative sphere.

  20. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of...

  1. 2000 population density by block group for the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents 2000 population density by block group as a 100-m grid using data from the 2000 Census of Population and Housing. The demographic data is...

  2. 1990 population density by block group for the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents 1990 population density by block group as a 100-m grid using data from the 1990 Census of Population and Housing (Public Law 94-171...

  3. Oil capture from a water surface by a falling sphere

    Science.gov (United States)

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  4. ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE

    Directory of Open Access Journals (Sweden)

    Rosemarie HAINES

    2013-12-01

    Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.

  5. Development of the effective teaching material of the science unit "the Moon and the Sun" of the elementary school of Japan. - Method for understanding of the movement of the celestial sphere

    Science.gov (United States)

    Taketa, I.; Matsumoto, I.

    2014-12-01

    In general, elementary school teacher relatively poor at the science field about "earth and universe". There is the science unit "the Moon and the Sun" in the sixth grader in elementary school in Japan. In this study, we developed the effective teaching material that is both student is easy understanding and teacher is easy treating. The teaching material that we developed is the Movement of the Moon and the Sun using about 30-cm turntable and a USB Camera. As for the previous teaching materials, every student was checking (see) the moon and the sun spatial relationship, and the shape of the moon to each. The developed teaching material have the advantage that all student in the class can check the same phenomenon on a Video screen, by using a USB Camera. And we carried the questionnaire survey to student of attached elementary school of Shimane University. The result checked that such teaching materials were useful to a student's understanding of the movement of the celestial sphere.

  6. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    maintained their neurogenic potential throughout 77 days of propagation, while the ability of anterior NTS to generate neurons severely declined from day 40. The present procedure describes isolation and long-term expansion of forebrain SVZ tissue with potential preservation of the endogenous cellular......By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue......-spheres (NTS) in EGF and FGF2 containing medium. The spheres were cut into quarters when passaged every 10-15th day, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. For analysis of regional differences within the forebrain SVZ, NTS were...

  7. Absolute multilateration between spheres

    Science.gov (United States)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  8. High-density EEG coherence analysis using functional units applied to mental fatigue

    NARCIS (Netherlands)

    Caat, Michael ten; Lorist, Monicque M.; Bezdan, Eniko; Roerdink, Jos B.T.M.; Maurits, Natasha M.

    2008-01-01

    Electroencephalography (EEG) coherence provides a quantitative measure of functional brain connectivity which is calculated between pairs of signals as a function of frequency. Without hypotheses, traditional coherence analysis would be cumbersome for high-density EEG which employs a large number of

  9. Bone density: comparative evaluation of Hounsfield units in multislice and cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Isabela Maria de Carvalho Crusoé Silva

    2012-12-01

    Full Text Available The aim of this study was to evaluate the validity of the bone density value of potential implant sites in HU obtained by a specific cone-beam computed tomography (CBCT device. In this study, the HU values obtained using a MSCT scanner were used as the gold standard. Twenty mandibles (40 potential implant sites were scanned using an MSCT scanner (Somatom Sensation 40 and a CBCT scanner (i-CAT. The MSCT images were evaluated using the Syngo CT Workplace software and the CBCT images, using the XoranCat software. The images were evaluated twice by three oral radiologists, at 60 day intervals. The trabecular bone density of the same area was evaluated on both images. Intraclass coefficients (ICC were calculated to examine the agreement between the examiners and between the two periods of evaluation. The bone density and area of the ROI were compared by the Student t test and Bland-Altman analysis. ICCs were excellent. The mean HU value obtained using CBCT (418.06 was higher than that obtained using MSCT (313.13, with a statistically significant difference (p < 0.0001. In addition, Bland-Altman analysis showed that the HU measures were not equivalent. In conclusion, the bone density in HU with CBCT images obtained using the device studied proved unreliable, since it was higher than that obtained using MSCT.

  10. High-density EEG coherence analysis using functional units applied to mental fatigue

    NARCIS (Netherlands)

    Caat, Michael ten; Lorist, Monicque M.; Bezdan, Eniko; Roerdink, Jos B.T.M.; Maurits, Natasha M.

    2008-01-01

    Electroencephalography (EEG) coherence provides a quantitative measure of functional brain connectivity which is calculated between pairs of signals as a function of frequency. Without hypotheses, traditional coherence analysis would be cumbersome for high-density EEG which employs a large number of

  11. VMware vSphere Design

    CERN Document Server

    Guthrie, Forbes; Saidel-Keesing, Maish

    2011-01-01

    The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late

  12. Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers

    OpenAIRE

    Sear, Richard P.

    2002-01-01

    A simple analytic theory for mixtures of hard spheres and larger polymers with excluded volume interactions is developed. The mixture is shown to exhibit extensive immiscibility. For large polymers with strong excluded volume interactions, the density of monomers at the critical point for demixing decreases as one over the square root of the length of the polymer, while the density of spheres tends to a constant. This is very different to the behaviour of mixtures of hard spheres and ideal po...

  13. Lp CONVERGENCE OF CESARO MEANS ON SPHERE

    Institute of Scientific and Technical Information of China (English)

    Dai Feng; Zhang Xirong

    2000-01-01

    Let Rnbe n-dimensional Euclidean space with n≤3. Denote by Ωn the unit sphere in Rn. For f ∈ L(Ωn) ve denote by σNo (f) its Cesaro means of order δ for spherical harmonic expansions. The special value λ= 2λ n-2 of δ is knowm as the critical one. For 0<δ≤λ, we set P0=2 λ/δ+λ

  14. Theory of asymmetric nonadditive binary hard-sphere mixtures.

    Science.gov (United States)

    Roth, R; Evans, R; Louis, A A

    2001-11-01

    It is shown that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for nonadditive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures the zero, one, and two-body contribution to the effective Hamiltonian are determined. It is demonstrated that even small degrees of positive or negative nonadditivity have significant effect on the shape of the depletion potential. The second virial coefficient B2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of nonadditivity. The variation of B2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative nonadditive mixtures. Possible repercussions of these results for the phase behavior of binary hard-sphere mixtures are discussed and it is suggested that measurements of B2 might provide a means of determining the degree of nonadditivity in real colloidal mixtures.

  15. Forming MOFs into spheres by use of molecular gastronomy methods.

    Science.gov (United States)

    Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard

    2014-07-14

    A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes.

  16. Alternative fundamental measure theory for additive hard sphere mixtures.

    Science.gov (United States)

    Malijevský, Alexandr

    2006-11-21

    The purpose of this short paper is to present an alternative fundamental measure theory (FMT) for hard sphere mixtures. Keeping the main features of the original Rosenfeld's FMT [Phys. Rev. Lett. 63, 980 (1989)] and using the dimensional and the low-density limit conditions a new functional is derived incorporating Boublik's multicomponent extension [Mol. Phys. 59, 371 (1986)] of highly accurate Kolafa's equation of state for pure hard spheres. We test the theory for pure hard spheres and hard sphere mixtures near a planar hard wall and compare the results with the original Rosenfeld's FMT and one of its modifications and with new very accurate simulation data. The test reveals an excellent agreement between the results based on the alternative FMT and simulation data for density profile near a contact and some improvement over the original Rosenfeld's FMT and its modification at the contact region.

  17. Structure of colloidal sphere-plate mixtures

    Science.gov (United States)

    Doshi, N.; Cinacchi, G.; van Duijneveldt, J. S.; Cosgrove, T.; Prescott, S. W.; Grillo, I.; Phipps, J.; Gittins, D. I.

    2011-05-01

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  18. Structure of colloidal sphere-plate mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)

    2011-05-18

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  19. Hollow silica spheres: synthesis and mechanical properties.

    Science.gov (United States)

    Zhang, Lijuan; D'Acunzi, Maria; Kappl, Michael; Auernhammer, Günter K; Vollmer, Doris; van Kats, Carlos M; van Blaaderen, Alfons

    2009-03-03

    Core-shell polystyrene-silica spheres with diameters of 800 nm and 1.9 microm were synthesized by soap-free emulsion and dispersion polymerization of the polystyrene core, respectively. The polystyrene spheres were used as templates for the synthesis of silica shells of tunable thickness employing the Stöber method [Graf et al. Langmuir 2003, 19, 6693]. The polystyrene template was removed by thermal decomposition at 500 degrees C, resulting in smooth silica shells of well-defined thickness (15-70 nm). The elastic response of these hollow spheres was probed by atomic force microscopy (AFM). A point load was applied to the particle surface through a sharp AFM tip, and successively increased until the shell broke. In agreement with the predictions of shell theory, for small deformations the deformation increased linearly with applied force. The Young's modulus (18 +/- 6 GPa) was about 4 times smaller than that of fused silica [Adachi and Sakka J. Mater. Sci. 1990, 25, 4732] but identical to that of bulk silica spheres (800 nm) synthesized by the Stöber method, indicating that it yields silica of lower density. The minimum force needed to irreversibly deform (buckle) the shell increased quadratically with shell thickness.

  20. Hounsfield units variations. Impact on CT-density based conversion tables and their effects on dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zurl, B.; Winkler, P.; Kapp, K.S. [University Medical School of Graz, Comprehensive Cancer Center Graz, Department of Therapeutic Radiotherapy and Oncology, Graz (Austria); Tiefling, R.; Kindl, P. [University of Technology, Institute of Materials Physics, Graz (Austria)

    2014-01-15

    Determination of dose error margins in radiation therapy planning due to variations in Hounsfield Units (HU) values dependent on the use of different CT scanning protocols. Based on a series of different CT scanning protocols used in clinical practice, conversion tables for radiation dose calculations were generated and subsequently tested on a phantom. These tables were then used to recalculate the radiation therapy plans of 28 real patients after an incorrect scanning protocol had inadvertently been used for these patients. Different CT parameter settings resulted in errors of HU values of up to 2.6 % for densities of < 1.1 g/cm{sup 3}, but up to 25.6 % for densities of > 1.1 g/cm{sup 3}. The largest errors were associated with changes in the tube voltage. Tests on a virtual water phantom with layers of variable thickness and density revealed a sawtooth-shaped curve for the increase of dose differences from 0.3 to 0.6 % and 1.5 % at layer thicknesses of 1, 3, and 7 cm, respectively. Use of a beam hardening filter resulted in a reference dose difference of 0.6 % in response to a density change of 5 %. The recalculation of data from 28 patients who received radiation therapy to the head revealed an overdose of 1.3 ± 0.4 % to the bone and 0.7 ± 0.1 % to brain tissue. On average, therefore, one monitor unit (range 0-3 MU) per 100 MU more than the correct dose had been given. Use of different CT scanning protocols leads to variations of up to 20 % in the HU values. This can result in a mean systematic dose error of 1.5 %. Specific conversion tables and automatic CT scanning protocol recognition could reduce dose errors of these types. (orig.)

  1. Binary hard-sphere mixtures within spherical pores

    CERN Document Server

    Kim, S C; Lee, C H

    1999-01-01

    The free-energy model, which is based on the fundamental geometric measures of the particles, has been employed to investigate the structural properties of nonuniform hard-sphere mixtures within spherical pores. Monte Carlo simulation has been performed to calculate the density profiles of hard-sphere mixtures confined in spherical pores, and the simulation has been compared with the calculated results. Comparisons between the theoretical results and the simulation data have shown that the free-energy model demonstrates reliable accuracy and reproduces the simulation data accurately even for larger size ratios of hard spheres.

  2. A Room to Grow: The Residential Density-Dependence of Childbearing in Europe and the United States

    Directory of Open Access Journals (Sweden)

    Nathanael Lauster

    2010-12-01

    produce new density-dependent fertility dynamics. In particular, childbearing becomes dependent upon residential roominess. This relationship is culturally specific, and that the cultural nature of this relationship means that professional and managerial classes are likely to be particularly influenced by residential roominess, while immigrants are less likely to be influenced. Hypotheses are tested linking residential roominess to the presence of an “own infant” in the household using census data from the Austria, Greece, Portugal, Spain, and the United States. Roominess predicts fertility in all countries, but to differing degrees.

  3. A Room to Grow: The Residential Density-dependence of Childbearing in Europe and the United States

    Directory of Open Access Journals (Sweden)

    Nathanael Lauster

    2010-01-01

    Full Text Available I argue that cultural processes linked to the demographic transition produce new density-dependent fertility dynamics. In particular, childbearing becomes dependent upon residential roominess. This relationship is culturally specific, and I argue that the cultural nature of this relationship means that professional and managerial classes are likely to be particularly influenced by residential roominess, while immigrants are less likely to be influenced. I test hypotheses linking residential roominess to the presence of an “own infant” in the household using census data from the Austria, Greece, Portugal, Spain, and the United States. Roominess predicts fertility in all countries, but to differing degrees.

  4. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  5. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  6. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles.

    Science.gov (United States)

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop a new preparation method for low density foam-based, floating microparticles and to demonstrate the systems' performance in vitro. Major advantages of the novel preparation technique include: (i) short processing times, (ii) no exposure of the ingredients to high temperatures, (iii) the possibility to avoid toxic organic solvents, and (iv) high encapsulation efficiencies close to 100%. Floating microparticles consisting of polypropylene foam powder, model drug [chlorpheniramine maleate (CPM), diltiazem HCl, theophylline or verapamil HCl] and polymer [Eudragit RS or polymethyl methacrylate (PMMA)] were prepared by soaking the microporous foam carrier with an organic solution of drug and polymer and subsequent drying. The effects of various formulation and processing parameters on the resulting in vitro floating behaviour, internal and external particle morphology, drug loading, in vitro drug release and physical state of the incorporated drug were studied. Good in vitro floating behaviour was observed in most cases and a broad variety of drug release patterns could be achieved by varying the drug loading and type of polymer. Interestingly, PMMA-based microparticles showed incomplete drug release with verapamil HCl. This restriction could be overcome by forming the free base of the drug prior to microparticle preparation. In contrast to the salt, the free base acted as a plasticizer for PMMA, resulting in sufficiently high diffusion coefficients and, consequently, complete drug release. The low density microparticles were compressed into rapidly disintegrating tablets in order to provide an administrable oral dosage form.

  7. Hounsfield Unit inaccuracy in computed tomography lesion size and density, diagnostic quality vs attenuation correction

    Science.gov (United States)

    Szczepura, Katy; Thompson, John; Manning, David

    2017-03-01

    In computed tomography the Hounsfield Units (HU) are used as an indicator of the tissue type based on the linear attenuation coefficients of the tissue. HU accuracy is essential when this metric is used in any form to support diagnosis. In hybrid imaging, such as SPECT/CT and PET/CT, the information is used for attenuation correction (AC) of the emission images. This work investigates the HU accuracy of nodules of known size and HU, comparing diagnostic quality (DQ) images with images used for AC.

  8. Random packing of spheres in Menger sponge.

    Science.gov (United States)

    Cieśla, Michał; Barbasz, Jakub

    2013-06-07

    Random packing of spheres inside fractal collectors of dimension 2 algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.

  9. Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere

    Institute of Scientific and Technical Information of China (English)

    SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye

    2006-01-01

    @@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.

  10. Spherical interferometry for the characterization of precision spheres

    Science.gov (United States)

    Nicolaus, R. A.; Bartl, G.

    2016-09-01

    Interferometry with spherical wavefronts is usually used for characterizing precise optics. A special spherical interferometer was set up to measure the volume of high precision spheres used for the new definition of the SI unit kilogram, for which a fundamental constant, such as Planck’s constant h or Avogadro’s constant N A, was to be determined. Furthermore with this type of interferometer and with a special evaluating algorithm, absolute form deviations of spheres can be determined. With this knowledge, a sphere can be processed further to reach unrivaled small sphericity deviations.

  11. Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets

    OpenAIRE

    Harnau, L.; Dietrich, S.

    2004-01-01

    Density functional theory is used to study binary colloidal fluids consisting of hard spheres and thin platelets in their bulk and near a planar hard wall. This system exhibits liquid-liquid coexistence of a phase that is rich in spheres (poor in platelets) and a phase that is poor in spheres (rich in platelets). For the mixture near a planar hard wall, we find that the phase rich in spheres wets the wall completely upon approaching the liquid demixing binodal from the sphere-poor phase, prov...

  12. Rigidity theorem forWillmore surfaces in a sphere

    Indian Academy of Sciences (India)

    Hongwei Xu; Dengyun Yang

    2016-05-01

    Let 2 be a compact Willmore surface in the (2 + )-dimensional unit sphere 2+. Denote by and the mean curvature and the squared length of the second fundamental form of 2, respectively. Set $\\rho^2 = S − 2H^2$. In this note, we proved that there exists a universal positive constant , such that if $\\parallel \\rho^2\\parallel_2 \\lt C$, then $\\rho^2 = 0$ and 2 is a totally umbilical sphere.

  13. Environmental risk assessment of low density polyethylene unit using the method of failure mode and effect analysis

    Directory of Open Access Journals (Sweden)

    Salati Parinaz

    2012-01-01

    Full Text Available The ninth olefin plan of Arya Sasol Petrochemical Company (A.S.P.C. is regarded the largest gas Olefin Unit located on Pars Special Economic Energy Zone (P.S.E.E.Z. Considering the importance of the petrochemical unit, its environmental assessment seems necessary to identify and reduce potential hazards. For this purpose, after determining the scope of the study area, identification and measurement of the environmental parameters, environmental risk assessment of the unit was carried out using Environment Failure Mode and Effect Analysis (EFMEA. Using the noted method, sources causing environmental risks were identified, rated and prioritized. Beside, the impacts of the environmental aspects derived from the unit activities as well as their consequences were also analyzed. Furthermore, the identified impacts were prioritized based on Risk Priority Number (RPN and severity level of the consequences imposed on the affected environment. After performing statistical calculations, it was found that the environmental aspects owing the risk priority number higher than 15 have a high level of risk. Results obtained from Low Density Polyethylene Unit revealed that the highest risk belongs to the emergency vent system with risk priority number equal to 48. It is occurred due to imperfect performance of the reactor safety system leading to the emissions of ethylene gas, particles, and radioactive steam as well as air and noise pollutions. Results derived from secondary assessment of the environmental aspects, through difference in calculated RPN and activities risk levels showed that employing modern methods and risk assessment are have remarkably reduced the severity of risk and consequently detracted the damages and losses incurred on the environment.

  14. Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends

    Science.gov (United States)

    Korman, Josh; Yard, Mike

    2017-01-01

    Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.

  15. Multidensity integral-equation theory for short diblock hard-sphere-sticky-hard-sphere chains.

    Science.gov (United States)

    Wu, Ning; Chiew, Y C

    2010-04-01

    The multidensity Ornstein-Zernike integral equation theory is applied to study a simple model of hard sphere/sticky hard sphere diblock chains. The multidensity integral equation formalism has been successfully used to model the equilibrium structure and thermodynamic properties of homonuclear chains and shorter dimer fluids; to our knowledge it has not been applied to model diblock chains. In this work, a diblock chain fluids is represented by an m-component equal molar mixture of hard spheres with species 1,2,...,mh and sticky hard spheres with species mh+1,mh+2,...,m. Each spherical particle has two attractive sites A and B except species 1 and m, which have only one site per particle. In the limit of complete association, this mixture yields a system of monodisperse diblock chains. A general solution of this model is obtained in the Percus-Yevick, Polymer Percus-Yevick and ideal chain approximations. Both structural and thermodynamic properties of this model are investigated. From this study, a microphase separation is predicted for relatively short diblock symmetric and asymmetric chains. This microphase separation is enhanced at lower temperature and higher density. When chain length increases, the phase transition changes from a microphase level to a macrophase level. The size of microdomain structure is found to be dependent on total chain length, relative ratio of block lengths, temperature, and density.

  16. Entanglement entropy for the n-sphere

    CERN Document Server

    Casini, H

    2010-01-01

    We calculate the entanglement entropy for a sphere and a massless scalar field in any dimensions. The reduced density matrix is expressed in terms of the infinitesimal generator of conformal transformations keeping the sphere fixed. The problem is mapped to the one of a thermal gas in a hyperbolic space and solved by the heat kernel approach. The coefficient of the logarithmic term in the entropy for 2 and 4 spacetime dimensions are in accordance with previous numerical and analytical results. In particular, the four dimensional result, together with the one reported by Solodukhin, gives support to the Ryu-Takayanagi holographic anzats. We also find there is no logarithmic contribution to the entropy for odd space time dimensions.

  17. Large attractive depletion interactions in soft repulsive-sphere binary mixtures.

    Science.gov (United States)

    Cinacchi, Giorgio; Martínez-Ratón, Yuri; Mederos, Luis; Navascués, Guillermo; Tani, Alessandro; Velasco, Enrique

    2007-12-07

    We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure, and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results, the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed.

  18. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 (Version 2.1) Catchments Riparian Buffer for the Conterminous United States: 2010 US Census Housing Unit and Population Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the population and housing unit density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers...

  19. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: 2010 US Census Housing Unit and Population Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the population and housing unit density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on 2010 US...

  20. Panoramic stereo sphere vision

    Science.gov (United States)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  1. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    KAUST Repository

    Marston, Jeremy

    2011-06-20

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.

  2. [Achievement of low-density lipoprotein cholesterol therapeutic goal in lipid and vascular risk units of the Spanish Arteriosclerosis Society].

    Science.gov (United States)

    Pedro-Botet, Juan; Mostaza, José M; Pintó, Xavier; Banegas, José R

    2013-01-01

    To evaluate low-density lipoprotein-cholesterol (LDLc) goal achievement among dyslipidemic patients treated in lipid and vascular risk units of the Spanish Society of Arteriosclerosis (SEA). The LDLc goal was based on the 2007 European guidelines for cardiovascular prevention. Observational, longitudinal, retrospective, multicenter national study that included consecutive patients of both sexes over 18 years of age referred for dyslipidemia and cardiovascular risk. Information was collected from medical records corresponding to two visits in the lipid unit. We included 1,828 patients from 43 lipid units. In the initial visit, 846 (46.3%) patients were on lipid lowering drug treatment. On the follow-up there was a significant increase in the use of cholesterol-lowering agents, except for a decrease in the use of nicotinic acid. 65.3% of patients with vascular disease and 50.4% with diabetes achieved an LDLc level <100mg/dL. Overall, 44.7% of patients achieved the LDLc goal and the predictors in the multivariate analysis were age, waist circumference, diabetes and the presence of vascular disease. Dyslipidemic patients referred to SEA lipid units have improved LDLc goal achievement after follow-up compared with data reported from previous studies in other health care settings. This improvement was associated with a substantial increase in the prescription of statins, both in monotherapy and combined with ezetimibe. There is still a wide room for improvement in the effectiveness of hypercholesterolemia treatment. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  3. Multicomponent fluid of nonadditive hard spheres near a wall.

    Science.gov (United States)

    Fantoni, Riccardo; Santos, Andrés

    2013-04-01

    A recently proposed rational-function approximation [Phys. Rev. E 84, 041201 (2011)] for the structural properties of nonadditive hard spheres is applied to evaluate analytically (in Laplace space) the local density profiles of multicomponent nonadditive hard-sphere mixtures near a planar nonadditive hard wall. The theory is assessed by comparison with NVT Monte Carlo simulations of binary mixtures with a size ratio 1:3 in three possible scenarios: a mixture with either positive or negative nonadditivity near an additive wall, an additive mixture with a nonadditive wall, and a nonadditive mixture with a nonadditive wall. It is observed that, while the theory tends to underestimate the local densities at contact (especially in the case of the big spheres) it captures very well the initial decay of the densities with increasing separation from the wall and the subsequent oscillations.

  4. Patchy sticky hard spheres: analytical study and Monte Carlo simulations.

    Science.gov (United States)

    Fantoni, Riccardo; Gazzillo, Domenico; Giacometti, Achille; Miller, Mark A; Pastore, Giorgio

    2007-12-21

    We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches, distributed so as not to overlap. Two spheres interact via a "sticky" Baxter potential if the line joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line as a function of the size of the patch (the fractional coverage of the sphere's surface) and of the number of patches within a virial expansion up to third order and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density expansion of the direct correlation function. We find that the locations of the two lines depend sensitively on both the total adhesive coverage and its distribution. The treatment is almost fully analytical within the chosen approximate theory. We test our findings by means of specialized Monte Carlo simulations and find the main qualitative features of the critical behavior to be well captured in spite of the low density perturbative nature of the closure. The introduction of anisotropic attractions into a model suspension of spherical particles is a first step toward a more realistic description of globular proteins in solution.

  5. Review of reaction spheres for spacecraft attitude control

    Science.gov (United States)

    Zhu, Linyu; Guo, Jian; Gill, Eberhard

    2017-05-01

    With respect to spacecraft attitude control, reaction spheres are promising alternatives to conventional momentum exchange devices for the benefits brought by their 4π rotation. Many design concepts of reaction spheres have been proposed in the past decades, however, developments of the driving unit and the bearing, as well as their combination remain great challenges. To facilitate research and push developments in this field, this paper provides a comprehensive review of reaction spheres. To some extent, an in-depth survey of multi-DOF (degree of freedom) spherical motors and possible bearings is provided, along with their advantages and weaknesses addressed. Some multi-DOF actuators for different applications, such as robotic joints, are investigated since they share many similar challenges and techniques with reaction spheres. The experimental performances of realized reaction spheres are listed and compared. Limits of current designs are identified and their causes are analyzed and discussed. Compared with existing summaries on multi-DOF actuators and some surveys done for specific reaction spheres' design, this paper provides the first thorough review on reaction spheres, considering approaches to excite and support the free 4π rotation.

  6. Real-space density functional theory on graphical processing units: computational approach and comparison to Gaussian basis set methods

    CERN Document Server

    Andrade, Xavier

    2013-01-01

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code OCTOPUS, can reach a sustained performance of up to 90 GFlops for a single GPU, representing an important speed-up when compared to the CPU version of the code. Moreover, for some systems our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.

  7. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.

    Science.gov (United States)

    Andrade, Xavier; Aspuru-Guzik, Alán

    2013-10-01

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.

  8. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL; Morrissey, Timothy G [ORNL; Vuono, Daniel J [ORNL

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  9. Collision statistics in sheared inelastic hard spheres.

    Science.gov (United States)

    Bannerman, Marcus N; Green, Thomas E; Grassia, Paul; Lue, Leo

    2009-04-01

    The dynamics of sheared inelastic-hard-sphere systems is studied using nonequilibrium molecular-dynamics simulations and direct simulation Monte Carlo. In the molecular-dynamics simulations Lees-Edwards boundary conditions are used to impose the shear. The dimensions of the simulation box are chosen to ensure that the systems are homogeneous and that the shear is applied uniformly. Various system properties are monitored, including the one-particle velocity distribution, granular temperature, stress tensor, collision rates, and time between collisions. The one-particle velocity distribution is found to agree reasonably well with an anisotropic Gaussian distribution, with only a slight overpopulation of the high-velocity tails. The velocity distribution is strongly anisotropic, especially at lower densities and lower values of the coefficient of restitution, with the largest variance in the direction of shear. The density dependence of the compressibility factor of the sheared inelastic-hard-sphere system is quite similar to that of elastic-hard-sphere fluids. As the systems become more inelastic, the glancing collisions begin to dominate over more direct, head-on collisions. Examination of the distribution of the times between collisions indicates that the collisions experienced by the particles are strongly correlated in the highly inelastic systems. A comparison of the simulation data is made with direct Monte Carlo simulation of the Enskog equation. Results of the kinetic model of Montanero [J. Fluid Mech. 389, 391 (1999)] based on the Enskog equation are also included. In general, good agreement is found for high-density, weakly inelastic systems.

  10. Hard-sphere limit of soft-sphere model for granular materials: stiffness dependence of steady granular flow.

    Science.gov (United States)

    Mitarai, Namiko; Nakanishi, Hiizu

    2003-02-01

    Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard-sphere limit of the soft-sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the collisional flow and the frictional flow. In the collisional flow, the hard-sphere limit is straightforward; the number of collisions per particle per unit time converges to a finite value and the total contact time fraction with other particles goes to zero. For the frictional flow, however, we demonstrate that the collision rate diverges as the power of the particle stiffness so that the time fraction of the multiple contacts remains finite even in the hard-sphere limit, although the contact time fraction for the binary collisions tends to zero.

  11. Isentropic Spheres in General Relativity

    CERN Document Server

    Humi, Mayer

    2016-01-01

    Astrophysical gas clouds undergo thermodynamically irreversible processes and emit heat to their surroundings. Due the emission of this heat one can envision an idealized situation in which gas entropy remains (almost) constant. With this motivation in mind we derive in this paper interior solutions to the Einstein equations of General Relativity for spheres which consist of isentropic gas. In particular we investigate solutions in which the mass distribution inside the sphere has several shells. Such spheres might be considered an early stage for the formation of a "solar system".

