WorldWideScience

Sample records for unique state-diagram abstraction

  1. From State Diagram to Class Diagram

    DEFF Research Database (Denmark)

    Borch, Ole; Madsen, Per Printz

    2009-01-01

    UML class diagram and Java source code are interrelated and Java code is a kind of interchange format. Working with UML state diagram in CASE tools, a corresponding xml file is maintained. Designing state diagrams is mostly performed manually using design patterns and coding templates - a time...... consuming process. This article demonstrates how to compile such a diagram into Java code and later, by reverse engineering, produce a class diagram. The process from state diagram via intermediate SAX parsed xml file to Apache Velocity generated Java code is described. The result is a fast reproducible...

  2. Query Processing for Probabilistic State Diagrams Describing Multiple Robot Navigation in an Indoor Environment

    Energy Technology Data Exchange (ETDEWEB)

    Czejdo, Bogdan [ORNL; Bhattacharya, Sambit [North Carolina Fayetteville State University; Ferragut, Erik M [ORNL

    2012-01-01

    This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  3. Compact flow diagrams for state sequences

    NARCIS (Netherlands)

    Buchin, K.A.; Buchin, M.E.; Gudmundsson, J.; Horton, M.J.; Sijben, S.

    2016-01-01

    We introduce the concept of compactly representing a large number of state sequences, e.g., sequences of activities, as a flow diagram. We argue that the flow diagram representation gives an intuitive summary that allows the user to detect patterns among large sets of state sequences. Simplified,

  4. Compact flow diagrams for state sequences

    NARCIS (Netherlands)

    Buchin, Kevin; Buchin, Maike; Gudmundsson, Joachim; Horton, Michael; Sijben, Stef

    2017-01-01

    We introduce the concept of using a flow diagram to compactly represent the segmentation of a large number of state sequences according to a set of criteria. We argue that this flow diagram representation gives an intuitive summary that allows the user to detect patterns within the segmentations. In

  5. State diagram of Pr-Bi system

    International Nuclear Information System (INIS)

    Abulkhaev, V.L.; Ganiev, I.N.

    1994-01-01

    By means of thermal differential analysis, X-ray and microstructural analysis the state diagram of Pr-Bi system was studied. Following intermetallic compounds were defined in the system: Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 , Pr Bi, PrBi 2 , Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 and PrBi 2 . The data analysis on Ln-Bi diagram allowed to determine the regularity of change of properties of intermetallic compounds in the line of rare earth elements of cerium subgroup.

  6. Para-equilibrium phase diagrams

    International Nuclear Information System (INIS)

    Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar

    2014-01-01

    Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase

  7. Vesicle computers: Approximating a Voronoi diagram using Voronoi automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; De Lacy Costello, Ben; Holley, Julian; Gorecki, Jerzy; Bull, Larry

    2011-01-01

    Highlights: → We model irregular arrangements of vesicles filled with chemical systems. → We examine influence of precipitation threshold on the system's computational potential. → We demonstrate computation of Voronoi diagram and skeleton. - Abstract: Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata - finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one neighbour in an excited state. The cell precipitates if the ratio of excited cells in its neighbourhood versus the number of neighbours exceeds a certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto the automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate at the points of interaction. The configuration of the precipitate represents the edges of an approximated Voronoi diagram. We discover the relationship between the quality of the Voronoi diagram approximation and the precipitation threshold, and demonstrate the feasibility of our model in approximating Voronoi diagrams of arbitrary-shaped objects and in constructing a skeleton of a planar shape.

  8. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-05-15

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J<0, respectively, on the diatomic lattice and have found the conditions for the existence of uniform and intermediate or non-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  9. Extended block diagram method for a multi-state system reliability assessment

    International Nuclear Information System (INIS)

    Lisnianski, Anatoly

    2007-01-01

    The presented method extends the classical reliability block diagram method to a repairable multi-state system. It is very suitable for engineering applications since the procedure is well formalized and based on the natural decomposition of the entire multi-state system (the system is represented as a collection of its elements). Until now, the classical block diagram method did not provide the reliability assessment for the repairable multi-state system. The straightforward stochastic process methods are very difficult for engineering application in such cases due to the 'dimension damnation'-huge number of system states. The suggested method is based on the combined random processes and the universal generating function technique and drastically reduces the number of states in the multi-state model

  10. Drawing Euler Diagrams with Circles: The Theory of Piercings.

    Science.gov (United States)

    Stapleton, Gem; Leishi Zhang; Howse, John; Rodgers, Peter

    2011-07-01

    Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes that make the diagrams less comprehensible. In this paper, we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints, then it can be drawn with circles, which are more esthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.

  11. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa; Deviren, Bayram

    2008-01-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J 0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found

  12. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  13. Equations of State and Phase Diagrams of Ammonia

    Science.gov (United States)

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  14. Time-dependent structural transformation analysis to high-level Petri net model with active state transition diagram

    Directory of Open Access Journals (Sweden)

    Saito Ayumu

    2010-04-01

    Full Text Available Abstract Background With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. Results We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Conclusions Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics.

  15. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R

    Directory of Open Access Journals (Sweden)

    Boutros Paul C

    2011-01-01

    Full Text Available Abstract Background Visualization of orthogonal (disjoint or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. Results The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. Conclusions The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.

  16. A geometric proof of confluence by decreasing diagrams

    NARCIS (Netherlands)

    Klop, J.W.; Oostrom, V. van; Vrijer, R. de

    The criterion for confluence using decreasing diagrams is a generalization of several well-known confluence criteria in abstract rewriting, such as the strong confluence lemma. We give a new proof of the decreasing diagram theorem based on a geometric study of in finite reduction diagrams, arising

  17. Phase diagram and equation of state of TiH2 at high pressures and high temperatures

    International Nuclear Information System (INIS)

    Endo, Naruki; Saitoh, Hiroyuki; Machida, Akihiko; Katayama, Yoshinori; Aoki, Katsutoshi

    2013-01-01

    Highlights: ► We determined the phase diagram of TiH 2 at high pressures and high temperatures. ► Compression induced stain inhibited the phase transition from the bct to fcc phase. ► The phase boundary was appropriately determined using a sample with heat treatment. ► The high temperature Birch–Murnaghan equation of state of fcc TiH 2 was firstly determined. - Abstract: We determined the phase diagram and the equation of state (EoS) of TiH 2 at high pressures up to 8.7 GPa and high temperatures up to 600 °C by in situ synchrotron radiation X-ray diffraction measurements. Compression induced strain inhibited the phase transition from the low-temperature bct phase to the high-temperature fcc phase, making the phase diagram difficult to determine. However, heating around 600 °C relieved the strain, and the phase boundary between the bct and fcc phases was elucidated. The phase transition temperature at ambient pressure increased from around room temperature to 200 °C at 8.7 GPa. The high temperature Birch–Murnaghan EoS was determined for the fcc phase. With the pressure derivative of the bulk modulus K′ 0 = 4.0, the following parameters were obtained: ambient bulk modulus K 0 = 97.7 ± 0.2 GPa, ambient unit cell of the fcc phase V 0 = 88.57 ± 0.02 Å 3 , temperature derivative of the bulk modulus at constant pressure (∂K/∂T) P = −0.01 ± 0.02, and volumetric thermal expansivity α = a + bT with a = 2.62 ± 1.4 × 10 −5 and b = 5.5 ± 4.5 × 10 −8 . K 0 of fcc TiH 2 was close to those for pure Ti and bct TiH 2 reported in previous studies.

  18. "Cooperative collapse" of the denatured state revealed through Clausius-Clapeyron analysis of protein denaturation phase diagrams.

    Science.gov (United States)

    Tischer, Alexander; Machha, Venkata R; Rösgen, Jörg; Auton, Matthew

    2018-02-19

    Protein phase diagrams have a unique potential to identify the presence of additional thermodynamic states even when non-2-state character is not readily apparent from the experimental observables used to follow protein unfolding transitions. Two-state analysis of the von Willebrand factor A3 domain has previously revealed a discrepancy in the calorimetric enthalpy obtained from thermal unfolding transitions as compared with Gibbs-Helmholtz analysis of free energies obtained from the Linear Extrapolation Method (Tischer and Auton, Prot Sci 2013; 22(9):1147-60). We resolve this thermodynamic conundrum using a Clausius-Clapeyron analysis of the urea-temperature phase diagram that defines how ΔH and the urea m-value interconvert through the slope of c m versus T, (∂cm/∂T)=ΔH/(mT). This relationship permits the calculation of ΔH at low temperature from m-values obtained through iso-thermal urea denaturation and high temperature m-values from ΔH obtained through iso-urea thermal denaturation. Application of this equation uncovers sigmoid transitions in both cooperativity parameters as temperature is increased. Such residual thermal cooperativity of ΔH and the m-value confirms the presence of an additional state which is verified to result from a cooperative phase transition between urea-expanded and thermally-compact denatured states. Comparison of the equilibria between expanded and compact denatured ensembles of disulfide-intact and carboxyamidated A3 domains reveals that introducing a single disulfide crosslink does not affect the presence of the additional denatured state. It does, however, make a small thermodynamically favorable free energy (∼-13 ± 1 kJ/mol) contribution to the cooperative denatured state collapse transition as temperature is raised and urea concentration is lowered. The thermodynamics of this "cooperative collapse" of the denatured state retain significant compensations between the enthalpy and entropy contributions to the overall

  19. Diagram of state of stiff amphiphilic macromolecules

    NARCIS (Netherlands)

    Markov, Vladimir A.; Vasilevskaya, Valentina V.; Khalatur, Pavel G.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2007-01-01

    We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of

  20. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  1. Radial frequency diagram (sunflower) for the analysis of diurnal cycle parameters: Solar energy application

    International Nuclear Information System (INIS)

    Božnar, Marija Zlata; Grašič, Boštjan; Mlakar, Primož; Soares, Jacyra; Pereira de Oliveira, Amauri; Costa, Tássio Santos

    2015-01-01

    Graphical abstract: A new type of graphical presentation showing diurnal cycle of solar energy forecast. The application is possible for other parameters related to weather and green energy production. - Highlights: • The diurnal cycle of solar energy is important for the management of the electrical grid. • A solar plant’s average production depends on the statistical features of solar radiation. • The new tool – the “sunflower”, is proposed for solar energy availability representation. • The sunflower identifies and quantifies information with a clear diurnal cycle. • The sunflower diagram has been developed from the “wind rose” diagram. - Abstract: Many meteorological parameters present a natural diurnal cycle because they are directly or indirectly dependent on sunshine exposure. The solar radiation diurnal pattern is important to energy production, agriculture, prognostic models, health and general climatology. This article aims at introducing a new type of radial frequency diagram – hereafter called sunflower – for the analysis of solar radiation data in connection with energy production and also for climatological studies. The diagram is based on two-dimensional data sorting. Firstly data are sorted into classes representing hours in a day. Then the data in each hourly class is sorted into classes of the observed variable values. The relative frequencies of the value classes are shown as sections on each hour’s segment in a radial diagram. The radial diagram forms a unique pattern for each analysed dataset. Therefore it enables the quick detection of features and the comparison of several such patterns belonging to the different datasets being analysed. The sunflower diagram enables a quick and comprehensive understanding of the information about diurnal cycle of the solar radiation data. It enables in a graphical form, quick screening and long-term statistics of huge data quantities when searching for their diurnal features and

  2. On the question of calculation methods of phase diagrams

    International Nuclear Information System (INIS)

    Vasil'ev, M.V.

    1983-01-01

    The technique of determining interaction parameters of components of binary alloys is suggested. U-Mo and Cu-Al systems are used as example with the aid of experimental state diagrams. It is shown that the search for new regularities is necessary with the aim of analytical description of state diagrams and forecast of the shape of phase equilibria curves in real systems. Optimum combinations of experimental investigations with the aim of reliable determination of supporting points and forecasting possibilities of typical equations can considerably decrease the volume of experimental work when preparing state diagrams, in cases of repeated state diagrams of more reliable state diagrams with the application of more advanced methods of investigation. The translation of state diagrams from geometric to analytical language with the use of typical equations opens up new possibilities for establishing a compact information bank for state diagrams

  3. Classical many-particle systems with unique disordered ground states

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2017-10-01

    Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.

  4. Impact of Diagrams on Recalling Sequential Elements in Expository Texts.

    Science.gov (United States)

    Guri-Rozenblit, Sarah

    1988-01-01

    Examines the instructional effectiveness of abstract diagrams on recall of sequential relations in social science textbooks. Concludes that diagrams assist significantly the recall of sequential relations in a text and decrease significantly the rate of order mistakes. (RS)

  5. Phase diagram of the disordered Bose-Hubbard model

    International Nuclear Information System (INIS)

    Gurarie, V.; Pollet, L.; Prokof'ev, N. V.; Svistunov, B. V.; Troyer, M.

    2009-01-01

    We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet et al. [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.

  6. Towards Measuring the Abstractness of State Machines based on Mutation Testing

    Directory of Open Access Journals (Sweden)

    Thomas Baar

    2017-01-01

    Full Text Available Abstract. The notation of state machines is widely adopted as a formalism to describe the behaviour of systems. Usually, multiple state machine models can be developed for the very same software system. Some of these models might turn out to be equivalent, but, in many cases, different state machines describing the same system also differ in their level of abstraction. In this paper, we present an approach to actually measure the abstractness level of state machines w.r.t. a given implemented software system. A state machine is considered to be less abstract when it is conceptionally closer to the implemented system. In our approach, this distance between state machine and implementation is measured by applying coverage criteria known from software mutation testing. Abstractness of state machines can be considered as a new metric. As for other metrics as well, a known value for the abstractness of a given state machine allows to assess its quality in terms of a simple number. In model-based software development projects, the abstract metric can help to prevent model degradation since it can actually measure the semantic distance from the behavioural specification of a system in form of a state machine to the current implementation of the system. In contrast to other metrics for state machines, the abstractness cannot be statically computed based on the state machine’s structure, but requires to execute both state machine and corresponding system implementation. The article is published in the author’s wording. 

  7. Accessibility of physical states and non-uniqueness of entanglement measure

    International Nuclear Information System (INIS)

    Morikoshi, Fumiaki; Santos, Marcelo Franca; Vedral, Vlatko

    2004-01-01

    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility

  8. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  9. Visualizing Changes in Strategy Use across Attempts via State Diagrams: A Case Study

    Directory of Open Access Journals (Sweden)

    Deirdre Kerr

    2016-01-01

    Full Text Available Game log data have great potential to provide actionable information about the in-game behavior of players. However, these low-level behavioral data are notoriously difficult to analyze due to the challenges associated with extracting meaning from sparse data stored at such a small grain size. This paper describes a three-step solution that uses cluster analysis to determine which strategies players use to solve levels in the game, sequence mining to identify changes in strategy across multiple attempts at the same level, and state transition diagrams to visualize the strategy sequences identified by the sequence mining. In the educational video game used in this case study, cluster analysis successfully identified 15 different in-game strategies. The sequence mining found an average of 40 different sequences of strategy use per level, which the state transition diagrams successfully displayed in an interpretable way.

  10. State diagram of a perpendicular magnetic tunnel junction driven by spin transfer torque: A power dissipation approach

    Energy Technology Data Exchange (ETDEWEB)

    Lavanant, M. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Department of Physics, New York University, New York, NY 10003 (United States); Petit-Watelot, S. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Kent, A.D. [Department of Physics, New York University, New York, NY 10003 (United States); Mangin, S., E-mail: stephane.mangin@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France)

    2017-04-15

    The state diagram of a magnetic tunnel junction with perpendicularly magnetized electrodes in the presence of spin-transfer torques is computed in a macrospin approximation using a power dissipation model. Starting from the macrospin's energy we determine the stability of energy extremum in terms of power received and dissipated, allowing the consideration of non-conservative torques associated with spin transfer and damping. The results are shown to be in agreement with those obtained by direct integration of the Landau-Lifshitz-Gilbert-Slonczewski equation. However, the power dissipation model approach is faster and shows the reason certain magnetic states are stable, such as states that are energy maxima but are stabilized by spin transfer torque. Breaking the axial system, such as by a tilted applied field or tilted anisotropy, is shown to dramatically affect the state diagrams. Finally, the influence of a higher order uniaxial anisotropy that can stabilize a canted magnetization state is considered and the results are compared to experimental data. - Highlights: • Methods to compute state Diagram (Voltage Versus Field) for perpendicular Magnetic Tunnel Junctions. • Comparison between the conventional LLG model and a model based on Power dissipation to study magnetization reversal in magnetic tunnel junction.

  11. Applying state diagrams to food processing and development

    Science.gov (United States)

    Roos, Y.; Karel, M.

    1991-01-01

    The physical state of food components affects their properties during processing, storage, and consumption. Removal of water by evaporation or by freezing often results in formation of an amorphous state (Parks et al., 1928; Troy and Sharp, 1930; Kauzmann, 1948; Bushill et al., 1965; White and Cakebread, 1966; Slade and Levine, 1991). Amorphous foods are also produced from carbohydrate melts by rapid cooling after extrusion or in the manufacturing of hard sugar candies and coatings (Herrington and Branfield, 1984). Formation of the amorphous state and its relation to equilibrium conditions are shown in Fig. 1 [see text]. The most important change, characteristic of the amorphous state, is noticed at the glass transition temperature (Tg), which involves transition from a solid "glassy" to a liquid-like "rubbery" state. The main consequence of glass transition is an increase of molecular mobility and free volume above Tg, which may result in physical and physico-chemical deteriorative changes (White and Cakebread, 1966; Slade and Levine, 1991). We have conducted studies on phase transitions of amorphous food materials and related Tg to composition, viscosity, stickiness, collapse, recrystallization, and ice formation. We have also proposed that some diffusion-limited deteriorative reactions are controlled by the physical state in the vicinity of Tg (Roos and Karel, 1990, 1991a, b, c). The results are summarized in this article, with state diagrams based on experimental and calculated data to characterize the relevant water content, temperature, and time-dependent phenomena of amorphous food components.

  12. Uniqueness of KMS states for continuous fermion systems

    International Nuclear Information System (INIS)

    Jaekel, C.D.

    1993-01-01

    In 1989 Prof H. Narnhofer and Prof. W. Thirring established a (nonlocal) model of fermions with pair interactions. The existence of equilibrium states and the appearance of mixing properties was proofed. If this model reflects the basic facts of nature, one has to expect and to require that at high temperatures there is a unique equilibrium state and at low temperatures there are many different equilibrium states. Uniqueness of the equilibrium state at high temperatures is the topic of this dissertation. One may be astonished, that the proof of the uniqueness requires such a huge machinery, while the existence of KMS-states followes from fairly general conditions. Two states differ, if they can be distinguished by experiment. If one considers now that we have to show that two KMS-states at high temperatures result into the same value in all experiments one can think of, one might get an idea how unhandy this problem is. Even a conscious numeration of all experiments was a problem. Surprisingly only a few principal ideas of the treatment of spin-models survive. The temperature is the leading parameter and therefore it is a good idea to make a high temperature perturbation expansion for the KMS-condition, which fixes an equilibrium state in mathematical terms. But when we choose a generating vector for the perturbation expansion the similarities end. We better use physical considerations: at high temperatures we expect that chemical bounds will be broken up and the interacting equilibrium state will differ only slightly from the equilibrium state for the free time evolution. Roughly spoken, one can expect that high-energetic particles neglect interactions and fly in a straight line. In chapter 2.4 the whole machinery is presented in an easy-to-survey manner on a simple interaction. But in the case of pair interactions every particle interacts with each other and so the author was not able to find an easily accessible form of the developed method for this case

  13. Reading fitness landscape diagrams through HSAB concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vigneresse, Jean-Louis, E-mail: jean-louis.vigneresse@univ-lorraine.fr

    2014-10-31

    Highlights: • Qualitative information from HSAB descriptors. • 2D–3D diagrams using chemical descriptors (χ, η, ω, α) and principles (MHP, mEP, mPP). • Estimate of the energy exchange during reaction paths. • Examples from complex systems (geochemistry). - Abstract: Fitness landscapes are conceived as range of mountains, with local peaks and valleys. In terms of potential, such topographic variations indicate places of local instability or stability. The chemical potential, or electronegativity, its value changed of sign, carries similar information. In addition to chemical descriptors defined through hard-soft acid-base (HSAB) concepts and computed through density functional theory (DFT), the principles that rule chemical reactions allow the design of such landscape diagrams. The simplest diagram uses electrophilicity and hardness as coordinates. It allows examining the influence of maximum hardness or minimum electrophilicity principles. A third dimension is introduced within such a diagram by mapping the topography of electronegativity, polarizability or charge exchange. Introducing charge exchange during chemical reactions, or mapping a third parameter (f.i. polarizability) reinforces the information carried by a simple binary diagram. Examples of such diagrams are provided, using data from Earth Sciences, simple oxides or ligands.

