WorldWideScience

Sample records for unique swimming behaviour

  1. Structure of the rat behaviour in the forced swimming test.

    Science.gov (United States)

    Lino-de-Oliveira, Cilene; De Lima, Thereza C M; de Pádua Carobrez, Antonio

    2005-03-30

    Forced swimming test (FST) or 'behavioural despair' test is a useful screening for antidepressant drugs. The FST predictability has been improved by a number of procedural modifications. Description of the behavioural microstructure in FST may help to delineate innovative protocols. Thus, counts of all behaviours emitted during FST in rats (four-month-old Wistar male, n = 63) were recorded and examined by Markovian sequential analysis (MSA) and principal components analysis (PCA). In a second experiment, rats (n = 28) were tested in an open field test (OFT) followed a week later by FST; behaviours in both tests were recorded and analysed by two correlation methods (Pearson's test and sliding window correlation). The descriptive ethological analysis displayed counts of swimming and immobility increased over the course of the test, whereas climbing behaviour decreased. The MSA revealed the occurrence of immobility was predicted by swimming, climbing, and diving behaviours whereas the immobility predicted the occurrence of swimming behaviour and headshakes. The PCA showed duration of immobility and climbing loaded into one component and duration of immobility and swimming loaded into another one. Low as well high levels of climbing behaviour were positively correlated with motor activity in the OFT. In brief, the present data suggest there are at least two different factors that grouped variables related to the behavioural despair in the FST. In addition, altered motor activity could be predicted by the frequency of climbing behaviour recorded in the FST.

  2. How fast does a seal swim? Variations in swimming behaviour under differing foraging conditions.

    Science.gov (United States)

    Gallon, Susan L; Sparling, Carol E; Georges, Jean-Yves; Fedak, Michael A; Biuw, Martin; Thompson, Dave

    2007-09-01

    The duration of breath-hold dives and the available time for foraging in submerged prey patches is ultimately constrained by oxygen balance. There is a close relationship between swim speed and oxygen utilisation, so it is likely that breath-holding divers optimise their speeds to and from the feeding patch to maximise time spent feeding at depth. Optimal foraging models suggest that transit swim speed should decrease to minimum cost of transport (MCT) speed in deeper and longer duration dives. Observations also suggest that descent and ascent swimming mode and speed may vary in response to changes in buoyancy. We measured the swimming behaviour during simulated foraging of seven captive female grey seals (two adults and five pups). Seals had to swim horizontally underwater from a breathing box to a submerged automatic feeder. The distance to the feeder and the rate of prey food delivery could be varied to simulate different feeding conditions. Diving durations and distances travelled in dives recorded during these experiments were similar to those recorded in the wild. Mean swim speed decreased significantly with increasing distance to the patch, indicating that seals adjusted their speed in response to travel distance, consistent with optimality model predictions. There was, however, no significant relationship between the transit swim speeds and prey density at the patch. Interestingly, all seals swam 10-20% faster on their way to the prey patch compared to the return to the breathing box, despite the fact that any effect of buoyancy on swimming speed should be the same in both directions. These results suggest that the swimming behaviour exhibited by foraging grey seals might be a combination of having to overcome the forces of buoyancy during vertical swimming and also of behavioural choices made by the seals.

  3. Locomotor activity during the frenzy swim: analysing early swimming behaviour in hatchling sea turtles.

    Science.gov (United States)

    Pereira, Carla M; Booth, David T; Limpus, Colin J

    2011-12-01

    Swimming effort of hatchling sea turtles varies across species. In this study we analysed how swim thrust is produced in terms of power stroke rate, mean maximum thrust per power stroke and percentage of time spent power stroking throughout the first 18 h of swimming after entering the water, in both loggerhead and flatback turtle hatchlings and compared this with previous data from green turtle hatchlings. Loggerhead and green turtle hatchlings had similar power stroke rates and percentage of time spent power stroking throughout the trial, although mean maximum thrust was always significantly higher in green hatchlings, making them the most vigorous swimmers in our three-species comparison. Flatback hatchlings, however, were different from the other two species, with overall lower values in all three swimming variables. Their swimming effort dropped significantly during the first 2 h and kept decreasing significantly until the end of the trial at 18 h. These results support the hypothesis that ecological factors mould the swimming behaviour of hatchling sea turtles, with predator pressure being important in determining the strategy used to swim offshore. Loggerhead and green turtle hatchlings seem to adopt an intensely vigorous and energetically costly frenzy swim that would quickly take them offshore into the open ocean in order to reduce their exposure to near-shore aquatic predators. Flatback hatchlings, however, are restricted in geographic distribution and remain within the continental shelf region where predator pressure is probably relatively constant. For this reason, flatback hatchlings might use only part of their energy reserves during a less vigorous frenzy phase, with lower overall energy expenditure during the first day compared with loggerhead and green turtle hatchlings.

  4. Hydrokinetic turbine effects on fish swimming behaviour.

    Directory of Open Access Journals (Sweden)

    Linus Hammar

    Full Text Available Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.

  5. Swimming behaviour of the upside-down swimming catfish ( Synodontis nigriventris) at high-quality microgravity - A drop-tower experiment

    Science.gov (United States)

    Anken, R.; Hilbig, R.

    2009-07-01

    The catfish Synodontis nigriventris often shows a unique swimming behaviour in being oriented upside-down. When swimming near a (e.g., vertical) substrate, however, the animals orient themselves with their ventral side towards this substrate. This tendency is called ventral substrate response (VSR). The VSR does not only override the upside-down swimming behaviour but also the dorsal light response and the ventral light response. In the course of an earlier drop-tower experiment performed at ZARM (Bremen, Germany) using cichlid fish ( Oreochromis mossambicus), we had observed that about 90% of the animals revealed sensorimotor disorders (kinetotic swimming) due to the almost complete lack of gravity as a cue for orientation. In order to further assess the importance of the VSR for postural control in S. nigriventris when being located near a substrate, we subjected catfish in relatively small chambers to drop-tower flights. In contrast to our results regarding cichlid fish, S. nigriventris showed no kinetotic behaviour. This clearly suggests that the VSR overrides even vestibular input and possibly represents the most important single behavioural response in this species.

  6. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity

    Science.gov (United States)

    Fejtek, M.; Souza, K.; Neff, A.; Wassersug, R.

    1998-01-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  7. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    Science.gov (United States)

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification. © 2015. Published by The Company of Biologists Ltd.

  8. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals

    NARCIS (Netherlands)

    Weber, A.; Van Noordwijk, A.J.

    2002-01-01

    We studied variation in small-scale swimming behavior (SSB) in four clones of Daphnia galeata (water flea) in response to predator infochemicals. The aim of this study was 3-fold. First, we tested for differences in SSB in Daphnia; second, we examined the potential of differences in SSB to explain s

  9. Swimming

    Science.gov (United States)

    ... going out on a boat, always wear a life jacket. (Again, the life jacket should be Coast Guard-approved.) Even if you ... are other water park safety tips: Wear a life jacket if you don't know how to swim ...

  10. The effect of substratum type on aspects of swimming performance and behaviour in shortnose sturgeon Acipenser brevirostrum.

    Science.gov (United States)

    May, L E; Kieffer, J D

    2017-01-01

    The swimming performance and associated swimming behaviour (i.e. substratum-skimming, station-holding and free swimming) were assessed in shortnose sturgeon Acipenser brevirostrum during critical swimming and endurance swimming tests over a rough and a smooth substratum. It was hypothesized that the addition of a rough substratum in the swimming flume may provide a surface for the A. brevirostrum to grip and offer an energetic advantage. Substratum type did not affect the critical swimming performance, but A. brevirostrum consistently performed more bottom behaviours (i.e. substratum-skimming and station-holding) while on a smooth substratum. Acipenser brevirostrum had little contact with the rough substratum until the velocity was >1 body length s(-1) . Endurance swimming time was significantly lower for A. brevirostrum over the rough bottom at the highest velocity (30 cm s(-1) ) which may be attributed to the observed increase in free swimming and decrease in bottom behaviours. During endurance swimming, the rough substratum was mainly used at intermediate velocities, suggesting that there may be a stability cost associated with being in contact with the rough substratum at certain velocities. © 2016 The Fisheries Society of the British Isles.

  11. Persistence of behaviours in the Forced Swim Test in 3xTg-AD mice at advanced stages of disease.

    Science.gov (United States)

    Torres-Lista, Virginia; Giménez-Llort, Lydia

    2014-07-01

    Forced Swimming Test (FST) models behavioural despair in animals by loss of motivation to respond or the refusal to escape. The present study characterizes the behavioural responses of 12-month-old male 3xTg-AD mice in FST as compared to age-matched no-transgenic (NTg) mice. Paradoxical results were consistently found from what would be expected from their BPSD (Behavioural and Psychological Symptoms of Dementia)-like profile. The comprehensive analysis of the ethogram shown in the FST considered the intervals of the test (0-2 and 2-6min), all the elicited behavioural responses (immobility, swimming and climbing) and their features (total duration, frequency of episodes and mean duration). Both genotypes showed equal number of swimming episodes and climbing attempts during the first interval, that resulted in high swimming times, short climbing and scarce immobility. Thereafter, the NTg mice showed a behavioural shift over time and the immobility response showed up. In contrast, all the measures consistently evidenced that 3xTg-AD persisted with the previous behavioural pattern. Genotype differences consisted in less number of episodes of immobility and swimming, and a low immobility time in favour of swimming. No differences were found in 'climbing' attempts. The behavioural response observed is discussed as a lack of ability of 3xTg-AD mice to shift behaviour over time that may result of poorest cognitive flexibility and copying with stress strategies more than behavioural despair per se.

  12. Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Abhra Roy Chowdhury

    2015-05-01

    Full Text Available Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF and Caudal amplitude (CA which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameters value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.

  13. Water baths for farmed mink: intra-individual consistency and inter-individual variation in swimming behaviour, and effects on stereotyped behaviour

    Directory of Open Access Journals (Sweden)

    J. MONONEN

    2008-12-01

    Full Text Available Swimming behaviour and effects of water baths on stereotyped behaviour in farmed mink (Mustela vison were studied in three experiments. The singly-housed mink had access from their home cages to extra cages with 20.5 litre water baths. Two short-term experiments aimed to investigate how quickly adult and juvenile mink start using and how consistently they use water baths over 10 days, and whether the extent of the use correlates between dams and their females kits. A four-month experiment was designed to compare the development of stereotyped behaviour in juvenile mink housed with and without swimming opportunity. The behavioural analyses were based on several 24-hour video recordings carried out in all three experiments. There were obvious inter-individual differences and intra-individual consistency in swimming frequency and time. Farmed mink’s motivation to swim can be assessed in short-term experiments, and measurement of water losses from the swimming baths and use of instantaneous sampling with 10 min sampling intervals provide quite reliable measures of the amount of swimming. The bath use of the juveniles correlated with that of their dams, indicating that an individual mink’s eagerness to swim may have a genetic component. The lower amount of stereotyped behaviour in mink housed with water baths indicates that long-term access to baths may alleviate frustration in singly-housed juvenile farmed mink.;

  14. Behavioural variability and motor performance: Effect of practice specialization in front crawl swimming.

    Science.gov (United States)

    Seifert, L; De Jesus, K; Komar, J; Ribeiro, J; Abraldes, J A; Figueiredo, P; Vilas-Boas, J P; Fernandes, R J

    2016-06-01

    The aim was to examine behavioural variability within and between individuals, especially in a swimming task, to explore how swimmers with various specialty (competitive short distance swimming vs. triathlon) adapt to repetitive events of sub-maximal intensity, controlled in speed but of various distances. Five swimmers and five triathletes randomly performed three variants (with steps of 200, 300 and 400m distances) of a front crawl incremental step test until exhaustion. Multi-camera system was used to collect and analyse eight kinematical and swimming efficiency parameters. Analysis of variance showed significant differences between swimmers and triathletes, with significant individual effect. Cluster analysis put these parameters together to investigate whether each individual used the same pattern(s) and one or several patterns to achieve the task goal. Results exhibited ten patterns for the whole population, with only two behavioural patterns shared between swimmers and triathletes. Swimmers tended to use higher hand velocity and index of coordination than triathletes. Mono-stability occurred in swimmers whatever the task constraint showing high stability, while triathletes revealed bi-stability because they switched to another pattern at mid-distance of the task. Finally, our analysis helped to explain and understand effect of specialty and more broadly individual adaptation to task constraint.

  15. The effect of water temperature on routine swimming behaviour of new born guppies (Poecilia reticulata

    Directory of Open Access Journals (Sweden)

    Maud Kent

    2015-03-01

    Full Text Available Guppies have successfully established populations in places with thermal regimes very different from the Tropical conditions in their native range. This indicates a remarkable capacity for thermal adaptation. Given their vulnerability to predation as juveniles, acute changes in temperature, which can alter predator-prey relationships, can impact juvenile survival and have amplified consequences at the population level. To understand how temperature may impact juvenile survival and gain insight into their success as an invasive species, we researched the effect of acute temperature changes on the routine swimming behaviour of juvenile guppies. Using a novel 3-dimensional tracking technique, we calculated 4 routine swimming parameters, speed, depth, and variation in speed or depth, at 6 different test temperatures (17, 20, 23, 26, 29, or 32°C. These temperatures cover their natural thermal range and also extended past it in order to include upper and lower thermal limits. Using model selection, we found that body length and temperature had a significant positive relationship with speed. Variation in speed decreased with rising temperatures and fish swam slightly closer to the bottom at higher temperatures. All juveniles increased variation in depth at higher temperatures, though larger individuals maintained slightly more consistent depths. Our results indicate that guppies have a large thermal range and show substantial plasticity in routine swimming behaviours, which may account for their success as an invasive species.

  16. Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Abhra Roy Chowdhury

    2015-05-01

    Full Text Available Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF and Caudal amplitude (CA which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameter/s value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.

  17. Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles

    Science.gov (United States)

    Scott, Rebecca; Biastoch, Arne; Roder, Christian; Stiebens, Victor A.; Eizaguirre, Christophe

    2014-01-01

    Dispersal during juvenile life stages drives the life-history evolution and dynamics of many marine vertebrate populations. However, the movements of juvenile organisms, too small to track using conventional satellite telemetry devices, remain enigmatic. For sea turtles, this led to the paradigm of the ‘lost years' since hatchlings disperse widely with ocean currents. Recently, advances in the miniaturization of tracking technology have permitted the application of nano-tags to track cryptic organisms. Here, the novel use of acoustic nano-tags on neonate loggerhead turtle hatchlings enabled us to witness first-hand their dispersal and behaviour during their first day at sea. We tracked hatchlings distances of up to 15 km and documented their rapid transport (up to 60 m min−1) with surface current flows passing their natal areas. Tracking was complemented with laboratory observations to monitor swimming behaviours over longer periods which highlighted (i) a positive correlation between swimming activity levels and body size and (ii) population-specific swimming behaviours (e.g. nocturnal inactivity) suggesting local oceanic conditions drive the evolution of innate swimming behaviours. Knowledge of the swimming behaviours of small organisms is crucial to improve the accuracy of ocean model simulations used to predict the fate of these organisms and determine resultant population-level implications into adulthood. PMID:25339720

  18. Locomotory behaviour and post-exercise physiology in relation to swimming speed, gait transition and metabolism in free-swimming smallmouth bass (Micropterus dolomieu).

    Science.gov (United States)

    Peake, Stephan J; Farrell, Anthony P

    2004-04-01

    We examined swimming behaviour, gait recruitment and post-exercise muscle glycogen, muscle lactate, plasma lactate and oxygen consumption in smallmouth bass (Micropterus dolomieu; 24-38 cm fork length) that voluntarily ascended a 25 m raceway against water velocities ranging from 40 to 120 cm s(-1). Physiological parameters were referenced to additional measurements made following exhaustive exercise in a static tank and aerobic exercise in a swim tunnel. Maximum speeds maintained exclusively using a steady gait in the raceway ranged from 53.6 to 97.3 cm s(-1) and scaled positively with fish length. Minimum swimming speeds maintained exclusively through recruitment of an unsteady gait were also positively correlated to fish length and ranged from 81.4 to 122.9 cm s(-1). Fish switched between steady and unsteady swimming at intermediate speeds. Smallmouth bass always maintained a positive ground speed in the raceway; however, those that primarily swam using a steady gait to overcome low to moderate water velocities (20-50 cm s(-1)) maintained mean ground speeds of approximately 20 cm s(-1). By contrast, mean ground speeds of fish that primarily recruited an unsteady locomotory gait increased significantly with water velocity, which resulted in an inverse relationship between exercise intensity and duration. We interpret this behaviour as evidence that unsteady swimming was being fuelled by the limited supply of anaerobic substrates in the white muscle. This hypothesis is supported by the fact that unsteady swimming fish showed significantly lower muscle glycogen levels, higher lactate concentrations (muscle and plasma) and higher post-exercise oxygen consumption rates compared with fish that used a steady gait. The reduction in passage time achieved by fish using an unsteady gait allowed them to ascend the raceway with relatively minor post-exercise metabolic imbalances, relative to individuals chased to exhaustion.

  19. Increased depressive behaviour in females and heightened corticosterone release in males to swim stress after adolescent social stress in rats.

    Science.gov (United States)

    Mathews, Iva Z; Wilton, Aleena; Styles, Amy; McCormick, Cheryl M

    2008-06-26

    We previously reported that males undergoing chronic social stress (SS) (daily 1h isolation and new cage partner on days 30-45 of age) in adolescence habituated (decreased corticosterone release) to the homotypic stressor, but females did not. Here, we report that adolescent males exposed to chronic social stress had potentiated corticosterone release to a heterotypic stressor (15 min of swim stress) compared to acutely stressed and control males. The three groups of males did not differ in depressive-like behaviour (time spent immobile) during the swim stress. Corticosterone release in socially stressed females was elevated 45 min after the swim stress compared to acutely stressed and control females, and socially stressed females exhibited more depressive behaviour (longer durations of immobility and shorter durations of climbing) than the other females during the swim stress. Separate groups of rats were tested as adults several weeks after the social stress, and there were no group differences in corticosterone release after the swim stress. The only group difference in behaviour among the adults was more time spent climbing in socially stressed males than in controls. Thus, there are sex-specific effects of social stress in adolescence on endocrine responses and depressive behaviour to a heterotypic stressor, but, unlike for anxiety, substantial recovery is evident in adulthood in the absence of intervening stress exposures.

  20. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    Science.gov (United States)

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.

  1. Swimming pools and health-related behaviours: results of an Italian multicentre study on showering habits among pool users.

    Science.gov (United States)

    Pasquarella, C; Veronesi, L; Napoli, C; Castaldi, S; Pasquarella, M L; Saccani, E; Colucci, M E; Auxilia, F; Gallè, F; Di Onofrio, V; Tafuri, S; Signorelli, C; Liguori, G

    2013-07-01

    Showering before entering a swimming pool is highly recommended to reduce the risk of biological and chemical contamination. This study evaluated the behaviour of indoor swimming pool users; analysed the variables associated with lack of showering; and assessed awareness of the importance of showering. Cross-sectional study. A self-administered questionnaire was used to collect data about users of swimming pools located in five different Italian cities. The association between specific variables and the lack of showering was assessed. P < 0.05 was considered to indicate statistical significance. In total, 4356 questionnaires were analysed. Sixty-five percent of interviewees always showered before entering the pool. The main reason given for pre-swim showering was 'to wash oneself' (50.5%); or 'to get used to the temperature of the water' (44.3%); and 5.2% answered 'for both reasons'. Risk factors significantly associated with lack of showering were: female sex (odds ratio (OR) 1.37, 95% confidence interval (CI) 1.2-1.59), age 14-17 years (OR 5.09, 95% CI 3.40-7.64); not reading the swimming pool rules (OR 1.24, 95% CI 1.10-1.41); living in Central Italy (OR 3.3, 95% CI 2.65-4.1) or Southern Italy (OR 1.35, 95% CI 1.18-1.55); and previous/current attendance of a swimming course (OR 1.7, 95% CI 1.48-1.97). The results revealed low compliance with the rule of showering before entering a swimming pool, and little awareness of the preventive role of showering in the hygienic management of swimming pools. There is a need for targeted educational interventions to inform swimming pool users of the reasons for the importance of showering before entering a pool. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Role of central histaminergic mechanism in behavioural depression (swimming despair) in mice.

    Science.gov (United States)

    Nath, C; Gulati, A; Dhawan, K N; Gupta, G P

    1988-01-01

    The role of the central histaminergic system in depression was studied by using swimming despair test in mice - a behavioural model of depression. In this test, immobility of mice reflects a state of depression. Intracerebral (ic) injection of histamine (50-200 micrograms) increased significantly the immobility. The H1-receptor blocker mepyramine (2.5-20 mg/kg ip) had no effect while H2-receptor blocker cimetidine (100-200 micrograms ic) caused a significant decrease in immobility. The histamine induced facilitation was blocked completely by cimetidine and antidepressant drugs-imipramine and desipramine, but remained unaffected in mice pretreated with mepyramine or atropine. The H2 agonist impromidine (20-40 micrograms ic) also enhanced significantly, the immobility which was blocked by cimetidine and antidepressant drugs. It has been concluded that central H2-receptors facilitate depression and antidepressant drugs block central H2-receptors.

  3. Effects of chronic and acute stress on rat behaviour in the forced-swim test.

    Science.gov (United States)

    Suvrathan, Aparna; Tomar, Anupratap; Chattarji, Sumantra

    2010-11-01

    Stress and depression may share common neural plasticity mechanisms. Importantly, the development and reversal of stress-induced plasticity requires time. These temporal aspects, however, are not captured fully in the forced-swim test (FST), a behavioural model for testing antidepressant efficacy, used originally in naïve animals. The present study probed whether and how a rodent model of stress affects behaviour in the FST over time. We found that the intensity and duration of stress are critical in the development of depressive symptoms in male Wistar rats (n = 37) as tested in the FST. Chronic immobilization stress (2 h/day for 10 days) elicited a range of responses, from low to high values of immobility in the FST on day 1, and subsequent immobility on day 2 was inversely related to individual day 1 values. As a whole, chronically stressed rats did not exhibit any significant change in immobility either on day 1 or day 2 compared to control rats. However, climbing behaviour was reduced uniformly from day 1 to day 2, despite the differences in immobility. In contrast, a separate group of rats (n = 30) subjected to the same chronic stressor displayed a significant reduction in open-arm exploration in the elevated plus maze, indicative of a robust increase in anxiety-like behaviour. Furthermore, when the 10-day chronic stress paradigm was reduced to a single 2-h episode of immobilization stress, it triggered a uniform day 1 to day 2 increase in immobility, which was not persistent 10 days later. These results highlight a need for closer examination of the ways in which stress-induced modulation of behaviour in the FST may be used and interpreted in future studies aimed at exploring connections between stress and depression.

  4. Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish.

    Science.gov (United States)

    Díaz-Gil, Carlos; Cotgrove, Lucy; Smee, Sarah Louise; Simón-Otegui, David; Hinz, Hilmar; Grau, Amalia; Palmer, Miquel; Catalán, Ignacio A

    2017-04-01

    Human pressure on coastal areas is affecting essential ecosystems including fish nursery habitats. Among these anthropogenic uses, the seasonal increment in the pressure due to leisure activities such as coastal tourism and yachting is an important environmental stressor in many coastal zones. These pressures may elicit understudied impacts due to, for example, sunscreens or other seasonal pollutants. The island of Majorca, northwest Mediterranean Sea, experiences one of the highest number of tourist visits per capita in the world, thus the surrounding coastal habitat is subject to high anthropogenic seasonal stress. Studies on early stages of fishes have observed responses to coastal chemical cues for the selection or avoidance of habitats. However, the potential interferences of human impacts on these signals are largely unknown. A choice chamber was used to determine water type preference and behaviour in naïve settled juvenile gilt-head sea bream (Sparus aurata), a temperate species of commercial interest. Fish were tested individually for behavioural changes with respect to water types from potential beneficial habitats, such as seawater with extract of the endemic seagrass Posidonia oceanica, anthropogenically influenced habitats such as water extracted from a commercial and recreational harbour and seawater mixed with sunscreen at concentrations observed in coastal waters. Using a Bayesian approach, we investigated a) water type preference; b) mean speed; and c) variance in the movement (as an indicator of burst swimming activity, or "sprint" behaviour) as behavioural descriptors with respect to water type. Fish spent similar percentage of time in treatment and control water types. However, movement descriptors showed that fish in sunscreen water moved slower (98.43% probability of being slower) and performed fewer sprints (90.1% probability of having less burst in speed) compared to control water. Less evident increases in sprints were observed in harbour

  5. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test

    Directory of Open Access Journals (Sweden)

    Tatyana Strekalova

    2016-01-01

    Full Text Available While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.

  6. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test

    Science.gov (United States)

    Markova, Nataliia; Shevtsova, Elena; Bakhmet, Anastassia; Steinbusch, Harry M.

    2016-01-01

    While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome. PMID:27478647

  7. Biased swimming cells do not disperse in pipes as tracers: a population model based on microscale behaviour

    CERN Document Server

    Bearon, R N; Croze, O A

    2012-01-01

    There is much current interest in modelling suspensions of algae and other micro-organisms for biotechnological exploitation, and many bioreactors are of tubular design. Using generalized Taylor dispersion theory, we develop a population-level swimming-advection-diffusion model for suspensions of micro-organisms in a vertical pipe flow. In particular, a combination of gravitational and viscous torques acting on individual cells can affect their swimming behaviour, which is termed gyrotaxis. This typically leads to local cell drift and diffusion in a suspension of cells. In a flow in a pipe, small amounts of radial drift across streamlines can have a major impact on the effective axial drift and diffusion of the cells. We present a Galerkin method to calculate the local mean swimming velocity and diffusion tensor based on local shear for arbitrary flow rates. This method is validated with asymptotic results obtained in the limits of weak and strong shear. We solve the resultant swimming-advection-diffusion equ...

  8. Species specific behavioural patterns (digging and swimming and reaction to novel objects in wild type, Wistar, Sprague-Dawley and Brown Norway rats.

    Directory of Open Access Journals (Sweden)

    Rafał Stryjek

    Full Text Available BACKGROUND: The purpose of the present study was to analyse species-specific forms of behaviour (digging and swimming and response to novelty in laboratory rats and their wild type counterparts at a very early stage of laboratorization. Three behavioural phenomena were taken into account: burrowing, spontaneous swimming, and neophobic behaviour. PRINCIPAL FINDINGS: Wild-type rats and three strains of laboratory rats were involved in experiments: Warsaw-Wild-Captive-Pisula-Stryjek (WWCPS, Wistar, Sprague-Dawley, and Brown Norway rats were compared in spontaneous swimming test, while WWCPS and Wistar rats were studied in burrowing and neophobia experiments. Wild rats were found to be faster at building tunnels than Wistar rats and at constructing more complex burrow systems. The experiment on neophobia showed that Wistar rats exhibited less neophobic responses and were more often trapped. WWCPS rats showed highly neophobic behaviour and were rarely trapped in this experiment. The experiment on swimming showed that WWCPS rats showed more complex water tank related activity than their laboratory counterparts. They swam and explored under surface environment. CONCLUSIONS: The three experiments showed profound behavioural differences in quasi-natural forms of behaviour between wild type rats (WWCPS and three laboratory strains frequently used in behavioural studies.

  9. The smell of virgins: mating status of females affects male swimming behaviour in Oithona davisae

    DEFF Research Database (Denmark)

    Heuschele, Jan; Kiørboe, Thomas

    2012-01-01

    Many copepod species rely on pheromone cues to find partners. Some parasitic and benthic copepod males are able to distinguish between females of different reproductive states. Here, we demonstrate that the swimming activity and velocity of males of a pelagic copepod, Oithona davisae, increases...

  10. Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish.

    Science.gov (United States)

    Faleiro, Filipa; Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui

    2015-01-01

    Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues.

  11. Psychological well-being and uniqueness seeking behaviour / Colleen Ashleigh La

    OpenAIRE

    Law, Colleen Ashleigh

    2005-01-01

    The purpose of this study was to investigate the relationship between psychological wellbeing and uniqueness seeking behaviour. Early research in psychology has primarily followed a pathogenic approach, focusing on the way in which stressful life events predispose an individual to negative health outcomes. More recently a number of theorists and researchers have adopted a salutogenic approach, which refers to the origins of physical and mental health and explores the factors th...

  12. Effects of day and night on swimming, grazing and social behaviours of rohu Labeo rohita (Hamilton) and common carp Cyprinus carpio (L.) in simulated ponds.

    NARCIS (Netherlands)

    Rahman, M.M.; Verdegem, M.C.J.; Wahab, M.A.; Hossain, M.Y.; Jo, Q.

    2008-01-01

    Diel rhythmicity of grazing, swimming, resting and social interactions of rohu (Labeo rohita) (weight 66.5¿68.3 g) and common carp (Cyprinus carpio) (79.9¿82.0 g) were observed in 1 m2 simulated ponds using video images. Fish behaviour was monitored during a full 24-h period, starting at 08:00 hours

  13. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    Science.gov (United States)

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-01

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  14. The effects of resveratrol on rat behaviour in the forced swim test

    Directory of Open Access Journals (Sweden)

    Samardžić Janko

    2013-01-01

    Full Text Available Introduction. The trans-isomer of resveratrol is the active ingredient of Poligonum cuspidatum, known for its medicinal properties and traditionally used in the treatment of neuropsychiatric disorders. It is also found abundantly in the skin of red grapes and red wine. Previous studies have suggested that trans-resveratrol demonstrates a variety of pharmacological activities including antioxidant, anti-inflammatory, as well as neuroprotective properties and procognitive effects. Objective. The goal of the present study was to examine the influence of trans-resveratrol on behavior in rats and its antidepressant properties. Methods. Male Wistar rats were treated intraperitoneally (i.p. with the increasing doses of trans-resveratrol (5, 10 and 20 mg/kg or vehicle (dimethyl sulfoxide - DMSO, 30 minutes before testing of the spontaneous locomotor activity or forced swimming. For the experiments, the behavior of the animals was recorded by a digital camera, and the data were analyzed by one-way ANOVA, followed by Tukey post-hoc test. Results. Testing of spontaneous locomotor activity, after the application of vehicle or increasing doses of trans-resveratrol, showed no statistically significant difference between groups (p>0.05. In the forced swim test, one-way ANOVA indicated statistically significant effects of trans-resveratrol (p0.05. Conclusion. The results from our study suggest that trans-resveratrol produces significant effects in the central nervous system. After single application, it has acute antidepressant effects, but without influence on locomotor activity. [Projekat Ministarstva nauke Republike Srbije, br. TR31020 i br. 175076

  15. Ontogenetic differentiation of swimming performance and behaviour in relation to habitat availability in the endangered North Sea houting (Coregonus oxyrinchus)

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Jensen, Lasse Fast; Schulz, Carsten

    2012-01-01

    The survival of the highly endangered, anadromous fish species North Sea houting (Coregonus oxyrinchus) depends on the correct timing of downstream dispersal during its early ontogenetic stages. To date, however, no studies have investigated the ontogenetic differentiation of swimming performance...

  16. Swimming and the heart.

    Science.gov (United States)

    Lazar, Jason M; Khanna, Neel; Chesler, Roseann; Salciccioli, Louis

    2013-09-20

    Exercise training is accepted to be beneficial in lowering morbidity and mortality in patients with cardiac disease. Swimming is a popular recreational activity, gaining recognition as an effective option in maintaining and improving cardiovascular fitness. Swimming is a unique form of exercise, differing from land-based exercises such as running in many aspects including medium, position, breathing pattern, and the muscle groups used. Water immersion places compressive forces on the body with resulting physiologic effects. We reviewed the physiologic effects and cardiovascular responses to swimming, the cardiac adaptations to swim training, swimming as a cardiac disease risk factor modifier, and the effects of swimming in those with cardiac disease conditions such as coronary artery disease, congestive heart failure and the long-QT syndrome.

  17. Direct and indirect measures of spider fear predict unique variance in children’s fear-related behaviour

    NARCIS (Netherlands)

    Klein, A.M.; Becker, Eni; Rinck, M.

    2011-01-01

    This study investigated whether direct and indirect measures predict unique variance components of fearful behaviour in children. One hundred eighty-nine children aged between 9 and 12 performed a pictorial version of the emotional Stroop task (EST), filled out the Spider Anxiety and Disgust Screeni

  18. SWIMMING BEHAVIOR OF DEVELOPMENTAL STAGES OF THE CALANOID COPEPOD TEMORA-LONGICORNIS AT DIFFERENT FOOD CONCENTRATIONS

    NARCIS (Netherlands)

    VANDUREN, LA; VIDELER, JJ

    1995-01-01

    The swimming behaviour of developmental stages of the marine calanoid copepod Temora longicornis was studied using 2-dimensional observations under a microscope and a 3-dimensional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food

  19. Strategies for swimming: explorations of the behaviour of a neuro-musculo-mechanical model of the lamprey.

    Science.gov (United States)

    Williams, Thelma L; McMillen, Tyler

    2015-02-06

    Experiments were performed on a neuro-musculo-mechanical model of a lamprey, to explore the strategies for controlling swimming speed. The muscle component of the model was based on previous experiments on isolated lamprey muscle. The patterns of muscle activation were those found in EMG studies on swimming lampreys. The fluid mechanics were modelled with G.I. Taylor's simplification. Tail beat frequencies of 2-6 sec(-1) were combined with muscle activation strengths of 0.1% to 20% of maximum tetanic isometric strength. The resulting forward swimming speed and changing body shape were recorded. From the changing body shape the speed of the backward-travelling wave of curvature was calculated, as well as the ratio between the speeds of the waves of activation and curvature. For any given activation strength there was a tail beat frequency that gave maximal forward speed. Furthermore, for all the combinations of activation strength and tail beat frequency that gave such maximum swimming speeds, the ratio of the speed of the wave of curvature to the wave of muscle activation was approximately 0.75. This is similar to the ratio found in swimming lampreys. © 2015. Published by The Company of Biologists Ltd.

  20. Strategies for swimming: explorations of the behaviour of a neuro-musculo-mechanical model of the lamprey

    Directory of Open Access Journals (Sweden)

    Thelma L. Williams

    2015-02-01

    Full Text Available Experiments were performed on a neuro-musculo-mechanical model of a lamprey, to explore the strategies for controlling swimming speed. The muscle component of the model was based on previous experiments on isolated lamprey muscle. The patterns of muscle activation were those found in EMG studies on swimming lampreys. The fluid mechanics were modelled with G.I. Taylor's simplification. Tail beat frequencies of 2–6 sec−1 were combined with muscle activation strengths of 0.1% to 20% of maximum tetanic isometric strength. The resulting forward swimming speed and changing body shape were recorded. From the changing body shape the speed of the backward-travelling wave of curvature was calculated, as well as the ratio between the speeds of the waves of activation and curvature. For any given activation strength there was a tail beat frequency that gave maximal forward speed. Furthermore, for all the combinations of activation strength and tail beat frequency that gave such maximum swimming speeds, the ratio of the speed of the wave of curvature to the wave of muscle activation was approximately 0.75. This is similar to the ratio found in swimming lampreys.

  1. Integration of five health behaviour models: common strengths and unique contributions to understanding condom use.

    Science.gov (United States)

    Reid, Allecia E; Aiken, Leona S

    2011-11-01

    The purpose of this research was to select from the health belief model (HBM), theories of reasoned action (TRA) and planned behaviour (TPB), information-motivation-behavioural skills model (IMB) and social cognitive theory (SCT) the strongest longitudinal predictors of women's condom use and to combine these constructs into a single integrated model of condom use. The integrated model was evaluated for prediction of condom use among young women who had steady versus casual partners. At Time 1, all constructs of the five models and condom use were assessed in an initial and a replication sample (n = 193, n = 161). Condom use reassessed 8 weeks later (Time 2) served as the main outcome. Information from IMB, perceived susceptibility, benefits, and barriers from HBM, self-efficacy and self-evaluative expectancies from SCT, and partner norm and attitudes from TPB served as indirect or direct predictors of condom use. All paths replicated across samples. Direct predictors of behaviour varied with relationship status: self-efficacy significantly predicted condom use for women with casual partners, while attitude and partner norm predicted for those with steady partners. Integrated psychosocial models, rich in constructs and relationships drawn from multiple theories of behaviour, may provide a more complete characterisation of health protective behaviour.

  2. Possible role of dopamine D1-like and D2-like receptors in behavioural activation and evaluation of response efficacy in the forced swimming test.

    Science.gov (United States)

    D'Aquila, Paolo S; Galistu, Adriana

    2012-03-01

    Based on the different effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 and raclopride on the measures of licking microstructure in rats ingesting a sucrose solution, we suggested that the behavioural activation of reward-associated responses depends on dopamine D1-like receptor stimulation, and its level is updated, or "reboosted", on the basis of a dopamine D2-like receptor-mediated evaluation process. The aim of this study was to test this hypothesis on the forced swimming test response. The effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 (0.01-0.04 mg/kg) and raclopride (0.025-0.25 mg/kg) administered before a 15-min exposure to forced swimming, and the response to a second session performed 24 h later, were examined. SCH 23390 dose-dependently reduced climbing scores in the first session and increased them in the second session, but the within-session decline of this measure was similar to that observed in the control group in both sessions. Raclopride-treated subjects showed a slightly reduced level of climbing scores at the beginning of the first session, but persisted in emitting this costly behavioural response up to the end of the session, while no effects were observed in the second session. These results, along with our results examining licking for sucrose, are consistent with the hypothesis that behavioural activation and response effort allocation are directly mediated by dopamine D1-like receptor stimulation, but the level of this activation is updated, or "reboosted", on the basis of a dopamine D2-like receptor-mediated mechanism of response efficacy evaluation.

  3. Addressing the road trauma burden in China: Exploring attitudes, behaviours, risk perceptions and cultural uniqueness.

    Science.gov (United States)

    Fleiter, Judy J; Watson, Barry

    2016-10-01

    As China continues to motorise rapidly, solutions are needed to reduce the burden of road trauma that is spread inequitably across the community. Little is currently known about how new drivers are trained to deal with on-road challenges, and little is also known about the perceptions, behaviours and attitudes of road users in China. This paper reports on a pilot study conducted in a driver retraining facility in one Chinese city where people who have had their licence suspended for accrual of 12 demerit points in a one year period must attend compulsory retraining in order to regain their licence. A sample of 239 suspended drivers responded to an anonymous questionnaire that sought information about preferred driving speeds and perceptions of safe driving speeds across two speed zones. Responses indicated that speeds higher than the posted limits were commonly reported, and that there was incongruence between preferred and safe speeds, such that a greater proportion of drivers reported preferred speeds that were substantially faster than what were reported as safe speeds. Participants with more driving experience reported significantly fewer crashes than newly licensed drivers (less than 2 years licensed) but no differences were found in offences when compared across groups with different levels of driving experience. Perceptions of risky behaviours were assessed by asking participants to describe what they considered to be the most dangerous on-road behaviours. Speeding and drink driving were the most commonly reported by far, followed by issues such as fatigue, ignoring traffic rules, not obeying traffic rules, phone use while driving, and non-use of seatbelts, which attracted an extremely low response which seems consistent with previously reported low belt wearing rates, unfavourable attitudes towards seatbelt use, and low levels of enforcement. Finally, observations about culturally specific considerations are made from previous research conducted by the

  4. The unique sound of the uni-vibe pedal: Part II. Transient behaviour

    Science.gov (United States)

    Hahlweg, Cornelius F.; Rothe, Hendrik

    2013-09-01

    The Uni-Vibe is an effect pedal mostly used by electric guitar players. It is based on an opto-electronically controlled all-pass chain. In last year's paper on the subject an idealized system model was derived, which lead to deeper discussion of the musical consequences of the effect in terms of harmonic analysis of single tones and chords in clean and distorted mode. As a direct continuation the present paper deals with the transient behaviour of the device. The transient response is essential for understanding the special sound character, the reaction on picking techniques and the interaction with certain instruments. Therefore the system model is expanded and the pulse response of the idealized time invariant system is derived.

  5. Feeding rates in the chaetognath Sagitta elegans : effects of prey size, prey swimming behaviour and small-scale turbulence

    DEFF Research Database (Denmark)

    Saito, H.; Kiørboe, Thomas

    2001-01-01

    distances. We develop a simple prey encounter rate model by describing the swimming prey as a 'force dipole' and assuming that a critical signal strength is required to elicit an attack. By fitting the model to the observations, a critical signal strength of 10(-2) cm s(-1) is estimated; this is very......The gut contents of Sagitta elegans were sampled twice daily (noon and midnight) during 9 days in October at an anchor station in the northern North Sea. Observations of the ambient prey field and of turbulent dissipation rates were collected simultaneously. The average number of prey per...... chaetognath was among the highest ever recorded, 0.57 +/- 0.10. Total gut content was independent of ambient prey concentration, suggesting that feeding rate was saturated. Clearance rates were estimated from gut contents and ambient prey concentrations and a literature-based estimate of digestion time...

  6. Walking blindfolded unveils unique contributions of behavioural approach and inhibition to lateral spatial bias.

    Science.gov (United States)

    Weick, Mario; Allen, John A; Vasiljevic, Milica; Yao, Bo

    2016-02-01

    Healthy individuals display a tendency to allocate attention unequally across space, and this bias has implications for how individuals interact with their environments. However, the origins of this phenomenon remain relatively poorly understood. The present research examined the joint and independent contributions of two fundamental motivational systems - behavioural approach and inhibition systems (BAS and BIS) - to lateral spatial bias in a locomotion task. Participants completed self-report measures of trait BAS and BIS, then repeatedly traversed a room, blindfolded, aiming for a straight line. We obtained locomotion data from motion tracking to capture variations in the walking trajectories. Overall, walking trajectories deviated to the left, and this tendency was more pronounced with increasing BIS scores. Meanwhile, BAS was associated with relative rightward tendencies when BIS was low, but not when BIS was high. These results demonstrate for the first time an association between BIS and lateral spatial bias independently of variations in BAS. The findings also contribute to clarify the circumstances in which BAS is associated with a rightward bias. We discuss the implications of these findings for the neurobiological underpinnings of BIS and for the literature on spatial bias. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    OpenAIRE

    Julia Mas-Muñoz; Hans Komen; Oliver Schneider; Visch, Sander W.; Schrama, Johan W.

    2011-01-01

    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg(0.8)/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed in...