  12. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  13. Confined disordered strictly jammed binary sphere packings

    Science.gov (United States)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  14. Demixing in binary mixtures of apolar and dipolar hard spheres.

    Science.gov (United States)

    Almarza, N G; Lomba, E; Martín, C; Gallardo, A

    2008-12-21

    We study the demixing transition of mixtures of equal size hard spheres and dipolar hard spheres using computer simulation and integral equation theories. Calculations are carried out at constant pressure, and it is found that there is a strong correlation between the total density and the composition. The critical temperature and the critical total density are found to increase with pressure. The critical mole fraction of the dipolar component on the contrary decreases as pressure is augmented. These qualitative trends are reproduced by the theoretical approaches that on the other hand overestimate by far the value of the critical temperature. Interestingly, the critical parameters for the liquid-vapor equilibrium extrapolated from the mixture results in the limit of vanishing neutral hard sphere concentration agree rather well with recent estimates based on the extrapolation of charged hard dumbbell phase equilibria when dumbbell elongation shrinks to zero [G. Ganzenmuller and P. J. Camp, J. Chem. Phys. 126, 191104 (2007)].

  15. Data compression on the sphere

    CERN Document Server

    McEwen, J D; Eyers, D M; 10.1051/0004-6361/201015728

    2011-01-01

    Large data-sets defined on the sphere arise in many fields. In particular, recent and forthcoming observations of the anisotropies of the cosmic microwave background (CMB) made on the celestial sphere contain approximately three and fifty mega-pixels respectively. The compression of such data is therefore becoming increasingly important. We develop algorithms to compress data defined on the sphere. A Haar wavelet transform on the sphere is used as an energy compression stage to reduce the entropy of the data, followed by Huffman and run-length encoding stages. Lossless and lossy compression algorithms are developed. We evaluate compression performance on simulated CMB data, Earth topography data and environmental illumination maps used in computer graphics. The CMB data can be compressed to approximately 40% of its original size for essentially no loss to the cosmological information content of the data, and to approximately 20% if a small cosmological information loss is tolerated. For the topographic and il...

  16. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  17. Phase diagrams of colloidal spheres with a constant zeta-potential

    NARCIS (Netherlands)

    Smallenburg, F.|info:eu-repo/dai/nl/313939039; Boon, N.J.H.|info:eu-repo/dai/nl/313960143; Kater, M.; Dijkstra, M.|info:eu-repo/dai/nl/123538807; van Roij, R.H.H.G.|info:eu-repo/dai/nl/152978984

    2011-01-01

    We study suspensions of colloidal spheres with a constant zeta-potential within Poisson–Boltzmann theory, quantifying the discharging of the spheres with increasing colloid density and decreasing salt concentration. We use the calculated renormalized charge of the colloids to determine their

  18. Characterization of maximally random jammed sphere packings: Voronoi correlation functions.

    Science.gov (United States)

    Klatt, Michael A; Torquato, Salvatore

    2014-11-01

    We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a

  19. Field assessment of the urban density of air conditioning use in the United Kingdom in non domestic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Caeiro, Jorge A.J. [The Bartlett School of Graduate Studies, Univ. College London (United Kingdom); Brown, Neil [Inst. of Energy and Sustainable Development, De Montfort Univ., Leicester (United Kingdom); Altan, Hasim [School of Architecture, Building Energy Analysis Unit, The Univ. of Sheffield (United Kingdom)

    2007-07-01

    Increasing sales of air conditioning (AC) will exacerbate future heat waves, paradoxically with positive feedback, since the resulting augmented emission of greenhouse effect gases will in turn contribute to global warming. According to a research study carried out in 2000 (Hitchin, E.R et al), the total air-conditioned UK building area, under both cooling and reverse systems, was estimated to have almost doubled over the previous decade and is projected to nearly double again by 2020. This has now become an urgent concern. However the estimated increase is based on sales data and the detailed patterns of increase in urban density of air conditioning use in service and retail sectors in the UK are largely unknown. Energy use information was collected from a major study carried out in the early 1990s. Since then there have been many changes in these sectors, with shifts in location patterns, and increased use of air conditioning in offices and shops. Unfortunately, AC unit sales figures may not indicate which stock is new, and which is sold as replacement. In this paper, the results of surveys of over 2000 retail premises and offices are presented. These are derived from ongoing surveys with the goal of a statistically representative picture of AC usage within the UK.

  20. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  1. Transport properties of the rough hard sphere fluid.

    Science.gov (United States)

    Kravchenko, Olga; Thachuk, Mark

    2012-01-28

    Results are presented of a systematic study of the transport properties of the rough hard sphere fluid. The rough hard sphere fluid is a simple model consisting of spherical particles that exchange linear and angular momenta, and energy upon collision. This allows a study of the sole effect of particle rotation upon fluid properties. Molecular dynamics simulations have been used to conduct extensive benchmark calculations of self-diffusion, shear and bulk viscosity, and thermal conductivity coefficients. As well, the validity of several kinetic theory equations have been examined at various levels of approximation as a function of density and translational-rotational coupling. In particular, expressions from Enskog theory using different numbers of basis sets in the representation of the distribution function were tested. Generally Enskog theory performs well at low density but deviates at larger densities, as expected. The dependence of these expressions upon translational-rotational coupling was also examined. Interestingly, even at low densities, the agreement with simulation results was sometimes not even qualitatively correct. Compared with smooth hard sphere behaviour, the transport coefficients can change significantly due to translational-rotational coupling and this effect becomes stronger the greater the coupling. Overall, the rough hard sphere fluid provides an excellent model for understanding the effects of translational-rotational coupling upon transport coefficients.

  2. Crystallizing hard-sphere glasses by doping with active particles

    NARCIS (Netherlands)

    Ni, Ran; Cohen Stuart, M.A.; Dijkstra, M.; Bolhuis, P.G.

    2014-01-01

    Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as

  3. Depletion potential in hard-sphere mixtures: theory and applications

    Science.gov (United States)

    Roth; Evans; Dietrich

    2000-10-01

    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. For the standard situation of a single big particle immersed in a sea of small particles near a fixed object, the system is regarded as an inhomogeneous binary mixture of big and small particles in the external field of the fixed object, and the limit of vanishing density of the big species, rho(b)-->0, is taken explicitly. In this limit our approach requires only the equilibrium density profile of a one-component fluid of small particles in the field of the fixed object, and a knowledge of the density independent weight functions which characterize the mixture functional. Thus, for a big particle near a planar wall or a cylinder or another fixed big particle, the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures, comparing our results with computer simulations for the depletion potential of a big sphere of radius R(b) in a sea of small spheres of radius R(s) near (i) a planar hard wall, and (ii) another big sphere. In both cases our results are accurate for size ratios s=R(s)/R(b) as small as 0.1, and for packing fractions of the small spheres eta(s) as large as 0.3; these are the most extreme situations for which reliable simulation data are currently available. Our approach satisfies several consistency requirements, and the resulting depletion potentials incorporate the correct damped oscillatory decay at large separations of the big particles or of the big particle and the wall. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails, even for very small size ratios s, for all but the smallest values of eta(s) where the depletion potential reduces to the Asakura

  4. Project CONDOR: Middle atmosphere wind structure obtained with lightweight inflatable spheres near the equatorial electrojet

    Science.gov (United States)

    Schmidlin, F. J.

    1987-01-01

    Observed correlations between the atmospheric electric field and the neutral wind were studied using additional atmospheric measurements during Project CONDOR. Project CONDOR obtained measurements near the equatorial electrojet (12 S) during March 1983. Neutral atmosphere wind measurements were obtained using lightweight inflatable spheres and temperatures were obtained using a datasonde. The lightweight sphere technology, the wind structure, and temperature structure are described. Results show that the lightweight sphere gives higher vertical resolution of winds below 75 km compared with the standard sphere, but gives little or no improvement above 80 km, and no usable temperature and density data.

  5. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  6. Discovering Civil Discourse: Using the Online Public Sphere for Authentic Assessment

    Science.gov (United States)

    McGowan, Angela M.; Soczka Kaiser, Kelly

    2014-01-01

    The objective of the exercise described here is for students to be able to recognize Habermas's public sphere theory and analyze public deliberation occurring within the online public sphere. After completing this unit activity, students will also be able to distinguish between civil and uncivil comments that people use in online forums.…

  7. Discovering Civil Discourse: Using the Online Public Sphere for Authentic Assessment

    Science.gov (United States)

    McGowan, Angela M.; Soczka Kaiser, Kelly

    2014-01-01

    The objective of the exercise described here is for students to be able to recognize Habermas's public sphere theory and analyze public deliberation occurring within the online public sphere. After completing this unit activity, students will also be able to distinguish between civil and uncivil comments that people use in online forums.…

  8. Convenient integrating sphere scanner for accurate luminous flux measurements

    Science.gov (United States)

    Winter, S.; Lindemann, M.; Jordan, W.; Binder, U.; Anokhin, M.

    2009-08-01

    Measurement results and applications of a recently developed device for the measurement of the spatial uniformity of integrating spheres are presented. Due to the complexity of their implementation, sphere scanners are mainly used by national metrology institutes to increase the accuracy of relative and absolute luminous flux measurements (Ohno et al 1997 J. IES 26 107-14, Ohno and Daubach 2001 J. IES 30 105-15, Ohno 1998 Metrologia 35 473-8, Hovila et al 2004 Metrologia 41 407-13). The major drawback of traditional scanners for integrating spheres is the necessity of a complex and time-consuming sphere modification, as the lamp holder has to be replaced by a new scanner holder with additional cables for power supply and for communication with the stepping motor control unit (Ohno et al 1997 J. IES 26 107-14). Therefore, with traditional scanners the relative spatial sphere responsivity already changes due to the installation of a special scanner holder. The new scanner simply substitutes the lamp under test: it can be screwed into an E27 lamp socket, as it needs only two electrical contacts. Two wires are simultaneously used for the power supply of the stepping motor control unit, the scanner light source (LED) and for the signal transmission of commands and results. The benefits of scanner-assisted measurements are shown for spotlight lamp calibrations.

  9. Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Badri [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA; Deshmukh, Sanket A. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA; Shrestha, Lok Kumar [World Premier International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; Ariga, Katsuhiko [World Premier International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; Pol, Vilas G. [School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Sankaranarayanan, Subramanian K. R. S. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2016-07-25

    Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified St€ober silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation and growth of the polymer spheres. The results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.

  10. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  11. Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Badri, E-mail: bnarayanan@anl.gov; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S., E-mail: ssankaranarayanan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Shrestha, Lok Kumar; Ariga, Katsuhiko [World Premier International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Pol, Vilas G. [School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-07-25

    Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified Stöber silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation and growth of the polymer spheres. The results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.

  12. Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets.

    Science.gov (United States)

    Harnau, L; Dietrich, S

    2005-01-01

    Density functional theory is used to study binary colloidal fluids consisting of hard spheres and thin platelets in their bulk and near a planar hard wall. This system exhibits liquid-liquid coexistence of a phase that is rich in spheres (poor in platelets) and a phase that is poor in spheres (rich in platelets). For the mixture near a planar hard wall, we find that the phase rich in spheres wets the wall completely upon approaching the liquid demixing binodal from the sphere-poor phase, provided the concentration of the platelets is smaller than a threshold value which marks a first-order wetting transition at coexistence. No layering transitions are found, in contrast to recent studies on binary mixtures of spheres and nonadsorbing polymers or thin hard rods.

  13. Ecohydrologic controls on vegetation density and evapotranspiration partitioning across the climatic gradients of the central United States

    Directory of Open Access Journals (Sweden)

    J. P. Kochendorfer

    2008-03-01

    Full Text Available The soil-water balance and plant water use are investigated over a domain encompassing the central United States using the Statistical-Dynamical Ecohydrology Model (SDEM. The seasonality in the model and its use of the two-component Shuttleworth-Wallace canopy model allow for application of an ecological optimality hypothesis in which vegetation density, in the form of peak green leaf area index (LAI, is maximized, within upper and lower bounds, such that, in a typical season, soil moisture in the latter half of the growing season just reaches the point at which water stress is experienced. Another key feature of the SDEM is that it partitions evapotranspiration into transpiration, evaporation from canopy interception, and evaporation from the soil surface. That partitioning is significant for the soil-water balance because the dynamics of the three processes are very different. The partitioning and the model-determined peak in green LAI are validated based on observations in the literature, as well as through the calculation of water-use efficiencies with modeled transpiration and large-scale estimates of grassland productivity. Modeled-determined LAI are seen to be at least as accurate as the unaltered satellite-based observations on which they are based. Surprising little dependence on climate and vegetation type is found for the percentage of total evapotranspiration that is soil evaporation, with most of the variation across the study region attributable to soil texture and the resultant differences in vegetation density. While empirical evidence suggests that soil evaporation in the forested regions of the most humid part of the study region is somewhat overestimated, model results are in excellent agreement with observations from croplands and grasslands. The implication of model results for water-limited vegetation is that the higher (lower soil moisture content in wetter (drier climates is more-or-less completely offset by the greater

  14. Critical Dimensions of Water-tamped Slabs and Spheres of Active Material

    Science.gov (United States)

    Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.

    1946-08-06

    The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.

  15. How dense can one pack spheres of arbitrary size distribution?

    Science.gov (United States)

    Reis, S. D. S.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, Hans J.

    2012-01-01

    We present the first systematic algorithm to estimate the maximum packing density of spheres when the grain sizes are drawn from an arbitrary size distribution. With an Apollonian filling rule, we implement our technique for disks in 2d and spheres in 3d. As expected, the densest packing is achieved with power-law size distributions. We also test the method on homogeneous and on empirical real distributions, and we propose a scheme to obtain experimentally accessible distributions of grain sizes with low porosity. Our method should be helpful in the development of ultra-strong ceramics and high-performance concrete.

  16. ON THE FREE VIBRATION OF A SUBMERGED FGM HOLLOW SPHERE

    Institute of Scientific and Technical Information of China (English)

    Ye Guiru; Chen Weiqiu; Chen Weiqiu; Cai Jinbiao; Ding Haojiang

    2000-01-01

    The free vibration of a functionally graded material hollow sphere submerged in a compress ible fluid medium is exactly analyzed. The sphere is assumed to be spherically isotopic with material consta nts being inhomngenecus along the radial direction. By employing a separation technique as well as the spherical harmonics expansion method, the governing equations are simplified to an uncoupled second-order ordinary differential equation, and a coupled system of two such equations. Solutions to these equations are given when the elastic constants and the mass density are power functions of the radial coordinate. Numerical examples are finally given to show the effect of the material gradient on the natural frequencies.

  17. Thermodynamic signature of the dynamic glass transition in hard spheres.

    Science.gov (United States)

    Hermes, Michiel; Dijkstra, Marjolein

    2010-03-17

    We use extensive event-driven molecular dynamics simulations to study the thermodynamic, structural and dynamic properties of hard-sphere glasses. We determine the equation of state of the metastable fluid branch for hard spheres with a size polydispersity of 10%. Our results show a clear jump in the slope of the isothermal compressibility. The observation of a thermodynamic signature at the transition from a metastable fluid to a glassy state is analogous to the abrupt change in the specific heat or thermal expansion coefficient as observed for molecular liquids at the glass transition. The dynamic glass transition becomes more pronounced and shifts to higher densities for longer equilibration times.

  18. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    Science.gov (United States)

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  19. Unveiling small sphere's scattering behavior

    CERN Document Server

    Tzarouchis, Dimitrios C; Sihvola, Ari

    2016-01-01

    A classical way for exploring the scattering behavior of a small sphere is to approximate Mie coefficients with a Taylor series expansion. This ansatz delivered a plethora of insightful results, mostly for small spheres supporting electric localized plasmonic resonances. However, many scattering aspects are still uncharted, especially for the case of magnetic resonances. Here, an alternative system ansatz is proposed based on the Pad\\'e approximants for the Mie coefficients. The extracted results reveal new aspects, such as the existence of a self-regulating radiative damping mechanism for the first magnetic resonance. Hence, a systematic way of exploring the scattering behavior is introduced, sharpening our understanding about sphere's scattering behavior and its emergent functionalities.

  20. Public Sphere as Digital Assemblage

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse...... theories. Drawing from Deleuze & Guattari (1987), Bennett (2010), and Latour (2004) in order to imagine post-human assemblages of public sphere, this paper argues for a relational ontology that emphasizes the complex interactions of political assemblages. Empirically, it draws from the author’s studies......Normative theories of public sphere have struggled with the topic of materiality. The historical narrative of the ‘public sphere’ situated the phenomenon in specific spaces, where practices (public deliberation) and language (discourse) constructed political agencies, and further publics. From...

  1. Matrix dynamics of fuzzy spheres

    CERN Document Server

    Jatkar, D P; Wadia, S R; Yogendran, K P; Jatkar, Dileep P.; Mandal, Gautam; Wadia, Spenta R.

    2002-01-01

    We study the dynamics of fuzzy two-spheres in a matrix model which represents string theory in the presence of RR flux. We analyze the stability of known static solutions of such a theory which contain commuting matrices and SU(2) representations. We find that irreducible as well as reducible representations are stable. Since the latter are of higher energy, this stability poses a puzzle. We resolve this puzzle by noting that reducible representations have marginal directions corresponding to non-spherical deformations. We obtain new static solutions by turning on these marginal deformations. These solutions now have instability or tachyonic directions. We discuss condensation of these tachyons which correspond to classical trajectories interpolating from multiple, small fuzzy spheres to a single, large sphere. We briefly discuss spatially independent configurations of a D3/D5 system described by the same matrix model which now possesses a supergravity dual.

  2. Troubleshooting vSphere storage

    CERN Document Server

    Preston, Mike

    2013-01-01

    This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge

  3. Zinc coordination spheres in protein structures.

    Science.gov (United States)

    Laitaoja, Mikko; Valjakka, Jarkko; Jänis, Janne

    2013-10-07

    Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.

  4. Hyperuniformity of self-assembled soft colloidal spheres

    Science.gov (United States)

    Bretz, Coline

    2015-03-01

    Hyperuniformity characterizes a state of matter for which density fluctuations vanish on large scales. Hyperuniform materials are of technological importance as they exhibit interesting photonic properties. We have shown that such materials can be obtained by assembling spheres into a disordered jammed 2D- packing. To this end, we use a binary mixture of large and small Poly(NIPAM) particles confined between two cover slips. These soft spheres have been chosen for their temperature-sensitive properties. We can locally increase or decrease the volume fraction occupied by the spheres by finely tuning the temperature. By applying various temperature patterns, we are studying the spatial arrangements of the microgels and characterizing their hyperuniform properties through reconstruction and detection algorithms. CNRS-Rhodia-UPenn UMI 3254, Bristol, PA 19007-3624, USA

  5. Hydration entropy change from the hard sphere model.

    Science.gov (United States)

    Graziano, Giuseppe; Lee, Byungkook

    2002-12-10

    The gas to liquid transfer entropy change for a pure non-polar liquid can be calculated quite accurately using a hard sphere model that obeys the Carnahan-Starling equation of state. The same procedure fails to produce a reasonable value for hydrogen bonding liquids such as water, methanol and ethanol. However, the size of the molecules increases when the hydrogen bonds are turned off to produce the hard sphere system and the volume packing density rises. We show here that the hard sphere system that has this increased packing density reproduces the experimental transfer entropy values rather well. The gas to water transfer entropy values for small non-polar hydrocarbons is also not reproduced by a hard sphere model, whether one uses the normal (2.8 A diameter) or the increased (3.2 A) size for water. At least part of the reason that the hard sphere model with 2.8 A size water produces too small entropy change is that the size of water is too small for a system without hydrogen bonds. The reason that the 3.2 A model also produces too small entropy values is that this is an overly crowded system and that the free volume introduced in the system by the addition of a solute molecule produces too much of a relief to this crowding. A hard sphere model, in which the free volume increase is limited by requiring that the average surface-to-surface distance between the solute and water molecules is the same as that between the increased-size water molecules, does approximately reproduce the experimental hydration entropy values.

  6. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-09-01

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  7. Evaluation of the sphere anemometer for atmospheric wind measurements

    Science.gov (United States)

    Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael

    2014-11-01

    Our contribution will compare the sphere anemometer and two standard sensors for wind energy and meteorology based on data from a near-shore measurement campaign. We will introduce the characteristics of the sphere anemometer - a drag-based sensor for simultaneous wind speed and direction measurements, which makes use of the highly resolving light pointer principle to detect the velocity-dependent deflection of sphere mounted on a flexible tube. Sphere anemometer, cup anemometer and 3D sonic anemometer were installed at near-shore site in the German Wadden Sea. A comparison of the anemometers was carried out based on several month of high frequency data obtained from this campaign. The measured wind speed and direction data were analyzed to evaluate the capability of the sphere anemometer under real operating conditions, while the sensor characteristics obtained from previous wind tunnel experiments under turbulent conditions served as a reference to assess the durability and to identify challenges of the new anemometer. A characterization of the atmospheric wind conditions at the test site is performed based on the recorded wind data. Wind speed and wind direction averages and turbulence intensities are analyzed as well as power spectra and probability density functions. Supported by the German Ministry of Economics and Energy.

  8. The Schr\\"odinger-Poisson system on the sphere

    CERN Document Server

    Gérard, Patrick

    2010-01-01

    We study the Schr\\"odinger-Poisson system on the unit sphere $\\SS^2$ of $\\RR^3$, modeling the quantum transport of charged particles confined on a sphere by an external potential. Our first results concern the Cauchy problem for this system. We prove that this problem is regularly well-posed on every $H^s(\\SS ^2)$ with $s>0$, and not uniformly well-posed on $L^2(\\SS ^2)$. The proof of well-posedness relies on multilinear Strichartz estimates, the proof of ill-posedness relies on the construction of a counterexample which concentrates exponentially on a closed geodesic. In a second part of the paper, we prove that this model can be obtained as the limit of the three dimensional Schr\\"odinger-Poisson system, singularly perturbed by an external potential that confines the particles in the vicinity of the sphere.

  9. Neuroscience in the public sphere.

    Science.gov (United States)

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-04-26

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Spheres of Justice within Schools

    DEFF Research Database (Denmark)

    Sabbagh, Clara; Resh, Nura; Mor, Michal;

    2006-01-01

    This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education...

  11. Kinetic theory of hard spheres

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1979-01-01

    Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonloca

  12. Voronoi diagrams on the sphere

    NARCIS (Netherlands)

    Na, H.-S.; Lee, C.-N.; Cheong, O.

    2001-01-01

    Given a set of compact sites on a sphere, we show that their spherical Voronoi diagram can be computed by computing two planar Voronoi diagrams of suitably transformed sites in the plane. We also show that a planar furthest-site Voronoi diagram can always be obtained as a portion of a

  13. Hard sphere model of atom

    CERN Document Server

    Tsekov, R

    2014-01-01

    The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.

  14. Phase diagram of Hertzian spheres

    NARCIS (Netherlands)

    Pàmies, J.C.; Cacciuto, A.; Frenkel, D.

    2009-01-01

    We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of wea

  15. Approximation on the complex sphere

    OpenAIRE

    Alsaud, Huda; Kushpel, Alexander; Levesley, Jeremy

    2012-01-01

    We develop new elements of harmonic analysis on the complex sphere on the basis of which Bernstein's, Jackson's and Kolmogorov's inequalities are established. We apply these results to get order sharp estimates of $m$-term approximations. The results obtained is a synthesis of new results on classical orthogonal polynomials, harmonic analysis on manifolds and geometric properties of Euclidean spaces.

  16. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})

  17. Diffusion and structure of a quasi-one-dimensional hard-sphere fluid

    Science.gov (United States)

    Lin, Binhua; Lee, Ji Hwan; Cui, Bianxiao

    2001-03-01

    We report the results of an experimental study of a quasi-one-dimensional hard-sphere fluid. The system consists of uncharged Si colloidal spheres confined in long, uncorrelated 1D-channels whose narrow width forbids mutual passage of spheres along the channel. By tracking the trajectories of the spheres using digital video microscopy, we studied the diffusion and structure of the system as a function of the density of the fluid. Our results show that the behavior of the spheres in self-diffusion is changed gradually from Fickian to non-Fickian near the onset of the collision between the spheres, indicating the correlation between the collision of the hard-spheres and the change in diffusion mechanism. At high density, the self-part of the van Hove function of the system is no longer a Gaussian distribution but a Poisson distribution which can be interpreted using a hydrodynamic analysis for effective wall-drag effect. The pair distribution function of the system can be explained by an analytical expression for a 1D hard-sphere fluid [1]. [1] Y. Rosenfeld, M. Schmidt, H. Lowen and P. Tarazona, Phys. Rev. E 55, 4245 (1997).

  18. Isostatic geoid anomalies on a sphere

    Science.gov (United States)

    Dahlen, F. A.

    1982-01-01

    Long-wavelength geoid anomalies due to lateral variations in the density or thickness of a thin layer in local isostatic equilibrium on the surface of a sphere depend sensitively on the assumed state of stress within the layer. A number of common intuitive definitions of local isostasy generally believed to be essentially identical are associated with quite different states of isostatic stress, and the corresponding theoretical geoid anomalies can vary by more than a factor of 2. This sensitivity of the theoretical anomaly to the exact definition of local isostasy constitutes an obstacle to any proposed program of interpreting or exploiting observed global isostatic geoid anomalies such as those associated with the aging of the oceanic lithosphere.

  19. Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers.

    Science.gov (United States)

    Sear, Richard P

    2002-11-01

    A simple analytic theory for mixtures of hard spheres and larger polymers with excluded volume interactions is developed. The mixture is shown to exhibit extensive immiscibility. For large polymers with strong excluded volume interactions, the density of monomers at the critical point for demixing decreases as one over the square root of the length of the polymer, while the density of spheres tends to a constant. This is very different from the behavior of mixtures of hard spheres and ideal polymers, these mixtures, although even less miscible than those with polymers with excluded volume interactions, have a much higher polymer density at the critical point of demixing. The theory applies to the complete range of mixtures of spheres with flexible polymers, from those with strong excluded volume interactions to ideal polymers.

  20. Multicomponent fluid of hard spheres near a wall.

    Science.gov (United States)

    Malijevský, Alexandr; Yuste, Santos B; Santos, Andrés; López de Haro, Mariano

    2007-06-01

    The rational function approximation method, density functional theory, and NVT Monte Carlo simulation are used to obtain the density profiles of multicomponent hard-sphere mixtures near a planar hard wall. Binary mixtures with a size ratio 1:3 in which both components occupy a similar volume are specifically examined. The results indicate that the present version of density functional theory yields an excellent overall performance. A reasonably accurate behavior of the rational function approximation method is also observed, except in the vicinity of the first minimum, where it may even predict unphysical negative values.

  1. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究%Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls∗

    Institute of Scientific and Technical Information of China (English)

    王金涛; 刘子勇

    2013-01-01

      单晶硅球间微量密度差异测量是阿伏伽德罗常数量子基准定义的重要研究内容,也是半导体产业中高纯度单晶硅制备工艺质量控制的主要方法.为了改善现有非接触相移干涉法测量装置复杂和静力称重法测量不确定度低的特点,根据单晶硅密度精密测量需要,实现了一种基于静力悬浮原理的单晶硅球密度相对参比测量方法.通过改变静压力和温度进行三溴丙烷和二溴乙烷混合液体密度的微量调节,分别使两个待测单晶硅球在液体中悬浮,根据悬浮状态时的液体温度和悬浮高度计算出待测单晶硅球密度差值.通过双循环水浴和PID温度控制系统实现±100µK的恒温液体测量环境.通过图像识别和迭代拟合算法实现单晶硅球悬浮高度的测量.使用PID静压力控制系统实现单晶硅球的稳定悬浮控制,同时减少Joule-Thomson效应引起的液体温度改变.利用静力悬浮模型中的温度变化和静压力变化线性关系准确测量出标准液体的压缩系数.试验结果表明,这种测量方法可以避免液体液面张力的影响,测量相对标准不确定度达到2.1×10−7,能够实现单晶硅球密度差值的精密测量.%The micro density difference between silicon single crystal spheres is not only important for the research on the redefinition of Avogadro constant based on quantum standard, but also a key solution for quality control for the production of silicon single crystal with ultra-high purity in semi-conductor industry. To overcome the complexity of non-contact laser interferometer method and improve the accuracy of hydro-weight method, a method based on the hydrostatic suspension principle is realized. The silicon single spheres to be measured are immersed into mixture liquid including 1,2,3-tribromopropane and 1,2-dibromoethane, and floated freely by adjusting the temperature and pressure of the liquid. The micro density difference between

  2. A computational investigation on random packings of sphere-spherocylinder mixtures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Random packings of binary mixtures of spheres and spherocylinders with the same volume and the same diameter were simulated by a sphere assembly model and relaxation algorithm. Simulation results show that, independently of the component volume fraction, the mixture packing density increases and then decreases with the growth of the aspect ratio of spherocylinders, and the packing density reaches its maximum at the aspect ratio of 0.35. With the same volume particles, results show that the dependence of the mixture packing density on the volume fraction of spherocylinders is approximately linear. With the same diameter particles, the relationship between the mixture packing density and component volume fraction is also roughly linear for short spherocylinders, but when the aspect ratio of spherocylinders is greater than 1.6, the curves turn convex which means the packing of the mixture can be denser than either the sphere or spherocylinder packing alone. To validate the sphere assembly model and relaxation algorithm, binary mixtures of spheres and random packings of spherocylinders were also simulated. Simulation results show the packing densities of sphere mixtures agree with previous prediction models and the results of spherocylinders correspond with the simulation results in literature.