  14. Pembuatan Kakas Bantu untuk Mendeteksi Ketidaksesuaian Diagram Urutan (Sequence Diagram dengan Diagram Kasus Penggunaan (Use Case Diagram

    Directory of Open Access Journals (Sweden)

    Andrias Meisyal Yuwantoko

    2017-03-01

    Full Text Available Sebuah diagram urutan dibuat  berdasarkan alur yang ada pada deskripsi kasus penggunaan. Alur tersebut dire- presentasikan dalam  bentuk  interaksi antara aktor  dan  sistem. Pemeriksaan rancangan diagram urutan perlu dilakukan untuk mengetahui ketidaksesuaian urutan alur  kasus penggunaan dengan urutan pesan yang dikirimkan oleh objek-objek pada diagram urutan. Rancangan diagram yang sesuai merupakan kunci ketepatan (correctness implementasi  perangkat lunak. Namun, pemeriksaan ketidaksesuaian masih dilakukan secara manual. Hal ini menjadi masalah apabila sebuah proyek perangkat lunak memiliki banyak  rancangan diagram dan sumber daya manusia tidak  mencukupi. Pemeriksaan membutuhkan waktu yang lama dan memiliki dampak pada waktu pengembangan perangkat lunak. Penelitian ini mengusulkan pembuatan kakas bantu  untuk mendeteksi ketidaksesuaian diagram urutan dengan diagram kasus penggunaan. Ketidaksesuaian dilihat dari kemiripan semantik kalimat antara alur pada deskripsi kasus penggunaan dan triplet. Dari hasil pembuatan kakas bantu, kakas bantu yang dibuat dapat mendeteksi ketidaksesuaian diagram urutan dengan diagram kasus penggunaan. Kakas  bantu ini diharapkan tidak hanya membantu pemeriksaan rancangan diagram akan tetapi mempercepat waktu pengembangan perangkat lunak.

  15. The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies

    OpenAIRE

    COCCIA, Mario

    2017-01-01

    Abstract. This study suggests the fishbone diagram for technological analysis. Fishbone diagram (also called Ishikawa diagrams or cause-and-effect diagrams) is a graphical technique to show the several causes of a specific event or phenomenon. In particular, a fishbone diagram (the shape is similar to a fish skeleton) is a common tool used for a cause and effect analysis to identify a complex interplay of causes for a specific problem or event. The fishbone diagram can be a comprehensive theo...

  16. The ground-state phase diagrams of the spin-3/2 Ising model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2003-01-01

    The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes

  17. Repair of Partly Misspecified Causal Diagrams.

    Science.gov (United States)

    Oates, Chris J; Kasza, Jessica; Simpson, Julie A; Forbes, Andrew B

    2017-07-01

    Errors in causal diagrams elicited from experts can lead to the omission of important confounding variables from adjustment sets and render causal inferences invalid. In this report, a novel method is presented that repairs a misspecified causal diagram through the addition of edges. These edges are determined using a data-driven approach designed to provide improved statistical efficiency relative to de novo structure learning methods. Our main assumption is that the expert is "directionally informed," meaning that "false" edges provided by the expert would not create cycles if added to the "true" causal diagram. The overall procedure is cast as a preprocessing technique that is agnostic to subsequent causal inferences. Results based on simulated data and data derived from an observational cohort illustrate the potential for data-assisted elicitation in epidemiologic applications. See video abstract at, http://links.lww.com/EDE/B208.

  18. Interrelations between random walks on diagrams (graphs) with and without cycles.

    Science.gov (United States)

    Hill, T L

    1988-05-01

    Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.

  19. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    Science.gov (United States)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  20. [Identification of meridian-acupoint diagrams and meridian diagrams].

    Science.gov (United States)

    Shen, Wei-hong

    2008-08-01

    In acu-moxibustion literature, there are two kinds of diagrams, meridian-acupoint diagrams and meridian diagrams. Because they are very similar in outline, and people now have seldom seen the typical ancient meridian diagrams, meridian-acupoint diagrams have been being incorrectly considered to be the meridian diagrams for a long time. It results in confusion in acu-moxibustion academia. The present paper stresses its importance in academic research and introduces some methods for identifying them correctly. The key points for identification of meridian-acupoint diagrams and meridian diagrams are: the legend of diagrams and the drawing style of the ancient charts. In addition, the author makes a detailed explanation about some acu-moxibustion charts which are easily confused. In order to distinguish meridian-acupoint diagrams and meridian diagrams correctly, he or she shoulnd understand the diagrams' intrinsic information as much as possible and make a comprehensive analysis about them.

  1. State diagram for adhesion dynamics of deformable capsules under shear flow.

    Science.gov (United States)

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca state no longer appears, since capsules exhibit large deviation from the spherical shape.

  2. State diagram of spin-torque oscillator with perpendicular reference layer and planar field generation layer

    Directory of Open Access Journals (Sweden)

    Mengwei Zhang

    2015-06-01

    Full Text Available The state diagram of spin-torque oscillator (STO with perpendicular reference layer (REF and planar field generation layer (FGL was studied by a macrospin model and a micro-magnetic model. The state diagrams are calculated versus the current density, external field and external field angle. It was found that the oscillation in FGL could be controlled by current density combined with external field so as to achieve a wide frequency range. An optimized current and applied field region was given for microwave assisted magnetic recording (MAMR, considering both frequency and output field oscillation amplitude. The results of the macro-spin model were compared with those of the micro-magnetic model. The macro-spin model was qualitatively different from micro-magnetics and experimental results when the current density was large and the FGL was non-uniform.

  3. A Critical Appraisal of the "Day" Diagram

    Science.gov (United States)

    Roberts, Andrew P.; Tauxe, Lisa; Heslop, David; Zhao, Xiang; Jiang, Zhaoxia

    2018-04-01

    The "Day" diagram (Day et al., 1977, https://doi.org/10.1016/0031-9201(77)90108-X) is used widely to make inferences about the domain state of magnetic mineral assemblages. Based on theoretical and empirical arguments, the Day diagram is demarcated into stable "single domain" (SD), "pseudo single domain" ("PSD"), and "multidomain" (MD) zones. It is straightforward to make the necessary measurements for a sample and to plot results within the "domain state" framework based on the boundaries defined by Day et al. (1977, https://doi.org/10.1016/0031-9201(77)90108-X). We discuss 10 issues that limit Day diagram interpretation, including (1) magnetic mineralogy, (2) the associated magnetocrystalline anisotropy type, (3) mineral stoichiometry, (4) stress state, (5) surface oxidation, (6) magnetostatic interactions, (7) particle shape, (8) thermal relaxation, (9) magnetic particle mixtures, and (10) definitional/measurement issues. In most studies, these variables are unknowns and cannot be controlled for, so that hysteresis parameters for single bulk samples are nonunique and any data point in a Day diagram could result from infinite combinations of relevant variables. From this critical appraisal, we argue that the Day diagram is fundamentally ambiguous for domain state diagnosis. Widespread use of the Day diagram has also contributed significantly to prevalent but questionable views, including underrecognition of the importance of stable SD particles in the geological record and reinforcement of the unhelpful PSD concept and of its geological importance. Adoption of approaches that enable correct domain state diagnosis should be an urgent priority for component-specific understanding of magnetic mineral assemblages and for quantitative rock magnetic interpretation.

  4. Ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with competing single-ion anisotropies

    International Nuclear Information System (INIS)

    Tonegawa, T; Okamoto, K; Sakai, T; Kaburagi, M

    2009-01-01

    Employing various numerical methods, we determine the ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with antiferromagnetic nearest-neighboring exchange interactions and uniaxial single-ion anisotropies. The resulting phase diagram consists of eight kinds of phases including two phases which accompany the spontaneous breaking of the translational symmetry and a ferrimagnetic phase in which the ground-state magnetization varies continuously with the uniaxial single-ion anisotropy constants for the S=1 and S =2 spins. The appearance of these three phases is attributed to the competition between the uniaxial single-ion anisotropies of both spins.

  5. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  6. Muonium and the Breit-Rabi diagram

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1984-01-01

    This chapter introduces the study of muonium, as opposed to that of unbound muons. The properties and behaviour of muonium are compared and contrasted with those of hydrogen and of positronium. The special significance of muonium in atomic and molecular physics is explained, and its utility as a lightweight or radioactive isotope of hydrogen in solid state physics and chemistry illustrated. The identification of atomic muonium by means of its ground state magnetic properties is described with reference to the Breit-Rabi diagram. This diagram is invaluable for interpreting or predicting MuSR observations, both in transverse and longitudinal magnetic fields, so its construction and properties are explained in some detail. The precession signals observed in transverse-field MuSR correspond to transitions allowed between the energy levels in this diagram; particular attention is paid to the spectra characteristic of the high and low field regimes. The different states of muonium observed in dielectric, semiconducting and metallic materials are introduced. The influence of the host medium on the spectral parameters, hyperfine interaction and linewidth, is considered both for atomic muonium and for muonium which is chemically bound in paramagnetic molecules, for which the Breit-Rabi diagram also applies. (orig.)

  7. Simple material physics experiment for studying phase diagrams and solid state transformations in alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S; Kamal, R [Punjabi Univ., Patiala (India). Dept. of Physics

    1977-09-01

    Study of phase diagram and accompanying solid state transformations is essential to determine the best possible composition, manufacturing techniques and physical properties of an alloy. A simple technique having wide applications in metallurgical industry is to study the temperature--time curve of the alloy undergoing cooling with an uniform rate. An experiment which uses this technique is described. It is widely applicable in the fields of materials science, applied solid state physics, physical metallurgy and physical chemistry.

  8. The application of diagrams in architectural design

    Directory of Open Access Journals (Sweden)

    Dulić Olivera

    2014-01-01

    Full Text Available Diagrams in architecture represent the visualization of the thinking process, or selective abstraction of concepts or ideas translated into the form of drawings. In addition, they provide insight into the way of thinking about and in architecture, thus creating a balance between the visual and the conceptual. The subject of research presented in this paper are diagrams as a specific kind of architectural representation, and possibilities and importance of their application in the design process. Diagrams are almost old as architecture itself, and they are an element of some of the most important studies of architecture during all periods of history - which results in a large number of different definitions of diagrams, but also very different conceptualizations of their features, functions and applications. The diagrams become part of contemporary architectural discourse during the eighties and nineties of the twentieth century, especially through the work of architects like Bernard Tschumi, Peter Eisenman, Rem Koolhaas, SANAA and others. The use of diagrams in the design process allows unification of some of the essential aspects of the profession: architectural representation and design process, as well as the question of the concept of architectural and urban design at a time of rapid changes at all levels of contemporary society. The aim of the research is the analysis of the diagram as a specific medium for processing large amounts of information that the architect should consider and incorporate into the architectural work. On that basis, it is assumed that an architectural diagram allows the creator the identification and analysis of specific elements or ideas of physical form, thereby constantly maintaining concept of the integrity of the architectural work.

  9. Beyond Feynman Diagrams (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    For decades the central theoretical tool for computing scattering amplitudes has been the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to be able to go beyond the leading order in QCD, for complicated events with many jets of hadrons in the final state. Such events are produced copiously at the LHC, and constitute formidable backgrounds to many searches for new physics. Over the past few years, alternative methods that go beyond ...

  10. A novel decision diagrams extension method

    International Nuclear Information System (INIS)

    Li, Shumin; Si, Shubin; Dui, Hongyan; Cai, Zhiqiang; Sun, Shudong

    2014-01-01

    Binary decision diagram (BDD) is a graph-based representation of Boolean functions. It is a directed acyclic graph (DAG) based on Shannon's decomposition. Multi-state multi-valued decision diagram (MMDD) is a natural extension of BDD for the symbolic representation and manipulation of the multi-valued logic functions. This paper proposes a decision diagram extension method based on original BDD/MMDD while the scale of a reliability system is extended. Following a discussion of decomposition and physical meaning of BDD and MMDD, the modeling method of BDD/MMDD based on original BDD/MMDD is introduced. Three case studies are implemented to demonstrate the presented methods. Compared with traditional BDD and MMDD generation methods, the decision diagrams extension method is more computationally efficient as shown through the running time

  11. Constraint-Based Abstraction of a Model Checker for Infinite State Systems

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    Abstract interpretation-based model checking provides an approach to verifying properties of infinite-state systems. In practice, most previous work on abstract model checking is either restricted to verifying universal properties, or develops special techniques for temporal logics such as modal t...... to implementation of abstract model checking algorithms for abstract domains based on constraints, making use of an SMT solver....

  12. Calculation of Fe–B–V ternary phase diagram

    International Nuclear Information System (INIS)

    Homolová, Viera; Kroupa, Aleš; Výrostková, Anna

    2012-01-01

    Highlights: ► Phase diagram of Fe–B–V system was modelled by CALPHAD method. ► Database for thermodynamic calculations for Fe–B–V system was created. ► The new ternary phase was found in 67Fe–18B–15V [in at.%] alloy. - Abstract: The phase equilibria of the Fe–B–V ternary system are studied experimentally and theoretically in this paper. Phase diagram of the system was modelled by CALPHAD method. Boron was modelled as an interstitial element in the FCC and BCC solid solutions. The calculations of isothermal sections of phase diagram are compared with our experimental results at 903 and 1353 K and with available literature experimental data. New ternary phase (with chemical composition 28Fe32V40B in at.%) was found in 67Fe–18B–15V alloy [in at.%]. Further experimental studies for the determination of exact nature of the ternary phase including crystallographic information are necessary.

  13. ROLE OF UML SEQUENCE DIAGRAM CONSTRUCTS IN OBJECT LIFECYCLE CONCEPT

    Directory of Open Access Journals (Sweden)

    Miroslav Grgec

    2007-06-01

    Full Text Available When modeling systems and using UML concepts, a real system can be viewed in several ways. The RUP (Rational Unified Process defines the "4 + 1 view": 1. Logical view (class diagram (CD, object diagram (OD, sequence diagram (SD, collaboration diagram (COD, state chart diagram (SCD, activity diagram (AD, 2.Process view (use case diagram, CD, OD, SD, COD, SCD, AD, 3. Development view (package diagram, component diagram, 4. Physical view (deployment diagram, and 5. Use case view (use case diagram, OD, SD, COD, SCD, AD which combines the four mentioned above. With sequence diagram constructs we are describing object behavior in scope of one use case and their interaction. Each object in system goes through a so called lifecycle (create, supplement object with data, use object, decommission object. The concept of the object lifecycle is used to understand and formalize the behavior of objects from creation to deletion. With help of sequence diagram concepts our paper will describe the way of interaction modeling between objects through lifeline of each of them, and their importance in software development.

  14. Diagram Size vs. Layout Flaws: Understanding Quality Factors of UML Diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2016-01-01

    , though, is our third goal of extending our analysis aspects of diagram quality. Method: We improve our definition of diagram size and add a (provisional) definition of diagram quality as the number of topographic layout flaws. We apply these metrics on 60 diagrams of the five most commonly used types...... of UML diagram. We carefully analyze the structure of our diagram samples to ensure representativeness. We correlate diagram size and layout quality with modeler performance data obtained in previous experiments. The data set is the largest of its kind (n-156). Results: We replicate earlier findings......, and extend them to two new diagram types. We provide an improved definition of diagram size, and provide a definition of topographic layout quality, which is one more step towards a comprehensive definition of diagram quality as such. Both metrics are shown to be objectively applicable. We quantify...

  15. Diagram of states and morphologies of flexible-semiflexible copolymer chains: A Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zablotskiy, Sergey V.; Martemyanova, Julia A.; Ivanov, Viktor A. [Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Paul, Wolfgang [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06099 (Germany)

    2016-06-28

    A single copolymer chain consisting of multiple flexible (F) and semiflexible (S) blocks has been studied using a continuum bead-spring model by Stochastic Approximation Monte Carlo simulations, which determine the density of states of the model. The only difference between F and S blocks is the intramolecular bending potential, all non-bonded interactions are equal. The state diagrams for this class of models display multiple nematic phases in the collapsed state, characterized through a demixing of the blocks of different stiffness and orientational ordering of the stiff blocks. We observe dumbbell-like morphologies, lamellar phases, and for the larger block lengths also Saturn-like structures with a core of flexible segments and the stiff segments forming a ring around the core.

  16. Diagram of states and morphologies of flexible-semiflexible copolymer chains: A Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zablotskiy, Sergey V.; Martemyanova, Julia A.; Ivanov, Viktor A.; Paul, Wolfgang

    2016-01-01

    A single copolymer chain consisting of multiple flexible (F) and semiflexible (S) blocks has been studied using a continuum bead-spring model by Stochastic Approximation Monte Carlo simulations, which determine the density of states of the model. The only difference between F and S blocks is the intramolecular bending potential, all non-bonded interactions are equal. The state diagrams for this class of models display multiple nematic phases in the collapsed state, characterized through a demixing of the blocks of different stiffness and orientational ordering of the stiff blocks. We observe dumbbell-like morphologies, lamellar phases, and for the larger block lengths also Saturn-like structures with a core of flexible segments and the stiff segments forming a ring around the core.

  17. Uniqueness of Gibbs states and global Markov property for Euclidean fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.

    1981-01-01

    The authors briefly discuss the proof of the uniqueness of solutions of the DLR equations (uniqueness of Gibbs states) in the class of regular generalized random fields (in the sense of having second moments bounded by those of some Euclidean field), for the Euclidean fields with trigonometric interaction. (Auth.)

  18. A criterion for flatness in minimal area metrics that define string diagrams

    International Nuclear Information System (INIS)

    Ranganathan, K.; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    It has been proposed that the string diagrams of closed string field theory be defined by a minimal area problem that requires that all nontrivial homotopy curves have length greater than or equal to 2π. Consistency requires that the minimal area metric be flat in a neighbourhood of the punctures. The theorem proven in this paper, yields a criterion which if satisfied, will ensure this requirement. The theorem states roughly that the metric is flat in an open set, U if there is a unique closed curve of length 2π through every point in U and all of these closed curves are in the same free homotopy class. (orig.)

  19. Infrared thermography method for fast estimation of phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Del Barrio, Elena [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Cadoret, Régis [Centre National de la Recherche Scientifique, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Daranlot, Julien [Solvay, Laboratoire du Futur, 178 Av du Dr Schweitzer, 33608 Pessac (France); Achchaq, Fouzia, E-mail: fouzia.achchaq@u-bordeaux.fr [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France)

    2016-02-10

    Highlights: • Infrared thermography is proposed to determine phase diagrams in record time. • Phase boundaries are detected by means of emissivity changes during heating. • Transition lines are identified by using Singular Value Decomposition techniques. • Different binary systems have been used for validation purposes. - Abstract: Phase change materials (PCM) are widely used today in thermal energy storage applications. Pure PCMs are rarely used because of non adapted melting points. Instead of them, mixtures are preferred. The search of suitable mixtures, preferably eutectics, is often a tedious and time consuming task which requires the determination of phase diagrams. In order to accelerate this screening step, a new method for estimating phase diagrams in record time (1–3 h) has been established and validated. A sample composed by small droplets of mixtures with different compositions (as many as necessary to have a good coverage of the phase diagram) deposited on a flat substrate is first prepared and cooled down to ambient temperature so that all droplets crystallize. The plate is then heated at constant heating rate up to a sufficiently high temperature for melting all the small crystals. The heating process is imaged by using an infrared camera. An appropriate method based on singular values decomposition technique has been developed to analyze the recorded images and to determine the transition lines of the phase diagram. The method has been applied to determine several simple eutectic phase diagrams and the reached results have been validated by comparison with the phase diagrams obtained by Differential Scanning Calorimeter measurements and by thermodynamic modelling.