  8. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  9. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional difference

  10. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional

  11. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional d

  12. Swimming Droplets

    Science.gov (United States)

    Maass, Corinna C.; Krüger, Carsten; Herminghaus, Stephan; Bahr, Christian

    2016-03-01

    Swimming droplets are artificial microswimmers based on liquid droplets that show self-propelled motion when immersed in a second liquid. These systems are of tremendous interest as experimental models for the study of collective dynamics far from thermal equilibrium. For biological systems, such as bacterial colonies, plankton, or fish swarms, swimming droplets can provide a vital link between simulations and real life. We review the experimental systems and discuss the mechanisms of self-propulsion. Most systems are based on surfactant-stabilized droplets, the surfactant layer of which is modified in a way that leads to a steady Marangoni stress resulting in an autonomous motion of the droplet. The modification of the surfactant layer is caused either by the advection of a chemical reactant or by a solubilization process. Some types of swimming droplets possess a very simple design and long active periods, rendering them promising model systems for future studies of collective behavior.

  13. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...

  14. Swim pressure of active matter

    Science.gov (United States)

    Takatori, Sho; Yan, Wen; Brady, John; Caltech Team

    2014-11-01

    Through their self-motion, all active matter systems generate a unique ``swim pressure'' that is entirely athermal in origin. This new source for the active stress exists at all scales in both living and nonliving active systems, and also applies to larger organisms where inertia is important (i.e., the Stokes number is not small). Here we explain the origin of the swim stress and develop a simple thermodynamic model to study the self-assembly and phase separation in active soft matter. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria and catalytic nanobots, schools of fish and birds, and molecular motors that activate the cellular cytoskeleton.

  15. SWIMMING BEHAVIOR OF DEVELOPMENTAL STAGES OF THE CALANOID COPEPOD TEMORA-LONGICORNIS AT DIFFERENT FOOD CONCENTRATIONS

    NARCIS (Netherlands)

    VANDUREN, LA; VIDELER, JJ

    1995-01-01

    The swimming behaviour of developmental stages of the marine calanoid copepod Temora longicornis was studied using 2-dimensional observations under a microscope and a 3-dimensional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food concentration

  16. The Swim Pressure of Active Matter

    Science.gov (United States)

    Brady, John; Takatori, Sho; Yan, Wen

    2015-03-01

    Through their self-motion, active matter systems generate a unique ``swim pressure'' that is entirely athermal in origin. This new source for the active stress exists at all scales in both living and nonliving active systems, and also applies to larger organisms where inertia is important. Here we explain the origin of the swim stress and develop a simple thermodynamic model to study the self-assembly and phase separation in active soft matter. Our new swim stress perspective may help analyze and exploit a wide class of active soft matter, from swimming bacteria and catalytic nanobots, schools of fish and birds, and molecular motors that activate the cellular cytoskeleton.

  17. Swimming between the flags: a preliminary exploration of the influences on Australians' intentions to swim between the flags at patrolled beaches.

    Science.gov (United States)

    White, Katherine M; Hyde, Melissa K

    2010-11-01

    Swimming at patrolled beaches reduces the likelihood of drownings and near-drownings. The present study tested the Theory of Planned Behaviour (TPB), with the addition of risk perceptions, in predicting people's intentions to swim between the flags at patrolled beaches. We examined also the predictors of people's willingness to swim [1] up to 10 m and [2] more than 10 m outside of the patrol flags. Participants (N=526) completed measures of attitudes, subjective norm, perceived behavioural control (PBC), intentions/willingness, and both objective and subjective risk perceptions. Two weeks later, a sub-sample of participants reported on their beach swimming behaviour for the previous fortnight. Attitude and subjective norm predicted intentions to swim between and willingness to swim outside of the flags. Age and PBC influenced willingness to swim beyond the flags. Objective risk predicted willingness to swim beyond the flags (both distances) while subjective risk predicted willingness to swim up to 10 m outside the flags. People's intentions to swim between the flags were correlated with their behaviour at follow-up. This study provides a preliminary investigation into an important safety behaviour and identifies factors to target when promoting safe swimming behaviours to prevent drowning deaths on Australian beaches.

  18. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  19. PROPERTIES OF SWIMMING WATER

    OpenAIRE

    Tayfun KIR; Zakir COBANOÐLU

    2004-01-01

    Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000): 103-104

  20. A Swimming Competition

    Institute of Scientific and Technical Information of China (English)

    邹成兵; 邓新华

    2004-01-01

    Last Sunday, there was a swimming competition in our school. It had been a short time since I learned how to swim. Mr. Zhang, our PE teacher, said I had a gift in swimming and that competing in the game would help build up my confidence and courage. With his encouragement,I signed up for the swimming race.

  1. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata).

    Science.gov (United States)

    Svendsen, Jon C; Banet, Amanda I; Christensen, Rune H B; Steffensen, John F; Aarestrup, Kim

    2013-09-15

    There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a live-bearing teleost, we examined the effects of reproductive traits, pectoral fin use and burst-assisted swimming on swimming metabolic rate, standard metabolic rate (O2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, O2std or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance.

  2. Optimal swimming strategies in mate searching pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2008-01-01

    Male copepods must swim to find females, but swimming increases the risk of meeting predators and is expensive in terms of energy expenditure. Here I address the trade-offs between gains and risks and the question of how much and how fast to swim using simple models that optimise the number...... of lifetime mate encounters. Radically different swimming strategies are predicted for different feeding behaviours, and these predictions are tested experimentally using representative species. In general, male swimming speeds and the difference in swimming speeds between the genders are predicted...... and observed to increase with increasing conflict between mate searching and feeding. It is high in ambush feeders, where searching (swimming) and feeding are mutually exclusive and low in species, where the matured males do not feed at all. Ambush feeding males alternate between stationary ambush feeding...

  3. Swim pressure: stress generation in active matter.

    Science.gov (United States)

    Takatori, S C; Yan, W; Brady, J F

    2014-07-11

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries-this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  4. Swim Pressure: Stress Generation in Active Matter

    Science.gov (United States)

    Takatori, S. C.; Yan, W.; Brady, J. F.

    2014-07-01

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries—this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  5. ARC Code TI: Swim

    Data.gov (United States)

    National Aeronautics and Space Administration — Swim is a software information service for the grid built on top of Pour, which is an information service framework developed at NASA. Swim provides true software...

  6. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  7. Laryngoscopy during swimming

    DEFF Research Database (Denmark)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken

    2017-01-01

    that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 2017....

  8. Swimming Pool Safety

    Science.gov (United States)

    ... Prevention Listen Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to keep my child safe around swimming pools? An adult should actively watch children at ...

  9. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  10. 2012 Swimming Season Factsheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  11. Unique and shared techniques in cognitive-behavioural and short-term psychodynamic psychotherapy: a content analysis of randomised trials on depression

    Science.gov (United States)

    Barth, Jürgen; Michlig, Nadja; Munder, Thomas

    2014-01-01

    Randomised controlled trials (RCTs) of psychotherapeutic interventions assume that specific techniques are used in treatments, which are responsible for changes in the client's symptoms. This assumption also holds true for meta-analyses, where evidence for specific interventions and techniques is compiled. However, it has also been argued that different treatments share important techniques and that an upcoming consensus about useful treatment strategies is leading to a greater integration of treatments. This makes assumptions about the effectiveness of specific interventions ingredients questionable if the shared (common) techniques are more often used in interventions than are the unique techniques. This study investigated the unique or shared techniques in RCTs of cognitive-behavioural therapy (CBT) and short-term psychodynamic psychotherapy (STPP). Psychotherapeutic techniques were coded from 42 masked treatment descriptions of RCTs in the field of depression (1979–2010). CBT techniques were often used in studies identified as either CBT or STPP. However, STPP techniques were only used in STPP-identified studies. Empirical clustering of treatment descriptions did not confirm the original distinction of CBT versus STPP, but instead showed substantial heterogeneity within both approaches. Extraction of psychotherapeutic techniques from the treatment descriptions is feasible and could be used as a content-based approach to classify treatments in systematic reviews and meta-analyses. PMID:25750827

  12. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L.

    NARCIS (Netherlands)

    Burgerhout, E.; Tudorache, C.; Brittijn, S.A.; Palstra, A.P.; Dirks, R.P.; Thillart, G.E.E.J.M.

    2013-01-01

    During migration, swimming in schools provides fish with a number of behavioural and ecological advantages, including increased food supply and reduced predation risk. Previous work shows that carangiform and tunniform swimming result in energetic advantages for individuals using a diamond swimming

  13. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L.

    NARCIS (Netherlands)

    Burgerhout, E.; Tudorache, C.; Brittijn, S.A.; Palstra, A.P.; Dirks, R.P.; Thillart, G.E.E.J.M.

    2013-01-01

    During migration, swimming in schools provides fish with a number of behavioural and ecological advantages, including increased food supply and reduced predation risk. Previous work shows that carangiform and tunniform swimming result in energetic advantages for individuals using a diamond swimming

  14. Modeling of breaststroke swimming

    Science.gov (United States)

    Karmanov, S. P.; Chernous'ko, F. L.

    2014-02-01

    A mechanical system that models swimming using a pair of two-chain extremities is considered. The motion of the system under study is similar to swimming of a frog and some other animals, in which lower extremities play the main role. This type of motion is characteristic of competitive breaststroke swimming.

  15. Undulatory swimming in shear-thinning fluids

    CERN Document Server

    Gagnon, David A; Arratia, Paulo E

    2014-01-01

    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation, and an increase in fluid velocity near the nematode's tail, compared to Newtonian fluids of similar effective viscosity. These findings are in good agreement with recent theoretical and numerical results.

  16. Surveillance and Conformity in Competitive Youth Swimming

    Science.gov (United States)

    Lang, Melanie

    2010-01-01

    Underpinned by a Foucauldian analysis of sporting practices, this paper identifies the disciplinary mechanism of surveillance at work in competitive youth swimming. It highlights the ways in which swimmers and their coaches are subject to and apply this mechanism to produce embodied conformity to normative behaviour and obedient, docile bodies.…

  17. Applied physiology of swimming.

    Science.gov (United States)

    Lavoie, J M; Montpetit, R R

    1986-01-01

    Scientific research in swimming over the past 10 to 15 years has been oriented toward multiple aspects that relate to applied and basic physiology, metabolism, biochemistry, and endocrinology. This review considers recent findings on: 1) specific physical characteristics of swimmers; 2) the energetics of swimming; 3) the evaluation of aerobic fitness in swimming; and 4) some metabolic and hormonal aspects related to swimmers. Firstly, the age of finalists in Olympic swimming is not much different from that of the participants from other sports. They are taller and heavier than a reference population of the same age. The height bias in swimming may be the reason for lack of success from some Asian and African countries. Experimental data point toward greater leanness, particularly in female swimmers, than was seen 10 years ago. Overall, female swimmers present a range of 14 to 19% body fat whereas males are much lower (5 to 10%). Secondly, the relationship between O2 uptake and crawl swimming velocity (at training and competitive speeds) is thought to be linear. The energy cost varies between strokes with a dichotomy between the 2 symmetrical and the 2 asymmetrical strokes. Energy expenditure in swimming is represented by the sum of the cost of translational motion (drag) and maintenance of horizontal motion (gravity). The cost of the latter decreases as speed increases. Examination of the question of size-associated effects on the cost of swimming using Huxley's allometric equation (Y = axb) shows an almost direct relationship with passive drag. Expressing energy cost in litres of O2/m/kg is proposed as a better index of technical swimming ability than the traditional expression of VO2/distance in L/km. Thirdly, maximal direct conventional techniques used to evaluate maximal oxygen consumption (VO2 max) in swimming include free swimming, tethered swimming, and flume swimming. Despite the individual peculiarities of each method, with similar experimental conditions

  18. Swimming Orientation for Preschoolers.

    Science.gov (United States)

    Smith, Mary Lou

    1990-01-01

    Techniques which are designed to dispel fears and promote confident learning are offered to preschool swimming instructors. Safety, class organization, water games, and class activities are discussed. (IAH)

  19. Nutritional recommendations for synchronized swimming.

    Science.gov (United States)

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.

  20. Teaching Swimming Effectively.

    Science.gov (United States)

    Larrabee, Jean G.

    A step-by-step sequential plan is offered for developing a successful competitive swimming season, including how to teach swimming strokes and organize practices. Various strokes are analyzed, and coaching check points are offered along with practice drills, helpful hints on proper body positioning, arm strokes, kicking patterns, breathing…

  1. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism

    Directory of Open Access Journals (Sweden)

    E. R. de Kloet

    2016-01-01

    Full Text Available In the forced swim test (FST rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving behavioural style. In the past decade however the switch from active to passive “coping” was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000 stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR and glucocorticoid receptors (GR in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent’s behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation.

  2. Swimming and birth weight.

    Science.gov (United States)

    Nieuwenhuijsen, Mark J; Northstone, Kate; Golding, Jean

    2002-11-01

    Swimmers can be exposed to high levels of trihalomethanes, byproducts of chlorination disinfection. There are no published studies on the relation between swimming and birth weight. We explored this relation in a large birth cohort, the Avon (England) Longitudinal Study of Parents and Children (ALSPAC), in 1991-1992. Information on the amount of swimming per week during the first 18-20 weeks of pregnancy was available for 11,462 pregnant women. Fifty-nine percent never swam, 31% swam up to 1 hour per week, and 10% swam for longer. We used linear regression to explore the relation between birth weight and the amount of swimming, with adjustment for gestational age, maternal age, parity, maternal education level, ethnicity, housing tenure, drug use, smoking and alcohol consumption. We found little effect of the amount of swimming on birth weight. More highly educated women were more likely to swim compared with less educated women, whereas smokers were less likely to swim compared with nonsmokers. There appears to be no relation between the duration of swimming and birth weight.

  3. Sand swimming lizard: sandfish

    CERN Document Server

    Maladen, Ryan D; Kamor, Adam; Goldman, Daniel I

    2009-01-01

    We use high-speed x-ray imaging to reveal how a small (~10cm) desert dwelling lizard, the sandfish (Scincus scincus), swims within a granular medium [1]. On the surface, the lizard uses a standard diagonal gait, but once below the surface, the organism no longer uses limbs for propulsion. Instead it propagates a large amplitude single period sinusoidal traveling wave down its body and tail to propel itself at speeds up to ~1.5 body-length/sec. Motivated by these experiments we study a numerical model of the sandfish as it swims within a validated soft sphere Molecular Dynamics granular media simulation. We use this model as a tool to understand dynamics like flow fields and forces generated as the animal swims within the granular media. [1] Maladen, R.D. and Ding, Y. and Li, C. and Goldman, D.I., Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard, Science, 325, 314, 2009

  4. Nutrition for swimming.

    Science.gov (United States)

    Shaw, Gregory; Boyd, Kevin T; Burke, Louise M; Koivisto, Anu

    2014-08-01

    Swimming is a sport that requires considerable training commitment to reach individual performance goals. Nutrition requirements are specific to the macrocycle, microcycle, and individual session. Swimmers should ensure suitable energy availability to support training while maintaining long term health. Carbohydrate intake, both over the day and in relation to a workout, should be manipulated (3-10 g/kg of body mass/day) according to the fuel demands of training and the varying importance of undertaking these sessions with high carbohydrate availability. Swimmers should aim to consume 0.3 g of high-biological-value protein per kilogram of body mass immediately after key sessions and at regular intervals throughout the day to promote tissue adaptation. A mixed diet consisting of a variety of nutrient-dense food choices should be sufficient to meet the micronutrient requirements of most swimmers. Specific dietary supplements may prove beneficial to swimmers in unique situations, but should be tried only with the support of trained professionals. All swimmers, particularly adolescent and youth swimmers, are encouraged to focus on a well-planned diet to maximize training performance, which ensures sufficient energy availability especially during periods of growth and development. Swimmers are encouraged to avoid rapid weight fluctuations; rather, optimal body composition should be achieved over longer periods by modest dietary modifications that improve their food choices. During periods of reduced energy expenditure (taper, injury, off season) swimmers are encouraged to match energy intake to requirement. Swimmers undertaking demanding competition programs should ensure suitable recovery practices are used to maintain adequate glycogen stores over the entirety of the competition period.

  5. [Swimming-induced asthma].

    Science.gov (United States)

    Fjellbirkeland, L; Gulsvik, A; Walløe, A

    1995-06-30

    Swimming is said to have low asthmogeneity especially when compared with other physical activities. Four young athletes who participated in heavy swimming exercise are reported as having symptoms of exercise-induced asthma (EIA). Three of them started to develop the symptoms after several years of training and had no former history of asthma. In the fourth, the asthma was diagnosed in childhood but the EIA-symptoms here exacerbated by swimming. All four experienced more symptoms when the air in the swimming pool was warm, or when there was a strong smell of chlorine. Two of the athletes reported having no symptoms when they swam in outdoor pools and had only minor symptoms, or none at all, when they did other formes of physical exercise, including running. In all four their swimming performance was hampered by their respiratory symptoms. Two of the swimmers improved when they inhaled steroids and adrenerg-beta 2 agonists, and continued their swimming carrier. The cases suggest that an irritant may provoke asthma symptoms in susceptible swimmers. Volatile compounds from chlorination of the pools are suspected as possible irritant agents.

  6. Copepod flow modes and modulation: a modelling study of the water currents produced by an unsteadily swimming copepod

    OpenAIRE

    2007-01-01

    Video observation has shown that feeding-current-producing calanoid copepods modulate their feeding currents by displaying a sequence of different swimming behaviours during a time period of up to tens of seconds. In order to understand the feeding-current modulation process, we numerically modelled the steady feeding currents for different modes of observed copepod motion behaviours (i.e. free sinking, partial sinking, hovering, vertical swimming upward and horizontal swimming backward or fo...

  7. A unique case of mating behaviour in a Malagasy tree frog, Gephyromantis liber (Peracca, 1893), with observations on the larval development (Amphibia, Ranidae)

    NARCIS (Netherlands)

    Blommers-Schlösser, Rose M.A.

    1975-01-01

    The mating act in Gephyromantis liber and in other species of this genus differs from all other mating behaviour patterns known in Anura. The male settles with the ventral side of his thighs on the shoulders of the female, and oviposition starts without delay. The assumption is made that the femoral

  8. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.

  9. SWiM -- A Semantic Wiki for Mathematical Knowledge Management

    CERN Document Server

    Lange, Christoph

    2010-01-01

    SWiM is a semantic wiki for collaboratively building, editing and browsing mathematical knowledge represented in the domain-specific structural semantic markup language OMDoc. It motivates users to contribute to collections of mathematical knowledge by instantly sharing the benefits of knowledge-powered services with them. SWiM is currently being used for authoring content dictionaries, i. e. collections of uniquely identified mathematical symbols, and prepared for managing a large-scale proof formalisation effort.

  10. Swimming of the Honey Bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  11. Geneva 24 hours swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  12. Geneva 24 Hours Swim

    CERN Multimedia

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  13. Healthy Swimming/Recreational Water

    Science.gov (United States)

    ... Now Available! Q&A with Missy Franklin: Olympic Gold Medalist and Healthy Swimming Champion New Report on ... enter your email address: Enter Email Address Submit Button What's this? Healthy Swimming Swimmers Health Benefits of ...

  14. 2008 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  15. 2007 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  16. 2006 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  17. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  18. 2009 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  19. 2010 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  20. Bioinspired swimming simulations

    Science.gov (United States)

    Bergmann, Michel; Iollo, Angelo

    2016-10-01

    We present a method to simulate the flow past bioinspired swimmers starting from pictures of an actual fish. The overall approach requires i) a skeleton graph generation to get a level-set function from pictures; ii) optimal transportation to obtain the velocity on the body surface; iii) flow simulations realized with a Cartesian method based on penalization. This technique can be used to automate modeling swimming motion from data collected by biologists. We illustrate this paradigm by simulating the swimming of a mackerel fish.

  1. Simulations of optimized anguilliform swimming.

    Science.gov (United States)

    Kern, Stefan; Koumoutsakos, Petros

    2006-12-01

    The hydrodynamics of anguilliform swimming motions was investigated using three-dimensional simulations of the fluid flow past a self-propelled body. The motion of the body is not specified a priori, but is instead obtained through an evolutionary algorithm used to optimize the swimming efficiency and the burst swimming speed. The results of the present simulations support the hypothesis that anguilliform swimmers modify their kinematics according to different objectives and provide a quantitative analysis of the swimming motion and the forces experienced by the body. The kinematics of burst swimming is characterized by the large amplitude of the tail undulations while the anterior part of the body remains straight. In contrast, during efficient swimming behavior significant lateral undulation occurs along the entire length of the body. In turn, during burst swimming, the majority of the thrust is generated at the tail, whereas in the efficient swimming mode, in addition to the tail, the middle of the body contributes significantly to the thrust. The burst swimming velocity is 42% higher and the propulsive efficiency is 15% lower than the respective values during efficient swimming. The wake, for both swimming modes, consists largely of a double row of vortex rings with an axis aligned with the swimming direction. The vortex rings are responsible for producing lateral jets of fluid, which has been documented in prior experimental studies. We note that the primary wake vortices are qualitatively similar in both swimming modes except that the wake vortex rings are stronger and relatively more elongated in the fast swimming mode. The present results provide quantitative information of three-dimensional fluid-body interactions that may complement related experimental studies. In addition they enable a detailed quantitative analysis, which may be difficult to obtain experimentally, of the different swimming modes linking the kinematics of the motion with the forces

  2. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers.

    Science.gov (United States)

    Veiga, Santiago; Roig, Andreu

    2017-03-01

    In the present research, we examined the effect of the starting and turning performances on the subsequent swimming parameters by (1) comparing the starting and turning velocities with the swimming parameters on the emersion and mid-pool segments and (2) by relating the individual behaviour of swimmers during the start and turns with subsequent behaviour on each swimming lap. One hundred and twelve 100 m performances on the FINA 2013 World Swimming Championships were analysed by an image-processing system (InThePool 2.0®). At the point of the start emersion, the swimming parameters of the 100-m elite swimmers were substantially greater than the mid-pool parameters, except on the breaststroke races. On the other hand, no diminution in the swimming parameters was observed between the turn emersion and the mid-pool swimming, except on the butterfly and backstroke male races. Changes on the surface swimming kinematics were not generally related to the starting or turning parameters, although male swimmers who develop faster starts seem to achieve faster velocities at emersion. Race analysts should be aware of a transfer of momentum when swimmers emerge from underwater with implications on the subsequent swimming kinematics, especially for male swimmers who employ underwater undulatory techniques.

  3. Variation of Linear and Nonlinear Parameters in the Swim Strokes According to the Level of Expertise.

    Science.gov (United States)

    Barbosa, Tiago M; Goh, Wan Xiu; Morais, Jorge E; Costa, Mário J

    2016-08-19

    The aim was to examine the variation of linear and nonlinear proprieties of the behaviour in participants with different levels of swimming expertise among the four swim strokes. Seventy-five swimmers were split into three groups (highly qualified experts, experts and non-experts) and performed a maximal 25m trial for each of the four competitive swim strokes. A speed-meter cable was attached to the swimmer's hip to measure hip speed; from which speed fluctuation (dv), approximate entropy (ApEn) and fractal dimension (D) variables were derived. Although simple main effects of expertise and swim stroke were obtained for dv and D, no significant interaction of expertise and stroke were found except in ApEn. The ApEn and D were prone to decrease with increasing expertise. As a conclusion, swimming does exhibit nonlinear properties but its magnitude differs according to the swim stroke and level of expertise of the performer.

  4. Biochemical and hematological changes following the 120-km open-water marathon swim.

    Science.gov (United States)

    Drygas, Wojciech; Rębowska, Ewa; Stępień, Ewa; Golański, Jacek; Kwaśniewska, Magdalena

    2014-09-01

    Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test). The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively). Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required. Key pointsData on biochemical changes due to long-distance swimming are scarce.This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim.An experienced athlete is able to complete an ultra-marathon swim without serious health consequences.Regarding the growing popularity of marathon swimming further studies addressing the potential risks of such exhaustive exercise are required.

  5. Stirring by swimming bodies

    Energy Technology Data Exchange (ETDEWEB)

    Thiffeault, Jean-Luc, E-mail: jeanluc@math.wisc.ed [Department of Mathematics, University of Wisconsin - Madison, 480 Lincoln Dr., Madison, WI 53706 (United States); Institute for Mathematics and Applications, University of Minnesota - Twin Cities, 207 Church Street S.E., Minneapolis, MN 55455 (United States); Childress, Stephen [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)

    2010-07-26

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  6. Mixing by Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P; Pesci, Adriana I; Goldstein, Raymond E

    2009-01-01

    In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with a "breaststroke" pulling motion of their flagella at speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes. Fluorescent tracer particles (2 micron diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to suspension feeding and biogenic mixing. Without swimmers present, tracer particles diffuse slowly due solely to Brownian motion. As the swimmer concentration is increased, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz) of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimm...

  7. Woman Swims Atlantic

    Institute of Scientific and Technical Information of China (English)

    贾庆文

    2009-01-01

    Jennifer Figge pressed her toes into the Caribbean sand, excited and exhausted as she touched land this week for the first time in almost a month. Reaching a beach in Trinidad, she became the first woman on record to s,Mm across the Atlantic Ocean-a dream she'd had since the early 1960s, when a stormy trans-Atlantic flight got her thinking she could wear a life vest and swim the rest of the way if needed.

  8. Going for a Swim

    Science.gov (United States)

    Covington, Savannah

    2016-01-01

    Is anything more refreshing than going for a nice, long swim? The math scenarios presented in this article will take the reader back to hot summer days and remind the reader what a cool dip in the water feels like. Solving these problems is enjoyable and encourages the solver to think of the many ways that math is all around--even in the middle of…

  9. Vortices revealed: Swimming faster

    Science.gov (United States)

    van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman

    2016-11-01

    Understanding and optimizing the propulsion in human swimming requires insight into the hydrodynamics of the flow around the swimmer. Experiments and simulations addressing the hydrodynamics of swimming have been conducted in studies before, including the visualization of the flow using particle image velocimetry (PIV). The main objective in this study is to develop a system to visualize the flow around a swimmer in practice inspired by this technique. The setup is placed in a regular swimming pool. The use of tracer particles and lasers to illuminate the particles is not allowed. Therefore, we choose to work with air bubbles with a diameter of 4 mm, illuminated by ambient light. Homogeneous bubble curtains are produced by tubes implemented in the bottom of the pool. The bubble motion is captured by six cameras placed in underwater casings. A first test with the setup has been conducted by pulling a cylinder through the bubbles and performing a PIV analysis. The vorticity plots of the resulting data show the expected vortex street behind the cylinder. The shedding frequency of the vortices resembles the expected frequency. Thus, it is possible to identify and follow the coherent structures. We will discuss these results and the first flow measurements around swimmers.

  10. The relationship between short- and long-distance swimming performance and repeated sprint ability.

    Science.gov (United States)

    Meckel, Yoav; Bishop, David J; Rabinovich, Moran; Kaufman, Leonid; Nemet, Dan; Eliakim, Alon

    2012-12-01

    The purpose of this study was to determine indices of repeated sprint ability (RSA) during a repeated sprint swimming test (RST), to compare these with previous similar running and cycling RST, and to correlate these indices with the best short (100 m, as an index of anaerobic performance) and long (2,000 m, as an index of aerobic performance) distance swimming times in 20 elite, national team level, male swimmers. Indices of RSA included the ideal sprint time (IS), the total sprint time (TS), and the performance decrement (PD) recorded during an 8 × 15-m swimming RST. The PD during the present swimming RST (4.7 ± 2.3%) was similar to that in previous running or cycling RSTs. However, the physiological responses after the swimming RST (heart rate 168 ± 7 b·min(-1) and blood lactate concentration 5.5 ± 2.0 mmol·L(-1)) were lower than typical responses after running or cycling RSTs. There was no significant relationship between any of the RST performance indices and either the 100-m or 2,000-m swimming results. Multiple regression analysis indicated that the 3 RST indices (IS, TS, and PD), contributed 36% of the variance of the 2,000-m, but not the 100-m, swimming time. A strong correlation was found between the 100- and 2,000-m swim times (r = 0.74, p 100- and 2,000-m swim times is unique for swimming.

  11. The Effect of an Adapted Swimming Program on the Performance of an Individual with Kyphosis-Scoliosis

    Science.gov (United States)

    Dimitrios, Voutsas; Dimitrios, Kokaridas

    2004-01-01

    The purpose of this action research study was to examine the effect of an adapted swimming program in terms of improving the performance and behaviour of an individual with kyphosis-scoliosis, with the use of an individualised education approach. The sample consisted of an adult woman with kyphosis-scoliosis. The pre-swimming phase included a…

  12. Creatine supplementation and swimming performance.

    Science.gov (United States)

    Leenders, N M; Lamb, D R; Nelson, T E

    1999-09-01

    The purpose of this study was to determine if oral creatine (CR) ingestion, compared to a placebo (PL), would enable swimmers to maintain a higher swimming velocity across repeated interval sets over 2 weeks of supplementation. Fourteen female and 18 male university swimmers consumed a PL during a 2-week baseline period. Using a randomized, double-blind design, during the next 2 weeks subjects consumed either CR or PL. Swimming velocity was assessed twice weekly during 6 X 50-m swims and once weekly during 10 X 25-yd swims. There was no effect of CR on the 10 X 25-yd interval sets for men and women and no effect on the 6 X 50-m interval sets for women. In contrast, for men, CR significantly improved mean overall swimming velocity in the 6 X 50-m interval after 2 weeks of supplementation, whereas PL had no effect. Although ineffective in women, CR supplementation apparently enables men to maintain a faster mean overall swimming velocity during repeated swims each lasting about 30 s; however, CR was not effective for men in repeated swims each lasting about 10 - 15 s.

  13. Swimming Microrobot Optical Nanoscopy.

    Science.gov (United States)

    Li, Jinxing; Liu, Wenjuan; Li, Tianlong; Rozen, Isaac; Zhao, Jason; Bahari, Babak; Kante, Boubacar; Wang, Joseph

    2016-10-12

    Optical imaging plays a fundamental role in science and technology but is limited by the ability of lenses to resolve small features below the fundamental diffraction limit. A variety of nanophotonic devices, such as metamaterial superlenses and hyperlenses, as well as microsphere lenses, have been proposed recently for subdiffraction imaging. The implementation of these micro/nanostructured lenses as practical and efficient imaging approaches requires locomotive capabilities to probe specific sites and scan large areas. However, directed motion of nanoscale objects in liquids must overcome low Reynolds number viscous flow and Brownian fluctuations, which impede stable and controllable scanning. Here we introduce a new imaging method, named swimming microrobot optical nanoscopy, based on untethered chemically powered microrobots as autonomous probes for subdiffraction optical scanning and imaging. The microrobots are made of high-refractive-index microsphere lenses and powered by local catalytic reactions to swim and scan over the sample surface. Autonomous motion and magnetic guidance of microrobots enable large-area, parallel and nondestructive scanning with subdiffraction resolution, as illustrated using soft biological samples such as neuron axons, protein microtubulin, and DNA nanotubes. Incorporating such imaging capacities in emerging nanorobotics technology represents a major step toward ubiquitous nanoscopy and smart nanorobots for spectroscopy and imaging.

  14. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  15. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  16. Ectoparasites increase swimming costs in a coral reef fish.

    Science.gov (United States)

    Binning, Sandra A; Roche, Dominique G; Layton, Cayne

    2013-02-23

    Ectoparasites can reduce individual fitness by negatively affecting behavioural, morphological and physiological traits. In fishes, there are potential costs if ectoparasites decrease streamlining, thereby directly compromising swimming performance. Few studies have examined the effects of ectoparasites on fish swimming performance and none distinguish between energetic costs imposed by changes in streamlining and effects on host physiology. The bridled monocle bream (Scolopsis bilineatus) is parasitized by an isopod (Anilocra nemipteri), which attaches above the eye. We show that parasitized fish have higher standard metabolic rates (SMRs), poorer aerobic capacities and lower maximum swimming speeds than non-parasitized fish. Adding a model parasite did not affect SMR, but reduced maximum swimming speed and elevated oxygen consumption rates at high speeds to levels observed in naturally parasitized fish. This demonstrates that ectoparasites create drag effects that are important at high speeds. The higher SMR of naturally parasitized fish does, however, reveal an effect of parasitism on host physiology. This effect was easily reversed: fish whose parasite was removed 24 h earlier did not differ from unparasitized fish in any performance metrics. In sum, the main cost of this ectoparasite is probably its direct effect on streamlining, reducing swimming performance at high speeds.

  17. The Effects of Swimming Goggles on Swimming Performances

    OpenAIRE

    "荒井, 康夫; "アライ, ヤスオ"; YASUO", "ARAI

    1982-01-01

    "Children in swimming tend to have some fear on water due to the factors such as obstruction of breathing, blocking of vision, and changes in body equilibrium affected by buoyance. It is said that about a 5-month period is needed in order to overcome the fear in kindergarten kids during swimming instruction. The purpose of the present study was to investigate the effect of swimming goggles as a teaching aid in order to avoid the fear due to blocking vision. Ten children, 4 boys and 6 girls, i...

  18. Biochemical and Hematological Changes Following the 120-Km Open-Water Marathon Swim

    Directory of Open Access Journals (Sweden)

    Wojciech Drygas, Ewa Rębowska, Ewa Stępień, Jacek Golański, Magdalena Kwaśniewska

    2014-09-01

    Full Text Available Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test. The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively. Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required.

  19. Stirring by swimming bodies

    CERN Document Server

    Thiffeault, Jean-Luc

    2009-01-01

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. Using the distribution of finite-time Lyapunov exponents induced by the swimmers, we derive a form for the moments of the concentration of a passive scalar, which exhibits spatial intermittency.

  20. Swimming Performance and Metabolism of Golden Shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  1. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  2. Passive drift or active swimming in marine organisms?

    Science.gov (United States)

    Putman, Nathan F; Lumpkin, Rick; Sacco, Alexander E; Mansfield, Katherine L

    2016-12-14

    Predictions of organismal movements in a fluid require knowing the fluid's velocity and potential contributions of the organism's behaviour (e.g. swimming or flying). While theoretical aspects of this work are reasonably well-developed, field-based validation is challenging. A much-needed study recently published by Briscoe and colleagues in Proceedings of the Royal Society B compared movements and distribution of satellite-tracked juvenile sea turtles to virtual particles released in a data-assimilating hindcast ocean circulation model. Substantial differences observed between turtles and particles were considered evidence for an important role of active swimming by turtles. However, the experimental design implicitly assumed that transport predictions were insensitive to (i) start location, (ii) tracking duration, (iii) depth, and (iv) physical processes not depicted in the model. Here, we show that the magnitude of variation in physical parameters between turtles and virtual particles can profoundly alter transport predictions, potentially sufficient to explain the reported differences without evoking swimming behaviour. We present a more robust method to derive the environmental contributions to individual movements, but caution that resolving the ocean velocities experienced by individual organisms remains a problem for assessing the role of behaviour in organismal movements and population distributions. © 2016 The Authors.

  3. System Wide Information Management (SWIM)

    Science.gov (United States)

    Hritz, Mike; McGowan, Shirley; Ramos, Cal

    2004-01-01

    This viewgraph presentation lists questions regarding the implementation of System Wide Information Management (SWIM). Some of the questions concern policy issues and strategies, technology issues and strategies, or transition issues and strategies.

  4. Fluid dynamics: Swimming across scales

    Science.gov (United States)

    Baumgart, Johannes; Friedrich, Benjamin M.

    2014-10-01

    The myriad creatures that inhabit the waters of our planet all swim using different mechanisms. Now, a simple relation links key physical observables of underwater locomotion, on scales ranging from millimetres to tens of metres.

  5. Amoeboid swimming in a channel

    CERN Document Server

    Wu, Hao; Hu, W -F; Thiébaud, M; Rafaï, S; Peyla, P; Lai, M -C; Misbah, C

    2016-01-01

    Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellum or cilium activity to swim in a fluid. Many other organisms use rather ample shape deformation, described as amoeboid, to propel themselves, either crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using ample membrane deformation (like blebbing). There is now an increasing evidence that a large variety of cells (including those of the immune system) can migrate without the assistance of focal adhesion, and can perform swimming as efficiently as crawling. This paper deals with a detailed analysis of amoeboid swimming in a confined fluid, by modeling the swimmer as an inextensible membrane deploying local active forces. The swimmer exhibits a rich behavior: it can settle into a straight trajectory in the channel, or can navigate from one wall to the other, depending on confinement. Furthermore, the nature of the swimmer is found to be affected by the c...

  6. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  7. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  8. Influence of pre-school swimming on level of swimming abilities of early schol age children

    OpenAIRE

    Velová, Lenka

    2011-01-01

    My thesis paper is focused on children swimming from their birth to early school age. The pivotal part of the paper is the comparison of swimming abilities between primary school children who have passed pre-school swimming training and those who have had no training at all. Theoretical framework of the paper is then focused on general swimming theory, characteristics of children's evolutionary stages within the context of swimming and definition of basic swimming skills.

  9. Partition of aerobic and anaerobic swimming costs and their correlation to tail-beat frequency and burst activity in Sparus aurata

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    until fatigue at 10°C. The anaerobic swimming cost was measured as the excess postexercise oxygen consumption (EPOC) following each swimming speed. To determine tail-beat frequency, amplitude and burst and coast behaviour, the peduncle position was determined at 25 s·' by video tracking. The data showed......, and resulted in a total anaerobic capacity of 170 mg O2 kg·'. Normalized tail-beat amplitude and frequency both predicted the swimming speed but only tail-beat frequency was able to predict the aerobic swimming cost. The change to burst and coast swimming was correlated to the first measurements of EPOC......Soc for experimental Biol Annual Meeting - Salzburg 2012 Bjørn Tirsgaard (University of Copenhagen, Denmark) and John Fleng Steffensen (University of Copenhagen, Denmark) Aerobic and anaerobic oxygen consumption was measured for 13 Sparus aurata swimming at incremental increasing swimming speeds...

  10. Is paramecium swimming autonomic?

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  11. Computational Modeling and Analysis of the Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Mittal, Rajat

    2009-11-01

    In order to swim efficiently and/or fast, a swimmer needs to master the subtle cause-and-effect relationship that exists between his/her movements and the surrounding fluid. This is what makes swimming one of the most technical of all sports. For the most part, science has played little if any role in helping swimmers and coaches improve swimming techniques or even to better understand the fluid dynamics of human swimming. Experiments of free swimming humans are extremely difficult to conduct and computational modeling approaches have, in the past, been unable to address this very complex problem. However, the development of a new class of numerical methods, coupled with unique animation and analysis tools is making it possible to analyze swimming strokes in all their complexity. The talk will focus on describing a relatively new numerical method that has been developed to solve flows with highly complex, moving/deforming boundaries. Numerical simulations are used to perform a detailed analysis of the dolphin kick. This stroke has emerged as an important component of competitive swimming in recent years and our analysis has allowed us to extract some useful insights into the fluid dynamics of this stroke. In addition, we also address the continuing debate about the role of lift versus drag in thrust production for human swimming.

  12. Nutrition considerations for open-water swimming.

    Science.gov (United States)

    Shaw, Gregory; Koivisto, Anu; Gerrard, David; Burke, Louise M

    2014-08-01

    Open-water swimming (OWS) is a rapidly developing discipline. Events of 5-25 km are featured at FINA World Championships, and the international circuit includes races of 5-88 km. The Olympic OWS event, introduced in 2008, is contested over 10 km. Differing venues present changing environmental conditions, including water and ambient temperatures, humidity, solar radiation, and unpredictable tides. Furthermore, the duration of most OWS events (1-6 hr) creates unique physiological challenges to thermoregulation, hydration status, and muscle fuel stores. Current nutrition recommendations for open-water training and competition are either an extension of recommendations from pool swimming or are extrapolated from other athletic populations with similar physiological requirements. Competition nutrition should focus on optimizing prerace hydration and glycogen stores. Although swimmers should rely on self-supplied fuel and fluid sources for shorter events, for races of 10 km or greater, fluid and fuel replacement can occur from feeding pontoons when tactically appropriate. Over the longer races, feeding pontoons should be used to achieve desirable targets of up to 90 g/ hr of carbohydrates from multitransportable sources. Exposure to variable water and ambient temperatures will play a significant role in determining race nutrition strategies. For example, in extreme environments, thermoregulation may be assisted by manipulating the temperature of the ingested fluids. Swimmers are encouraged to work with nutrition experts to develop effective and efficient strategies that enhance performance through appropriate in-competition nutrition.

  13. Swimming and other activities: applied aspects of fish swimming performance

    Science.gov (United States)

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  14. Extreme swimming: The oceanic migrations of anguillids

    DEFF Research Database (Denmark)

    Righton, David; Aarestrup, Kim; Jellyman, Don;

    2013-01-01

    Anguillids evolved between 20 and 40 million years ago and, as catadromous fish, migrate between marine and freshwater environments. The migration occurs only twice in the lifetime of most eels: when they migrate as larvae to coastal and river habitats, and again as adult, when they return...... to their natal habitat to spawn. In temperate species, the migrations are extreme, requiring larvae and adults to swim thousands of km before reaching their destination, but the migrations of tropical species (hundreds of km) are still remarkable in comparison with many other fish species. To achieve...... these migratory feats, eel larvae and adults are uniquely adapted to oceanic environments. We describe and discuss these adaptations, and identify the challenges and opportunities ahead for aquaculture and eel conservation...

  15. Swimming as a limit cycle

    CERN Document Server

    Jacobs, Henry O

    2012-01-01

    Steady swimming can be characterized as both periodic and stable. These characteristics are the very definition of limit cycles, and so we ask "Can we view swimming as a limit cycle?" In this paper we will find that the answer is "yes". We will define a class of dissipative systems which correspond to the passive dynamics of a body immersed in a Navier-Stokes fluid (i.e. the dynamics of a dead fish). Upon performing reduction by symmetry we will find a hyperbolically stable fixed point which corresponds to the stability of a dead fish in stagnant water. Given a periodic force on the shape of the body we will invoke the persistence theorem to assert the existence of a loop which approximately satisfies the exact equations of motion. If we lift this loop with a phase reconstruction formula we will find that the lifted loops are not loops, but stable trajectories which represent regular periodic motion reminiscent of swimming.