  3. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: 2010 US Census Road Density

    Science.gov (United States)

    This dataset represents the road density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) This data set is derived from TIGER/Line Files of roads in the conterminous United States. Road density describes how many kilometers of road exist in a square kilometer. A raster was produced using the ArcGIS Line Density Tool to form the landscape layer for analysis. (see Data Sources for links to NHDPlusV2 data and Census Data) The (kilometer of road/square kilometer) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  4. Vortical flow past a sphere

    Science.gov (United States)

    Mattner, Trent; Chong, Min; Joubert, Peter

    2000-11-01

    Vortical flow past a sphere in a constant diameter pipe was studied experimentally in a guide vane apparatus similar to those used in fundamental experimental studies of vortex breakdown. The initial effect of swirl was to shorten the downstream separation bubble. For a small range of the swirl intensity, an almost stagnant upstream separation bubble formed. As the swirl intensity was increased, the bubble became unstable and an unsteady spiral formed. At high swirl intensity there was a mean recirculation region which penetrated far upstream while the flow on the downstream hemisphere was attached. Measurements of the velocity field were obtained using laser Doppler velocimetry. Analysis of these results suggests that the onset of upstream separation is associated with the formation of a negative azimuthal vorticity component which slows the axial flow near the axis of symmetry. This is consistent with inviscid distortion of the vortex filaments in the diverging flow approaching the sphere.

  5. Entanglement Entropy of Two Spheres

    CERN Document Server

    Shiba, Noburo

    2012-01-01

    We study the entanglement entropy S_{AB} of a massless free scalar field on two spheres A and B whose radii are R_1 and R_2, respectively, and the distance between them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information S_{A;B}:=S_A+S_B-S_{AB} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r>>R_1,R_2, where S_A and S_B are the entanglement entropy on the inside region of A and B, respectively. We discuss possible connections of this result with the physics of black holes.

  6. Entanglement entropy of two spheres

    Science.gov (United States)

    Shiba, Noburo

    2012-07-01

    We study the entanglement entropy S AB of a massless free scalar field on two spheres A and B whose radii are R 1 and R 2, respectively, and the distance between the centers of them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information {S_{{A;B}}} equiv {S_A} + {S_B} - {S_{{AB}}} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r ≫ R 1 ,R 2,where S A and S B aretheentanglemententropyontheinsideregionof A and B, respectively. We discuss possible connections of this result with the physics of black holes.

  7. Elastic Curves on the Sphere

    Science.gov (United States)

    1992-12-16

    12 = (K,, + )- (29) K 2 (see [3]). The parameter KM represents the amplitude of the periodic curva - ture function and sm denotes the value at which K...Additamentum De curvis elasticis. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Ser. 1., Vol. 24, Lausanne 1744. 17 [10...Mathematical Theory of Elasticity. 4th. ed., Cambridge University Press, 1927. [12] G. Nielson. Bernstein/ Bezier Curves and Splines on Spheres based upon

  8. Principal Fibrations from Noncommutative Spheres

    Science.gov (United States)

    Landi, Giovanni; Suijlekom, Walter Van

    2005-11-01

    We construct noncommutative principal fibrations Sθ7→Sθ4 which are deformations of the classical SU(2) Hopf fibration over the four sphere. We realize the noncommutative vector bundles associated to the irreducible representations of SU(2) as modules of coequivariant maps and construct corresponding projections. The index of Dirac operators with coefficients in the associated bundles is computed with the Connes-Moscovici local index formula. "The algebra inclusion is an example of a not-trivial quantum principal bundle."

  9. Light Scattering by Charged Spheres.

    Science.gov (United States)

    1988-01-29

    Wyman Graduate Student: Mr. Alan Chu %"% ,’A% 4, % .1 % 70 References , % -- Arnold S. and N. Hessel , 1985: Photoemission from Single...position of the natural resonances of a sphere are used to determine its size or its chemical * composition ( Arnold , 1980; Lettieri, 1984). High...us very helpful suggestions during the program. We also kept close scientific contact with Dr. Arnold of the Polytechnic Institute of New York, and

  10. Diffusive redistribution of small spheres in crystallization of highly asymmetric binary hard-sphere mixtures

    OpenAIRE

    Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia

    2011-01-01

    We report a molecular dynamics study of crystallization in highly asymmetric binary hard-sphere mixtures, in which the large spheres can form a crystal phase while the small ones remain disordered during the crystallization process of the large spheres. By taking advantage of assisting crystal nucleation with a patterned substrate, direct evidence is presented that there is a close link between the diffusive redistribution of the small spheres and the crystal formation of the large spheres. A...

  11. Black Hole Formation in Fuzzy Sphere Collapse

    CERN Document Server

    Iizuka, Norihiro; Roy, Shubho; Sarkar, Debajyoti

    2013-01-01

    We study the collapse of a fuzzy sphere, that is a spherical membrane built out of D0-branes, in the BFSS model. At weak coupling, as the sphere shrinks, open strings are produced. If the initial radius is large then open string production is not important and the sphere behaves classically. At intermediate initial radius the back-reaction from open string production is important but the fuzzy sphere retains its identity. At small initial radius the sphere collapses to form a black hole. The crossover between the later two regimes is smooth and occurs at the correspondence point of Horowitz and Polchinski.

  12. Mastering VMware vSphere 5

    CERN Document Server

    Lowe, Scott

    2011-01-01

    A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the

  13. Fundamental measure theory for hard-sphere mixtures: a review.

    Science.gov (United States)

    Roth, Roland

    2010-02-17

    Hard-sphere systems are one of the fundamental model systems of statistical physics and represent an important reference system for molecular or colloidal systems with soft repulsive or attractive interactions in addition to hard-core repulsion at short distances. Density functional theory for classical systems, as one of the core theoretical approaches of statistical physics of fluids and solids, has to be able to treat such an important system successfully and accurately. Fundamental measure theory is up to date the most successful and most accurate density functional theory for hard-sphere mixtures. Since its introduction fundamental measure theory has been applied to many problems, tested against computer simulations, and further developed in many respects. The literature on fundamental measure theory is already large and is growing fast. This review aims to provide a starting point for readers new to fundamental measure theory and an overview of important developments.

  14. Monge Metric on the Sphere and Geometry of Quantum States

    OpenAIRE

    Zyczkowski, Karol; Slomczynski, Wojciech

    2000-01-01

    Topological and geometrical properties of the set of mixed quantum states in the N-dimensional Hilbert space are analysed. Assuming that the corresponding classical dynamics takes place on the sphere we use the vector SU(2) coherent states and the generalised Husimi distributions to define the Monge distance between arbitrary two density matrices. The Monge metric has a simple semiclassical interpretation and induces a non-trivial geometry. Among all pure states the distance from the maximall...

  15. Equivariant Equipartitions: Ham Sandwich Theorems for Finite Subgroups of Spheres

    CERN Document Server

    Simon, Steven

    2011-01-01

    Equivariant "Ham Sandwich" Theorems are obtained for the finite subgroups of the unit spheres S^{d-1}, d=1,2,4. Given any F-valued mass distributions on F^n and any non-zero finite subgroup G of the unit sphere S^{d-1} in F= R, C, or H, it is shown that there exists a collection of fundamental G-regions partitioning F^n which "G-Equipartition" each of the n measures, as realized by the simultaneous vanishing of the "G-averages" of the regions' measures. Equipartition results for real measures follow, among them that any n signed mass distributions on R^{(p-1)n} can be equipartitioned by a single regular p-fan for any prime number p.

  16. The effect of rotational and translational energy exchange on tracer diffusion in rough hard sphere fluids.

    Science.gov (United States)

    Kravchenko, Olga; Thachuk, Mark

    2011-03-21

    A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."

  17. Motor unit properties in the biceps brachii of chronic stroke patients assessed with high-density surface EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2009-01-01

    Motor unit properties of the biceps brachii and Fugl-Meyer score were assessed in stroke patients and healthy controls during passive and active elbow flexion and extension contractions. The level of motor recovery as assessed with the Fugl-Meyer was correlated with the ration of the size of the

  18. Bulk fluid phase behaviour of colloidal platelet-sphere and platelet-polymer mixtures.

    Science.gov (United States)

    de las Heras, Daniel; Schmidt, Matthias

    2013-04-13

    Using a geometry-based fundamental measure density functional theory, we calculate bulk fluid phase diagrams of colloidal mixtures of vanishingly thin hard circular platelets and hard spheres. We find isotropic-nematic phase separation, with strong broadening of the biphasic region, upon increasing the pressure. In mixtures with large size ratio of platelet and sphere diameters, there is also demixing between two nematic phases with differing platelet concentrations. We formulate a fundamental measure density functional for mixtures of colloidal platelets and freely overlapping spheres, which represent ideal polymers, and use it to obtain phase diagrams. We find that, for low platelet-polymer size ratio, in addition to isotropic-nematic and nematic-nematic phase coexistence, platelet-polymer mixtures also display isotropic-isotropic demixing. By contrast, we do not find isotropic-isotropic demixing in hard-core platelet-sphere mixtures for the size ratios considered.

  19. Rotation-triggered path instabilities of rising spheres and cylinder

    Science.gov (United States)

    Mathai, Varghese; Zhu, Xiaojue; Sun, Chao; Lohse, Detlef

    2016-11-01

    Path-instabilities are a common observation in the dynamics of buoyant particles in flows. However, the factors leading to the onset of oscillatory motion have remained difficult to predict even for simple bodies such as bubbles, spheres and cylinders. In literature, two quantities are considered to control the buoyancy-driven dynamics for isotropic bodies (spheres and cylinders); they are the particle's density relative to the fluid (Γ ≡ρp /ρf) and its Galileo number (Ga). In contrast to this picture, we show that buoyant spheres (as well as cylinders) can exhibit dramatically different modes of vibration and wake-shedding patterns under seemingly identical conditions (Γ and Ga fixed). These effects stem from the simplest of changes in the mass distribution of the particle (hollow to solid sphere), which changes its rotational inertia. We show that rotation can couple with the particle's translational motion and trigger distinctly different wake-induced oscillatory motions. The present findings also provide an explanation for the wide variation that is witnessed in the dynamics of buoyant isotropic bodies.

  20. Structure and phase behaviors of confined two penetrable soft spheres

    Science.gov (United States)

    Kim, Eun-Young; Kim, Soon-Chul

    2016-04-01

    We study the phase behaviors of two penetrable soft spheres, whose interactions include the soft repulsion and attraction, in a hard spherical pore. The exact partition function, one-body density, and equation of state for the confined two penetrable soft spheres have been calculated using the Fourier transform method. The phase diagrams have been determined from the negative compressibility of the van der Waals type, which imitates the phase transition of many particle system. The addition of the soft repulsion and attraction beyond the soft-core potential gives rise to the van der Waals instability. The soft attraction beyond the soft-core potential significantly enhances the van der Waals instability, whereas the soft repulsion reduces the van der Waals instability. For two hard spheres and hard square-well spheres, the van der Waals instability is not observed. However, the addition of a short-range soft repulsion beyond the hard-core gives rise to the van der Waals instability.

  1. Crystallizing hard-sphere glasses by doping with active particles.

    Science.gov (United States)

    Ni, Ran; Cohen Stuart, Martien A; Dijkstra, Marjolein; Bolhuis, Peter G

    2014-09-21

    Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as building blocks for novel functional materials with potential applications, e.g. photonic crystals. By performing Brownian dynamics simulations of glassy systems consisting of mixtures of active and passive hard spheres, we show that the crystallization of such hard-sphere glasses can be dramatically promoted by doping the system with small amounts of active particles. Surprisingly, even hard-sphere glasses of packing fraction up to ϕ = 0.635 crystallize, which is around 0.5% below the random close packing at ϕ ≃ 0.64. Our results suggest a novel way of fabricating crystalline materials from (colloidal) glasses. This is particularly important for materials that get easily kinetically trapped in glassy states, and the crystal nucleation hardly occurs.

  2. Statistical properties of two interacting soft spheres in a hard spherical pore

    Science.gov (United States)

    Kim, Soon-Chul

    2015-06-01

    The structure and thermodynamics of two soft spheres, whose interactions include the soft repulsion and attraction, confined in a hard spherical pore have been considered. The exact partition function, one-body density, and equation of state have been obtained using the Fourier transform method. The pore-size and potential dependence of the structural and thermodynamic properties have been investigated. The two penetrable square-well spheres shows a negative compressibility of the van der Waals type, which imitates the phase transition of many particle system. The van der Waals instability for two penetrable square-well spheres has been studied.

  3. High-density surface EMG decomposition allows for recording of motor unit discharge from proximal and distal flexion synergy muscles simultaneously in individuals with stroke.

    Science.gov (United States)

    Miller, Laura C; Thompson, Christopher K; Negro, Francesco; Heckman, C J; Farina, Dario; Dewald, Julius P A

    2014-01-01

    Analysis of motor unit discharge can provide insight into the neural control of movement in healthy and pathological states, but it is typically completed in one muscle at a time. For some research investigations, it would be advantageous to study motor unit discharge from multiple muscles simultaneously. One such example is investigation of the flexion synergy, an abnormal muscle co-activation pattern in post-stroke individuals in which activation of shoulder abductors is involuntarily coupled with that of elbow and finger flexors. However, limitations in available technology have hindered the ability to efficiently extract motor unit discharge from multiple muscles simultaneously. In this study, we propose the use of high-density surface EMG decomposition from proximal and distal flexion synergy muscles (deltoid, biceps, wrist/finger flexors) in combination with an isometric joint torque recording device in individuals with chronic stroke. This innovative approach provides the ability to efficiently analyze both motor units and joint torques that have been simultaneously recorded from the shoulder, elbow, and fingers. In preliminary experiments, 3 stroke and 5 control participants generated shoulder abduction, elbow flexion, and finger flexion torques at 10, 20, 30 and 40% of maximum torque. Motor unit spike trains could be extracted from all muscles at each torque level. Mean motor unit firing rates were significantly lower in the stroke group than in the control group for all three muscles. Within the stroke group, wrist/finger flexor motor units had the lowest coefficient of variation. Additionally, modulation of mean firing rates across torque levels was significantly impaired in all three paretic muscles. The implications of these findings and overall impact of this approach are discussed.

  4. Collective excitations in soft-sphere fluids.

    Science.gov (United States)

    Bryk, Taras; Gorelli, Federico; Ruocco, Giancarlo; Santoro, Mario; Scopigno, Tullio

    2014-10-01

    Despite that the thermodynamic distinction between a liquid and the corresponding gas ceases to exist at the critical point, it has been recently shown that reminiscence of gaslike and liquidlike behavior can be identified in the supercritical fluid region, encoded in the behavior of hypersonic waves dispersion. By using a combination of molecular dynamics simulations and calculations within the approach of generalized collective modes, we provide an accurate determination of the dispersion of longitudinal and transverse collective excitations in soft-sphere fluids. Specifically, we address the decreasing rigidity upon density reduction along an isothermal line, showing that the positive sound dispersion, an excess of sound velocity over the hydrodynamic limit typical for dense liquids, displays a nonmonotonic density dependence strictly correlated to that of thermal diffusivity and kinematic viscosity. This allows rationalizing recent observation parting the supercritical state based on the Widom line, i.e., the extension of the coexistence line. Remarkably, we show here that the extremals of transport properties such as thermal diffusivity and kinematic viscosity provide a robust definition for the boundary between liquidlike and gaslike regions, even in those systems without a liquid-gas binodal line. Finally, we discuss these findings in comparison with recent results for Lennard-Jones model fluid and with the notion of the "rigid-nonrigid" fluid separation lines.

  5. VMware vSphere design

    CERN Document Server

    Guthrie, Forbes

    2013-01-01

    Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v

  6. Fractional Boundaries for Fluid Spheres

    CERN Document Server

    Bayin, S; Krisch, J P; Bayin, Selcuk; Krisch, Jean P.

    2006-01-01

    A single Israel layer can be created when two metrics adjoin with no continuous metric derivative across the boundary. The properties of the layer depend only on the two metrics it separates. By using a fractional derivative match, a family of Israel layers can be created between the same two metrics. The family is indexed by the order of the fractional derivative. The method is applied to Tolman IV and V interiors and a Schwarzschild vacuum exterior. The method creates new ranges of modeling parameters for fluid spheres. A thin shell analysis clarifies pressure/tension in the family of boundary layers.

  7. Entanglement entropy of round spheres

    Energy Technology Data Exchange (ETDEWEB)

    Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)

    2010-10-18

    We propose that the logarithmic term in the entanglement entropy computed in a conformal field theory for a (d-2)-dimensional round sphere in Minkowski spacetime is identical to the logarithmic term in the entanglement entropy of extreme black hole. The near horizon geometry of the latter is H{sub 2}xS{sub d-2}. For a scalar field this proposal is checked by direct calculation. We comment on relation of this and earlier calculations to the 'brick wall' model of 't Hooft. The case of generic 4d conformal field theory is discussed.

  8. Scalar fundamental measure theory for hard spheres in three dimensions. Application to hydrophobic solvation

    CERN Document Server

    Levesque, Maximilien; Borgis, Daniel; 10.1063/1.4734009

    2012-01-01

    Hard-sphere mixtures provide one a solvable reference system that can be used to improve the density functional theory of realistic molecular fluids. We show how the Kierlik-Rosinberg's scalar version of the fundamental measure density functional theory of hard spheres [Phys. Rev. A, {\\bf 42}, 3382 (1990)], which presents computational advantages with respect to the original Rosenfeld's vectorial formulation or its extensions, can be implemented and minimized in three dimensions to describe fluid mixtures in complex environments. This implementation is used as a basis for defining a molecular density functional theory of water around molecular hydrophobic solutes of arbitrary shape.

  9. Scalar fundamental measure theory for hard spheres in three dimensions: application to hydrophobic solvation.

    Science.gov (United States)

    Levesque, Maximilien; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-07-21

    Hard-sphere mixtures provide one a solvable reference system that can be used to improve the density functional theory of realistic molecular fluids. We show how the Kierlik-Rosinberg's scalar version of the fundamental measure density functional theory of hard spheres [E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990)], which presents computational advantages with respect to the original Rosenfeld's vectorial formulation or its extensions, can be implemented and minimized in three dimensions to describe fluid mixtures in complex environments. This implementation is used as a basis for defining a molecular density functional theory of water around molecular hydrophobic solutes of arbitrary shape.

  10. The Precise Inner Solutions of Gravity field Equations of Hollow and Solid Spheres and the Theorem of Singularity

    CERN Document Server

    Xiaochun, Mei

    2011-01-01

    In the present calculation of the inner solution of gravity field equation with spherical symmetry, in order to avoid the singularity appearing in the center of sphere, we actually let the integral constant to be zero. It is proved in this paper that the constant can not be zero. The metric of inner gravity field of hollow sphere is calculated at first. Then let the inner radius of hollow sphere become zero, we obtain the metric of inner gravity field of solid sphere. Based on the definition of energy momentum tensor of general relativity, the gravity masses of hollow and solid spheres in curved space are calculated strictly. The results indicate that no matter what the masses and densities of hollow sphere and solid sphere are, space-time singularities would appear in the centers of spheres. Meanwhile, no matter what the mass and density are, the intensity of pressure at the center point of solid sphere can not be infinite. That is to say, the material can not collapse towards the center of so-called black h...

  11. ON THE TOPOLOGY, VOLUME, DIAMETER AND GAUSS MAP IMAGE OF SUBMANIFOLDS IN A SPHERE

    Institute of Scientific and Technical Information of China (English)

    WU BINGYE

    2004-01-01

    In this paper, the author uses Gauss map to study the topology, volume and diameter of submanifolds in a sphere. It is proved that if there exist ε, 1 ≥ε≥ 0 and a fixed unit simple p-vector a such that the Gauss map g of an n-dimensional complete to Sn, and the volume and diameter of M satisfy εnvol(Sn) ≤vol(M) ≤ vol(Sn)/εand επ≤diam(M) ≤π/ε, respectively. The author also characterizes the case where these inequalities become equalities. As an application, a differential sphere theorem for compact submanifolds in a sphere is obtained.

  12. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 (Version 2.1) Catchments Riparian Buffer for the Conterminous United States: 2010 US Census Housing Unit and Population Density

    Science.gov (United States)

    This dataset represents the population and housing unit density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers based on 2010 US Census data. Densities are calculated for every block group and watershed averages are calculated for every local NHDPlusV2 catchment(see Data Sources for links to NHDPlusV2 data and Census Data). This data set is derived from The TIGER/Line Files and related database (.dbf) files for the conterminous USA. It was downloaded as Block Group-Level Census 2010 SF1 Data in File Geodatabase Format (ArcGIS version 10.0). The landscape raster (LR) was produced based on the data compiled from the questions asked of all people and about every housing unit. The (block-group population / block group area) and (block-group housing units / block group area) were summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  13. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: 2010 US Census Housing Unit and Population Density

    Science.gov (United States)

    This dataset represents the population and housing unit density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on 2010 US Census data. Densities are calculated for every block group and watershed averages are calculated for every local NHDPlusV2 catchment(see Data Sources for links to NHDPlusV2 data and Census Data). This data set is derived from The TIGER/Line Files and related database (.dbf) files for the conterminous USA. It was downloaded as Block Group-Level Census 2010 SF1 Data in File Geodatabase Format (ArcGIS version 10.0). The landscape raster (LR) was produced based on the data compiled from the questions asked of all people and about every housing unit. The (block-group population / block group area) and (block-group housing units / block group area) were summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description). Using a riparian buffer(see Process Steps), statistics were generated for areas within each catchment that are within 100 meters of the stream reach in an attempt to evaluate for the riparian zone.

  14. Floating behavior of hydrophobic glass spheres.

    Science.gov (United States)

    Liu, Xinjie; Wang, Xiaolong; Liang, Yongmin; Zhou, Feng

    2009-08-15

    When a hydrophobic solid sphere is floating on water or salt solutions with different concentrations, it is at equilibrium under the impact of gravity, buoyancy force, and curvature force, the component of surface tension in the vertical direction. We have changed the diameters of the spheres and the concentrations of the two selected salts, NaCl and NaNO(3), to study the floating behaviors of these spheres and the contributions of surface tension and buoyancy force to their floatation. Generally speaking, the surface tension plays a more important role than the buoyancy force when the gravity is small, but the buoyancy force plays an identical or a more important role when the spheres are big enough. The wettability of the spheres significantly influences the height below the contact perimeter especially in salt solutions. The theoretical calculation meniscus slope angles at the sphere three-phase contact line are in agreement with experimental results.

  15. Gravity theory through affine spheres

    Science.gov (United States)

    Minguzzi, E.

    2017-08-01

    In this work it is argued that in order to improve our understanding of gravity and spacetime our most successful theory, general relativity, must be destructured. That is, some geometrical assumptions must be dropped and recovered just under suitable limits. Along this line of thought we pursue the idea that the roundness of the light cone, and hence the isotropy of the speed of light, must be relaxed and that, in fact, the shape of light cones must be regarded as a dynamical variable. Mathematically, we apply some important results from affine differential geometry to this problem, the idea being that in the transition we should preserve the identification of the spacetime continuum with a manifold endowed with a cone structure and a spacetime volume form. To that end it is suggested that the cotangent indicatrix (dispersion relation) must be described by an equation of Monge-Ampère type determining a hyperbolic affine sphere, at least whenever the matter content is negligible. Non-relativistic spacetimes fall into this description as they are recovered whenever the center of the affine sphere is at infinity. In the more general context of Lorentz-Finsler theories it is shown that the lightlike unparametrized geodesic flow is completely determined by the distribution of light cones. Moreover, the transport of lightlike momenta is well defined though there could be no notion of affine parameter. Finally, we show how the perturbed indicatrix can be obtained from the perturbed light cone.

  16. Sphere Drag and Heat Transfer.

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  17. The Chiral Dipolar Hard Sphere Model.

    OpenAIRE

    Mazars, Martial

    2009-01-01

    Abstract A simple molecular model of chiral molecules is presented in this paper : the chiral dipolar hard sphere model. The discriminatory interaction between enantiomers is represented by electrostatic (or magnetic) dipoles-dipoles interactions : short ranged steric repulsion are represented by hard sphere potential and, in each molecule, two point dipoles are located inside the sphere. The model is described in detail and some of its elementary properties are given ; in particul...

  18. Assembly of body-centered cubic crystals in hard spheres.

    Science.gov (United States)

    Xu, W-S; Sun, Z-Y; An, L-J

    2011-05-01

    We investigate the crystallization of monodisperse hard spheres confined by two square patterned substrates (possessing the basic character of the body-centered cubic (bcc) crystal structure) at varying substrate separations via molecular dynamics simulation. Through slowly increasing the density of the system, we find that crystallization under the influence of square patterned substrates can set in at lower densities compared with the homogeneous crystallization. As the substrate separation decreases, the density, where crystallization occurs (i.e., pressure drops), becomes small. Moreover, two distinct regimes are identified in the plane of bcc particle fraction and density for the separation range investigated. For large substrate separations, the bcc particle fraction displays a local maximum as the density is increased, and the resulting formed crystals have a polycrystalline structure. However, and more importantly, another situation emerges for small substrate separations: the capillary effects (stemming from the presence of two substrates) overwhelm the bulk driving forces (stemming from the spontaneous thermal fluctuations in the bulk) during the densification, eventually resulting in the formation of a defect-free bcc crystal (unstable with respect to the bulk hard-sphere crystals) by using two square patterned substrates.

  19. Density Functional Study on A-Units Based on Thieno[3,4- c]pyrrole-4,6-dione for Organic Solar Cells

    Science.gov (United States)

    Tang, Xiaoqin; Shen, Wei; Fu, Zhiyong; Liu, Xiaorui; Li, Ming

    2017-08-01

    The use of polymer donor materials has allowed great progress in organic solar cells. To search for potential donor materials, we have designed a series of donor-acceptor (D-A)-type alternating polymers composed of dithieno[3,2- b:2',3'- d]pyrrole (DTP) electron-rich units and thieno[3,4- c]pyrrole-4,6-dione (TPD) electron-deficient units. Their electronic and optical properties have been investigated using density functional theory and Marcus theory. The calculation results demonstrate that introduction of cyclic compounds (furyl, thienyl, and phenyl) into electron-deficient units of the molecules can result in lower highest occupied molecular orbital (HOMO) levels and reorganization energies compared with the experimental molecule ( X 0 ). To investigate the effects of electron-withdrawing units, three electron-withdrawing substituents (-OCH3, -F, and -CN) were introduced into the thienyl. The results indicated that the polymer X 2-3 will show the best performance among the designed polymers, offering low-lying HOMO energy level (-5.47 eV), narrow energy gap (1.97 eV), and high hole mobility (7.45 × 10-2 cm2 V-1 s-1). This work may provide a guideline for the design of efficient D-A polymers for organic solar cells with enhanced performance.

  20. Microcraters formed in glass by low density projectiles

    Science.gov (United States)

    Mandeville, J.-C.; Vedder, J. F.

    1971-01-01

    Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene with masses between 0.7 and 62 picograms and velocities between 2 and 14 kilometers per second. The morphology of the craters depends on the velocity and angle of incidence of the projectiles. The transitions in morphology of the craters formed by polystyrene spheres occur at higher velocities than they do for more dense projectiles. For oblique impact, the craters are elongated and shallow with the spallation threshold occuring at higher velocity. For normal incidence, the total displaced mass of the target material per unit of projectile kinetic energy increases slowly with the energy.

  1. Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    Science.gov (United States)

    Doherty, Michael P.

    2000-01-01

    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g

  2. Fluorescent integrating sphere for the vacuum ultraviolet.

    Science.gov (United States)

    Brandenberg, W M

    1970-02-01

    An integrating sphere for absolute, hemispherical reflectance measurements on imperfectly diffuse surfaces in the wavelength range between 1250 A and 3500 A has been built. The sphere uses a double layer coating consisting of a sodium salicylate film on top of a diffuse white paint. The phosphor coating, under uv irradiation, emits fluorescent radiation in the blue, and the underlying paint layer serves as a diffuser of the fluorescent radiation. The usual problem, encountered in ordinary integrating spheres where direct irradiation of the detector by the sample can lead to erroneous signals, is easily eliminated in the fluorescent integrating sphere by proper filtering of the detector.