  20. Roundhouse Diagrams.

    Science.gov (United States)

    Ward, Robin E.; Wandersee, James

    2000-01-01

    Students must understand key concepts through reasoning, searching out related concepts, and making connections within multiple systems to learn science. The Roundhouse diagram was developed to be a concise, holistic, graphic representation of a science topic, process, or activity. Includes sample Roundhouse diagrams, a diagram checklist, and…

  1. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  2. Zen law and features of liquidus-solidus curves in binary state diagrams based on elements VIIIA and IB of the periodic table

    Science.gov (United States)

    Potekaev, A. I.; Kondratyuk, A. A.; Porobova, S. A.; Klopotov, A. A.; Markova, T. N.; Kakushkin, Yu A.; Klopotov, V. D.

    2016-11-01

    The paper presents the analysis of binary state diagrams based on elements VIIIA and IB of the periodic table and crystal geometry parameters of solid solutions and intermetallic compositions. The analysis shows an explicit correlation between the type of the evolution of phase diagrams classified by Lebedev depending on the nature of atomic volume deviations observed in solid solutions and intermetallic compounds from Zen law.

  3. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  4. SENSE 2010, Abstracts

    International Nuclear Information System (INIS)

    Lumsden, M.D.; Argyriou, D.N.; Inosov, D.

    2012-01-01

    The microscopic origin of unconventional superconductivity continues to attract the attention of the condensed matter community. Whereas rare-earth / actinide-based intermetallic and copper oxide-based high temperature superconductors are studied for more than twenty years, the iron-based superconductors have been in the focus of interest since their recent discovery. Inelastic neutron scattering experiments have been of particular importance for the understanding of the magnetic and superconducting properties of these compounds. With its 29 talks and 14 posters the workshop provided a forum for the 71 registered participants to review and discuss experimental achievements, recognize the observed synergy and differences as well as discuss theoretical efforts to identify the symmetry of the superconducting order parameter in addition to the coupling mechanisms of the Cooper pairs. The workshop covered different topics relevant for the study of unconventional superconductivity. Magnetization and lattice dynamics such as spin resonances, phonons, magnetic and other excitations as studied by spectroscopic methods were presented. Investigations of (doping, pressure and magnetic field dependent) phase diagrams, electronic states as well as vortex physics by the various diffraction techniques were also addressed. This document gathers only the abstracts of the papers. (authors)

  5. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Carareto, Natália D.D. [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil); Santos, Adenílson O. dos [Social Sciences, Health and Technology Center, University of Maranhão, UFMA, CEP 65900-410 Imperatriz, MA (Brazil); Rolemberg, Marlus P. [Institute of Science and Technology, University of Alfenas, UNIFAL, Rodovia José AurélioVilela, CEP 37715400 Poços de Caldas, MG (Brazil); Cardoso, Lisandro P. [Institute of Physics GlebWataghin, University of Campinas, UNICAMP, C.P. 6165, CEP 13083-970 Campinas, SP (Brazil); Costa, Mariana C. [School of Applied Science, University of Campinas, UNICAMP, CEP 13484-350 Limeira, SP (Brazil); Meirelles, Antonio J.A., E-mail: tomze@fea.unicamp.br [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil)

    2014-08-10

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min{sup −1} and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state.

  6. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    International Nuclear Information System (INIS)

    Carareto, Natália D.D.; Santos, Adenílson O. dos; Rolemberg, Marlus P.; Cardoso, Lisandro P.; Costa, Mariana C.; Meirelles, Antonio J.A.

    2014-01-01

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min −1 and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state

  7. Causal diagrams in systems epidemiology

    Directory of Open Access Journals (Sweden)

    Joffe Michael

    2012-03-01

    Full Text Available Abstract Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s. Transmitted causes ("causes of causes" tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.

  8. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....

  9. Fusion Diagrams in the - and - Systems

    Science.gov (United States)

    Asadov, M. M.; Akhmedova, N. A.

    2014-10-01

    A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of -- ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the -- system was estimated. Fusibility diagrams of systems - and - were studied by physical-chemical analysis. The isothermal section of the phase diagram of -- at 298 K is built, as well as the projection of the liquid surface of --.

  10. A Critical Appraisal of the `Day' Diagram

    Science.gov (United States)

    Roberts, A. P.; Tauxe, L.; Heslop, D.

    2017-12-01

    The `Day' diagram [Day et al., 1977; doi:10.1016/0031-9201(77)90108-X] is used widely to infer the mean domain state of magnetic mineral assemblages. The Day plot coordinates are the ratios of the saturation remanent magnetization to saturation magnetization (Mrs/Ms) and the coercivity of remanence to coercivity (Bcr/Bc), as determined from a major hysteresis loop and a backfield demagnetization curve. Based on theoretical and empirical arguments, Day plots are typically demarcated into stable single domain (SD), `pseudosingle domain' (`PSD'), and multidomain (MD) zones. It is a simple task to determine Mrs/Ms and Bcr/Bc for a sample and to assign a mean domain state based on the boundaries defined by Day et al. [1977]. Many other parameters contribute to variability in a Day diagram, including surface oxidation, mineral stoichiometry, stress state, magnetostatic interactions, and mixtures of magnetic particles with different sizes and shapes. Bulk magnetic measurements usually lack detailed independent evidence to constrain each free parameter, which makes the Day diagram fundamentally ambiguous. This raises questions about its usefulness for diagnosing magnetic particle size variations. The Day diagram is also used to make inferences about binary mixing of magnetic particles, where, for example, mixtures of SD and MD particles give rise to a bulk `PSD' response even though the concentration of `PSD' grains could be zero. In our assessment of thousands of hysteresis measurements of geological samples, binary mixing occurs in a tiny number of cases. Ternary, quaternary, and higher order mixing are usually observed. Also, uniaxial SD and MD end-members are nearly always inappropriate for considering mixing because uniaxial SD particles are virtually non-existent in igneous rocks. Thus, use of mixing lines in Day diagrams routinely provides unsatisfactory representations of particle size variations. We critically appraise the Day diagram and argue that its many

  11. A generator for unique quantum random numbers based on vacuum states

    DEFF Research Database (Denmark)

    Gabriel, C.; Wittmann, C.; Sych, D.

    2010-01-01

    the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably......Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational...... unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses...

  12. Spin wave Feynman diagram vertex computation package

    Science.gov (United States)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  13. Identifying and comparing states of time-delayed systems: phase diagrams and applications to human motor control systems

    International Nuclear Information System (INIS)

    Frank, T.D.; Friedrich, R.; Beek, P.J.

    2005-01-01

    A data driven characterization of time-delayed stochastic systems is proposed in terms of linear delay differential equations and two drift parameters. It is shown how these parameters determine the states of such systems with respect to generalized phase diagrams. This approach allows for a comparison of systems with different parameters as exemplified for two motor control tasks: tracking and force production

  14. Creating Open Textbooks: A Unique Partnership Between Oregon State University Libraries and Press and Open Oregon State

    Directory of Open Access Journals (Sweden)

    Faye A. Chadwell

    2016-05-01

    Full Text Available This article presents Oregon State University’s experience launching an innovative Open Textbook initiative in spring 2014. The partners, Open Oregon State and the Oregon State University Libraries and Press, aimed to reduce the cost of course materials for students while ensuring the content created was peer-reviewed and employed multimedia capabilities. This initiative sought to showcase existing and emerging disciplinary strengths of the University thus creating unique course content that could be shared globally. This article briefly describes the U.S. landscape for open textbook creation and adoption. It demonstrates how this unique partnership has developed, covering barriers and benefits, and what the future could hold for new projects.

  15. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    Science.gov (United States)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via

  16. Merit exponents and control area diagrams in materials selection

    International Nuclear Information System (INIS)

    Zander, Johan; Sandstroem, Rolf

    2011-01-01

    Highlights: → Merit exponents are introduced to generalise the merit indices commonly used in materials selection. → The merit exponents can rank materials in general design situations. → To allow identification of the active merit exponent(s), control area diagrams are used. → Principles for generating the control area diagrams are presented. -- Abstract: Merit indices play a fundamental role in materials selection, since they enable ranking of materials. However, the conventional formulation of merit indices is associated with severe limitations. They are dependent on the explicit solution of the variables in the equations for the constraints from the design criteria. Furthermore, it is not always easy to determine which the controlling merit index is. To enable the ranking of materials in more general design cases, merit exponents are introduced as generalisations of the merit indices. Procedures are presented for how to compute the merit exponents numerically without having to solve equations algebraically. Merit exponents (and indices) are only valid in a certain range of property values. To simplify the identification of the controlling merit exponent, it is suggested that so called control area diagrams are used. These diagrams consist of a number of domains, each showing the active constraints and the controlling merit exponent. It is shown that the merit exponents play a crucial role when the control area diagram (CAD) is set up. The principles in the paper are developed for mechanically loaded components and are illustrated for engineering beams with two or three geometric variables.

  17. Oak Ridge K-25 Site Technology Logic Diagram. Volume 2, Technology Logic Diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. [ed.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates envirorunental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. This volume, Volume 2, contains logic diagrams with an index. Volume 3 has been divided into two separate volumes to facilitate handling and use.

  18. Using an Ishikawa diagram as a tool to assist memory and retrieval of relevant medical cases from the medical literature

    OpenAIRE

    Wong, Kam Cheong

    2011-01-01

    Abstract Studying medical cases is an effective way to enhance clinical reasoning skills and reinforce clinical knowledge. An Ishikawa diagram, also known as a cause-and-effect diagram or fishbone diagram, is often used in quality management in manufacturing industries. In this report, an Ishikawa diagram is used to demonstrate how to relate potential causes of a major presenting problem in a clinical setting. This tool can be used by teams in problem-based learning or in self-directed learni...

  19. Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools

    Directory of Open Access Journals (Sweden)

    Ņikiforova Oksana

    2016-05-01

    Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.

  20. Algorithmic phase diagrams

    Science.gov (United States)

    Hockney, Roger

    1987-01-01

    Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.

  1. Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game

    Science.gov (United States)

    2010-03-01

    EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT...AFIT/GCS/ENG/10-06 EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME THESIS Presented...35 14: Diagram of pLoGANN’s Artificial Neural Network and

  2. Color-suppression of non-planar diagrams in bosonic bound states

    Science.gov (United States)

    Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.

    2018-02-01

    We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.

  3. Electronic diagrams

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin

  4. Viral pathogenesis in diagrams

    National Research Council Canada - National Science Library

    Tremblay, Michel; Berthiaume, Laurent; Ackermann, Hans-Wolfgang

    2001-01-01

    .... The 268 diagrams in Viral Pathogenesis in Diagrams were selected from over 800 diagrams of English and French virological literature, including one derived from a famous drawing by Leonardo da Vinci...

  5. How a Visual Language of Abstract Shapes Facilitates Cultural and International Border Crossings

    Science.gov (United States)

    Conroy, Arthur Thomas, III

    2016-01-01

    This article describes a visual language comprised of abstract shapes that has been shown to be effective in communicating prior knowledge between and within members of a small team or group. The visual language includes a set of geometric shapes and rules that guide the construction of the abstract diagrams that are the external representation of…

  6. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  7. Revision of the Ge–Ti phase diagram and structural stability of the new phase Ge4Ti5

    International Nuclear Information System (INIS)

    Bittner, Roland W.; Colinet, Catherine; Tedenac, Jean-Claude; Richter, Klaus W.

    2013-01-01

    Highlights: •New compound Ge 4 Ti 5 found by experiments and by DFT ground state calculations. •Enthalpies of formation calculated for different Ge–Ti compounds. •Modifications of the Ge–Ti phase diagram suggested. -- Abstract: The binary phase diagram Ge–Ti was investigated experimentally by powder X-ray diffraction, scanning electron microscopy including EDX analysis, and differential thermal analysis. Total energies of the compounds GeTi 3 , GeTi 2 , Ge 3 Ti 5 , Ge 4 Ti 5 , Ge 5 Ti 6 , GeTi and Ge 2 Ti were calculated for various structure types employing electronic density-functional theory (DFT). Experimental studies as well as electronic calculations show the existence of a new phase Ge 4 Ti 5 (Ge 4 Sm 5 -type, oP36, Pnma) which is formed in a solid state reaction Ge 3 Ti 5 + Ge 5 Ti 6 = Ge 4 Ti 5 . In addition, a significant homogeneity range was observed for the compound Ge 3 Ti 5 and the composition of the liquid phase in the eutectic reaction L = Ge + Ge 2 Ti was found to be at significant higher Ge-content (97.5 at.% Ge) than reported in previous studies. Based on these new results, a modified phase diagram Ge–Ti is suggested. The zero-temperature lattice parameters and the formation enthalpies determined by DTF calculations were found to be in good agreement with experimental data

  8. The annihilation diagram in three-body D-meson decay

    International Nuclear Information System (INIS)

    Donoghue, J.F.; Holstein, B.R.

    1981-01-01

    We discuss some features of three-body decays of the D meson cohich are puzzling from the standpoint of the annihilation diagram. As a result, we (1) provide an upper bound on the lifetime ratio of D's, tau + sub(D)/tau 0 sub(D) smaller than 2.5 +- 3.4 and (2) argue that the puzzles are resolved, even if somewhat inelegantly, if final state interactions generate the annihilation diagram. (orig.)

  9. Melt-gas phase equilibria and state diagrams of the selenium-tellurium system

    Science.gov (United States)

    Volodin, V. N.; Trebukhov, S. A.; Burabaeva, N. M.; Nitsenko, A. V.

    2017-05-01

    The partial pressures of saturated vapor of the components in the Se-Te system are determined and presented in the form of temperature-concentration dependences from which the boundaries of the melt-gas phase transition are calculated at atmospheric pressure and vacuums of 2000 and 100 Pa. The existence of azeotropic mixtures is revealed. It is found that the points of inseparably boiling melts correspond to 7.5 at % of Se and 995°C at 101325 Pa, 10.9 at % at 673°C and 19.5 at % at 522°C in vacuums of 2000 and 100 Pa, respectively. A complete state diagram is constructed, including the fields of gas-liquid equilibria at atmospheric and low pressures, the boundaries of which allow us to assess the behavior of selenium and tellurium upon distillation fractionation.

  10. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  11. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R.

    Science.gov (United States)

    Chen, Hanbo; Boutros, Paul C

    2011-01-26

    Visualization of orthogonal (disjoint) or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.

  12. Constraining Influence Diagram Structure by Generative Planning: An Application to the Optimization of Oil Spill Response

    OpenAIRE

    Agosta, John Mark

    2013-01-01

    This paper works through the optimization of a real world planning problem, with a combination of a generative planning tool and an influence diagram solver. The problem is taken from an existing application in the domain of oil spill emergency response. The planning agent manages constraints that order sets of feasible equipment employment actions. This is mapped at an intermediate level of abstraction onto an influence diagram. In addition, the planner can apply a surveillance operator that...

  13. Introduction to Feynman diagrams

    CERN Document Server

    Bilenky, Samoil Mikhelevich

    1974-01-01

    Introduction to Feynman Diagrams provides Feynman diagram techniques and methods for calculating quantities measured experimentally. The book discusses topics Feynman diagrams intended for experimental physicists. Topics presented include methods for calculating the matrix elements (by perturbation theory) and the basic rules for constructing Feynman diagrams; techniques for calculating cross sections and polarizations; processes in which both leptons and hadrons take part; and the electromagnetic and weak form factors of nucleons. Experimental physicists and graduate students of physics will

  14. 8. International conference of solid compounds of transition elements. Extended abstracts

    International Nuclear Information System (INIS)

    Komarek, K.; Boller, H.; Neckel, A.

    1985-03-01

    32 oral contributions and 126 posters on transition elements compounds and alloys are presented by Extended Abstracts; 86 thereof are of INIS relevance. Topics treated are mainly phase diagrams, crystal structure, structural chemistry and physical properties, e.g. conductivity, magnetism and superconductivity. (G.Q.)

  15. Numerical insights into the phase diagram of p-atic membranes with spherical topology

    DEFF Research Database (Denmark)

    Hansen, Allan Grønhøj; Ramakrishnan, N.; Sunil Kumar, P. B.

    2017-01-01

    Abstract.: The properties of self-avoiding p-atic membranes restricted to spherical topology have been studied by Monte Carlo simulations of a triangulated random surface model. Spherically shaped p-atic membranes undergo a Kosterlitz-Thouless transition as expected with topology induced mutually...... of disclinations. We confirm the proposed buckling of disclinations in the p-atic ordered phase, while the expected associated disordering (crumpling) transition at low bending rigidities is absent in the phase diagram. Graphical abstract: [Figure not available: see fulltext.]...

  16. Introduction to abstract algebra, solutions manual

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  17. Accessing Data Bases Through Interface Views Using a Unified Graph-Oriented Entity-Relationship Model

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely...... with a unified graphic model is more efficient and less error-prone than working with more complex ER models and models based on lexical description. Key terms: Entity-relationship model, path expressions, entity-relationship language, derived interface view, view updates, graphical models....

  18. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  19. Using an Ishikawa diagram as a tool to assist memory and retrieval of relevant medical cases from the medical literature

    Directory of Open Access Journals (Sweden)

    Wong Kam Cheong

    2011-03-01

    Full Text Available Abstract Studying medical cases is an effective way to enhance clinical reasoning skills and reinforce clinical knowledge. An Ishikawa diagram, also known as a cause-and-effect diagram or fishbone diagram, is often used in quality management in manufacturing industries. In this report, an Ishikawa diagram is used to demonstrate how to relate potential causes of a major presenting problem in a clinical setting. This tool can be used by teams in problem-based learning or in self-directed learning settings. An Ishikawa diagram annotated with references to relevant medical cases and literature can be continually updated and can assist memory and retrieval of relevant medical cases and literature. It could also be used to cultivate a lifelong learning habit in medical professionals.

  20. Unified Phase Diagram for Iron-Based Superconductors.

    Science.gov (United States)

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang

    2017-10-13

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  1. Unified Phase Diagram for Iron-Based Superconductors

    Science.gov (United States)

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-feng; Luo, Huiqian; Li, Shiliang

    2017-10-01

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  2. TDRSS S-shuttle unique receiver equipment

    Science.gov (United States)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  3. Chlorine Evolution Reaction on RuO2(110): Ab initio Atomistic Thermodynamics Study - Pourbaix Diagrams

    International Nuclear Information System (INIS)

    Exner, Kai S.; Anton, Josef; Jacob, Timo; Over, Herbert

    2014-01-01

    Graphical abstract: - Highlights: • Using the method Pourbaix diagram we identified the oxygen covered RuO 2 (110) surface as the catalytically active phase under chlorine evolution reaction (CER) conditions. This active phase is compared with the active phase in the Deacon process, the heterogeneous gas phase counterpart of the CER. - Abstract: Constrained ab initio thermodynamics in the form of a Pourbaix diagram can greatly assist kinetic modeling of a particular electrochemical reaction such as the chlorine evolution reaction (CER) over RuO 2 (110). Pourbaix diagrams reveal stable surface structures, as a function of pH and the potential. The present DFT study indicates that the Pourbaix diagram in the CER potential region above 1.36 V and pH values around zero is dominated by a stable surface structure in which all coordinatively undercoordinated Ru sites (Ru cus ) are capped by on-top oxygen (O ot ). This oxygen saturated RuO 2 (110) surface is considered to serve as the catalytically active phase in the CER, quite in contrast to the heterogeneously catalyzed HCl oxidation (Deacon process), for which the active RuO 2 (110) surface is mainly covered by on-top chlorine. The active sites in the CER are suggested to be Ru cus O ot surface complexes, while in the Deacon process both undercoordinated surface Ru and oxygen sites must be available for the activation of HCl molecules

  4. Discovering Unique, Low-Energy Transition States Using Evolutionary Molecular Memetic Computing

    DEFF Research Database (Denmark)

    Ellabaan, Mostafa M Hashim; Ong, Y.S.; Handoko, S.D.