  16. The mouse forced swim test.

    Science.gov (United States)

    Can, Adem; Dao, David T; Arad, Michal; Terrillion, Chantelle E; Piantadosi, Sean C; Gould, Todd D

    2012-01-29

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed.

  17. Synchronised Swimming of Two Fish

    CERN Document Server

    Novati, Guido; Alexeev, Dmitry; Rossinelli, Diego; van Rees, Wim M; Koumoutsakos, Petros

    2016-01-01

    We study the fluid dynamics of two fish-like bodies with synchronised swimming patterns. Our studies are based on two-dimensional simulations of viscous incompressible flows. We distinguish between motion patterns that are externally imposed on the swimmers and self-propelled swimmers that learn manoeuvres to achieve certain goals. Simulations of two rigid bodies executing pre-specified motion indicate that flow-mediated interactions can lead to substantial drag reduction and may even generate thrust intermittently. In turn we examine two self-propelled swimmers arranged in a leader-follower configuration, with a-priori specified body-deformations. We find that the swimming of the leader remains largely unaffected, while the follower experiences either an increase or decrease in swimming speed, depending on the initial conditions. Finally, we consider a follower that synchronises its motion so as to minimise its lateral deviations from the leader's path. The leader employs a steady gait while the follower use...

  18. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  19. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  20. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...

  1. Larval green and white sturgeon swimming performance in relation to water-diversion flows.

    Science.gov (United States)

    Verhille, Christine E; Poletto, Jamilynn B; Cocherell, Dennis E; DeCourten, Bethany; Baird, Sarah; Cech, Joseph J; Fangue, Nann A

    2014-01-01

    Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento-San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento-San Joaquin sturgeons are most vulnerable to entrainment in February-May, when white sturgeon early larvae are in the middle Sacramento River, and April-May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October-November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are applicable

  2. Larval green and white sturgeon swimming performance in relation to water-diversion flows

    Science.gov (United States)

    Verhille, Christine E.; Poletto, Jamilynn B.; Cocherell, Dennis E.; DeCourten, Bethany; Baird, Sarah; Cech, Joseph J.; Fangue, Nann A.

    2014-01-01

    Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento–San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento–San Joaquin sturgeons are most vulnerable to entrainment in February–May, when white sturgeon early larvae are in the middle Sacramento River, and April–May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October–November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are

  3. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial musc

  4. 36 CFR 327.5 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 327.5 Section 327.5 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY RULES AND REGULATIONS... Swimming. (a) Swimming, wading, snorkeling or scuba diving at one's own risk is permitted, except...

  5. 36 CFR 331.10 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 331.10 Section 331.10 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS..., KENTUCKY AND INDIANA § 331.10 Swimming. Swimming is prohibited unless authorized in writing by the...

  6. 43 CFR 423.36 - Swimming.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Swimming. 423.36 Section 423.36 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation...

  7. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial

  8. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  9. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  10. Swimming bacteria in liquid crystal

    Science.gov (United States)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  11. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  12. Swimming pool-induced asthma.

    Science.gov (United States)

    Beretta, S; Vivaldo, T; Morelli, M; Carlucci, P; Zuccotti, G V

    2011-01-01

    A 13-year-old elite swimmer presented with wheezing after indoor swimming training. On the basis of her clinical history and the tests performed, exercise-induced asthma and mold-induced asthma were ruled out and a diagnosis of chlorine-induced asthma was made.

  13. Hydrodynamics of freely swimming flagellates

    Science.gov (United States)

    Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas; Bohr, Tomas; Andersen, Anders

    2016-11-01

    Flagellates are a diverse group of unicellular organisms forming an important part of the marine ecosystem. The arrangement of flagella around the cell serves as a key trait optimizing and compromising essential functions. With micro-particle image velocimetry we observed time-resolved near-cell flows around freely swimming flagellates, and we developed an analytical model based on the Stokes flow around a solid sphere propelled by a variable number of differently placed, temporally varying point forces, each representing one flagellum. The model allows us to reproduce the observed flow patterns and swimming dynamics, and to extract quantities such as swimming velocities and prey clearance rates as well as flow disturbances revealing the organism to flow-sensing predators. Our results point to optimal flagellar arrangements and beat patterns, and essential trade-offs. For biflagellates with two symmetrically arranged flagella we contrasted two species using undulatory and ciliary beat patterns, respectively, and found breast-stroke type beat patterns with equatorial power strokes to be favorable for fast as well as quiet swimming. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  14. Sports Medicine Meets Synchronized Swimming.

    Science.gov (United States)

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  15. Adiabatic swimming in an ideal quantum gas.

    Science.gov (United States)

    Avron, J E; Gutkin, B; Oaknin, D H

    2006-04-07

    Interference effects are important for swimming of mesoscopic systems that are small relative to the coherence length of the surrounding quantum medium. Swimming is geometric for slow swimmers and the distance covered in each stroke is determined, explicitly, in terms of the on-shell scattering matrix. Remarkably, for a one-dimensional Fermi gas at zero temperature we find that slow swimming is topological: the swimming distance covered in one stroke is quantized in half integer multiples of the Fermi wavelength. In addition, a careful choice of the swimming stroke can eliminate dissipation.

  16. Micro- and nanorobots swimming in heterogeneous liquids.

    Science.gov (United States)

    Nelson, Bradley J; Peyer, Kathrin E

    2014-09-23

    Essentially all experimental investigations of swimming micro- and nanorobots have focused on swimming in homogeneous Newtonian liquids. In this issue of ACS Nano, Schamel et al. investigate the actuation of "nanopropellers" in a viscoelastic biological gel that illustrates the importance of the size of the nanostructure relative to the gel mesh size. In this Perspective, we shed further light on the swimming performance of larger microrobots swimming in heterogeneous liquids. One of the interesting results of our work is that earlier findings on the swimming performance of motile bacteria in heterogeneous liquids agree, in principle, with our results. We also discuss future research directions that should be pursued in this fascinating interdisciplinary field.

  17. Pre-task music improves swimming performance.

    Science.gov (United States)

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  18. Changes and Historical Background of Competitive Swimming in Japan

    OpenAIRE

    野尻, 奈央子

    2008-01-01

    A changes and the historical background of the competitive swimming in Japan were examined in this paper. Beginning of the Meiji era, swim places appeared, and swimming races started. The competitive swimming progressed rapidly after transmitting the pool in 1907. The swimming changes in relation to the social environment and has evolved. Recently, the number of participant of ""Masters"" and ""Opening Water Swimming"" increases. On the other hand, the competitive swimming of young swimmers p...

  19. Swim bladder function and buoyancy control in pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus).

    Science.gov (United States)

    Stewart, John; Hughes, Julian M

    2014-04-01

    swim bladders of pink snapper and mulloway ruptured after decreases in ~2.5 and 2.75 times the hydrostatic pressure to which the fish were acclimated, respectively. Differences in buoyancy, gas exchange rates, limitations to vertical movements and acclimation times between the two species are discussed in terms of their differing behaviour and ecology.

  20. Schistosoma mansoni cercariae exploit an elastohydrodynamic coupling to swim efficiently

    CERN Document Server

    Krishnamurthy, Deepak; Bhargava, Arjun; Prakash, Manu

    2016-01-01

    The motility of many parasites is critical for the infection process of their host, as exemplified by the transmission cycle of the blood fluke Schistosoma mansoni. In their human infectious stage, immature, submillimetre-scale forms of the parasite known as cercariae swim in freshwater and infect humans by penetrating through the skin. This infection causes Schistosomiasis, a parasitic disease that is comparable to malaria in its global socio-economic impact. Given that cercariae do not feed and hence have a finite lifetime of around 12 hours, efficient motility is crucial for the parasite's survival and transmission of Schistosomiasis. However, a first-principles understanding of how cercariae swim is lacking. Via a combined experimental, theoretical and robotics based approach, we demonstrate that cercariae propel themselves against gravity by exploiting a unique elastohydrodynamic coupling. We show that cercariae beat their tail in a periodic fashion while maintaining a fixed flexibility near their poster...

  1. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    Science.gov (United States)

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  2. Can polish university female students swim?

    Directory of Open Access Journals (Sweden)

    Podstawski Robert

    2013-06-01

    Full Text Available Background and aim of the work: There are only few studies in Polish and foreign literature providing solid information on swimming skills of university students. The aim of the study carried out at the University of Warmia & Mazury in Olsztyn was to determine swimming skills of Polish university female students starting their studies. Material and methods: The study was conducted in 2012 on 298 female students of the 1 st year course, at the age of 19 – 20. Anonymous questionnaire was used in the research. Results: It has been shown that almost 72% of the women could not swim at all, and 26% swam poorly. Within the group of women able to swim, the greatest percentage was set by women using classical style (49% and “their own” one (27% and only 13% of the students used crawl, 9% - back stroke and 2% - butterfly style. Of all the women declaring swimming abilities, the biggest percentage (16% could cover the distance of only 20 – 50 m; fewer students (6% covered the distance of 50 – 100 m; and 5% could swim only 20 m. Only a marginal number of students (2% could cover the distance from 100 to 1000 m; none could swim more than 1000 m. Conclusions: The study showed a very pessimistic picture of swimming skills of Polish university female students in respect of the number of women able to swim, their knowledge of swimming styles, and the length of the covered distance.

  3. A2 noradrenergic neurons regulate forced swim test immobility.

    Science.gov (United States)

    Nam, Hyungwoo; Kerman, Ilan A

    2016-10-15

    The Wistar-Kyoto (WKY) rat is a widely used animal model of depression, which is characterized by dysregulation of noradrenergic signaling. We previously demonstrated that WKY rats show a unique behavioral profile on the forced swim test (FST), characterized by high levels of immobility upon initial exposure and a greater learning-like response by further increasing immobility upon re-exposure than the genetically related Wistar rats. In the current study we aimed to determine whether altered activation of brainstem noradrenergic cell groups contributes to this behavioral profile. We exposed WKY and Wistar rats, to either 5min of forced swim or to the standard two-day FST (i.e. 15min forced swim on Day 1, followed by 5min on Day 2). We then stained their brains for FOS/tyrosine hydroxylase double-immunocytochemistry to determine potential differences in the activation of the brainstem noradrenergic cell groups. We detected a relative hyperactivation in the locus coeruleus of WKY rats when compared to Wistars in response to both one- and two-day forced swim. In contrast, within the A2 noradrenergic cell group, WKY rats exhibited diminished levels of FOS across both days of the FST, suggesting their lesser activation. We followed up these observations by selectively lesioning the A2 neurons, using anti-dopamine-β-hydroxylase-conjugated saporin, in Wistar rats, which resulted in increased FST immobility on both days of the test. Together these data indicate that the A2 noradrenergic cell group regulates FST behavior, and that its hypoactivation may contribute to the unique behavioral phenotype of WKY rats.

  4. Swimming near a deformable interface

    Science.gov (United States)

    Dias, Marcelo; Powers, Thomas

    2013-03-01

    It is a known fact that swimmers behave differently near deformable soft tissues than when near a rigid surface. Motivated by this class of problems, we investigate swimming microorganisms near flexible walls. We calculate the speed of a n infinitely long swimmer near an interface between two viscous fluids. Part of the calculation of the speed is the calculation of the shape of the free boundary. The swimming speed is controlled by the competition between surface and viscous effects, where two limits are observed. When the surface tension vanishes, we get Taylor's result for a swimmer with no walls. When the surface tension is infinite, the problem is like that of a swimmer near a rigid wall.

  5. Swimming versus swinging in spacetime

    CERN Document Server

    Guéron, E; Matsas, G E A; Gueron, Eduardo; Maia, Clovis A. S.; Matsas, George E. A.

    2006-01-01

    Wisdom has recently unveiled a new relativistic effect, called ``spacetime swimming'', where quasi-rigid free bodies in curved spacetimes can "speed up", "slow down" or "deviate" their falls by performing "local" cyclic shape deformations. We show here that for fast enough cycles this effect dominates over a non-relativistic related one, named here ``space swinging'', where the fall is altered through "nonlocal" cyclic deformations in Newtonian gravitational fields. We expect, therefore, to clarify the distinction between both effects leaving no room to controversy. Moreover, the leading contribution to the swimming effect predicted by Wisdom is enriched with a higher order term and the whole result is generalized to be applicable in cases where the tripod is in large red-shift regions.

  6. Team swimming in ant spermatozoa.

    Science.gov (United States)

    Pearcy, Morgan; Delescaille, Noémie; Lybaert, Pascale; Aron, Serge

    2014-06-01

    In species where females mate promiscuously, competition between ejaculates from different males to fertilize the ova is an important selective force shaping many aspects of male reproductive traits, such as sperm number, sperm length and sperm-sperm interactions. In eusocial Hymenoptera (bees, wasps and ants), males die shortly after mating and their reproductive success is ultimately limited by the amount of sperm stored in the queen's spermatheca. Multiple mating by queens is expected to impose intense selective pressure on males to optimize the transfer of sperm to the storage organ. Here, we report a remarkable case of cooperation between spermatozoa in the desert ant Cataglyphis savignyi. Males ejaculate bundles of 50-100 spermatozoa. Sperm bundles swim on average 51% faster than solitary sperm cells. Team swimming is expected to increase the amount of sperm stored in the queen spermatheca and, ultimately, enhance male posthumous fitness.

  7. Heart rate variability and swimming.

    Science.gov (United States)

    Koenig, Julian; Jarczok, Marc N; Wasner, Mieke; Hillecke, Thomas K; Thayer, Julian F

    2014-10-01

    Professionals in the domain of swimming have a strong interest in implementing research methods in evaluating and improving training methods to maximize athletic performance and competitive outcome. Heart rate variability (HRV) has gained attention in research on sport and exercise to assess autonomic nervous system activity underlying physical activity and sports performance. Studies on swimming and HRV are rare. This review aims to summarize the current evidence on the application of HRV in swimming research and draws implications for future research. A systematic search of databases (PubMed via MEDLINE, PSYNDEX and Embase) according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (a) empirical investigation (HRV) in humans (non-clinical); (b) related to swimming; (c) peer-reviewed journal; and (d) English language. The search revealed 194 studies (duplicates removed), of which the abstract was screened for eligibility. Fourteen studies meeting the inclusion criteria were included in the review. Included studies broadly fell into three classes: (1) control group designs to investigate between-subject differences (i.e. swimmers vs. non-swimmers, swimmers vs. other athletes); (2) repeated measures designs on within-subject differences of interventional studies measuring HRV to address different modalities of training or recovery; and (3) other studies, on the agreement of HRV with other measures. The feasibility and possibilities of HRV within this particular field of application are well documented within the existing literature. Future studies, focusing on translational approaches that transfer current evidence in general practice (i.e. training of athletes) are needed.

  8. Synchronized Swimming of Two Fish

    Science.gov (United States)

    Koumoutsakos, Petros; Novati, Guido; Abbati, Gabriele; Hejazialhosseini, Babak; van Rees, Wim

    2015-11-01

    We present simulations of two, self-propelled, fish-like swimmers that perform synchronized moves in a two-dimensional, viscous fluid. The swimmers learn to coordinate by receiving a reward for their synchronized actions. We analyze the swimming patterns emerging for different rewards in terms of their hydrodynamic efficiency and artistic impression. European Research Council (ERC) Advanced Investigator Award (No. 2-73985-14).

  9. Confined swimming of bio-inspired microrobots in rectangular channels.

    Science.gov (United States)

    Temel, Fatma Zeynep; Yesilyurt, Serhat

    2015-02-02

    Controlled swimming of bio-inspired microrobots in confined spaces needs to be understood well for potential use in medical applications in conduits and vessels inside the body. In this study, experimental and computational studies are performed for analysis of swimming modes of a bio-inspired microrobot in rectangular channels at low Reynolds number. Experiments are performed on smooth and rough surfaces using a magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, with left-handed helical tail and radially polarized magnetic head within rotating magnetic field obtained by two electromagnetic coil pairs. Experiments indicate three motion modes of the MHS with respect to the rotation frequency: (i) lateral motion under the effect of a perpendicular force such as gravity and the surface traction at low frequencies, (ii) lateral motion under the effect of fluid forces and gravity at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Observed modes of motion for the MHS are investigated with computational fluid dynamics simulations by calculating translational and angular velocities and studying the induced flow fields for different radial positions inside the channel. Results indicate the importance of rotation frequency, surface roughness and flow field on the swimming modes and behaviour of the MHS inside the rectangular channel.

  10. Cetacean Swimming with Prosthetic Limbs

    Science.gov (United States)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  11. Analysis of self-overlap reveals trade-offs in plankton swimming trajectories

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Visser, Andre W.; Mazzocchi, Maria Grazia

    2014-01-01

    these contrasting processes. This trade-off can be hypothesized as being evident in the behaviour of plankton, which inhabit a dilute three-dimensional environment with few refuges or orienting landmarks. We present an analysis of the swimming path geometries based on a volumetric Monte Carlo sampling approach......, which is particularly adept at revealing such trade-offs by measuring the self-overlap of the trajectories. Application of this method to experimentally measured trajectories reveals that swimming patterns in copepods are shaped to efficiently explore volumes at small scales, while achieving a large...

  12. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.

    Science.gov (United States)

    Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C

    2014-11-01

    The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.

  13. Swimming-Induced Taste Aversion and Its Prevention by a Prior History of Swimming

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2004-01-01

    In two experiments, the evidence showed that 20 min of forced swimming by rats caused aversion to a taste solution consumed before swimming. When one of two taste solutions (sodium saccharin or sodium chloride, counterbalanced across rats) was paired with swimming and the other was not, the rats' intakes of these two solutions showed less…

  14. The comparison of immobility time in experimental rat swimming models.

    Science.gov (United States)

    Calil, Caroline Morini; Marcondes, Fernanda Klein

    2006-09-27

    Rat swimming models have been used in studies about stress and depression. However, there is no consensus about interpreting immobility (helplessness or adaptation) in the literature. In the present study, immobility time, glucose and glycogen mobilization, corticosterone and the effect of desipramine and diazepam were investigated in two different models: swimming stress and the forced swimming test. Immobility time was lower in swimming stress than in the forced swimming test. Both swimming models increased corticosterone levels in comparison with control animal levels. Moreover, swimming stress induced higher corticosterone levels than the forced swimming test did [F(2,14)=59.52; pswimming stressswimming testswimming stress in comparison with the forced swimming test and control. The immobility time was recorded and measured in another group treated with desipramine and diazepam in two protocols: a single session of forced swimming test or swimming stress and two sessions (pre- and retest) of forced swimming model or swimming stress. Desipramine decreased the immobility time in the forced swimming test in both the single [F(2,25)=20.63; pswimming session, without changes in the swimming stress model. Diazepam increased the immobility time in the swimming stress but not in the forced swimming test during the single [F(2,26)=11.24; p=0.0003] and retest sessions [F(2,38)=4.17; p=0.02]. It was concluded that swimming stress and the forced swimming test induced different behavior, hormonal and metabolic responses and represented different situations to the animal.

  15. Helicobacter pylori displays spiral trajectories while swimming like a cork-screw in solutions

    Science.gov (United States)

    Constantino, Maira A.; Hardcastle, Joseph M.; Bansil, Rama; Jabbarzadeh, Mehdi; Fu, Henry C.

    Helicobacter pylori is a helical shaped bacterium that causes gastritis, ulcers and gastric cancer in humans and other animals. In order to colonize the harsh acidic environment of the stomach H. pylori has evolved a unique biochemical mechanism to go across the viscoelastic gel-like gastric mucus layer. Many studies have been conducted on the swimming of H. pylori in viscous media. However a yet unanswered question is if the helical cell shape influences bacterial swimming dynamics or confers any advantage when swimming in viscous solution. We will present measurements of H. pylori trajectories displaying corkscrew motion while swimming in solution obtained by tracking single cells using 2-dimensional phase contrast imaging at high magnification and fast frame rates and simultaneously imaging their shape. We observe a linear relationship between swimming speed and rotation rate. The experimental trajectories show good agreement with trajectories calculated using a regularized Stokeslet method to model the low Reynolds number swimming behavior. Supported by NSF PHY 1410798 (PI: RB).

  16. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    Science.gov (United States)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  17. Do intracoelomic telemetry transmitters alter the post-release behaviour of migratory fish?

    Science.gov (United States)

    Wilson, Alexander D.M.; Hayden, Todd A.; Vandergoot, Christopher S.; Kraus, Richard T.; Dettmers, John M.; Cooke, Steven J.; Charles C. Krueger,

    2016-01-01

    Electronic tags have become a common tool in fish research, enhancing our understanding of how fish interact with their environment and move among different habitats, for estimating mortality and recording internal physiological states. An often-untested assumption of electronic tagging studies is that tagged fish are representative of untagged conspecifics and thus show ‘normal’ behaviour (e.g. movement rates, swimming activity, feeding). Here, we use a unique data set for potamadromous walleye (Sander vitreus) in Lake Huron and Lake Erie tributaries to assess whether the lack of appropriate controls in electronic tagging could seriously affect behavioural data. We used fish tagged in previous years and compared their migratory behaviour during the spawning season to fish tagged in a current year at the same location. The objective of the study was to determine whether intracoelomic acoustic tag implantation altered downstream movement of walleye after spawning. Fish tagged in a given season travelled slower downstream from two river spawning sites than fish tagged in previous years. Fish tagged one or two years earlier showed no differences between each other in downstream travel time, in contrast to fish tagged in a given year. Our results support notions that standard collection and intracoelomic tagging procedures can alter short-term behaviour (i.e. days, weeks, months), and as such, researchers should use caution when interpreting data collected over such time periods. Further, whenever possible, researchers should also explicitly evaluate post-tagging effects on behaviour as part of their experimental objectives.

  18. Adaptive behaviours of the jellyfish Aurelia labiata in Roscoe Bay on the west coast of Canada

    Science.gov (United States)

    Albert, David J.

    2008-04-01

    Four behaviours of mature Aurelia labiata medusae (Scyphozoa) were observed. Touching the manubrium with a soft, hollow, silicone rubber ball or a foam rubber ball caused medusae at a depth of 1 m to swim to the surface. Dense aggregations of medusae did not form within 5 m of rock walls. Medusae did not swim into water with salinity Aurelia labiata medusae.

  19. A Comparative Analysis of Swimming Styles in Competitive Swimming

    Science.gov (United States)

    von Loebbecke, Alfred; Mittal, Rajat; Gupta, Varun; Mark, Russell

    2007-11-01

    High-fidelity numerical simulations are being used to conduct a critical evaluation of swimming strokes in competitive swimming. We combine computational fluid dynamics (CFD), laser body scans, animation software, and video footage to develop accurate models of Olympic level swimmers and use these to examine contrasting styles of the dolphin kick as well as the arm strokes in back and front crawl stroke. In the dolphin kick, the focus is on examining the effects of Strouhal number, kick amplitude, frequency, and technique on thrust production. In the back stroke, we examine the performance of the so called ``flat stroke'' versus the ``deep catch,'' The most important aspect that separates the two major types of back stroke is the alignment or angle of attack of the palm during the stroke. In one style of front crawl arm stroke, there is greater elbow joint flexion, shoulder abduction and sculling whereas the other style consists of a straight arm pull dominated by simple shoulder flexion. Underlying the use of these two styles is the larger and more fundamental issue of the role of lift versus drag in thrust production and we use the current simulations to examine this issue in detail.

  20. Undulatory swimming in viscoelastic fluids

    CERN Document Server

    Shen, Xiaoning

    2011-01-01

    The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  1. Undulatory swimming in viscoelastic fluids.

    Science.gov (United States)

    Shen, X N; Arratia, P E

    2011-05-20

    The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  2. Swimming Motility Reduces Deposition to Silica Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Nanxi [Univ. of Illinois, Urbana-Champaign, IL (United States); Massoudieh, Arash [The Catholic Univ. of America, Washington, DC (United States); Liang, Xiaomeng [The Catholic Univ. of America, Washington, DC (United States); Hu, Dehong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kamai, Tamir [Agricultural Research Organization, Bet Dagan (Israel); Ginn, Timothy R. [Univ. of California, Davis, CA (United States); Zilles, Julie L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Nguyen, Thanh H. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-01-01

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation point flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.

  3. How to swim with sharks: a primer.

    Science.gov (United States)

    Cousteau, Voltaire

    2011-08-01

    Swimming with the sharks is neither enjoyable nor exhilarating, and it is not an acknowledged sport. Some individuals, however, must swim by virtue of their occupation. If such an individual finds himself or herself in shark-infested waters, this article provides useful guidelines for survival.

  4. Teaching the Physically Handicapped to Swim.

    Science.gov (United States)

    Anderson, William

    First principles of teaching swimming to the handicapped are reviewed; attention is given to children with cerebral palsy or muscular dystrophy, physical handicaps, blindness, and deafness. Swimming strokes, suggested exercises, group teaching, and a typical sequence of lessons and exercises are considered. Some case histories and a plan for a…

  5. A method for determining critical swimming velocity.

    Science.gov (United States)

    Takahashi, S; Wakayoshi, K; Hayashi, A; Sakaguchi, Y; Kitagawa, K

    2009-02-01

    The purpose of this study was to determine whether the critical swimming velocity (Vcri) estimated by the swimming velocity for a distance of 300 m at maximal effort breaststroke reflects the maximal lactate steady state (MLSS). Twelve trained swimmers swam 50 m, 300 m and 2 000 m at maximal effort for determination of Vcri that averaged 1.167 +/- 0.045 m . sec (-1). Since Vcri was equivalent to 90.5 % of the mean swimming velocity over the distance of 300 m at maximal effort, the swimming velocity obtained by multiplying the swimming velocity for the distance of 300 m of each subject by 90.5 % was taken to be 100 % of the predicted critical swimming velocity (Vcri-pred). Then, in an MLSS test, the subjects were instructed to swim breaststroke 2 000 m (5 x 400 m) at three constant velocities (98 %, 100 %, and 102 % of Vcri-pred), interrupted by four short rest periods from 30 to 45 seconds for blood sampling and heart rate measurement. As a result, the blood lactate concentration at 100 % Vcri-pred showed a higher steady state than the slow velocity, but at high velocity did not show the steady state. In conclusion, we can accurately estimate the Vcri for breaststroke by a one-time 300-m maximal effort swimming test.

  6. Swimming dynamics of bidirectional artificial flagella

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2013-01-01

    We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a

  7. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  8. Effect of thioperamide on modified forced swimming test-induced oxidative stress in mice.

    Science.gov (United States)

    Akhtar, Mohd; Pillai, K K; Vohora, Divya

    2005-10-01

    This study was designed i) to investigate the role of histamine H3-receptor ligands on mouse modified forced swimming test, a method that distinguishes the catecholaminergic behaviour with that of serotonergic compounds and ii) to evaluate the role of free radicals in mediation of such effects. Swiss strain albino mice were treated with different doses of histamine H3-receptor antagonist thioperamide (3.75, 7.5 and 15 mg/kg intraperitoneally) and agonist (R)-alpha-methylhistamine (5 microg intracerebroventricularly). The climbing, swimming and immobility times were recorded for 6 min. Immediately after modified forced swimming test, the animals were sacrificed and parameters of oxidative stress were assessed in the brain by measuring the thiobarbituric acid reactive substance (TBARS), glutathione (GSH) and catalase levels. Thioperamide (7.5 and 15 mg/kg intraperitoneally) dose-dependently decreased immobility time and increased swimming time but not climbing time. The behaviour of mice treated with (R)-alpha-methylhistamine was similar to that of control mice. A significant reduction in GSH and an increase in catalase levels were observed in brains of mice exposed to modified forced swimming test. Thioperamide pretreatment dose-dependently reversed such an alteration in oxidative stress parameters. (R)-alpha-methylhistamine caused a reversal of altered catalase but not GSH levels. Thioperamide shows antidepressant effects in the modified forced swimming test and causes a reversal of the test-induced oxidative stress indicating its antioxidant potential. The antidepressant effect of thioperamide appears to be mediated via serotonergic and/or antioxidant mechanisms.

  9. Is swimming during pregnancy a safe exercise?

    DEFF Research Database (Denmark)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh;

    2010-01-01

    BACKGROUND: Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined...... the association between swimming in pregnancy and preterm and postterm birth, fetal growth measures, small-for-gestational-age, and congenital malformations. METHODS: We used self-reported exercise data (swimming, bicycling, or no exercise) that were prospectively collected twice during pregnancy for 74......,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise...

  10. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    Soc for experimental Biol Annual Meeting - Salzburg 2012 John F. Steffensen (University of Copenhagen, Denmark) When a fish school swims through the water, every individual consumes a certain amount of oxygen, which means that less will be available for the trailing fish in the school. In 1967 Mc......Farland and Moss reported that the oxygen saturation decreased approximately 30% from the front to the rear of an approximately 150-m long school of mullets swimming in normoxic water. They also observed that the decline in oxygen saturation at the rear resulted in the school disintegrating into smaller separate...... schools. Oxygen consumption of swimming fish increases exponentially or as a power function with respect to swimming speed, and hence the decrease in oxygen saturation through the school is related to the swimming speed of the school. A model describing the oxygen saturation in a fish school from front...

  11. Enhanced active swimming in viscoelastic fluids

    CERN Document Server

    Riley, Emily E

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the shape of an active swimmer as a balance between the external fluid stresses, the internal driving moments, and the passive elastic resistance. We show that this dynamic balance leads to a generic transition from hindered rigid swimming to enhanced flexible locomotion. The results are physically interpreted as due to a viscoelastic suction increasing the swimming amplitude in a non-Newtonian fluid and overcoming viscoelastic damping.

  12. Swimming behavior of selected species of Archaea.

    Science.gov (United States)

    Herzog, Bastian; Wirth, Reinhard

    2012-03-01

    The swimming behavior of Bacteria has been studied extensively, at least for some species like Escherichia coli. In contrast, almost no data have been published for Archaea on this topic. In a systematic study we asked how the archaeal model organisms Halobacterium salinarum, Methanococcus voltae, Methanococcus maripaludis, Methanocaldococcus jannaschii, Methanocaldococcus villosus, Pyrococcus furiosus, and Sulfolobus acidocaldarius swim and which swimming behavior they exhibit. The two Euryarchaeota M. jannaschii and M. villosus were found to be, by far, the fastest organisms reported up to now, if speed is measured in bodies per second (bps). Their swimming speeds, at close to 400 and 500 bps, are much higher than the speed of the bacterium E. coli or of a very fast animal, like the cheetah, each with a speed of ca. 20 bps. In addition, we observed that two different swimming modes are used by some Archaea. They either swim very rapidly, in a more or less straight line, or they exhibit a slower kind of zigzag swimming behavior if cells are in close proximity to the surface of the glass capillary used for observation. We argue that such a "relocate-and-seek" behavior enables the organisms to stay in their natural habitat.

  13. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.

    2011-05-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  14. SWIM EVERYDAY TO KEEP DEMENTIA AWAY

    Directory of Open Access Journals (Sweden)

    Nirmal Singh

    2005-03-01

    Full Text Available A sound mind resides in a sound body. Many individuals with an active lifestyle show sharp mental skills at an advanced age. Regular exercise has been shown to exert numerous beneficial effects on brawn as well as brain. The present study was undertaken to evaluate the influence of swimming on memory of rodents. A specially designed hexagonal water maze was used for the swimming exposures of animals. The learning and memory parameters were measured using exteroceptive behavioral models such as Elevated plus-maze, Hebb-Williams maze and Passive avoidance apparatus. The rodents (rats and mice were divided into twelve groups. The swimming exposure to the rodents was for 10- minute period during each session and there were two swimming exposures on each day. Rats and mice were subjected to swimming for -15 and -30 consecutive days. Control group animals were not subjected to swimming during above period. The learning index and memory score of all the animals was recorded on 1st, 2nd, 15th, 16th, 30th and 31st day employing above exteroceptive models. It was observed that rodents that underwent swimming regularly for 30- days showed sharp memories, when tested on above behavioral models whereas, control group animals showed decline in memory scores. Those animals, which underwent swimming for 15- days only showed good memory on 16th day, which however, declined after 30-days. These results emphasize the role of regular physical exercise particularly swimming in the maintenance and promotion of brain functions. The underlying physiological mechanism for improvement of memory appears to be the result of enhanced neurogenesis.

  15. The critical velocity in swimming.

    Science.gov (United States)

    di Prampero, Pietro E; Dekerle, Jeanne; Capelli, Carlo; Zamparo, Paola

    2008-01-01

    In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject's maximal O(2) uptake (VO2max) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) VO2max is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d (anaer)) can be calculated also in swimming, where C increases with the velocity, provided that VO2max its on-response, and the C versus v relationship are known. d (anaer) and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 +/- 0.9 years, 75.9 +/- 6.4 kg), whose VO2max and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d (anaer). The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers.

  16. 76 FR 58401 - Safety Zone; Swim Around Charleston, Charleston, SC

    Science.gov (United States)

    2011-09-21

    ... Zone; Swim Around Charleston, Charleston, SC in the Federal Register (76 FR 38586). We received no... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Swim Around Charleston, Charleston, SC... temporary moving safety zone during the Swim Around Charleston, a swimming race occurring on waters of...

  17. Swimming performance and metabolism of cultured golden shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  18. Airways disorders and the swimming pool.

    Science.gov (United States)

    Bougault, Valérie; Boulet, Louis-Philippe

    2013-08-01

    Concerns have been expressed about the possible detrimental effects of chlorine derivatives in indoor swimming pool environments. Indeed, a controversy has arisen regarding the possibility that chlorine commonly used worldwide as a disinfectant favors the development of asthma and allergic diseases. The effects of swimming in indoor chlorinated pools on the airways in recreational and elite swimmers are presented. Recent studies on the influence of swimming on airway inflammation and remodeling in competitive swimmers, and the phenotypic characteristics of asthma in this population are reviewed. Preventative measures that could potentially reduce the untoward effects of pool environment on airways of swimmers are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Swimming and feeding of mixotrophic biflagellates

    DEFF Research Database (Denmark)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed...... with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow...

  20. Biologically Inspired Behaviour Design for Autonomous Robotic Fish

    Institute of Scientific and Technical Information of China (English)

    Jin-Dong Liu; Huosheng Hu

    2006-01-01

    Behaviour-based approach plays a key role for mobile robots to operate safely in unknown or dynamically changing environments. We have developed a hybrid control architecture for our autonomous robotic fish that consists of three layers: cognitive, behaviour and swim pattern. In this paper, we describe some main design issues of the behaviour layer, which is the centre of the layered control architecture of our robotic fish. Fuzzy logic control (FLC) is adopted here to design individual behaviours. Simulation and real experiments are presented to show the feasibility and the performance of the designed behaviour layer.

  1. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.

  2. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

    Science.gov (United States)

    Manfredi, L; Assaf, T; Mintchev, S; Marrazza, S; Capantini, L; Orofino, S; Ascari, L; Grillner, S; Wallén, P; Ekeberg, O; Stefanini, C; Dario, P

    2013-10-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications.

  3. The concept of behavioural needs in contemporary fur science

    DEFF Research Database (Denmark)

    Kornum, A.L.; Röcklinsberg, H.; Gjerris, Mickey

    2017-01-01

    This paper discusses the ethical implications of applying the concept of behavioural needs to captive animals. This is done on the basis of analysing the scientific literature on farmed mink and their possible need for swimming. In the wild, American mink (Mustela vison) are semi-aquatic predators......, lending initial support to the claim that captive mink with no access to adequate swimming facilities experience a thwarted behavioural need. Scientific studies show a disparate picture. Consumer-demand experiments, where the animals have been conditioned to work for environmental resources, consistently...

  4. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  5. Muscle function and swimming in sharks.

    Science.gov (United States)

    Shadwick, R E; Goldbogen, J A

    2012-04-01

    The locomotor system in sharks has been investigated for many decades, starting with the earliest kinematic studies by Sir James Gray in the 1930s. Early work on axial muscle anatomy also included sharks, and the first demonstration of the functional significance of red and white muscle fibre types was made on spinal preparations in sharks. Nevertheless, studies on teleosts dominate the literature on fish swimming. The purpose of this article is to review the current knowledge of muscle function and swimming in sharks, by considering their morphological features related to swimming, the anatomy and physiology of the axial musculature, kinematics and muscle dynamics, and special features of warm-bodied lamnids. In addition, new data are presented on muscle activation in fast-starts. Finally, recent developments in tracking technology that provide insights into shark swimming performance in their natural environment are highlighted.

  6. Ingestion of swimming pool water by recreational

    Data.gov (United States)

    U.S. Environmental Protection Agency — Swimming pool water ingestion data. This dataset is associated with the following publication: Dufour, A., L. Wymer, M. Magnuson, T. Behymer, and R. Cantu. Ingestion...

  7. Can phoretic particles swim in two dimensions?

    CERN Document Server

    Sondak, David; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc

    2016-01-01

    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows and ultimately the swimming velocity, may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Pecl...

  8. Optimal Strouhal number for swimming animals

    CERN Document Server

    Eloy, Christophe

    2011-01-01

    To evaluate the swimming performances of aquatic animals, an important dimensionless quantity is the Strouhal number, St = fA/U, with f the tail-beat frequency, A the peak-to-peak tail amplitude, and U the swimming velocity. Experiments with flapping foils have exhibited maximum propulsive efficiency in the interval 0.25 < St < 0.35 and it has been argued that animals likely evolved to swim in the same narrow interval. Using Lighthill's elongated-body theory to address undulatory propulsion, it is demonstrated here that the optimal Strouhal number increases from 0.15 to 0.8 for animals spanning from the largest cetaceans to the smallest tadpoles. To assess the validity of this model, the swimming kinematics of 53 different species of aquatic animals have been compiled from the literature and it shows that their Strouhal numbers are consistently near the predicted optimum.

  9. Health risks of early swimming pool attendance.

    Science.gov (United States)

    Schoefer, Yvonne; Zutavern, Anne; Brockow, Inken; Schäfer, Torsten; Krämer, Ursula; Schaaf, Beate; Herbarth, Olf; von Berg, Andrea; Wichmann, H-Erich; Heinrich, Joachim

    2008-07-01

    Swimming pool attendance and exposure to chlorination by-products showed adverse health effects on children. We assessed whether early swimming pool attendance, especially baby swimming, is related to higher rates of early infections and to the development of allergic diseases. In 2003-2005, 2192 children were analysed for the 6-year follow-up of a prospective birth cohort study. Data on early swimming pool attendance, other lifestyle factors and medical history were collected by parental-administered questionnaire. Bivariate and multivariate logistic regression analyses were used to evaluate associations. Babies who did not participate in baby swimming had lower rates of infection in the 1st year of life (i) diarrhoea: OR 0.68 CI 95% 0.54-0.85; (ii) otitis media: OR 0.81 CI 95% 0.62-1.05; (iii) airway infections: OR 0.85 CI 95% 0.67-1.09. No clear association could be found between late or non-swimmers and atopic dermatitis or hay fever until the age of 6 years, while higher rates of asthma were found (OR 2.15 95% CI 1.16-3.99), however, potentially due to reverse causation. The study indicates that, in terms of infections, baby swimming might not be as harmless as commonly thought. Further evidence is needed to make conclusions if the current regulations on chlorine in Germany might not protect swimming pool attendees from an increased risk of gastrointestinal infections. In terms of developing atopic diseases there is no verifiable detrimental effect of early swimming.

  10. Limit cycle dynamics in swimming systems

    Science.gov (United States)

    Finkel, Cyndee; von Ellenrieder, Karl

    2013-11-01

    An experimental apparatus was constructed to model basic features expected in the flow about a freely swimming fish. A D-shaped cylinder is used to represent the body and an oscillating foil, the tail. The swimming system is suspended in a constant freestream flow. A closed loop PI controller is used to maintain a set point, stream-wise location. The system is released from multiple downstream and upstream locations and permitted to swim to the set point. The Strouhal number measured when the swimming system achieves a constant forward swimming speed is compared to values observed in nature. The results suggest that self-regulation passively selects the Strouhal number and that no other external sensory input is necessary for this to happen. This self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. Phase plane analyses are used to examine the synchronous conditions due to the coupling of the foil and wake vortices. It is shown that the phase locking indices depend on the Strouhal number and approach a frequency locking ratio of about 0 . 5 . The results suggest that Strouhal number selection in steady forward natural swimming is the result of a limit cycle process and not actively controlled by an organism.

  11. Swimming Vorticella convallaria in various confined geometries

    Science.gov (United States)

    Sotelo, Luz; Lee, Donghee; Jung, Sunghwan; Ryu, Sangjin

    2014-11-01

    Vorticella convallaria is a stalked ciliate observed in the sessile form (trophont) or swimming form (telotroch). Trophonts are mainly composed of an inverted bell-shaped cell body generating vortical feeding currents, and a slender stalk attaching the cell body to a substrate. If the surrounding environment is no longer suitable, the trophont transforms into a telotroch by elongating its cell body into a cylindrical shape, resorbing its oral cilia and producing an aboral cilia wreath. After a series of contractions, the telotroch will completely detach from the stalk and swim away to find a better location. While sessile Vorticella has been widely studied because of its stalk contraction and usefulness in waste treatment, Vorticella's swimming has not yet been characterized. The purpose of this study is to describe V. convallaria's swimming modes, both in its trophont and telotroch forms, in different confined geometries. Using video microscopy, we observed Vorticellae swimming in semi-infinite field, in Hele-Shaw configurations, and in capillary tubes. Based on measured swimming displacement and velocity, we investigated how V. convallaria's mobility was affected by the geometry constrictions. We acknolwedge support from the First Award grant of Nebraska EPSCoR.

  12. Is swimming during pregnancy a safe exercise?

    Science.gov (United States)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh; Andersen, Anne-Marie Nybo; Olsen, Jørn

    2010-03-01

    Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined the association between swimming in pregnancy and preterm and postterm birth, fetal growth measures, small-for-gestational-age, and congenital malformations. We used self-reported exercise data (swimming, bicycling, or no exercise) that were prospectively collected twice during pregnancy for 74,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise, bicyclists were included as an additional comparison group. Risk estimates were similar for swimmers and bicyclists, including those who swam throughout pregnancy and those who swam more than 1.5 hours per week. Compared with nonexercisers, women who swam in early/mid-pregnancy had a slightly reduced risk of giving birth preterm (hazard ratio = 0.80 [95% confidence interval = 0.72-0.88]) or giving birth to a child with congenital malformations (odds ratio = 0.89 [0.80-0.98]). These data do not indicate that swimming in pool water is associated with adverse reproductive outcomes.