  3. SPATIAL STATISTICS FOR SIMULATED PACKINGS OF SPHERES

    Directory of Open Access Journals (Sweden)

    Alexander Bezrukov

    2011-05-01

    Full Text Available This paper reports on spatial-statistical analyses for simulated random packings of spheres with random diameters. The simulation methods are the force-biased algorithm and the Jodrey-Tory sedimentation algorithm. The sphere diameters are taken as constant or following a bimodal or lognormal distribution. Standard characteristics of spatial statistics are used to describe these packings statistically, namely volume fraction, pair correlation function of the system of sphere centres and spherical contact distribution function of the set-theoretic union of all spheres. Furthermore, the coordination numbers are analysed.

  4. Small-world networks on a sphere

    Science.gov (United States)

    Corso, Gilberto; Torres Cruz, Claudia P.

    2017-01-01

    The Small-World Network on a Sphere SWNS is a non-crossing network that has no hubs and presents the small-world property diam log N with diam being the maximal distance between any two vertices and N being the number of vertices. The SWNS is constructed using a partition of the sphere and the parallels are regular sections of the sphere with constant latitude. The number of cells on the parallels, however, increases exponentially from the pole to the equator of the sphere. We analytically compute the distribution of connectivity, the clustering coefficient and the SWNS distances. The resilience of the model against selective attacks is also discussed.

  5. Macromolecule-Induced Clustering of Hard Spheres.

    Science.gov (United States)

    Chatterjee, Avik Prasun

    2001-06-01

    The connectivity Ornstein-Zernike formalism, together with the polymer reference interaction site model (PRISM), is employed to describe connectivity and network formation in mixtures of spheres and polymers. Results are presented for the percolation of spheres induced by both flexible coil-like and rigid rod-like linear polymers; the Percus-Yevick (PY) approximation is used throughout. Our results are compared with predictions based on the adhesive hard sphere (AHS) model, and correlations with the polymer-mediated second virial coefficient between spheres are discussed. Copyright 2001 Academic Press.

  6. Hard sphere dynamics for normal and granular fluids.

    Science.gov (United States)

    Dufty, James W; Baskaran, Aparna

    2005-06-01

    A fluid of N smooth, hard spheres is considered as a model for normal (elastic collision) and granular (inelastic collision) fluids. The potential energy is discontinuous for hard spheres so that the pairwise forces are singular and the usual forms of Newtonian and Hamiltonian mechanics do not apply. Nevertheless, particle trajectories in the N particle phase space are well defined and the generators for these trajectories can be identified. The first part of this presentation is a review of the generators for the dynamics of observables and probability densities. The new results presented in the second part refer to applications of these generators to the Liouville dynamics for granular fluids. A set of eigenvalues and eigenfunctions of the generator for this Liouville dynamics system is identified in a special stationary representation. This provides a class of exact solutions to the Liouville equation that are closely related to hydrodynamics for granular fluids.

  7. TRANSMISSION AND ABSORPTION OF MICROWAVES BY AN INHOMOGENEOUS SPHERE PLASMA

    Institute of Scientific and Technical Information of China (English)

    SONG Falun; CAO Jinxiang; WANG Ge

    2004-01-01

    The numerical calculation of the transmission and absorption of microwaves at an arbitrarily incident angle to the inhomogeneous spherically symmetric plasma is presented.The nonuniform sphere is modeled by a series of concentric spherical shells, and the electron density is constant in each shell. The overall density profile follows any given distribution function. By using the geometrical optics approximation and considering the propagation coefficient is complex, as well as the attenuation and phase coefficients are vectors, the detailed evaluation shows that the transmission and absorption of microwaves in the inhomogeneous spherically symmetric plasma depend on the electron and neutral particle collision frequency, central density, incident angle of the microwaves and density distribution profiles.

  8. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Input data set for population density (gwava-s_popd)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents 1990 block group population density, in people per square kilometer, in the conterminous United States. The data set was used as an input...

  9. Status of the SPHERE experiment

    CERN Document Server

    Antonov, R A; Bonvech, E A; Chernov, D V; Dzhatdoev, T A; Finger, Mir; Finger, M; Galkin, V I; Kabanova, N N; Petkun, A S; Podgrudkov, D A; Roganova, T M; Shaulov, S B; Sysoeva, T I

    2012-01-01

    Here is presented the current state of the SPHERE-2 balloon-borne experiment. The detector is elevated up to 1 km above the snow surface and registers the reflected Vavilov-Cherenkov radiation from extensive air showers. This method has good sensitivity to the mass-composition of the primary cosmic rays due to its high resolution near the shower axis. The detector consists of a 1500 mm spherical mirror with a 109 PMT cluster in its focus. The electronics record a signal pulse profile in each PMT. In the last 2 years the detector was upgraded: time resolution of pulse registration was enhanced up to 12.5 ns, channel sensitivity was increased by a factor of 3, a new LED-based relative PMT calibration method was introduced, and new hardware and etc. was installed.

  10. The Hubble Sphere Hydrogen Survey

    CERN Document Server

    Peterson, J B; Pen, U L; Peterson, Jeffrey B.; Bandura, Kevin; Pen, Ue Li

    2006-01-01

    An all sky redshift survey, using hydrogen 21 cm emission to locate galaxies, can be used to track the wavelength of baryon acoustic oscillations imprints from z ~ 1.5 to z = 0. This will allow precise determination of the evolution of dark energy. A telescope made of fixed parabolic cylindrical reflectors offers substantial benefit for such a redshift survey. Fixed cylinders can be built for low cost, and long cylinders also allow low cost fast fourier transform techniques to be used to define thousands of simultaneous beams. A survey made with fixed reflectors naturally covers all of the sky available from it's site with good uniformity, minimizing sample variance in the measurement of the acoustic peak wavelength. Such a survey will produce about a billion redshifts, nearly a thousand times the number available today. The survey will provide a three dimensional mapping of a substantial fraction of the Hubble Sphere.

  11. Phononic crystals of poroelastic spheres

    Science.gov (United States)

    Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.

    2016-11-01

    An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.

  12. Diamond-Structured Photonic Crystals with Graded Air Spheres Radii

    Directory of Open Access Journals (Sweden)

    Dichen Li

    2012-05-01

    Full Text Available A diamond-structured photonic crystal (PC with graded air spheres radii was fabricated successfully by stereolithography (SL and gel-casting process. The graded radii in photonic crystal were formed by uniting different radii in photonic crystals with a uniform radius together along the Г‑Х direction. The stop band was observed between 26.1 GHz and 34.3 GHz by reflection and transmission measurements in the direction. The result agreed well with the simulation attained by the Finite Integration Technique (FIT. The stop band width was 8.2 GHz and the resulting gap/midgap ratio was 27.2%, which became respectively 141.4% and 161.9% of the perfect PC. The results indicate that the stop band width of the diamond-structured PC can be expanded by graded air spheres radii along the Г‑Х direction, which is beneficial to develop a multi bandpass filter.

  13. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    Science.gov (United States)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  14. Numerical Simulation of Random Close Packings in Particle Deformation from Spheres to Cubes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; LI Shui-Xiang

    2008-01-01

    Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative motion of component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2D and 3D cases are simulated. With the simulations, we find that the packing density increases while the particle sphericity decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing density in the deformation respectively. In each deforming step, packings starting from a random configuration and from the final packing of last deforming step are both simulated. The packing density in the latter case is larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be applied to other particle shapes as well.

  15. Innovation embedded in entrepreneurs’ networks in private and public spheres

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak;

    2014-01-01

    Global studies have found tendencies: traditional culture promotes entrepreneurs' networking in the private sphere, impeding innovation, whereas secular-rational culture facilitates networking in the public sphere, benefiting innovation. This embeddedness is here scrutinised in contrasting...... is negatively affected by private sphere networking and positively affected by public sphere networking, but innovation is less promoted by public sphere networking in China than in Denmark....

  16. Seifert fibered homology spheres with trivial Heegaard Floer homology

    OpenAIRE

    Eftekhary, Eaman

    2009-01-01

    We show that among Seifert fibered integer homology spheres, Poincare sphere (with either orientation) is the only non-trivial example which has trivial Heegaard Floer homology. Together with an earlier result, this shows that if an integer homology sphere has trivial Heegaard Floer homology, then it is a connected sum of a number of Poincare spheres and hyperbolic homology spheres.

  17. Depletion potentials in colloidal mixtures of hard spheres and rods.

    Science.gov (United States)

    Li, Weihua; Yang, Tao; Ma, Hong-ru

    2008-01-28

    The depletion potential between a hard sphere and a planar hard wall, or two hard spheres, imposed by suspended rigid spherocylindrical rods is computed by the acceptance ratio method through the application of Monte Carlo simulation. The accurate results and ideal-gas approximation results of the depletion potential are determined with the acceptance ratio method in our simulations. For comparison, the depletion potentials are also studied by using both the density functional theory and Derjaguin approximations. The density profile as a function of positions and orientations of rods, used in the density functional theory, is calculated by Monte Carlo simulation. The potential obtained by the acceptance ratio method is in good agreement with that of density functional theory under the ideal-gas approximation. The comparison between our results and those of other theories suggests that the acceptance ratio method is the only efficient method used to compute the depletion potential induced by nonspherical colloids with the volume fraction beyond the ideal-gas approximation.

  18. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  19. Electric dipoles on the Bloch sphere

    CERN Document Server

    Vutha, Amar C

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  20. Reversible thermal gelation in soft spheres

    DEFF Research Database (Denmark)

    Kapnistos, M.; Vlassopoulos, D.; Fytas, G.

    2000-01-01

    Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...

  1. Association of proximity and density of parks and objectively measured physical activity in the United States: A systematic review.

    Science.gov (United States)

    Bancroft, Carolyn; Joshi, Spruha; Rundle, Andrew; Hutson, Malo; Chong, Catherine; Weiss, Christopher C; Genkinger, Jeanine; Neckerman, Kathryn; Lovasi, Gina

    2015-08-01

    One strategy for increasing physical activity is to create and enhance access to park space. We assessed the literature on the relationship of parks and objectively measured physical activity in population-based studies in the United States (US) and identified limitations in current built environment and physical activity measurement and reporting. Five English-language scholarly databases were queried using standardized search terms. Abstracts were screened for the following inclusion criteria: 1) published between January 1990 and June 2013; 2) US-based with a sample size greater than 100 individuals; 3) included built environment measures related to parks or trails; and 4) included objectively measured physical activity as an outcome. Following initial screening for inclusion by two independent raters, articles were abstracted into a database. Of 10,949 abstracts screened, 20 articles met the inclusion criteria. Five articles reported a significant positive association between parks and physical activity. Nine studies found no association, and six studies had mixed findings. Our review found that even among studies with objectively measured physical activity, the association between access to parks and physical activity varied between studies, possibly due to heterogeneity of exposure measurement. Self-reported (vs. independently-measured) neighborhood park environment characteristics and smaller (vs. larger) buffer sizes were more predictive of physical activity. We recommend strategies for further research, employing standardized reporting and innovative study designs to better understand the relationship of parks and physical activity.

  2. Efficient linear programming algorithm to generate the densest lattice sphere packings.

    Science.gov (United States)

    Marcotte, Étienne; Torquato, Salvatore

    2013-06-01

    Finding the densest sphere packing in d-dimensional Euclidean space R(d) is an outstanding fundamental problem with relevance in many fields, including the ground states of molecular systems, colloidal crystal structures, coding theory, discrete geometry, number theory, and biological systems. Numerically generating the densest sphere packings becomes very challenging in high dimensions due to an exponentially increasing number of possible sphere contacts and sphere configurations, even for the restricted problem of finding the densest lattice sphere packings. In this paper we apply the Torquato-Jiao packing algorithm, which is a method based on solving a sequence of linear programs, to robustly reproduce the densest known lattice sphere packings for dimensions 2 through 19. We show that the TJ algorithm is appreciably more efficient at solving these problems than previously published methods. Indeed, in some dimensions, the former procedure can be as much as three orders of magnitude faster at finding the optimal solutions than earlier ones. We also study the suboptimal local density-maxima solutions (inherent structures or "extreme" lattices) to gain insight about the nature of the topography of the "density" landscape.

  3. Intrinsic parameter determination of a paracatadioptric camera by the intersection of two sphere projections.

    Science.gov (United States)

    Zhao, Yue; Wang, Yalin

    2015-11-01

    In this paper, a linear calibration method is proposed for a paracatadioptric camera using the images of two spheres. Two spheres are selected in space, and the two groups of their projection circles on the unit viewing sphere are made to intersect at four points. The quadrilateral consisting of four points is a rectangle, so a group of orthogonal directions can be determined in space to obtain a group of orthogonal vanishing points in the paracatadioptric image plane. Because of the relationship between orthogonal vanishing points and intrinsic camera parameters, the intrinsic parameters of a paracatadioptric camera can be linearly solved by at least five views satisfying the above conditions. First, one estimates the sphere images and their antipodal sphere images. Second, by solving the intersection of the images of two spheres and the intersection of the images of their antipodal spheres, a group of orthogonal vanishing points can be obtained in the image plane. Finally, by taking the relationship between the orthogonal vanishing points and the intrinsic camera parameters as constraint conditions, the intrinsic parameters of the paracatadioptric camera can be obtained. Simulation results and real image data demonstrate the effectiveness of our new algorithms.

  4. Analysis of the Level of Development of the Socio-labour Sphere of Ukrainian Regions

    Directory of Open Access Journals (Sweden)

    Bibikova Viktoriia V.

    2013-12-01

    Full Text Available The goal of the article is the study of the level of development of the socio-labour sphere of Ukrainian regions. In order to achieve the goal, the article develops a complex scorecard, which takes into account all elements of the socio-labour sphere (socio-labour relations, labour market system of labour reimbursement, social accompaniment of labour activity, professional development of economically active population, level and quality of labour life, safety and security of labour. On the basis of the use of the developed scorecard, the article conducts an integral assessment of the level of development of the socio-labour sphere of regions. In order to get more objective information about the state of the labour sphere of Ukraine, the article uses its subjective assessments by population. In the result of the analysis, it reveals a lack of progressive changes of the socio-labour sphere in majority (60% of Ukrainian regions, availability of significant differentiation of regions by the level of its development and the irregular character of changes of separate elements of the labour sphere both within one administrative and territorial unit and among different regions of Ukraine. The article justifies a necessity of conduct of regular diagnostics of the state of the socio-labour sphere of Ukrainian regions with the use of a developed scorecard.

  5. Variable Density Flow Modeling for Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Joel Sminchak

    2011-09-30

    The Arches Province in the Midwestern U.S. has been identified as a major area for carbon dioxide (CO{sub 2}) storage applications because of the intersection of Mt. Simon sandstone reservoir thickness and permeability. To better understand large-scale CO{sub 2} storage infrastructure requirements in the Arches Province, variable density scoping level modeling was completed. Three main tasks were completed for the variable density modeling: Single-phase, variable density groundwater flow modeling; Scoping level multi-phase simulations; and Preliminary basin-scale multi-phase simulations. The variable density modeling task was successful in evaluating appropriate input data for the Arches Province numerical simulations. Data from the geocellular model developed earlier in the project were translated into preliminary numerical models. These models were calibrated to observed conditions in the Mt. Simon, suggesting a suitable geologic depiction of the system. The initial models were used to assess boundary conditions, calibrate to reservoir conditions, examine grid dimensions, evaluate upscaling items, and develop regional storage field scenarios. The task also provided practical information on items related to CO{sub 2} storage applications in the Arches Province such as pressure buildup estimates, well spacing limitations, and injection field arrangements. The Arches Simulation project is a three-year effort and part of the United States Department of Energy (U.S. DOE)/National Energy Technology Laboratory (NETL) program on innovative and advanced technologies and protocols for monitoring/verification/accounting (MVA), simulation, and risk assessment of CO{sub 2} sequestration in geologic formations. The overall objective of the project is to develop a simulation framework for regional geologic CO{sub 2} storage infrastructure along the Arches Province of the Midwestern U.S.

  6. Thermodynamic and hydrodynamic interaction in concentrated microgel suspensions: Hard or soft sphere behavior?

    Science.gov (United States)

    Eckert, Thomas; Richtering, Walter

    2008-09-28

    The colloidal phase behavior, structure factors, short-time collective diffusion coefficients, and hydrodynamic interactions of concentrated poly(N-isopropylacryamide) (PNiPAM) microgels in dimethylformamide suspensions were measured with simultaneous static and dynamic three-dimensional cross-correlated light scattering. The data are interpreted through comparison with hard sphere theory. The fluid-crystal transition and the static structure factors can be described consistently by the hard sphere approximation. On the other hand, collective diffusion and hydrodynamic interaction cannot be described satisfactorily by the hard sphere model. The microgel structure is different from hard spheres, as the cross-link density decreases with the distance from the particle center leading to a "fuzzy" particle surface with dangling polymer chains. These seem to affect the hydrodynamic interaction much more as compared to direct thermodynamic interaction.

  7. B-vitamin status and bone mineral density and risk of lumbar osteoporosis in older females in the United States.

    Science.gov (United States)

    Bailey, Regan L; Looker, Anne C; Lu, Zhaohui; Fan, Ruzong; Eicher-Miller, Heather A; Fakhouri, Tala H; Gahche, Jaime J; Weaver, Connie M; Mills, James L

    2015-09-01

    Previous data suggest that elevated serum total homocysteine (tHcy) may be a risk factor for bone fracture and osteoporosis. Nutritional causes of elevated tHcy are suboptimal B-vitamin status. To our knowledge, this is the first nationally representative report on the relation of B vitamins and bone health from a population with folic acid fortification. The purpose of this analysis was to examine the relation between B-vitamin status biomarkers and bone mineral density (BMD), risk of osteoporosis, and biomarkers of bone turnover. We examined the relation of tHcy, methylmalonic acid (MMA), and serum/red blood cell folate and total-body and lumbar spine BMD in women aged ≥50 y participating in the NHANES 1999-2004 (n = 2806), a nationally representative cross-sectional survey. These are the only years with concurrent measurement of tHcy and whole-body dual-energy X-ray absorptiometry. We also examined B-vitamin biomarkers relative to bone turnover markers, bone alkaline phosphatase, and urinary N-terminal cross-linked telopeptide of type I collagen in a 1999-2002 subset with available data (n = 1813). In comparison with optimal concentrations, women with elevated tHcy were older with lower serum vitamin B-12, red blood cell folate, and dietary micronutrient intakes and had significantly higher mean ± SE markers of bone turnover (bone alkaline phosphatase: 15.8 ± 0.59 compared with 14.0 ± 0.25 μg/L; urinary N-terminal cross-linked telopeptide of type I collagen: 48.2 ± 2.9 compared with 38.9 ± 0.90 nmol bone collagen equivalents per mmol creatinine/L). Elevated MMA (OR: 1.88; 95% CI: 1.10, 3.18) and tHcy (OR: 2.17; 95% CI: 1.14, 4.15) were related to increased risk of lumbar osteoporosis. When examined as a continuous variable, tHcy was negatively associated, serum folates were positively associated, and MMA and vitamin B-12 were not significantly associated with lumbar and total-body BMD. In this nationally representative population of older US women with

  8. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers.

    Science.gov (United States)

    Osorio, Victoria; Larrañaga, Aitor; Aceña, Jaume; Pérez, Sandra; Barceló, Damià

    2016-01-01

    , gemfibrozil and loratidine were identified as the more concerning compounds. Significantly positive relationships were found among levels of pharmaceuticals and toxic units and population density and livestock units in both surface water and sediment matrices. Copyright © 2015. Published by Elsevier B.V.

  9. A strategy for sampling on a sphere applied to 3D selective RF pulse design.

    Science.gov (United States)

    Wong, S T; Roos, M S

    1994-12-01

    Conventional constant angular velocity sampling of the surface of a sphere results in a higher sampling density near the two poles relative to the equatorial region. More samples, and hence longer sampling time, are required to achieve a given sampling density in the equatorial region when compared with uniform sampling. This paper presents a simple expression for a continuous sample path through a nearly uniform distribution of points on the surface of a sphere. Sampling of concentric spherical shells in k-space with the new strategy is used to design 3D selective inversion and spin-echo pulses. These new 3D selective pulses have been implemented and verified experimentally.

  10. Analysis of factors influence the power density of light curing units%光固化灯功率密度的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    邓淑丽; 李聪; 朱海华; 陈晖

    2012-01-01

    Objective To analyze factors that influence the power density of light curing units.Methods The power density values of 104 curing-light units from two dental hospitals in Hangzhou were investigated.Three lights among them with different power density were used to project to the radiometer sensor at different distances and angles.The power density was measured also when the curing tips were coated with protective sleeve or not.Results The values of power density were from 0 to 1180 mW/cm2.The mean power density was (519.7 ± 294.5) mW/cm2.With the curing distance increasing,the power densities were decreased significantly (P < 0.05).When the distance was 8 mm,the power densities were (545.7 ± 25.1),(448.0 ± 22.7) and (200.0 ± 7.5) mW/cm2.The power densities decreased to (269.0 ± 3.0),(265.3 ± 26.8) and (129.7 ± 4.7) mW/cm2 as the projecting angle increased to 60°.There was statistically significant difference in power density between the curing tips with or without protective sleeve (P < 0.05).Conclusions The factors that influence power density of light-curing units were the curing distance,projected angle and protective sleeve.%目的 分析复合树脂充填治疗中可能影响复合树脂固化的光固化灯的使用因素,为临床选择合适的光固化灯提供参考.方法 调查杭州市两家口腔专科医院104盏临床使用的光固化灯的功率密度及相关信息;对其中3盏不同功率密度的光固化灯(分别为1、2、3号灯)以不同距离和角度照射及光固化灯使用不同防护套前、后功率密度的变化进行对比分析.结果 104盏光固化灯的功率密度范围为0 ~ 1180 mW/cm2,平均值为(519.7±294.5) mW/cm2.随着光固化灯光导棒照射距离和角度的增加,辐射仪感应窗测得的功率密度值降低,当照射距离增加至8 mm时,1、2、3号灯的功率密度值分别从(1133.7±17.6)、(895.3±7.4)、(401.3±6.0) mW/cm2下降为(545.7±25.1)、(448.0±22.7)、(200.0±7.5) m

  11. Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals.

    Science.gov (United States)

    Furukawa, Hiroyasu; Go, Yong Bok; Ko, Nakeun; Park, Young Kwan; Uribe-Romo, Fernando J; Kim, Jaheon; O'Keeffe, Michael; Yaghi, Omar M

    2011-09-19

    The concept and occurrence of isoreticular (same topology) series of metal-organic frameworks (MOFs) is reviewed. We describe the preparation, characterization, and crystal structures of three new MOFs that are isoreticular expansions of known materials with the tbo (Cu(3)(4,4',4''-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate)(2), MOF-399) and pto topologies (Cu(3)(4,4',4''-(benzene-1,3,5-triyl-tribenzoate)(2), MOF-143; Cu(3)(4,4',4''-(triazine-2,4,6-triyl-tris(benzene-4,1-diyl))tribenzoate)(2), MOF-388). One of these materials (MOF-399) has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and has the highest porosity (94%) and lowest density (0.126 g cm(-3)) of any MOFs reported to date.

  12. Phase equilibria in polydisperse nonadditive hard-sphere systems.

    Science.gov (United States)

    Paricaud, Patrice

    2008-08-01

    Colloidal particles naturally exhibit a size polydispersity that can greatly influence their phase behavior in solution. Nonadditive hard-sphere (NAHS) mixtures are simple and well-suited model systems to represent phase transitions in colloid systems. Here, we propose an analytical equation of state (EOS) for NAHS fluid mixtures, which can be straightforwardly applied to polydisperse systems. For positive values of the nonadditivity parameter Delta the model gives accurate predictions of the simulated fluid-fluid coexistence curves and compressibility factors. NPT Monte Carlo simulations of the mixing properties of the NAHS symmetric binary mixture with Delta>0 are reported. It is shown that the enthalpy of mixing is largely positive and overcomes the positive entropy of mixing when the pressure is increased, leading to a fluid-fluid phase transition with a lower critical solution pressure. Phase equilibria in polydisperse systems are predicted with the model by using the density moment formalism [P. Sollich, Adv. Chem. Phys. 116, 265 (2001)]. We present predictions of the cloud and shadow curves for polydisperse NAHS systems composed of monodisperse spheres and polydisperse colloid particles. A fixed nonadditivity parameter Delta > 0 is assumed between the monodisperse and polydisperse spheres, and a Schulz distribution is used to represent the size polydispersity. Polydispersity is found to increase the extent of the immiscibility region. The predicted cloud and shadow curves depend dramatically on the upper cutoff diameter sigmac of the Schulz distribution, and three-phase equilibria can occur for large values of sigmac.

  13. Towards composite spheres as building blocks for structured molecules

    Science.gov (United States)

    Lee, Lloyd L.; Pellicane, Giuseppe

    2016-10-01

    In order to design a flexible molecular model that mimics the chemical moieties of a polyatomic molecule, we propose the ‘composite-sphere’ model that can assemble the essential elements to produce the structure of the target molecule. This is likened to the polymerization process where monomers assemble to form the polymer. The assemblage is built into the pair interaction potentials which can ‘react’ (figuratively) with selective pieces into various bonds. In addition, we preserve the spherical symmetries of the individual pair potentials so that the isotropic Ornstein-Zernike equation (OZ) for multi-component mixtures can be used as a theoretical framework. We first test our approach on generating a dumbbell molecule. An equimolar binary mixture of hard spheres and square-well spheres are allowed to react to form a dimer. As the bond length shrinks to zero, we create a site-site model of a Janus-like molecule with a repulsive moiety and an attractive moiety. We employ the zero-separation (ZSEP) closure to solve the OZ equations. The structure and thermodynamic properties are calculated at three isotherms and at several densities and the results are compared with Monte Carlo simulations. The close agreement achieved demonstrates that the ZSEP closure is a reliable theory for this composite-sphere fluid model. Contribution to the George Stell Memorial Issue.

  14. Fluid of fused spheres as a model for protein solution

    Directory of Open Access Journals (Sweden)

    M. Kastelic

    2016-03-01

    Full Text Available In this work we examine thermodynamics of fluid with "molecules" represented by two fused hard spheres, decorated by the attractive square-well sites. Interactions between these sites are of short-range and cause association between the fused-sphere particles. The model can be used to study the non-spherical (or dimerized proteins in solution. Thermodynamic quantities of the system are calculated using a modification of Wertheim's thermodynamic perturbation theory and the results compared with new Monte Carlo simulations under isobaric-isothermal conditions. In particular, we are interested in the liquid-liquid phase separation in such systems. The model fluid serves to evaluate the effect of the shape of the molecules, changing from spherical to more elongated (two fused spheres ones. The results indicate that the effect of the non-spherical shape is to reduce the critical density and temperature. This finding is consistent with experimental observations for the antibodies of non-spherical shape.

  15. Theorising Public and Private Spheres

    Directory of Open Access Journals (Sweden)

    Sima Remina

    2016-12-01

    Full Text Available The 19th century saw an expression of women’s ardent desire for freedom, emancipation and assertion in the public space. Women hardly managed to assert themselves at all in the public sphere, as any deviation from their traditional role was seen as unnatural. The human soul knows no gender distinctions, so we can say that women face the same desire for fulfillment as men do. Today, women are more and more encouraged to develop their skills by undertaking activities within the public space that are different from those that form part of traditional domestic chores. The woman of the 19th century felt the need to be useful to society, to make her contribution visible in a variety of domains. A woman does not have to become masculine to get power. If she is successful in any important job, this does not mean that she thinks like a man, but that she thinks like a woman. Women have broken through the walls that cut them off from public life, activity and ambition. There are no hindrances that can prevent women from taking their place in society.

  16. Lines, Circles, Planes and Spheres

    CERN Document Server

    Purdy, George B

    2009-01-01

    Let $S$ be a set of $n$ points in $\\mathbb{R}^3$, no three collinear and not all coplanar. If at most $n-k$ are coplanar and $n$ is sufficiently large, the total number of planes determined is at least $1 + k \\binom{n-k}{2}-\\binom{k}{2}(\\frac{n-k}{2})$. For similar conditions and sufficiently large $n$, (inspired by the work of P. D. T. A. Elliott in \\cite{Ell67}) we also show that the number of spheres determined by $n$ points is at least $1+\\binom{n-1}{3}-t_3^{orchard}(n-1)$, and this bound is best possible under its hypothesis. (By $t_3^{orchard}(n)$, we are denoting the maximum number of three-point lines attainable by a configuration of $n$ points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.