    2013-01-01

    In the last few decades, identification of transition states has experienced significant growth in research interests from various scientific communities. As per the transition states theory, reaction paths and landscape analysis as well as many thermodynamic properties of biochemical systems can...... be accurately identified through the transition states. Transition states describe the paths of molecular systems in transiting across stable states. In this article, we present the discovery of unique, low-energy transition states and showcase the efficacy of their identification using the memetic computing...... paradigm under a Molecular Memetic Computing (MMC) framework. In essence, the MMC is equipped with the tree-based representation of non-cyclic molecules and the covalent-bond-driven evolutionary operators, in addition to the typical backbone of memetic algorithms. Herein, we employ genetic algorithm...

  5. Experimental determination of the Ta–Ge phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)

    2013-11-05

    Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.

  6. Optimizing UML Class Diagrams

    Directory of Open Access Journals (Sweden)

    Sergievskiy Maxim

    2018-01-01

    Full Text Available Most of object-oriented development technologies rely on the use of the universal modeling language UML; class diagrams play a very important role in the design process play, used to build a software system model. Modern CASE tools, which are the basic tools for object-oriented development, can’t be used to optimize UML diagrams. In this manuscript we will explain how, based on the use of design patterns and anti-patterns, class diagrams could be verified and optimized. Certain transformations can be carried out automatically; in other cases, potential inefficiencies will be indicated and recommendations given. This study also discusses additional CASE tools for validating and optimizing of UML class diagrams. For this purpose, a plugin has been developed that analyzes an XMI file containing a description of class diagrams.

  7. A Hubble Diagram for Quasars

    Directory of Open Access Journals (Sweden)

    Susanna Bisogni

    2018-01-01

    Full Text Available The cosmological model is at present not tested between the redshift of the farthest observed supernovae (z ~ 1.4 and that of the Cosmic Microwave Background (z ~ 1,100. Here we introduce a new method to measure the cosmological parameters: we show that quasars can be used as “standard candles” by employing the non-linear relation between their intrinsic UV and X-ray emission as an absolute distance indicator. We built a sample of ~1,900 quasars with available UV and X-ray observations, and produced a Hubble Diagram up to z ~ 5. The analysis of the quasar Hubble Diagram, when used in combination with supernovae, provides robust constraints on the matter and energy content in the cosmos. The application of this method to forthcoming, larger quasar samples, will also provide tight constraints on the dark energy equation of state and its possible evolution with time.

  8. T-x projections of phase diagrams of the MeF-BeF2 systems

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Rykov, A.N.; Novoselova, A.V.

    1976-01-01

    The T-x projections of the state diagrams of the systems MeF-BeF 2 (Me=Li-Rb) have been plotted. Transformation of P-x cross sections of the system state diagrams with decreasing temperature have been considered with the aid, of the general view of T-x projections. The nature of sublimation of the compounds formed in these systems is discussed

  9. Stage line diagram: An age-conditional reference diagram for tracking development

    NARCIS (Netherlands)

    Buuren, S. van; Ooms, J.C.L.

    2009-01-01

    This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and

  10. Stage line diagram: an age-conditional reference diagram for tracking development.

    NARCIS (Netherlands)

    Van Buuren, S.; Ooms, J.C.L.

    2009-01-01

    This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and

  11. CERPHASE: Computer-generated phase diagrams

    International Nuclear Information System (INIS)

    Ruys, A.J.; Sorrell, C.C.; Scott, F.H.

    1990-01-01

    CERPHASE is a collection of computer programs written in the programming language basic and developed for the purpose of teaching the principles of phase diagram generation from the ideal solution model of thermodynamics. Two approaches are used in the generation of the phase diagrams: freezing point depression and minimization of the free energy of mixing. Binary and ternary phase diagrams can be generated as can diagrams containing the ideal solution parameters used to generate the actual phase diagrams. Since the diagrams generated utilize the ideal solution model, data input required from the operator is minimal: only the heat of fusion and melting point of each component. CERPHASE is menu-driven and user-friendly, containing simple instructions in the form of screen prompts as well as a HELP file to guide the operator. A second purpose of CERPHASE is in the prediction of phase diagrams in systems for which no experimentally determined phase diagrams are available, enabling the estimation of suitable firing or sintering temperatures for otherwise unknown systems. Since CERPHASE utilizes ideal solution theory, there are certain limitations imposed on the types of systems that can be predicted reliably. 6 refs., 13 refs

  12. Mapping Isobaric Aging onto the Equilibrium Phase Diagram

    DEFF Research Database (Denmark)

    Niss, Kristine

    2017-01-01

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts...... of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium...... states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single...

  13. Voluble: a space-time diagram of the solar system

    Science.gov (United States)

    Aguilera, Julieta C.; SubbaRao, Mark U.

    2008-02-01

    Voluble is a dynamic space-time diagram of the solar system. Voluble is designed to help users understand the relationship between space and time in the motion of the planets around the sun. Voluble is set in virtual reality to relate these movements to our experience of immediate space. Beyond just the visual, understanding dynamic systems is naturally associated to the articulation of our bodies as we perform a number of complex calculations, albeit unconsciously, to deal with simple tasks. Such capabilities encompass spatial perception and memory. Voluble investigates the balance between the visually abstract and the spatially figurative in immersive development to help illuminate phenomena that are beyond the reach of human scale and time. While most diagrams, even computer-based interactive ones, are flat, three-dimensional real-time virtual reality representations are closer to our experience of space. The representation can be seen as if it was "really there," engaging a larger number of cues pertaining to our everyday spatial experience.

  14. Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science

    Science.gov (United States)

    Saltus, R. W.; Fedi, M.

    2014-12-01

    How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.

  15. Unique rheological behavior of chitosan-modified nanoclay at highly hydrated state.

    Science.gov (United States)

    Liang, Songmiao; Liu, Linshu; Huang, Qingrong; Yam, Kit L

    2009-04-30

    This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m unique transitions. Thixotropic effect was observed in CMCs and showed strong dependence on m and the preshearing history. Failure to Cox-Merz rule of the rheological behavior of CMCs suggests that some preferential orientation of the initial quiescent random arrangement of CMCs particles or their tactoids occurs under the applied shearing.

  16. PHASE DIAGRAM OF GELATINE-POLYURONATE COLLOIDS: ITS APPLICATION FOR MICROENCAPSULATION AND NOT ONLY

    Directory of Open Access Journals (Sweden)

    Alexei Baerle

    2016-06-01

    Full Text Available Phase state and the charge of colloidal particles in the gelatine-polyuronate system were studied. A method for comparative evaluation of molecular weight of colloids by means of viscosimetric measurements and electrophoresis was developed. It is shown that the Diagram {Phase state = f (composition, pH} contains six well-defined regions. The diagram explains and predicts the behaviour of protein-polysaccharide colloids, which are included in beverages or forms the shells of oil-containing microcapsules.

  17. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  18. Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction

    Science.gov (United States)

    Aarts, Fides; Jonsson, Bengt; Uijen, Johan

    In order to facilitate model-based verification and validation, effort is underway to develop techniques for generating models of communication system components from observations of their external behavior. Most previous such work has employed regular inference techniques which generate modest-size finite-state models. They typically suppress parameters of messages, although these have a significant impact on control flow in many communication protocols. We present a framework, which adapts regular inference to include data parameters in messages and states for generating components with large or infinite message alphabets. A main idea is to adapt the framework of predicate abstraction, successfully used in formal verification. Since we are in a black-box setting, the abstraction must be supplied externally, using information about how the component manages data parameters. We have implemented our techniques by connecting the LearnLib tool for regular inference with the protocol simulator ns-2, and generated a model of the SIP component as implemented in ns-2.

  19. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Val’kov, V. V.; Mitskan, V. A.; Korovuskin, M. M.

    2013-01-01

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d xy , p, s, and d x 2 -y 2 symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d x 2 -y 2 symmetry and high critical temperatures T c ∼ 100 K near the half-filling are determined

  20. Feynman diagram drawing made easy

    International Nuclear Information System (INIS)

    Baillargeon, M.

    1997-01-01

    We present a drawing package optimised for Feynman diagrams. These can be constructed interactively with a mouse-driven graphical interface or from a script file, more suitable to work with a diagram generator. It provides most features encountered in Feynman diagrams and allows to modify every part of a diagram after its creation. Special attention has been paid to obtain a high quality printout as easily as possible. This package is written in Tcl/Tk and in C. (orig.)

  1. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    Science.gov (United States)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  2. Single-particle potential from resummed ladder diagrams

    International Nuclear Information System (INIS)

    Kaiser, N.

    2013-01-01

    A recent work on the resummation of fermionic in-medium ladder diagrams to all orders is extended by calculating the complex single-particle potential U(p, k f ) + i W(p, k f ) p > k f . The on-shell single-particle potential is constructed by means of a complex-valued in-medium loop that includes corrections from a test particle of momentum vector p added to the filled Fermi sea. The single-particle potential U(k f , k f ) at the Fermi surface as obtained from the resummation of the combined particle and hole ladder diagrams is shown to satisfy the Hugenholtz-Van-Hove theorem. The perturbative contributions at various orders a n in the scattering length are deduced and checked against the known analytical results at order a 1 and a 2 . The limit a → ∞ is studied as a special case and a strong momentum dependence of the real (and imaginary) single-particle potential is found. This feature indicates an instability against a phase transition to a state with an empty shell inside the Fermi sphere such that the density gets reduced by about 5%. The imaginary single-particle potential vanishes linearly at the Fermi surface. For comparison, the same analysis is performed for the resummed particle-particle ladder diagrams alone. In this truncation an instability for hole excitations near the Fermi surface is found at strong coupling. For the set of particle-hole ring diagrams the single-particle potential is calculated as well. Furthermore, the resummation of in-medium ladder diagrams to all orders is studied for a two-dimensional Fermi gas with a short-range two-body contact interaction. (orig.)

  3. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    Science.gov (United States)

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  4. The Semiotic Structure of Geometry Diagrams: How Textbook Diagrams Convey Meaning

    Science.gov (United States)

    Dimmel, Justin K.; Herbst, Patricio G.

    2015-01-01

    Geometry diagrams use the visual features of specific drawn objects to convey meaning about generic mathematical entities. We examine the semiotic structure of these visual features in two parts. One, we conduct a semiotic inquiry to conceptualize geometry diagrams as mathematical texts that comprise choices from different semiotic systems. Two,…

  5. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  6. Magnetization plateaus and ground-state phase diagrams of the S=1 Ising model on the Shastry Sutherland lattice

    Science.gov (United States)

    Deviren, Seyma Akkaya

    2017-02-01

    In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.

  7. Stage line diagram: an age-conditional reference diagram for tracking development.

    Science.gov (United States)

    van Buuren, Stef; Ooms, Jeroen C L

    2009-05-15

    This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and disease staging), psychology (stages of cognitive development), human development (pubertal stages) and chronic diseases (stages of dementia). Transition probabilities between successive stages are modeled as smoothly varying functions of age. Age-conditional references are calculated from the modeled probabilities by the mid-P value. It is possible to eliminate the influence of age by calculating standard deviation scores (SDS). The method is applied to the empirical data to produce reference charts on secondary sexual maturation. The mean of the empirical SDS in the reference population is close to zero, whereas the variance depends on age. The stage line diagram provides quick insight into both status (in SDS) and tempo (in SDS/year) of development of an individual child. Other measures (e.g. height SDS, body mass index SDS) from the same child can be added to the chart. Diagrams for sexual maturation are available as a web application at http://vps.stefvanbuuren.nl/puberty. The stage line diagram expresses status and tempo of discrete changes on a continuous scale. Wider application of these measures scores opens up new analytic possibilities. (c) 2009 John Wiley & Sons, Ltd.

  8. A dynamical mechanism for the hairpin diagram

    International Nuclear Information System (INIS)

    Chang Chaohsi; Guo Xinheng; Li Xueqian.

    1989-09-01

    Based on the non-valence quark-antiquark and gluon constituent structure of mesons we give a reasonable dynamical mechanism which can induce the hairpin diagram without violating the well-observed OZI rule. We calculate the hairpin amplitudes of D deg. → K-bar deg.η and K-bar deg.η' normalized by D deg. → K-bar deg.π deg. and have found that the hairpin diagram can give rise to substantial contribution to the decays where a meson with a SU(3) flavor singlet component is involved in the final state. In this scenario, we also obtain the branching ratio of D deg. → K-bar deg. φ as 0.55% in comparison with the experimental data of 0.83%. (autor). 33 refs, 3 figs

  9. EEG Oscillatory States: Universality, Uniqueness and Specificity across Healthy-Normal, Altered and Pathological Brain Conditions

    Science.gov (United States)

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.

    2014-01-01

    For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292

  10. Algorithmic implementation of particle-particle ladder diagram approximation to study strongly-correlated metals and semiconductors

    Science.gov (United States)

    Prayogi, A.; Majidi, M. A.

    2017-07-01

    In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.

  11. Ring diagrams and phase transitions

    International Nuclear Information System (INIS)

    Takahashi, K.

    1986-01-01

    Ring diagrams at finite temperatures carry most infrared-singular parts among Feynman diagrams. Their effect to effective potentials are in general so significant that one must incorporate them as well as 1-loop diagrams. The author expresses these circumstances in some examples of supercooled phase transitions

  12. Plutonium uniqueness

    International Nuclear Information System (INIS)

    Silver, G.L.

    1984-01-01

    A standard is suggested against which the putative uniqueness of plutonium may be tested. It is common folklore that plutonium is unique among the chemical elements because its four common oxidation states can coexist in the same solution. Whether this putative uniqueness appears only during transit to equilibrium, or only at equilibrium, or all of the time, is not generally made clear. But while the folklore may contain some truth, it cannot be put to test until some measure of 'uniqueness' is agreed upon so that quantitative comparisons are possible. One way of measuring uniqueness is as the magnitude of the product of the mole fractions of the element at equilibrium. A 'coexistence index' is defined and discussed. (author)

  13. Revision of the Ge–Ti phase diagram and structural stability of the new phase Ge{sub 4}Ti{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Roland W. [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Währingerstraße 42, 1090 Wien (Austria); Colinet, Catherine [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères Cedex (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France); Richter, Klaus W., E-mail: klaus.richter@univie.ac.at [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Währingerstraße 42, 1090 Wien (Austria)

    2013-11-15

    Highlights: •New compound Ge{sub 4}Ti{sub 5} found by experiments and by DFT ground state calculations. •Enthalpies of formation calculated for different Ge–Ti compounds. •Modifications of the Ge–Ti phase diagram suggested. -- Abstract: The binary phase diagram Ge–Ti was investigated experimentally by powder X-ray diffraction, scanning electron microscopy including EDX analysis, and differential thermal analysis. Total energies of the compounds GeTi{sub 3}, GeTi{sub 2}, Ge{sub 3}Ti{sub 5}, Ge{sub 4}Ti{sub 5}, Ge{sub 5}Ti{sub 6}, GeTi and Ge{sub 2}Ti were calculated for various structure types employing electronic density-functional theory (DFT). Experimental studies as well as electronic calculations show the existence of a new phase Ge{sub 4}Ti{sub 5} (Ge{sub 4}Sm{sub 5}-type, oP36, Pnma) which is formed in a solid state reaction Ge{sub 3}Ti{sub 5} + Ge{sub 5}Ti{sub 6} = Ge{sub 4}Ti{sub 5}. In addition, a significant homogeneity range was observed for the compound Ge{sub 3}Ti{sub 5} and the composition of the liquid phase in the eutectic reaction L = Ge + Ge{sub 2}Ti was found to be at significant higher Ge-content (97.5 at.% Ge) than reported in previous studies. Based on these new results, a modified phase diagram Ge–Ti is suggested. The zero-temperature lattice parameters and the formation enthalpies determined by DTF calculations were found to be in good agreement with experimental data.

  14. Stereo 3D spatial phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jinwu, E-mail: kangjw@tsinghua.edu.cn; Liu, Baicheng, E-mail: liubc@tsinghua.edu.cn

    2016-07-15

    Phase diagrams serve as the fundamental guidance in materials science and engineering. Binary P-T-X (pressure–temperature–composition) and multi-component phase diagrams are of complex spatial geometry, which brings difficulty for understanding. The authors constructed 3D stereo binary P-T-X, typical ternary and some quaternary phase diagrams. A phase diagram construction algorithm based on the calculated phase reaction data in PandaT was developed. And the 3D stereo phase diagram of Al-Cu-Mg ternary system is presented. These phase diagrams can be illustrated by wireframe, surface, solid or their mixture, isotherms and isopleths can be generated. All of these can be displayed by the three typical display ways: electronic shutter, polarization and anaglyph (for example red-cyan glasses). Especially, they can be printed out with 3D stereo effect on paper, and watched by the aid of anaglyph glasses, which makes 3D stereo book of phase diagrams come to reality. Compared with the traditional illustration way, the front of phase diagrams protrude from the screen and the back stretches far behind of the screen under 3D stereo display, the spatial structure can be clearly and immediately perceived. These 3D stereo phase diagrams are useful in teaching and research. - Highlights: • Stereo 3D phase diagram database was constructed, including binary P-T-X, ternary, some quaternary and real ternary systems. • The phase diagrams can be watched by active shutter or polarized or anaglyph glasses. • The print phase diagrams retains 3D stereo effect which can be achieved by the aid of anaglyph glasses.

  15. VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams.

    Directory of Open Access Journals (Sweden)

    Guoliang Lin

    Full Text Available VennPainter is a program for depicting unique and shared sets of genes lists and generating Venn diagrams, by using the Qt C++ framework. The software produces Classic Venn, Edwards' Venn and Nested Venn diagrams and allows for eight sets in a graph mode and 31 sets in data processing mode only. In comparison, previous programs produce Classic Venn and Edwards' Venn diagrams and allow for a maximum of six sets. The software incorporates user-friendly features and works in Windows, Linux and Mac OS. Its graphical interface does not require a user to have programing skills. Users can modify diagram content for up to eight datasets because of the Scalable Vector Graphics output. VennPainter can provide output results in vertical, horizontal and matrix formats, which facilitates sharing datasets as required for further identification of candidate genes. Users can obtain gene lists from shared sets by clicking the numbers on the diagram. Thus, VennPainter is an easy-to-use, highly efficient, cross-platform and powerful program that provides a more comprehensive tool for identifying candidate genes and visualizing the relationships among genes or gene families in comparative analysis.

  16. Conditions for uniqueness of product representations for separable quantum channels and separable quantum states

    International Nuclear Information System (INIS)

    Cohen, Scott M.

    2014-01-01

    We give a sufficient condition that an operator sum representation of a separable quantum channel in terms of product operators is the unique product representation for that channel, and then provide examples of such channels for any number of parties. This result has implications for efforts to determine whether or not a given separable channel can be exactly implemented by local operations and classical communication. By the Choi-Jamiolkowski isomorphism, it also translates to a condition for the uniqueness of product state ensembles representing a given quantum state. These ideas follow from considerations concerning whether or not a subspace spanned by a given set of product operators contains at least one additional product operator

  17. Ring-diagram calculations of normal and spin-polarized 3He using the Aziz interactions

    International Nuclear Information System (INIS)

    Heyer, J.; Kiang, L.L.; Jiang, M.F.; Kuo, T.T.S.