  13. Are there limits to swimming world records?

    Science.gov (United States)

    Nevill, A M; Whyte, G P; Holder, R L; Peyrebrune, M

    2007-12-01

    The purpose of this article was to investigate whether swimming world records are beginning to plateau and whether the inequality between men and women's swimming performances is narrowing, similar to that observed in running world records. A flattened "S-shaped curve" logistic curve is fitted to 100-m, 200-m, and 400-m front-crawl world-record swimming speeds for men and women from 1 May 1957 to the present time, using the non-linear least-squares regression. The inequality between men and women's world records is also assessed using the ratio, Women's/Men's world record speeds. The results confirm that men and women's front-crawl swimming world-record speeds are plateauing and the ratio between women's and men's world records has remained stable at approximately 0.9. In conclusion, the logistic curves provide evidence that swimming world-record speeds experienced a period of "accelerated" growth/improvements during the 1960 - 1970s, but are now beginning to plateau. The period of acceleration corresponded with numerous advances in science and technology but also coincided with the anecdotal evidence for institutionalised doping. Also noteworthy, however, is the remarkably consistency in the women's/men's world record ratio, circa 0.9, similar to those observed in middle and long distance running performances. These finding supports the notion that a 10 % gender inequality exists for both swimming and running.

  14. Speed of back-swimming of Lymnaea.

    Science.gov (United States)

    Aono, Kanako; Fusada, A; Fusada, Y; Ishii, W; Kanaya, Y; Komuro, Mami; Matsui, Kanae; Meguro, S; Miyamae, Ayumi; Miyamae, Yurie; Murata, Aya; Narita, Shizuka; Nozaka, Hiroe; Saito, Wakana; Watanabe, Ayumi; Nishikata, Kaori; Kanazawa, A; Fujito, Y; Okada, R; Lukowiak, K; Ito, E

    2008-01-01

    The pond snail, Lymnaea stagnalis, can locomote on its back utilizing the surface tension of the water. We have called this form of movement 'back-swimming'. In order to perform this behavior, the snail must flip itself over on its back so that its foot is visible from above. Little is known about the mechanism of this back-swimming. As a first step for the elucidation of this mechanism, we measured the speed of back-swimming of Lymnaea at the different times of the day. They back-swam significantly faster in the morning than just before dark. These data are consistent with our earlier findings on circadian-timed activity pattern in Lymnaea. Lymnaea appear to secrete a thin membrane-like substance from their foot that may allow them to back-swim. To confirm the existence of this substance and to examine whether this substance is hydrophobic or hydrophilic, we applied a detergent onto the foot during back-swimming. A single drop of 1% Tween 20 drifted Lymnaea away that were still kept at the water surface. These results suggest that Lymnaea secrete a hydrophobic substance from their foot that floats to the water surface allowing Lymnaea to back-swim.

  15. Setting the pace: new insights into central pattern generator interactions in box jellyfish swimming.

    Directory of Open Access Journals (Sweden)

    Anna Lisa Stöckl

    Full Text Available Central Pattern Generators (CPGs produce rhythmic behaviour across all animal phyla. Cnidarians, which have a radially symmetric nervous system and pacemaker centres in multiples of four, provide an interesting comparison to bilaterian animals for studying the coordination between CPGs. The box jellyfish Tripedalia cystophora is remarkable among cnidarians due to its most elaborate visual system. Together with their ability to actively swim and steer, they use their visual system for multiple types of behaviour. The four swim CPGs are directly regulated by visual input. In this study, we addressed the question of how the four pacemaker centres of this radial symmetric cnidarian interact. We based our investigation on high speed camera observations of the timing of swim pulses of tethered animals (Tripedalia cystophora with one or four rhopalia, under different simple light regimes. Additionally, we developed a numerical model of pacemaker interactions based on the inter pulse interval distribution of animals with one rhopalium. We showed that the model with fully resetting coupling and hyperpolarization of the pacemaker potential below baseline fitted the experimental data best. Moreover, the model of four swim pacemakers alone underscored the proportion of long inter pulse intervals (IPIs considerably. Both in terms of the long IPIs as well as the overall swim pulse distribution, the simulation of two CPGs provided a better fit than that of four. We therefore suggest additional sources of pacemaker control than just visual input. We provide guidelines for future research on the physiological linkage of the cubozoan CPGs and show the insight from bilaterian CPG research, which show that pacemakers have to be studied in their bodily and nervous environment to capture all their functional features, are also manifest in cnidarians.

  16. Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport

    Science.gov (United States)

    Sato, Katsufumi; Shiomi, Kozue; Watanabe, Yuuki; Watanuki, Yutaka; Takahashi, Akinori; Ponganis, Paul J.

    2010-01-01

    It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass−1/3. In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8–2.3 m s−1 were significantly related to mass0.08 and stroke frequencies were proportional to mass−0.29. These scaling relationships do not agree with the previous predictions for geometrically similar animals. We propose a theoretical model, considering metabolic cost, work against mechanical forces (drag and buoyancy), pitch angle and dive depth. This new model predicts that: (i) the optimal swim speed, which minimizes the energy cost of transport, is proportional to (basal metabolic rate/drag)1/3 independent of buoyancy, pitch angle and dive depth; (ii) the optimal speed is related to mass0.05; and (iii) stroke frequency is proportional to mass−0.28. The observed scaling relationships of penguins support these predictions, which suggest that breath-hold divers swam optimally to minimize the cost of transport, including mechanical and metabolic energy during dive. PMID:19906666

  17. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  18. Relationship between energy cost, swimming velocity, speed fluctuation in competitive swimming strokes

    OpenAIRE

    Barbosa, Tiago M.; Lima, A.B.; Portela, A; Novais, D.; L Machado; Colaço, P.; Gonçalves, P; Fernandes, R. J.; Keskinen, K.L.; Vilas-Boas, J. P.

    2006-01-01

    The purpose of this study was to analyse the relationships between the total energy expenditure ( tot), the energy cost (EC), the intra-cycle variation of the horizontal velocity of displacement of centre of mass (dv) and the mean swimming velocity (v) in the four competitive swimming strokes.

  19. Swimming for survival: A role of phytoplankton motility in a stratified turbulent environment

    Science.gov (United States)

    Ross, Oliver N.; Sharples, Jonathan

    We investigate a role for vertical migration in stratified coastal water, where the swimming speed is generally significantly less than the typical turbulent fluctuations in a tidally-mixed bottom layer. In our modelling approach we use a k- ɛ turbulence model to describe the physical forcing, a Lagrangian random walk model to describe the vertical displacement of individual cells in response to turbulence and due to cell motility, and a phytoplankton growth model to direct the swimming behaviour of the phytoplankton according to their light and nutrient requirements. The model results show how the cells form a stable subsurface chlorophyll maximum (SCM) at the base of the thermocline where episodic tidal turbulence causes erosion of part of the SCM biomass into the bottom mixed layer (BML). We then focus on the question of whether an ability to swim (weakly, compared to typical bottom layer turbulent intensities) provides any advantage by allowing return to the SCM. Our results show that tidal turbulence in the BML helps both motile and neutrally-buoyant cells by periodically pushing them into the base of the thermocline. Motile cells then have the advantage that they can swim further into the thermocline towards higher light which also reduces the likelihood of being re-mixed back into the BML.

  20. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    Science.gov (United States)

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  1. Research on Relative Age in Hungarian Swimming

    Directory of Open Access Journals (Sweden)

    Nagy Nikoletta

    2015-12-01

    Full Text Available In 2017, the 19th World Swimming Championship will be organized in Hungary. Up to now, many people have already been working with swimmers to achieve good results. However, in the next period they must work even harder to ensure that the national swimmers of a country as small as Hungary can achieve the outstanding results of their predecessors. Since high-level competitions in swimming have become more intense, innovations including scientific studies are needed during preparation for the event. The purpose of this paper is to present the major results of an independent study carried out by the authors about the relative age of the best Hungarian swimmers with the aim of contributing to their preparation. The research population consisted of selected age groups of swimmers registered by the Hungarian Swimming Association (N=400. The method for data collection was an analysis of documents. To evaluate the data, the Chi-square and Kruskal-Wallis tests were used. The results are presented according to the period of the competitor’s date of birth, gender, and age group. The results confirm only partly the hypothesis that people born in the first quarters of the year play a dominant role in Hungarian national swimming teams. In the conclusion, the authors recommend further research on relative age in swimming and in other sports.

  2. Quercetin alters energy metabolism in swimming mice.

    Science.gov (United States)

    Wu, Jianquan; Gao, Weina; Wei, Jingyu; Yang, Jijun; Pu, Lingling; Guo, Changjiang

    2012-10-01

    Quercetin has been demonstrated to be effective in increasing physical endurance in mice and humans. However, the mechanisms involved are not fully understood. In this study, male Kunming mice were fed a diet containing 0.1% quercetin for 14 days before swimming for 60 min. The overall serum metabolic profile was investigated by a ¹H nuclear magnetic resonance-based metabolomic approach. Serum glucose, lactate, nonesterified fatty acids (NEFA), and nonprotein nitrogen (NPN), as well as hepatic and muscular glycogen were measured biochemically. The results of metabolomic analysis showed that swimming induced a significant change in serum metabolic profile. Relative increases in the levels of lactate, alanine, low-density lipoprotein-very low-density lipoprotein, and unsaturated fatty acids, and decreases in choline, phosphocholine, and glucose were observed after swimming. With quercetin supplementation, these changes were attenuated. The results of biochemical assays were consistent with the data obtained from metabolomic analysis, in that serum NEFA was increased while lactate and NPN decreased after exposed to quercetin in swimming mice. Similar change in NEFA was also found in liver and gastrocnemius muscle tissues. Our current findings suggest that quercetin alters energy metabolism in swimming mice and increased lipolysis may contribute to the actions of quercetin on physical endurance.

  3. Switching of swimming modes in Magnetospirillium gryphiswaldense

    CERN Document Server

    Reufer, Mathias; Schwarz-Linek, Jana; Martinez, Vincent A; Morozov, Alexander N; Arlt, Jochen; Trubitsyn, Denis; Ward, Bruce; Poon, Wilson C K

    2013-01-01

    The microaerophilic magnetotactic bacterium Magnetospirillum gryphiswaldense swims along magnetic field lines using a single flagellum at each cell pole. It is believed that this magnetotactic behavior enables cells to seek optimal oxygen concentration with maximal efficiency. We analyse the trajectories of swimming M. gryphiswaldense cells in external magnetic fields larger than the earth's field, and show that each cell can switch very rapidly (in < 0.2 s) between a fast and a slow swimming mode. Close to a glass surface, a variety of trajectories was observed, from straight swimming that systematically deviates from field lines to various helices. A model in which fast (slow) swimming is solely due to the rotation of the trailing (leading) flagellum can account for these observations. We determined the magnetic moment of this bacterium using a new method, and obtained a value of (2.0 $\\pm$ 0.6) $\\times$ $10^{-16}$ Am$^2$. This value is found to be consistent with parameters emerging from quantitative fi...

  4. Sex differences associated with intermittent swim stress.

    Science.gov (United States)

    Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C

    2013-11-01

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.

  5. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  6. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Science.gov (United States)

    Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu

    2017-01-01

    ABSTRACT Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. PMID:28302669

  7. Determination of a quantitative parameter to evaluate swimming technique based on the maximal tethered swimming test.

    Science.gov (United States)

    Soncin, Rafael; Mezêncio, Bruno; Ferreira, Jacielle Carolina; Rodrigues, Sara Andrade; Huebner, Rudolf; Serrão, Julio Cerca; Szmuchrowski, Leszek

    2017-06-01

    The aim of this study was to propose a new force parameter, associated with swimmers' technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers' technique.

  8. Experiments on the vortex wake of a swimming knifefish

    CERN Document Server

    Taylor, Zachary J; Gurka, Roi; Holzman, Roi; Reesbeck, Thomas; Diez, F Javier

    2012-01-01

    The knifefish species propels itself by generating a reverse Karman street from an anal fin and without significantly moving its body. This unique feature makes this species' propulsion method highly efficient (Blake, 1983). It has been suggested that there is an optimal swimming range for fish based on the amplitude and frequency of the reverse K\\'arm\\'an street. Experiments have been performed to measure the ratio between the amplitude and wavelength of vortices in the wake of a knifefish. It is suggested that by optimizing the thrust created by the reverse Karman street the wave efficiency can be estimated for a given spacing ratio, and present observations have an average value of 0.89. The relationship established between spacing ratio and wave efficiency, in addition to the measured parameters, will be invaluable for bio-inspired designs based on the knifefish.

  9. Intra-abdominal pressure during swimming.

    Science.gov (United States)

    Moriyama, S; Ogita, F; Huang, Z; Kurobe, K; Nagira, A; Tanaka, T; Takahashi, H; Hirano, Y

    2014-02-01

    The present study aimed to determine the intra-abdominal pressure during front crawl swimming at different velocities in competitive swimmers and to clarify the relationships between stroke indices and changes in intra-abdominal pressure. The subjects were 7 highly trained competitive collegiate male swimmers. Intra-abdominal pressure was measured during front crawl swimming at 1.0, 1.2 and 1.4 m · s(-1) and during the Valsalva maneuver. Intra-abdominal pressure was taken as the difference between minimum and maximum values, and the mean of 6 stable front crawl stroke cycles was used. Stroke rate and stroke length were also measured as stroke indices. There were significant differences in stroke rate among all velocities (P swimming velocity. These findings do not appear to support the effectiveness of trunk training performed by competitive swimmers aimed at increasing intra-abdominal pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Flow analysis of C. elegans swimming

    Science.gov (United States)

    Montenegro-Johnson, Thomas; Gagnon, David; Arratia, Paulo; Lauga, Eric

    2015-11-01

    Improved understanding of microscopic swimming has the potential to impact numerous biomedical and industrial processes. A crucial means of analyzing these systems is through experimental observation of flow fields, from which it is important to be able to accurately deduce swimmer physics such as power consumption, drag forces, and efficiency. We examine the swimming of the nematode worm C. elegans, a model system for undulatory micro-propulsion. Using experimental data of swimmer geometry and kinematics, we employ the regularized stokeslet boundary element method to simulate the swimming of this worm outside the regime of slender-body theory. Simulated flow fields are then compared with experimentally extracted values confined to the swimmer beat plane, demonstrating good agreement. We finally address the question of how to estimate three-dimensional flow information from two-dimensional measurements.

  11. Effects of hydrodynamic interactions in bacterial swimming.

    Science.gov (United States)

    Chattopadhyay, Suddhashil; Lun Wu, Xiao

    2008-03-01

    The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.

  12. Undulatory swimming in fluids with polymer networks

    CERN Document Server

    Gagnon, D A; Arratia, P E

    2013-01-01

    The motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentrations is systematically investigated in experiments using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65% in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed.

  13. The swimming mechanics of Artemia Salina

    Science.gov (United States)

    Ruiz-Angulo, A.; Ramos-Musalem, A. K.; Zenit, R.

    2013-11-01

    An experimental study to analyze the swimming strategy of a small crustacean (Artemia Salina) was conducted. This animal has a series of eleven pairs of paddle-like appendices in its thorax. These legs move in metachronal-wave fashion to achieve locomotion. To quantify the swimming performance, both high speed video recordings of the legs motion and time-resolved PIV measurements of the induced propulsive jet were conducted. Experiments were conducted for both tethered and freely swimming specimens. We found that despite their small size, the propulsion is achieved by an inertial mechanism. An analysis of the efficiency of the leg wave-like motion is presented and discussed. A brief discussion on the mixing capability of the induced flow is also presented.

  14. Undulatory Swimming in Fluids with Polymer Networks

    Science.gov (United States)

    Gagnon, David; Shen, Xiaoning; Arratia, Paulo

    2013-11-01

    In this talk, we systematically investigate the motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentration using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65 percent in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed. This work was supported by NSF CAREER (CBET) 0954084.

  15. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed...

  16. Going with the flow or swimming against the tide: should children with central venous catheters swim?

    Science.gov (United States)

    Miller, Jessica; Dalton, Meghan K; Duggan, Christopher; Lam, Shirley; Iglesias, Julie; Jaksic, Tom; Gura, Kathleen M

    2014-02-01

    Children who require long-term parenteral nutrition (PN) have central venous catheters (CVCs) in place to allow the safe and effective infusion of life-sustaining fluids and nutrition. Many consider recreational swimming to be a common part of childhood, but for some, the risk may outweigh the benefit. Children with CVCs may be at increased risk of exit site, tunnel, and catheter-related bloodstream infections (CRBSIs) if these catheters are immersed in water. The purpose of this review is to evaluate the current literature regarding the risk of infection for patients with CVCs who swim and determine if there is consensus among home PN (HPN) programs on this controversial issue. A total 45 articles were reviewed and 16 pediatric HPN programs were surveyed regarding swimming and CVCs. Due to the limited data available, a firm recommendation cannot be made. Recreational water associated outbreaks are well documented in the general public, as is the presence of human pathogens even in chlorinated swimming pools. As a medical team, practitioners can provide information and education regarding the potential risk, but ultimately the decision lies with the parents. If the parents decide swimming is worth the risk, they are encouraged to use products designed for this use and to change their child's dressing immediately after swimming. Due to our experience with a fatal event immediately after swimming, we continue to strongly discourage patients with CVCs from swimming. Further large and well-designed studies regarding the risk of swimming with a CVC are needed to make a strong, evidence-based recommendation.

  17. Determinant kinantropometric factors in swimming

    Directory of Open Access Journals (Sweden)

    João Paulo Vilas-Boas

    2002-12-01

    Full Text Available The aim of this work is to present a bibliographic review, based on the specialized literature, of the kineantropometric characteristics of swimmers and their importance for swimming performance. The main conclusions were: (i swimmers are taller and heavier than the general population; (ii swimmers present an high index of arm span/height (explained by a large biacromial diameter and long the upper arm; (iii high values for the biacromial/bicristal diameter ratio were found, offering a lower drag coeffi cient; (iv high length and surface area arm and leg values were observed (which positively infl uence their propulsion capacity; (v elite male swimmers presents a ectomorph-endomorph somatotype and elite female swimmers are central or balanced mesomorphs (vi swimmers exhibit a higher percentage of body mass than other athletes, which may benefi t positively their floatation. RESUMO O objetivo deste trabalho é apresentar uma revisão bibliográfi ca das principais características cineantropométricas do nadador e a forma como estas infl uenciam a sua prestação na modalidade. As principais conclusões obtidas foram as seguintes: (i os nadadores são mais altos e pesados do que a população em geral; (ii os nadadores apresentam um elevado índice envergadura/ altura, explicitando valores elevados do diâmetro biacromial e do comprimento dos MS; (iii verifi ca-se uma elevada razão entre os diâmetros biacromial e bicristal, traduzindo um fator decisivo na modalidade: a promoção de um coefi ciente de arrasto inferior; (iv foram observados elevados valores de comprimento e superfície dos membros dos nadadores (afetando positivamente a sua capacidade propulsiva; (v os nadadores de elite apresentam um somatótipo médio ecto-mesomorfo e as nadadoras são centrais ou mesomorfas equilibradas; (vi como grupo, os nadadores apresentam um maior percentual de massa gorda do que outros desportistas, fator este que poderá beneficiálos relativamente

  18. How animals drink and swim in fluids

    Science.gov (United States)

    Jung, Sunghwan

    2011-10-01

    Fluids are essential for most living organisms to maintain a healthy body and also serve as a medium in which they locomote. The fluid bulk or interfaces actively interact with biological structures, which produces highly nonlinear, interesting, and complicated dynamical problems. We studied the lapping of cats and the swimming of Paramecia in various fluidic environments. The problem of the cat drinking can be simplified as the competition between inertia and gravity whereas the problem of Paramecium swimming in viscous fluids results from the competition between viscous drag and thrust. The underlying mechanisms are discussed and understood through laboratory experiments utilizing high-speed photography.

  19. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  20. A Study of a Mechanical Swimming Dolphin

    Science.gov (United States)

    Fang, Lilly; Maass, Daniel; Leftwich, Megan; Smits, Alexander

    2007-11-01

    A one-third scale dolphin model was constructed to investigate dolphin swimming hydrodynamics. Design and construction of the model were achieved using body coordinate data from the common dolphin (Delphinus delphis) to ensure geometric similarity. The front two-thirds of the model are rigid and stationary, while an external mechanism drives the rear third. This motion mimics the kinematics of dolphin swimming. Planar laser induced florescence (PLIF) and particle image velocimetry (PIV) are used to study the hydrodynamics of the wake and to develop a vortex skeleton model.

  1. Muscle dynamics in fish during steady swimming

    DEFF Research Database (Denmark)

    Shadwick, RE; Steffensen, JF; Katz, SL

    1998-01-01

    position in swimming fish. Quantification of muscle contractile properties in cyclic contractions relies on in vitro experiments using strain and activation data collected in vivo. In this paper we discuss the relation between these parameters and body kinematics. Using videoradiographic data from swimming...... contraction, suggesting that the phase relation between the muscle strain cycle and its activation must vary along the body. Since this phase relation is critical in determining how the muscle performs in cyclic contractions, the possibility has emerged that dynamic muscle function may change with axial...

  2. Instabilities in the Swimming of Bacteria

    Science.gov (United States)

    Riley, Emily; Lauga, Eric

    2016-11-01

    Peritrichously flagellated bacteria, such as E. coli and B. subtillis, have flagella randomly distributed over their body. These flagella rotate to generate a pushing force that causes the cell to swim body first. For changes in direction these flagella return to their randomly distributed state where the flagella point in many different directions. The main observed state of swimming peritrichously flagellated bacteria however is one where all their flagella gathered or bundled at one end of the body. In this work we address this problem from the point of view of fluid-structure interactions and show theoretically and numerically how the conformation of flagella depends on the mechanics of the cell.

  3. Ion-swimming speed variation of Vibrio cholerae cells

    Indian Academy of Sciences (India)

    Anindito Sen; Ranjan K Nandi; Amar N Ghosh

    2005-09-01

    In the present work we report the variation in swimming speed of Vibrio cholerae with respect to the change in concentration of sodium ions in the medium. We have also studied the variation in swimming speed with respect to temperature. We find that the swimming speed initially shows a linear increase with the increase of the sodium ions in the medium and then plateaus. The range within which the swimming speed attains saturation is approximately the same at different temperatures.

  4. Swimming Pools, Swimming pools, licensed - name, address, contact, volume, Published in 2006, Iowa Dept. of Public Health.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Swimming Pools dataset, was produced all or in part from Published Reports/Deeds information as of 2006. It is described as 'Swimming pools, licensed - name,...

  5. 77 FR 14700 - Safety Zones; Swim Around Charleston, Charleston, SC

    Science.gov (United States)

    2012-03-13

    ... notice regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Swim Around Charleston, Charleston, SC... establish temporary moving safety zones during the Swim Around Charleston, a swimming race occurring on...

  6. 76 FR 38586 - Safety Zone; Swim Around Charleston, Charleston, SC

    Science.gov (United States)

    2011-07-01

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Swim Around Charleston, Charleston, SC... establish a temporary moving safety zone during the Swim Around Charleston, a swimming race occurring...

  7. 78 FR 54583 - Safety Zone; Swim Around Charleston, Charleston, SC

    Science.gov (United States)

    2013-09-05

    ..., telephone 202-366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Swim Around Charleston, Charleston, SC... temporary moving safety zone during the Swim Around Charleston, a swimming race occurring on waters of...

  8. 76 FR 60732 - Drawbridge Operation Regulations; Navesink (Swimming) River, NJ

    Science.gov (United States)

    2011-09-30

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Navesink (Swimming) River, NJ AGENCY... the Oceanic Bridge at mile 4.5 across the Navesink (Swimming) River between Oceanic and Locust Point...-9826. SUPPLEMENTARY INFORMATION: The Oceanic Bridge, across the Navesink (Swimming) River, mile 4.5...

  9. Unique Access to Learning

    Science.gov (United States)

    Goble, Don

    2009-01-01

    This article describes the many learning opportunities that broadcast technology students at Ladue Horton Watkins High School in St. Louis, Missouri, experience because of their unique access to technology and methods of learning. Through scaffolding, stepladder techniques, and trial by fire, students learn to produce multiple television programs,…

  10. Physostomous channel catfish, Ictalurus punctatus, modify swimming mode and buoyancy based on flow conditions.

    Science.gov (United States)

    Yoshida, Makoto A; Yamamoto, Daisuke; Sato, Katsufumi

    2017-02-15

    The employment of gliding in aquatic animals as a means of conserving energy has been theoretically predicted and discussed for decades. Several studies have shown that some species glide, whereas others do not. Freshwater fish species that widely inhabit both lentic and lotic environments are thought to be able to adapt to fluctuating flow conditions in terms of locomotion. In adapting to the different functional demands of lentic and lotic environments on fish energetics, physostomous (open swim bladder) fish may optimise their locomotion and activity by controlling their net buoyancy; however, few buoyancy studies have been conducted on physostomous fish in the wild. We deployed accelerometers on free-ranging channel catfish, Ictalurus punctatus, in both lentic and lotic environments to quantify their swimming activity, and to determine their buoyancy condition preferences and whether gliding conserves energy. Individual comparisons of swimming efforts between ascent and descent phases revealed that all fish in the lentic environment had negative buoyancy. However, all individuals showed many descents without gliding phases, which was contrary to the behaviour predicted to minimise the cost of transport. The fact that significantly fewer gliding phases were observed in the lotic environment, together with the existence of neutrally buoyant fish, indicated that channel catfish seem to optimise their locomotion through buoyancy control based on flow conditions. The buoyancy optimisation of channel catfish relative to the flow conditions that they inhabit not only reflects differences in swimming behaviour but also provides new insights into the adaptation of physostome fish species to various freshwater environments. © 2017. Published by The Company of Biologists Ltd.

  11. Paths and patterns: the biology and physics of swimming bacterial populations

    Science.gov (United States)

    Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.

    1995-01-01

    The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.

  12. PFOS affects posterior swim bladder chamber inflation and swimming performance of zebrafish larvae.

    Science.gov (United States)

    Hagenaars, A; Stinckens, E; Vergauwen, L; Bervoets, L; Knapen, D

    2014-12-01

    Perfluorooctane sulphonate (PFOS) is one of the most commonly detected perfluorinated alkylated substances in the aquatic environment due to its persistence and the degradation of less stable compounds to PFOS. PFOS is known to cause developmental effects in fish. The main effect of PFOS in zebrafish larvae is an uninflated swim bladder. As no previous studies have focused on the effect of PFOS on zebrafish swim bladder inflation, the exact mechanisms leading to this effect are currently unknown. The objective of this study was to determine the exposure windows during early zebrafish development that are sensitive to PFOS exposure and result in impaired swim bladder inflation in order to specify the mechanisms by which this effect might be caused. Seven different time windows of exposure (1-48, 1-72, 1-120, 1-144, 48-144, 72-144, 120-144h post fertilization (hpf)) were tested based on the different developmental stages of the swim bladder. These seven time windows were tested for four concentrations corresponding to the EC-values of 1, 10, 80 and 95% impaired swim bladder inflation (EC1=0.70 mg L(-1), EC10=1.14 mg L(-1), EC80=3.07 mg L(-1) and EC95=4.28 mg L(-1)). At 6 days post fertilization, effects on survival, hatching, swim bladder inflation and size, larval length and swimming performance were assessed. For 0.70 mg L(-1), no significant effects were found for the tested parameters while 1.14 mg L(-1) resulted in a reduction of larval length. For 3.07 and 4.28 mg L(-1), the number of larvae affected and the severity of effects caused by PFOS were dependent on the time window of exposure. Exposure for 3 days or more resulted in significant reductions of swim bladder size, larval length and swimming speed with increasing severity of effects when the duration of exposure was longer, suggesting a possible effect of accumulated dose. Larvae that were only exposed early (1-48 hpf) or late (120-144 hpf) during development showed no effects on the studied endpoints

  13. Critical swimming speeds of wild bull trout

    Science.gov (United States)

    Mesa, M.G.; Weiland, L.K.; Zydlewski, G.B.

    2004-01-01

    We estimated the critical swimming speeds (Ucrit) of wild bull trout at 6??, 11??, and 15??C in laboratory experiments. At 11??C, 5 fish ranging from 11 to 19 cm in length had a mean Ucrit of 48.24 cm/s or 3.22 body lengths per second (BL/s). Also at 11??C , 6 fish from 32 to 42 cm had a mean Ucrit of 73.99 cm/s or 2.05 BL/s. At 15??C, 5 fish from 14 to 23 cm had a mean Ucrit of 54.66 cm/s or 2.88 BL/s. No fish successfully swam at 6??C. Swim speed was significantly influenced by fish length. Many bull trout performed poorly in our enclosed respirometers: of 71 Ucrit tests we attempted, only the 16 described above were successful. Bull trout that refused to swim held station within tunnels by using their pectoral fins as depressors, or they rested and later became impinged against a downstream screen. Several common techniques did not stimulate consistent swimming activity in these fish. Our estimates of U crit for bull trout provide an understanding of their performance capacity and will be useful in modeling efforts aimed at improving fish passage structures. We recommend that fishway or culvert designers concerned with bull trout passage maintain velocities within their structures at or below our estimates of Ucrit, thus taking a conservative approach to ensuring that these fish can ascend migratory obstacles safely.

  14. Accumulation of swimming bacteria near an interface

    Science.gov (United States)

    Tang, Jay; Li, Guanglai

    2012-11-01

    Microbes inhabit planet earth over billions of years and have adapted to diverse physical environment of water, soil, and particularly at or near interfaces. We focused our attention on the locomotion of Caulobacter crescentus, a singly flagellated bacterium, at the interface of water/solid or water/air. We measured the distribution of a forward swimming strain of C. crescentus near a surface using a three-dimensional tracking technique based on dark field microscopy and found that the swimming bacteria accumulate heavily within a micrometer from the surface. We attribute this accumulation to frequent collisions of the swimming cells with the surface, causing them to align parallel to the surface as they continually move forward. The extent of accumulation at the steady state is accounted for by balancing alignment caused by these collisions with rotational Brownian motion of the micrometer-sized bacteria. We performed a simulation based on this model, which reproduced the measured results. Additional simulations demonstrate the dependence of accumulation on swimming speed and cell size, showing that longer and faster cells accumulate more near a surface than shorter and slower ones do. The overarching goal of our study is to describe interfacial microbial behavior through detailed analysis of their motion. We acknowledge support by NSF PHY 1058375.

  15. Swimming of the pea crab (Pinnotheres pisum)

    NARCIS (Netherlands)

    Versteegh, C.P.C.; Muller, M.

    2014-01-01

    Aquatic organisms have to deal with different hydrodynamic regimes, depending on their size and speed during locomotion. The pea crab swims by beating the third and fourth pereiopod on opposite sides as pairs. Using particle tracking velocimetry and high-speed video recording, we quantify the kinema

  16. Can phoretic particles swim in two dimensions?

    Science.gov (United States)

    Sondak, David; Hawley, Cory; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc

    2016-12-01

    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows, and ultimately the swimming velocity may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Péclet numbers, we solve the full advection-diffusion equation numerically and show that this decay can be avoided by the particle moving to regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic problem.

  17. Bidirectional swimming in spermatozoa of Tephritid flies.

    Science.gov (United States)

    Baccetti, B; Gibbons, B H; Gibbons, I R

    1989-10-01

    Our observations show that spermatozoa of the Mediterranean fruit fly Ceratitis capitata and of Dacus oleae and Dacus dorsalis are capable of swimming backwards as well as forwards, and that they can change direction abruptly. The preferred direction is backwards, observed in spermatozoa obtained from the male genitalia. Forwards swimming spermatozoa were frequently seen in the spermatheca and close to the eggs. The change in swimming direction appears to be effected solely by a change in the direction of bend propagation, with no significant change in other waveform parameters. In vitro reactivated spermatozoa swim forwards only and require a minimum free Ca++ concentration of about 10(-6) M for movement. A switching of wave propagation from one direction to the other under control of intracellular free Ca++ concentration is suggested. Perhaps the backwards movement allows easier delivery of spermatozoa from the common envelope embedding the heads in the male apparatus, and assures a more efficient movement of the sperm towards the egg, especially given the enormous relative length of the head. The forwards movement is favoured in order to orient the sperm for penetration of the micropile.

  18. Assisted and resisted sprint training in swimming.

    Science.gov (United States)

    Girold, Sébastien; Calmels, Paul; Maurin, Didier; Milhau, Nicolas; Chatard, Jean-Claude

    2006-08-01

    This study was undertaken to determine whether the resisted-sprint in overstrength (OSt) or the assisted-sprint in overspeed (OSp) could be efficient training methods to increase 100-m front crawl performance. Thirty-seven (16 men, 21 women) competition-level swimmers (mean +/- SD: age 17.5 +/- 3.5 years, height 173 +/- 14 cm, weight 63 +/- 14 kg) were randomly divided into 3 groups: OSt, OSp, and control (C). All swimmers trained 6 days per week for 3 weeks, including 3 resisted or assisted training sessions per week for the groups OSt and OSp respectively. Elastic tubes were used to generate swimming overstrength and overspeed. Three 100-m events were performed before, during, and after the training period. Before each 100-m event, strength of the elbow flexors and extensors was measured with an isokinetic dynamometer. Stroke rate and stroke length were evaluated using the video-recorded 100-m events. In the OSt group, elbow extensor strength, swimming velocity, and stroke rate significantly increased (p < 0.05), while stroke length remained unchanged after the 3-week training period. In the OSp group, stroke rate significantly increased (p < 0.05) and stroke length significantly decreased (p < 0.05) without changes in swimming velocity. No significant variations in the C group were observed. Both OSt and OSp proved to be more efficient than the traditional training program. However, the OSt training program had a larger impact on muscle strength, swimming performance, and stroke technique than the OSp program.

  19. Anaerobic critical velocity in four swimming techniques.

    Science.gov (United States)

    Neiva, H P; Fernandes, R J; Vilas-Boas, J P

    2011-03-01

    The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities.

  20. Healthy Swimming Is a Partnership Effort

    Science.gov (United States)

    Grosse, Susan J.

    2009-01-01

    While one cannot control the water chemistry, he/she can control personal hygiene and facility cleanliness. Giardia and cryptosporidium (crypto) are only two of the many recreational water illnesses (RWIs) that can turn happy swim memories into serious illness situations. In this article, the author discusses three factors that determine how…

  1. The Pool Is Not Just for Swimming

    Science.gov (United States)

    Metzker, Andrea

    2004-01-01

    Participating in water fitness workouts is one way to benefit one's health at very little cost. If the pool at a school is used only for swimming, then the benefits of having one barely causes a ripple. When the properties of water and how humans react to water are understood and applied to water activity programs, health benefits and enjoyment…

  2. Hydrodynamics of undulatory underwater swimming: a review.

    Science.gov (United States)

    Connaboy, Chris; Coleman, Simon; Sanders, Ross H

    2009-11-01

    Undulatory underwater swimming (UUS) occurs in the starts and turns of three of the four competitive swimming strokes and plays a significant role in overall swimming performance. The majority of research examining UUS is comparative in nature, dominated by studies comparing aquatic animals' undulatory locomotion with the UUS performance of humans. More recently, research directly examining human forms of UUS have been undertaken, providing further insight into the factors which influence swimming velocity and efficiency. This paper reviews studies which have examined the hydromechanical, biomechanical, and coordination aspects of UUS performance in both animals and humans. The present work provides a comprehensive evaluation of the key factors which combine to influence UUS performance examining (1) the role of end-effector frequency and body amplitudes in the production of a propulsive waveform, (2) the effects of morphology on the wavelength of the propulsive waveform and its subsequent impact on the mode of UUS adopted, and (3) the interactions of the undulatory movements to simultaneously optimise propulsive impulse whilst minimising the active drag experienced. In conclusion, the review recommends that further research is required to fully appreciate the complexity of UUS and examine how humans can further optimise performance.

  3. Healthy Swimming Is a Partnership Effort

    Science.gov (United States)

    Grosse, Susan J.

    2009-01-01

    While one cannot control the water chemistry, he/she can control personal hygiene and facility cleanliness. Giardia and cryptosporidium (crypto) are only two of the many recreational water illnesses (RWIs) that can turn happy swim memories into serious illness situations. In this article, the author discusses three factors that determine how…

  4. Swimming overuse injuries associated with triathlon training.

    Science.gov (United States)

    Bales, James; Bales, Karrn

    2012-12-01

    Most triathlon overuse injuries occur due to the running and cycling aspects of the sport. By nature of swimming being a non-weight-bearing sport, triathletes have a tendency to use swimming for rehabilitation and recovery. Swimming has a significantly lower injury rate than the other 2 disciplines in a triathlon. Most triathletes use the freestyle stroke, because it is typically the first stroke learned, it is for many the fastest stroke, and by lifting the head the freestyle stroke allows triathletes to sight their direction, which is important in open water swimming. During the freestyle stroke, the shoulder undergoes repetitive overhead motion, and shoulder pain is the most common and well-documented site of musculoskeletal pain in competitive swimmers. It is felt that the pathologic process is attributable to repetitive overhead motion causing microtrauma in the shoulder from either mechanical impingement or generalized laxity or both. Without sufficient rest and recovery, the development of inflammation and pain may result. Depending on the age of the triathlete and the exact etiology of the shoulder pain, treatment options range from nonsurgical to surgical in nature.

  5. Strategies for chemically healthy public swimming pools

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht

    of the strategies which can be used to achieve microbiological safe water with low levels of DBPs to ensure healthy environment for bathers. There are different approaches to achieve healthy environment in public swimming pools which in this thesis are divided into three strategies: alternatives to chlorination...

  6. Intermittent Swimming with a Flexible Propulsor

    Science.gov (United States)

    Akoz, Emre; Zeyghami, Samane; Moored, Keith

    2016-11-01

    Some animals propel themselves by using an intermittent swimming gait known as a burst-and-glide or a burst-and-coast motion. These swimmers tend to have a more pronounced pitching of their caudal fins than heaving leading to low non-dimensional heave-to-pitch ratios. Recent work has shown that when this ratio is sufficiently low the efficiency of an intermittently heaving/pitching airfoil can be significantly improved over a continuously oscillating airfoil. However, fish that swim with an intermittent gait, such as cod and saithe, do not have rigid fins, but instead have highly flexible fins. To examine the performance and flow structures of an intermittent swimmer with a flexible propulsor, a fast boundary element method solver strongly coupled with a torsional-spring structural model was developed. A self-propelled virtual body combined with a flexible-hinged pitching airfoil is used to model a free-swimming animal and its flexible caudal fin. The duty cycle of the active to the coasting phase of motion, the torsional spring flexibility and the forcing frequency are all varied. The cost-of-transport and the swimming speed are measured and connected to the observed wake patterns. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  7. Jet flow in steadily swimming adult squid.

    Science.gov (United States)

    Anderson, Erik J; Grosenbaugh, Mark A

    2005-03-01

    Although various hydrodynamic models have been used in past analyses of squid jet propulsion, no previous investigations have definitively determined the fluid structure of the jets of steadily swimming squid. In addition, few accurate measurements of jet velocity and other jet parameters in squid have been reported. We used digital particle imaging velocimetry (DPIV) to visualize the jet flow of adult long-finned squid Loligo pealei (mantle length, L(m)=27.1+/-3.0 cm, mean +/-S.D.) swimming in a flume over a wide range of speeds (10.1-59.3 cm s(-1), i.e. 0.33-2.06 L(m) s(-1)). Qualitatively, squid jets were periodic, steady, and prolonged emissions of fluid that exhibited an elongated core of high speed flow. The development of a leading vortex ring common to jets emitted from pipes into still water often appeared to be diminished and delayed. We were able to mimic this effect in jets produced by a piston and pipe arrangement aligned with a uniform background flow. As in continuous jets, squid jets showed evidence of the growth of instability waves in the jet shear layer followed by the breakup of the jet into packets of vorticity of varying degrees of coherence. These ranged from apparent chains of short-lived vortex rings to turbulent plumes. There was some evidence of the complete roll-up of a handful of shorter jets into single vortex rings, but steady propulsion by individual vortex ring puffs was never observed. Quantitatively, the length of the jet structure in the visualized field of view, L(j), was observed to be 7.2-25.6 cm, and jet plug lengths, L, were estimated to be 4.4-49.4 cm using average jet velocity and jet period. These lengths and an average jet orifice diameter, D, of 0.8 cm were used to calculate the ratios L(j)/D and L/D, which ranged from 9.0 to 32.0 and 5.5 to 61.8, respectively. Jets emitted from pipes in the presence of a background flow suggested that the ratio between the background flow velocity and the jet velocity was more

  8. Swimming fluctuations of micro-organisms due to heterogeneous microstructure

    Science.gov (United States)

    Jabbarzadeh, Mehdi; Hyon, YunKyong; Fu, Henry C.

    2014-10-01

    Swimming microorganisms in biological complex fluids may be greatly influenced by heterogeneous media and microstructure with length scales comparable to the organisms. A fundamental effect of swimming in a heterogeneous rather than homogeneous medium is that variations in local environments lead to swimming velocity fluctuations. Here we examine long-range hydrodynamic contributions to these fluctuations using a Najafi-Golestanian swimmer near spherical and filamentous obstacles. We find that forces on microstructures determine changes in swimming speed. For macroscopically isotropic networks, we also show how the variance of the fluctuations in swimming speeds are related to density and orientational correlations in the medium.

  9. Swimming pool use and birth defect risk.

    Science.gov (United States)

    Agopian, A J; Lupo, Philip J; Canfield, Mark A; Mitchell, Laura E

    2013-09-01

    Swimming during pregnancy is recommended. However, the use of swimming pools is also associated with infection by water-borne pathogens and exposure to water disinfection byproducts, which are 2 mechanisms that are suspected to increase risk for birth defects. Thus, we evaluated the relationship between maternal swimming pool use during early pregnancy and risk for select birth defects in offspring. Data were evaluated for nonsyndromic cases with 1 of 16 types of birth defects (n = 191-1829) and controls (n = 6826) from the National Birth Defects Prevention Study delivered during 2000-2006. Logistic regression analyses were conducted separately for each birth defect type. Separate analyses were conducted to assess any pool use (yes vs no) and frequent use (5 or more occasions in 1 month) during the month before pregnancy through the third month of pregnancy. There was no significant positive association between any or frequent pool use and any of the types of birth defects, even after adjustment for several potential confounders (maternal race/ethnicity, age at delivery, education, body mass index, folic acid use, nulliparity, smoking, annual household income, surveillance center, and season of conception). Frequent pool use was significantly negatively associated with spina bifida (adjusted odds ratio, 0.68; 95% confidence interval, 0.47-0.99). Among offspring of women 20 years old or older, pool use was associated with gastroschisis (adjusted odds ratio, 1.3; 95% confidence interval, 1.0-1.8), although not significantly so. We observed little evidence suggesting teratogenic effects of swimming pool use. Because swimming is a common and suggested form of exercise during pregnancy, these results are reassuring. Copyright © 2013 Mosby, Inc. All rights reserved.