  17. Hitting spheres on hyperbolic spaces

    CERN Document Server

    Cammarota, Valentina

    2011-01-01

    For a hyperbolic Brownian motion on the Poincar\\'e half-plane $\\mathbb{H}^2$, starting from a point of hyperbolic coordinates $z=(\\eta, \\alpha)$ inside a hyperbolic disc $U$ of radius $\\bar{\\eta}$, we obtain the probability of hitting the boundary $\\partial U$ at the point $(\\bar \\eta,\\bar \\alpha)$. For $\\bar{\\eta} \\to \\infty$ we derive the asymptotic Cauchy hitting distribution on $\\partial \\mathbb{H}^2$ and for small values of $\\eta$ and $\\bar \\eta$ we obtain the classical Euclidean Poisson kernel. The exit probabilities $\\mathbb{P}_z\\{T_{\\eta_1}sphere. For the hyperbolic half-space $\\mathbb{H}^n$ we obtain the Poisson kernel of a ball in terms of a series involving Gegenbauer polynomials and hypergeometric functions. For small do...

  18. Aerial View of StenniSphere

    Science.gov (United States)

    2001-01-01

    StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.

  19. Performance Evaluation of List Sphere Detector

    Institute of Scientific and Technical Information of China (English)

    HE Xiang; LUO Han-wen; YI Yang

    2005-01-01

    A list sphere detector can use a smaller list than commonly believed by employing an appropriate soft output approximation method. Its effect on the "quality" of detector's soft output value is evaluated by measuringmutual information under ergodic channel. The result shows a length 40 list is adequate for a 4 × 4 16QAM MIMO system without system-level iteration. For the ergodic channel, the gain of a sphere detector over the linear MMSE detector is dependent on channel coding rate, which answers an important question when sphere detector should be used in system level design. All these theoretical results are then verified by Monte Carlo simulation.

  20. The Positive Freedom of the Public Sphere

    DEFF Research Database (Denmark)

    Hansen, Ejvind

    2015-01-01

    The relationship between democracy and the media since the appearance of Habermas' major texts in the 1960s has been articulated through theories of the public sphere. The structure of the public sphere is significantly influenced by the communicative media, and the emergence of the internet thus......-value of utterances is not adequate. Negative freedom and truth are certainly important in the public sphere, because they are necessary conditions for taking a qualified stance towards the challenges that we face. It is, however, important also to reflect on what negative liberties are used for—which kinds of truths...

  1. Tow-Dimensional Micro-grating Formed by Polystyrene Spheres

    Institute of Scientific and Technical Information of China (English)

    张琦; 倪培根; 孟庆波; 程丙英; 张道中

    2003-01-01

    We report a simple method to make two-dimensional plane gratings that can be used as splitters. In the selfassembly process, the colloidal spheres can form single layer square or triangular lattice on a flat surface and in our experiments the triangular lattice is a more common structure. As an incident beam passes through the triangular lattice, it can be split into seven sub-beams, among which six beams have the same density and scattering angle. This grating is not sensitive to the polarization direction of the incident light.

  2. Chemical potential of a test hard sphere of variable size in a hard-sphere fluid

    Science.gov (United States)

    Heyes, David M.; Santos, Andrés

    2016-12-01

    The Labík and Smith Monte Carlo simulation technique to implement the Widom particle insertion method is applied using Molecular Dynamics (MD) instead to calculate numerically the insertion probability, P0(η ,σ0) , of tracer hard-sphere (HS) particles of different diameters, σ0, in a host HS fluid of diameter σ and packing fraction, η , up to 0.5. It is shown analytically that the only polynomial representation of -ln ⁡P0 (η ,σ0) consistent with the limits σ0→0 and σ0→∞ has necessarily a cubic form, c0(η ) +c1(η ) σ0 /σ +c2(η ) (σ0/σ ) 2 +c3(η ) (σ0/σ ) 3 . Our MD data for -ln ⁡P0 (η ,σ0) are fitted to such a cubic polynomial and the functions c0(η ) and c1(η ) are found to be statistically indistinguishable from their exact solution forms. Similarly, c2(η ) and c3(η ) agree very well with the Boublík-Mansoori-Carnahan-Starling-Leland and Boublík-Carnahan-Starling-Kolafa formulas. The cubic polynomial is extrapolated (high density) or interpolated (low density) to obtain the chemical potential of the host fluid, or σ0→σ , as β μex =c0+c1+c2+c3 . Excellent agreement between the Carnahan-Starling and Carnahan-Starling-Kolafa theories with our MD data is evident.

  3. Elastodynamic cloaking and field enhancement for soft spheres

    Science.gov (United States)

    Diatta, Andre; Guenneau, Sebastien

    2016-11-01

    We propose a spherical cloak described by a non-singular asymmetric elasticity tensor {C} depending upon a small parameter η, that defines the softness of a region one would like to conceal from elastodynamic waves. By varying η, we generate a class of soft spheres dressed by elastodynamic cloaks, which are shown to considerably reduce the scattering of the soft spheres. Importantly, such cloaks also provide some wave protection except for a countable set of frequencies, for which some large elastic field enhancement can be observed within the soft spheres. Through an investigation of trapped modes in elasticity, we supply a good approximation of such Mie-type resonances by some transcendental equation. Our results, unlike previous studies that focused merely on the invisibility aspects, shed light on potential pitfalls of elastodynamic cloaks for earthquake protection designed via geometric transforms: a seismic cloak needs to be designed in such a way that its inner resonances differ from eigenfrequencies of the building one wishes to protect. In order to circumvent this downfall of field enhancement inside the cloaked area, we introduce a novel generation of cloaks, named here, mixed cloaks. Such mixed cloaks consist of a shell that detours incoming waves, hence creating an invisibility region, and of a perfectly matched layer (PML, located at the inner boundary of the cloaks) that absorbs residual wave energy in such a way that aforementioned resonances in the soft sphere are strongly attenuated. The designs of mixed cloaks with a non-singular elasticity tensor combined with an inner PML and non-vanishing density bring seismic cloaks one step closer to a practical implementation. Note in passing that the concept of mixed cloaks also applies in the case of singular cloaks and can be translated in other wave areas for a similar purpose (i.e. to smear down inner resonances within the invisibility region).

  4. Strip-Pattern-Spheres Self-Assembled from Polypeptide-Based Polymer Mixtures: Structure and Defect Features

    Science.gov (United States)

    Zhu, Xingyu; Guan, Zhou; Lin, Jiaping; Cai, Chunhua

    2016-07-01

    We found that poly(γ-benzyl-L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) rod-coil block copolymers and polystyrene (PS) homopolymers can cooperatively self-assemble into nano-spheres with striped patterns on their surfaces (strip-pattern-spheres) in aqueous solution. With assistance of dissipative particle dynamics simulation, it is discovered that the PS homopolymers form a spherical template core and the PBLG-b-PEG block copolymers assemble into striped patterns on the spherical surface. The hydrophobic PBLG rods are packed orderly in the strips, while the hydrophilic PEG blocks stabilize the strip-pattern-spheres in solution. Defects such as dislocations and disclinations can be observed in the striped patterns. Self-assembling temperature and sphere radius are found to affect defect densities in the striped patterns. A possible mechanism is proposed to illustrate how PBLG-b-PEG and PS cooperatively self-assemble into hierarchical spheres with striped patterns on surfaces.

  5. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres.

    Science.gov (United States)

    Yang, Zhenhai; Shang, Aixue; Qin, Linling; Zhan, Yaohui; Zhang, Cheng; Gao, Pingqi; Ye, Jichun; Li, Xiaofeng

    2016-04-01

    We propose a design of crystalline silicon thin-film solar cells (c-Si TFSCs, 2 μm-thick) configured with partially embedded dielectric spheres on the light-injecting side. The intrinsic light trapping and photoconversion are simulated by the complete optoelectronic simulation. It shows that the embedding depth of the spheres provides an effective way to modulate and significantly enhance the optical absorption. Compared to the conventional planar and front sphere systems, the optimized partially embedded sphere design enables a broadband, wide-angle, and strong optical absorption and efficient carrier transportation. Optoelectronic simulation predicts that a 2 μm-thick c-Si TFSC with half-embedded spheres shows an increment of more than 10  mA/cm2 in short-circuit current density and an enhancement ratio of more than 56% in light-conversion efficiency, compared to the conventional planar counterparts.

  6. Directional spin wavelets on the sphere

    CERN Document Server

    McEwen, Jason D; Büttner, Martin; Peiris, Hiranya V; Wiaux, Yves

    2015-01-01

    We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is able to probe the directional intensity of spin signals. Furthermore, directional spin scale-discretised wavelets support the exact synthesis of a signal on the sphere from its wavelet coefficients and satisfy excellent localisation and uncorrelation properties. Consequently, directional spin scale-discretised wavelets are likely to be of use in a wide range of applications and in particular for the analysis of the polarisation of the cosmic microwave background (CMB). We develop new algorithms to compute (scalar and spin) forward and inverse wavelet transforms exactly and efficiently for very large data-sets containing tens of millions of samples on the sphere. By leveraging a novel sampling theorem on the rotation group developed in a companion article, only hal...

  7. ANALYSIS OF MECHANISMS FINANCING OF CULTURAL SPHERE

    Directory of Open Access Journals (Sweden)

    Costandachi Gheorghe

    2008-01-01

    Full Text Available In this work is made analysis concern basically state structures of culture and arts activities, is describes the problems are met during the reforming process the financial mechanisms in cultural sphere. Author disclosed the ways evolve private and estate financing cultural sphere, also is disclosed why is need estate financial support. The work contains something detailed measures actions to improve financial and mechanisms financing of cultural sphere. Analyzing questions of modernization of budgetary financing of branch the author have formulated effectiveness of use of budgetary funds at all levels in cultural structures and proposed the ways of finishing of market reforms in cinematography. In the final of work is presented scheme system of financing, formation and distribution of financial resources in cinematography and is making conclusions and is offered wais of the solutions created present situation in this sphere in Moldova.

  8. Acoustic levitation of a large solid sphere

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  9. Spheres of SA Government, responsibilities and delivery

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2010-09-01

    Full Text Available with distinctive but interdependent and interrelated functional responsibilities. The new local sphere of government was created by amalgamating over 800 municipalities into 283 municipalities. This chapter discusses the responsibilities of the Government...

  10. Scalar Casimir effect between two concentric spheres

    CERN Document Server

    Ozcan, Mustafa

    2012-01-01

    The Casimir effect giving rise to an attractive force between the closely spaced two concentric spheres that confine the massless scalar field is calculated by using a direct mode summation with contour integration in the complex plane of eigenfrequencies. We devoleped a new approach appropriate for the calculation of the Casimir energy for spherical boundary conditions. The Casimir energy for a massless scalar field between the closely spaced two concentric spheres coincides with the Casimir energy of the parallel plates for a massless scalar field in the limit when the dimensionless parameter {\\eta}, ({\\eta}=((a-b)/(\\surd(ab))) where a (b) is inner (outer) radius of sphere), goes to zero. The efficiency of new approach is demonstrated by calculation of the Casimir energy for a massless scalar field between the closely spaced two concentric half spheres. PACS number(s): 03.70.+k, 12.20.DS, 11.10.Gh

  11. Spheres of Exemption, Figures of Exclusion

    DEFF Research Database (Denmark)

    , the history of ideas, social science, political science and literature studies, Spheres of Exemption, Figures of Exclusion offers thirteen investigations into the co-constitutive relationship between subjectivity and political and legal order, combining theoretical reflection with empirical and historical...

  12. Acoustic levitation of a large solid sphere

    Science.gov (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  13. Gender, Diversity and the European Public Sphere

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2009-01-01

    This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to.......This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....

  14. vSphere virtual machine management

    CERN Document Server

    Fitzhugh, Rebecca

    2014-01-01

    This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.

  15. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  16. Gender, Diversity and the European Public Sphere

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2009-01-01

    This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to.......This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....

  17. Point defects in hard-sphere crystals

    OpenAIRE

    Pronk, S.; Frenkel, D.

    2001-01-01

    We report numerical calculations of the concentration of interstitials in hard-sphere crystals. We find that, in a three-dimensional fcc hard-sphere crystal at the melting point, the concentration of interstitials is 2 * 10^-8. This is some three orders of magnitude lower than the concentration of vacancies. A simple, analytical estimate yields a value that is in fair agreement with the numerical results.

  18. Geometrical Dynamics in a Transitioning Superconducting Sphere

    Directory of Open Access Journals (Sweden)

    Claycomb J. R.

    2006-10-01

    Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.

  19. A novel sampling theorem on the sphere

    CERN Document Server

    McEwen, J D

    2011-01-01

    We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at L, all sampling theorems on the sphere require O(L^2) samples. However, our sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of our algorithms scale as O(L^3), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast. Furthermore, we do not require any precomputation and our algorithms apply to both scalar and spin functions on the sphere without any change in computational comple...

  20. Inverse Magnus effect on a rotating sphere

    Science.gov (United States)

    Kim, Jooha; Park, Hyungmin; Choi, Haecheon; Yoo, Jung Yul

    2011-11-01

    In this study, we investigate the flow characteristics of rotating spheres in the subcritical Reynolds number (Re) regime by measuring the drag and lift forces on the sphere and the two-dimensional velocity in the wake. The experiment is conducted in a wind tunnel at Re = 0 . 6 ×105 - 2 . 6 ×105 and the spin ratio (ratio of surface velocity to the free-stream velocity) of 0 (no spin) - 0.5. The drag coefficient on a stationary sphere remains nearly constant at around 0.52. However, the magnitude of lift coefficient is nearly zero at Re Magnus effect, depending on the magnitudes of the Reynolds number and spin ratio. The velocity field measured from a particle image velocimetry (PIV) indicates that non-zero lift coefficient on a stationary sphere at Re > 2 . 0 ×105 results from the asymmetry of separation line, whereas the inverse Magnus effect for the rotating sphere results from the differences in the boundary-layer growth and separation along the upper and lower sphere surfaces. Supported by the WCU, Converging Research Center and Priority Research Centers Program, NRF, MEST, Korea.

  1. Thermodynamic instabilities of a binary mixture of sticky hard spheres.

    Science.gov (United States)

    Fantoni, Riccardo; Gazzillo, Domenico; Giacometti, Achille

    2005-07-01

    The thermodynamic instabilities of a binary mixture of sticky hard spheres (SHS) in the modified mean spherical approximation (mMSA) and the Percus-Yevick (PY) approximation are investigated using an approach devised by Chen and Forstmann [corrected] [J. Chem. Phys. [corrected] 97, 3696 (1992)]. This scheme hinges on a diagonalization of the matrix of second functional derivatives of the grand canonical potential with respect to the particle density fluctuations. The zeroes of the smallest eigenvalue and the direction of the relative eigenvector characterize the instability uniquely. We explicitly compute three different classes of examples. For a symmetrical binary mixture, analytical calculations, both for mMSA and for PY, predict that when the strength of adhesiveness between like particles is smaller than the one between unlike particles, only a pure condensation spinodal exists; in the opposite regime, a pure demixing spinodal appears at high densities. We then compare the mMSA and PY results for a mixture where like particles interact as hard spheres (HS) and unlike particles as SHS, and for a mixture of HS in a SHS fluid. In these cases, even though the mMSA and PY spinodals are quantitatively and qualitatively very different from each other, we prove that they have the same kind of instabilities. Finally, we study the mMSA solution for five different mixtures obtained by setting the stickiness parameters equal to five different functions of the hard sphere diameters. We find that four of the five mixtures exhibit very different type of instabilities. Our results are expected to provide a further step toward a more thoughtful application of SHS models to colloidal fluids.

  2. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    Science.gov (United States)

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

  3. Packing of crystalline structures of binary hard spheres: an analytical approach and application to amorphization.

    Science.gov (United States)

    Brouwers, H J H

    2007-10-01

    The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on "simple" noninteracting hard spheres are a valuable tool for the study of crystalline materials.

  4. Packing of crystalline structures of binary hard spheres: An analytical approach and application to amorphization

    Science.gov (United States)

    Brouwers, H. J. H.

    2007-10-01

    The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on “simple” noninteracting hard spheres are a valuable tool for the study of crystalline materials.

  5. Thermodynamic scaling and corresponding states for the self-diffusion coefficient of non-conformal soft-sphere fluids

    Science.gov (United States)

    Rodríguez-López, Tonalli; Moreno-Razo, J. Antonio; del Río, Fernando

    2013-03-01

    In this work, we explore transport properties of a special type of repulsive spheres that exhibit remarkable scaling of their thermodynamic properties. In order to accomplish that we propose a new way to derive and express effective hard-sphere diameters for transport properties of simple fluids. The procedure relies on mapping the system's transport properties, in the low density limit, to the hard-sphere fluid. We have chosen a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids and are an accurate representation of the effective repulsive potentials of real systems. The self-diffusion coefficient of the soft-sphere fluids is obtained by equilibrium molecular dynamics. The soft-sphere collision integrals of different systems are shown to follow quite simple relationships between each other. These collision integrals are incorporated, through the definition of the effective hard-sphere diameter, in the resulting equation for the self-diffusion coefficient. The approach followed exhibits a density rescaling that leads to a single master curve for all systems and temperatures. The scaling is carried through to the level of the mean-squared displacement.

  6. Solid–liquid interfacial free energy of small colloidal hard-sphere crystals

    NARCIS (Netherlands)

    Cacciuto, A.; Auer, S.; Frenkel, D.

    2003-01-01

    Using free-energy calculations on small crystalline clusters, we estimate the free-energy density γSL for the solid–liquid equimolar interface of a system of hard-sphere colloids. By studying the behavior of a crystallite at coexistence, we determine the dependence of γSL on the radius of curvature

  7. New Closed Virial Equation of State for Hard-Sphere Fluids

    CERN Document Server

    Tian, Jianxiang; Mulero, Angel

    2016-01-01

    A new closed virial equation of state of hard-sphere fluids is proposed which reproduces the calculated or estimated values of the first sixteen virial coefficients at the same time as giving very good accuracy when compared with computer simulation data for the compressibility factor over the entire fluid range, and having a pole at the correct closest packing density.

  8. Hard, charged spheres in spherical pores. Grand canonical ensemble Monte Carlo calculations

    DEFF Research Database (Denmark)

    Sloth, Peter; Sørensen, T. S.

    1992-01-01

    A model consisting of hard charged spheres inside hard spherical pores is investigated by grand canonical ensemble Monte Carlo calculations. It is found that the mean ionic density profiles in the pores are almost the same when the wall of the pore is moderately charged as when it is uncharged...

  9. Mimicking static anisotropic fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt

    2016-11-01

    We argue that an arbitrary general relativistic static anisotropic fluid sphere, (static and spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully mimicked by suitable linear combinations of theoretically attractive and quite simple classical matter: a classical (charged) isotropic perfect fluid, a classical electromagnetic field and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore, we show how this decomposition relates to the distribution of both electric charge density and scalar charge density throughout the model. The generalized TOV equation implies that the perfect fluid component in this model is automatically in internal equilibrium, with pressure forces, electric forces, and scalar forces balancing the gravitational pseudo-force. Consequently, we can build theoretically attractive matter models that can be used to mimic almost any static spherically symmetric spacetime.

  10. Energy and density analysis of the H2 molecule from the united atom to dissociation: The 3Σg+ and 3Σu+ states

    Science.gov (United States)

    Corongiu, Giorgina; Clementi, Enrico

    2009-11-01

    The first 14 Σ3g+ and the first 15 Σ3u+ states of the H2 molecule are computed with full configuration interaction both from Hartree-Fock molecular orbitals and Heitler-London atomic orbitals within the Born-Oppenheimer approximation, following recent studies for the Σ1g+ and Σ1u+ manifolds [Corongiu and Clementi, J. Chem. Phys. 131, 034301 (2009) and J. Phys. Chem. (in press)]. The basis sets utilized are extended and optimized Slater-type functions and spherical Gaussian functions. The states considered correspond to the configurations (1s1nl1) with n from 1 to 5; the internuclear separations sample the distances from 0.01 to 10 000 bohrs. For the first three Σ3g+ and Σ3u+ states and for the fourth and fifth Σ3g+ states, our computed energies at the equilibrium internuclear separation, when compared to the accurate values by Staszewska and Wolniewicz and by Kołos and Rychlewski, show deviations of about 0.006 kcal/mol, a test on the quality of our computations. Motivation for this work comes not only from obtaining potential energy curves for the high excited states of H2 but also from characterizing the electronic density evolution from the united atom to dissociation to provide a detailed analysis of the energy contributions from selected basis subsets and to quantitatively decompose the state energies into covalent and ionic components. Furthermore, we discuss the origin of the seemingly irregular patterns in potential energy curves in the two manifolds, between 4 and 6-9 bohrs—there are two systems of states: the first, from the united atom to about 4 bohrs, is represented by functions with principal quantum number higher than the one needed at dissociation; this system interacts at around 4 bohrs with the second system, which is represented by functions with principal quantum number corresponding to one of the dissociation products.

  11. Collinear swimmer propelling a cargo sphere at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2014-01-01

    The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes' equations in the presence of a sphere with no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.

  12. Terminal energy distribution of blast waves from bursting spheres

    Science.gov (United States)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  13. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Directory of Open Access Journals (Sweden)

    Domke Grant M

    2011-11-01

    Full Text Available Abstract Background Standing dead trees are one component of forest ecosystem dead wood carbon (C pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales. Results Accounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest. Conclusions Substantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog

  14. Shear Yielding and Shear Jamming of Dense Hard Sphere Glasses

    Science.gov (United States)

    Urbani, Pierfrancesco; Zamponi, Francesco

    2017-01-01

    We investigate the response of dense hard sphere glasses to a shear strain in a wide range of pressures ranging from the glass transition to the infinite-pressure jamming point. The phase diagram in the density-shear strain plane is calculated analytically using the mean-field infinite-dimensional solution. We find that just above the glass transition, the glass generically yields at a finite shear strain. The yielding transition in the mean-field picture is a spinodal point in presence of disorder. At higher densities, instead, we find that the glass generically jams at a finite shear strain: the jamming transition prevents yielding. The shear yielding and shear jamming lines merge in a critical point, close to which the system yields at extremely large shear stress. Around this point, highly nontrivial yielding dynamics, characterized by system-spanning disordered fractures, is expected.

  15. The Separate Spheres Model of Gendered Inequality.

    Directory of Open Access Journals (Sweden)

    Andrea L Miller

    Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  16. The Separate Spheres Model of Gendered Inequality.

    Science.gov (United States)

    Miller, Andrea L; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  17. Energy and Density Analyses of the 1Σu+ States in the H2 Molecule from the United Atom to Dissociation

    Science.gov (United States)

    Corongiu, Giorgina; Clementi, Enrico

    2009-07-01

    The 1Σu+ excited states of the H2 molecule are computed following a recent study by Corongiu and Clementi (J. Chem. Phys. 2009, 131, 034301) on the 1Σg+ states. Full configuration interaction computations both from Hartree-Fock molecular orbitals and Heitler-London atomic orbitals are presented and correlated with a comprehensive analysis. The basis sets utilized are either extended and optimized Slater type functions, STO, or spherical Gaussian functions, GTO. Computations and analyses are presented for states 1 to 14, covering the internuclear distances from 0.01 to 10000 bohr. The accurate data by L. Wolniewicz and collaborators, available for the first six excited states, verify the good quality of our computations. We focus on the characterization of the orbitals in the excited state wave functions, on the electronic density evolution from the united atom to dissociation, on quantitative decomposition of the total energy into covalent and ionic components and on detailed analyses of energy contributions to the total state energy from selected STO subsets. Each manifold has one state, specifically the states 1, 3 and 6, where the second minimum has strong ionic character. State 10 dissociates into the ion pair H+H-.

  18. Energy and density analyses of the 1Sigma(u)+ states in the H2 molecule from the united atom to dissociation.

    Science.gov (United States)

    Corongiu, Giorgina; Clementi, Enrico

    2009-12-31

    The 1Sigma(u)+ excited states of the H2 molecule are computed following a recent study by Corongiu and Clementi (J. Chem. Phys. 2009, 131, 034301) on the 1Sigma(g)+ states. Full configuration interaction computations both from Hartree-Fock molecular orbitals and Heitler-London atomic orbitals are presented and correlated with a comprehensive analysis. The basis sets utilized are either extended and optimized Slater type functions, STO, or spherical Gaussian functions, GTO. Computations and analyses are presented for states 1 to 14, covering the internuclear distances from 0.01 to 10000 bohr. The accurate data by L. Wolniewicz and collaborators, available for the first six excited states, verify the good quality of our computations. We focus on the characterization of the orbitals in the excited state wave functions, on the electronic density evolution from the united atom to dissociation, on quantitative decomposition of the total energy into covalent and ionic components and on detailed analyses of energy contributions to the total state energy from selected STO subsets. Each manifold has one state, specifically the states 1, 3 and 6, where the second minimum has strong ionic character. State 10 dissociates into the ion pair H+H-.

  19. Catalytic Pyrolysis of Low Density Polyethylene Using Cetyltrimethyl Ammonium Encapsulated Monovacant Keggin Units C19H42N4H3(PW11O39 and ZSM-5

    Directory of Open Access Journals (Sweden)

    Madeeha Batool

    2016-01-01

    Full Text Available The effect of the catalysts on the pyrolysis of commercial low density polyethylene (LDPE has been studied in a batch reactor. The thermal catalytic cracking of the LDPE has been done using cetyltrimethyl ammonium encapsulated monovacant keggin units (C19H42N4H3(PW11O39, labeled as CTA-POM and compared with the ZSM-5 catalyst. GC-MS results showed that catalytic cracking of LDPE beads generated oilier fraction over CTA-POM as compared to ZSM-5. Thus, the use of CTA-POM is more significant because it yields more useful fraction. It was also found that the temperature required for the thermal degradation of LDPE was lower when CTA-POM was used as a catalyst while high temperature was required for degradation over ZSM-5 catalyst. Better activity of CTA-POM was due to hydrophobic nature of CTA moiety which helps in catalyst mobility and increases its interaction with hydrocarbons.

  20. Robotics Programming Competition Spheres, Russian Part

    Science.gov (United States)

    Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia

    2016-07-01

    Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.

  1. Water exit dynamics of buoyant spheres

    Science.gov (United States)

    Truscott, Tadd T.; Epps, Brenden P.; Munns, Randy H.

    2016-11-01

    Buoyant spheres released below the free surface can rise well above the surface in a phenomenon known as pop-up. Contrary to intuition, increasing the release depth sometimes results in a lower pop-up height. We present the pop-up height of rising buoyant spheres over a range of release depths (1-12.5 diameters) and Reynolds numbers (4 ×104 to 6 ×105 ). While the dynamics of rising buoyant spheres and bubbles has been thoroughly investigated for Reynolds numbers below 104, pop-up in these larger-Reynolds-number regimes has not been studied. Yet the underwater motions of the sphere for the Reynolds numbers we study are the key to understanding the pop-up height. Two major regimes are apparent: vertical and oscillatory. The vertical regime exhibits a nearly vertical underwater trajectory and results in the largest pop-up heights. The oscillatory regime exhibits an underwater trajectory with periodic lateral motions and results in lower pop-up heights; this periodic lateral motion is modulated by unsteady vortex shedding in the wake of the sphere. Despite these complex fluid structure interactions, the experiments presented herein yield extremely repeatable results.

  2. Equation of state of non-additive $d$-dimensional hard-sphere mixtures

    OpenAIRE

    Santos, A.; de Haro, M. Lopez; Yuste, S. B.

    2004-01-01

    An equation of state for a multicomponent mixture of non-additive hard spheres in $d$ dimensions is proposed. It yields a rather simple density dependence and constitutes a natural extension of the equation of state for additive hard spheres proposed by us [A. Santos, S. B. Yuste, and M. L\\'opez de Haro, Mol. Phys. 96, 1 (1999)]. The proposal relies on the known exact second and third virial coefficients and requires as input the compressibility factor of the one-component system. A compariso...