    1991-01-01

    The authors calculate the ground-state energy of normal and spin-polarized 3 He within a model-space ring diagram framework where the particle-particle hole-hole (pphh) ring diagrams of the ground-state energy shift are summed up to all orders. The Aziz HFDHE2 and HFD-B(HE) interactions are employed. They first calculate a model space reaction matrix (G M ) whose intermediate states are required to be outside the chosen model space. The pphh ring diagrams with G M -matrix vertices are then summed within the model space by way of an RPA-type secular equation. The continuous single-particle spectrum of Mahaux is chosen. It is found that the inclusion of pphh ring diagrams gives a significant increase in the binding energy per particle (BE/A) as compared with Brueckner-Hartree-Fock calculations. For normal and spin-polarized 3 He their calculated values for BE/A and saturation densities are respectively (1.86 K, 0.72 angstrom -1 ) and (1.59 K, 0.91 angstrom -1 ), while the corresponding experimental values for normal 3 He are (2.47 K, 0.785 angstrom -1 ). 53 refs

  18. The boundary length and point spectrum enumeration of partial chord diagrams using cut and join recursion

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Penner, Robert C.

    relation, which combined with an initial condition determines these numbers uniquely. This recursion relation is equivalent to a second order, non-linear, algebraic partial differential equation for the generating function of the numbers of partial chord diagrams filtered by the boundary length and point...

  19. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model

    International Nuclear Information System (INIS)

    Zeeb, G.

    2006-01-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized σ-ω model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze

  20. User testing of an adaptation of fishbone diagrams to depict results of systematic reviews

    Directory of Open Access Journals (Sweden)

    Gerald Gartlehner

    2017-12-01

    Full Text Available Abstract Background Summary of findings tables in systematic reviews are highly informative but require epidemiological training to be interpreted correctly. The usage of fishbone diagrams as graphical displays could offer researchers an effective approach to simplify content for readers with limited epidemiological training. In this paper we demonstrate how fishbone diagrams can be applied to systematic reviews and present the results of an initial user testing. Methods Findings from two systematic reviews were graphically depicted in the form of the fishbone diagram. To test the utility of fishbone diagrams compared with summary of findings tables, we developed and pilot-tested an online survey using Qualtrics. Respondents were randomized to the fishbone diagram or a summary of findings table presenting the same body of evidence. They answered questions in both open-ended and closed-answer formats; all responses were anonymous. Measures of interest focused on first and second impressions, the ability to find and interpret critical information, as well as user experience with both displays. We asked respondents about the perceived utility of fishbone diagrams compared to summary of findings tables. We analyzed quantitative data by conducting t-tests and comparing descriptive statistics. Results Based on real world systematic reviews, we provide two different fishbone diagrams to show how they might be used to display complex information in a clear and succinct manner. User testing on 77 students with basic epidemiological training revealed that participants preferred summary of findings tables over fishbone diagrams. Significantly more participants liked the summary of findings table than the fishbone diagram (71.8% vs. 44.8%; p < .01; significantly more participants found the fishbone diagram confusing (63.2% vs. 35.9%, p < .05 or indicated that it was difficult to find information (65.8% vs. 45%; p < .01. However, more than half

  1. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled:Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Physics Education; SANCGASS; Astronomy; Plasma Physics; Physics in Industry; Applied and General Physics.

  2. Program and abstracts

    International Nuclear Information System (INIS)

    1975-01-01

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled:Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Physics Education; SANCGASS; Astronomy; Plasma Physics; Physics in Industry; Applied and General Physics

  3. State diagrams of tokamaks and state transitions

    International Nuclear Information System (INIS)

    Minardi, E.

    1992-01-01

    In a simple one-fluid cylindrical model of transport and of dissipative effects, the family of the magnetic states of the Tokamak which correspond to a vanishing entropy production in the confinement region is characterized by a define relation or ''state equation'' involving the relevant parameters of the discharge. An investigation is made as to how the entropy production changes when the current density profile is rearranged by a perturbation which conserves the poloidal magnetic flux. It is shown that for a sufficiently short time interval, that is to say t 2 E τ s where τ E is the energy confinement time and τ s is the resistive time, neighbouring bifurcating equilibria exist which can be reached with a flux-conserving transition and with increase of the magnetic entropy. The family of these new states can also be characterized by a state equation involving the relevant discharge parameters. When the state equations of the two families are simultaneously satisfied by the same set of parameter values, a flux-conserving, entropy-increasing transition may take place between states of the two families. The modifications of the current density and of the temperature profiles involved in the transition and the conditions that the discharge parameters should satisfy in order that the transition could occur are investigated. (author)

  4. Phase diagram of supercooled water confined to hydrophilic nanopores

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  5. Asteroseismic Diagram for Subgiants and Red Giants

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)

    2017-02-10

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.

  6. Automation of Feynman diagram evaluations

    International Nuclear Information System (INIS)

    Tentyukov, M.N.

    1998-01-01

    A C-program DIANA (DIagram ANAlyser) for the automation of Feynman diagram evaluations is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language can be used to create a source code for analytical or numerical evaluations and to keep the control of the process in general

  7. Program and abstracts

    International Nuclear Information System (INIS)

    1976-01-01

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled: Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Plasma Physics; Solar-Terrestrial Physics; Astrophysics and Astronomy; Radioastronomy; General Physics; Applied Physics; Industrial Physics

  8. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, M. Yu., E-mail: kagan@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation); Val' kov, V. V.; Mitskan, V. A.; Korovuskin, M. M. [Russian Academy of Sciences, Kirenskii Physics Institute, Siberian Branch (Russian Federation)

    2013-10-15

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d{sub xy}, p, s, and d{sub x{sup 2}-y{sup 2}} symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d{sub x{sup 2}-y{sup 2}} symmetry and high critical temperatures T{sub c} {approx} 100 K near the half-filling are determined.

  9. Toward an implicit measure of emotions: ratings of abstract images reveal distinct emotional states.

    Science.gov (United States)

    Bartoszek, Gregory; Cervone, Daniel

    2017-11-01

    Although implicit tests of positive and negative affect exist, implicit measures of distinct emotional states are scarce. Three experiments examined whether a novel implicit emotion-assessment task, the rating of emotion expressed in abstract images, would reveal distinct emotional states. In Experiment 1, participants exposed to a sadness-inducing story inferred more sadness, and less happiness, in abstract images. In Experiment 2, an anger-provoking interaction increased anger ratings. In Experiment 3, compared to neutral images, spider images increased fear ratings in spider-fearful participants but not in controls. In each experiment, the implicit task indicated elevated levels of the target emotion and did not indicate elevated levels of non-target negative emotions; the task thus differentiated among emotional states of the same valence. Correlations also supported the convergent and discriminant validity of the implicit task. Supporting the possibility that heuristic processes underlie the ratings, group differences were stronger among those who responded relatively quickly.

  10. Methods to extract information on the atomic and molecular states from scientific abstracts

    International Nuclear Information System (INIS)

    Sasaki, Akira; Ueshima, Yutaka; Yamagiwa, Mitsuru; Murata, Masaki; Kanamaru, Toshiyuki; Shirado, Tamotsu; Isahara, Hitoshi

    2005-01-01

    We propose a new application of information technology to recognize and extract expressions of atomic and molecular states from electrical forms of scientific abstracts. Present results will help scientists to understand atomic states as well as the physics discussed in the articles. Combining with the internet search engines, it will make one possible to collect not only atomic and molecular data but broader scientific information over a wide range of research fields. (author)

  11. Canonical phase diagrams of the 1D Falicov-Kimball model at T = O

    Science.gov (United States)

    Gajek, Z.; Jȩdrzejewski, J.; Lemański, R.

    1996-02-01

    The Falicov-Kimball model of spinless quantum electrons hopping on a 1-dimensional lattice and of immobile classical ions occupying some lattice sites, with only intrasite coupling between those particles, have been studied at zero temperature by means of well-controlled numerical procedures. For selected values of the unique coupling parameter U the restricted phase diagrams (based on all the periodic configurations of localized particles (ions) with period not greater than 16 lattice constants, typically) have been constructed in the grand-canonical ensemble. Then these diagrams have been translated into the canonical ensemble. Compared to the diagrams obtained in other studies our ones contain more details, in particular they give better insight into the way the mixtures of periodic phases are formed. Our study has revealed several families of new characteristic phases like the generalized most homogeneous and the generalized crenel phases, a first example of a structural phase transition and a tendency to build up an additional symmetry - the hole-particle symmetry with respect to the ions (electrons) only, as U decreases.

  12. VennDiagramWeb: a web application for the generation of highly customizable Venn and Euler diagrams.

    Science.gov (United States)

    Lam, Felix; Lalansingh, Christopher M; Babaran, Holly E; Wang, Zhiyuan; Prokopec, Stephenie D; Fox, Natalie S; Boutros, Paul C

    2016-10-03

    Visualization of data generated by high-throughput, high-dimensionality experiments is rapidly becoming a rate-limiting step in computational biology. There is an ongoing need to quickly develop high-quality visualizations that can be easily customized or incorporated into automated pipelines. This often requires an interface for manual plot modification, rapid cycles of tweaking visualization parameters, and the generation of graphics code. To facilitate this process for the generation of highly-customizable, high-resolution Venn and Euler diagrams, we introduce VennDiagramWeb: a web application for the widely used VennDiagram R package. VennDiagramWeb is hosted at http://venndiagram.res.oicr.on.ca/ . VennDiagramWeb allows real-time modification of Venn and Euler diagrams, with parameter setting through a web interface and immediate visualization of results. It allows customization of essentially all aspects of figures, but also supports integration into computational pipelines via download of R code. Users can upload data and download figures in a range of formats, and there is exhaustive support documentation. VennDiagramWeb allows the easy creation of Venn and Euler diagrams for computational biologists, and indeed many other fields. Its ability to support real-time graphics changes that are linked to downloadable code that can be integrated into automated pipelines will greatly facilitate the improved visualization of complex datasets. For application support please contact Paul.Boutros@oicr.on.ca.

  13. Abstracting Concepts and Methods.

    Science.gov (United States)

    Borko, Harold; Bernier, Charles L.

    This text provides a complete discussion of abstracts--their history, production, organization, publication--and of indexing. Instructions for abstracting are outlined, and standards and criteria for abstracting are stated. Management, automation, and personnel are discussed in terms of possible economies that can be derived from the introduction…

  14. Dynamic vortex-phase diagram of MgB2 single crystals near the peak-effect region

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Lee, Hyun-Sook; Kang, Byeongwon; Chowdhury, P.; Kim, Kyung-Hee; Park, Min-Seok; Lee, Sung-Ik

    2006-01-01

    The dynamic vortex-phase diagram of MgB 2 single crystals has been constructed by using voltage noise characteristics. Between the onset (H on ) and the peak (H p ) magnetic fields, crossovers from a state with large noises to a noise-free state were observed with increasing current while above H p , a reverse behavior was found. We will discuss the dynamic vortex phase diagram and the possible origins of the crossovers

  15. Genus Ranges of Chord Diagrams.

    Science.gov (United States)

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-04-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.

  16. Existence and uniqueness of Gibbs states for a statistical mechanical polyacetylene model

    International Nuclear Information System (INIS)

    Park, Y.M.

    1987-01-01

    One-dimensional polyacetylene is studied as a model of statistical mechanics. In a semiclassical approximation the system is equivalent to a quantum XY model interacting with unbounded classical spins in one-dimensional lattice space Z. By establishing uniform estimates, an infinite-volume-limit Hilbert space, a strongly continuous time evolution group of unitary operators, and an invariant vector are constructed. Moreover, it is proven that any infinite-limit state satisfies Gibbs conditions. Finally, a modification of Araki's relative entropy method is used to establish the uniqueness of Gibbs states

  17. Completeness of Lyapunov Abstraction

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Sloth, Christoffer

    2013-01-01

    the vector field, which allows the generation of a complete abstraction. To compute the functions that define the subdivision of the state space in an algorithm, we formulate a sum of squares optimization problem. This optimization problem finds the best subdivisioning functions, with respect to the ability......This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...

  18. Efficient abstraction selection in reinforcement learning

    NARCIS (Netherlands)

    Seijen, H. van; Whiteson, S.; Kester, L.

    2013-01-01

    This paper introduces a novel approach for abstraction selection in reinforcement learning problems modelled as factored Markov decision processes (MDPs), for which a state is described via a set of state components. In abstraction selection, an agent must choose an abstraction from a set of

  19. Pseudo-ternary phase diagram in the Na2O-Na2O2-NaOH system

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Tendo, Masayuki; Aoto, Kazumi

    1997-10-01

    Generally, the phase diagrams are always used to understand the present state of compounds at certain temperature. In order to understand the corrosion behavior of structural material for FBR by main sodium compounds (Na 2 O, Na 2 O 2 and NaOH), it is very important to comprehend the phase diagrams of their compounds. However, only Na 2 O-NaOH pseudo-binary phase diagram had been investigated previously in this system. There is no study of other pseudo-binary or ternary phase diagrams in the Na 2 O-Na 2 O 2 -NaOH system. In this study, in order to clarify the present states of their compounds at certain temperatures, the pseudo-binary and ternary phase diagrams in the Na 2 O-Na 2 O 2 -NaOH system were prepared. A series of thermal analyses with binary and ternary component system has been carried out using the differential scanning calorimetry (DSC). The liquidus temperature and ternary eutectic temperatures were confirmed by these measurements. The beneficial indications for constructing phase diagrams were obtained from these experiments. On the basis of these results, the interaction parameters between compounds which were utilized for the Thermo-Calc calculation were optimized. Thermo-Calc is one of thermodynamic calculation software. Consequently the accurate pseudo-binary and ternary phase diagrams were indicated using the optimized parameters. (author)

  20. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Yves [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Mija, Alice [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France); Burr, Alain; Darque-Ceretti, Evelyne; Felder, Eric [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Sbirrazzuoli, Nicolas, E-mail: sbirrazz@unice.fr [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France)

    2011-07-10

    Highlights: {yields} Blends of Rosin and beeswax are studied by DSC, XRD, and optical microscopy. {yields} The first phase diagram beeswax/rosin is established. {yields} Polymorphic transitions are identified and appear to be highly related to rosin content. - Abstract: Rosin and beeswax are two complex natural materials presenting numerous applications in paints, adhesives, varnishes or inks. Melted, they are particularly interesting for their adhesion properties. This paper establishes the first phase diagram beeswax/rosin blends. A systematic approach using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and polarised optical microscopy (POM) has been performed in order to describe the crystallographic structure and the thermal properties of two materials, beeswax and rosin, and their blends. Indeed, melting, softening and crystallisation temperatures, polymorphic transitions but also crystalline index has been investigated. The resulting phase diagram reveals a complex behaviour in terms of phase transformation and time-dependent phenomenon mainly representative of the complex composition of beeswax.

  1. Pourbaix diagrams for the iron–water system extended to high-subcritical and low-supercritical conditions

    International Nuclear Information System (INIS)

    Cook, William G.; Olive, Robert P.

    2012-01-01

    Highlights: ► Pourbaix diagrams for iron–water are extended to low-supercritical temperatures. ► Thermodynamic properties for use in R-HKF model re-evaluated. ► Above the critical point, magnetite solubility is between 10 −11 and 10 −10 mol/kg. - Abstract: The supercritical water-cooled reactor (SCWR) is a Generation IV reactor concept that will operate at temperatures and pressures above water’s thermodynamic critical point. Pourbaix diagrams for the iron–water system at temperatures slightly below and above the critical point at 25 MPa have been constructed to aid the evaluation and development of potential construction materials. High temperature data extrapolation was performed using a revised Helgeson–Kirkham–Flowers model and fit to data on magnetite and hematite solubility in high-temperature water. A low-concentration diagram at 350 °C reveals the importance of water chemistry control to avoid transitioning to an active corrosion region.

  2. Compositional mining of multiple object API protocols through state abstraction.

    Science.gov (United States)

    Dai, Ziying; Mao, Xiaoguang; Lei, Yan; Qi, Yuhua; Wang, Rui; Gu, Bin

    2013-01-01

    API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments.

  3. Quest for the QCD phase diagram in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji, E-mail: fuku@rk.phys.keio.ac.jp [Keio University, Department of Physics (Japan)

    2013-03-15

    We review the state-of-the-art status of the research on the phase diagram of QCD matter out of quarks and gluons. Our discussions particularly include the extreme environments such as the high temperature, the high baryon density, and the strong magnetic field.

  4. Collaborative diagramming during problem based learning in medical education: Do computerized diagrams support basic science knowledge construction?

    Science.gov (United States)

    De Leng, Bas; Gijlers, Hannie

    2015-05-01

    To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Opinions and perceptions of students (n = 70) and tutors (n = 4) who used collaborative diagramming in tutorial groups were collected with a questionnaire and focus group discussions. A framework derived from the analysis of discourse in computer-supported collaborative leaning was used to construct the questionnaire. Video observations were used during the focus group discussions. Both students and tutors felt that collaborative diagramming positively affected discussion and knowledge construction. Students particularly appreciated that diagrams helped them to structure knowledge, to develop an overview of topics, and stimulated them to find relationships between topics. Tutors emphasized that diagramming increased interaction and enhanced the focus and detail of the discussion. Favourable conditions were the following: working with a shared whiteboard, using a diagram format that facilitated distribution, and applying half filled-in diagrams for non-content expert tutors and\\or for heterogeneous groups with low achieving students. The empirical findings in this study support the findings of earlier more descriptive studies that diagramming in a collaborative setting is valuable for learning complex knowledge in medicine.

  5. Uniqueness of non-linear ground states for fractional Laplacians in R

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Lenzmann, Enno

    2013-01-01

    We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)sQ+Q−Qα+1=0inR,where 0 fractional Laplacian in one dimension. In particular, we answer affirmatively an open question...... recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation. As a technical key result in this paper, we show that the associated linearized operator L...... + = (−Δ) s +1−(α+1)Q α is non-degenerate; i.e., its kernel satisfies ker L + = span{Q′}. This result about L + proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for non-linear dispersive PDEs with fractional Laplacians, such as the generalized...

  6. Asymptotic laws for random knot diagrams

    Science.gov (United States)

    Chapman, Harrison

    2017-06-01

    We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.

  7. Drawing Euler Diagrams with Circles

    OpenAIRE

    Stapleton, Gem; Zhang, Leishi; Howse, John; Rodgers, Peter

    2010-01-01

    Euler diagrams are a popular and intuitive visualization tool which are used in a wide variety of application areas, including biological and medical data analysis. As with other data visualization methods, such as graphs, bar charts, or pie charts, the automated generation of an Euler diagram from a suitable data set would be advantageous, removing the burden of manual data analysis and the subsequent task of drawing an appropriate diagram. Various methods have emerged that automatically dra...

  8. Phase diagram and quench dynamics of the cluster-XY spin chain.

    Science.gov (United States)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  9. The TbBr3–LiBr binary system: Experimental thermodynamic investigation and assessment of phase diagram

    International Nuclear Information System (INIS)

    Rycerz, L.; Gong, W.; Gaune-Escard, M.

    2013-01-01

    Highlights: ► DSC measurements for the (LiBr + TbBr 3 ) system. ► congruently Li3TbBr 6 and incongruently melting Li5TbBr 8 compounds. ► Thermodynamic description of the liquid phase in the (LiBr + TbBr 3 ) system. ► Assessment with a two-sublattice ionic solution model. - Abstract: DSC was used to study the phase equilibrium in the TbBr 3 –LiBr binary system. The results obtained provided a basis for constructing the phase diagram of this system. It exhibits two compounds: Li 5 TbBr 8 , which decomposes in the solid state at 611 K, and Li 3 TbBr 6 , which melts congruently at 785 K with the related enthalpy 59.1 kJ·mol −1 . The binary LiBr–TbBr 3 system was then optimized using the available experimental information on phase diagram and thermodynamic properties. A two-sub-lattice ionic solution model (Li + ) P :(Br − , TbBr 6 −3 , TbBr 3 ) Q was adopted to describe the liquid phase. The present assessment of the binary LiBr–TbBr 3 system was in good agreement with the corresponding experimental data and confirmed their consistency.