  10. Regulation of stroke pattern and swim speed across a range of current velocities: Diving by common eiders wintering in polynyas in the Canadian Arctic

    NARCIS (Netherlands)

    Heath, J.P.; Gilchrist, H.G.; Ydenberg, R.C.

    2006-01-01

    Swim speed during diving has important energetic consequences. Not only do costs increase as drag rises non-linearly with increasing speed, but speed also affects travel time to foraging patches and therefore time and energy budgets over the entire dive cycle. However, diving behaviour has rarely be

  11. In the rat forced swimming test, NA-system mediated interactions may prevent the 5-HT properties of some subacute antidepressant treatments being expressed.

    Science.gov (United States)

    Rénéric, Jean-Philippe; Bouvard, Manuel; Stinus, Luis

    2002-04-01

    In the rat forced swimming test (FST), reuptake inhibitors selective of either serotonin (5-HT) or noradrenaline (NA) decrease immobility duration, and increase, respectively, swimming and climbing behaviour. In this study, an almost total 6-OHDA-induced NA-depletion prevented the behavioural effects of desipramine, but not fluoxetine. Interestingly, the serotonin/noradrenaline-reuptake-inhibitor milnacipran, as well as a (desipramine+fluoxetine) combination, could produce both swimming and climbing behaviour in NA-lesioned rats, but not in non-lesioned. The new antidepressant mirtazapine, which enhances both 5-HT and NA transmissions, supposedly through the antagonizing of alpha(2)-adrenoreceptors, dose-dependently reduced immobility and increased climbing behaviour. Interestingly, a (mirtazapine+fluoxetine) combination treatment resulted in additive anti-immobility effects and in the summation of fluoxetine-induced swimming with mirtazapine-induced climbing. Taken together, these data suggest that the NA system mediates presynaptic inhibiting interactions on the 5-HT system, that may involve alpha(2)-receptors, and that may limit the efficacy of mixed serotonin/noradrenaline reuptake inhibition in subacute antidepressant treatments.

  12. Health impact of disinfection by-products in swimming pools.

    Science.gov (United States)

    Villanueva, Cristina M; Font-Ribera, Laia

    2012-01-01

    This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs) in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  13. Unexpected Regularity in Swimming Behavior of Clausocalanus furcatus Revealed by a Telecentric 3D Computer Vision System.

    Directory of Open Access Journals (Sweden)

    Giuseppe Bianco

    Full Text Available Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought.

  14. Biomechanical analysis of the swim-start: a review.

    Science.gov (United States)

    Vantorre, Julien; Chollet, Didier; Seifert, Ludovic

    2014-05-01

    This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer's chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert), inter-trial or intra-subject (through repetitions of the same movement), and inter-preference (preferred versus non-preferred technique). Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i) the time between reaction to the start signal and impulse on the block, and (ii) the time in transition (i.e., between gliding and leg

  15. A proposal for refining the forced swim test in Swiss mice.

    Science.gov (United States)

    Costa, Ana Paula Ramos; Vieira, Cintia; Bohner, Lauren O L; Silva, Cristiane Felisbino; Santos, Evelyn Cristina da Silva; De Lima, Thereza Christina Monteiro; Lino-de-Oliveira, Cilene

    2013-08-01

    The forced swim test (FST) is a preclinical test to the screening of antidepressants based on rats or mice behaviours, which is also sensitive to stimulants of motor activity. This work standardised and validated a method to register the active and passive behaviours of Swiss mice during the FST in order to strength the specificity of the test. Adult male Swiss mice were subjected to the FST for 6 min without any treatment or after intraperitoneal injection of saline (0.1 ml/10 g), antidepressants (imipramine, desipramine, or fluoxetine, 30 mg/kg) or stimulants (caffeine, 30 mg/kg or apomorphine, 10mg/kg). The latency, frequency and duration of behaviours (immobility, swimming, and climbing) were scored and summarised in bins of 6, 4, 2 or 1 min. Parameters were first analysed using Principal Components Analysis generating components putatively related to antidepressant (first and second) or to stimulant effects (third). Antidepressants and stimulants affected similarly the parameters grouped into all components. Effects of stimulants on climbing were better distinguished of antidepressants when analysed during the last 4 min of the FST. Surprisingly, the effects of antidepressants on immobility were better distinguished from saline when parameters were scored in the first 2 min. The method proposed here is able to distinguish antidepressants from stimulants of motor activity using Swiss mice in the FST. This refinement should reduce the number of mice used in preclinical evaluation of antidepressants.

  16. NASA's unique networking environment

    Science.gov (United States)

    Johnson, Marjory J.

    1988-01-01

    Networking is an infrastructure technology; it is a tool for NASA to support its space and aeronautics missions. Some of NASA's networking problems are shared by the commercial and/or military communities, and can be solved by working with these communities. However, some of NASA's networking problems are unique and will not be addressed by these other communities. Individual characteristics of NASA's space-mission networking enviroment are examined, the combination of all these characteristics that distinguish NASA's networking systems from either commercial or military systems is explained, and some research areas that are important for NASA to pursue are outlined.

  17. Suicidal behaviour

    NARCIS (Netherlands)

    Neeleman, J

    2001-01-01

    -Prevention of suicidal behaviour remains difficult, despite increasing knowledge of its determinants. Health service efforts hardly affect suicide rates. -Recent shifts in the epidemiology of suicidal behaviour are rising rates among the young and increasing use of violent methods. these can be lin

  18. Comparison of swim recovery and muscle stimulation on lactate removal after sprint swimming.

    Science.gov (United States)

    Neric, Francis B; Beam, William C; Brown, Lee E; Wiersma, Lenny D

    2009-12-01

    Competitive swimming requires multiple bouts of high-intensity exercise, leading to elevated blood lactate. Active exercise recovery has been shown to lower lactate faster than passive resting recovery but may not always be practical. An alternative treatment, electrical muscle stimulation, may have benefits similar to active recovery in lowering blood lactate but to date is unstudied. Therefore, this study compared submaximal swimming and electrical muscle stimulation in reducing blood lactate after sprint swimming. Thirty competitive swimmers (19 men and 11 women) participated in the study. Each subject completed 3 testing sessions consisting of a warm-up swim, a 200-yard maximal frontcrawl sprint, and 1 of 3 20-minute recovery treatments administered in random order. The recovery treatments consisted of a passive resting recovery, a submaximal swimming recovery, or electrical muscle stimulation. Blood lactate was tested at baseline, after the 200-yard sprint, and after 10 and 20 minutes of recovery. A significant interaction (p swimming recovery were significantly lower at 10 minutes (3.50 +/- 1.57 mmol.L-1) and 20 minutes (1.60 +/- 0.57 mmol.L-1) of recovery than either of the other 2 treatments. Electrical muscle stimulation led to a lower mean blood lactate (3.12 +/- 1.41 mmol.L-1) after 20 minutes of recovery compared with passive rest (4.11 +/- 1.35 mmol.L-1). Submaximal swimming proved to be most effective at lowering blood lactate, but electrical muscle stimulation also reduced blood lactate 20 minutes postexercise significantly better than resting passive recovery. Electrical muscle stimulation shows promise as an alternate recovery treatment for the purpose of lowering blood lactate.

  19. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    Science.gov (United States)

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers.

  20. Lane bias in elite-level swimming competition.

    Science.gov (United States)

    Brammer, Christopher; Cornett, Andrew; Stager, Joel

    2017-02-01

    Performance outcomes at the 2013 World Swimming Championship were previously shown to be biased depending on the swimmer's lane assignment. The purpose of this study was to determine if this kind of bias was unique, and if not, if the bias was related to the temporary or permanent nature of the pool. The effect of lane on the average odd-length split minus the preceding even-length split in the 800- and 1500-m freestyle events, and on the relative change from qualifying to preliminary performance in the 50-m events, was determined for 16 other elite-level competitions. Depending on the swimmers' direction, split times were on average 0.16 s slower or faster in at least one lane at each of the 16 competitions, and in 49% of all lanes analysed. In 5 competitions, swimmers were shown to be faster in a majority of lanes in one direction as compared to the other. Analysis of the 50-m events at these 5 competitions indicate that preliminary performances were between 0.5 and 0.9% slower or faster than qualifying times, which is consistent with the direction effect observed in the distance freestyle events. Further, lane biases occur more often in temporary pools (70% of lanes) than in permanent pools (35% of lanes), with water currents as the most plausible cause. The prevalence of lane bias at elite-level swimming competition highlights the need for the implementation of policies and procedures to prevent such bias from occurring again in the future.

  1. Zen and the Art of Swimming – Aesthetical Experience as a New Perspective for Training Technique

    Directory of Open Access Journals (Sweden)

    Dagmar Gerda Martha Dahl

    2016-04-01

    Full Text Available The interest in alternative movement concepts has been on the increase in recent years. Mindfulness is well known in sports psychology, and many sports have been promoted as ‘Zen sports’. The use of the phrase ‘Zen and the Art of ...’ has also become commonplace. People learning and teaching swimming techniques face unique challenges due to the special conditions that water provides. The approach based on looking at swimming as a Zen sport, or as an art in the sense of being a sensual aesthetic experience, and an aesthetic learning process, can provide new teaching and learning opportunities. Gadamer’s, Dewey’s, and Johnson’s philosophical concepts combined with approaches of embodiment theories and theories of aesthetic learning processes (Storch, Stelter, Gallagher have been brought together with the basic elements from Zen and supplemented and exemplified with practical examples.

  2. [Swimming pool suction injury: etiology, profylaxis and management].

    Science.gov (United States)

    Škach, J; Kašák, P; Šrám, J

    2015-01-01

    Swimming pool suction injuries are unique and rare with a substantive risk of fatal consequences. Little children under the age of 8 are the most frequent victims with serious injuries. Drownings of different seriousness are also a usual part of accidents. The case of a 19 year old man trapped in the gluteal area by a unsecured suction drainage hole illustrates the uniqueness of this problem in an interesting way. Prophylactic arrangements are well known but the problem is with their strict application. Fatal causes excluding drowning include hypovolemic shock from the sudden redistribution of intersticial fluid and blood and also the evisceration of the bowel and other abdominal organs. Localised often bizarre and large swellings and sufusions can be treated nonoperatively in the vast majority of cases. For the prevention of these injuries it is important to inform the public and increase their awareness to these injuries. It is also crucial for the correct management of these injuries a deeper awareness of this issue and a sharing of experiences and solutions with other experts.Key words: vacuum - accident - entrapment - compartment syndrome.

  3. Male silver eels mature by swimming

    Directory of Open Access Journals (Sweden)

    Spaink Herman P

    2008-07-01

    Full Text Available Abstract Background If European silver eels are prevented from reproductive migration, they remain in a prepubertal stage by dopaminergic inhibition of pituitary activity. Because this inhibition is likely a requirement for an extended female growth stage, we tested if it is sex-specific by subjecting both sexes to stimulation by GnRHa (Gonadotropin-Releasing Hormone agonist – injection or 3-months swimming in seawater. Results In contrast to females, males showed a two- to three-fold higher LHβ (luteinising hormone β subunit – expression, a three- to five-fold higher GSI (Gonadosomatic index and induced spermatogenesis when compared with the untreated control group. Conclusion Dopaminergic inhibition is thus not effective in males and swimming results in natural maturation, probably via GnRH-release.

  4. Swimming dynamics of the Lyme disease spirochete

    Science.gov (United States)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2013-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat-wave, a process driven by rotating internal flagella. We study B. burgdorferi ’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat-waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology. PMID:23215618

  5. Dynamics of swimming bacteria at complex interfaces

    CERN Document Server

    Lopez, Diego

    2014-01-01

    Flagellated bacteria exploiting helical propulsion are known to swim along circular trajectories near surfaces. Fluid dynamics predicts this circular motion to be clockwise (CW) above a rigid surface (when viewed from inside the fluid) and counter-clockwise (CCW) below a free surface. Recent experimental investigations showed that complex physicochemical processes at the nearby surface could lead to a change in the direction of rotation, both at solid surfaces absorbing slip-inducing polymers and interfaces covered with surfactants. Motivated by these results, we use a far-field hydrodynamic model to predict the kinematics of swimming near three types of interfaces: clean fluid-fluid interface, slipping rigid wall, and a fluid interface covered by incompressible surfactants. Representing the helical swimmer by a superposition of hydrodynamic singularities, we first show that in all cases the surfaces reorient the swimmer parallel to the surface and attract it, both of which are a consequence of the Stokes dip...

  6. Feeding, Swimming and Navigation of Colonial Microorganisms

    Science.gov (United States)

    Kirkegaard, Julius; Bouillant, Ambre; Marron, Alan; Leptos, Kyriacos; Goldstein, Raymond

    2016-11-01

    Animals are multicellular in nature, but evolved from unicellular organisms. In the closest relatives of animals, the choanoflagellates, the unicellular species Salpincgoeca rosetta has the ability to form colonies, resembling true multicellularity. In this work we use a combination of experiments, theory, and simulations to understand the physical differences that arise from feeding, swimming and navigating as colonies instead of as single cells. We show that the feeding efficiency decreases with colony size for distinct reasons in the small and large Péclet number limits, and we find that swimming as a colony changes the conventional active random walks of microorganism to stochastic helices, but that this does not hinder effective navigation towards chemoattractants.

  7. Swimming Dynamics of the Lyme Disease Spirochete

    Science.gov (United States)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  8. Quiet swimming at low Reynolds number

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas

    2015-01-01

    that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three......The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode...... are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world....

  9. ESTIMATION OF COMPETITIVE ACTIVITY IN SYNCHRONIZED SWIMMING

    Directory of Open Access Journals (Sweden)

    Shul'ga L.M.

    2013-01-01

    Full Text Available Aim – is to develop the approach to technical complexity estimation of free routine composition in synchronized swimming. Were analyzed and considered free routine compositions of the strongest swimmers in European and World Championships during the period under study (2008-2011. In the research took part 32 qualified athletes different ages. Were determined the options of the constructed of free program and location the combination saturation in those programs. Were established complicated elements distribution by the minutes of the free routine composition performance and developed the approach to technical complexity estimation of free routine composition (solo for using in training and competitive activity for qualified athletes in synchronized swimming. The total time of breath-holding makes up 40% of the time of the whole free routine composition.

  10. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    Science.gov (United States)

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-01-01

    Abstract The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature. PMID:28713467

  11. Quality Versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    Directory of Open Access Journals (Sweden)

    Nugent Frank J.

    2017-06-01

    Full Text Available The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature.

  12. Alternative heating of a municipal swimming pool

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.

    1982-03-01

    Swimming pools require great amounts of energy at low temperature levels. Therefore the application of alternative heating systems is very suitable. Four different systems are taken into account: compression heat pump, absorption heat pump, motor driven heat pump with thermal recovery, and a combined system. A short thermodynamic analysis is carried out in order to evaluate operating savings. Initial cost estimates demonstrate the advantages of each proposed solution over the conventional system.

  13. Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems

    Science.gov (United States)

    Quelas, J. Ignacio; Althabegoiti, M. Julia; Jimenez-Sanchez, Celia; Melgarejo, Augusto A.; Marconi, Verónica I.; Mongiardini, Elías J.; Trejo, Sebastián A.; Mengucci, Florencia; Ortega-Calvo, José-Julio; Lodeiro, Aníbal R.

    2016-01-01

    Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species. PMID:27053439

  14. Modelling and Fuzzy Control of an Efficient Swimming Ionic Polymer-metal Composite Actuated Robot

    Directory of Open Access Journals (Sweden)

    Qi Shen

    2013-10-01

    Full Text Available In this study, analytical techniques and fuzzy logic methods are applied to the dynamic modelling and efficient swimming control of a biomimetic robotic fish, which is actuated by an ionic polymer-metal composite (IPMC. A physical-based model for the biomimetic robotic fish is proposed. The model incorporates both the hydrodynamics of the IPMC tail and the actuation dynamics of the IPMC. The comparison of the results of the simulations and experiments shows the feasibility of the dynamic model. By using this model, we found that the harmonic control of the actuation frequency and voltage amplitude of the IPMC is a principal mechanism through which the robotic fish can obtain high thrust efficiency while swimming. The fuzzy control method, which is based on the knowledge of the IPMC fish’s dynamic behaviour, successfully utilized this principal mechanism. By comparing the thrust performance of the robotic fish with other control methods via simulation, we established that the fuzzy controller was able to achieve faster acceleration compared with what could be achieved with a conventional PID controller. The thrust efficiency during a steady state was superior to that with conventional control methods. We also found that when using the fuzzy control method the robotic fish can always swim near a higher actuation frequency, which could obtain both the desired speed and high thrust efficiency.

  15. Material selection of safety-relevant components in indoor swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Faller, M.; Richner, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2003-05-01

    Suspended ceilings in indoor swimming pools are safety-relevant components. As was demonstrated by the collapses of the ceiling of the Uster (CH) indoor swimming pool (1985) and again at Steenwijk (NL, 2001) greater attention has to be paid to selecting suitable materials and inspecting the state of such components. Our findings according to corrosion of metal fastening components of more than 150 indoor swimming pools in Switzerland are reported. The corrosion behaviour of stainless steels and galvanized steels are compared and discussed including newer results from the literature. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Deckenabhaengungen in Hallenbaedern sind sicherheitsrelevante Bauteile. Der Wahl des geeigneten Werkstoffs und der Zustandskontrolle dieser Bauteile muessen - wie die Ereignisse des Deckeneinsturzes im Hallenbad Uster (CH, 1985) und erneut in Steenwijk (NL, 2001) zeigten - eine hohe Aufmerksamkeit gewidmet werden. Untersuchungsresultate in korrosionschemischer Hinsicht von metallischen Befestigungselementen in ueber 150 Hallenbaedern in der Schweiz werden vorgestellt. Das Korrosionsverhalten der nichtrostenden Staehle und verzinkter Staehle wird verglichen und unter Beruecksichtigung neuer Resultate aus der Literatur diskutiert. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. Comparison of fin ray sampling methods on white sturgeon Acipenser transmontanus growth and swimming performance.

    Science.gov (United States)

    Nguyen, P L; Jackson, Z J; Peterson, D L

    2016-02-01

    Effects of two fin-ray sampling methods on swimming performance, growth and survival were evaluated for hatchery-reared sub-adult white sturgeon Acipenser transmontanus. Fish were subjected to either a notch removal treatment in which a small section was removed from an anterior marginal pectoral-fin ray, or a full removal treatment in which an entire marginal pectoral-fin ray was removed. Control fish did not have fin rays removed, but they were subjected to a sham operation. A modified 3230 l Brett-type swim tunnel was used to evaluate 10 min critical station-holding speeds (SCSH ) of A. transmontanus, immediately after the fin ray biopsies were obtained with each method. Survival and growth were evaluated over a 6 month period for a separate group of fish subjected to the same biopsy methods. Mean ± S.E. 10 min SCSH were 108·0 ± 2·3, 110·0 ± 2·6 and 115·0 ± 3·5 cm s(-1) for the notch removal group, full removal group and control group, respectively, and were not significantly different among treatments. Behavioural characteristics including tail-beat frequency and time spent hunkering were also not significantly different among treatment groups swimming at the same speeds. There were no mortalities and relative growth was similar among treatment groups. Average biopsy time for the notch removal method was lower and the wounds appeared to heal more quickly compared with the full removal method.

  17. Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae

    Science.gov (United States)

    Gilpin, William; Prakash, Vivek N.; Prakash, Manu

    2017-04-01

    Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrate larvae. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary `tangles' analogous to topological defects that break up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modelling demonstrate that these vortices create a physical trade-off between feeding and swimming in heterogeneous environments, which manifests as distinct flow patterns or `eigenstrokes' representing each behaviour--potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function may generalize to other invertebrates with ciliary bands, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.

  18. Acute apnea swimming: metabolic responses and performance.

    Science.gov (United States)

    Guimard, Alexandre; Prieur, Fabrice; Zorgati, Houssem; Morin, David; Lasne, Françoise; Collomp, Katia

    2014-04-01

    Competitive swimmers regularly perform apnea series with or without fins as part of their training, but the ergogenic and metabolic repercussions of acute and chronic apnea have not been examined. Therefore, we aimed to investigate the cardiovascular, lactate, arterial oxygen saturation and hormonal responses to acute apnea in relation to performance in male swimmers. According to a randomized protocol, 15 national or regional competitive swimmers were monitored while performing four 100-m freestyle trials, each consisting of four 25-m segments with departure every 30 seconds at maximal speed in the following conditions: with normal frequency breathing with fins (F) and without fins (S) and with complete apnea for the four 25-m segments with (FAp) and without fins (SAp). Heart rate (HR) was measured continuously and arterial oxygen saturation, blood, and saliva samples were assessed after 30 seconds, 3 minutes, and 10 minutes of recovery, respectively. Swimming performance was better with fins than without both with normal frequency breathing and apnea (p swimming performance in SAp (p swimming.

  19. Swimming and feeding of mixotrophic biflagellates

    Science.gov (United States)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas; Andersen, Anders

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed, predation risk due to flow-sensing predators, and prey capture? Here, we describe measured flows around two species of mixotrophic, biflagellated haptophytes with qualitatively different flagellar arrangements and beat patterns. We model the near cell flows using two symmetrically arranged point forces with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow facilitates transport of captured prey along the haptonema structure. We argue that prey capture alone cannot fulfil the energy needs of the observed species, and that the mixotrophic life strategy is essential for survival. PMID:28054596

  20. Do resonating bells increase jellyfish swimming performance?

    Science.gov (United States)

    Hoover, Alexander; Miller, Laura

    2013-11-01

    A current question in swimming and flight is whether or not driving flexible appendages at their resonant frequency results in faster or more efficient locomotion. It has been suggested that jellyfish swim faster and/or more efficiently when the bell is driven at its resonant frequency. Previous work has modeled the jellyfish bell as a damped harmonic oscillator, and this simplified model suggests that work done by the bell is maximized when force is applied at the resonant frequency of the bell. We extend the idea of resonance phenomena of the jellyfish bell to a fluid structure interaction framework using the immersed boundary method. We first examine the effects of the bending stiffness of the bell on its resonant frequency. We then further our model with the inclusion of a ``muscular'' spring that connects the two sides of a 2D bell and drives it near its resonant frequency. We use this muscular spring to force the bell at varying frequencies and examine the work done by these springs and the resulting swimming speed. We finally augment our model with a flexible, passive bell margin to examine its role in propulsive efficiency.

  1. Desipramine restricts estral cycle oscillations in swimming.

    Science.gov (United States)

    Contreras, C M; Martínez-Mota, L; Saavedra, M

    1998-10-01

    1. Desipramine (DMI) is a tricyclic antidepressant which reduces the immobility in rats forced to swim; however, it is unknown whether estral cycle phases impinge on DMI actions on immobility in daily swimming tests during several weeks. 2. In female wistar rats, vaginal smears taken before testing defined four estral phases. Afterwards, the authors assessed the latency for the first period of immobility in five-min forced swim tests practiced on 21-day DMI (DMI group), 21-day washout saline given after a 21-day DMI treatment (washout-saline group), or non-treated rats (control group). 3. We observed a longer latency for the first period of immobility in proestrus-estrus from the control and washout-saline groups. The 21-day treatment with DMI (2.1 mg/kg i.p., once a day) significantly (p estral cycle phase. 4. It is concluded that proestrus-estrus relates to increased struggling behavior. DMI enhances struggling behavior independently of hormonal state.

  2. Swimming and feeding of mixotrophic biflagellates

    Science.gov (United States)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas; Andersen, Anders

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed, predation risk due to flow-sensing predators, and prey capture? Here, we describe measured flows around two species of mixotrophic, biflagellated haptophytes with qualitatively different flagellar arrangements and beat patterns. We model the near cell flows using two symmetrically arranged point forces with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow facilitates transport of captured prey along the haptonema structure. We argue that prey capture alone cannot fulfil the energy needs of the observed species, and that the mixotrophic life strategy is essential for survival.

  3. Passive swimming in viscous oscillatory flows

    Science.gov (United States)

    Jo, Ikhee; Huang, Yangyang; Zimmermann, Walter; Kanso, Eva

    2016-12-01

    Fluid-based locomotion at low Reynolds number is subject to the constraints of Purcell's scallop theorem: reciprocal shape kinematics identical under a time-reversal symmetry cannot cause locomotion. In particular, a single degree-of-freedom scallop undergoing opening and closing motions cannot swim. Most strategies for symmetry breaking and locomotion rely on direct control of the swimmer's shape kinematics. Less is known about indirect control via actuation of the fluid medium. To address how such indirect actuation strategies can lead to locomotion, we analyze a Λ -shaped model system analogous to Purcell's scallop but able to deform passively in oscillatory flows. Neutrally buoyant scallops undergo no net locomotion. We show that dense, elastic scallops can exhibit passive locomotion in zero-mean oscillatory flows. We examine the efficiency of swimming parallel to the background flow and analyze the stability of these motions. We observe transitions from stable to unstable swimming, including ordered transitions from fluttering to chaoticlike motions and tumbling. Our results demonstrate that flow oscillations can be used to passively actuate and control the motion of microswimmers, which may be relevant to applications such as surgical robots and cell sorting and manipulation in microfluidic devices.

  4. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  5. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Science.gov (United States)

    2010-07-01

    ... swimming areas and beaches? 3.17 Section 3.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE... and beaches? (a) The superintendent may designate areas as swimming areas or swimming beaches in... flotation devices, glass containers, kites, or incompatible activities in swimming areas or swimming...

  6. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  7. Effects of food type on diel behaviours of common carp Cyprinus carpio in simulated aquaculture pond conditions

    NARCIS (Netherlands)

    Rahman, M.M.; Meyer, C.G.

    2009-01-01

    In order to better understand behaviour patterns of common carp Cyprinus carpio in aquaculture ponds, their diel grazing, swimming, resting and schooling behaviours were observed in six 1 m(2) tanks under simulated pond conditions. Each tank was fertilized to stimulate natural food production before

  8. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  9. Swimming speeds of filaments in nonlinearly viscoelastic fluids

    CERN Document Server

    Fu, Henry C; Powers, Thomas R; 10.1063/1.3086320

    2010-01-01

    Many microorganisms swim through gels and non-Newtonian fluids in their natural environments. In this paper, we focus on microorganisms which use flagella for propulsion. We address how swimming velocities are affected in nonlinearly viscoelastic fluids by examining the problem of an infinitely long cylinder with arbitrary beating motion in the Oldroyd-B fluid. We solve for the swimming velocity in the limit in which deflections of the cylinder from its straight configuration are small relative to the radius of the cylinder and the wavelength of the deflections; furthermore, the radius of the cylinder is small compared to the wavelength of deflections. We find that swimming velocities are diminished by nonlinear viscoelastic effects. We apply these results to examine what types of swimming motions can produce net translation in a nonlinear fluid, comparing to the Newtonian case, for which Purcell's "scallop" theorem describes how time-reversibility constrains which swimming motions are effective. We find that...

  10. SWIMMING CLASSES IN JUNIOR HIGH SCHOOL STUDENTS’ OPINION

    Directory of Open Access Journals (Sweden)

    Grzegorz Bielec

    2013-02-01

    Full Text Available The role of modern physical education is not only to develop motor abilities of the students, but most of all prevent them from epidemic youth diseases such as obesity or postural defects. Positive attitudes to swimming as a long-life physical activity, instilled in adolescence should be beneficial in adult life. The group of 130 boys and 116 girls of 7th grade junior high school (mean age 14.6 was asked in the survey to present their opinion of obligatory swimming lessons at school. Students of both sexes claimed that they liked swimming classes because they could improve their swimming skills (59% of answers and because of health-related character of water exercises (38%. 33% of students regarded swimming lessons as boring and monotonous, and 25% of them complained about poor pool conditions like chlorine smell, crowded lanes, too low temperature. Majority of the surveyed students saw practical role of swimming in saving others life.

  11. Swimming of Vorticella in two-dimensional confinements

    Science.gov (United States)

    Sotelo, Luz; Park, Young-Gil; Jung, Sunghwan; Ryu, Sangjin

    2015-03-01

    Vorticellais a ciliate observed in the stalked sessile form (trophont), which consists of an inverted bell-shaped cell body (zooid) and a slender stalk attaching the zooid to a substrate. Having circular cilia bands around the oral part, the stalkless zooid of Vorticella can serve as a model system for microorganism swimming. Here we present how the stalkess trophont zooid of Vorticella swims in two-dimensional confined geometries which are similar to the Hele-Shaw cell. Having harvested stalkless Vorticella zooids, we observed their swimming in water between two glass surfaces using video microscopy. Based on measured swimming trajectories and distributions of zooid orientation and swimming velocity, we analyzed how Vorticella's swimming mobility was influenced by the geometry constraints. Supported by First Award grant from Nebraska EPSCoR.

  12. Upward swimming of a sperm cell in shear flow

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  13. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  14. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  15. Injury patterns in Division I collegiate swimming.

    Science.gov (United States)

    Wolf, Brian R; Ebinger, Alexander E; Lawler, Michael P; Britton, Carla L

    2009-10-01

    In the last 25 years, it is estimated that over 42,000 male and female swimmers have competed at the National Collegiate Athletic Association (NCAA) Division I-A level. Despite the magnitude of these numbers, little is known about the epidemiology of collegiate swimming injuries. Purpose To describe the pattern of injuries incurred for one NCAA Division I collegiate men's and women's swimming team over 5 seasons. Descriptive epidemiology study. Musculoskeletal and head injuries reported in the Sports Injury Management System for a Division I swimming team from 2002-2007 were identified. Gender, body part, year of eligibility, position, stroke specialty, scholarship status, and team activity during which the injury occurred and lost time were recorded. Risk of injury was assessed relative to gender, stroke specialty, and year of eligibility. From 2002-2007, 44 male and 50 female athletes competed for the University of Iowa swimming and diving team. The overall injury rates were estimated as 4.00 injuries per 1000 exposures for men and 3.78 injuries per 1000 exposures for women. Thirty-seven percent of injuries resulted in missed time. The shoulder/upper arm was the most frequently injured body part followed by the neck/back. Freshman swimmers suffered the most injuries as well as the highest mean number of injuries per swimmer. A significant pattern of fewer injuries in later years of eligibility was also demonstrated. The relative risk (RR) for injury was higher among nonfreestyle stroke specialties (RR, 1.33 [1.00-1.77]). Injury most often occurred as a result of, or during, practice for all swimmers. However, 38% of injuries were the result of team activities outside of practice or competition, such as strength training. No significant relationship was found between occurrence of injury and gender or scholarship status. There was no significant relationship between body part injured and stroke specialty. An increased number of total injuries and an increased risk

  16. Behavioural Modernity

    OpenAIRE

    McLean, Laura

    2015-01-01

    Behavioural Modernity explores the changing politics of representation and ethics of care in curatorial practice, necessitated by an increasing blurring of boundaries between the human, the technological, and the planetary.

  17. Sickness Behaviour:

    African Journals Online (AJOL)

    adaptive function for hyperthermia and ... on immunity. However ... infectious disorders probably lies in the ... nervous system, and thus behaviour, .... Fever: Basic ... system. In Ader R, Felten DL,. Cohen N, editors. Psychoneuro- immunology.

  18. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    Science.gov (United States)

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R W [Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)], E-mail: blake@zoology.ubc.ca

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ({approx}0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  20. On the Swimming of \\textit{Dictyostelium} amoebae

    CERN Document Server

    Bae, Albert

    2010-01-01

    Traditionally, the primary mode for locomotion of amoeboid cells was thought to be crawling on a substrate. Recently, it has been experimentally shown that \\textit{Dictostelium} amoeba and neutrophils can also swim in a directed fashion. The mechanisms for amoeboid crawling and swimming were hypothesized to be similar. In this letter, we show that the shape changes generated by a crawling \\textit{D. discoideum} cell are consistent with swimming.

  1. The effect of gait on swimming in viscoelastic fluids

    CERN Document Server

    Elfring, Gwynn J

    2015-01-01

    In this paper, we give formulas for the swimming of simplified two-dimensional bodies in complex fluids using the reciprocal theorem. By way of these formulas we calculate the swimming velocity due to small-amplitude deformations on the simplest of these bodies, a two-dimensional sheet, to explore general conditions on the swimming gait under which the sheet may move faster, or slower, in a viscoelastic fluid compared to a Newtonian fluid.

  2. Examining Self-Training Procedures in Leisure Swimming

    OpenAIRE

    J. Potdevin, Francois; Normani, Clement; Pelayo, Patrick

    2013-01-01

    This study investigated contents of training sessions from 387 regular swimmers involved in a recreational workout without supervision. We did use multiple correspondences analysis in order to identify self-trained swimmers typology in a sample from a social networking website, focusing on swimming practice. Self-reported parameters (n = 12) were age, gender, practice frequency, supervision in physical activity experiment, main training target, main reason for swimming choice, swimming sessio...

  3. Laryngoscopy during swimming: A novel diagnostic technique to characterize swimming-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken; Morris, Tessa E; Furber, Matthew; Backer, Vibeke; Hull, James H

    2017-10-01

    Exercise-induced laryngeal obstruction (EILO) is a key differential diagnosis for respiratory symptoms in athletes and is particularly prevalent in aquatic athletes. A definitive diagnosis of EILO is dependent on laryngoscopy, performed continuously, while an athlete engages in the sport that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 127:2298-2301, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  4. The bacterial magnetosome: a unique prokaryotic organelle.

    Science.gov (United States)

    Lower, Brian H; Bazylinski, Dennis A

    2013-01-01

    The bacterial magnetosome is a unique prokaryotic organelle comprising magnetic mineral crystals surrounded by a phospholipid bilayer. These inclusions are biomineralized by the magnetotactic bacteria which are ubiquitous, aquatic, motile microorganisms. Magnetosomes cause cells of magnetotactic bacteria to passively align and swim along the Earth's magnetic field lines, as miniature motile compass needles. These specialized compartments consist of a phospholipid bilayer membrane surrounding magnetic crystals of magnetite (Fe3O4) or greigite (Fe3S4). The morphology of these membrane-bound crystals varies by species with a nominal magnetic domain size between 35 and 120 nm. Almost all magnetotactic bacteria arrange their magnetosomes in a chain within the cell there by maximizing the magnetic dipole moment of the cell. It is presumed that magnetotactic bacteria use magnetotaxis in conjunction with chemotaxis to locate and maintain an optimum position for growth and survival based on chemistry, redox and physiology in aquatic habitats with vertical chemical concentration and redox gradients. The biosynthesis of magnetosomes is a complex process that involves several distinct steps including cytoplasmic membrane modifications, iron uptake and transport, initiation of crystallization, crystal maturation and magnetosome chain formation. While many mechanistic details remain unresolved, magnetotactic bacteria appear to contain the genetic determinants for magnetosome biomineralization within their genomes in clusters of genes that make up what is referred to as the magnetosome gene island in some species. In addition, magnetosomes contain a unique set of proteins, not present in other cellular fractions, which control the biomineralization process. Through the development of genetic systems, proteomic and genomic work, and the use of molecular and biochemical tools, the functions of a number of magnetosome membrane proteins have been demonstrated and the molecular

  5. Swimming exercise: impact of aquatic exercise on cardiovascular health.

    Science.gov (United States)

    Tanaka, Hirofumi

    2009-01-01

    Swimming is an exercise modality that is highly suitable for health promotion and disease prevention, and is one of the most popular, most practiced and most recommended forms of physical activity. Yet little information is available concerning the influence of regular swimming on coronary heart disease (CHD). Exercise recommendations involving swimming have been generated primarily from unjustified extrapolation of the data from other modes of exercise (e.g. walking and cycling). Available evidence indicates that, similarly to other physically active adults, the CHD risk profile is more favourable in swimmers than in sedentary counterparts and that swim training results in the lowering of some CHD risk factors. However, the beneficial impact of regular swimming may be smaller than land-based exercises. In some cases, regular swimming does not appear to confer beneficial effects on some CHD risk factors. Moreover, swimming has not been associated with the reduced risks of developing CHD. Thus, extrapolation of research findings using land-based exercises into swimming cannot be justified, based on the available research. Clearly, more research is required to properly assess the effects of regular swimming on CHD risks in humans.

  6. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  7. Disinfection byproducts in swimming pool: occurrences, implications and future needs.

    Science.gov (United States)

    Chowdhury, Shakhawat; Alhooshani, Khalid; Karanfil, Tanju

    2014-04-15

    Disinfection of swimming pool water is essential to deactivate pathogenic microorganisms. Many swimming pools apply chlorine or bromine based disinfectants to prevent microbial growth. The chlorinated swimming pool water contains higher chlorine residual and is maintained at a higher temperature than a typical drinking water distribution system. It constitutes environments with high levels of disinfection by-products (DBPs) in water and air as a consequence of continuous disinfection and constant organic loading from the bathers. Exposure to those DBPs is inevitable for any bather or trainer, while such exposures can have elevated risks to human health. To date, over 70 peer-reviewed publications have reported various aspects of swimming pool, including types and quantities of DBPs, organic loads from bathers, factors affecting DBPs formation in swimming pool, human exposure and their potential risks. This paper aims to review the state of research on swimming pool including with the focus of DBPs in swimming pools, understand their types and variability, possible health effects and analyze the factors responsible for the formation of various DBPs in a swimming pool. The study identifies the current challenges and future research needs to minimize DBPs formation in a swimming pool and their consequent negative effects to bathers and trainers.

  8. After swimming one goes on the ice. Multifunctional complex of sports and leisure uses energetic synergies; Nach dem Schwimmen geht's aufs Eis. Multifunktionaler Sport- und Freizeitkomplex nutzt energetische Synergien

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Frank Peter [Redaktionbuero Archikontext, Berlin (Germany); Vonseelen, Tanja

    2012-11-01

    In Lentpark (Cologne, Federal Republic of Germany) skating and swimming are combined in one building - an unusual combination of use with tradition in Cologne. Recently the bureau Schulitz Architecture + Technology (Braunschweig, Federal Republic of Germany) designed the completed new building of the ice ring and swimming hall. The new building develops the energetic synergies of the coexistence of ice preparation and water heating. The new building was commissioned by KoelnBaeder GmbH (Cologne, Federal Republic of Germany) and is a unique of modern skating arena with spectacular ice overhead way, swimming pool and sauna in Europe.

  9. Behaviour in a standardized assay, but not metabolic or growth rate, predicts behavioural variation in an adult aquatic top predator Esox lucius in the wild.

    Science.gov (United States)

    Laskowski, K L; Monk, C T; Polverino, G; Alós, J; Nakayama, S; Staaks, G; Mehner, T; Arlinghaus, R

    2016-04-01

    This study tested for links among behaviour, state and life-history variables as predicted by the pace-of-life hypothesis in adult pike Esox lucius. First, a standardized open-field behavioural assay was developed to assess individual behaviour of wild-captured adult E. lucius. Behaviour within the standardized assay predicted swimming behaviour in the lake, providing an ecological validation of the assay. There was no relationship between standardized behaviour and any of the life-history and state variables, including metabolism, body condition, juvenile growth rate and adult growth rate in contrast to predictions from the pace-of-life hypothesis. This study demonstrates that it is possible to assess ecologically relevant behavioural variation in a large-bodied top predator using a standard open-field assay, but it is noteworthy that this standardized behaviour is not systematically related to standard metabolism or growth.

  10. Evaluation of swimming performance for fish passage of longnose dace Rhinichthys cataractae using an experimental flume.

    Science.gov (United States)

    Dockery, D R; McMahon, T E; Kappenman, K M; Blank, M

    2017-03-01

    The swimming performance of longnose dace Rhinichthys cataractae, the most widely distributed minnow (Cyprinidae) in North America, was assessed in relation to potential passage barriers. The study estimated passage success, maximum ascent distances and maximum sprint speed in an open-channel flume over a range of water velocities and temperatures (10·7, 15·3 and 19·3° C). Rhinichthys cataractae had high passage success (95%) in a 9·2 m flume section at mean test velocities of 39 and 64 cm s(-1) , but success rate dropped to 66% at 78 cm s(-1) . Only 20% of fish were able to ascend a 2·7 m section with a mean velocity of 122 cm s(-1) . Rhinichthys cataractae actively selected low-velocity pathways located along the bottom and corners of the flume at all test velocities and adopted position-holding behaviour at higher water velocities. Mean volitional sprint speed was 174 cm s(-1) when fish volitionally sprinted in areas of high water velocities. Swimming performance generally increased with water temperature and fish length. Based on these results, fishways with mean velocities 100 cm s(-1) within structures should be limited to short distance (swimming performance metrics in an open-channel flume, which can simulate the hydraulic features of fishways and allow for behavioural observations that can facilitate the design of effective passage structures. © 2016 The Fisheries Society of the British Isles.

  11. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    Science.gov (United States)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  12. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P inspiratory pressure was unchanged. Running economy improved by 6 (9)% in CFB following training (P swimmers.

  13. Hypothermia and afterdrop following open water swimming: the Alcatraz/San Francisco Swim Study.

    Science.gov (United States)

    Nuckton, T J; Claman, D M; Goldreich, D; Wendt, F C; Nuckton, J G

    2000-10-01

    To determine whether or not participants in open water swim events experience hypothermia and afterdrop, rectal temperature was measured for up to 45 minutes in 11 subjects following the New Year's Day Alcatraz Swim. This event was held in open water (11.7 degrees C [53.0 degrees F]) in the San Francisco Bay, and participants did not wear wetsuits or other protective clothing. Biophysical parameters, including surfacelvolume ratio, body mass index, and percent body fat were measured before the swim, and statistical analysis was done to determine predictors of temperature decrease and afterdrop duration. Applying the American Heart Association definition of hypothermia (less than 36.0 C [96.8 degrees F]), hypothermia was seen in 5 of the 11 subjects. Using a more rigorous and traditional definition (less than 35.0 degrees C [95.0 degrees F]), hypothermia was seen in only one subject. Afterdrop, defined as continued cooling following removal from cold stress, was seen in 10 of the 11 subjects. Surface/volume ratio (S/V) and body mass index (BMI) predicted the lowest recorded temperatures (P water swimming, and that participants should be observed for signs of temperature decrease following removal from cold stress.