  3. The intrinsic beauty of polytropic spheres in reduced variables

    CERN Document Server

    Caimmi, R

    2016-01-01

    The concept of reduced variables is revisited with regard to van der Waals' theory and an application is made to polytropic spheres, where the reduced radial coordinate is ${\\rm red}(r)=r/R=\\xi/\\Xi$, $R$ radius, and the reduced density is ${\\rm red}(\\rho)=\\rho/\\lambda=\\theta^n$, $\\lambda$ central density. Reduced density profiles are plotted for several polytropic indexes within the range, $0\\le n\\le5$, disclosing two noticeable features. First, any point of coordinates, $({\\rm red}(r),{\\rm red}(\\rho))$, $0\\le{\\rm red}(r)\\le1$, $0\\le{\\rm red}(\\rho)\\le1$, belongs to a reduced density profile of the kind considered. Second, sufficiently steep i.e. large $n$ reduced density profiles exhibit an oblique inflection point, where the threshold is found to be located at $n=n_{\\rm th}=0.888715$. Reduced pressure profiles, ${\\rm red}(P)=P/\\varpi=\\theta^{n+1}$, $\\varpi$ central pressure, Lane-Emden fucntions, $\\theta=(\\rho/\\lambda)^{1/n}$, and polytropic curves, ${\\rm red}(P)={\\rm red}(P)({\\rm red}(\\rho))$, are also plot...

  4. Rigidity of marginally outer trapped 2-spheres

    CERN Document Server

    Galloway, Gregory J

    2015-01-01

    In a matter-filled spacetime, perhaps with positive cosmological constant, a stable marginally outer trapped 2-sphere must satisfy a certain area inequality. Namely, as discussed in the paper, its area must be bounded above by $4\\pi/c$, where $c > 0$ is a lower bound on a natural energy-momentum term. We then consider the rigidity that results for stable, or weakly outermost, marginally outer trapped 2-spheres that achieve this upper bound on the area. In particular, we prove a splitting result for 3-dimensional initial data sets analogous to a result of Bray, Brendle and Neves [10] concerning area minimizing 2-spheres in Riemannian 3-manifolds with positive scalar curvature. We further show that these initial data sets locally embed as spacelike hypersurfaces into the Nariai spacetime. Connections to the Vaidya spacetime and dynamical horizons are also discussed.

  5. Classical and quantum dynamics of the sphere

    Science.gov (United States)

    Lasukov, Vladimir; Moldovanova, Evgeniia; Abdrashitova, Maria; Malik, Hitendra; Gorbacheva, Ekaterina

    2016-07-01

    In Minkowski space, there has been developed the mathematic quantum model of the real particle located on the sphere evolving owing to the negative pressure inside the sphere. The developed model is analogous to the geometrodynamic model of the Lemaitre-Friedmann primordial atom in superspace-time, whose spatial coordinate is the scale factor functioning as a radial coordinate. There is a formulation of quantum geometrodynamics in which the spatial coordinate is an offset of the scale factor and wave function at the same time. With the help of the Dirac procedure for extracting the root from the Hamiltonian operator we have constructed a Dirac quantum dynamics of the sphere with fractional spin.

  6. The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids

    NARCIS (Netherlands)

    Oyarzun, B.A.; Van Westen, T.; Vlugt, T.J.H.

    2013-01-01

    he liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10,

  7. Does Negative Type Characterize the Round Sphere?

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2007-01-01

    We discuss the measure theoretic metric invariants extent, mean distance and symmetry ratio and their relation to the concept of negative type of a metric space. A conjecture stating that a compact Riemannian manifold with symmetry ratio 1 must be a round sphere, was put forward in a previous paper....... We resolve this conjecture in the class of Riemannian symmetric spaces by showing, that a Riemannian manifold with symmetry ratio 1 must be of negative type and that the only compact Riemannian symmetric spaces of negative type are the round spheres....

  8. vSphere design best practices

    CERN Document Server

    Bolander, Brian

    2014-01-01

    An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.

  9. Path integral representations on the complex sphere

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-08-15

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  10. Willmore energy estimates in conformal Berger spheres

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Manuel, E-mail: mbarros@ugr.es [Departamento de Geometria y Topologia, Facultad de Ciencias Universidad de Granada, 1807 Granada (Spain); Ferrandez, Angel, E-mail: aferr@um.es [Departamento de Matematicas, Universidad de Murcia Campus de Espinardo, 30100 Murcia (Spain)

    2011-07-15

    Highlights: > The Willmore energy is computed in a wide class of surfaces. > Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. > The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.

  11. The dissolution or growth of a sphere

    Science.gov (United States)

    Shankar, N.; Wiltshire, Timothy J.; Subramanian, R. Shankar

    1984-01-01

    The problem of the dissolution or growth of an isolated stationary sphere in a large fluid body is analyzed. The motion of the boundary as well as the the resulting motion in the liquid are properly taken into account. The governing equations are solved using a recently developed technique (Subramanian and Weinberg, 1981) which employs an asymptotic expansion in time. Results for the radius of the sphere as a function of time are calculated. The range of utility of the present solution is established by comparison with a numerical solution of the governing equations obtained by the method of finite differences.

  12. The 'Sphere': A Dedicated Bifurcation Aneurysm Flow-Diverter Device.

    Science.gov (United States)

    Peach, Thomas; Cornhill, J Frederick; Nguyen, Anh; Riina, Howard; Ventikos, Yiannis

    2014-01-01

    We present flow-based results from the early stage design cycle, based on computational modeling, of a prototype flow-diverter device, known as the 'Sphere', intended to treat bifurcation aneurysms of the cerebral vasculature. The device is available in a range of diameters and geometries and is constructed from a single loop of NITINOL(®) wire. The 'Sphere' reduces aneurysm inflow by means of a high-density, patterned, elliptical surface that partially occludes the aneurysm neck. The device is secured in the healthy parent vessel by two armatures in the shape of open loops, resulting in negligible disruption of parent or daughter vessel flow. The device is virtually deployed in six anatomically accurate bifurcation aneurysms: three located at the Basilar tip and three located at the terminus bifurcation of the Internal Carotid artery (at the meeting of the middle cerebral and anterior cerebral arteries). Both steady state and transient flow simulations reveal that the device presents with a range of aneurysm inflow reductions, with mean flow reductions falling in the range of 30.6-71.8% across the different geometries. A significant difference is noted between steady state and transient simulations in one geometry, where a zone of flow recirculation is not captured in the steady state simulation. Across all six aneurysms, the device reduces the WSS magnitude within the aneurysm sac, resulting in a hemodynamic environment closer to that of a healthy vessel. We conclude from extensive CFD analysis that the 'Sphere' device offers very significant levels of flow reduction in a number of anatomically accurate aneurysm sizes and locations, with many advantages compared to current clinical cylindrical flow-diverter designs. Analysis of the device's mechanical properties and deployability will follow in future publications.

  13. Changes in forest composition, stem density, and biomass from the settlement era (1800s) to present in the upper Midwestern United States

    Science.gov (United States)

    Goring, Simon; Mladenoff, David J.; Cogbill, Charles; Record, Sydne; Paciorek, Christopher J.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn; McLachlan, Jason S.; Williams, John W.

    2016-01-01

    EuroAmerican land use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Gridded (8x8km) estimates of pre-settlement (1800s) forests from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan) using 19th Century Public Land Survey (PLS) records provide relative composition, biomass, stem density, and basal area for 26 tree genera. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. We compare pre-settlement to modern forests using Forest Inventory and Analysis (FIA) data, with respect to structural changes and the prevalence of lost forests, pre-settlement forests with no current analogue, and novel forests, modern forests with no past analogs. Differences between PLSS and FIA forests are spatially structured as a result of differences in the underlying ecology and land use impacts in the Upper Midwestern United States. Modern biomass is higher than pre-settlement biomass in the northwest (Minnesota and north-eastern Wisconsin, including regions that were historically open savanna), and lower in the east (eastern Wisconsin and Michigan), due to shifts in species composition and, presumably, average stand age. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 29% of all FIA cells, while 25% of pre-settlement forests no longer exist in a modern context. Lost forests are centered around the forests of the Tension Zone, particularly in hemlock dominated forests of north-central Wisconsin, and in oak-elm-basswood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across

  14. Energy and density analysis of the H2 molecule from the united atom to dissociation: the 3Sigma(g)+ and 3Sigma(u)+ states.

    Science.gov (United States)

    Corongiu, Giorgina; Clementi, Enrico

    2009-11-14

    The first 14 (3)Sigma(g)(+) and the first 15 (3)Sigma(u)(+) states of the H(2) molecule are computed with full configuration interaction both from Hartree-Fock molecular orbitals and Heitler-London atomic orbitals within the Born-Oppenheimer approximation, following recent studies for the (1)Sigma(g)(+) and (1)Sigma(u)(+) manifolds [Corongiu and Clementi, J. Chem. Phys. 131, 034301 (2009) and J. Phys. Chem. (in press)]. The basis sets utilized are extended and optimized Slater-type functions and spherical Gaussian functions. The states considered correspond to the configurations (1s(1)nl(1)) with n from 1 to 5; the internuclear separations sample the distances from 0.01 to 10,000 bohrs. For the first three (3)Sigma(g)(+) and (3)Sigma(u)(+) states and for the fourth and fifth (3)Sigma(g)(+) states, our computed energies at the equilibrium internuclear separation, when compared to the accurate values by Staszewska and Wolniewicz and by Kołos and Rychlewski, show deviations of about 0.006 kcal/mol, a test on the quality of our computations. Motivation for this work comes not only from obtaining potential energy curves for the high excited states of H(2) but also from characterizing the electronic density evolution from the united atom to dissociation to provide a detailed analysis of the energy contributions from selected basis subsets and to quantitatively decompose the state energies into covalent and ionic components. Furthermore, we discuss the origin of the seemingly irregular patterns in potential energy curves in the two manifolds, between 4 and 6-9 bohrs--there are two systems of states: the first, from the united atom to about 4 bohrs, is represented by functions with principal quantum number higher than the one needed at dissociation; this system interacts at around 4 bohrs with the second system, which is represented by functions with principal quantum number corresponding to one of the dissociation products.

  15. Clustering and gelation of hard spheres induced by the Pickering effect

    Science.gov (United States)

    Fortini, Andrea

    2012-04-01

    A mixture of hard-sphere particles and model emulsion droplets is studied with a Brownian dynamics simulation. We find that the addition of nonwetting emulsion droplets to a suspension of pure hard spheres can lead to both gas-liquid and fluid-solid phase separations. Furthermore, we find a stable fluid of hard-sphere clusters. The stability is due to the saturation of the attraction that occurs when the surface of the droplets is completely covered with colloidal particles. At larger emulsion droplet densities a percolation transition is observed. The resulting networks of colloidal particles show dynamical and mechanical properties typical of a colloidal gel. The results of the model are in good qualitative agreement with recent experimental findings [E. Koos and N. Willenbacher, ScienceSCIEAS0036-807510.1126/science.1199243 331, 897 (2011)] in a mixture of colloidal particles and two immiscible fluids.

  16. Small-angle scattering from precipitates: Analysis by use of a polydisperse hard-sphere model

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    A general polydisperse hard-sphere model for analyzing small-angle-scattering data from spherical precipitates in alloys is presented. In the model the size distribution is chosen as a Weibull density distribution and the hard-sphere interaction radius is taken as being proportional to the radius...... very good fits to the experimental data and the results are in agreement with a Li content of 25% in the precipitates. The concentration of Li in the matrix is also in good agreement with the phase diagram of Al-Li found in the literature. Results from the application of a monodisperse hard-sphere...... of the precipitates. The Weibull distribution is monomodal, and depending on the parameters describing the distribution, it can skew to either side. Small-angle x-ray- and neutron-scattering data, taken from the literature, from spherical delta' precipitates in Al-Li alloys have been analyzed with the model. It gives...

  17. Solidification of a colloidal hard sphere like model system approaching and crossing the glass transition.

    Science.gov (United States)

    Franke, Markus; Golde, Sebastian; Schöpe, Hans Joachim

    2014-08-07

    We investigated the process of vitrification and crystallization in a model system of colloidal hard spheres. The kinetics of the solidification process was measured using time resolved static light scattering, while the time evolution of the dynamic properties was determined using time resolved dynamic light scattering. By performing further analysis we confirm that solidification of hard sphere colloids is mediated by precursors. Analyzing the dynamic properties we can show that the long time dynamics and thus the shear rigidity of the metastable melt is highly correlated with the number density of solid clusters (precursors) nucleated. In crystallization these objects convert into highly ordered crystals whereas in the case of vitrification this conversion is blocked and the system is (temporarily) locked in the metastable precursor state. From the early stages of solidification one cannot clearly conclude whether the melt will crystallize or vitrify. Furthermore our data suggests that colloidal hard sphere glasses can crystallize via homogeneous nucleation.

  18. Monte Carlo methods for estimating depletion potentials in highly size-asymmetrical hard sphere mixtures.

    Science.gov (United States)

    Ashton, D J; Sánchez-Gil, V; Wilding, N B

    2013-10-14

    We investigate Monte Carlo simulation strategies for determining the effective ("depletion") potential between a pair of hard spheres immersed in a dense sea of much smaller hard spheres. Two routes to the depletion potential are considered. The first is based on estimates of the insertion probability of one big sphere in the presence of the other; we describe and compare three such methods. The second route exploits collective (cluster) updating to sample the depletion potential as a function of the separation of the big particles; we describe two such methods. For both routes, we find that the sampling efficiency at high densities of small particles can be enhanced considerably by exploiting "geometrical shortcuts" that focus the computational effort on a subset of small particles. All the methods we describe are readily extendable to particles interacting via arbitrary potentials.

  19. Raman fingerprints on the Bloch sphere of a spinor Bose-Einstein condensate

    Science.gov (United States)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-10-01

    We explore the geometric interpretation of a diabatic, two-photon Raman process as a rotation on the Bloch sphere for a pseudo-spin-? system. The spin state of a spin-? quantum system can be described by a point on the surface of the Bloch sphere, and its evolution during a Raman pulse is a trajectory on the sphere determined by properties of the optical beams: the pulse area, the relative intensities and phases and the relative frequencies. We experimentally demonstrate key features of this model with a ?Rb spinor Bose-Einstein condensate, which allows us to examine spatially dependent signatures of the Raman beams. The two-photon detuning allows us to precisely control the spin density and imprinted relative phase profiles, as we show with a coreless vortex. With this comprehensive understanding and intuitive geometric interpretation, we use the Raman process to create and tailor as well as study and characterize exotic topological spin textures in spinor BECs.

  20. Formal Variability of Terms in the Sphere of Network Technologies

    Directory of Open Access Journals (Sweden)

    Roman Viktorovich Deniko

    2015-09-01

    Full Text Available The article addresses the problem of formal variability of terms in the sphere of network terminology in the Russian language. The research is based on data from the Internet communication in the sphere of network technologies. Such formal variability types as graphical, phonemic, word building and complex (graphic and phonetic, morphologic and accentual are discussed in this article. The authors reveal the reasons for graphic variability of foreign origin terms making up the international terminological fund. These reasons cover such aspects as the use of graphics of source language and recipient language; the presence or absence of hyphenation, etc. It is determined that the phonemic variants of terms appear as a result of oral or written borrowings. The existence of such variants is also connected with the stage of their adaptation in the Russian language after borrowing. In this case the variants are related with soft or hard pronunciation of consonants. There are also some cases of phonemic variability on the graphic level. The complex variability is regarded as a part of active processes taking place in the modern Russian language, and these processes involve both native and foreign origin terms. The particular attention is paid to the word-building variants – word-building affixes the variability of which is peculiar of network technologies. The results of the research show that the variability of professional units belonging to the network technologies sublanguage is caused by the active process of borrowing of specialpurpose vocabulary into the Russian language. The process is due to the intensification of intercultural communication in the professional spheres.

  1. Evolution of Voronoi/Delaunay Characterized Micro Structure with Transition from Loose to Dense Sphere Packing

    Science.gov (United States)

    An, Xi-Zhong

    2007-08-01

    Micro structures of equal sphere packing (ranging from loose to dense packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter, surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi/Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number, total perimeter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher, which is in good agreement with those in random loose packing.

  2. Evolution of Voronoi/Delaunay Characterized Micro Structure with Transition from Loose to Dense Sphere Packing

    Institute of Scientific and Technical Information of China (English)

    AN Xi-Zhong

    2007-01-01

    @@ Micro structures of equal sphere packing (ranging from loose to dense packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter,surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi/Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number,total perimeter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher,which is in good agreement with those in random loose packing.

  3. Serial Symmetrical Relocation Algorithm for the Equal Sphere Packing Problem

    CERN Document Server

    Huang, WenQi

    2012-01-01

    For dealing with the equal sphere packing problem, we propose a serial symmetrical relocation algorithm, which is effective in terms of the quality of the numerical results. We have densely packed up to 200 equal spheres in spherical container and up to 150 equal spheres in cube container. All results are rigorous because of a fake sphere trick. It was conjectured impossible to pack 68 equal spheres of radius 1 into a sphere of radius 5. The serial symmetrical relocation algorithm has proven wrong this conjecture by finding one such packing.

  4. The effect of PTSA on preparation of mesophase carbon spheres.

    Directory of Open Access Journals (Sweden)

    Youliang Cheng

    2009-05-01

    Full Text Available Mesophase spheres have been synthesized by heat-treating a medium coal tar pitch at 420 ºC for 2 hours in the presence of P-toluene sulphonic acid (PTSA. The effect of PTSA on synthesis of mesophase spheres had been studied. It was found that PTSA promotes the formation of mesophase spheres in coal tar pitch through acceleratingpolymerization of aromatic hydrocarbons. PTSA content between 3 and 5 wt % gave similar size spheres, beyond which as the PTSA content increases, the size of spheres increases. 5 wt % PTSA gives uniform spheres with small size, good spherical shape and smooth surface.

  5. Packing Effect of Excluded Volume on Hard-Sphere Colloids

    Institute of Scientific and Technical Information of China (English)

    肖长明; 金国钧; 马余强

    2001-01-01

    We apply the principle of maximum entropy to consider the excluded volume effect on the phase separation of binary mixtures consisting of hard spheres with two different diameters. We show that a critical volume fraction of hard spheres exists locating the packing of large spheres. In particular, through numerical calculation, we have found that the critical volume fraction becomes lower when the ratio α = σ1/σ2 of large-to-small sphere diameters increases, but becomes higher when the ratio of the large sphere volume fraction to the total volume fraction of large and small spheres increases.

  6. ORSPHERE: PHYSICS MEASUREMENTS FOR BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2014-03-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.

  7. Orsphere: Physics Measurments For Bare, HEU(93.2)-Metal Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Christine E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dyrda, James P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tancock, Nigel P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.

  8. Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Polly, R.; Schimmelpfennig, B.; Rabung, T.; Kupcik, T.; Klenze, R.; Geckeis, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung (INE); Floersheimer, M. [Hochschule RheinMain, Ruesselsheim (Germany). Fachbereich Ingenieurwissenschaften

    2013-11-01

    Sorption plays a major role in the safety assessment of nuclear waste disposal. In the present theoretical study we focused on understanding the interaction of trivalent lanthanides and actinides (La{sup 3+}, Eu{sup 3+} and Cm{sup 3+}) with the corundum (110) surface. Optimization of the structures were carried out using density functional theory with different basis sets. Additionally, Moeller-Plesset perturbation theory of second order was used for single point energy calculations. We studied the structure of different inner-sphere complexes depending on the surface deprotonation and the number of water molecules in the first coordination shell. The most likely structure of the inner-sphere complex (tri- or tetradentate) was predicted. For the calculations we used a cluster model for the surface. By deprotonating the cluster a chemical environment at elevated pH values was mimicked. Our calculations predict the highest stability for a tetradentate inner-sphere surface complexes with five water molecules remaining in the first coordination sphere of the metal ions. The formation of the inner-sphere complexes is favored when a coordination takes place with at most one deprotonated surface aluminol group located beneath the inner-sphere complex. The mutual interaction between sorbing metal ions at the surface is studied as well. The minimal possible distance between two inner-sphere sorbed metal ions at the surface was determined to be 530 pm. (orig.)

  9. Adsorption of a Hard Sphere Fluid in a Disordered Polymerized Matrix: Application of the Replica Ornstein-Zernike Equations

    Science.gov (United States)

    Pizio; Trokhymchuk; Henderson; Labik

    1997-07-01

    A model of hard spheres adsorbed in disordered porous media is studied using the associative replica Ornstein-Zernike (ROZ) equations. Extending previous studies of adsorption in a hard sphere matrices, we investigate a polymerized matrix. We consider an associating fluid of hard spheres with two intracore attractive sites per particle; consequently chains consisting of overlapping hard spheres can be formed due to the chemical association. This is the generalization of the model with sites on the surface of Wertheim that has been studied in the bulk by Chang and Sandler. The matrix structure is obtained in the polymer Percus-Yevick approximation. We solve the ROZ equations in the associative hypernetted chain approximation. The pair distribution functions, the fluid compressibility, the equation of state and chemical potential of the adsorbed fluid are obtained and discussed. It is shown that the adsorption of a hard sphere fluid in a matrix at given density, but consisting of longer chains of overlapping hard spheres, is higher than the adsorption of this fluid in a hard sphere matrix.

  10. FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS): Numerical Simulation of Random Close Packings in Particle Deformation from Spheres to Cubes

    Science.gov (United States)

    Zhao, Jian; Li, Shui-Xiang

    2008-11-01

    Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative motion of component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2D and 3D cases are simulated. With the simulations, we find that the packing density increases while the particle sphericity decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing density in the deformation respectively. In each deforming step, packings starting from a random configuration and from the final packing of last deforming step are both simulated. The packing density in the latter case is larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be applied to other particle shapes as well.

  11. Diffusion spectrum MRI using body-centered-cubic and half-sphere sampling schemes.

    Science.gov (United States)

    Kuo, Li-Wei; Chiang, Wen-Yang; Yeh, Fang-Cheng; Wedeen, Van Jay; Tseng, Wen-Yih Isaac

    2013-01-15

    The optimum sequence parameters of diffusion spectrum MRI (DSI) on clinical scanners were investigated previously. However, the scan time of approximately 30 min is still too long for patient studies. Additionally, relatively large sampling interval in the diffusion-encoding space may cause aliasing artifact in the probability density function when Fourier transform is undertaken, leading to estimation error in fiber orientations. Therefore, this study proposed a non-Cartesian sampling scheme, body-centered-cubic (BCC), to avoid the aliasing artifact as compared to the conventional Cartesian grid sampling scheme (GRID). Furthermore, the accuracy of DSI with the use of half-sphere sampling schemes, i.e. GRID102 and BCC91, was investigated by comparing to their full-sphere sampling schemes, GRID203 and BCC181, respectively. In results, smaller deviation angle and lower angular dispersion were obtained by using the BCC sampling scheme. The half-sphere sampling schemes yielded angular precision and accuracy comparable to the full-sphere sampling schemes. The optimum b(max) was approximately 4750 s/mm(2) for GRID and 4500 s/mm(2) for BCC. In conclusion, the BCC sampling scheme could be implemented as a useful alternative to the GRID sampling scheme. Combination of BCC and half-sphere sampling schemes, that is BCC91, may potentially reduce the scan time of DSI from 30 min to approximately 14 min while maintaining its precision and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Discovery of a Frank-Kasper sigma phase in sphere-forming block copolymer melts.

    Science.gov (United States)

    Lee, Sangwoo; Bluemle, Michael J; Bates, Frank S

    2010-10-15

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma (σ) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the σ phase in undiluted linear block copolymers (and certain branched dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.

  13. Improved model for mixtures of polymers and hard spheres

    Science.gov (United States)

    D'Adamo, Giuseppe; Pelissetto, Andrea

    2016-12-01

    Extensive Monte Carlo simulations are used to investigate how model systems of mixtures of polymers and hard spheres approach the scaling limit. We represent polymers as lattice random walks of length L with an energy penalty w for each intersection (Domb-Joyce model), interacting with hard spheres of radius R c via a hard-core pair potential of range {{R}\\text{mon}}+{{R}c} , where R mon is identified as the monomer radius. We show that the mixed polymer-colloid interaction gives rise to new confluent corrections. The leading ones scale as {{L}-ν} , where ν ≈ 0.588 is the usual Flory exponent. Finally, we determine optimal values of the model parameters w and R mon that guarantee the absence of the two leading confluent corrections. This improved model shows a significantly faster convergence to the asymptotic limit L\\to ∞ and is amenable for extensive and accurate numerical simulations at finite density, with only a limited computational effort.

  14. The Public Sphere and Online, Independent Journalism

    Science.gov (United States)

    Beers, David

    2006-01-01

    The rapid evolution of online, independent journalism affords educators an opportunity to increase students' understanding of the nature and power of the news media. Drawing from Habermas's theories of the role of the public sphere in democratic discourse, the author, as founder of an online news publication, traces trends in concentrated…

  15. Spheres: from Ground Development to ISS Operations

    Science.gov (United States)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  16. Wall effects on a rotating sphere

    NARCIS (Netherlands)

    Liu, Qianlong; Prosperetti, Andrea

    2010-01-01

    The flow induced by a spherical particle spinning in the presence of no-slip planar boundaries is studied by numerical means. In addition to the reference case of an infinite fluid, the situations considered include a sphere rotating near one or two infinite plane walls parallel or perpendicular to

  17. Transnational public spheres : A spatial perspective

    NARCIS (Netherlands)

    Forough, Mohammadbagher

    2015-01-01

    Whereas more and more transnational challenges (such as global financial crises, climate change, terrorism, migration, and so forth) are affecting people’s lives, democratic systems and their public spheres (i.e. spaces in which citizens can express their collective concerns) are national. To give a

  18. Micro sphere with nanoporosity by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    He Jihuan [College of Science, Donghua University, 1882 Yan' an Xilu Road, Shanghai 200051 (China) and Modern Textile Institute, Donghua University, Shanghai (China)]. E-mail: jhhe@dhu.edu.cn; Liu Yong [College of Textile, Donghua University, Shanghai (China); Xu Lan [College of Science, Donghua University, 1882 Yan' an Xilu Road, Shanghai 200051 (China) and Modern Textile Institute, Donghua University, Shanghai (China); Yu Jianyong [Modern Textile Institute, Donghua University, Shanghai (China); College of Textile, Donghua University, Shanghai (China)

    2007-05-15

    Nanoporous structures are potentially of great technological interest for the development of electronic, catalytic and hydrogen-storage systems, invisibility device (e.g. stealth plane) and others. Here we describe a general strategy for the synthesis of micro sphere with nanoporosity by electrospinning, the porous sizes having uniform but tunable diameters can be controlled by voltage applied in the electrospinning process.

  19. The Nationalisation of the Domestic Sphere

    NARCIS (Netherlands)

    Storm, H.J.

    2016-01-01

    Banal forms of nationalism permeate our everyday life. However, it is not very clear when all kinds of banal objects and practices became nationalised. In this article, I focus on the domestic sphere by analysing how around 1900 a small group of activists began to propagate the nationalisation of do

  20. The Public Sphere, Globalization and Technological Development

    OpenAIRE

    Tina Sikka

    2006-01-01

    Tina Sikka examines the emergence and transformation of Habermas's theory of the public sphere, looking at how this concept informs the debates around communication technologies in development. Development (2006) 49, 87–93. doi:10.1057/palgrave.development.1100277

  1. Casimir stress on lossy magnetodielectric spheres

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Knoell, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    An expression for the Casimir stress on arbitrary dispersive and lossy linear magnetodielectric matter at finite temperature, including left-handed material, is derived and applied to spherical systems. To cast the relevant part of the scattering Green tensor for a general magnetodielectric sphere in a convenient form, classical Mie scattering is reformulated.

  2. Pious Entertainment: Hizbullah's Islamic Cultural Sphere

    NARCIS (Netherlands)

    Alagha, J.E.

    2011-01-01

    Alagha’s chapter on Hezbollah’s Islamic cultural sphere is sure to generate some of the most interesting discussion. Lebanon and Hezbollah in particular are among the hottest topics in the studies of contemporary Islam, but few people actually have the appropriate levels of both access to and unders

  3. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Science.gov (United States)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  4. First results of the SPHERE experiment

    Directory of Open Access Journals (Sweden)

    Shaulov Sergey

    2013-06-01

    Full Text Available First results of the balloon-borne experiment SPHERE are presented. The primary spectrum in the energy range 1016 – 5 · 1017 eV is compared with data of other experiments. The primary energies were reconstructed using characteristics of the Vavilov-Cherenkov radiation from extensive air showers, reflected from a snow surface.

  5. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  6. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  7. SPHERE ZIMPOL: Overview and performance simulation

    NARCIS (Netherlands)

    Thalmann, C.; Schmid, H.M.; Boccaletti, A.; Mouillet, D.; Dohlen, K.; Roelfsema, R.; Carbillet, M.; Gisler, D.; Beuzit, J.-L.; Feldt, M.; Gratton, R.; Joos, F.; Keller, C.U.; Kragt, J.; Pragt, J.H.; Puget, P.; Rigal, F.; Snik, F.; Waters, R.; Wildi, F.