  10. Oak Ridge K-25 Site Technology Logic Diagram

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. (ed.)

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates envirorunental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. This volume, Volume 2, contains logic diagrams with an index. Volume 3 has been divided into two separate volumes to facilitate handling and use.

  11. Stellar Presentations (Abstract)

    Science.gov (United States)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  12. Phase diagrams of superconducting materials: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Flukiger, R.

    1981-01-01

    Because a large number of investigations on superconducting material have been made on insufficiently characterized samples, and with temperature phase diagrams which contained serious errors, phase diagrams are studied. It is seen that the variation of critical temperature as a function of chemical composition for a given compound can be used as a supplementary tool in determining composition with greater accuracy. The consequent search for higher critical temperature value in specified materials has led to a new concept in determining high temperature phase diagrams. Most of this paper is devoted to the study of bulk binary, pseudobinary, or ternary superconductors at their equilibrium state. As will be shown in several cases, these data serve as standard values and are of great help in understanding the superconducting behavior in materials produced by non-equilibrium methods, i.e., splat-cooling, thin film preparation by either sputtering, co-evaporation, or CVD, and diffusion processes in multifilamentary composite wires. An example for the departure from thermal equilibrium is the retention of metastable composition by a fast quenching rate

  13. New Wang-Landau approach to obtain phase diagrams for multicomponent alloys

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2017-10-01

    We develop an approach to apply the Wang-Landau algorithm to multicomponent alloys in a semi-grand-canonical ensemble. Although the Wang-Landau algorithm has great advantages over conventional sampling methods, there are few applications to alloys. This is because calculating compositions in a semi-grand-canonical ensemble via the Wang-Landau algorithm requires a multidimensional density of states in terms of total energy and compositions, and constructing it is difficult from the viewpoints of both implementation and computational cost. In this study, we develop a simple approach to calculate the alloy phase diagram based on the Wang-Landau algorithm, and show that a number of one-dimensional densities of states could lead to compositions in a semi-grand-canonical ensemble as a multidimensional density of states could. Finally, we apply the present method to Cu-Au and Pd-Rh alloys and confirm that the present method successfully describes the phase diagram with high efficiency, validity, and accuracy.

  14. Advanced quantum theory and its applications through Feynman diagrams

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1979-01-01

    The two themes of scattering diagrams and the fundamental forces characterize this book. Transformation theory is developed to review the concepts of nonrelativistic quantum mechanics and to formulate the relativistic Klein-Gordon, Maxwell, and Dirac wave equations for relativistic spin-0, massless spin-1, and spin-1/2 particles, respectively. The language of group theory is used to write relativistic Lorentz transformations in a form similar to ordinary rotations and to describe the important discrete symmetries of C, P, and T. Then quantum mechanics is reformulated in the language of scattering theory, with the momentum-space S matrix replacing the coordinate-space hamiltonian as the central dynamical operator. Nonrelativistic perturbation scattering diagrams are then developed, and simple applications given for nuclear, atomic, and solid-state scattering problems. Next, relativistic scattering diagrams built up from covariant Feynman propagators and vertices in a manner consistent with the CPT theorem are considered. The theory is systematically applied to the lowest-order fundamental electromagnetic, strong, weak, and gravitational interactions. Finally, the use of higher-order Feynman diagrams to explain more detailed aspects of quantum electrodynamics (QED) and strong-interaction elementary-particle physics is surveyed. Throughout, the notion of currents is used to exploit the underlying symmetries and dynamical interactions of the various quantum forces. 258 references, 77 figures, 1 table

  15. Abstraction/Representation Theory for heterotic physical computing.

    Science.gov (United States)

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Extended abstracts from the Coastal Habitats in Puget Sound (CHIPS) 2006 Workshop

    Science.gov (United States)

    Gelfenbaum, Guy R.; Fuentes, Tracy L.; Duda, Jeffrey J.; Grossman, Eric E.; Takesue, Renee K.

    2010-01-01

    Puget Sound is the second largest estuary in the United States. Its unique geology, climate, and nutrient-rich waters produce and sustain biologically productive coastal habitats. These same natural characteristics also contribute to a high quality of life that has led to a significant growth in human population and associated development. This population growth, and the accompanying rural and urban development, has played a role in degrading Puget Sound ecosystems, including declines in fish and wildlife populations, water-quality issues, and loss and degradation of coastal habitats.In response to these ecosystem declines and the potential for strategic large-scale preservation and restoration, a coalition of local, State, and Federal agencies, including the private sector, Tribes, and local universities, initiated the Puget Sound Nearshore Ecosystem Restoration Project (PSNERP). The Nearshore Science Team (NST) of PSNERP, along with the U.S. Geological Survey, developed a Science Strategy and Research Plan (Gelfenbaum and others, 2006) to help guide science activities associated with nearshore ecosystem restoration. Implementation of the Research Plan includes a call for State and Federal agencies to direct scientific studies to support PSNERP information needs. In addition, the overall Science Strategy promotes greater communication with decision makers and dissemination of scientific results to the broader scientific community.On November 14–16, 2006, the U.S. Geological Survey sponsored an interdisciplinary Coastal Habitats in Puget Sound (CHIPS) Research Workshop at Fort Worden State Park, Port Townsend, Washington. The main goals of the workshop were to coordinate, integrate, and link research on the nearshore of Puget Sound. Presented research focused on three themes: (1) restoration of large river deltas; (2) recovery of the nearshore ecosystem of the Elwha River; and (3) effects of urbanization on nearshore ecosystems. The more than 35 presentations

  17. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    Science.gov (United States)

    Zhu, X-Y

    2014-07-03

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  18. True strain-temperature diagram and structural aspects of molybdenum fracture

    International Nuclear Information System (INIS)

    Vasil'ev, A.D.; Gornaya, I.D.; Moiseev, V.F.; Pechkovskij, Eh.P.; Ponomarev, S.S.; Trefilov, V.I.

    1982-01-01

    For the purpose of studying the regularities of tough fracture of polycrystal molybdenum and explaining characteristic types of uniaxial tensile fractures in the 100-1000 deq C temperature range it is suggested for the first time to use the true strain-temperature (TST) diagram which combines a diagram of structural states and temperature dependence of a number of critical strains reflecting the dynamics of emergence and development of micro-non continuities in a tension specimen. It is shown that in the polycrystal molybdenum the basic parameters controlling the course and the magnitude of separate strain stages as well as the transition to fracture are the strain hardening coefficient and the elasticity limit relation to the strain hardening coefficient at the first stage (homoo.eneous dislocations distribution stage). The TST diagram permits also to explain the following phenomena: the nature of cold brittleness upper temperature, the observed change of fracture mechanisms with the temperature increase, the fracture surface origin

  19. Magnetization switching diagram of a perpendicular synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Koplak, O. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Talantsev, A. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Lu, Y.; Hamadeh, A.; Pirro, P.; Hauet, T. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine (France); Morgunov, R., E-mail: morgunov2005@yandex.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Tambov State Technical University, 392000 Tambov (Russian Federation); Mangin, S. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine (France)

    2017-07-01

    Highlights: • Anisotropy, Zeeman and exchange energy determine sequence of magnetic transitions. • Three temperature ranges manifest different shapes of the hysteresis loop. • The critical transition fields are temperature dependent. - Abstract: Magnetic configurations in synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer with strong perpendicular anisotropy have been systematically studied. Magnetization versus field hysteresis loop has been measured for different temperature ranging from 5 to 300 K. The applied field – temperature (H-T) magnetization switching diagram has been constructed by extracting the different switching fields as a function of temperature. This switching diagram can be well explained by considering the competition between energy barrier of layer’s magnetization reversal, interlayer exchange coupling, and Zeeman energy.

  20. Magnetization switching diagram of a perpendicular synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer

    International Nuclear Information System (INIS)

    Koplak, O.; Talantsev, A.; Lu, Y.; Hamadeh, A.; Pirro, P.; Hauet, T.; Morgunov, R.; Mangin, S.

    2017-01-01

    Highlights: • Anisotropy, Zeeman and exchange energy determine sequence of magnetic transitions. • Three temperature ranges manifest different shapes of the hysteresis loop. • The critical transition fields are temperature dependent. - Abstract: Magnetic configurations in synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer with strong perpendicular anisotropy have been systematically studied. Magnetization versus field hysteresis loop has been measured for different temperature ranging from 5 to 300 K. The applied field – temperature (H-T) magnetization switching diagram has been constructed by extracting the different switching fields as a function of temperature. This switching diagram can be well explained by considering the competition between energy barrier of layer’s magnetization reversal, interlayer exchange coupling, and Zeeman energy.

  1. Phase diagram of the Ge-rich of the Ba–Ge system and characterisation of single-phase BaGe4

    International Nuclear Information System (INIS)

    Prokofieva, Violetta K.; Pavlova, Lydia M.

    2014-01-01

    Highlights: • The Ba-Ge phase diagram for the range 50–100 at.% Ge was constructed. • Single-phase BaGe 4 grown by the Czochralski method was characterised. • A phenomenological model for a liquid-liquid phase transition is proposed. - Abstract: The Ba–Ge binary system has been investigated by several authors, but some uncertainties remain regarding phases with Ba/Ge ⩽ 2. The goal of this work was to resolve the uncertainty about the current phase diagram of Ba–Ge by performing DTA, X-ray powder diffraction, metallographic and chemical analyses, and measurements of the electrical conductivity and viscosity. The experimental Ba–Ge phase diagram over the composition range of 50–100 at.% Ge was constructed from the cooling curves and single-phase BaGe 4 grown by the Czochralski crystal pulling method was characterised. Semiconducting BaGe 4 crystallised peritectically from the liquid phase near the eutectic. In the liquid state, the caloric effects were observed in the DTA curves at 1050 °C where there are no definite phase lines in the Ba–Ge phase diagram. These effects are confirmed by significant changes in the viscosity and electrical conductivity of a Ba–Ge alloy with eutectic composition at this temperature. A phenomenological model based on two different approaches, a phase approach and a chemical approach, is proposed to explain the isothermal liquid–liquid phase transition observed in the Ba–Ge system from the Ge side. Our results suggest that this transition is due to the peritectic reactions in the liquid phase. This reversible phase transition results in the formation of precursors of various metastable clathrate phases and is associated with sudden changes in the structure of Ba–Ge liquid alloys. Characteristics of both first- and second-order phase transitions are observed. Charge transfer appears to play an important role in this transition

  2. Modal abstractions of concurrent behavior

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nanz, Sebastian; Nielson, Hanne Riis

    2011-01-01

    We present an effective algorithm for the automatic construction of finite modal transition systems as abstractions of potentially infinite concurrent processes. Modal transition systems are recognized as valuable abstractions for model checking because they allow for the validation as well...... as refutation of safety and liveness properties. However, the algorithmic construction of finite abstractions from potentially infinite concurrent processes is a missing link that prevents their more widespread usage for model checking of concurrent systems. Our algorithm is a worklist algorithm using concepts...... from abstract interpretation and operating upon mappings from sets to intervals in order to express simultaneous over- and underapprox-imations of the multisets of process actions available in a particular state. We obtain a finite abstraction that is 3-valued in both states and transitions...

  3. Geochronological synthesis of Bahia state and the crustal evolution, based in evolution diagram of Sr and initial rate of Sr87/Sr86

    International Nuclear Information System (INIS)

    Sato, K.

    1986-01-01

    The crustal evolution of the ancient terrains of the State of Bahia, Brazil, is attempted with the aid of Sr isotopic results as natural tracers. Some Nd and Pb isotopic data are also available, and support the main conclusions based on Sr evolution diagrams. The analysis of the Sr evolution diagrams shows that the Archean Terrains are mainly formed by accretion from mantle-derived material, but crustal reworking is indicated by the high initial 87 Sr/ 86 Sr value of the Jequie Complex. The Transamazonian mobile belt include both types of materials, but the 87 Sr/ 86 Sr value, generally lower than those of the Jequie Complex, markes improbable a direct derivation. During Middle and Late Proterozoic, the continental crust was already well consolidated, and reworking of crustal material predominated within the Espinhaco and Brasiliano folded systems [pt

  4. A Modal-Logic Based Graph Abstraction

    NARCIS (Netherlands)

    Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.

    2008-01-01

    Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract

  5. Oak Ridge K-25 Site Technology Logic Diagram

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. (ed.)

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.

  6. On-shell diagrams for N=8 supergravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Heslop, Paul; Lipstein, Arthur E. [Department of Mathematical Sciences, Durham University,Lower Mountjoy, Stockton Road, Durham, DH1 3LE (United Kingdom)

    2016-06-10

    We define recursion relations for N=8 supergravity amplitudes using a generalization of the on-shell diagrams developed for planar N=4 super-Yang-Mills. Although the recursion relations generically give rise to non-planar on-shell diagrams, we show that at tree-level the recursion can be chosen to yield only planar diagrams, the same diagrams occurring in the planar N=4 theory. This implies non-trivial identities for non-planar diagrams as well as interesting relations between the N=4 and N=8 theories. We show that the on-shell diagrams of N=8 supergravity obey equivalence relations analogous to those of N=4 super-Yang-Mills, and we develop a systematic algorithm for reading off Grassmannian integral formulae directly from the on-shell diagrams. We also show that the 1-loop 4-point amplitude of N=8 supergravity can be obtained from on-shell diagrams.

  7. Density of states and phase diagram of the antiferromagnetic spin chain with Dzyaloshinsky-Moriya interaction and spin-phonon coupling

    International Nuclear Information System (INIS)

    Wang Qin; Chen Hong; Zheng Hang

    2007-01-01

    The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization

  8. First-Order Transitions and the Magnetic Phase Diagram of CeSb

    DEFF Research Database (Denmark)

    Lebech, Bente; Clausen, Kurt Nørgaard; Vogt, O.

    1980-01-01

    might exist in the magnetic phase diagram of CeSb at 16K for a field of approximately 0.3 T. The present study concludes that the transitions from the paramagnetic to the magnetically ordered states are of first order for fields below 0.8 T. Within the experimental accuracy no change has been observed......The high-temperature (14-17K) low-magnetic field (0-0.8 T) region of the phase diagram of the anomalous antiferromagnet CeSb has been reinvestigated by neutron diffraction in an attempt to locate a possible tricritical point. Previous neutron diffraction studies indicated that a tricritical point...

  9. Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media

    International Nuclear Information System (INIS)

    Al-Hinai, Ashraf T.; Al-Hinai, Muna H.; Dutta, Joydeep

    2014-01-01

    Graphical abstract: - Highlights: • One pot aqueous synthesis of zinc stannate (ZnSnO 3 ) particles at low temperature. • Synthesis designed with the assistance of potential-pH diagram. • ZnSnO 3 estimated to be stable between pH 8 and 12 was used for synthesis of the particles. • ZnSnO 3 ·3H 2 O were formed during the precipitation of zinc stannate. - Abstract: Potential-pH diagram assisted-design for controlled precipitation is an attractive method to obtain engineered binary and ternary oxide particles. Aqueous synthesis conditions of zinc stannate (ZnSnO 3 ) particles at low temperature were formulated with the assistance of potential-pH diagram. The pH of a solution containing stoichiometric amounts of Zn 2+ and Sn 4+ was controlled for the precipitation in a one pot synthesis step at room temperature (25 °C). The effect of the concentration of the reactants on the particle size was studied by varying the concentration of the precursor (Zn 2+ + Sn 4+ ) solution. Scanning electron micrographs show that the particles are monodispersed micron sized cubes formed by the self-organization of nano-sized crystallites. The obtained microcubes characterized by X-ray Diffraction and thermo gravimetric analysis (TGA) show that the particles are in ZnSnO 3 ·3H 2 O form

  10. Lifting business process diagrams to 2.5 dimensions

    Science.gov (United States)

    Effinger, Philip; Spielmann, Johannes

    2010-01-01

    In this work, we describe our visualization approach for business processes using 2.5 dimensional techniques (2.5D). The idea of 2.5D is to add the concept of layering to a two dimensional (2D) visualization. The layers are arranged in a three-dimensional display space. For the modeling of the business processes, we use the Business Process Modeling Notation (BPMN). The benefit of connecting BPMN with a 2.5D visualization is not only to obtain a more abstract view on the business process models but also to develop layering criteria that eventually increase readability of the BPMN model compared to 2D. We present a 2.5D Navigator for BPMN models that offers different perspectives for visualization. Therefore we also develop BPMN specific perspectives. The 2.5D Navigator combines the 2.5D approach with perspectives and allows free navigation in the three dimensional display space. We also demonstrate our tool and libraries used for implementation of the visualizations. The underlying general framework for 2.5D visualizations is explored and presented in a fashion that it can easily be used for different applications. Finally, an evaluation of our navigation tool demonstrates that we can achieve satisfying and aesthetic displays of diagrams stating BPMN models in 2.5D-visualizations.

  11. Using Sankey diagrams to map energy flow from primary fuel to end use

    International Nuclear Information System (INIS)

    Subramanyam, Veena; Paramshivan, Deepak; Kumar, Amit; Mondal, Md. Alam Hossain

    2015-01-01

    Highlights: • Energy flows from both supply and demand sides shown through Sankey diagrams. • Energy flows from reserves to energy end uses for primary and secondary fuels shown. • Five main energy demand sectors in Alberta are analyzed. • In residential/commercial sectors, highest energy consumption is in space heating. • In the industrial sector, highest energy use is in the mining subsector. - Abstract: The energy sector is the largest contributor to gross domestic product (GDP), income, employment, and government revenue in both developing and developed nations. But the energy sector has a significant environmental footprint due to greenhouse gas (GHG) emissions. Efficient production, conversion, and use of energy resources are key factors for reducing the environmental footprint. Hence it is necessary to understand energy flows from both the supply and the demand sides. Most energy analyses focus on improving energy efficiency broadly without considering the aggregate energy flow. We developed Sankey diagrams that map energy flow for both the demand and supply sides for the province of Alberta, Canada. The diagrams will help policy/decision makers, researchers, and others to understand energy flow from reserves through to final energy end uses for primary and secondary fuels in the five main energy demand sectors in Alberta: residential, commercial, industrial, agricultural, and transportation. The Sankey diagrams created for this study show total energy consumption, useful energy, and energy intensities of various end-use devices. The Long-range Energy Alternatives Planning System (LEAP) model is used in this study. The model showed that Alberta’s total input energy in the five demand sectors was 189 PJ, 186 PJ, 828.5PJ, 398 PJ, and 50.83 PJ, respectively. On the supply side, the total energy input and output were found to be 644.84 PJ and 239 PJ, respectively. These results, along with the associated energy flows were depicted pictorially using

  12. Analyzing Mathematics Textbooks through a Constructive-Empirical Perspective on Abstraction: The Case of Pythagoras' Theorem

    Science.gov (United States)

    Yang, Kai-Lin

    2016-01-01

    This study aims at analyzing how Pythagoras' theorem is handled in three versions of Taiwanese textbooks using a conceptual framework of a constructive-empirical perspective on abstraction, which comprises three key attributes: the generality of the object, the connectivity of the subject and the functionality of diagrams as the focused semiotic…

  13. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    International Nuclear Information System (INIS)

    Horvat, Stephen

    2017-01-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS. (paper)

  14. Summation of Parquet diagrams as an ab initio method in nuclear structure calculations

    International Nuclear Information System (INIS)

    Bergli, Elise; Hjorth-Jensen, Morten

    2011-01-01

    Research highlights: → We present a Green's function based approach for doing ab initio nuclear structure calculations. → In particular the sum the subset of so-called Parquet diagrams. → Applying the theory to a simple but realistic model, results in good agreement with other ab initio methods. → This opens up for ab initio calculations for medium-heavy nuclei. - Abstract: In this work we discuss the summation of the Parquet class of diagrams within Green's function theory as a possible framework for ab initio nuclear structure calculations. The theory is presented and some numerical details are discussed, in particular the approximations employed. We apply the Parquet method to a simple model, and compare our results with those from an exact solution. The main conclusion is that even at the level of approximation presented here, the results shows good agreement with other comparable ab initio approaches.