  14. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  15. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  16. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves

  17. Self-rescue swimming in cold water: the latest advice.

    Science.gov (United States)

    Ducharme, Michel B; Lounsbury, David S

    2007-08-01

    According to the 2006 Canadian Red Cross Drowning Report, 2007 persons died of cold-water immersion in Canada between 1991 and 2000. These statistics indicate that prevention of cold-water immersion fatalities is a significant public health issue for Canadians. What should a person do after accidental immersion in cold water? For a long time, aquatic safety organizations and government agencies stated that swimming should not be attempted, even when a personal flotation device (PFD) is worn. The objective of the present paper is to present the recent scientific evidence making swimming a viable option for self-rescue during accidental cold-water immersion. Early studies in the 1960s and 1970s led to a general conclusion that "people are better off if they float still in lifejackets or hang on to wreckage and do not swim about to try to keep warm". Recent evidence from the literature shows that the initial factors identified as being responsible for swimming failure can be either easily overcome or are not likely the primary contributors to swimming failure. Studies over the last decade reported that swimming failure might primarily be related not to general hypothermia, but rather to muscle fatigue of the arms as a consequence of arm cooling. This is based on the general observation that swimming failure developed earlier than did systemic hypothermia, and can be related to low temperature of the arm muscles following swimming in cold water. All of the above studies conducted in water between 10 and 14 degrees C indicate that people can swim in cold water for a distance ranging between about 800 and 1500 m before being incapacitated by the cold. The average swimming duration for the studies was about 47 min before incapacitation, regardless of the swimming ability of the subjects. Recent evidence shows that people have a very accurate idea about how long it will take them to achieve a given swimming goal despite a 3-fold overestimation of the absolute distance to

  18. Swimming and asthma: factors underlying respiratory symptoms in competitive swimmers.

    Science.gov (United States)

    Päivinen, Marja Kristiina; Keskinen, Kari Lasse; Tikkanen, Heikki Olavi

    2010-04-01

    Swimming is recommended for asthmatics. However, many competitive swimmers report asthmatic symptoms. While some studies identify the swimming environment as a trigger for allergy and asthmatic symptoms, even more studies suggest swimming to be suitable for people with allergies and asthma. The factors behind the symptoms were studied first by determining the prevalence of asthma, allergy and self-reported asthmatic symptoms in experienced Finnish swimmers and then by examining the relationships between the reported symptoms and the main triggering factors: medical history, environment and exercise intensity. Top swimmers (n = 332) of the Finnish Swimming Association registry (N = 4578) were asked to complete a structured questionnaire on their medical history, swimming background, swimming environment and symptoms in different swimming intensities. Two hundred experienced swimmers, 107 females and 93 males, with an average age of 18.5 [standard deviation (SD) = 3.0] years and a swimming training history of 9 (SD = 3.8) years completed the questionnaire. Physician-diagnosed asthma was reported by 32 swimmers (16%), including 24 (12%) with exercise-induced asthma. Physician-diagnosed allergy was reported by 81 (41%) swimmers. Asthmatic symptoms during swimming were described by 84 subjects (42%). Most symptoms occurred when swimming exceeded speeds corresponding to the lactic/anaerobic threshold. Family history of asthma was significant and the most important risk factor for asthmatic symptoms. The prevalence of asthma in swimmers was higher than in the general population but not different from that in other endurance athletes. Family history of asthma and increased swimming intensity had the strongest associations with the reported asthmatic symptoms.

  19. Cellular effects of swim stress in the dorsal raphe nucleus.

    Science.gov (United States)

    Kirby, Lynn G; Pan, Yu-Zhen; Freeman-Daniels, Emily; Rani, Shobha; Nunan, John D; Akanwa, Adaure; Beck, Sheryl G

    2007-07-01

    Swim stress regulates forebrain 5-hydroxytryptamine (5-HT) release in a complex manner and its effects are initiated in the serotonergic dorsal raphe nucleus (DRN). The purpose of this study was to examine the effects of swim stress on the physiology of DRN neurons in conjunction with 5-HT immunohistochemistry. Basic membrane properties, 5-HT(1A) and 5-HT(1B) receptor-mediated responses and glutamatergic excitatory postsynaptic currents (EPSCs) were measured using whole-cell patch clamp techniques. Rats were forced to swim for 15min and 24h later DRN brain slices were prepared for electrophysiology. Swim stress altered the resting membrane potential, input resistance and action potential duration of DRN neurons in a neurochemical-specific manner. Swim stress selectively elevated glutamate EPSC frequency in 5-HT DRN neurons. Swim stress non-selectively reduced EPSC amplitude in all DRN cells. Swim stress elevated the 5-HT(1B) receptor-mediated inhibition of glutamatergic synaptic activity that selectively targeted 5-HT cells. Non-5-HT DRN neurons appeared to be particularly responsive to the effects of a milder handling stress. Handling elevated EPSC frequency, reduced EPSC decay time and enhanced a 5-HT(1B) receptor-mediated inhibition of mEPSC frequency selectively in non-5-HT DRN cells. These results indicate that swim stress has both direct, i.e., changes in membrane characteristics, and indirect effects, i.e., via glutamatergic afferents, on DRN neurons. These results also indicate that there are distinct local glutamatergic afferents to neurochemically specific populations of DRN neurons, and furthermore that these distinct afferents are differentially regulated by swim stress. These cellular changes may contribute to the complex effects of swim stress on 5-HT neurotransmission and/or the behavioral changes underlying the forced swimming test model of depression.

  20. Performance Study of Swimming Pool Heaters

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  1. Uniqueness is Important in Competition

    Institute of Scientific and Technical Information of China (English)

    FENG Ai-Xia; XV Xiu-Lian; HE Da-Ren

    2009-01-01

    We propose a quantitative network description on the function of uniqueness in a competition system. Two statistical parameters, competition ability and uniqueness are defined, and their relationship in ordinary cases is analytically discussed. The competition between Chinese regional universities is taken as an example. The empirical investigation results show that the uniqueness of a university is really important in competition. Also,uniqueness is very helpful in the promotion of the university overall quality.

  2. On Uniqueness of coalitional equilibria

    NARCIS (Netherlands)

    Finus, M.; Mouche, van P.H.M.; Rundshagen, B.

    2014-01-01

    For the so-called "new approach" of coalitio formation it is important that coalitional equilibria are unique. Uniqueness comes down to existene and to semi-uniqueness, i.e.\\\\that there exists at most one equilibrium. Although conditions for existence are not problematic, conditions for semi-uniquen

  3. How neurons generate behaviour in a hatchling amphibian tadpole: an outline

    Directory of Open Access Journals (Sweden)

    Alan Roberts

    2010-06-01

    Full Text Available Adult nervous systems are so complex that understanding how they produce behaviour remains a real challenge. We chose to study hatchling Xenopus tadpoles where behaviour is controlled by a few thousand neurons but there is a very limited number of types of neuron. Young tadpoles can flex, swim away, adjust their trajectory, speed-up and slow-down, stop when they contact support and struggle when grasped. They are sensitive to touch, pressure, noxious stimuli, light intensity and water currents. Using whole-cell recording has led to rapid progress in understanding central networks controlling behaviour. Our methods are illustrated by an analysis of the flexion reflex to skin touch. We then define the 7 types of neuron that allow the tadpole to swim when the skin is touched and use paired recordings to investigate neuron properties, synaptic connections and activity patterns. Proposals on how the swim network operates are evaluated by experiment and network modelling. We then examine GABAergic inhibitory pathways that control swimming but also produce tonic inhibition to reduce responsiveness when the tadpole is at rest. Finally, we analyse the strong alternating struggling movements the tadpole makes when grasped. We show that the mechanisms for rhythm generation here are very different to those during swimming. Although much remains to be explained, study of this simple vertebrate has uncovered basic principles about the function and organisation of vertebrate nervous systems.

  4. Swimming and cardiovascular fitness in the older age group.

    Science.gov (United States)

    Arthur, R J

    1975-01-01

    Coronary artery disease is an extraordinarily common and devastating disorder of middle aged and even young men in the United States and Western Europe. An increasing risk of developing the disease is associated with such factors as high blood pressure, obesity, high levels of cholesterol in the blood serum, cigarette smoking, certain behavioral patterns, decreased vital capacity and a low level of physical activity. There is much evidence to indicate that exercise may well help prevent heart attacks through such mechanisms as increasing heart efficiency, decreasing the level of serum cholesterol, decreasing obesity, decreasing high blood pressure and promoting psychic well-being. It is necessary, however, that the exercise be continued throughout life. Athletic activity in high school or college is of no help in later years. The exercise must be part of a regular scheduled year-round activity. It is suggested that swimming has many unique advantages for such an endeavor. The Amateur Athletic Union of the United States has developed competition in older age groups as a motivating force for the continuance of a regular training program of a healthful nature.

  5. The Effects of a Motivational Training Program on Competitive Swimming.

    Science.gov (United States)

    O'Block, Frank; Evans, Fred

    1981-01-01

    Analyzed the effect of a seven-week motivational training program on competitive veteran swimmers. Results suggested that the motivational training program exerted significant and positive influences on swimming performances. Swimmers perceived the program effective in improving swimming performances, developing personal motivation, establishing…

  6. Relationship between Muscle Strength and Front Crawl Swimming Velocity

    Directory of Open Access Journals (Sweden)

    Gola Radosław

    2014-08-01

    Full Text Available Purpose. competitive performance in swimming depends on a number of factors including, among others, the development of relevant muscle groups. The aim of the study was to clarify the relationship between muscle strength and swimming velocity and the role of individual muscle groups in front crawl swimming. Methods. sixteen physical education university students participated in the study. The strength values, defined as torque produced during isometric contractions, of eight upper and lower extremity muscle groups were measured. Data were compared with participants' front crawl swim times in the 25m and 50m distances. Results. correlation analysis demonstrated a relationship between muscle strength and swimming velocity. statistically significant relationships were observed between swimming velocity and the torque values of the elbow flexor and shoulder extensor muscles as well as the sum of upper extremity muscle torque values (p ⋋ 0.05. Conclusions. The results indicate the need for a focus on training those muscle groups identified as having a statistically significant relationship with swimming velocity for a given distance, as the sample showed deficiencies in the strength of those muscle groups responsible for generating propulsive force in the front crawl. Additionally, the collected data can serve as a diagnostic tool in evaluating the development of muscle groups critical for swimming performance.

  7. An Annotated Bibliography of Experimental Research concerning Competitive Swimming.

    Science.gov (United States)

    Bachman, John C.

    This annotated bibliography has been compiled as a guide for the researcher of swimming in referring to experimental studies in the physiological, mechanical, psychological, and medical aspects of swimming. The studies have been briefly annotated to enable the reader to quickly determine the salient points the authors made in their studies. The…

  8. 78 FR 23329 - Aircraft Access to SWIM Working Group Meeting

    Science.gov (United States)

    2013-04-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Aircraft Access to SWIM Working Group Meeting Meeting Announcement... attend and participate in an Aircraft Access to SWIM Working Group Meeting scheduled for Thursday, May...

  9. Stokesian swimming of a sphere at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2016-01-01

    Explicit expressions are derived for the matrices determining the mean translational and rotational swimming velocities and the mean rate of dissipation for Stokesian swimming at low Reynolds number of a distorting sphere in a viscous incompressible fluid. As an application an efficient helical propeller-type stroke is found and its properties are calculated.

  10. A meta-analysis of steady undulatory swimming

    NARCIS (Netherlands)

    van Weerden, J. Fransje; Reid, Daniel A. P.; Hemelrijk, Charlotte K.

    2014-01-01

    The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between kine

  11. [Green hair caused by frequent swimming pool use].

    Science.gov (United States)

    Biel, K; Kretzschmar, L; Müller, C; Metze, D; Traupe, H

    1997-08-01

    Three patients presented with an acquired green discoloration of their scalp hair. History revealed that all of them swam regularly in private swimming pools. Examination of the hair by atomic emission spectroscopy showed that the green discoloration was caused by an excessively high copper content of the hair. This exogeneous discoloration is characteristically related to the uptake of copper from private swimming pools.

  12. Swimming & Diving: Special Olympics Sports Skills Instructional Program.

    Science.gov (United States)

    Joseph P. Kennedy, Jr. Foundation, Washington, DC.

    One of five parts of the Special Olympics' Sports Skills Instructional Program, the booklet addresses ways to teach swimming and diving to mentally retarded students. Short term objectives of the program encompass warmup, basic swimming and diving skills, safety, and good sportsmanship. The long term goal focuses on acquisition of basic skills,…

  13. Swimming patterns of the quadriflagellate Tetraflagellochloris mauritanica (Chlamydomonadales, Chlorophyceae).

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Frassanito, Anna Maria; Gualtieri, Paolo

    2016-04-01

    Chlamydomonadales are elective subjects for the investigation of the problems related to locomotion and transport in biological fluid dynamics, whose resolution could enhance searching efficiency and assist in the avoidance of dangerous environments. In this paper, we elucidate the swimming behavior of Tetraflagellochloris mauritanica, a unicellular-multicellular alga belonging to the order Chlamydomonadales. This quadriflagellate alga has a complex swimming motion consisting of alternating swimming phases connected by in-place random reorientations and resting phases. It is capable of both forward and backward swimming, both being normal modes of swimming. The complex swimming behavior resembles the run-and-tumble motion of peritrichous bacteria, with in-place reorientation taking the place of tumbles. In the forward swimming, T. mauritanica shows a very efficient flagellar beat, with undulatory retrograde waves that run along the flagella to their tip. In the backward swimming, the flagella show a nonstereotypical synchronization mode, with a pattern that does not fit any of the modes present in the other Chlamydomonadales so far investigated.

  14. Stokesian swimming of a sphere by radial helical surface wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of radial helical surface waves is studied on the basis of the Stokes equations. Explicit expressions are derived for the matrices characterizing the mean translational and rotational swimming velocities and the mean rate of dissipation to second order in the wave amplitude.

  15. 77 FR 51471 - Safety Zone; Swim Around Charleston, Charleston, SC

    Science.gov (United States)

    2012-08-24

    ... rulemaking (NPRM) entitled Safety Zone; Swim Around Charleston, Charleston, SC in the Federal Register (77 FR...: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Swim Around Charleston, Charleston,...

  16. Hypothesised mechanisms of swimming-related death: a systematic review.

    Science.gov (United States)

    Asplund, Chad A; Creswell, Lawrence L

    2016-11-01

    Recent reports from triathlon and competitive open-water swimming indicate that these events have higher rates of death compared with other forms of endurance sport. The potential causal mechanism for swimming-related death is unclear. To examine available studies on the hypothesised mechanisms of swimming-related death to determine the most likely aetiologies. MEDLINE, EMBASE and the Cochrane Database of Systematic Reviews (1950 to present) were searched, yielding 1950 potential results, which after title and citation reviews were reduced to 83 possible reports. Studies included discussed mechanisms of death during swimming in humans, and were Level 4 evidence or higher. A total of 17 studies (366 total swimmers) were included for further analysis: 5 investigating hyperthermia/hypothermia, 7 examining cardiac mechanisms and responses, and 5 determining the presence of pulmonary edema. The studies provide inconsistent and limited-quality or disease-oriented evidence that make definitive conclusions difficult. The available evidence is limited but may suggest that cardiac arrhythmias are the most likely aetiology of swimming-related death. While symptoms of pulmonary edema may occur during swimming, current evidence does not support swimming-induced pulmonary edema as a frequent cause of swimming-related death, nor is there evidence to link hypothermia or hyperthermia as a causal mechanism. Further higher level studies are needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  18. A meta-analysis of steady undulatory swimming

    NARCIS (Netherlands)

    van Weerden, J. Fransje; Reid, Daniel A. P.; Hemelrijk, Charlotte K.

    The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between

  19. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  20. Health risks associated with swimming at an inland river

    Science.gov (United States)

    Swimming exposure to fecally-contaminated oceans and lakes has been associated with an increased risk of gastrointestinal (GI) illness. Although treated and untreated sewage are often discharged to rivers, the health risks of swimming exposure on rivers has been less frequently ...

  1. Swimming of a circular disk at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2014-01-01

    The swimming of a circular disk at low Reynolds number is studied for distortion waves along its two planar surfaces with wavelength much smaller than the size of the disk. The calculation is based on an extension of Taylor's work for a planar sheet. It is shown that in general the disk performs both translational and rotational swimming, resulting in a circular orbit.

  2. The Complex Hydrodynamics of Swimming in the Spanish Dancer

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2016-11-01

    The lack of a vertebra seems to have freed marine gastropods to explore and exploit a stupendous variety of swimming kinematics. In fact, examination of just a few animals in this group reveal locomotory modes ranging from insect-like flapping, to fish-like undulatory swimming, jet propulsion, and rajiform (manta-like) swimming. There are also a number of marine gastropods that have bizarre swimming gaits with no equivalent among fish or marine mammals. In this latter category is the Spanish Dancer (Hexabranchus sanguineus) a sea slug that swims with a complex combination of body undulations and flapping parapodia. While the neurobiology of these animals has been relatively well-studied, less is known about their propulsive mechanism and swimming energetics. In this study, we focus on the hydrodynamics of two distinct swimmers: the Spanish Dancer, and the sea hare Aplysia; the latter adopts a rajiform-like mode of swimming by passing travelling waves along its parapodia. In the present study an immersed boundary method is employed to examine the vortex structures, hydrodynamic forces and energy costs of the swimming in these animals. NSF Grant No. 1246317.

  3. A Wall of Funnels Concentrates Swimming Bacteria▿

    Science.gov (United States)

    Galajda, Peter; Keymer, Juan; Chaikin, Paul; Austin, Robert

    2007-01-01

    Randomly moving but self-propelled agents, such as Escherichia coli bacteria, are expected to fill a volume homogeneously. However, we show that when a population of bacteria is exposed to a microfabricated wall of funnel-shaped openings, the random motion of bacteria through the openings is rectified by tracking (trapping) of the swimming bacteria along the funnel wall. This leads to a buildup of the concentration of swimming cells on the narrow opening side of the funnel wall but no concentration of nonswimming cells. Similarly, we show that a series of such funnel walls functions as a multistage pump and can increase the concentration of motile bacteria exponentially with the number of walls. The funnel wall can be arranged along arbitrary shapes and cause the bacteria to form well-defined patterns. The funnel effect may also have implications on the transport and distribution of motile microorganisms in irregular confined environments, such as porous media, wet soil, or biological tissue, or act as a selection pressure in evolution experiments. PMID:17890308

  4. Instability of hooks during bacterial flagellar swimming

    Science.gov (United States)

    Jabbarzadeh, Mehdi; Fu, Henry C.; Henry Fu Team

    2016-11-01

    In bacteria, a flexible hook transmits torque from the rotary motor at the cell body to the flagellum. Previously, the hook has been modeled as a Kirchhoff rod between the cell body and rotating flagellum. To study effects of the hook's flexibility on the bacteria's swimming speed and trajectory for wide range hook stiffnesses and flagellum configurations, we develop an efficient simplified spring model for the hook by linearizing the Kirchhoff rod. We treat the hydrodynamics of the cell body and helical flagellum using resistance matrices calculated by the method of regularized Stokeslets. We investigate flagellar and swimming dynamics for a range of hook flexibilities and flagellar orientations relative to the cell body and compare the results to models without hook flexibility. We investigate in detail parameters corresponding to E. coli and Vibrio alginolyticus. Generally, the flagellum changes orientation relative to the cell body, undergoing an orbit with the period of the motor rotation. We find that as the hook stiffness decreases, steady-state orbits of the flagellum first become unstable before the hook buckles, which may suggest a new mechanism of flick initiation in run-reverse-flick motility. We also find that for some parameter ranges, there are multiple stable steady state orbits, which may have implications for the tumbling and turning of bacteria.

  5. Mechanical krill models for studying coordinated swimming

    Science.gov (United States)

    Montague, Alice; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind

    2016-11-01

    The global biomass of Homo sapiens is about a third of the biomass of Euphausia superba, commonly known as the Antarctic krill. Krill participate in organized social behavior. Propulsive jets generated by individual krill in a school have been suggested to be important in providing hydrodynamic sensory cues. The importance of body positions and body angles on the wakes generated is challenging to study in free swimming krill. Our solution to study the flow fields of multiple krill was to develop mechanical krill robots. We designed krillbots using mostly 3D printed parts that are actuated by stepper motors. The krillbot limb lengths, angles, inter-limb spacing and pleopod stroke frequency were dynamically scaled using published data on free-swimming krill kinematics. The vertical and horizontal spacing between krillbots, as well as the body angle, are adjustable. In this study, we conducted particle image velocimetry (PIV) measurements with two tethered krillbots in a flow tank with no background flow. One krillbot was placed above and behind the other. Both krillbots were at a zero-degree body angle. Wake-body interactions visualized from PIV data will be presented.

  6. Forced swim test behavior in postpartum rats.

    Science.gov (United States)

    Craft, R M; Kostick, M L; Rogers, J A; White, C L; Tsutsui, K T

    2010-10-01

    This study was undertaken to determine whether depression-like behavior can be observed in gonadally intact females that have experienced normal pregnancy. When tested on the forced swim test (FST) on postpartum days 1-7, previously pregnant rats spent slightly more time immobile, significantly less time swimming and diving, and defecated more than virgin controls. Subchronic treatment with nomifensine (DA reuptake inhibitor, 2.5mg/kg) but not sertraline (serotonin reuptake inhibitor, 10mg/kg) or desipramine (norepinephrine reuptake inhibitor, 10mg/kg) significantly decreased immobility on postpartum day 2. In rats pre-exposed to the FST in mid-pregnancy, neither subchronic nor chronic treatment with desipramine or sertraline decreased immobility on postpartum day 2; in contrast, chronic desipramine significantly decreased immobility in virgin controls. These results indicate that postpartum female rats, compared to virgin controls, show a reduction in some "active coping behaviors" but no significant increase in immobility when tested during the early postpartum period, unlike ovariectomized females that have undergone hormone-simulated pregnancy (HSP). Additionally, immobility that is increased by FST pre-exposure is not readily prevented by treatment with standard antidepressant medications in postpartum females. Depression-like behaviors previously observed in females that have undergone HSP may result from the more dramatic changes in estradiol, prolactin or corticosterone that occur during the early "postpartum" period, compared to the more subtle changes in these hormones that occur in actual postpartum females. (c) 2010 Elsevier Inc. All rights reserved.

  7. Combined creatine and sodium bicarbonate supplementation enhances interval swimming.

    Science.gov (United States)

    Mero, Antti A; Keskinen, Kari L; Malvela, Marko T; Sallinen, Janne M

    2004-05-01

    This study examined the effect of simultaneous supplementation of creatine and sodium bicarbonate on consecutive maximal swims. Sixteen competitive male and female swimmers completed, in a randomized order, 2 different treatments (placebo and a combination of creatine and sodium bicarbonate) with 30 days of washout period between treatments in a double-blind crossover procedure. Both treatments consisted of placebo or creatine supplementation (20 g per day) in 6 days. In the morning of the seventh day, there was placebo or sodium bicarbonate supplementation (0.3 g per kg body weight) during 2 hours before a warm-up for 2 maximal 100-m freestyle swims that were performed with a passive recovery of 10 minutes in between. The first swims were similar, but the increase in time of the second versus the first 100-m swimming time was 0.9 seconds less (p creatine and sodium bicarbonate enhances performance in consecutive maximal swims.

  8. Swimming as important factor of development of physical abilities

    Directory of Open Access Journals (Sweden)

    Popadin V.V.

    2012-09-01

    Full Text Available The current state of health and physical fitness of young people, the complex of issues regarding the development of sports and mass swimming in Ukraine, in particular regarding training the ability to swim of the population and its conscripts have been analyzed. The role and place of swimming in the system of physical education of students and the compliance with the foundations of healthy lifestyle have been defined. The methodical peculiarities of swimming lessons with the students of higher educational institutions and their influence on physical abilities and capacities of human body are being studied. The results of studies for determination of the dynamics of physical abilities and physical fitness of students aged 18 and 19 years necessary for effective actions in terms of the average high school, taking into account means of physical training in swimming, have been presented.

  9. EFFECTS OF THREE FEEDBACK CONDITIONS ON AEROBIC SWIM SPEEDS

    Directory of Open Access Journals (Sweden)

    Pedro Pérez Soriano

    2009-03-01

    Full Text Available The purpose of this study was twofold: (a to develop an underwater chronometer capable to provide feedback while the athlete is swimming, as well as being a control tool for the coach, and (b to analyse its feedback effect on swim pace control compared with feedback provided by the coach and with no feedback, in 25 m and 50 m swimming pools. 30 male swimmers of national level volunteer to participate. Each swimmer swam 3 x 200 m at aerobic speed (AS and 3 x 200 m just under the anaerobic threshold speed (AnS, each swam repetition with a different feedback condition: chronometer, coach and without feedback. Results (a validate the chronometer system developed and (b show that swimmers pace control is affected by the type of feedback provided, the swim speed elected and the size of the swimming pool

  10. Consumer behaviours

    DEFF Research Database (Denmark)

    Grønhøj, Alice

    2016-01-01

    Energy-saving programmes are increasingly targeted at children to encourage household energy conservation. A study involving the assignment of energy-saving interventions to Girl Scouts shows that a child-focused intervention can improve energy-saving behaviours among children and their parents....

  11. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance

    DEFF Research Database (Denmark)

    Kalsen, Anders; Hostrup, Morten; Bangsbo, Jens

    2014-01-01

    ), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max...

  12. Comparative swimming and station-holding ability of the threatened Rocky Mountain Sculpin (Cottus sp.) from four hydrologically distinct rivers.

    Science.gov (United States)

    Veillard, Marie F; Ruppert, Jonathan L W; Tierney, Keith; Watkinson, Douglas A; Poesch, Mark

    2017-01-01

    Hydrologic alterations, such as dams, culverts or diversions, can introduce new selection pressures on freshwater fishes, where they are required to adapt to novel environmental conditions. Our study investigated how species adapt to natural and altered stream flow, where we use the threatened Rocky Mountain Sculpin (Cottus sp.) as a model organism. We compared the swimming and station-holding performance of Rocky Mountain Sculpin from four different hydrologic regimes in Alberta and British Columbia, including the North Milk River, a system that experiences increased flows from a large-scale diversion. We measured the slip (Uslip) and failure (Uburst) velocities over three constant acceleration test trials. Uslip was defined as the point at which individuals required the addition of bursting or swimming to maintain position. Uburst was defined as the point at which individuals were unable to hold position in the swimming chamber through swimming, bursting or holding techniques without fully or partially resting on the electrified back plate. We found individuals from the Flathead River in British Columbia (with the highest natural flow) failed at significantly higher Uburst velocities than fish from the southern Albertan populations. However, there was no relationship between peak hydrologic flow from the natal river and Uburst or Uslip. Further, Uburst velocities decreased from 51.8 cm s(-1) (7.2 BL s(-1)) to 45.6 cm s(-1) (6.3 BL s(-1)) by the third consecutive test suggesting the use of anaerobic metabolism. Uslip was not different between trials suggesting the use of aerobic metabolism in station-holding behaviours (Uslip). Moreover, we found no significant differences in individuals from the altered North Milk River system. Finally, individual caudal morphological characteristics were related to both slip and failure velocities. Our study contributes to the conservation of Rocky Mountain Sculpin by providing the first documentation of swimming and station

  13. Hypoxia increases the behavioural activity of schooling herring: a response to physiological stress or respiratory distress?

    DEFF Research Database (Denmark)

    Herbert, Neill A.; Steffensen, John F.

    2006-01-01

    a deviation in physiological homeostasis is associated with any change in behavioural activity, we exposed C. harengus in a school to a progressive stepwise decline in water oxygen pressure  and measured fish swimming speed and valid indicators of primary and secondary stress (i.e. blood cortisol, lactate......Atlantic herring, Clupea harengus, increase their swimming speed during low O2 (hypoxia) and it has been hypothesised that the behavioural response is modulated by the degree of "respiratory distress" (i.e. a rise in anaerobic metabolism and severe physiological stress). To test directly whether......, glucose and osmolality). Herring in hypoxia increased their swimming speed by 11-39% but only when  was cortisol also exhibited an increase with  plasma osmolality was subject to a transient rise at 8.5 k...

  14. Veratrine blocks the lamotrigine-induced swimming increase and immobility decrease in the modified forced swimming test.

    Science.gov (United States)

    Codagnone, F T; Consoni, F T; Rodrigues, A L S; Vital, M A B F; Andreatini, R

    2007-08-15

    Lamotrigine exhibits an anti-immobility effect in the modified forced swimming test, increasing swimming and climbing, behaviors that are related to serotonergic and noradrenergic effects, respectively. However, these effects could be secondary to lamotrigine blockade of Na(+) sensitive channel. Thus, this study investigated the influence of veratrine (0.1 mg/kg, ip, 10 min before each lamotrigine administration), an Na(+) channel activator, in the effect of lamotrigine (20 mg/kg, ip, 24, 5, 1 h before the test session) in the modified forced swimming test. Veratrine pre-treatment blocked lamotrigine-induced immobility decrease and swimming increase but it did not change the effect of lamotrigine on climbing. These results suggest that the serotonergic effect of lamotrigine in the modified forced swimming test is dependent on Na(+) voltage sensitive channel blockade, whereas its noradrenergic effect is not.

  15. No gender difference in peak performance in ultra-endurance swimming performance - analysis of the 'Zurich 12-h Swim' from 1996 to 2010.

    Science.gov (United States)

    Eichenberger, Evelyn; Knechtle, Beat; Rüst, Christoph Alexander; Christoph, Alexander Rüst; Knechtle, Patrizia; Lepers, Romuald; Rosemann, Thomas

    2012-10-31

    The aims of the study were to [1] investigate the performance trends at the 'Zurich 12-h Swim' in Switzerland from 1996 to 2010; and [2] determine the gender difference in peak performance in ultraendurance swimming. In total, 113 male and 53 female swimmers competed in this indoor ultraendurance event while swimming in a heated pool. The number of male participants significantly increased (r² = 0.36, P = 0.04) over time while the participation of females remained unchanged (r² = 0.12, P = 0.26). In the age group swimming performances (P swim performances remained unchanged across the years. Females are able to achieve a similar swim performance in an indoor ultra-endurance swim event of ~40 km. Further studies are needed to investigate whether females are able to achieve similar or even better performances than males in openwater ultra-swimming events such as 'Channel Swimming'.

  16. Swimming and Persons with Mild Persistant Asthma

    Directory of Open Access Journals (Sweden)

    Mirjana Arandelovic

    2007-01-01

    Full Text Available The aim of our study was to analyze the effect of recreational swimming on lung function and bronchial hyperresponsiveness (BHR in patients with mild persistent asthma. This study included 65 patients with mild persistent asthma, who were divided into two groups: experimental group A (n = 45 and control group B (n = 20. Patients from both groups were treated with low doses of inhaled corticosteroids (ICS and short-acting β2 agonists salbutamol as needed. Our program for patients in group A was combined asthma education with swimming (twice a week on a 1-h basis for the following 6 months. At the end of the study, in Group A, we found a statistically significant increase of lung function parameters FEV1 (forced expiratory volume in 1 sec (3.55 vs. 3.65 (p < 0.01, FVC (forced vital capacity (4.27 vs. 4.37 (p < 0.05, PEF (peak expiratory flow (7.08 vs. 7.46 (p < 0.01, and statistically significant decrease of BHR (PD20 0.58 vs. 2.01 (p < 0.001. In Group B, there was a statistically significant improvement of FEV1 3.29 vs. 3.33 (p < 0.05 and although FVC, FEV1/FVC, and PEF were improved, it was not significant. When Groups A and B were compared at the end of the study, there was a statistically significant difference of FVC (4.01 vs. 4.37, FEV1 (3.33 vs. 3.55, PEF (6.79 vs.7.46, and variability (p <0.001, and statistically significantly decreased BHR in Group A (2.01 vs. 1.75 (p < 0.001. Engagement of patients with mild persistent asthma in recreational swimming in nonchlorinated pools, combined with regular medical treatment and education, leads to better improvement of their parameters of lung function and also to more significant decrease of their airway hyperresponsiveness compared to patients treated with traditional medicine

  17. Modelling Behaviour

    DEFF Research Database (Denmark)

    2015-01-01

    This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while....... The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015....

  18. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles

    Science.gov (United States)

    Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts’ bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (< 70 eggs) for free-living phases to successfully contact turtles that occur at very low densities (< 0.6 turtles·km−2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed. PMID:28114412

  19. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  20. Inspiratory muscle training improves 100 and 200 m swimming performance.

    Science.gov (United States)

    Kilding, Andrew E; Brown, Sarah; McConnell, Alison K

    2010-02-01

    Inspiratory muscle training (IMT) has been shown to improve time trial performance in competitive athletes across a range of sports. Surprisingly, however, the effect of specific IMT on surface swimming performance remains un-investigated. Similarly, it is not known whether any ergogenic influence of IMT upon swimming performance is confined to specific race distances. To determine the influence of IMT upon swimming performance over 3 competitive distances, 16 competitive club-level swimmers were assigned at random to either an experimental (pressure threshold IMT) or sham IMT placebo control group. Participants performed a series of physiological and performance tests, before and following 6 weeks of IMT, including (1) an incremental swim test to the limit of tolerance to determine lactate, heart rate and perceived exertion responses; (2) standard measures of lung function (forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow) and maximal inspiratory pressure (MIP); and (3) 100, 200 and 400 m swim time trials. Training utilised a hand-held pressure threshold device and consisted of 30 repetitions, twice per day. Relative to control, the IMT group showed the following percentage changes in swim times: 100 m, -1.70% (90% confidence limits, +/-1.4%), 200 m, -1.5% (+/-1.0), and 400 m, 0.6% (+/-1.2). Large effects were observed for MIP and rates of perceived exertion. In conclusion, 6 weeks of IMT has a small positive effect on swimming performance in club-level trained swimmers in events shorter than 400 m.

  1. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  2. Spatial organization and Synchronization in collective swimming of Hemigrammus bleheri

    Science.gov (United States)

    Ashraf, Intesaaf; Ha, Thanh-Tung; Godoy-Diana, Ramiro; Thiria, Benjamin; Halloy, Jose; Collignon, Bertrand; Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) Team; Laboratoire Interdisciplinaire des Energies de Demain (LIED) Team

    2016-11-01

    In this work, we study the collective swimming of Hemigrammus bleheri fish using experiments in a shallow swimming channel. We use high-speed video recordings to track the midline kinematics and the spatial organization of fish pairs and triads. Synchronizations are characterized by observance of "out of phase" and "in phase" configurations. We show that the synchronization state is highly correlated to swimming speed. The increase in synchronization led to efficient swimming based on Strouhal number. In case of fish pairs, the collective swimming is 2D and the spatial organization is characterized by two characteristic lengths: the lateral and longitudinal separation distances between fish pairs.For fish triads, different swimming patterns or configurations are observed having three dimensional structures. We performed 3D kinematic analysis by employing 3D reconstruction using the Direct Linear Transformation (DLT). We show that fish still keep their nearest neighbor distance (NND) constant irrespective of swimming speeds and configuration. We also point out characteristic angles between neighbors, hence imposing preferred patterns. At last we will give some perspectives on spatial organization for larger population. Sorbonne Paris City College of Doctoral Schools. European Union Information and Communication Technologies project ASSISIbf, FP7-ICT-FET-601074.

  3. Effect of swim cap model on passive drag.

    Science.gov (United States)

    Gatta, Giorgio; Zamparo, Paola; Cortesi, Matteo

    2013-10-01

    Hydrodynamics plays an important role in swimming because even small decreases in a swimmer's drag can lead to performance improvements. During the gliding phases of a race, the head of a swimmer is an important point of impact with the fluid, and the swim cap, even if it covers only a small portion of the swimmer's body, can have an influence on drag. The purpose of this study was to investigate the effects on passive drag (Dp) of wearing 3 different types of swim caps (LSC: a lycra cap; CSC: a silicone cap; HSC: a silicone helmet cap without seams). Sixteen swimmers were tested at 3 velocities (1.5, 1.7, 1.9 m·s), and the Dp measurements were repeated at each condition 5 times. A statistical analysis revealed significant differences in drag (p swim cap is the most rigid, the most adherent to the swimmer's head, and does not allow the formation of wrinkles compared with the other 2 investigated swim caps. Therefore, the following conclusions can be made: (a) swimmers should take care when selecting their swim cap if they want to improve the fluid dynamics at the "leading edge" of their body and (b) because Dp is affected by the swim cap model, care should be taken when comparing data from different studies, especially at faster investigated speeds.

  4. Analysis of Sport Nutrition and Diet for Swimming Athletes

    Directory of Open Access Journals (Sweden)

    Jun An

    2014-10-01

    Full Text Available This current study analyzed nutrition and dietary structure of swimming athletes to clarify issues in nutrition and dietary structure of swimming athletes, based on which we designed achievable nutrition and diet strategies to equip the swimming athletes with the tools to achieve an adequate sport nutrition which helps them improve results. Firstly, we collected literatures about nutrition and diet of swimming athletes. Secondly, 40 swimming athletes were assigned to the test group and the control group to receive follow-up for 8 weeks. Twenty were provided with proper diet and calcium and vitamin supplements. Twenty athletes in the control group failed to reach standard expected for a swimming athlete due to inadequate intake of multiple nutrients. Twenty athletes in the test group reached to relevant standards. The athletes in the test group also achieved better performance than those in the control group. Proper nutrition and dietary structure not only substantially improve physical fitness but also improve performance of swimming athletes.

  5. Optimal shape and motion of undulatory swimming organisms.

    Science.gov (United States)

    Tokić, Grgur; Yue, Dick K P

    2012-08-07

    Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a combined hydrodynamical, structural and novel muscular model. We develop a muscular model for periodic muscle contraction which provides relevant kinematic and energetic quantities required to describe swimming. Using an evolutionary algorithm, we performed a multi-objective optimization for achieving maximum sustained swimming speed U and minimum cost of transport (COT)--two conflicting locomotive performance measures that have been conjectured as likely to increase fitness for survival. Starting from an initial population of random characteristics, our results show that, for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT are optimized. Inherent boundary-layer-dependent allometric scaling between body mass and kinematic and energetic quantities of the optimal populations is observed. The trade-off between U and COT affects the geometry, kinematics and energetics of swimming organisms. Our results are corroborated by empirical data from swimming animals over nine orders of magnitude in size, supporting the notion that optimizing U and COT could be the driving force of evolution in many species.

  6. Ultrasonic vocalizations during intermittent swim stress forecasts resilience in subsequent forced swim and spatial learning tests.

    Science.gov (United States)

    Drugan, Robert C; Warner, Timothy A; Papallo, Tristan A; Castracane, Laura L; Stafford, Nathaniel P

    2014-02-01

    The examination of stress resilience has substantially increased in recent years. However, current paradigms require multiple behavioral procedures, which themselves may serve as secondary stressors. Therefore, a novel predictor of stress resilience is needed to advance the field. Ultrasonic vocalizations (USVs) have been observed as a behavioral correlate of stress in various rodent species. It was recently reported that rats that emitted ultrasonic vocalizations during intermittent swim stress (ISS) later showed resilience when tested on an instrumental swim escape test. In the current study, we extend this earlier observation on two additional behavioral endpoints. Rats were subjected to ISS, and USVs were recorded. Twenty-four hours later, behavioral performance was evaluated in either the forced swim test or Morris water maze. Rats that emitted ultrasonic vocalizations were resilient to the effects of ISS as indicated by performance similar to controls on both measures. These results extend the original findings that ISS-induced USVs are associated with resilience and are related to subsequent aversively motivated behavior. Such a non-invasive forecast of stress responsivity will allow future work to utilize USVs to examine the neural correlates of initial stress resistance/resilience, thereby eliminating potential confounds of further behavioral testing. Future studies can utilize USVs to target potentially unappreciated neural systems to provide novel pharmacotherapeutic strategies for treatment-resistant depression.

  7. Do all frogs swim alike? The effect of ecological specialization on swimming kinematics in frogs.

    Science.gov (United States)

    Robovska-Havelkova, Pavla; Aerts, Peter; Rocek, Zbynek; Prikryl, Tomas; Fabre, Anne-Claire; Herrel, Anthony

    2014-10-15

    Frog locomotion has attracted wide scientific interest because of the unusual and derived morphology of the frog pelvic girdle and hind limb. Previous authors have suggested that the design of the frog locomotor system evolved towards a specialized jumping morphology early in the radiation of the group. However, data on locomotion in frogs are biased towards a few groups and most of the ecological and functional diversity remains unexplored. Here, we examine the kinematics of swimming in eight species of frog with different ecologies. We use cineradiography to quantify movements of skeletal elements from the entire appendicular skeleton. Our results show that species with different ecologies do differ in the kinematics of swimming, with the speed of limb extension and especially the kinematics of the midfoot being different. Our results moreover suggest that this is not a phylogenetic effect because species from different clades with similar ecologies converge on the same swimming kinematics. We conclude that it is important to analyze frog locomotion in a broader ecological and evolutionary context if one is to understand the evolutionary origins of this behavior.

  8. Targeted delivery of colloids by swimming bacteria

    Science.gov (United States)

    Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  9. Chemotaxis of crawling and swimming Caenorhabditis Elegans

    Science.gov (United States)

    Patel, Amar; Bilbao, Alejandro; Padmanabhan, Venkat; Khan, Zeina; Armstrong, Andrew; Rumbaugh, Kendra; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2012-11-01

    A soil-dwelling nematode Caenorhabditis Elegans efficiently navigates through complex environments, responding to chemical signals to find food or avoid danger. According to previous studies, the nematode uses both gradual-turn and run-and-tumble strategies to move in the direction of the increasing concentration of chemical attractants. We show that both these chemotaxis strategies can be described using our kinematic model [PLoS ONE, 7: e40121 (2012)] in which harmonic-curvature modes represent elementary nematode movements. In our chemotaxis model, the statistics of mode changes is governed by the time history of the chemoattractant concentration at the position of the nematode head. We present results for both nematodes crawling without transverse slip and for swimming nematodes. This work was supported by NSF grant No. CBET 1059745.