    2008-01-01

    The ESO planet finder instrument SPHERE will search for the polarimetric signature of the reflected light from extrasolar planets, using a VLT telescope, an extreme AO system (SAXO), a stellar coronagraph, and an imaging polarimeter (ZIMPOL). We present the design concept of the ZIMPOL instrument, a

  8. Life in the E-Sphere.

    Science.gov (United States)

    Pelton, Joseph N.

    2002-01-01

    Discusses the survival of the human race in the Third Millennium. Considers environmental issues; shifting from a focus on economic growth to human development; the rate of technological change; the e-sphere, which goes beyond a global village to a global brain; technology in education and in health care; and educational reform. (LRW)

  9. 1/4-pinched contact sphere theorem

    DEFF Research Database (Denmark)

    Ge, Jian; Huang, Yang

    2016-01-01

    Given a closed contact 3-manifold with a compatible Riemannian metric, we show that if the sectional curvature is 1/4-pinched, then the contact structure is universally tight. This result improves the Contact Sphere Theorem in [EKM12], where a 4/9-pinching constant was imposed. Some tightness res...

  10. Steel Spheres and Skydiver--Terminal Velocity

    Science.gov (United States)

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.

  11. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2003-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of weighted distances between the circle and the facilities is minimized, or such that the maximum weighted distance is minimized. The problem properties are analyzed, and we ...

  12. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2007-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution proce...

  13. Spectral estimation on a sphere in geophysics and cosmology

    CERN Document Server

    Dahlen, F A

    2007-01-01

    We address the problem of estimating the spherical-harmonic power spectrum of a statistically isotropic scalar signal from noise-contaminated data on a region of the unit sphere. Three different methods of spectral estimation are considered: (i) the spherical analogue of the one-dimensional (1-D) periodogram, (ii) the maximum likelihood method, and (iii) a spherical analogue of the 1-D multitaper method. The periodogram exhibits strong spectral leakage, especially for small regions of area $A\\ll 4\\pi$, and is generally unsuitable for spherical spectral analysis applications, just as it is in 1-D. The maximum likelihood method is particularly useful in the case of nearly-whole-sphere coverage, $A\\approx 4\\pi$, and has been widely used in cosmology to estimate the spectrum of the cosmic microwave background radiation from spacecraft observations. The spherical multitaper method affords easy control over the fundamental trade-off between spectral resolution and variance, and is easily implemented regardless of t...

  14. Optical simulation of the new PTB sphere interferometer

    Science.gov (United States)

    Mai, Torsten; Nicolaus, Arnold

    2017-08-01

    For the redefinition of the SI-unit kilogram the Avogadro constant needs to be determined with lowest possible uncertainty. The approach which is followed by an international group including the PTB is the XRCD-method (Azuma et al 2015 Metrologia 52 360). Currently the uncertainty of the silicon sphere volume determination is the main contribution to the uncertainty of the Avogadro constant and therefore critical for reaching the self-set goal of underrunning a relative uncertainty of 1.5×10-8 . The volume uncertainty itself is dominated by the wave-front deformation uncertainty which occurs due to optical imperfections in the measurement system. Up to now this type of uncertainty was only roughly estimated. This paper presents results from a self developed optical raytracing software which allows the main deviations of the real optical system from the ideal optical design to be investigated. With this software a complete sphere measurement can be simulated which helps to determine the influence of the system imperfections. In result the relative uncertainty contribution of the wave-front uncertainties to the volume measurement can be reduced to 4.5 × 10-9 .

  15. Full sphere hydrodynamic and dynamo benchmarks

    KAUST Repository

    Marti, P.

    2014-01-26

    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  16. Density functional calculations of spin-wave dispersion curves.

    Science.gov (United States)

    Kleinman, Leonard; Niu, Qian

    1998-03-01

    Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.

  17. VMware vSphere PowerCLI Reference Automating vSphere Administration

    CERN Document Server

    Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan

    2011-01-01

    Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and

  18. Revitalization of the Public Sphere: A Comparison between Habermasian and the New Public Sphere

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-06-01

    Full Text Available “Public sphere” is an important component of modern polity. Civil society brings the state in touch with the needs of the citizens through the medium of public sphere. However, Habermas argues that “public sphere” experienced refeudalization owing to various factors i.e. propaganda, cultural industry, market and state intervention. The “public” was condemned to be mere spectator again. This article argues that modern technologies enabled new public sphere (NPS can help restore public status as participant in the democratic process. By employing interpretivist approach the article compares the Habermasian ideal of public sphere with NPS and constructs a matrix, depicting the various related aspects between the two models for highlighting the revival of the public sphere.

  19. Radiation of non-relativistic particle on a conducting sphere and a string of spheres

    CERN Document Server

    Shul'ga, N F; Larikova, E A

    2016-01-01

    The radiation arising under uniform motion of non-relativistic charged particle by (or through) perfectly conducting sphere is considered. The rigorous results are obtained using the method of images known from electrostatics.

  20. Revitalization of the Public Sphere: A Comparison between Habermasian and the New Public Sphere

    OpenAIRE

    2014-01-01

    “Public sphere” is an important component of modern polity. Civil society brings the state in touch with the needs of the citizens through the medium of public sphere. However, Habermas argues that “public sphere” experienced refeudalization owing to various factors i.e. propaganda, cultural industry, market and state intervention. The “public” was condemned to be mere spectator again. This article argues that modern technologies enabled new public sphere (NPS) can help restore ...

  1. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  2. Innovation embedded in entrepreneurs’ networks in private and public spheres

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak

    2014-01-01

    Global studies have found tendencies: traditional culture promotes entrepreneurs' networking in the private sphere, impeding innovation, whereas secular-rational culture facilitates networking in the public sphere, benefiting innovation. This embeddedness is here scrutinised in contrasting...

  3. Speeds of sound and isothermal compressibility of ternary liquid systems: Application of Flory's statistical theory and hard sphere models

    Indian Academy of Sciences (India)

    Vimla Vyas

    2008-04-01

    Speeds of sound and densities of three ternary liquid systems namely, toluene + -heptane + -hexane (I), cyclohexane + -heptane + -hexane (II) and -hexane + - heptane + -decane (III) have been measured as a function of the composition at 298.15 K at atmospheric pressure. The experimental isothermal compressibility has been evaluated from measured values of speeds of sound and density. The isothermal compressibility of these mixtures has also been computed theoretically using different models for hard sphere equations of state and Flory's statistical theory. Computed values of isothermal compressibility have been compared with experimental findings. A satisfactory agreement has been observed. The superiority of Flory's statistical theory has been established quite reasonably over hard sphere models.

  4. Synthesis of zirconia sphere particles based on gelation of sodium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Takahiro [Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Arima, Tatsumi, E-mail: arima@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Idemitsu, Kazuya; Inagaki, Yaohiro [Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2011-05-01

    Zirconia sphere particles were synthesized through the gelation process of Na-alginate, and cermet (ZrO{sub 2}-Mo) pellets were fabricated under several conditions. In this process, a zirconia slurry was prepared by mixing oxide powders (ZrO{sub 2}, Y{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, CeO{sub 2}), distilled water and Na-alginate, and subsequently dropped into CaCl{sub 2} solution. As a result, zirconia sphere particles coated with a gelled film were synthesized. The slurry density (zirconia content in slurry) of 30-64 wt.% and Na-alginate concentration of a few% were good for gelation for up to 10 wt.% CaCl{sub 2} solution. Sphere particles with smaller diameter were obtained by dropping slurry with a mechanical vibration. The prolongation of the ball milling time for mixture of oxide powders was effective to increase the sintered density of zirconia sphere particles, especially for higher CeO{sub 2} concentration. The dense cermet pellets were fabricated for max. 50% volume ratio of zirconia phase for Mo matrix using zirconia particles covered with Mo powder by a rotating granulation method.

  5. Structural analysis of liquid aluminum at high pressure and high temperature using the hard sphere model

    Science.gov (United States)

    Ikuta, Daijo; Kono, Yoshio; Shen, Guoyin

    2016-10-01

    The structure of liquid aluminum is measured up to 6.9 GPa and 1773 K using a multi-angle energy-dispersive X-ray diffraction method in a Paris-Edinburgh press. The effect of pressure and temperature on the structure and density of liquid aluminum is analyzed by means of the hard sphere model. Peak positions in the structure factor of liquid aluminum show a nearly constant value with varying temperatures at ˜1-2 GPa and slightly change with varying pressures up to 6.9 GPa at 1173-1773 K. In contrast, the height of the first peak in the structure factor significantly changes with varying pressures and temperatures. Hard sphere model analysis shows that the structure of liquid aluminum in the pressure-temperature range of this study is controlled mostly by the packing fraction with only a minor change in hard sphere diameters. The obtained packing fractions and hard sphere diameters are used to calculate densities of liquid aluminum at high pressure-temperature conditions.

  6. Modified algorithm for generating high volume fraction sphere packings

    Science.gov (United States)

    Valera, Roberto Roselló; Morales, Irvin Pérez; Vanmaercke, Simon; Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Casañas, Harold Díaz-Guzmán

    2015-06-01

    Advancing front packing algorithms have proven to be very efficient in 2D for obtaining high density sets of particles, especially disks. However, the extension of these algorithms to 3D is not a trivial task. In the present paper, an advancing front algorithm for obtaining highly dense sphere packings is presented. It is simpler than other advancing front packing methods in 3D and can also be used with other types of particles. Comparison with respect to other packing methods have been carried out and a significant improvement in the volume fraction (VF) has been observed. Moreover, the quality of packings was evaluated with indicators other than VF. As additional advantage, the number of generated particles with the algorithm is linear with respect to time.

  7. Helium and Hydrogen Adsorbed on Spheres and Cylinders

    Science.gov (United States)

    Hernández, E. S.; Szybisz, L.

    2014-07-01

    We examine the metastable and unstable regimes of condensation of superfluid helium and parahydrogen on spheres and cylinders at finite temperatures, employing finite range density functionals. The goal is to compare calculations of sizes and spreads of films at the onset of metastability and of instability with the predictions of a simple phenomenological model that contemplates the curvature of the substrate. We have focused on two cases, helium on nanospheres and nanocylinders of different materials, and hydrogen on fullerenes. We are able to locate the onset of metastability and of spinodal instability in the adsorption isotherms of every sample and to extract the width of the condensed fluid. It is shown that the predictions of the so-called simple model agree surprisingly well with the more elaborate calculations.

  8. Entangled Bloch Spheres: Bloch Matrix And Two Qubit State Space

    CERN Document Server

    Gamel, Omar

    2016-01-01

    We represent a two qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parameterize and visualize the two qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single ...

  9. Monge Metric on the Sphere and Geometry of Quantum States

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Slomczynski, Wojciech

    2001-01-01

    Topological and geometrical properties of the set of mixed quantum states in the N-dimensional Hilbert space are analysed. Assuming that the corresponding classical dynamics takes place on the sphere we use the vector SU(2) coherent states to define the Monge distance between two arbitrary density matrices. The Monge metric has a simple semiclassical interpretation and induce$ a non-trivial geometry. Among all pure states the distance from the maximally mixed state \\rho_*, proportional to the identity matrix, admits the largest value for the coherent states, while the delocalized 'chaotic' states are close to \\rho_*. This contrasts the geometry induced by the standard (trace, Hilbert-Schmidt or Bures) metrics, for which the distance from \\rho_* is the same for all pure states. We discuss possible physical consequences including unitary time evolution and the process of decoherence.

  10. Modified Bonnor-Ebert spheres with ambipolar diffusion heating

    CERN Document Server

    Nejad-Asghar, M

    2016-01-01

    Magnetic fluctuations through the molecular cloud cores can produce ambipolar diffusion (AD) heating, which consequently can produce temperature gradients through the core. The aim of this paper is to investigate the effects of these produced temperature gradients on the radius and mass of the non-isothermal modified Bonnor-Ebert spheres (MBES). Here, we use the parameter $\\kappa$ to represent the magnetic fluctuations through the molecular cloud cores. This parameter introduces the change of magnetic filed strength in the length-scale. The results show that increasing of $\\kappa$ leads to an increase of the radius and mass of MBES. The most important result is existence of the gravitationally stable high-mass prestellar cores at the low-density molecular medium with great magnetic fluctuations.

  11. Hard sphere crystal nucleation and growth near large spherical impurities

    Science.gov (United States)

    de Villeneuve, V. W. A.; Verboekend, D.; Dullens, R. P. A.; Aarts, D. G. A. L.; Kegel, W. K.; Lekkerkerker, H. N. W.

    2005-11-01

    We report how large spherical impurities affect the nucleation and growth of hard sphere colloidal crystals. Both the impurities and the colloids are fluorescently labelled polymethylmetacrylate particles and are dispersed in an optically and density matching solvent mixture. Crystal growth, initiated either at the impurity surface, or at the sample bottom, was studied by imaging sequences of two-dimensional xy-slices in the plane of the impurity's centre of mass with a laser scanning confocal microscope. At least two factors determine whether a large impurity can function as a seed for heterogeneous nucleation: timescales and impurity curvature. The curvature needs to be sufficiently low for crystal nuclei to form on the impurity surface. If bulk crystal growth has already approached the impurity, bulk growth is dominant over growth of crystallites on the impurity surface. Such surface crystallites eventually reorient to adapt to the overall bulk crystal symmetry.

  12. Ultrasonic beam-plotting with very small spheres.

    Science.gov (United States)

    Round, W H; Swan, H

    1991-12-01

    A method of pulse-echo ultrasonic beam plotting is described. It differs from traditional pulse-echo beam plotting in that the ultrasonic pulses are scattered off a totally isolated sphere rather than a sphere suspended on a wire. The method also allows extremely small spheres to be used thus providing greater resolution. It is demonstrated that pulse-echo beam plotting using spheres of different size produces different iso-echo amplitude curves.

  13. On Vassiliev invariants of braid groups of the sphere

    CERN Document Server

    Kaabi, N

    2012-01-01

    We construct a universal Vassiliev invariant for braid groups of the sphere and the mapping class groups of the sphere with $n$ punctures. The case of a sphere is different from the classical braid groups or braids of oriented surfaces of genus strictly greater than zero, since Vassiliev invariants in a group without 2-torsion do not distinguish elements of braid group of a sphere.

  14. Trends in low-density lipoprotein cholesterol goal achievement in high risk United States adults: longitudinal findings from the 1999-2008 National Health and Nutrition Examination Surveys.

    Directory of Open Access Journals (Sweden)

    Matthew C Tattersall

    Full Text Available BACKGROUND: Previous studies have demonstrated gaps in achievement of low-density lipoprotein-cholesterol (LDL-C goals among U.S. individuals at high cardiovascular disease risk; however, recent studies in selected populations indicate improvements. OBJECTIVE: We sought to define the longitudinal trends in achieving LDL-C goals among high-risk United States adults from 1999-2008. METHODS: We analyzed five sequential population-based cross-sectional National Health and Nutrition Examination Surveys 1999-2008, which included 18,656 participants aged 20-79 years. We calculated rates of LDL-C goal achievement and treatment in the high-risk population. RESULTS: The prevalence of high-risk individuals increased from 13% to 15.5% (p = 0.046. Achievement of LDL-C <100 mg/dL increased from 24% to 50.4% (p<0.0001 in the high-risk population with similar findings in subgroups with (27% to 64.8% p<0.0001 and without (21.8% to 43.7%, p<0.0001 coronary heart disease (CHD. Achievement of LDL-C <70 mg/dL improved from 2.4% to 17% (p<0.0001 in high-risk individuals and subgroups with (3.4% to 21.4%, p<0.0001 and without (1.7% to 14.9%, p<0.0001 CHD. The proportion with LDL-C ≥130 mg/dL and not on lipid medications decreased from 29.4% to 18% (p = 0.0002, with similar findings among CHD (25% to 11.9% p = 0.0013 and non-CHD (35.8% to 20.8% p<0.0001 subgroups. CONCLUSION: The proportions of the U.S. high-risk population achieving LDL-C <100 mg/dL and <70 mg/dL increased over the last decade. With 65% of the CHD subpopulation achieving an LDL-C <100 mg/dL in the most recent survey, U.S. LDL-C goal achievement exceeds previous reports and approximates rates achieved in highly selected patient cohorts.

  15. Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres.

    Science.gov (United States)

    Fouxon, Itzhak

    2014-05-01

    We study closed dense collections of freely cooling hard spheres that collide inelastically with constant coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision are small. The derivation is performed without modeling the equations' coefficients that are unknown in the dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1+t/t(c)](-2), where t(c) diverges in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our results to the recently proposed finite-time singularity in other container's geometries.

  16. 21 CFR 886.3320 - Eye sphere implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...

  17. Self-lensing of a Singular Isothermal Sphere

    OpenAIRE

    Wang, Yun

    1999-01-01

    Many astrophysical systems can be approximated as isothermal spheres. In an isothermal sphere, the ``foreground'' objects can act as lenses on ``background'' objects in the same distribution. We study gravitational lensing by a singular isothermal sphere analytically. Our results may have interesting applications.

  18. Nonmonotonic settling of a sphere in a cornstarch suspension

    NARCIS (Netherlands)

    von Kann, S.; von Kann, Stefan; Snoeijer, Jacobus Hendrikus; Lohse, Detlef; van der Meer, Roger M.

    2011-01-01

    Cornstarch suspensions exhibit remarkable behavior. Here, we present two unexpected observations for a sphere settling in such a suspension: In the bulk of the liquid the velocity of the sphere oscillates around a terminal value, without damping. Near the bottom the sphere comes to a full stop, but

  19. Phase behavior and structure of binary hard-sphere mixtures

    NARCIS (Netherlands)

    Dijkstra, Marjolein; Roij, R. van; Evans, R.

    1998-01-01

    By integrating out the degrees of freedom of the small spheres in a binary mixture of large and small hard spheres, we derive an explicit effective Hamiltonian for the large spheres. Using the two-body (depletion potential) contribution to this effective Hamiltonian in simulations, we find stable

  20. Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere

    CERN Document Server

    Mininni, P D; Turner, L; 10.1088/1367-2630/9/8/303

    2009-01-01

    Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations are reported for the interior of a rotating, perfectly-conducting, rigid spherical shell that is insulator-coated on the inside. A previously-reported spectral method is used which relies on a Galerkin expansion in Chandrasekhar-Kendall vector eigenfunctions of the curl. The new ingredient in this set of computations is the rigid rotation of the sphere. After a few purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial waves), attention is focused on selective decay and the MHD dynamo problem. In dynamo runs, prescribed mechanical forcing excites a persistent velocity field, usually turbulent at modest Reynolds numbers, which in turn amplifies a small seed magnetic field that is introduced. A wide variety of dynamo activity is observed, all at unit magnetic Prandtl number. The code lacks the resolution to probe high Reynolds numbers, but nevertheless interesting dynamo regimes turn out to be plentiful in those ...

  1. ETHIC ASPECT OF INDIRECT-SPEECH ACTS IN OFFICIAL SPHERE

    Directory of Open Access Journals (Sweden)

    K. S. NEUSTROEV

    2016-01-01

    Full Text Available The article analyzes the ethic characteristics of indirect speech acts in official discourses. The social-ethic conception of A. Giddens is attracted for analysis. The concepts “act“, “reflexive consciousness“, “motivation“, “implication“ are connected. The intention for rational act is showed as support of whole representation about the motives of person acts. This conception is connected with traditional opinions about man as social phenomenon oriented for categories of kindness and evil, justice and injustice, biological and social. The man as a participant of speech act has all such characteristics. Ethic of social life, ethical relations and obligations, social context of deontology, of possibilities are relevant in this aspect. Specific relevance is a condition for interrelation between direct and indirect substance of speech act. In particular, strict direct presentation unites with imperative, this usage is systematic and effective, because it determined with speech variety, which naturally includes soft pragmatics, “indirect directness”. The attributes of imperative and indirect expressive strengthens organic essence of interrelation. The imperative is indirect, but it is fixed in these pragmatic subsystems. The ethical motivated unite of different devices serves to indirectness. The ethical base of official document get emotional sense and rejects the indirect character of expressive. The postulate of many-sided connections between speech act and ethic characteristics is founded by tendencies of official sphere. It is adequate modern field for interactions of direct and indirect pragmatic intentions. The socialethic specific explains these peculiarities. Such communicative sphere is possible to create corresponding image for social institutes and processes on base of relevant discourses.

  2. Second-Generation Curvelets on the Sphere

    CERN Document Server

    Chan, Jennifer Y H; Kitching, Thomas D; McEwen, Jason D

    2015-01-01

    Curvelets are efficient to represent highly anisotropic signal content, such as local linear and curvilinear structure. First-generation curvelets on the sphere, however, suffered from blocking artefacts. We present a new second- generation curvelet transform, where scale-discretised curvelets are constructed directly on the sphere. Scale-discretised curvelets exhibit a parabolic scaling relation, are well-localised in both spatial and harmonic domains, support the exact analysis and synthesis of both scalar and spin signals, and are free of blocking artefacts. We present fast algorithms to compute the exact curvelet transform, reducing computational complexity from $\\mathcal{O}(L^5)$ to $\\mathcal{O}(L^3\\log_{2}{L})$ for signals band-limited at $L$. The implementation of these algorithms is made publicly available. Finally, we present an illustrative application demonstrating the effectiveness of curvelets for representing directional curve-like features in natural spherical images.

  3. Black carbon measurements using an integrating sphere

    Science.gov (United States)

    Hitzenberger, R.; Dusek, U.; Berner, A.

    1996-08-01

    An integrating sphere was used to determine the black carbon (BC) content of aerosol filter samples dissolved in chloroform (method originally described by Heintzenberg [1982]). The specific absorption coefficient Ba (equal to absorption per mass) of the samples was also measured using the sphere as an integrating detector for transmitted light. Comparing the Ba of ambient samples taken in Vienna, Austria, to the BC concentrations measured on the dissolved filters, a value of approximately 6 m2/g was found to be a reasonable value for the Ba of the black carbon found at the site. The size dependence of Ba of a nebulized suspension of soot was measured using a rotating impactor, and a reasonable agreement between measured and calculated values was found.

  4. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-12-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  5. THE SPECTRUM OF COMPACT HYPERSURFACE IN SPHERE

    Institute of Scientific and Technical Information of China (English)

    Xu Senlin; Deng Qintao; Chen Dongmei

    2004-01-01

    Let M be a compact minimal hypersurface of sphere Sn+1(1). Let (M) be H (r)-torus of sphere Sn+ 1 (1).Assume they have the same constant mean curvature H, the result in [1] is that ifSpec0(M, g) =Spec0((M), g),then for 3≤ n ≤ 6, r2≤n-1/n or n ≥ 6, r2 ≥ n-1, then M is isometric to (M). We improved the result and prove that: if Spec0(M,g) =Spec0((M),g), then M is isometric to (M). Generally, if Specp(M,g) =Specp((M),g), here p is fixed and satisfies that n(n - 1) ≠ 6p(n - p), then M is isometric to (M).

  6. Electromagnetic Scattering by Spheres of Topological Insulators

    CERN Document Server

    Ge, Lixin; Zi, Jian

    2015-01-01

    The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.

  7. Simulations of driven overdamped frictionless hard spheres

    Science.gov (United States)

    Lerner, Edan; Düring, Gustavo; Wyart, Matthieu

    2013-03-01

    We introduce an event-driven simulation scheme for overdamped dynamics of frictionless hard spheres subjected to external forces, neglecting hydrodynamic interactions. Our event-driven approach is based on an exact equation of motion which relates the driving force to the resulting velocities through the geometric information characterizing the underlying network of contacts between the hard spheres. Our method allows for a robust extraction of the instantaneous coordination of the particles as well as contact force statistics and dynamics, under any chosen driving force, in addition to shear flow and compression. It can also be used for generating high-precision jammed packings under shear, compression, or both. We present a number of additional applications of our method.

  8. Event Driven Langevin simulations of Hard Spheres

    CERN Document Server

    Scala, Antonio

    2011-01-01

    The blossoming of interest in colloids and nano-particles has given renewed impulse to the study of hard-body systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical integration of the Langevin equation require that interactions are slowly varying during an integration timestep. This in not the case for hard-body systems, where there is no clearcut between the correlation time of the noise and the timescale of the interactions. Starting first from a splitting of the Fokker-Plank operator associated with the Langevin dynamics, and then from an approximation of the two-body Green's function, we introduce and test two new algorithms for the simulation of the Langevin dynamics of hard-spheres.

  9. Theory of tectonics in the sphere

    CERN Document Server

    Ribeiro, A; Taborda, R; Ribeiro, Antonio; Matias, Luis; Taborda, Rui

    2005-01-01

    Soft or Deformable Plate Tectonics in the sphere must follow geometric rules inferred from the orthographic projection. An analytic equivalent of this geometry can be derived by the application of Potential Field Methods in the case of Atlantic type oceans. Laplace equation must be obeyed by the velocity field between the ridge and the passive margin if we neglect the very slight compressibility of ocean lithosphere. A strain wave propagates in the sphere analogous to the behaviour of a free harmonic oscillator. Combining zonal harmonics of order one and sectorial harmonics of degree one we obtain a tesseral harmonic equivalent to the orthographic solution. This potential field approach is valid for homogeneous deformation regime in oceanic lithosphere. Above a compression threshold of 5 to 10% buckling and simultaneous faulting occurs. In Pacific type oceans a dynamic approach, similar to a forced oscillation, must be applied because there are sinks in subduction zones.

  10. Criticality of a {sup 237}Np Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rene G.; Hayes, David K.; Cappiello, Charlene C.; Myers, William L.; Jaegers, Peter J.; Clement, Steven D.

    2003-07-22

    A critical mass experiment using a 6-kg {sup 237}Np sphere has been performed. The purpose of the experiment is to get a better estimate of the critical mass of {sup 237}Np. To attain criticality, the {sup 237}Np sphere was surrounded with 93 wt % {sup 235}U shells. A 1/M as a function of uranium mass was performed. An MCNP neutron transport code was used to model the experiment. The MCNP code yielded a k{sub eff} of 0.99089 {+-} 0.0003 compared with a k{sub eff} 1.0026 for the experiment. Based on these results, it is estimated that the critical mass of {sup 237}Np ranges from kilogram weights in the high fifties to low sixties.

  11. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  12. Poincar\\'e Sphere and Decoherence Problems

    CERN Document Server

    Kim, Y S

    2012-01-01

    Henri Poincar\\'e formulated the mathematics of the Lorentz transformations, known as the Poincar\\'e group. He also formulated the Poincar\\'e sphere for polarization optics. It is shown that these two mathematical instruments can be combined into one mathematical device which can address the internal space-time symmetries of elementary particles, decoherence problems in polarization optics, entropy problems, and Feynman's rest of the universe.

  13. Collapse of three on a sphere

    Energy Technology Data Exchange (ETDEWEB)

    Kidambi, R.; Newton, P.K. [Southern California Univ., Los Angeles (United States). Dept. of Aerospace Engineering, Center for Applied Mathematical Sciences

    1999-12-01

    The self-similar collapse of three vortices moving on the surface of a sphere of radius R is analysed and compared with known results of critical literature. Formulas for the collapsing trajectories are derived and compared with the planar formulas. The Hamiltonian system is derived governing the vortex motion. In this projected plane, the solutions are not self-similar. In the last section, the collapse process is studied using tri-linear coordinates, which reduces the system to a planar one.

  14. On the revolution of heavenly spheres

    CERN Document Server

    Copernicus, Nicolaus

    1995-01-01

    The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.

  15. Stable Stationary Harmonic Maps to Spheres

    Institute of Scientific and Technical Information of China (English)

    Fang Hua LIN; Chang You WANG

    2006-01-01

    For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of stable-stationary harmonic maps to the sphere Sk. We show that the singular set of stable-stationary harmonic maps from B5 to S3 is the union of finitely many isolated singular points and finitely many Holder continuous curves. We also discuss the minimization problem among continuous maps from Bn to S2.

  16. Simulation of Flow for an Immersed Sphere

    Science.gov (United States)

    2016-12-01

    Computational Fluid Dynamics, Sphere flow, LES, Large Eddy Simulation, LDKM, Locally Dynamic subgrid Kinetic energy Model MUSCL, Monotone Upstream centered...the same scales, we may be unable to accurately describe both boundary and initial conditions. For this reason , we back away from the fine scale and...terms add variables to the system. For that reason , we must add equations to the system to affect closure and admit a solution. Section 4 introduces

  17. Nineteenth Century Public And Private Spheres

    Directory of Open Access Journals (Sweden)

    SIMA REMINA

    2014-12-01

    Full Text Available The aim of this paper is to illustrate the public and private spheres. The former represents the area in which each of us carries out their daily activities, while the latter is mirrored by the home. Kate Chopin and Charlotte Perkins Gilman are two salient nineteenth-century writers who shape the everyday life of the historical period they lived in, within their literary works that shed light on the areas under discussion.