  15. The mean squared writhe of alternating random knot diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Y; Hinson, K [Department of Mathematics and Statistics University of North Carolina at Charlotte, NC 28223 (United States); Ernst, C; Ziegler, U, E-mail: ydiao@uncc.ed [Department of Mathematics and Computer Science, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2010-12-10

    The writhe of a knot diagram is a simple geometric measure of the complexity of the knot diagram. It plays an important role not only in knot theory itself, but also in various applications of knot theory to fields such as molecular biology and polymer physics. The mean squared writhe of any sample of knot diagrams with n crossings is n when for each diagram at each crossing one of the two strands is chosen as the overpass at random with probability one-half. However, such a diagram is usually not minimal. If we restrict ourselves to a minimal knot diagram, then the choice of which strand is the over- or under-strand at each crossing is no longer independent of the neighboring crossings and a larger mean squared writhe is expected for minimal diagrams. This paper explores the effect on the correlation between the mean squared writhe and the diagrams imposed by the condition that diagrams are minimal by studying the writhe of classes of reduced, alternating knot diagrams. We demonstrate that the behavior of the mean squared writhe heavily depends on the underlying space of diagram templates. In particular this is true when the sample space contains only diagrams of a special structure. When the sample space is large enough to contain not only diagrams of a special type, then the mean squared writhe for n crossing diagrams tends to grow linearly with n, but at a faster rate than n, indicating an intrinsic property of alternating knot diagrams. Studying the mean squared writhe of alternating random knot diagrams also provides some insight into the properties of the diagram generating methods used, which is an important area of study in the applications of random knot theory.

  16. Phase diagram of two-component bosons on an optical lattice

    International Nuclear Information System (INIS)

    Altman, Ehud; Hofstetter, Walter; Demler, Eugene; Lukin, Mikhail D

    2003-01-01

    We present a theoretical analysis of the phase diagram of two-component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using this new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition, making it first order in extended regions of the phase diagram. When each species is at integer filling, an additional phase transition may occur, from a spin-ordered insulator to a Mott insulator with no broken symmetries. We determine the phase boundaries in this regime and show that this is essentially a Mott transition in the spin sector

  17. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part B, Remedial Action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1. and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on the RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. Remedial action is the focus of Vol. 2, Pt. B, which has been divided into the three necessary subelements of the RA: characterization, RA, and robotics and automation. Each of these sections address general ORNL problems, which are then broken down by problem area/constituents and linked to potential remedial technologies. The diagrams also contain summary information about a technology`s status, its science and technology needs, and its implementation needs.

  18. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  19. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...

  20. The amplituhedron from momentum twistor diagrams

    International Nuclear Information System (INIS)

    Bai, Yuntao; He, Song

    2015-01-01

    We propose a new diagrammatic formulation of the all-loop scattering amplitudes/Wilson loops in planar N=4 SYM, dubbed the “momentum-twistor diagrams”. These are on-shell-diagrams obtained by gluing trivalent black and white vertices in momentum twistor space, which, in the reduced diagram case, are known to be related to diagrams in the original twistor space. The new diagrams are manifestly Yangian invariant, and they naturally represent factorization and forward-limit contributions in the all-loop BCFW recursion relations in momentum twistor space, in a fashion that is completely different from those in momentum space. We show how to construct and evaluate momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and loop-level integrands; in particular the latter involve isolated bubble-structures for loop variables arising from forward limits, or the entangled removal of particles. From each diagram, the generalized “boundary measurement” directly gives the C, D matrices, thus a cell in the amplituhedron associated with the amplitude, and we expect that our diagrammatic representations of the amplitude provide triangulations of the amplituhedron. To demonstrate the computational power of the formalism, we give explicit results for general two-loop integrands, and the cells of the amplituhedron for two-loop MHV amplitudes.

  1. Diagram Techniques in Group Theory

    Science.gov (United States)

    Stedman, Geoffrey E.

    2009-09-01

    Preface; 1. Elementary examples; 2. Angular momentum coupling diagram techniques; 3. Extension to compact simple phase groups; 4. Symmetric and unitary groups; 5. Lie groups and Lie algebras; 6. Polarisation dependence of multiphoton processes; 7. Quantum field theoretic diagram techniques for atomic systems; 8. Applications; Appendix; References; Indexes.

  2. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix

    Science.gov (United States)

    Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.

    2018-01-01

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition

  3. Phase diagram of the ABC model with nonconserving processes

    International Nuclear Information System (INIS)

    Lederhendler, A; Cohen, O; Mukamel, D

    2010-01-01

    The three species ABC model of driven particles on a ring is generalized to include vacancies and particle-nonconserving processes. The model exhibits phase separation at high densities. For equal average densities of the three species, it is shown that although the dynamics is local, it obeys detailed balance with respect to a Hamiltonian with long-range interactions, yielding a nonadditive free energy. The phase diagrams of the conserving and nonconserving models, corresponding to the canonical and grand-canonical ensembles, respectively, are calculated in the thermodynamic limit. Both models exhibit a transition from a homogeneous to a phase-separated state, although the phase diagrams are shown to differ from each other. This conforms with the expected inequivalence of ensembles in equilibrium systems with long-range interactions. These results are based on a stability analysis of the homogeneous phase and exact solution of the continuum equations of the models. They are supported by Monte Carlo simulations. This study may serve as a useful starting point for analyzing the phase diagram for unequal densities, where detailed balance is not satisfied and thus a Hamiltonian cannot be defined

  4. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  5. Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions

    International Nuclear Information System (INIS)

    Akıncı, Ümit

    2012-01-01

    The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.

  6. Logic verification system for power plant sequence diagrams

    International Nuclear Information System (INIS)

    Fukuda, Mitsuko; Yamada, Naoyuki; Teshima, Toshiaki; Kan, Ken-ichi; Utsunomiya, Mitsugu.

    1994-01-01

    A logic verification system for sequence diagrams of power plants has been developed. The system's main function is to verify correctness of the logic realized by sequence diagrams for power plant control systems. The verification is based on a symbolic comparison of the logic of the sequence diagrams with the logic of the corresponding IBDs (interlock Block Diagrams) in combination with reference to design knowledge. The developed system points out the sub-circuit which is responsible for any existing mismatches between the IBD logic and the logic realized by the sequence diagrams. Applications to the verification of actual sequence diagrams of power plants confirmed that the developed system is practical and effective. (author)

  7. Constraint-Based Abstract Semantics for Temporal Logic

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    2010-01-01

    Abstract interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal mu-calculus, which is the basis for abstract model checking. The abstract semantic funct...

  8. Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.

    Science.gov (United States)

    Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F

    2017-10-01

    Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  9. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    Directory of Open Access Journals (Sweden)

    Cui S.

    2018-01-01

    Full Text Available Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed. Phase fraction diagrams at 500 °C were mapped in the composition range of 0-1.1 wt.% Mg and 0-0.7 wt.% Si to investigate the as-homogenized microstructure. In addition, phase fraction diagram of Mg2Si at 177 °C was mapped to understand the microstructure after final annealing of 6xxx Al alloy. Based on the calculated diagrams, the design strategy of 6xxx Al alloy to produce highest strength due to Mg2Si is discussed.

  10. Satake diagrams of affine Kac-Moody algebras

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, L K [S B R Government Womens' College, Berhampur, Orissa 760 001 (India); Pati, K C [Department of Physics, Khallikote College, Berhampur, Orissa 760 001 (India)

    2006-02-10

    Satake diagrams of affine Kac-Moody algebras (untwisted and twisted) are obtained from their Dynkin diagrams. These diagrams give a classification of restricted root systems associated with these algebras. In the case of simple Lie algebras, these root systems and Satake diagrams correspond to symmetric spaces which have recently found many physical applications in quantum integrable systems, quantum transport problems, random matrix theories etc. We hope these types of root systems may have similar applications in theoretical physics in future and may correspond to symmetric spaces analogue of affine Kac-Moody algebras if they exist.

  11. Contingency diagrams as teaching tools

    OpenAIRE

    Mattaini, Mark A.

    1995-01-01

    Contingency diagrams are particularly effective teaching tools, because they provide a means for students to view the complexities of contingency networks present in natural and laboratory settings while displaying the elementary processes that constitute those networks. This paper sketches recent developments in this visualization technology and illustrates approaches for using contingency diagrams in teaching.

  12. Delimiting diagrams

    NARCIS (Netherlands)

    Oostrom, V. van

    2004-01-01

    We introduce the unifying notion of delimiting diagram. Hitherto unrelated results such as: Minimality of the internal needed strategy for orthogonal first-order term rewriting systems, maximality of the limit strategy for orthogonal higher-order pattern rewrite systems (with maximality of the

  13. One-particle many-body Green's function theory: Algebraic recursive definitions, linked-diagram theorem, irreducible-diagram theorem, and general-order algorithms.

    Science.gov (United States)

    Hirata, So; Doran, Alexander E; Knowles, Peter J; Ortiz, J V

    2017-07-28

    A thorough analytical and numerical characterization of the whole perturbation series of one-particle many-body Green's function (MBGF) theory is presented in a pedagogical manner. Three distinct but equivalent algebraic (first-quantized) recursive definitions of the perturbation series of the Green's function are derived, which can be combined with the well-known recursion for the self-energy. Six general-order algorithms of MBGF are developed, each implementing one of the three recursions, the ΔMPn method (where n is the perturbation order) [S. Hirata et al., J. Chem. Theory Comput. 11, 1595 (2015)], the automatic generation and interpretation of diagrams, or the numerical differentiation of the exact Green's function with a perturbation-scaled Hamiltonian. They all display the identical, nondivergent perturbation series except ΔMPn, which agrees with MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 but converges at the full-configuration-interaction (FCI) limit at n=∞ (unless it diverges). Numerical data of the perturbation series are presented for Koopmans and non-Koopmans states to quantify the rate of convergence towards the FCI limit and the impact of the diagonal, frequency-independent, or ΔMPn approximation. The diagrammatic linkedness and thus size-consistency of the one-particle Green's function and self-energy are demonstrated at any perturbation order on the basis of the algebraic recursions in an entirely time-independent (frequency-domain) framework. The trimming of external lines in a one-particle Green's function to expose a self-energy diagram and the removal of reducible diagrams are also justified mathematically using the factorization theorem of Frantz and Mills. Equivalence of ΔMPn and MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 is algebraically proven, also ascribing the differences at n = 4 to the so-called semi-reducible and linked-disconnected diagrams.

  14. Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators

    CERN Document Server

    Eberle, Andreas

    1999-01-01

    This book addresses both probabilists working on diffusion processes and analysts interested in linear parabolic partial differential equations with singular coefficients. The central question discussed is whether a given diffusion operator, i.e., a second order linear differential operator without zeroth order term, which is a priori defined on test functions over some (finite or infinite dimensional) state space only, uniquely determines a strongly continuous semigroup on a corresponding weighted Lp space. Particular emphasis is placed on phenomena causing non-uniqueness, as well as on the relation between different notions of uniqueness appearing in analytic and probabilistic contexts.

  15. Arche papers on the mathematics of abstraction

    CERN Document Server

    Cook, Roy T

    2007-01-01

    This volume collects together a number of important papers concerning both the method of abstraction generally and the use of particular abstraction principles to reconstruct central areas of mathematics along logicist lines. Gottlob Frege's original logicist project was, in effect, refuted by Russell's paradox. Crispin Wright has recently revived Frege's enterprise, however, providing a philosophical and technical framework within which a reconstruction of arithmetic is possible. While the Neo-Fregean project has recieved extensive attention and discussion, the present volume is unique in pre

  16. Scheil-Gulliver Constituent Diagrams

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.

    2017-06-01

    During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.

  17. Operations space diagram for ECRH and ECCD

    DEFF Research Database (Denmark)

    Bindslev, H.

    2004-01-01

    at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non......A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates......, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required...

  18. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    (SMS). However, to place these two techniques into some perspective with respect to other methods that yield related information, they display their version of a frequently used map of momentum and energy transfer diagram in figure 17.1. Here, various probes like electrons, neutrons, or light, i.e., Brillouin or Raman, and relatively newer forms of X-ray scattering are placed according to their range of energy and momentum transfer taking place during the measurements. Accordingly, NRIXS is a method that needs to be considered as a complementary probe to inelastic neutron and X-ray scattering, while SMS occupies a unique space due to its sensitivity to magnetism, structural deformations, valence, and spin states.

  19. Penguin-like diagrams from the standard model

    International Nuclear Information System (INIS)

    Ping, Chia Swee

    2015-01-01

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated

  20. Penguin-like diagrams from the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Chia Swee [High Impact Research, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  1. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  2. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2011-01-01

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: → Electrodeposition of cobalt clusters. →Mono to multidomain magnetic transition. → Magnetic phase diagram.

  3. Squeezed States and Uncertainty Relations. Abstracts

    International Nuclear Information System (INIS)

    Masahito, Hayashi; Reynaud, S.; Jaekel, M.Th.; Fiuraaek, J.; Garcia-Patron, R.; Cerf, N.J.; Hage, B.; Chelkowski, S.; Franzen, A.; Lastzka, N.; Vahlbruch, N.; Danzmann, K.; Schnabel, R.; Hassan, S.S.; Joshi, A.; Jakob, M.; Bergou, J.A.; Kozlovskii, A.V.; Prakash, H.; Kumar, R.

    2005-01-01

    The purpose of the conference was to bring together people working in the field of quantum optics, with special emphasis on non-classical light sources and related areas, quantum computing, statistical mechanics and mathematical physics. As a novelty, this edition will include the topics of quantum imaging, quantum phase noise and number theory in quantum mechanics. This document gives the program of the conference and gathers the abstracts

  4. Common phase diagram for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Michalak, Rudi

    2003-01-01

    A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality

  5. Formal verification of Simulink/Stateflow diagrams a deductive approach

    CERN Document Server

    Zhan, Naijun; Zhao, Hengjun

    2017-01-01

    This book presents a state-of-the-art technique for formal verification of continuous-time Simulink/Stateflow diagrams, featuring an expressive hybrid system modelling language, a powerful specification logic and deduction-based verification approach, and some impressive, realistic case studies. Readers will learn the HCSP/HHL-based deductive method and the use of corresponding tools for formal verification of Simulink/Stateflow diagrams. They will also gain some basic ideas about fundamental elements of formal methods such as formal syntax and semantics, and especially the common techniques applied in formal modelling and verification of hybrid systems. By investigating the successful case studies, readers will realize how to apply the pure theory and techniques to real applications, and hopefully will be inspired to start to use the proposed approach, or even develop their own formal methods in their future work.

  6. Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht; Zabaloy, Marcelo S.

    2008-01-01

    In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system...

  7. Feynman diagrams without Feynman parameters

    International Nuclear Information System (INIS)

    Mendels, E.

    1978-01-01

    Dimensionally regularized Feynman diagrams are represented by means of products of k-functions. The infinite part of these diagrams is found very easily, also if they are overlapping, and the separation of the several kinds of divergences comes out quite naturally. Ward identities are proven in a transparent way. Series expansions in terms of the external momenta and their inner products are possible

  8. Phase diagrams of the elements

    International Nuclear Information System (INIS)

    Young, D.A.

    1975-01-01

    A summary of the pressure-temperature phase diagrams of the elements is presented, with graphs of the experimentally determined solid-solid phase boundaries and melting curves. Comments, including theoretical discussion, are provided for each diagram. The crystal structure of each solid phase is identified and discussed. This work is aimed at encouraging further experimental and theoretical research on phase transitions in the elements

  9. Homotopy theory of modules over diagrams of rings

    Directory of Open Access Journals (Sweden)

    J. P. C. Greenlees

    2014-09-01

    Full Text Available Given a diagram of rings, one may consider the category of modules over them. We are interested in the homotopy theory of categories of this type: given a suitable diagram of model categories ℳ( (as runs through the diagram, we consider the category of diagrams where the object ( at comes from ℳ(. We develop model structures on such categories of diagrams and Quillen adjunctions that relate categories based on different diagram shapes. Under certain conditions, cellularizations (or right Bousfield localizations of these adjunctions induce Quillen equivalences. As an application we show that a cellularization of a category of modules over a diagram of ring spectra (or differential graded rings is Quillen equivalent to modules over the associated inverse limit of the rings. Another application of the general machinery here is given in work by the authors on algebraic models of rational equivariant spectra. Some of this material originally appeared in the preprint “An algebraic model for rational torus-equivariant stable homotopy theory”, arXiv:1101.2511, but has been generalized here.

  10. Phase diagram study of a dimerized spin-S zig–zag ladder

    International Nuclear Information System (INIS)

    Matera, J M; Lamas, C A

    2014-01-01

    The phase diagram of a frustrated spin-S zig–zag ladder is studied through different numerical and analytical methods. We show that for arbitrary S, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, being the Majumdar–Ghosh point for a particular member of the family. We show that the system presents a transition between a dimerized phase to a Néel-like phase for S = 1/2, and spiral phases can appear for large S. The phase diagram is characterized by means of a generalization of the usual mean field approximation. The novelty in the present implementation is to consider the strongest coupled sites as the unit cell. The gap and the excitation spectrum is analyzed through the random phase approximation. Also, a perturbative treatment to obtain the critical points is discussed. Comparisons of the results with numerical methods like the Density Matrix Renormalization Group are also presented. (paper)

  11. Disconnected Diagrams in Lattice QCD

    Science.gov (United States)

    Gambhir, Arjun Singh

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  12. Disconnected Diagrams in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  13. Selected topics on the nonrelativistic diagram technique

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Narodetskij, I.M.

    1983-01-01

    The construction of the diagrams describing various processes in the four-particle systems is considered. It is shown that these diagrams, in particular the diagrams corresponding to the simple mechanisms often used in nuclear and atomic reaction theory, are readily obtained from the Faddeev-Yakubovsky equations. The covariant four-dimensional formalism of nonrelativistic Feynman graphs and its connection to the three-dimensional graph technique are briefly discussed

  14. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  15. Multi-currency Influence Diagrams

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre; Jensen, Finn V.

    2007-01-01

    When using the influence diagrams framework for solving a decision problem with several different quantitative utilities, the traditional approach has been to convert the utilities into one common currency. This conversion is carried out using a tacit transformation, under the assumption...... that the converted problem is equivalent to the original one. In this paper we present an extension of the influence diagram framework. The extension allows for these decision problems to be modelled in their original form. We present an algorithm that, given a linear conversion function between the currencies...

  16. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2016-10-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  17. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)

    2017-05-30

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  18. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  19. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2017-01-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  20. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  1. Operations space diagram for ECRH and ECCD

    International Nuclear Information System (INIS)

    Bindslev, Henrik

    2004-01-01

    A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non-experts. JET and ITER like plasmas are used, but the method is generic. (author)

  2. Adaptation and Extension of the Framework of Reducing Abstraction in the Case of Differential Equations

    Science.gov (United States)

    Raychaudhuri, Debasree

    2014-01-01

    Although there is no consensus in regard to a unique meaning for abstraction, there is a recognition of the existence of several theories of abstraction, and that the ability to abstract is imperative to learning and doing meaningful mathematics. The theory of "reducing abstraction" maps the abstract nature of mathematics to the nature…

  3. Safety-barrier diagrams as a safety management tool

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2009-01-01

    Safety-barrier diagrams and “bow-tie” diagrams have become popular methods in risk analysis and safety management. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The latter's relation to other methods such as fault trees and Bayesian...

  4. Near threshold expansion of Feynman diagrams

    International Nuclear Information System (INIS)

    Mendels, E.