  10. Forces and energetics of intermittent swimming

    Science.gov (United States)

    Floryan, Daniel; Van Buren, Tyler; Smits, Alexander J.

    2017-08-01

    Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

  11. Optimality of Metachronal Paddling in Crustacean Swimming

    Science.gov (United States)

    Guy, Robert; Zhang, Calvin; Lewis, Timothy

    2014-11-01

    Crayfish and other long-tailed crustaceans swim by rhythmically moving four or five pairs of limbs. Despite variations in limb size and stroke frequency, movements of ipsilateral limbs always maintain a tail-to-head metachronal rhythm with an approximate quarter-period inter-limb phase difference. Relatively few studies have examined the fluid dynamics of metachronal limb stroke for the range of Reynolds numbers at which crustaceans operate. Here, we use a computational fluid dynamics model to explore the performance of different paddling rhythms. We show that the natural tail-to-head metachronal rhythm with an approximate quarter-period phase difference is the most effective and efficient rhythm across a wide range of Reynolds numbers.

  12. Classroom Behaviour and Academic Achievement: How Classroom Behaviour Categories Relate to Gender and Academic Performance

    Science.gov (United States)

    Borg, Elin

    2015-01-01

    Latent profile analysis was used to identify different categories of students having different "profiles" using self-reported classroom behaviour. Four categories of students with unique classroom behaviour profiles were identified among secondary school students in Oslo, Norway (n = 1570). Analyses examined how classroom behaviour…

  13. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  14. Forced swim test: What about females?

    Science.gov (United States)

    Kokras, Nikolaos; Antoniou, Katerina; Mikail, Hudu G; Kafetzopoulos, Vasilios; Papadopoulou-Daifoti, Zeta; Dalla, Christina

    2015-12-01

    In preclinical studies screening for novel antidepressants, male and female animals should be used. However, in a widely used antidepressant test, the forced swim test (FST), sex differences between males and females are not consistent. These discrepancies may discourage the inclusion of females in FST studies. In order to overcome this problem and provide a detailed insight regarding the use of female animals in the FST, we designed the following experiment and we performed a thorough analysis of the relevant literature. Male and female Wistar adult rats were subjected to the FST and sertraline was used as an antidepressant in two doses (10 mg/kg and 40 mg/kg, 3 injections in 24 h). Rodents were subjected in the two FST sessions during all possible combinations of the estrous cycle stages. We found that females exhibited higher levels of immobility than males and this sex difference was alleviated following antidepressant treatment. Sertraline at both doses enhanced swimming in both sexes, but females appeared more responsive to lower sertraline doses regarding immobility levels. Surprisingly, the high sertraline dose enhanced climbing particularly in proestrous and diestrous. Marked sex differences were also observed in the frequency of head swinging, with females exhibiting lower counts than males. Conclusively, when screening for new antidepressants, it is recommended to use standard FST procedures and if possible to include females in all phases of the cycle. Using only one dose of an investigational drug in females in certain phases of the cycle could result to false negative results.

  15. On the development of inexpensive speed and position tracking system for swimming

    DEFF Research Database (Denmark)

    Trangbæk, Søren; Rasmussen, Cuno; Andersen, Thomas Bull

    2016-01-01

    A semi-automated tracking system was developed for the analysis of swimming, using cameras, an LED diode marker, and a red swim cap. Four experienced young swimmers were equipped with a marker and a swim cap and their position and speed was tracked throughout above-water and under-water swimming...

  16. 76 FR 37269 - Safety Zone; Charleston Sharkfest Swim, Charleston Harbor, Charleston, SC

    Science.gov (United States)

    2011-06-27

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Charleston Sharkfest Swim, Charleston... Carolina during the Charleston Sharkfest Swim on Sunday, ] September 4, 2011. The Charleston Sharkfest Swim is a 1.5-mile swimming race. The safety zone is necessary for the safety of the swimmers,...

  17. Optimal translational swimming of a sphere at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2015-01-01

    Swimming velocity and rate of dissipation of a sphere with surface distortions are discussed on the basis of the Stokes equations of low Reynolds number hydrodynamics. At first the surface distortions are assumed to cause an irrotational axisymmetric flow pattern. The efficiency of swimming is optimized within this class of flows. Subsequently more general axisymmetric polar flows with vorticity are considered. This leads to a considerably higher maximum efficiency. An additional measure of swimming performance is proposed based on the energy consumption for given amplitude of stroke.

  18. SWIM: A Simple Model to Generate Small Mobile Worlds

    CERN Document Server

    Mei, Alessandro

    2008-01-01

    This paper presents small world in motion (SWIM), a new mobility model for ad-hoc networking. SWIM is relatively simple, is easily tuned by setting just a few parameters, and generates traces that look real--synthetic traces have the same statistical properties of real traces. SWIM shows both experimentally and theoretically the presence of the power law and exponential decay dichotomy of inter-contact times, and, most importantly, our experiments show that it can predict very accurately the performance of forwarding protocols.

  19. Male sexual harassment alters female social behaviour towards other females.

    Science.gov (United States)

    Darden, Safi K; Watts, Lauren

    2012-04-23

    Male harassment of females to gain mating opportunities is a consequence of an evolutionary conflict of interest between the sexes over reproduction and is common among sexually reproducing species. Male Trinidadian guppies Poecilia reticulata spend a large proportion of their time harassing females for copulations and their presence in female social groups has been shown to disrupt female-female social networks and the propensity for females to develop social recognition based on familiarity. In this study, we investigate the behavioural mechanisms that may lead to this disruption of female sociality. Using two experiments, we test the hypothesis that male presence will directly affect social behaviours expressed by females towards other females in the population. In experiment one, we tested for an effect of male presence on female shoaling behaviour and found that, in the presence of a free-swimming male guppy, females spent shorter amounts of time with other females than when in the presence of a free-swimming female guppy. In experiment two, we tested for an effect of male presence on the incidence of aggressive behaviour among female guppies. When males were present in a shoal, females exhibited increased levels of overall aggression towards other females compared with female only shoals. Our work provides direct evidence that the presence of sexually harassing males alters female-female social behaviour, an effect that we expect will be recurrent across taxonomic groups.

  20. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    Directory of Open Access Journals (Sweden)

    Rubin RT

    2013-03-01

    Full Text Available Robert T Rubin,1,2 Sonia Lin,3 Amy Curtis,4 Daniel Auerbach,5 Charlene Win6 1Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2UCLA Bruin Masters Swim Club, Los Angeles, CA, USA; 3Saint Louis University School of Medicine, Saint Louis, MO, USA; 4Indiana University School of Medicine, Indianapolis, IN, USA; 5University of California, Berkeley, CA, USA; 6Loyola Marymount University, Los Angeles, CA, USA Introduction: Because of its many participants and thorough records, competitive Masters swimming offers a rich data source for determining the rate of physical decline associated with aging in physically fit individuals. The decline in performance among national champion swimmers, both men and women and in short and long swims, is linear, at about 0.6% per year up to age 70–75, after which it accelerates in quadratic fashion. These conclusions are based primarily on cross-sectional studies, and little is known about individual performance declines with aging. Herein we present performance profiles of 19 male and 26 female national and international champion Masters swimmers, ages 25 to 96 years, participating in competitions for an average of 23 years. Methods and results: Swimmers’ longitudinal data were compared with the fastest times of world record holders across ages 35–100 years by two regression methods. Neither method proved to accurately model this data set: compared with the rates of decline estimated from the world record data, which represent the best recorded times at given ages, there was bias toward shallower rates of performance decline in the longitudinal data, likely owing to a practice effect in some swimmers as they began their Masters programs. In swimmers’ later years, once maximum performance had been achieved, individual profiles followed the decline represented in the world records, and a few swimmers became the world record holders. In some instances

  1. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cátia S.E. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana [MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Oliveira, Ana P. [IPMA — Instituto Português do Mar e da Atmosfera, Algés (Portugal); Gonçalves, Emanuel J. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); Faria, Ana M., E-mail: afaria@ispa.pt [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal)

    2016-09-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO{sub 2}. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO{sub 2}, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO{sub 2} on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO{sub 2} levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U{sub crit}), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO{sub 2} leads to higher energetic costs and morphometric changes, with larger larvae in high pCO{sub 2} treatment and smaller larvae in medium pCO{sub 2} treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO{sub 2} treatment may indicate that at higher pCO{sub 2} levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO{sub 2} levels on

  2. Effects of swim stress on latent inhibition using a conditioned taste aversion procedure.

    Science.gov (United States)

    Smith, Shawn; Fieser, Sarah; Jones, Jennifer; Schachtman, Todd R

    2008-10-20

    Rats were used to examine the effects of inescapable swim stress on latent inhibition using a conditioned taste aversion procedure. Subjects were subjected to inescapable swim after each of three saccharin taste preexposures and saccharin was later paired with LiCl. The ability of swim to influence latent inhibition was assessed on subsequent saccharin test trials. Swim stress significantly attenuated latent inhibition. The implications of these results regarding the effects of swim stress on conditioned taste aversion are discussed.

  3. Effect of Dissolved Oxygen on Swimming Ability and Physiological Response to Swimming Fatigue of Whiteleg Shrimp (Litopenaeus vannamei)

    Institute of Scientific and Technical Information of China (English)

    DUAN Yan; ZHANG Xiumei; LIU Xuxu; Dhanrajsingh N. Thakur

    2014-01-01

    The swimming endurance of whiteleg shrimp (Litopenaeus vannamei, 87.66 mm ± 0.25 mm, 7.73 g ± 0.06 g) was exam-ined at various concentrations of dissolved oxygen (DO, 1.9, 3.8, 6.8 and 13.6 mg L-1) in a swimming channel against one of the five flow velocities (v1, v2, v3, v4 and v5). Metabolite contents in the plasma, hepatopancreas and pleopods muscle of the shrimp were quantified before and after swimming fatigue. The results revealed that the swimming speed and DO concentration were significant factors that affected the swimming endurance of L. vannamei. The relationship between swimming endurance and swimming speed at various DO concentrations can be described by the power model (ν·tb=a). The relationship between DO concentration (mg L-1) and the swimming ability index (SAI), defined as SAI= 90000∫ vdt (cm) , can be described as SAI=27.947 DO0.137 (R2=0.9312). The level of DO concentration directly affected the physiology of shrimp, and exposure to low concentrations of DO led to the increases in lactate and energetic substrate content in the shrimp. In responding to the low DO concentration at 1.9 mg L-1 and the swimming stress, L. vannamei exhibited a mix of aerobic and anaerobic metabolism to satisfy the energetic demand, mainly characterized by the utilization of total protein and glycogen and the production of lactate and glucose. Fatigue from swimming led to severe loss of plasma triglyceride at v1, v2, and v3 with 1.9 mg L-1 DO, and at v1 with 3.8, 6.8 and 13.6 mg L-1 DO, whereas the plasma glucose con-tent increased significantly at v3, v4 and v5 with 3.8 and 6.8 mg L-1 DO, and at v5 with 13.6 mg L-1 DO. The plasma total protein and hepatopancreas glycogen were highly depleted in shrimp by swimming fatigue at various DO concentrations, whereas the plasma lactate accumulated at high levels after swimming fatigue at different velocities. These results were of particular value to under-standing the locomotory ability of whiteleg shrimp and its

  4. Reliability of Tethered Swimming Evaluation in Age Group Swimmers

    Science.gov (United States)

    Amaro, Nuno; Marinho, Daniel A; Batalha, Nuno; Marques, Mário C; Morouço, Pedro

    2014-01-01

    The aim of the present study was to examine the reliability of tethered swimming in the evaluation of age group swimmers. The sample was composed of 8 male national level swimmers with at least 4 years of experience in competitive swimming. Each swimmer performed two 30 second maximal intensity tethered swimming tests, on separate days. Individual force-time curves were registered to assess maximum force, mean force and the mean impulse of force. Both consistency and reliability were very strong, with Cronbach’s Alpha values ranging from 0.970 to 0.995. All the applied metrics presented a very high agreement between tests, with the mean impulse of force presenting the highest. These results indicate that tethered swimming can be used to evaluate age group swimmers. Furthermore, better comprehension of the swimmers ability to effectively exert force in the water can be obtained using the impulse of force. PMID:25114742

  5. Critical stroke rate as a parameter for evaluation in swimming

    Directory of Open Access Journals (Sweden)

    Marcos Franken

    2013-12-01

    Full Text Available The purpose of this study was to investigate the critical stroke rate (CSR compared to the average stroke rate (SR when swimming at the critical speed (CS. Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105% in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.

  6. Master's swimming: an example of successful aging in competitive sport.

    Science.gov (United States)

    Cooper, Leslie W; Powell, Amy P; Rasch, Jeffrey

    2007-12-01

    Master's swimming has been one of the most successful master's athletic organizations over the past few decades. It creates an excellent environment for older athletes to stay fit and develop friendships. Exercise has been shown to be important in keeping an aging population healthy by reducing risk factors associated with chronic diseases. Physiology is an important part of athletic performance in an older population as our cardiovascular system and musculature change over time. Although swimming is an excellent form of exercise, some medical conditions such as exercised-induced asthma can be caused or worsened by swimming. Swimming is a great way to build muscular strength and endurance, but it can result in shoulder, cervical, and lumbar spine injuries because of its repetitive nature.

  7. Reliability of Tethered Swimming Evaluation in Age Group Swimmers

    Directory of Open Access Journals (Sweden)

    Amaro Nuno

    2014-07-01

    Full Text Available The aim of the present study was to examine the reliability of tethered swimming in the evaluation of age group swimmers. The sample was composed of 8 male national level swimmers with at least 4 years of experience in competitive swimming. Each swimmer performed two 30 second maximal intensity tethered swimming tests, on separate days. Individual force-time curves were registered to assess maximum force, mean force and the mean impulse of force. Both consistency and reliability were very strong, with Cronbach's Alpha values ranging from 0.970 to 0.995. All the applied metrics presented a very high agreement between tests, with the mean impulse of force presenting the highest. These results indicate that tethered swimming can be used to evaluate age group swimmers. Furthermore, better comprehension of the swimmers ability to effectively exert force in the water can be obtained using the impulse of force.

  8. Relationship between tethered forces and the four swimming techniques performance.

    Science.gov (United States)

    Morouço, Pedro; Keskinen, Kari L; Vilas-Boas, Joao Paulo; Fernandes, Ricardo Jorge

    2011-05-01

    The purpose of the current study was to identify the relationships between competitive performance and tether forces according to distance swam, in the four strokes, and to analyze if relative values of force production are better determinants of swimming performance than absolute values. The subjects (n = 32) performed a 30 s tethered swimming all-out effort. The competitive swimming velocities were obtained in the distances 50, 100 and 200 m using official chronometric values of competitions within 25 days after testing protocol. Mean force and velocity (50 m event) show significant correlations for front crawl (r = .92, p competitive performance than relative values (normalized to body mass). Tethered swimming test seems to be a reliable protocol to evaluate the swimmer stroking force production and a helpful estimator of competitive performance in short distance competitive events.

  9. Accumulation of swimming bacteria near a solid surface

    Science.gov (United States)

    Li, Guanglai; Bensson, James; Nisimova, Liana; Munger, Daniel; Mahautmr, Panrapee; Tang, Jay X.; Maxey, Martin R.; Brun, Yves V.

    2011-10-01

    We measured the distribution of a forward swimming strain of Caulobacter crescentus near a surface using a three-dimensional tracking technique based on dark field microscopy and found that the swimming bacteria accumulate heavily within a micrometer from the surface. We attribute this accumulation to frequent collisions of the swimming cells with the surface, causing them to align parallel to the surface as they continually move forward. The extent of accumulation at the steady state is accounted for by balancing alignment caused by these collisions with the rotational Brownian motion of the micrometer-sized bacteria. We performed a simulation based on this model, which reproduced the measured results. Additional simulations demonstrate the dependence of accumulation on swimming speed and cell size, showing that longer and faster cells accumulate more near a surface than shorter and slower ones do.

  10. Get in the Swim: Gaining Access to Recreational Facilities.

    Science.gov (United States)

    Richard, Jean-Paul

    1980-01-01

    The father of a child with osteogenesis imperfecta, an orthopedic condition, recounts his struggles to convince local agencies to operate a swimming program for disabled students. He offers eight guidelines for advocating such programs in other areas. (CL)

  11. Allegheny County Public Swimming Pool, Hot Tub, and Spa Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Public swimming pool, hot tub, and spa facilities are licensed and inspected once each year to assure proper water quality, sanitation, lifeguard coverage and...

  12. 3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean

    Science.gov (United States)

    Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria

    2015-11-01

    It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.

  13. Service Water and Impoundment Monitoring Database (SWIM1)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Service Water and Impoundment Monitoring (SWIM1) database was developed for the purpose of managing water level and water quality (salinity) data for areas...

  14. HYDRODYNAMIC ANALYSIS AND SIMULATION OF A SWIMMING BIONIC ROBOT TUNA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A dynamic model for undulatory locomotion was proposed to study the swimming mechanism of a developed bionic robot tuna. On the basis of inviscid hydrodynamics and rigid-body dynamics, the momentum and propulsive force required for propelling the swimming robot tuna's flexible body was calculated. By solving the established dynamic equations and efficiency formula, the swimming velocity and propulsive efficiency of the bionic robot tuna were obtained. The relationship between the kinematic parameters of the robot tuna's body curve and the hydrodynamic performances was established and discussed after hydrodynamic simulations. The results presented in this article can be used to increase the swimming speed, propulsive thrust, and the efficiency of underwater vehicles effectively.

  15. Flow disturbances generated by feeding and swimming zooplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jiang, Haisong; Goncalves, R. J.

    2014-01-01

    Interactions between planktonic organisms, such as detection of prey, predators, and mates, are often mediated by fluid signals. Consequently, many plankton predators perceive their prey from the fluid disturbances that it generates when it feeds and swims. Zooplankton should therefore seek...... to minimize the fluid disturbance that they produce. By means of particle image velocimetry, we describe the fluid disturbances produced by feeding and swimming in zooplankton with diverse propulsion mechanisms and ranging from 10-µm flagellates to greater than millimeter-sized copepods. We show...... that zooplankton, in which feeding and swimming are separate processes, produce flow disturbances during swimming with a much faster spatial attenuation (velocity u varies with distance r as u ∝ r−3 to r−4) than that produced by zooplankton for which feeding and propulsion are the same process (u ∝ r−1 to r−2...

  16. Mechanics of undulatory swimming in a frictional fluid

    National Research Council Canada - National Science Library

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    .... In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT...

  17. Service Water and Impoundment Monitoring Database (SWIM2)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Service Water and Impoundment Monitoring (SWIM2) database was developed for the purpose of managing water level and water quality (salinity) data for areas...

  18. Risk of infection associated with microbiological quality of public swimming pools in Bologna, Italy.

    Science.gov (United States)

    Leoni, E; Legnani, P; Guberti, E; Masotti, A

    1999-09-01

    Twelve public swimming pools in Bologna (Emilia-Romagna region, Italy) were investigated for the microbiological quality of water and surfaces of the pool edges, showers and changing rooms. At the same time a cross-sectional study was carried out on the health of 238 users (bathers) compared with 238 controls who practised sports other than swimming. Data regarding duration and frequency of exposure, behaviour and recent medical history were gathered by means of a questionnaire. All participants also underwent a medical examination. Compliance of the pool water to the microbiological standards set by Italian regulations was generally good; compliance was total when free chlorine residual was within the recommended limits. However, when analysis was extended to the various surfaces, potentially pathogenic bacteria such as P. aeruginosa and C. albicans were isolated. Eye burning and diarrhoea were the only declared symptoms and verrucas the only diagnosed disease showing statistically significant differences between bathers and controls. Verrucas tended to increase in proportion to exposure. Athlete's foot had a very high prevalence among both bathers (34 %) and controls (27.3%) and controls (27%). The environmental and epidemiological investigations both confirmed the risk of infection, mainly associated with the contamination of surfaces.

  19. Relationships among traits of aerobic and anaerobic swimming performance in individual European sea bass Dicentrarchus labrax.

    Science.gov (United States)

    Marras, Stefano; Killen, Shaun S; Domenici, Paolo; Claireaux, Guy; McKenzie, David J

    2013-01-01

    Teleost fishes exhibit wide and temporally stable inter-individual variation in a suite of aerobic and anaerobic locomotor traits. One mechanism that could allow such variation to persist within populations is the presence of tradeoffs between aerobic and anaerobic performance, such that individuals with a high capacity for one type of performance have a reduced capacity for the other. We investigated this possibility in European seabass Dicentrarchuslabrax, each measured for a battery of indicators of maximum locomotor performance. Aerobic traits comprised active metabolic rate, aerobic scope for activity, maximum aerobic swimming speed, and stride length, using a constant acceleration test. Anaerobic traits comprised maximum speed during an escape response, maximum sprint speed, and maximum anaerobic burst speed during constant acceleration. The data provided evidence of significant variation in performance among individuals, but there was no evidence of any trade-offs among any traits of aerobic versus anaerobic swimming performance. Furthermore, the anaerobic traits were not correlated significantly among each other, despite relying on the same muscular structures. Thus, the variation observed may reflect trade-offs with other morphological, physiological or behavioural traits.

  20. Relationships among traits of aerobic and anaerobic swimming performance in individual European sea bass Dicentrarchus labrax.

    Directory of Open Access Journals (Sweden)

    Stefano Marras

    Full Text Available Teleost fishes exhibit wide and temporally stable inter-individual variation in a suite of aerobic and anaerobic locomotor traits. One mechanism that could allow such variation to persist within populations is the presence of tradeoffs between aerobic and anaerobic performance, such that individuals with a high capacity for one type of performance have a reduced capacity for the other. We investigated this possibility in European seabass Dicentrarchuslabrax, each measured for a battery of indicators of maximum locomotor performance. Aerobic traits comprised active metabolic rate, aerobic scope for activity, maximum aerobic swimming speed, and stride length, using a constant acceleration test. Anaerobic traits comprised maximum speed during an escape response, maximum sprint speed, and maximum anaerobic burst speed during constant acceleration. The data provided evidence of significant variation in performance among individuals, but there was no evidence of any trade-offs among any traits of aerobic versus anaerobic swimming performance. Furthermore, the anaerobic traits were not correlated significantly among each other, despite relying on the same muscular structures. Thus, the variation observed may reflect trade-offs with other morphological, physiological or behavioural traits.

  1. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.

    Science.gov (United States)

    Butler, Victoria J; Branicky, Robyn; Yemini, Eviatar; Liewald, Jana F; Gottschalk, Alexander; Kerr, Rex A; Chklovskii, Dmitri B; Schafer, William R

    2015-01-06

    Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force-posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control.

  2. Exercise-training intervention studies in competitive swimming.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three

  3. Chemical contaminants in swimming pools: Occurrence, implications and control.

    Science.gov (United States)

    Teo, Tiffany L L; Coleman, Heather M; Khan, Stuart J

    2015-03-01

    A range of trace chemical contaminants have been reported to occur in swimming pools. Current disinfection practices and monitoring of swimming pool water quality are aimed at preventing the spread of microbial infections and diseases. However, disinfection by-products (DBPs) are formed when the disinfectants used react with organic and inorganic matter in the pool. Additional chemicals may be present in swimming pools originating from anthropogenic sources (bodily excretions, lotions, cosmetics, etc.) or from the source water used where trace chemicals may already be present. DBPs have been the most widely investigated trace chemical contaminants, including trihalomethanes (THMs), haloacetic acids (HAAs), halobenzoquinones (HBQs), haloacetonitriles (HANs), halonitromethanes (HNMs), N-nitrosamines, nitrite, nitrates and chloramines. The presence and concentrations of these chemical contaminants are dependent upon several factors including the types of pools, types of disinfectants used, disinfectant dosages, bather loads, temperature and pH of swimming pool waters. Chemical constituents of personal care products (PCPs) such as parabens and ultraviolet (UV) filters from sunscreens have also been reported. By-products from reactions of these chemicals with disinfectants and UV irradiation have been reported and some may be more toxic than their parent compounds. There is evidence to suggest that exposure to some of these chemicals may lead to health risks. This paper provides a detailed review of various chemical contaminants reported in swimming pools. The concentrations of chemicals present in swimming pools may also provide an alternative indicator to swimming pool water quality, providing insights to contamination sources. Alternative treatment methods such as activated carbon filtration and advanced oxidation processes may be beneficial in improving swimming pool water quality.

  4. Health impact of disinfection by-products in swimming pools

    OpenAIRE

    Villanueva, Cristina M.; Laia Font-Ribera

    2012-01-01

    This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs) in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemio...

  5. Spinning swimming of Volvox by tangential helical wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of tangential helical waves running along its surface is studied on the basis of the Stokes equations. Two types of tangential waves are found. The first of these is associated with a pressure disturbance and leads to a higher rate of net rotation than the second one for the same power. It is suggested that the helical waves are relevant for the rotational swimming of Volvox.

  6. Emergence of upstream swimming via a hydrodynamic transition.

    Science.gov (United States)

    Tung, Chih-Kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L; Suarez, Susan S; Wu, Mingming

    2015-03-13

    We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ-γ_{c}). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface microswimmers that possess front-back asymmetry and circular motion.

  7. Uniqueness property for quasiharmonic functions

    Directory of Open Access Journals (Sweden)

    Sevdiyor A. Imomkulov

    2014-10-01

    Full Text Available In this paper we consider a class of continuous functions, called quasiaharmonic functions, admitting best approximations by harmonic polynomials. In this class we prove a uniqueness theorem by analogy with the analytic functions.

  8. Diabetes: Unique to Older Adults

    Science.gov (United States)

    ... Stroke Urinary Incontinence Related Documents PDF Choosing Wisely: Diabetes Tests and Treatments Download Related Video Join our e-newsletter! Aging & Health A to Z Diabetes Unique to Older Adults This section provides information ...

  9. Osteoporosis: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z Osteoporosis Unique to Older Adults This section provides information ... and widely-prescribed medications for the treatment of osteoporosis. Some serious side effects of these medication have ...

  10. Nutrition: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z Nutrition Unique to Older Adults This section provides information ... teeth that are needed for grinding up food, nutrition suffers. If you are unable to chew and ...

  11. Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain.

    Science.gov (United States)

    Hu, Bing; Doods, Henri; Treede, Rolf-Detlef; Ceci, Angelo

    2016-04-21

    The current study assessed whether antidepressant and/or antinociceptive drugs, duloxetine, fluoxetine as well as (±)-8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT), are able to reverse depression-like behaviour in animals with chronic neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve in rats was selected as neuropathic pain model. Mechanical hypersensitivity and depression-like behaviour were evaluated 4 weeks after surgery by "electronic algometer" and forced swimming test (FST), which measured the time of immobility, and active behaviours climbing and swimming. The selective noradrenergic and serotonergic uptake blocker duloxetine (20mg/kg) and the selective 5-HT1A agonist 8-OH-DPAT (0.5mg/kg) significantly reversed both mechanical hypersensitivity and depression-like behaviour in CCI animals. Duloxetine significantly reversed depression-like behaviour in CCI rats by increasing the time of climbing and swimming, while 8-OH-DPAT attenuated depression-like behaviour mainly by increasing the time of swimming. However, the selective serotonergic uptake blocker fluoxetine (20mg/kg) failed to attenuate mechanical hypersensitivity and depression-like behaviour, possibly due to confounding pro-nociceptive actions at 5-HT3 receptors. These data suggest to target noradrenergic and 5-HT1A receptors for treatment of chronic pain and its comorbidity depression.

  12. Personality Traits and Investment Behaviour

    OpenAIRE

    Cecchini, Marco

    2016-01-01

    In this thesis I construct a unique dataset to test the role of individual characteristics in affecting the investor behaviour. In particular, I present two empirical research papers that investigate trading patterns unlikely to be driven by rational models, and a literature review in which are summarized the main findings within the new field of “personality finance”. Using an experimental analysis that combine a trading simulation with a Big-Five personality questionnaire, Paper 1 and Paper...

  13. Swimming speeds of filaments in viscous fluids with resistance

    Science.gov (United States)

    Ho, Nguyenho; Olson, Sarah D.; Leiderman, Karin

    2016-04-01

    Many microorganisms swim in a highly heterogeneous environment with obstacles such as fibers or polymers. To better understand how this environment affects microorganism swimming, we study propulsion of a cylinder or filament in a fluid with a sparse, stationary network of obstructions modeled by the Brinkman equation. The mathematical analysis of swimming speeds is investigated by studying an infinite-length cylinder propagating lateral or spiral displacement waves. For fixed bending kinematics, we find that swimming speeds are enhanced due to the added resistance from the fibers. In addition, we examine the work and the torque exerted on the cylinder in relation to the resistance. The solutions for the torque, swimming speed, and work of an infinite-length cylinder in a Stokesian fluid are recovered as the resistance is reduced to zero. Finally, we compare the asymptotic solutions with numerical results for the Brinkman flow with regularized forces. The swimming speed of a finite-length filament decreases as its length decreases and planar bending induces an angular velocity that increases linearly with added resistance. The comparisons between the asymptotic analysis and computation give insight on the effect of the length of the filament, the permeability, and the thickness of the cylinder in terms of the overall performance of planar and helical swimmers.

  14. Minimal model for transient swimming in a liquid crystal

    CERN Document Server

    Krieger, Madison S; Powers, Thomas R

    2015-01-01

    When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady- state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong anchoring case for any a...

  15. Wearable inertial sensors in swimming motion analysis: a systematic review.

    Science.gov (United States)

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  16. Swimming as physical activity and recreation for women

    Directory of Open Access Journals (Sweden)

    Yfanti Maria

    2014-01-01

    Full Text Available The present study reviews all data that establish swimming as an everyday lifestyle and recreational activity for women, since it promotes wellness, well-being and longevity. Swimming as a natural, physical activity is one of the most effective ways of exercise, since it affects and work outs the whole body. It is the most suitable sport for all age groups, because it combines beneficial results, for both body and soul and is also a low-risk-injury physical exercise. Aim of this study is to record the effect of recreational swimming in physical condition indexes and in quality of life in women. In particular to record the benefits, since studies have shown that swimming can help in prevention and treatment of chronic diseases and improves quality of life, of well-being and longevity. Results of all studies showed that swimming, as a great natural recreational activity has multiple beneficial effects on the female body that are not limited to the physical characteristics but are extended to the mental ones. Challenges for the application and development fields of this particular method of exercise, are the quality of service provided and the staffing of departments and programs in multiple carriers, private or public. Researchers and writers agree that there are great prospects for growth for women through partnerships, with programs and systematic research in the field of recreational swimming.

  17. A coin vibrational motor swimming at low Reynolds number

    CERN Document Server

    Quillen, Alice C; Kelley, Douglas H; Friedmann, Tamar; Oakes, Patrick W

    2016-01-01

    Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its vibrations induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the vibration it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming veloc...

  18. Sudden death due to swimming in elderly women.

    Science.gov (United States)

    Škavić, Petar; Duraković, Din

    2015-03-01

    The aim was to analyze the rate of sudden death in elderly Croatian women in comparison to elderly Croatian men, who died suddenly due to swimming. In the period from 2002 to 2011 one elderly Croatian woman and five elderly men died suddenly during swimming. In the same time, the same number of elderly foreigners died due to swimming at the Croatian Adriatic coast. One Croatian woman aged 66, who suffered of arterial hypertension with left ventricular hyper- trophy of 15 mm, diabetes mellitus and alcoholic liver cirrhosis, drowned in the sea during swimming. She was intoxi- cated with alcohol and had alcohol level in urine of 3.03 per thousand. One foreign woman, aged 82, who suffered coronary heart disease with left ventricular scar after myocardial infarction, arterial hypertension with excessive left ventricular hypertrophy of 22 mm and nephroangiosclerosis, suddenly lost conscionsness during swimming. The death rate in elderly Croatian women due to swimming reached 0.25, and the death rate in men is eight times higher: 1.97 (p = 0.0701), but the difference is not significant probably because of a small observational number.

  19. Postactivation potentiation enhances swim performance in collegiate swimmers.

    Science.gov (United States)

    Hancock, Andrew P; Sparks, Kenneth E; Kullman, Emily L

    2015-04-01

    This study examined postactivation potentiation (PAP) and its effect on performance during sprint swimming. After maximal muscular contraction, the muscles are in both a potentiated and fatigued state. However, fatigue dissipates faster than potentiation, creating a window of opportunity for possible performance enhancement. We observed 30 collegiate swimmers (15 men and 15 women) performing 2 swim trials in a randomized order. The control trial involved a standard swim warm-up, followed by a 6-minute rest and by a maximal 100-m freestyle swim effort. The PAP trial involved the same protocol; however, a PAP loading protocol involved the subjects completing 4 maximal 10-m swims at a 1-minute interval while attached to a resistive power rack and was completed before the 6-minute rest. Fifty-meter splits and blood lactates were also analyzed. There was a significant improvement in 100-m freestyle swim time (0.54 seconds) for the PAP trial vs. the control trial (p = 0.029). Both men and women improved during the PAP trial compared with the control trial, and there was no significant gender interaction. We conclude that PAP substantially enhances 100-m freestyle performance in collegiate swimmers and presents a valid technique for competitive performance enhancement.

  20. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  1. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  2. Schistosoma mansoni cercariae swim efficiently by exploiting an elastohydrodynamic coupling

    Science.gov (United States)

    Krishnamurthy, Deepak; Katsikis, Georgios; Bhargava, Arjun; Prakash, Manu

    2017-03-01

    The motility of many parasites is critical for infecting their host, as exemplified in the transmission cycle of the parasite Schistosoma mansoni. In its human infectious stage, submillimetre-scale forms of the parasite known as cercariae swim in freshwater and infect humans by penetrating the skin. This infection causes schistosomiasis, a disease comparable to malaria in global socio-economic impact. Given that cercariae do not feed and hence have a lifetime of around 12 hours, efficient motility is crucial for schistosomiasis transmission. Despite this, a first-principles understanding of how cercariae swim is lacking. Combining biological experiments, a novel theoretical model and its robotic realization, we show that cercariae use their forked tail to swim against gravity using a novel swimming gait, described here as a `T-swimmer gait'. During this gait, cercariae beat their tail periodically while maintaining an increased flexibility near their posterior and anterior ends. This flexibility allows an interaction between fluid drag and bending resistance--an elastohydrodynamic coupling, to naturally break time-reversal symmetry and enable locomotion at small length scales. Finally, we find that cercariae maintain this flexibility at an optimal regime for efficient swimming. We anticipate that our work sets the ground for linking the swimming of cercariae to disease transmission, and could potentially enable explorations of novel strategies for schistosomiasis control and prevention.

  3. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-02-08

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  4. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  5. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Directory of Open Access Journals (Sweden)

    David T. Booth

    2014-09-01

    Full Text Available Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1 increased swimming speed is achieved through an increased stroke rate; (2 force produced per stroke is proportional to stroke amplitude, (3 that forward thrust is produced during both the down and up phases of stroking; and (4 that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of

  6. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings.

    Science.gov (United States)

    Booth, David T

    2014-09-04

    Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1) increased swimming speed is achieved through an increased stroke rate; (2) force produced per stroke is proportional to stroke amplitude, (3) that forward thrust is produced during both the down and up phases of stroking; and (4) that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of swimming. The

  7. Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth and Muscle Growth Marker Gene Expression

    Science.gov (United States)

    Rovira, Mireia; Brittijn, Sebastiaan A.; Burgerhout, Erik; van den Thillart, Guido E. E. J. M.; Spaink, Herman P.; Planas, Josep V.

    2010-01-01

    Background Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. Methodology/Principal Findings Individual zebrafish (n = 10) were able to swim at a critical swimming speed (Ucrit) of 0.548±0.007 m s−1 or 18.0 standard body lengths (BL) s−1. The optimal swimming speed (Uopt) at which energetic efficiency is highest was 0.396±0.019 m s−1 (13.0 BL s−1) corresponding to 72.26±0.29% of Ucrit. The cost of transport at optimal swimming speed (COTopt) was 25.23±4.03 µmol g−1 m−1. A group-wise experiment was conducted with zebrafish (n = 83) swimming at Uopt for 6 h day−1 for 5 days week−1 for 4 weeks vs. zebrafish (n = 84) that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb), insulin-like growth factor 1 receptor a (igf1ra), troponin C (stnnc), slow myosin heavy chain 1 (smyhc1), troponin I2 (tnni2), myosin heavy polypeptide 2 (myhz2) and myostatin (mstnb). Conclusions/Significance From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture. PMID:21217817

  8. Sex difference in open-water ultra-swim performance in the longest freshwater lake swim in Europe.

    Science.gov (United States)

    Eichenberger, Evelyn; Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph A; Rosemann, Thomas; Lepers, Romuald; Senn, Oliver

    2013-05-01

    This study examined participation and performance trends in the 26.4-km open-water ultra-swim "Marathon Swim in Lake Zurich," Switzerland. A total of 461 athletes (157 women and 304 men) finished the race between 1987 and 2011. The mean age of the finishers during the studied period was 32.0 ± 6.5 years for men and 30.9 ± 7.2 years for women. The mean age of finishers and the age of winners increased significantly across years for both sexes (p swimming time of the finishers did not differ between men (530 ± 39 minutes) and women (567 ± 71 minutes) (p > 0.05). The swimming time performance remained stable (p > 0.05) for both sexes across years. A higher age was associated with an increased risk for not finishing the race (odds ratio = 0.93, p = 0.045). Swim time was negatively associated with water temperature in the top 3 swimmers (ß = -9.87, p = 0.025). These results show that open-water ultra-swimming performance of elite swimmers over 26.4 km in a freshwater lake is affected by age, sex, and water temperature. The sex difference in open-water ultra-swimming performance (approximately 11.5%) remained unchanged these last 25 years. It seems unlikely that elite female swimmers will achieve the same performance of elite male swimmers competing in open-water ultra-swimming in water of approximately 20 °C. Anthropometric and physiological characteristics such as skeletal muscle mass and thermoregulation need additional investigations in female and male open-water ultra-swimmers.

  9. Modelling Behaviour

    DEFF Research Database (Denmark)

    2015-01-01

    This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while....... The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015....... posing new challenges in all areas of the industry from material and structural to the urban scale. Contributions from invited experts, papers and case studies provide the reader with a comprehensive overview of the field, as well as perspectives from related disciplines, such as computer science...

  10. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae.

    Science.gov (United States)

    Silva, Cátia S E; Novais, Sara C; Lemos, Marco F L; Mendes, Susana; Oliveira, Ana P; Gonçalves, Emanuel J; Faria, Ana M

    2016-09-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO2 levels (control: ~600μatm, pH=8.03; medium: ~1000μatm, pH=7.85; high: ~1800μatm, pH=7.64) up to 15days, after which critical swimming speed (Ucrit), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress - superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism - total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO2 treatment and smaller larvae in medium pCO2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO2 treatment may indicate that at higher pCO2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO2 levels on organisms.

  11. Prior cold water swim stress alters immobility in the forced swim test and associated activation of serotonergic neurons in the rat dorsal raphe nucleus.

    Science.gov (United States)

    Drugan, R C; Hibl, P T; Kelly, K J; Dady, K F; Hale, M W; Lowry, C A

    2013-12-01

    Prior adverse experience alters behavioral responses to subsequent stressors. For example, exposure to a brief swim increases immobility in a subsequent swim test 24h later. In order to determine if qualitative differences (e.g. 19°C versus 25°C) in an initial stressor (15-min swim) impact behavioral, physiological, and associated neural responses in a 5-min, 25°C swim test 24h later, rats were surgically implanted with biotelemetry devices 1 week prior to experimentation then randomly assigned to one of six conditions (Day 1 (15 min)/Day 2 (5 min)): (1) home cage (HC)/HC, (2) HC/25°C swim, (3) 19°C swim/HC, (4) 19°C swim/25°C swim, (5) 25°C swim/HC, (6) 25°C swim/25°C swim. Core body temperature (Tb) was measured on Days 1 and 2 using biotelemetry; behavior was measured on Day 2. Rats were transcardially perfused with fixative 2h following the onset of the swim on Day 2 for analysis of c-Fos expression in midbrain serotonergic neurons. Cold water (19°C) swim on Day 1 reduced Tb, compared to both 25°C swim and HC groups on Day 1, and, relative to rats exposed to HC conditions on Day 1, reduced the hypothermic response to the 25°C swim on Day 2. The 19°C swim on Day 1, relative to HC exposure on Day 1, increased immobility during the 5-min swim on Day 2. Also, 19°C swim, relative to HC conditions, on Day 1 reduced swim (25°C)-induced increases in c-Fos expression in serotonergic neurons within the dorsal and interfascicular parts of the dorsal raphe nucleus. These results suggest that exposure to a 5-min 19°C cold water swim, but not exposure to a 5-min 25°C swim alters physiological, behavioral and serotonergic responses to a subsequent stressor.

  12. Nutrition for synchronized swimming: a review.

    Science.gov (United States)

    Lundy, Bronwen

    2011-10-01

    Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.

  13. Do swimming animals mix the ocean?

    Science.gov (United States)

    Dabiri, John

    2013-11-01

    Perhaps. The oceans are teeming with billions of swimming organisms, from bacteria to blue whales. Current research efforts in biological oceanography typically focus on the impact of the marine environment on the organisms within. We ask the opposite question: can organisms in the ocean, especially those that migrate vertically every day and regionally every year, change the physical structure of the water column? The answer has potentially important implications for ecological models at local scale and climate modeling at global scales. This talk will introduce the still-controversial prospect of biogenic ocean mixing, beginning with evidence from measurements in the field. More recent laboratory-scale experiments, in which we create controlled vertical migrations of plankton aggregations using laser signaling, provide initial clues toward a mechanism to achieve efficient mixing at scales larger than the individual organisms. These results are compared and contrasted with theoretical models, and they highlight promising avenues for future research in this area. Funding from the Office of Naval Research and the National Science Foundation is gratefully acknowledged.

  14. Swimming against the tide: explaining the Higgs

    CERN Multimedia

    Emma Sanders

    2012-01-01

    "Never before in the field of science journalism have so few journalists understood what so many physicists were telling them!" tweeted the UK Channel 4’s Tom Clarke from last December’s Higgs seminar. As a consequence, most coverage focused on debates over the use of the label “god particle” and the level of excitement of the physicists (high), whilst glossing over what this excitement was actually all about.   So what is the Higgs? Something fundamental. Something to do with mass. If your interest in physics is more than simply passing, you may find that rooms full of chattering politicians or the use of different footwear when walking through snow just don’t do the job in convincing you why the Higgs is so important. And if images of fish make you feel like a fish out of water - or at least one swimming against a strong current - then perhaps you would appreciate a different approach. The need for the Higgs Whilst gauge th...