  18. Soft-sphere model for liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.

    1977-11-08

    A semi-empirical soft-sphere model of fluids is modified for application to the thermodynamic properties of liquid metals. Enthalpy, volume, and sound speed are computed as functions of temperature for 13 metals and compared with experimental data. Critical points and coexistence curves are also computed and compared with experimental data, where these have been measured. Strengths and weaknesses of the model are discussed.

  19. Supersymmetric theories on squashed five-sphere

    CERN Document Server

    Imamura, Yosuke

    2012-01-01

    We construct supersymmetric theories on the SU(3)xU(1) symmetric squashed five-sphere with 2, 4, 6, and 12 supercharges. We first determine the Killing equation by dimensional reduction from 6d, and use Noether procedure to construct actions. The supersymmetric Yang-Mills action is straightforwardly obtained from the supersymmetric Chern-Simons action by using a supersymmetry preserving constant vector multiplet.

  20. A property of the bidimensional sphere

    CERN Document Server

    Cavachi, Marius

    2011-01-01

    It is natural to ask for a reasonable constant k having the property that any open set of area greater than k on a bidimensional sphere of area 1 always contains the vertices of a regular tetrahedron. We shall prove that it is sufficient to take k=3/4. In fact we shall prove a more general result. The interested reader will not have any problem in establishing that 3/4 is the best constant with this property.

  1. Structure of crystals of hard colloidal spheres

    Energy Technology Data Exchange (ETDEWEB)

    Pusey, P.N.; van Megen, W.; Bartlett, P.; Ackerson, B.J.; Rarity, J.G.; Underwood, S.M. (Royal Signals and Radar Establishment, Malvern, WR14 3PS, United Kingsom (GB) Department of Applied Physics, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia School of Chemistry, Bristol University, Bristol, BS8 1TS, United Kingdom Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078)

    1989-12-18

    We report light-scattering measurements of powder diffraction patterns of crystals of essentially hard colloidal spheres. These are consistent with structures formed by stacking close-packed planes of particles in a sequence of permitted lateral positions, {ital A},{ital B},{ital C}, which shows a high degree of randomness. Crystals grown slowly, while still containing many stacking faults, show a tendency towards face-centered-cubic packing: possible explanations for this observation are discussed.

  2. The Internet And The Public Sphere

    OpenAIRE

    Kürşat, Fide; Özad, Bahire Efe

    2005-01-01

    Habermas (1989) proposes a ‘public sphere’, a setting where people talk freely on the public issues. In his early works, Habermas was rather pessimistic about the provision of the public sphere; however, soon after the introduction of the Internet as an ultimately decentralized medium, in his later work, Habermas (1996) seems more optimistic about the Internet as the provider of the ‘public sphere’. The Internet which is particularly popular among the young people, not only pro...

  3. Random-close packing limits for monodisperse and polydisperse hard spheres.

    Science.gov (United States)

    Baranau, Vasili; Tallarek, Ulrich

    2014-06-07

    We investigate how the densities of inherent structures, which we refer to as the closest jammed configurations, are distributed for packings of 10(4) frictionless hard spheres. A computational algorithm is introduced to generate closest jammed configurations and determine corresponding densities. Closest jamming densities for monodisperse packings generated with high compression rates using Lubachevsky-Stillinger and force-biased algorithms are distributed in a narrow density range from φ = 0.634-0.636 to φ≈ 0.64; closest jamming densities for monodisperse packings generated with low compression rates converge to φ≈ 0.65 and grow rapidly when crystallization starts with very low compression rates. We interpret φ≈ 0.64 as the random-close packing (RCP) limit and φ≈ 0.65 as a lower bound of the glass close packing (GCP) limit, whereas φ = 0.634-0.636 is attributed to another characteristic (lowest typical, LT) density φLT. The three characteristic densities φLT, φRCP, and φGCP are determined for polydisperse packings with log-normal sphere radii distributions.

  4. Effects of confinement on a rotating sphere

    Science.gov (United States)

    Liu, Qianlong; Prosperetti, Andrea

    2009-11-01

    The hydrodynamic force and couple acting on a rotating sphere in a quiescent fluid are modified by nearby boundaries with possible consequences on spin-up and spin-down times of particles uspended in a fluid, their wall deposition, entraiment and others. Up to now, the vast majority of papers dealing with these problems have considered the low-Reynolds-number regime. This paper focuses on the effect of inertia on the hydrodynamic interaction of a spinning sphere with nearby boundaries. Rotation axes parallel and perpendicular to a plane boundary as well as other situations are studied. Several steady and transient numerical results are presented and interptreted in terms of physical scaling arguments. The Navier-Stokes equations for an incompressible, constant-property Newtonian fluid are solved by the finite-difference PHYSALIS method. Among the noteworthy features of this method are the fact that the no-slip condition at the particle surface is satisfied exactly and that the force and torque on the sphere are obtained directly as a by-product of the computation. This feature avoids the need to integrate the stress over the particle surface, which with other methods is a step prone to numerical inaccuracies. A locally refined mesh surrounding the particle is used to enhance the resolution of boundary layers maintaining a manageable overall computational cost.

  5. Willmore Spheres in Compact Riemannian Manifolds

    CERN Document Server

    Mondino, Andrea

    2012-01-01

    The paper is devoted to the variational analysis of the Willmore, and other L^2 curvature functionals, among immersions of 2-dimensional surfaces into a compact riemannian m-manifold (M^m,h) with m>2. The goal of the paper is twofold, on one hand, we give the right setting for doing the calculus of variations (including min max methods) of such functionals for immersions into manifolds and, on the other hand, we prove existence results for possibly branched Willmore spheres under various constraints (prescribed homotopy class, prescribed area) or under curvature assumptions for M^m. To this aim, using the integrability by compensation, we develop first the regularity theory for the critical points of such functionals. We then prove a rigidity theorem concerning the relation between CMC and Willmore spheres. Then we prove that, for every non null 2-homotopy class, there exists a representative given by a Lipschitz map from the 2-sphere into M^m realizing a connected family of conformal smooth (possibly branche...

  6. Theoretical Investigation of Uniform and Non-uniform Penetrable Sphere Fluid

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Qi

    2006-01-01

    A bridge function approximation is proposed for a single-component fluid consisting of penetrable sphere interacting via a potential that remains finite and constant for center-center distance smaller than the particle diameter and is zero otherwise. The radial distribution function from the Ornstein-Zernike integral equation combined with the present bridge function approximation is in satisfactory agreement with the corresponding simulation data for all of the investigated state points. The presently calculated excess Helmholtz free energy respectively based on virial route and compressibility route is highly self-consistent, and is in very good agreement with simulational results for the case of low temperatures. The present bridge function approximation, combined with the bridge density functional approximation,can reproduce very accurately density profiles of the penetrable sphere fluid confined in a hard spherical cavity for all the cases where simulational results are available.

  7. Are turbulent spheres suitable initial conditions for star-forming clouds?

    CERN Document Server

    Rey-Raposo, Ramon; Duarte-Cabral, Ana

    2014-01-01

    To date, most numerical simulations of molecular clouds, and star formation within them, assume a uniform density sphere or box with an imposed turbulent velocity field. In this work, we select molecular clouds from galactic scale simulations as initial conditions, increase their resolution, and re-simulate them using the SPH code Gadget2. Our approach provides clouds with morphologies, internal structures, and kinematics that constitute more consistent and realistic initial conditions for simulations of star formation. We perform comparisons between molecular clouds derived from a galactic simulation, and spheres of turbulent gas of similar dimensions, mass and velocity dispersion. We focus on properties of the clouds such as their density, velocity structure and star formation rate. We find that the inherited velocity structure of the galactic clouds has a significant impact on the star formation rate and evolution of the cloud. Our results indicate that, although we can follow the time evolution of star fo...

  8. Discrete Element Method Numerical Modelling on Crystallization of Smooth Hard Spheres under Mechanical Vibration

    Institute of Scientific and Technical Information of China (English)

    AN Xi-Zhong

    2007-01-01

    The crystallization, corresponding to the fcc structure (with packing density p ≈ 0.74), of smooth equal hard spheres under batch-wised feeding and three-dimensional interval vibration is numerically obtained by using the discrete element method. The numerical experiment shows that the ordered packing can be realized by proper control of the dynamic parameters such as batch of each feeding § and vibration amplitude A. The radial distribution function and force network are used to characterize the ordered structure. The defect formed during vibrated packing is characterized as well The results in our work fill the gap of getting packing density between random close packing and fcc packing in phase diagram which provides an effective way of theoretically investigating the complex process and mechanism of hard sphere crystallization and its dynamics.

  9. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Canal Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the canal density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were...

  10. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: 2010 US Census Road Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the road density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were...

  11. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Dam Density and Storage Volume

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the dam density and storage volumes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on National...

  12. EnviroAtlas - Frequency and Density of Candidate Areas for Ecological Restoration by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the number and density of candidate areas for ecological restoration in each 12-digit HUC. Ecological restoration may become a more...

  13. NOAA Point Shapefile - 100m2 Fish Density for Virgin Passage, United States Virgin Islands, Project NF-10-03-USVI, 2010, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  14. NOAA Point Shapefile - 100m2 Fish Density of St. Johns Shelf, United States Virgin Islands, Project NF-10-03-USVI, 2010, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  15. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    Science.gov (United States)

    Peterson, Todd T.

    2004-01-01

    NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.

  16. Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lee-Jane W [Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555-1109 (United States); Nishino, Thomas K [Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555-0709 (United States); Khamapirad, Tuenchit [Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555-0709 (United States); Grady, James J [Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555-1109 (United States); Jr, Morton H Leonard [Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555-0709 (United States); Brunder, Donald G [Department of Academic Computing/Academic Resources, University of Texas Medical Branch, Galveston, TX 77555-1035 (United States)

    2007-08-21

    Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor-intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R{sup 2} = 0.93) and %-density (R{sup 2} = 0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies.

  17. Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit

    Science.gov (United States)

    Lu, Lee-Jane W.; Nishino, Thomas K.; Khamapirad, Tuenchit; Grady, James J.; Leonard, Morton H., Jr.; Brunder, Donald G.

    2007-08-01

    Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor-intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R2 = 0.93) and %-density (R2 = 0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies.

  18. Preparation and antibacterial activities of hollow silica-Ag spheres.

    Science.gov (United States)

    Lin, Lin; Zhang, Haifang; Cui, Haiying; Xu, Mingqiang; Cao, Shunsheng; Zheng, Guanghong; Dong, Mingdong

    2013-01-01

    Hollow silica spheres with round mesoporous shells were synthesized by core-shell template method, using monodispersed cationic polystyrene particles as core, and TEOS (tetraethoxysilane) as the silica source to form shell. After calcination at 550°C, uniform spheres with a thin shell of silica and hollow interior structures. Transmission electron microscopy results showed that the size of the spheres is about 700 nm in diameter with narrow distribution. In addition, the spheres have a high surface area of 183 m(2)/g. The spheres were subsequently used as silver-loading substrates and the silver loaded spheres were tested in antimicrobial study against gram negative bacteria Eschrichia coli in vitro. The hollow silica-Ag spheres proved significantly higher antibacterial efficacy against E. coli as compared to that of the common silica-Ag particles.

  19. Competition of percolation and phase separation in a fluid of adhesive hard spheres

    NARCIS (Netherlands)

    Miller, M.A.; Frenkel, D.

    2003-01-01

    Using a combination of Monte Carlo techniques, we locate the liquid-vapor critical point of adhesive hard spheres. We find that the critical point lies deep inside the gel region of the phase diagram. The (reduced) critical temperature and density are τc = 0.1133±0.0005 and ρc = 0.508±0.01. We compa

  20. Dynamical stability of fluid spheres in spacetimes with a nonzero cosmological constant

    CERN Document Server

    Hledik, Stanislav; Mrazova, Kristina

    2016-01-01

    The Sturm-Liouville eigenvalue equation for eigenmodes of the radial oscillations is determined for spherically symmetric perfect fluid configurations in spacetimes with a nonzero cosmological constant and applied in the cases of configurations with uniform distribution of energy density and polytropic spheres. It is shown that a repulsive cosmological constant rises the critical adiabatic index and decreases the critical radius under which the dynamical instability occurs.

  1. Are turbulent spheres suitable initial conditions for star-forming clouds?

    OpenAIRE

    2014-01-01

    To date, most numerical simulations of molecular clouds, and star formation within them, assume a uniform density sphere or box with an imposed turbulent velocity field. In this work, we select molecular clouds from galactic scale simulations as initial conditions, increase their resolution, and re-simulate them using the SPH code Gadget2. Our approach provides clouds with morphologies, internal structures, and kinematics that constitute more consistent and realistic initial conditions for si...

  2. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2(Version 2.1) Catchments Riparian Buffer for the Conterminous United States: 2010 US Census Road Density

    Science.gov (United States)

    This dataset represents the road density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) This data set is derived from TIGER/Line Files of roads in the conterminous United States. Road density describes how many kilometers of road exist in a square kilometer. A raster was produced using the ArcGIS Line Density Tool to form the landscape layer for analysis. (see Data Sources for links to NHDPlusV2 data and Census Data) The (kilometer of road/square kilometer) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  3. Preparation of modified SiO2 colloidal spheres with succinic acid and the assembly of colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    FANG Jun; WANG XiuFeng; WANG LieSong; CHENG Bing; WU YuanTing; ZHU WanLin

    2007-01-01

    SiO2 colloidal spheres were synthesized by St(o)ber method. In order to enhance surface charge of the SiO2 spheres, they were modified with succinic acid. Scanning electron microscope (SEM) shows that the average size of modified SiO2 spheres is 473 nm, and its distribution standard deviation is less than 5%; Fourier-transform infrared spectra (FT-IR) and X-ray photoelectron spectrometer (XPS) results indicate that one end of succinic acid is chemically bonded to the SiO2 spheres through esterification; Zeta potential of the modified SiO2 spheres in water solution is improved from -53.72 to -67.46 mV, and surface charge density of the modified SiO2 spheres is enhanced from 0.19 to 0.94 μC/cm2. SiO2 colloidal crystal was fabricated from aqueous colloidal solution by the vertical deposition method at 40℃ and 60% relative humidity. SEM images show that the sample of SiO2 colloidal crystal is face-centered cubic (fcc) structure with its (111) planes parallel to the substrate. Transmission measurement shows the existence of photonic band gap at 1047 nm.

  4. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  5. Uniform Fe3O4-PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres

    Science.gov (United States)

    Wang, Xiaocong; Tang, Saide; Liu, Jing; He, Ziqiong; An, Lijuan; Zhang, Chenxi; Hao, Jingmei; Feng, Wei

    2009-05-01

    Core-shell multifunctional composite spheres consisting of Fe3O4-polyaniline (PANi) shell and polystyrene (PS) core were fabricated using core-shell-structured sulfonated PS spheres (with uniform diameter of 250 nm) as templates. PANi was doped in situ by sulfonic acid resulting the composite spheres are well conductive. Dissolved with solvent, PS cores were removed from the core-shell composite spheres and hollow Fe3O4-PANi spheres were obtained. Removing the PANi and PS components by calcinations produced hollow Fe3O4 spheres. The cavity size of the hollow spheres was uniformly approximate to 190 nm and the shell thickness was 30 nm. The cavity size and the shell thickness can be synchronously controlled by varying the sulfonation time of the PS templates. The shell thickness in size range was of 20-86 nm when the sulfonation time was changed from 1 to 4 h. These resulting spheres could be arranged in order by self-assembly of the templates. Both the Fe3O4-PANi/PS composite spheres and the hollow Fe3O4 spheres exhibit a super-paramagnetic behavior. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder scattering were used to characterize these as-prepared spheres.

  6. Liquid bridge force between two unequal-sized spheres or a sphere and a plane

    Institute of Scientific and Technical Information of China (English)

    You chuan Chen; Yong zhi Zhao; Hong li Gao; Jin yang Zheng

    2011-01-01

    Liquid bridge force acting between wet particles is an important property in particle characterization.This paper deals with liquid bridge force between either two unequal-sized spherical particles or a sphere and a flat plate under conditions where gravitational effect arising from bridge distortion is negligible.In order to calculate the force of the liquid bridge efficiently and accurately,expressions of liquid configuration and liquid bridge force were derived by building a mechanical model,which assumes the liquid bridge to be circular in shape between either two unequal-sized spheres or a sphere and a plane.To assess the accuracy of the numerical results of the calculated liquid bridge forces,they were compared to the published experimental data.

  7. Statistical equilibria of the coupled barotropic flow and shallow water flow on a rotating sphere

    Science.gov (United States)

    Ding, Xueru

    The motivation of this research is to build equilibrium statistical models that can apply to explain two enigmatic phenomena in the atmospheres of the solar system's planets: (1) the super-rotation of the atmospheres of slowly-rotating terrestrial planets---namely Venus and Titan, and (2) the persistent anticyclonic large vortex storms on the gas giants, such as the Great Red Spot (GRS) on Jupiter. My thesis is composed of two main parts: the first part focuses on the statistical equilibrium of the coupled barotropic vorticity flow (non-divergent) on a rotating sphere; the other one has to do with the divergent shallow water flow rotating sphere system. The statistical equilibria of these two systems are simulated in a wide range of parameter space by Monte Carlo methods based on recent energy-relative enstrophy theory and extended energy-relative enstrophy theory. These kind of models remove the low temperatures defect in the old classical doubly canonical energy-enstrophy theory which cannot support any phase transitions. The other big difference of our research from previous work is that we work on the coupled fluid-sphere system, which consists of a rotating high density rigid sphere, enveloped by a thin shell of fluid. The sphere is considered to have infinite mass and angular momentum; therefore, it can serve as a reservoir of angular momentum. Unlike the fluid sphere system itself, the coupled fluid sphere system allows for the exchange of angular momentum between the atmosphere and the solid planet. This exchange is the key point in any model that is expected to capture coherent structures such as the super-rotation and GRS-like vortices problems in planetary atmospheres. We discovered that slowly-rotating planets can have super-rotation at high energy state. All known slowly-rotating cases in the solar system---Venus and Titan---have super-rotation. Moreover, we showed that the anticyclonicity in the GRS-like structures is closely associated with the

  8. Clifford algebra approach to pointwise convergence of Fourier series on spheres

    Institute of Scientific and Technical Information of China (English)

    FEI Minggang; QIAN Tao

    2006-01-01

    We offer an approach by means of Clifford algebra to convergence of Fourier series on unit spheres of even-dimensional Euclidean spaces. It is based on generalizations of Fueter's Theorem inducing quaternionic regular functions from holomorphic functions in the complex plane.We, especially, do not rely on the heavy use of special functions. Analogous Riemann-Lebesgue theorem, localization principle and a Dini's type pointwise convergence theorem are proved.

  9. The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere

    CERN Document Server

    Brauchart, J S; Saff, E B

    2012-01-01

    We survey known results and present estimates and conjectures for the next-order term in the asymptotics of the optimal logarithmic energy and Riesz $s$-energy of $N$ points on the unit sphere in $\\mathbb{R}^{d+1}$, $d\\geq 1$. The conjectures are based on analytic continuation assumptions (with respect to $s$) for the coefficients in the asymptotic expansion (as $N\\to \\infty$) of the optimal $s$-energy.

  10. Topological and metrical property characterization of radical subunits for ternary hard sphere crystals

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2016-01-01

    Full Text Available Quantitative characterization on the topological and metrical properties of radical subunits (polyhedra for two new ternary hard sphere crystals was studied. These two ideal crystalline structures are numerically constructed by filling small and medium spheres into interstices (corresponding to regular tetrahedral and octahedral pores of perfect face centered cubic (FCC and hexagonal close packed (HCP crystals formed by the packing of large spheres. Topological properties such as face number, edge number, vertex number of each radical polyhedron (RP, edge number of each RP face and metrical properties such as volume, surface area, total perimeter and pore volume of each RP, area and perimeter of each RP face were analyzed and compared. The results show that even though the overall packing densities for FCC and HCP ternary crystals are the same, different characteristics of radical polyhedra for corresponding spheres in these two crystals can be identified. That is, in the former structure RPs are more symmetric than those in the latter; the orientations of corresponding RP in the latter are twice as many as that in the former. Moreover, RP topological and metrical properties in the HCP ternary crystal are much more complicated than those in the FCC ternary crystal. These differences imply the structure and property differences of these two ternary crystals. Analyses of RPs provide intensive understanding of pores in the structure.

  11. Topological and metrical property characterization of radical subunits for ternary hard sphere crystals

    Science.gov (United States)

    Wang, Lin; An, Xizhong; Wang, Defeng; Qian, Quan

    2016-01-01

    Quantitative characterization on the topological and metrical properties of radical subunits (polyhedra) for two new ternary hard sphere crystals was studied. These two ideal crystalline structures are numerically constructed by filling small and medium spheres into interstices (corresponding to regular tetrahedral and octahedral pores) of perfect face centered cubic (FCC) and hexagonal close packed (HCP) crystals formed by the packing of large spheres. Topological properties such as face number, edge number, vertex number of each radical polyhedron (RP), edge number of each RP face and metrical properties such as volume, surface area, total perimeter and pore volume of each RP, area and perimeter of each RP face were analyzed and compared. The results show that even though the overall packing densities for FCC and HCP ternary crystals are the same, different characteristics of radical polyhedra for corresponding spheres in these two crystals can be identified. That is, in the former structure RPs are more symmetric than those in the latter; the orientations of corresponding RP in the latter are twice as many as that in the former. Moreover, RP topological and metrical properties in the HCP ternary crystal are much more complicated than those in the FCC ternary crystal. These differences imply the structure and property differences of these two ternary crystals. Analyses of RPs provide intensive understanding of pores in the structure.

  12. Novel syntactic foams made of ceramic hollow micro-spheres and starch: theory, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Kim, H.S. [University of Newcastle, Callaghan, NSW (Australia). Faculty of Engineering & Built Environments

    2007-08-15

    Novel syntactic foams for potential building material applications were developed using starch as binder and ceramic hollow micro-spheres available as waste from coal-fired power stations. Foams of four different micro-sphere size groups were manufactured with either pre- or post-mould gelatinization process. They were of ternary system including voids with a foam density range of approximately 0.33-0.44 g/cc. Compressive failure behaviour and mechanical properties of the manufactured foams were evaluated. Not much difference in failure behaviour or in mechanical properties between the two different processes (pre- and post-mould gels) was found for a given binder content. Compressive failure of all syntactic foams was of shear on plane inclined 45 degrees to compressive loading direction. Failure surfaces of most syntactic foams were characterized by debonded micro-spheres. Compressive strength and modulus of syntactic foams were found to be dependant mainly on binder content but mostly independent of micro-sphere size. Some conditions of relativity arising from properties of constituents leading to the rule of mixtures relationships for compressive strength and to understanding of compressive/transitional failure behaviour were developed. The developed relationships based on the rule of mixtures were partially verified. Some formation of starch webs on failure surfaces was discussed.

  13. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors

    Science.gov (United States)

    Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun

    2017-02-01

    A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.

  14. Electromagnetic-scattering by bi-sphere groups and coherent-beam scattering by homogeneous spheres

    Institute of Scientific and Technical Information of China (English)

    Linsheng LIU; Hengyu KE; Zhensen WU; Lu BAI

    2008-01-01

    By using Mie's theory, the boundary condi-tions, and some advanced mathematical knowledge, the scattering problem of a plane-wave by bi-sphere groups and of cores-traversed coherent Gauss-beams by one sphere was addressed. In each, the coefficients of the scattering-field expressions were deduced. Finally, the result was predigested and transfigured so that the available form for programming was achieved. On deducing, the former adopted the undetermined coeffi-cient method and the latter used the plane geometry method. Moreover, the complexity of the calculation was decreased here.

  15. A survey of power density of clinical curing-light units used in Changchun%长春市口腔临床应用光固化灯的调查

    Institute of Scientific and Technical Information of China (English)

    郝新青; 罗梦; 冷鑫; 朱松

    2011-01-01

    目的调查长春市临床应用光固化灯的功率密度及其相关信息,为临床医师正确维护使用光固化灯提供参考。方法调查对象为长春市口腔专科医院、综合医院口腔科、民营诊所,采用简单随机抽样的方法,共检测270盏光固化灯的功率密度及相关信息,包括光固化灯的品牌、类型、使用年限、光导头数目及类型,光导头玷污、破损情况,使用频率,装置的检测及维修情况,灯数目/牙椅数。结果270盏光固化灯中,卤光灯174盏,发光二极管灯96盏,检测功率密度变化范围在0~1702 mW/cm2,平均功率密度为413.2 mW/cm2,73盏灯小于200 mW/cm2,不能充分聚合光固化复合树脂。光固化灯的平均使用年限为4.7年。大多数医师未检测过光固化灯的功率密度,84%(227/270)的光导头表面有树脂的玷污和破损。结论 长春市大部分光固化灯为卤光灯,部分灯老化明显,需要更新,大多数医师没有注意光固化灯需要定期检测和维修。%Objectives To investigate the power density and other relevant data of clinical curinglight units used in Changchun, and to provide practice recommendations to clinical dentists about maintaining of cuing-light units. Methods Stomatology hospitals, departments of stomatology in general hospitals, and private dental offices in Changchun were randomly selected to participate in the Survey. The investigation analyzed 270 curing-light units. The following data of curing-light units were gathered: brand, type, operation ages, numbers and types of light guide, resin build-ups on light guides, damages of light guides, use frequency, monitor and maintenance of curing lights, and unit numbers/chair nunbers. Results There were 174 QTH and 96 LED units. The distribution of power density was from 0 to 1702 mW/cm2. The mean power density was 413. 2 mW/cm2. The power densities of 73 lights were less than 200 mW/cm2 and could not

  16. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    Science.gov (United States)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  17. Regularity of optimal transport maps on multiple products of spheres

    CERN Document Server

    Figalli, Alessio; McCann, Robert J

    2010-01-01

    This article addresses regularity of optimal transport maps for cost="squared distance" on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain injectivity and continuity of optimal maps. This together with the result of Liu, Trudinger and Wang [LTW] also implies higher regularity (C^{1,\\alpha}/C^\\infty) of optimal maps for more smooth (C^\\alpha /C^\\infty)) densities. These are the first global regularity results which we are aware of concerning optimal maps on non-flat Riemannian manifolds which possess some vanishing sectional curvatures. Moreover, such product manifolds have potential relevance in statistics (see [S]) and in statistical mechanics (where the state of a system consisting of m...

  18. Vlasov versus N-body: the H\\'enon sphere

    CERN Document Server

    Colombi, S; Peirani, S; Plum, G; Suto, Y

    2015-01-01

    We perform a detailed comparison of the phase-space density traced by the particle distribution in Gadget simulations to the result obtained with a spherical Vlasov solver using the splitting algorithm. The systems considered are apodized H\\'enon spheres with two values of the virial ratio, R ~ 0.1 and 0.5. After checking that spherical symmetry is well preserved by the N-body simulations, visual and quantitative comparisons are performed. In particular we introduce new statistics, correlators and entropic estimators, based on the likelihood of whether N-body simulations actually trace randomly the Vlasov phase-space density. When taking into account the limits of both the N-body and the Vlasov codes, namely collective effects due to the particle shot noise in the first case and diffusion and possible nonlinear instabilities due to finite resolution of the phase-space grid in the second case, we find a spectacular agreement between both methods, even in regions of phase-space where nontrivial physical instabi...

  19. NATURAL FREQUENCIES OF SUBMERGED PIEZOCERAMIC HOLLOW SPHERES

    Institute of Scientific and Technical Information of China (English)

    Cai Jinbiao; Chen Weiqiu; Ye Guiru; Ding Haojiang

    2000-01-01

    An exact 3D analysis of free vibration of a piezoceramic hollow sphere submerged in a compressible fluid is presented in this paper.A separation method is adopted to simplify the basic equations for spherically isotropic piezoelasticity.It is shown that there are two independent classes of vibration.The first one is independent of the fluid medium as well as the electric field,while the second is associated with both the fluid parameter and the piezoelectric effect.Exact frequency equations are derived and numerical results are obtained.

  20. A pattern formation problem on the sphere

    Directory of Open Access Journals (Sweden)

    Clara E. Garza-Hume

    2007-02-01

    Full Text Available We consider a semi-linear elliptic equation on the sphere $mathbf{S}^n subset mathbb{R}^{n+1}$ with $n$ odd and subcritical nonlinearity. We show that given any positive integer $k$, if the exponent $p$ of the nonlinear term is sufficiently close to the critical Sobolev exponent $p^*$, then there exists a positive solution with $k$ peaks. Moreover, the minimum energy solutions with $k$ peaks are such that the centers of these concentrations converge as $po p^*$ to the solution of an underlying geometrical problem, namely, arranging $k$ points on $mathbf{S}^n$ so they are as far away from each other as possible.