  15. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available Deep RNA sequencing (RNA-seq was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10 or swum (n = 10 for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides, a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.

  16. Comparing effects of transmitters within and among populations: application to swimming performance of juvenile Chinook salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Fielding, Scott D.; Adams, Noah S.; Rondorf, Dennis W.

    2013-01-01

    The sensitivity of fish to a transmitter depends on factors such as environmental conditions, fish morphology, life stage, rearing history, and tag design. However, synthesizing general trends across studies is difficult because each study focuses on a particular performance measure, species, life stage, and transmitter model. These differences motivated us to develop simple metrics that allow effects of transmitters to be compared among different species, populations, or studies. First, we describe how multiple regression analysis can be used to quantify the effect of tag burden (transmitter mass relative to fish mass) on measures of physiological performance. Next, we illustrate how the slope and intercept parameters can be used to calculate two summary statistics: θ, which estimates the tag burden threshold above which the performance of tagged fish begins to decline relative to untagged fish; and k, which measures the percentage change in performance per percentage point increase in tag burden. When θ = 0, k provides a single measure of the tag's effect that can be compared among species, populations, or studies. We apply this analysis to two different experiments that measure the critical swimming speed (U crit) of tagged juvenile Chinook Salmon Oncorhynchus tshawytscha. In both experiments, U crit declined as tag burden increased, but we found no significant threshold in swimming performance. Estimates of θ ranged from −0.6% to 2.1% among six unique treatment groups, indicating that swimming performance began to decline at a relatively low tag burden. Estimates of k revealed that U crit of tagged fish declined by −2.68% to −4.86% for each 1% increase in tag burden. Both θ and k varied with the tag's antenna configuration, tag implantation method, and posttagging recovery time. Our analytical approach can be used to gain insights across populations to better understand factors affecting the ability of fish to carry a transmitter.

  17. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  18. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance.

    Science.gov (United States)

    Kalsen, A; Hostrup, M; Bangsbo, J; Backer, V

    2014-10-01

    There is a high prevalence of asthma and airway hyperresponsiveness (AHR) in elite athletes, which leads to a major use of beta2 -agonists. In a randomized double-blinded crossover study, we investigated the effects of combined inhalation of beta2 -agonists (salbutamol, formoterol, and salmeterol), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max were determined. Venous plasma interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured post-exercise. No improvement was observed in the exhaustive swim test, but swim ergometer sprint time was improved (P swim performance in elite swimmers. However, swim ergometer sprint performance and MVC were increased, which should be considered when making future anti-doping regulations.

  19. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  20. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  1. Examining self-training procedures in leisure swimming.

    Science.gov (United States)

    J Potdevin, Francois; Normani, Clement; Pelayo, Patrick

    2013-01-01

    This study investigated contents of training sessions from 387 regular swimmers involved in a recreational workout without supervision. We did use multiple correspondences analysis in order to identify self-trained swimmers typology in a sample from a social networking website, focusing on swimming practice. Self-reported parameters (n = 12) were age, gender, practice frequency, supervision in physical activity experiment, main training target, main reason for swimming choice, swimming session duration and distance, most used swimming stroke and material, quality of the training control, and training evolution during a year. Results have highlighted different training strategies and targets according to gender and age. Male strategy consists in performing higher distance (1818.8 ± 644.5 m vs. 1453.0 ± 603.3, p female respectively) by using several swim stroke and gears involving upper body muscles (front crawl, pull buoy and paddles). More concerned about duration of their sessions, women are mainly using breaststroke. Backstroke is associated with people aged higher than 50. We also have established a connection between motives according to ages and long term strategies. The main motivation for middle aged people appears to be general health benefits by performing identical swimming session without evolution during a year. People aged from 20 to 30 are divided between an identical swimming session strategy and an increase in distance or in intensity strategy during a year. This population appears to be concerned about a global health benefits and a body shape effects. Suggestions are made to improve swimming practice environment during free time sessions according to the main results. Key PointsMale strategy consists in performing higher distance by using several swim stroke and gears involving upper body muscles whereas women are more concerned about effort duration and use breaststroke in majority.The main motivation for middle aged people appears to be

  2. ANTHROPOLOGICAL STUDENTS’ STATUS AND THE RESULTS’ SUCCESS IN SWIMMING

    Directory of Open Access Journals (Sweden)

    Simo Vuković

    2010-09-01

    Full Text Available Introduction The sample consisted of 31 tested students in 2009/10 academic year and 43 tested students in 2008/09. all of them were the second year male students at Faculty of Physical Education and Sport at the University in East Sarajevo, the students were 22 years and± 6 months old, on this sample, there was done the results’ comparison in the following parameters: 11 variables of the anthropological statusand 2 variables of the swimming the crawl at 50m and swimming the backstroke. The predicting variable of the anthropological status consisted of: height, weight, shoulders width, hips width, the skin’s fold of the back, the skin’s fold of the upper arm, the skin’s fold of the abdomen, the volume of the upper arm, the volume of the thigh, the volume of the shank and the diameter of the joint of the knee, the measuring variables referred to the results’ success in swimming the crawl at 50m and swimming the backstroke. The method of the study Apart from the descriptive statistics by which the measures of central tendencies are expressed: mean, minimum, maximum, standard deviation, there was used regressive analysis, for the correlation of the results of the anthropological status with the results of the swimming the crawl at 50m and swimming the backstroke. The results of the research and the conclusions There was done the results’ comparison of one group of students consisting of 31 tested male students in 2009/10 and 43 tested students in 2008/09. the comparison was shown by the measures of central tendencies of the descriptive statistics and by the regressive analysis of the group of 11 predicting variables of the anthropological students’ status and by the results of 2 measuring variables shown by the swimming the crawl at 50m and swimming the backstroke. Applying the regressive analysis there was got the list of the data which contained the data about the parameters of the regression and statistical quantities relevant for

  3. Calcium-dependent behavioural responses to acute copper exposure in Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Poulsen, S.B.; Svendsen, Jon Christian; Aarestrup, Kim;

    2014-01-01

    Using rainbow trout Oncorhynchus mykiss, the present study demonstrated that: (1) calcium (Ca) increased the range of copper (Cu) concentrations that O. mykiss avoided; (2) Ca conserved the maintenance of pre-exposure swimming activity during inescapable acute (10 min) Cu exposure. Data showed...... their spontaneous swimming speed, whereas no response was observed in O. mykiss acclimated and tested at high Ca concentration. Collectively, the data support the conclusion that in O. mykiss the behavioural responses to acute Cu exposure are Ca-dependent....

  4. A study of managerial job system of open water swimming

    Directory of Open Access Journals (Sweden)

    KHALIL SAMIRA

    2011-04-01

    Full Text Available Modern sports management plays a vital part in directing the sport organizations towards the ways ofprogress and development and treating the weakness points and increasing the efficacy of the strength points andincreasing the efficacy of the strength points whether in the championship sector or practice sector. Egypt isconsidered the first country that set up a union to organize the long distances swimming in estimation of theresults that were achieved by the Egyptian swimmers in this field. The sport unions are the link point betweenthe high formal authorities and the organizations of the base represented in the sport clubs. The researchernoticed the instability of the managerial and organizational positions in the swimming union that reflectednegatively on the number of swimmer and their national representation. It is noticed that the representation isonly one swimmer and the girls may not take part in these championships. The importance of this study isshown after the inclusion of the open water swimming in Beijing (2008 and the Olympiad included the openwater swimming for 10 km. for girls and men. The study sample consisted of (33 subjects among them (8members of board of directors, (11 coaches, (71 administrators, (7 referees. Data were collected throughanalysis of the records and documents of the plans and results of open water swimming races local andinternational and the questionnaire that was prepared by the researcher and includes the axes of planningorganizing – directing and controlling and its phrases are (84 phrases, The most important results the nondecidingof the goals of the technical committee of the open water swimming, the few numbers of the swimmerswho are qualified for the national representation. There is a limited attention in preparing the youngsters. Theorganizational structure of the union is suitable to achieve the required cooperation. There is a big dysfunctionin the control system linked to the work of the

  5. Effect of Swim Cap Surface Roughness on Passive Drag.

    Science.gov (United States)

    Gatta, Giorgio; Cortesi, Matteo; Zamparo, Paola

    2015-11-01

    In the last decade, great attention has been given to the improvements in swimming performance that can be obtained by wearing "technical swimsuits"; the technological evolution of these materials only marginally involved swim caps production, even if several studies have pointed out the important role of the head (as main impact point with the fluid) on hydrodynamics. The aim of this study was to compare the effects on passive drag (Dp) of 3 swim cap models: a smooth silicon helmet cap (usually used during swimming competitions), a silicon helmet cap with "dimples," and a silicon helmet cap with "wrinkles." Experiments were performed on 10 swimmers who were towed underwater (at a depth of 60 cm) at 3 speeds (1.5, 1.7, and 1.9 m·s) and in 2 body positions: LA (arms above the swimmer's head) and SA (arms alongside the body). The Dp values obtained in each trial were divided by the square of the corresponding speed to obtain the speed-specific drag (the k coefficient = Dp/v). No differences in k were observed among swim caps in the LA position. No differences in k were observed between the smooth and dimpled helmets also in the SA position; however, the wrinkled swim cap helmet showed a significant larger k (4.4%) in comparison with the model with dimples, when the swimmers kept their arms alongside the body (in the SA position). These data suggest that wearing a wrinkled swim cap helmet can be detrimental to performance at least in this specific position.

  6. [Swimming, physical activity and health: a historical perspective].

    Science.gov (United States)

    Conti, A A

    2015-01-01

    Swimming, which is the coordinated and harmonic movement of the human body inside a liquid medium by means of the combined action of the superior and inferior limbs, is a physical activity which is diffused throughout the whole world and it is practiced by healthy and non-healthy subjects. Swimming is one of the physical activities with less contraindications and, with limited exceptions, can be suggested to individuals of both sexes and of every age range, including the most advanced. Swimming requires energy both for the floating process and for the anterograde progression, with a different and variable osteo-arthro-muscular involvement according to the different styles. The energetic requirement is about four times that for running, with an overall efficiency inferior to 10%; the energetic cost of swimming in the female subject is approximately two thirds of that in the male subject. The moderate aerobic training typical of swimming is useful for diabetic and hypertensive individuals, for people with painful conditions of rachis, as also for obese and orthopaedic patients. Motor activity inside the water reduces the risk of muscular-tendinous lesions and, without loading the joints in excess, requires the harmonic activation of the whole human musculature. Swimming is an activity requiring multiple abilities, ranging from a sense of equilibrium to that of rhythm, from reaction speed to velocity, from joint mobility to resistance. The structured interest for swimming in the perspective of human health from the beginning of civilization, as described in this contribution, underlines the relevance attributed to this activity in the course of human history.

  7. Respiratory muscle specific warm-up and elite swimming performance.

    Science.gov (United States)

    Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E

    2014-05-01

    Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, pswim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.

  8. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    Science.gov (United States)

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology.

    Science.gov (United States)

    Ezenwa, Vanessa O; Archie, Elizabeth A; Craft, Meggan E; Hawley, Dana M; Martin, Lynn B; Moore, Janice; White, Lauren

    2016-04-13

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour-disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour-parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour-parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained.

  10. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus)

    DEFF Research Database (Denmark)

    Korsmeyer, Keith E; Steffensen, John Fleng; Herskin, Jannik

    2002-01-01

    exclusively with the pectoral fins at prolonged swimming speeds up to 3.2 total lengths per second (L s(-1); 30 min critical swimming speed, U(crit)). At higher speeds, gait transferred to a burst-and-coast BCF swimming mode that resulted in rapid fatigue. The triggerfish swam using undulations of the soft...... dorsal and anal fins up to 1.5 L s(-1), beyond which BCF undulations were recruited intermittently. BCF swimming was used continuously above 3.5 L s(-1), and was accompanied by synchronous undulations of the dorsal and anal fins. The triggerfish were capable of high, prolonged swimming speeds of up to 4...

  11. Developmental intervals during the larval and juvenile stages of the Antarctic myctophid fish Electrona antarctica in relation to changes in feeding and swimming functions

    Science.gov (United States)

    Moteki, Masato; Tsujimura, Eri; Hulley, Percy-Alexander

    2017-06-01

    The Antarctic myctophid fish species Electrona antarctica is believed to play a key role in the Southern Ocean food web, but there have been few studies on its early life history. This study examined the developmental changes in the external morphology and osteology of E. antarctica from the early larva to juvenile stages through the transformation phase and inferred changes in its behaviour and feeding mode. Once the larvae reached 12-13 mm body length (BL), they adopted a primordial suction feeding mode along with the acquisition of early swimming capabilities. Thereafter, both swimming and feeding functions were enhanced through fin development and ossification and acquisition of elements of the jaw and suspensorium. These processes indicate that larvae transition from the planktonic to nektonic phase upon reaching 12-13 mm BL when they enhance their both swimming and feeding abilities with growth. Transformation occurred when larvae reached 19-21 mm BL with changes such as discontinuous increases in eye diameter and upper jaw length and the appearance of photophores and dense body pigmentation. Osteological development of swimming- and feeding-related structures were mostly complete after transformation. Rapid changes in external morphology and osteology during the transformation stage are most likely related to ontogenetic vertical migration into deep waters.

  12. Studying large jellyfish swimming hydrodynamics using a biomimetic robot named Cyro 2

    Science.gov (United States)

    Stewart, Colin; Krummel, Gregory; Villanueva, Alex; Marut, Kenneth; Priya, Shashank

    2015-11-01

    Some species of jellyfish can grow to great sizes, such as the lion's mane jellyfish (Cyanea capillata), which can span 2 m in diameter with tentacles 30 m long, roughly the same length as a blue whale. This is an impressive feat for an animal that begins its mobile life three orders of magnitude smaller. Such growth can require a large energy budget, suggesting that Cyanea may be a uniquely efficient swimmer, successful predator, or both. Either accolade would stem from a high level of hydrodynamic mastery as oblate jellyfish like Cyanea rely on the flow currents generated by bell pulsation for both propulsive thrust and prey encounter. However, further investigation has been hindered by the lack of reported quantitative flow measurements, perhaps due to the logistic challenges inherent to studying large specimen in vivo. Here, we used a 50 cm diameter biomimetic Cyanea robot named Cyro 2 as a proxy to study the hydrodynamics of large jellyfish. The effect of different trailing structure morphologies (e.g. oral arms and tentacles), swimming gaits, and kinematics on flow patterns were measured using PIV. Baseline swimming performance using biomimetic settings (but no trailing structures) was characterized by a cycle average velocity of 6.58 cm s-1, thrust of 1.9 N, and power input of 5.7 W, yielding a vehicle efficiency of 2.2% and a cost of transport of 15.4 J kg-1 m-1.

  13. Rufus Choate: A Unique Orator.

    Science.gov (United States)

    Markham, Reed

    Rufus Choate, a Massachusetts lawyer and orator, has been described as a "unique and romantic phenomenon" in America's history. Born in 1799 in Essex, Massachusetts, Choate graduated from Dartmouth College and attended Harvard Law School. Choate's goal was to be the top in his profession. Daniel Webster was Choate's hero. Choate became well…

  14. Uniqueness of PL Minimal Surfaces

    Institute of Scientific and Technical Information of China (English)

    Yi NI

    2007-01-01

    Using a standard fact in hyperbolic geometry, we give a simple proof of the uniqueness of PL minimal surfaces, thus filling in a gap in the original proof of Jaco and Rubinstein. Moreover, in order to clarify some ambiguity, we sharpen the definition of PL minimal surfaces, and prove a technical lemma on the Plateau problem in the hyperbolic space.

  15. On the Nagumo uniqueness theorem

    OpenAIRE

    Octavian G. Mustafa; O'Regan, Donal

    2011-01-01

    By a convenient reparametrisation of the integral curves of a nonlinear ordinary differential equation (ODE), we are able to improve the conclusions of the recent contribution [A. Constantin, Proc. Japan Acad. {\\bf 86(A)} (2010), 41--44]. In this way, we establish a flexible uniqueness criterion for ODEs without Lipschitz-like nonlinearities.

  16. The Lasso Problem and Uniqueness

    CERN Document Server

    Tibshirani, Ryan J

    2012-01-01

    The lasso is a popular tool for sparse linear regression, especially for problems in which the number of variables p exceeds the number of observations n. But when p>n, the lasso criterion is not strictly convex, and hence it may not have a unique minimum. An important question is: when is the lasso solution well-defined (unique)? We review results from the literature, which show that if the predictor variables are drawn from a continuous probability distribution, then there is a unique lasso solution with probability one, regardless of the sizes of n and p. We also show that this result extends easily to $\\ell_1$ penalized minimization problems over a wide range of loss functions. A second important question is: how can we deal with the case of non-uniqueness in lasso solutions? In light of the aforementioned result, this case really only arises when some of the predictor variables are discrete, or when some post-processing has been performed on continuous predictor measurements. Though we certainly cannot c...

  17. Computer assisted video analysis of swimming performance in a forced swim test: simultaneous assessment of duration of immobility and swimming style in mice selected for high and low swim-stress induced analgesia.

    Science.gov (United States)

    Juszczak, Grzegorz R; Lisowski, Paweł; Sliwa, Adam T; Swiergiel, Artur H

    2008-10-20

    In behavioral pharmacology, two problems are encountered when quantifying animal behavior: 1) reproducibility of the results across laboratories, especially in the case of manual scoring of animal behavior; 2) presence of different behavioral idiosyncrasies, common in genetically different animals, that mask or mimic the effects of the experimental treatments. This study aimed to develop an automated method enabling simultaneous assessment of the duration of immobility in mice and the depth of body submersion during swimming by means of computer assisted video analysis system (EthoVision from Noldus). We tested and compared parameters of immobility based either on the speed of an object (animal) movement or based on the percentage change in the object's area between the consecutive video frames. We also examined the effects of an erosion-dilation filtering procedure on the results obtained with both parameters of immobility. Finally, we proposed an automated method enabling assessment of depth of body submersion that reflects swimming performance. It was found that both parameters of immobility were sensitive to the effect of an antidepressant, desipramine, and that they yielded similar results when applied to mice that are good swimmers. The speed parameter was, however, more sensitive and more reliable because it depended less on random noise of the video image. Also, it was established that applying the erosion-dilation filtering procedure increased the reliability of both parameters of immobility. In case of mice that were poor swimmers, the assessed duration of immobility differed depending on a chosen parameter, thus resulting in the presence or lack of differences between two lines of mice that differed in swimming performance. These results substantiate the need for assessing swimming performance when the duration of immobility in the FST is compared in lines that differ in their swimming "styles". Testing swimming performance can also be important in the

  18. Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure.

    Science.gov (United States)

    Bernal, D; Sepulveda, C; Mathieu-Costello, O; Graham, J B

    2003-08-01

    Tunas (family Scombridae) and sharks in the family Lamnidae are highly convergent for features commonly related to efficient and high-performance (i.e. sustained, aerobic) swimming. High-performance swimming by fishes requires adaptations augmenting the delivery, transfer and utilization of O(2) by the red myotomal muscle (RM), which powers continuous swimming. Tuna swimming performance is enhanced by a unique anterior and centrally positioned RM (i.e. closer to the vertebral column) and by structural features (relatively small fiber diameter, high capillary density and greater myoglobin concentration) increasing O(2) flux from RM capillaries to the mitochondria. A study of the structural and biochemical features of the mako shark (Isurus oxyrinchus) RM was undertaken to enable performance-capacity comparisons of tuna and lamnid RM. Similar to tunas, mako RM is positioned centrally and more anterior in the body. Another lamnid, the salmon shark (Lamna ditropis), also has this RM distribution, as does the closely related common thresher shark (Alopias vulpinus; family Alopiidae). However, in both the leopard shark (Triakis semifasciata) and the blue shark (Prionace glauca), RM occupies the position where it is typically found in most fishes; more posterior and along the lateral edge of the body. Comparisons among sharks in this study revealed no differences in the total RM quantity (approximately 2-3% of body mass) and, irrespective of position within the body, RM scaling is isometric in all species. Sharks thus have less RM than do tunas (4-13% of body mass). Relative to published data on other shark species, mako RM appears to have a higher capillary density, a greater capillary-to-fiber ratio and a higher myoglobin concentration. However, mako RM fiber size does not differ from that reported for other shark species and the total volume of mitochondria in mako RM is similar to that reported for other sharks and for tunas. Lamnid RM properties thus suggest a higher

  19. Comparative evaluation of forced swim test and tail suspension test as models of negative symptom of schizophrenia in rodents.

    Science.gov (United States)

    Chatterjee, Manavi; Jaiswal, Manoj; Palit, Gautam

    2012-01-01

    Previous studies have shown that the administration of NMDA antagonist can induce negative symptoms of schizophrenia which can be tested through the enhanced immobility observed in the forced swim test (FST). In the present study, we have compared the effects of acute as well as chronic administration of a noncompetitive NMDA receptor antagonist, ketamine on FST, and another behaviour despair model, tail suspension test (TST). Our observations suggest that chronic ketamine administration induced a state of enhanced immobility in FST, but such findings were not replicated in the TST model. Further, in FST, treatment with clozapine reverses the ketamine-induced immobility in mice, whereas it enhances the immobility duration in the TST model. However, haloperidol showed no protective effects in both models. The data suggests that although both of these tests show common behavioural measure of feeling despair, however, the underlying pathophysiology seems to be different. Hence, forced swim test but not tail suspension test can be used as a model of negative symptom of psychosis in mice.

  20. Pitching effects of buoyancy during four competitive swimming strokes.

    Science.gov (United States)

    Cohen, Raymond C Z; Cleary, Paul W; Harrison, Simon M; Mason, Bruce R; Pease, David L

    2014-10-01

    The purpose of this study was to determine the pitching effects of buoyancy during all competitive swimming strokes--freestyle, backstroke, butterfly, and breaststroke. Laser body scans of national-level athletes and synchronized multiangle swimming footage were used in a novel markerless motion capture process to produce three-dimensional biomechanical models of the swimming athletes. The deforming surface meshes were then used to calculate swimmer center-of-mass (CoM) positions, center-of-buoyancy (CoB) positions, pitch buoyancy torques, and sagittal plane moments of inertia (MoI) throughout each stroke cycle. In all cases the mean buoyancy torque tended to raise the legs and lower the head; however, during part of the butterfly stroke the instantaneous buoyancy torque had the opposite effect. The swimming strokes that use opposing arm and leg strokes (freestyle and backstroke) had smaller variations in CoM positions, CoB positions, and buoyancy torques. Strokes with synchronized left-right arm and leg movement (butterfly and breaststroke) had larger variations in buoyancy torques, which impacts the swimmer's ability to maintain a horizontal body pitch for these strokes. The methodology outlined in this paper enables the rotational effects of buoyancy to be better understood by swimmers, allowing better control of streamlined horizontal body positioning during swimming to improve performance.

  1. Glucose response after a ten-week training in swimming.

    Science.gov (United States)

    Sengoku, Y; Nakamura, K; Takeda, T; Nabekura, Y; Tsubakimoto, S

    2011-11-01

    The present study investigated the difference in blood glucose concentration (Glu) response during an incremental swimming test before and after a ten-week training period and verified whether blood glucose threshold (GT) could be determined in competitive swimmers. 7 elite male university swimmers participated in this study. 2 incremental swimming tests were conducted in a swimming flume before and after a ten-week training period. Blood lactate concentration (Bla) and Glu were measured after each swimming step, and the velocities of the lactate threshold (VLT) and glucose threshold (VGT) were analyzed. VLT increased significantly after training (1.21±0.06 m x s(-1) pre-training, 1.31±0.10 m x s(-1) post-training, pswimming intensity steps. GT was not determined at each trial. Our results show that lactate threshold (LT) improved significantly after the ten-week training period, while the Glu response during incremental swimming tests did not change. Therefore, GT could not be determined in elite competitive swimmers before and after training. Georg Thieme Verlag KG Stuttgart · New York.

  2. Effects of bone-conducted music on swimming performance.

    Science.gov (United States)

    Tate, Angela R; Gennings, Chris; Hoffman, Regina A; Strittmatter, Andrew P; Retchin, Sheldon M

    2012-04-01

    Music has been shown to be a useful adjunct for many forms of exercise and has been observed to improve athletic performance in some settings. Nonetheless, because of the limited availability of practical applications of sound conduction in water, there are few studies of the effects of music on swimming athletes. The SwiMP3 is a novel device that uses bone conduction as a method to circumvent the obstacles to transmitting high fidelity sound in an aquatic environment. Thus, we studied the influence of music on swimming performance and enjoyment using the SwiMP3. Twenty-four competitive swimmers participated in a randomized crossover design study in which they completed timed swimming trials with and without the use of music delivered via bone conduction with the SwiMP3. Each participant swam four 50-m trials and one 800-m trial and then completed a physical enjoyment survey. Statistically significant improvements in swimming performance times were found in both the 50-m (0.32 seconds; p = 0.013) and 800-m (6.5 seconds; p = 0.031) trials with music using the SwiMP3. There was no significant improvement in physical enjoyment with the device as measured by a validated assessment tool. Bone-conducted music appears to have a salutary influence on swimming performance in a practice environment among competitive adult swimmers.

  3. Factors determining swimming efficiency observed in less skilled swimmers.

    Science.gov (United States)

    Kucia-Czyszczoń, Katarzyna; Dybińska, Ewa; Ambroży, Tadeusz; Chwała, Wiesław

    2013-01-01

    The dynamics of performance in professional sport requires a systematic improvement of the training process. Such activities should also include optimizing the children and youth training in these disciplines, where an early specialization operates. The main aim of this paper was to search for the relationship between swimmer's segmental kinematics (segmental velocities, stroke rate, stroke length, stroke index); the relationship between swimmer's technical skill level (in four competitive swimming techniques) and training overloads taking into consideration gender and age effect. The study group consisted of 121 swimmers (69 female and 52 male), of the Polish 12-15 age group swim team, volunteered to serve as subjects. Video-based methods and video equipment are being applied to assist qualitative and simple quantitative analysis for immediate feedback and research in swimming. Both technical skill level preparation and segmental kinematics of 12-15 year old swimmers proved to be highly conditioned by implemented training intensity (p swimming efficiency, presented segmental kinematics and technical skill level, however, there appeared particularly pronounced relationship with the size of kinematic parameters taken into account in four competitive swimming techniques, components of the 100 m individual medley.

  4. BDKRB2 GENE -9/+9 POLYMORPHISM AND SWIMMING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    A. Grenda

    2014-07-01

    Full Text Available The aim of the study was to evaluate the association between swimming performance and the -9/+9 (rs5810761 polymorphism within the BDKRB2 gene in successful competitive swimmers.Best individual swimming results expressed in FINA points achieved at short, middle and long distance events of 157 well-trained Polish swimmers were incorporated into an analysis. Athletes’ genotype and allele distributions were analysed in comparison to 230 unrelated sedentary subjects who served as controls with the χ2 test. All samples were genotyped for the BDKRB2 -9/+9 polymorphism using the polymerase chain reaction (PCR. The effects of genotype on swimming performance were analysed with two-way (3 x 2; genotype x gender analysis of variance with metrical age as a covariate for each distance specialization. No statistical differences in the genotype and allele frequencies were found in long distance swimmers when compared with the total group of swimmers or controls. The BDKRB2 +9/-9 genotype had no significant effect on swimming performance at short, middle or long distance, regardless of gender. The results of this study do not support the hypothesis that the BDKRB2 -9/+9 polymorphism is associated with swimming performance in Polish swimmers.

  5. Bacterial Swimming and Accumulation at the Fluid Boundaries

    Science.gov (United States)

    Tang, Jay

    2012-02-01

    Micro-organisms often reside and thrive at the fluid boundaries. The tendency of accumulation is particularly strong for flagellated bacteria such as Escherichia coli, Vibro alginolyticus, and Caulobacter crescentus. We measured the distribution of a forward swimming strain of Caulobacter crescentus near a solid surface using a three-dimensional tracking technique based on darkfield microscopy and found that the swimming bacteria accumulate heavily within micrometers from the surface, even though individual swimmers are not trapped long enough to display circular trajectories. We attributed this accumulation to frequent collisions of the swimming cells with the surface, causing them to align parallel to the surface as they continually move forward. The extent of accumulation at the steady state is accounted for by balancing alignment caused by these collisions with the rotational Brownian motion of the micrometer-sized bacteria. We performed simulations based on this model, which reproduces the measured results. Additional simulations demonstrate the dependence of accumulation on swimming speed and cell size, showing that longer and faster cells accumulate more near a surface than shorter and slower ones do. Our ongoing experimental effort also includes observation of similar phenomena at the interfaces of either water-oil or water-air, noting even stronger trapping of the swimming bacteria than near a solid surface. These studies reveal a rich range of fluid physics for further analysis.

  6. [An outbreak of cryptosporidiosis associated with swimming pools].

    Science.gov (United States)

    Takagi, Masaaki; Toriumi, Hiroshi; Endo, Takuro; Yamamoto, Norishige; Kuroki, Toshiro

    2008-01-01

    A waterborne outbreak of cryptosporidiosis occurred among visitors at a hotel with a swimming pool, gymnasium, and other sports facilities, in northern Nagano Prefecture. The outbreak began in late August, peaked on August 27 and 28, and tapered off at the beginning of September 2004. On August 30, 288 clinical cases with digestive symptoms, including watery diarrhea, vomiting, abdominal cramps and tenesmus, were reported to local authorities. Among case-patients who submitted stool samples, 74 were positive for Cryptosporidium. Descriptive epidemiology, environmental investigations, and laboratory tests suggested that a fecal accident in the swimming pool by swimmers infected before attending the summer training camp was thought to be the source of contamination, and case-patients were mostly among swimmers. Some other clinical-cases had no history of swimming in the pool during their stay and likely were infected through drinking contaminated self-made sports drinks dissolved in water from contaminated faucets and/or sinks nearby the gymnasium toilet. The sink was used to deal with the aftermath of a toilet accident at the entrance of the toilet by a swimming school attendee on August 21. This report is, to our knowledge, the first of a cryptosporidiosis outbreak associated with swimming pools in Japan.

  7. Inorganic Chemical Composition of Swimming Pools in Amman-Jordan

    Directory of Open Access Journals (Sweden)

    Bety Saqarat

    2012-10-01

    Full Text Available Monitoring was carried out during summer 2011 in three types of swimming pools in Amman-Jordan. Thirty six water samples, collected from three users type of swimming pools (adults, family and infants, were examined for its major ionic composition (HCO3-, Cl-, NO3-, SO4=, Ca+2, Mg+2, Na+, K+ and PO4+4 in addition to its BOD and COD content. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards. The type and number of users as well as the maintenance of the swimming pool water influenced the water quality. The results showed that there was a noticeable increase in NO3, PO4 and Cl than other ions. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards and although the water of the infant’s users changed frequently, it showed the highest concentration of most of the parameters and Adults’ pool showed the lowest.

  8. Electromyography in the four competitive swimming strokes: a systematic review.

    Science.gov (United States)

    Martens, Jonas; Figueiredo, Pedro; Daly, Daniel

    2015-04-01

    The aim of this paper is to give an overview on 50 years of research in electromyography in the four competitive swimming strokes (crawl, breaststroke, butterfly, and backstroke). A systematic search of the existing literature was conducted using the combined keywords "swimming" and "EMG" on studies published before August 2013, in the electronic databases PubMed, ISI Web of Knowledge, SPORT discus, Academic Search Elite, Embase, CINAHL and Cochrane Library. The quality of each publication was assessed by two independent reviewers using a custom made checklist. Frequency of topics, muscles studied, swimming activities, populations, types of equipment and data treatment were determined from all selected papers and, when possible, results were compared and contrasted. In the first 20 years of EMG studies in swimming, most papers were published as congress proceedings. The methodological quality was low. Crawl stroke was most often studied. There was no standardized manner of defining swimming phases, normalizing the data or of presenting the results. Furthermore, the variability around the mean muscle activation patterns is large which makes it difficult to define a single pattern applicable to all swimmers in any activity examined.

  9. The kinematics of swimming and relocation jumps in copepod nauplii

    DEFF Research Database (Denmark)

    Borg, Marc Andersen; Bruno, Eleonora; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and cop......Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella......, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species...... larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when...

  10. Swim Positioning and its Influence on Triathlon Outcome.

    Science.gov (United States)

    Landers, Grant J; Blanksby, Brian A; Ackland, Timothy R; Monson, Ronald

    Questions have been raised regarding which of the three legs of a triathlon influences the final finishing position. Some coaches subjectively believe that the swim and run are more important than the cycle, especially since the introduction of drafting during the cycle. This study analysed race position shifts between each of the three disciplines to assess the importance of the swim finish position and final finish position during draft legal Olympic distance triathlon events. Ten male and 10 female triathlon world cup events during one season were analysed. The results suggested that the triathlon swim leg is important because the winner exited the water in the first pack in 90% of elite male and 70% of elite female races. Correlations were also derived from finishing order for the whole triathlon and a finishing order that included the swim only, cycle only or run only time. For men, the average correlations for final finishing order with each of the swim, cycle and run, respectively, were 0.49, 0.67 and 0.86 and for the women; average correlations were 0.39, 0.67 and 0.85. Hence, this indicated that it was important to exit the water in the first pack and run well after cycling to achieve a successful final finishing position.

  11. Nebraska Swims Hard against Testing's Tides

    Science.gov (United States)

    Borja, Rhea R.

    2007-01-01

    Sometimes assessments that work in theory fall apart in reality. This article discusses the unique learning-measurement system in Nebraska. Instead of relying on statewide standardized tests to comply with the accountability requirements of the federal No Child Left Behind Act--as is the case in the other 49 states--districts in Nebraska use their…

  12. The behaviour and recovery of juvenile lemon sharks Negaprion brevirostris in response to external accelerometer tag attachment.

    Science.gov (United States)

    Bullock, R W; Guttridge, T L; Cowx, I G; Elliott, M; Gruber, S H

    2015-12-01

    Behavioural responses of lemon sharks Negaprion brevirostris to a fin-mounted tag package (CEFAS G6A tri-axial accelerometer with epoxied Sonotronics PT4 acoustic transmitter) were measured in a controlled captive environment (n = 10, total length, LT range 80-140 cm) and in free-ranging sharks upon release (n = 7, LT range 100-160 cm). No changes were detected in behaviour (i.e. swimming speed, tailbeat frequency, time spent resting and frequency of chafing) between control and tagged captive shark trials, suggesting that the tag package itself does not alter behaviour. In the free-ranging trials, an initial period of elevated swimming activity was found in all individuals (represented by overall dynamic body acceleration). Negaprion brevirostris, however, appeared to recover quickly, returning to a steady swimming state between 2 and 35 min after release. Post-release tracking found that all sharks swim immediately for the shoreline and remain within 100 m of shore for prolonged periods. Hence, although N. brevirostris are capable of quick adaptation to stressors and demonstrate rapid recovery in terms of activity, tracking data suggest that they may modify their spatial use patterns post release. This research is important in separating deviation in behaviour due to environmental stressors from artefacts caused by experimental techniques.

  13. From selective tidal transport to counter-current swimming during watershed colonisation: an impossible step for young-of-the-year catadromous fish?

    Directory of Open Access Journals (Sweden)

    Trancart T.

    2014-01-01

    Full Text Available During watershed colonisation by catadromous species, two main phases have been identified: tidal estuary crossing and non-tidal river colonisation. Fishes use selective tidal-stream transport (STST during the first phase of this colonisation, and counter-current swimming during the second phase. Therefore, catadromous species have to achieve a behavioural shift, from STST to constant counter-current swimming. This has not yet been observed, and the location and period of this shift is still unknown. Our experimental protocol aimed to mimic the spatial progression of crossing the tidal limit within a 3-week experiment. Two catadromous fishes, thinlip mullets and European eels, were initially subjected to current reversal every 6.2 h during the first week. A gradual tidal distortion was performed during the second week, and fishes were submitted to a unidirectional water current during the third week. Our results reveal that all catadromous species use STST as far as possible within the tidal limit. At this point, in this experimental study, no young-of-the-year (YOY fishes shifted from STST to constant counter-current swimming. This confirms that the behavioural shift occurs later, and that the second part of the upstream migration, counter-current progression, is performed by larger, older fishes and not YOY fishes.

  14. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  15. Effects of various Eleutherococcus senticosus cortex on swimming time, natural killer activity and corticosterone level in forced swimming stressed mice.

    Science.gov (United States)

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2004-12-01

    The cortex of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. has been used extensively in Russia, China, Korea and Japan as an adaptogen whose properties are the ability to increase as non-specific body resistance to stress and fatigue. Although it has been reported that Eleutherococcus senticosus has anti-fatigue and anti-stress actions, their actions are still unclear on the relationship between immune system, especially natural killer (NK) activity and endocrine system (corticosterone level). We compared the effects of the water extracts (A, B, C, D and E) of five Eleutherococcus senticosus cortex on the swimming time, NK activity and blood corticosterone level using forced swimming stressed mice. Among five kinds, C, D and E extracts significantly prolonged the swimming time. C and D extracts inhibited the reduction of NK activity and the corticosterone elevation induced by forced swimming. The contents of eleutheroside E, isoflaxidin and eleutherosides B plus E were in the order C > D > E > B > A and C > E > D > A > B extracts, respectively. Therefore, it is suggested that eleutheroside E may be contributed to the anti-fatigue action, the recovery of the reduction of NK activity and the inhibition of corticosterone elevation induced by swimming stress.

  16. THE IMPACT OF TECHNICAL ABILITY TO SWIMMING PERFORMANCE OF THE MIXED SWIMMING AT 100m IN COLLEGE FASTO

    Directory of Open Access Journals (Sweden)

    Elvira Beganović

    2011-08-01

    Full Text Available The aim of this study was to determine the impact of technical ability to swim (the starting point, the techniques and turns, within each of these techniques of swimming (freestyle, backstroke, breaststroke and butterfly marked as input or predictor variables, the performance of mixed swimming in the 100m, marked as output or criterion variable. The study was conducted on a sample of 31 students, females, aged from 20-24 years, with the help of the testing (assessment, technical skills of swimming (start, the techniques and turns: OCJKSTR, OCJKTEH, OCJKOKR, OCJLSTR, OCJLTEH, OCJLOKR, OCJPSTR, OCJPTEH, OCJPOKR, OCJDSTR, OCJDTEH, OCJDOKR and mixed swimming in the 100m (OCJPM100, the following order: butterfly, back, breaststroke, freestyle. Analyzing the presented results of regression analysis can be stated that after testing (assessment of all predictor system statistically the most significant impact on the criterion variable had the following variables: assessment techniques freestyle (OCJKTEH, evaluation of starting breast stroke (OCJPSTR and assessment of breast stroke turns (OCJPOKR.

  17. Stokesian swimming of a prolate spheroid at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a spheroid immersed in a viscous fluid and performing surface deformations periodically in time is studied on the basis of Stokes equations of low Reynolds number hydrodynamics. The average over a period of time of the swimming velocity and the rate of dissipation are given by integral expressions of second order in the amplitude of surface deformations. The first order flow velocity and pressure, as functions of spheroidal coordinates, are expressed as sums of basic solutions of Stokes equations. Sets of superposition coefficients of these solutions which optimize the mean swimming speed for given power are derived from an eigenvalue problem. The maximum eigenvalue is a measure of the efficiency of the optimal stroke within the chosen class of motions. The maximum eigenvalue for sets of low order is found to be a strongly increasing function of the aspect ratio of the spheroid.

  18. A Review on Fish Swimming and Bird/Insect Flight

    CERN Document Server

    Wu, Theodore Yaotsu

    2010-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (i) The simple waving motion of an elongated flexible ribbon plate of constant width, immersed in a fluid at rest, propagating a wave distally down the plate to swim forward is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, vortex shedding from appended dorsal, ventral and caudal fins to closely simulate fish swimming for which a nonlinear theory is presented for large-amplitude propulsion. (ii) For bird flight, the pioneering studies on oscillating rigid wings are briefed, followed by presenting a nonlinear unsteady theory for flexible wing with arbitrary variations in shape and trajectory with a comparative study with experiments. (iii) For insect flight, more recent advances are reviewed under aerodynamic theory and modeling, computational methods, and experiments, on forward and hovering flights with producing leading-edge vortex to give...

  19. Simulations of dolphin kick swimming using smoothed particle hydrodynamics.

    Science.gov (United States)

    Cohen, Raymond C Z; Cleary, Paul W; Mason, Bruce R

    2012-06-01

    In competitive human swimming the submerged dolphin kick stroke (underwater undulatory swimming) is utilized after dives and turns. The optimal dolphin kick has a balance between minimizing drag and maximizing thrust while also minimizing the physical exertion required of the swimmer. In this study laser scans of athletes are used to provide realistic swimmer geometries in a single anatomical pose. These are rigged and animated to closely match side-on video footage. Smoothed Particle Hydrodynamics (SPH) fluid simulations are performed to evaluate variants of this swimming stroke technique. This computational approach provides full temporal and spatial information about the flow moving around the deforming swimmer model. The effects of changes in ankle flexibility and stroke frequency are investigated through a parametric study. The results suggest that the net streamwise force on the swimmer is relatively insensitive to ankle flexibility but is strongly dependent on kick frequency.

  20. Swimming with a friend at low Reynolds number

    CERN Document Server

    Pooley, C M; Yeomans, J M

    2007-01-01

    We investigate the hydrodynamic interactions between microorganisms swimming at low Reynolds number. By considering simple model swimmers, and combining analytic and numerical approaches, we investigate the time-averaged flow field around a swimmer. At short distances the swimmer behaves like a pump. At large distances the velocity field depends on whether the swimming stroke is invariant under a combined time-reversal and parity transformation. We then consider two swimmers and find that the interaction between them consists of two parts; a dead term, independent of the motion of the second swimmer, which takes the expected dipolar form and a live term resulting from the simultaneous swimming action of both swimmers which does not. We argue that, in general, the latter dominates. The swimmer--swimmer interaction is a complicated function of their relative displacement, orientation and phase, leading to motion that can be attractive, repulsive or oscillatory.