    2005-01-01

    The near threshold expansion of Feynman diagrams is derived from their configuration space representation, by performing all x integrations. The general scalar Feynman diagram is considered, with an arbitrary number of external momenta, an arbitrary number of internal lines and an arbitrary number of loops, in n dimensions and all masses may be different. The expansions are considered both below and above threshold. Rules, giving real and imaginary part, are derived. Unitarity of a sunset diagram with I internal lines is checked in a direct way by showing that its imaginary part is equal to the phase space integral of I particles

  5. The coupling of thermochemistry and phase diagrams for group III-V semiconductor systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.J.

    1998-07-21

    The project was directed at linking the thermochemical properties of III-V compound semiconductors systems with the reported phase diagrams. The solid-liquid phase equilibrium problem was formulated and three approaches to calculating the reduced standard state chemical potential were identified and values were calculated. In addition, thermochemical values for critical properties were measured using solid state electrochemical techniques. These values, along with the standard state chemical potentials and other available thermochemical and phase diagram data, were combined with a critical assessment of selected III-V systems. This work was culminated with a comprehensive assessment of all the III-V binary systems. A novel aspect of the experimental part of this project was the demonstration of the use of a liquid encapsulate to measure component activities by a solid state emf technique in liquid III-V systems that exhibit high vapor pressures at the measurement temperature.

  6. Voronoi diagram and microstructure of weldment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of)

    2015-01-15

    Voronoi diagram, one of the well-known space decomposition algorithms has been applied to express the microstructure of a weldment for the first time due to the superficial analogy between a Voronoi cell and a metal's grain. The area of the Voronoi cells can be controlled by location and the number of the seed points. This can be correlated to the grain size in the microstructure and the number of nuclei formed. The feasibility of representing coarse and fine grain structures were tested through Voronoi diagrams and it is applied to expression of cross-sectional bead shape of a typical laser welding. As result, it successfully described coarsened grain size of heat affected zone and columnar crystals in fusion zone. Although Voronoi diagram showed potential as a microstructure prediction tool through this feasible trial but direct correlation control variable of Voronoi diagram to solidification process parameter is still remained as further works.

  7. The role of perceptual cues in matrix diagrams

    NARCIS (Netherlands)

    van der Meij, Jan; van Amelsvoort, Marije; Anjewierden, A.

    An experiment was conducted to assess whether the design of a matrix diagram influences how people study the diagram and whether this has an effect on recall of the presented information. We compared four versions of a matrix diagram on antisocial personality disorder. It consisted of four header

  8. The role of perceptual cues in matrix diagrams

    NARCIS (Netherlands)

    van der Meij, Jan; Amelsvoort, Marije; Anjewierden, Anjo Allert

    2015-01-01

    An experiment was conducted to assess whether the design of a matrix diagram influences how people study the diagram and whether this has an effect on recall of the presented information. We compared four versions of a matrix diagram on antisocial personality disorder. It consisted of four header

  9. The Eh-pH Diagram and Its Advances

    Directory of Open Access Journals (Sweden)

    Hsin-Hsiung Huang

    2016-01-01

    Full Text Available Since Pourbaix presented Eh versus pH diagrams in his “Atlas of Electrochemical Equilibria in Aqueous Solution”, diagrams have become extremely popular and are now used in almost every scientific area related to aqueous chemistry. Due to advances in personal computers, such diagrams can now show effects not only of Eh and pH, but also of variables, including ligand(s, temperature and pressure. Examples from various fields are illustrated in this paper. Examples include geochemical formation, corrosion and passivation, precipitation and adsorption for water treatment and leaching and metal recovery for hydrometallurgy. Two basic methods were developed to construct an Eh-pH diagram concerning the ligand component(s. The first method calculates and draws a line between two adjacent species based on their given activities. The second method performs equilibrium calculations over an array of points (500 × 800 or higher are preferred, each representing one Eh and one pH value for the whole system, then combines areas of each dominant species for the diagram. These two methods may produce different diagrams. The fundamental theories, illustrated results, comparison and required conditions behind these two methods are presented and discussed in this paper. The Gibbs phase rule equation for an Eh-pH diagram was derived and verified from actual plots. Besides indicating the stability area of water, an Eh-pH diagram normally shows only half of an overall reaction. However, merging two or more related diagrams together reveals more clearly the possibility of the reactions involved. For instance, leaching of Au with cyanide followed by cementing Au with Zn (Merrill-Crowe process can be illustrated by combining Au-CN and Zn-CN diagrams together. A second example of the galvanic conversion of chalcopyrite can be explained by merging S, Fe–S and Cu–Fe–S diagrams. The calculation of an Eh-pH diagram can be extended easily into another dimension, such

  10. Phase diagram with an enhanced spin-glass region of the mixed Ising-XY magnet LiHoxEr1-xF4

    DEFF Research Database (Denmark)

    Piatek, J. O.; Dalla Piazza, B.; Nikseresht, N.

    2013-01-01

    We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagn...

  11. Diagrams of natural deductions

    Energy Technology Data Exchange (ETDEWEB)

    Popov, S V

    1982-01-01

    The concept of natural deductions was investigated by the author in his analysis of the complexity of deductions in propositional computations (1975). Here some natural deduction systems are considered, and an analytical procedure proposed which results in a deduction diagram for each system. Each diagram takes the form of an orientated, charge graph, features of which can be used to establish the equivalence of classes of deductions. For each of the natural deduction systems considered, a system of equivalent transformation schemes is derived, which is complete with respect to the given definition of equivalence. 2 references.

  12. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  13. New detectors for powders diagrams

    International Nuclear Information System (INIS)

    Convert, P.

    1975-01-01

    During the last few years, all the classical neutron diffractometers for powders have used one or maybe a few counters. So, it takes a long time to obtain a diagram which causes many disadvantages: 1) very long experiments: one or two days (or flux on the sample about 10 6 n/cm 2 /a); 2) necessity of big samples: many cm 3 ; 3) necessity of having the whole diagram before changing anything in the experiment: magnetic field, temperature, quality of the sample; 4) necessity of having collimators of a few times ten minutes to obtain correct statistics in the diagram. Because of these disadvantages, several attempts have been made to speed up the experimental procedure such as using more counters, the detection of neutrons on a resistive wire, etc. In Grenoble, new position-sensitive detectors have been constructed using a digital technique

  14. Equivalent Temperature-Enthalpy Diagram for the Study of Ejector Refrigeration Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Khennich

    2014-05-01

    Full Text Available The Carnot factor versus enthalpy variation (heat diagram has been used extensively for the second law analysis of heat transfer processes. With enthalpy variation (heat as the abscissa and the Carnot factor as the ordinate the area between the curves representing the heat exchanging media on this diagram illustrates the exergy losses due to the transfer. It is also possible to draw the paths of working fluids in steady-state, steady-flow thermodynamic cycles on this diagram using the definition of “the equivalent temperature” as the ratio between the variations of enthalpy and entropy in an analyzed process. Despite the usefulness of this approach two important shortcomings should be emphasized. First, the approach is not applicable for the processes of expansion and compression particularly for the isenthalpic processes taking place in expansion valves. Second, from the point of view of rigorous thermodynamics, the proposed ratio gives the temperature dimension for the isobaric processes only. The present paper proposes to overcome these shortcomings by replacing the actual processes of expansion and compression by combinations of two thermodynamic paths: isentropic and isobaric. As a result the actual (not ideal refrigeration and power cycles can be presented on equivalent temperature versus enthalpy variation diagrams. All the exergy losses, taking place in different equipments like pumps, turbines, compressors, expansion valves, condensers and evaporators are then clearly visualized. Moreover the exergies consumed and produced in each component of these cycles are also presented. The latter give the opportunity to also analyze the exergy efficiencies of the components. The proposed diagram is finally applied for the second law analysis of an ejector based refrigeration system.

  15. Diagram of Saturn V Launch Vehicle

    Science.gov (United States)

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  16. Abstraction of continuous dynamical systems utilizing lyapunov functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  17. Causal Diagrams for Empirical Research

    OpenAIRE

    Pearl, Judea

    1994-01-01

    The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifiying causal effects from non-experimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in ter...

  18. Graphical matching rules for cardinality based service feature diagrams

    Directory of Open Access Journals (Sweden)

    Faiza Kanwal

    2017-03-01

    Full Text Available To provide efficient services to end-users, variability and commonality among the features of the product line is a challenge for industrialist and researchers. Feature modeling provides great services to deal with variability and commonality among the features of product line. Cardinality based service feature diagrams changed the basic framework of service feature diagrams by putting constraints to them, which make service specifications more flexible, but apart from their variation in selection third party services may have to be customizable. Although to control variability, cardinality based service feature diagrams provide high level visual notations. For specifying variability, the use of cardinality based service feature diagrams raises the problem of matching a required feature diagram against the set of provided diagrams.

  19. Decision Diagram Based Symbolic Algorithm for Evaluating the Reliability of a Multistate Flow Network

    Directory of Open Access Journals (Sweden)

    Rongsheng Dong

    2016-01-01

    Full Text Available Evaluating the reliability of Multistate Flow Network (MFN is an NP-hard problem. Ordered binary decision diagram (OBDD or variants thereof, such as multivalued decision diagram (MDD, are compact and efficient data structures suitable for dealing with large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN_OBDD and MFN_MDD, are proposed in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams. Thereby the state space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced. Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1 compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2 The number of nodes and the number of variables of MDD generated in MFN_MDD algorithm are much smaller than those of OBDD built in the MFN_OBDD algorithm. (3 In two cases with the same number of arcs, the proposed algorithms are more suitable for calculating the reliability of sparse networks.

  20. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  1. Effect of strong disorder on three-dimensional chiral topological insulators: Phase diagrams, maps of the bulk invariant, and existence of topological extended bulk states

    Science.gov (United States)

    Song, Juntao; Fine, Carolyn; Prodan, Emil

    2014-11-01

    The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.

  2. On the Impact of Layout Quality to Understanding UML Diagrams: Diagram Type and Expertise

    DEFF Research Database (Denmark)

    Störrle, Harald

    2012-01-01

    Practical experience suggests that the use and understanding of UML diagrams is greatly affected by the quality of their layout. In previous work, we have presented evidence supporting this intuition. This contrasts with earlier experiments that yielded weak or inconclusive evidence only. In the ......Practical experience suggests that the use and understanding of UML diagrams is greatly affected by the quality of their layout. In previous work, we have presented evidence supporting this intuition. This contrasts with earlier experiments that yielded weak or inconclusive evidence only...

  3. Correlation diagram approach to the dissociative ionization mechanisms of methanol

    International Nuclear Information System (INIS)

    Momigny, J.; Wankenne, H.; Krier, C.

    1980-01-01

    A systematic survey is made of the dissociation processes from the ground state and from the electronically excited states of CH 3 OH + . Most metastable processes occurring in the mass spectrum of CD 3 OH are studied also, including measurement of the kinetic energy release and appearance potentials. It is shown that if ionic species such as CH 2 OH + , CH 2 O + and HCO + are present in the mass spectrum of CH 3 OH, the isomers CH 3 O + , HCOH + and COH + are also present. The precursors of these ions having been identified by the metastable processes, correlation diagrams are used to show that, from the first ionization potential of CH 3 OH to 14 eV, the only exception being CH 3 O + which results from an electronically spin-forbidden predissociation, the fragment ions can be considered to result from adiabatic decay of the ground state of CH 3 OH + . The potential barriers involved in these adiabatic processes result either from conical intersection or from avoided-crossing between the ground state of CH 3 OH + and the electronically excited states occurring up to 14 eV. At higher energies, many non-adiabatic processes occur; for example, the appearance of CD 2 O + and the electronically excited states of HCO + and COH + ions. It is shown additionally that kinetic energy releases observed in the collision-induced processes CH 3 OH + → CH 2 OH + + H and CH 2 OH + → HCO + + H 2 are in good agreement with the mechanistic approach via the correlation diagram for the appearance of the non-collision-induced ion processes. (orig.)

  4. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    Science.gov (United States)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady-state, nearly sinusoidal behavior of the components in a free-piston Stirling engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F = ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB (MathWorks), which takes user input data, passes it to Sage (Gedeon Associates), a one-dimensional thermodynamic modeling program used to model the Stirling convertor, runs Sage, and then automatically plots the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot-end temperature, cold-end temperature, operating frequency, and displacer spring constant. These phasor diagrams offer useful insight into convertor operation and performance.

  5. Wind Diagrams in Medieval Iceland

    DEFF Research Database (Denmark)

    Kedwards, Dale

    2014-01-01

    This article presents a study of the sole wind diagram that survives from medieval Iceland, preserved in the encyclopaedic miscellany in Copenhagen's Arnamagnæan Institute with the shelf mark AM 732b 4to (c. 1300-25). It examines the wind diagram and its accompanying text, an excerpt on the winds...... from Isidore of Seville's Etymologies. It also examines the perimeter of winds on two medieval Icelandic world maps, and the visual traditions from which they draw....

  6. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

     Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...

  7. Proof test diagrams for Zerodur glass-ceramic

    Science.gov (United States)

    Tucker, D. S.

    1991-01-01

    Proof test diagrams for Zerodur glass-ceramics are calculated from available fracture mechanics data. It is shown that the environment has a large effect on minimum time-to-failure as predicted by proof test diagrams.

  8. Application of E{sub h}-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hinai, Ashraf T., E-mail: ashraf@squ.edu.om [Department of Chemistry, College of Science, Sultan Qaboos University, 123, Alkhoud (Oman); Al-Hinai, Muna H. [Department of Chemistry, College of Science, Sultan Qaboos University, 123, Alkhoud (Oman); Water Research Center, Sultan Qaboos University, 123, Alkhoud (Oman); Dutta, Joydeep, E-mail: dutta@squ.ed.om [Water Research Center, Sultan Qaboos University, 123, Alkhoud (Oman)

    2014-01-01

    Graphical abstract: - Highlights: • One pot aqueous synthesis of zinc stannate (ZnSnO{sub 3}) particles at low temperature. • Synthesis designed with the assistance of potential-pH diagram. • ZnSnO{sub 3} estimated to be stable between pH 8 and 12 was used for synthesis of the particles. • ZnSnO{sub 3}·3H{sub 2}O were formed during the precipitation of zinc stannate. - Abstract: Potential-pH diagram assisted-design for controlled precipitation is an attractive method to obtain engineered binary and ternary oxide particles. Aqueous synthesis conditions of zinc stannate (ZnSnO{sub 3}) particles at low temperature were formulated with the assistance of potential-pH diagram. The pH of a solution containing stoichiometric amounts of Zn{sup 2+} and Sn{sup 4+} was controlled for the precipitation in a one pot synthesis step at room temperature (25 °C). The effect of the concentration of the reactants on the particle size was studied by varying the concentration of the precursor (Zn{sup 2+} + Sn{sup 4+}) solution. Scanning electron micrographs show that the particles are monodispersed micron sized cubes formed by the self-organization of nano-sized crystallites. The obtained microcubes characterized by X-ray Diffraction and thermo gravimetric analysis (TGA) show that the particles are in ZnSnO{sub 3}·3H{sub 2}O form.

  9. Abstracts of the Seminar on Modern State of Water Resources of Tajikistan - Problems and Perspectives of Rational Utilization

    International Nuclear Information System (INIS)

    2003-01-01

    This publication contains the abstracts of papers presented at the Seminar on Modern State of Water Resources of Tajikistan - Problems and Perspectives of Rational Utilization, held in Dushanbe in 2003

  10. Atlas of hot isostatic beryllium powder pressing diagrams

    International Nuclear Information System (INIS)

    Stoev, P.I.; Papirov, I.I.; Tikhinskij, G.F.; Vasil'ev, A.A.

    1995-01-01

    Diagrams of hot isotopic pressing (HIP) of beryllium powder with different grain size in a wide range of pressing parameters are built by mathematical modeling methods. The HIP diagrams presented are divided into 3 groups: parametric dependencies D=f(P,T); technological HIP diagrams; compacting mechanisms. The created data bank permits to optimise beryllium powder HIP with changing parameters. 4 refs., 23 figs

  11. Visualizing Metrics on Areas of Interest in Software Architecture Diagrams

    NARCIS (Netherlands)

    Byelas, Heorhiy; Telea, Alexandru; Eades, P; Ertl, T; Shen, HW

    2009-01-01

    We present a new method for the combined visualization of software architecture diagrams, Such as UML class diagrams or component diagrams, and software metrics defined on groups of diagram elements. Our method extends an existing rendering technique for the so-called areas of interest in system

  12. Surface Morphology Diagram for Cylinder-Forming Block Copolymer Thin Films

    International Nuclear Information System (INIS)

    Zhang, Xiaohua; Berry, Brian C.; Yager, Kevin G.; Kim, Sangcheol; Jones, Ronald L.; Satija, Sushil; Pickel, Deanna L.; Douglas, Jack F.; Karim, Alamgir

    2008-01-01

    We investigate the effect of annealing temperature (T), film thickness (hf) on the surface morphology of flow coated films of a cylinder forming block copolymer, poly (styrene-block-methyl methacrylate) (PS-b-PMMA). Surface morphology transitions from a perpendicular to a parallel cylinder orientation with respect to the substrate with increasing hf are observed in these model 'frustrated-interaction' films where the substrate interaction is preferential for one of the blocks (PMMA) and nearly neutral for the other interface (polymer-air). In these films a transition occurs from cylinders oriented parallel to the substrate to a mixed or 'hybrid' state where the two orientations coexist followed by a transition to cylinders oriented perpendicularly to the polymer-air interface for larger hf. The characteristic values of hf defining these surface morphological transitions depend on T and we construct a surface morphology diagram as a function of hf and T. The surface morphology diagram is found to depend on the method of film formation (flow coated versus spun cast films) so non-equilibrium effects evidently have a large effect on the surface pattern morphology. In particular, the residual solvent within the film (quantified by neutron reflectivity measurements) in the context of physics of glass-formation can have a large effect on the surface morphology diagram

  13. Updating the Nomographical Diagrams for Dimensioning the Beams

    Directory of Open Access Journals (Sweden)

    Pop Maria T.

    2015-12-01

    Full Text Available In order to reduce the time period needed for structures design it is strongly recommended to use nomographical diagrams. The base for formation and updating the nomographical diagrams, stands on the charts presented by different technical publications. The updated charts use the same algorithm and calculation elements as the former diagrams in accordance to the latest prescriptions and European standards. The result consists in a chart, having the same properties, similar with the nomogragraphical diagrams already in us. As a general conclusion, even in our days, the nomographical diagrams are very easy to use. Taking into consideration the value of the moment it’s easy to find out the necessary reinforcement area and vice-verse, having the reinforcement area you can find out the capable moment. It still remains a useful opportunity for pre-sizing and designs the reinforced concrete sections.

  14. STATE-OWNED RURAL BANK PERFORMANCE: DO GOVERNMENT OWNERSHIP AND CORPORATE GOVERNANCE UNIQUENESS MATTER?

    Directory of Open Access Journals (Sweden)

    Azilsyah Noerdin

    2016-12-01

    Full Text Available It has been widely recognized that ownership structure has an impact on firm performance. This paper examines whether rural banks owned by government have poorer performance than those owned by private parties with the emphasis on corporate governance uniqueness of state-owned rural banks. 42 rural banks in Indonesia has been selected as the sample. MANOVA test is used to investigate the difference performance between the two types of the rural banks. The results show that state-owned rural banks perform poorer than their privately-owned counterparts. It is indicated by lower ROA ratio and higher OEOI and NPL ratios. The important implication of this finding suggets that government ownership impede boards of rural banks to implement good corporate governance practices in order to improve their banks performance.

  15. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  16. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  17. Phase diagram of classical electronic bilayers

    International Nuclear Information System (INIS)

    Ranganathan, S; Johnson, R E

    2006-01-01

    Extensive molecular dynamics calculations have been performed on classical, symmetric electronic bilayers at various values of the coupling strength Γ and interlayer separation d to delineate its phase diagram in the Γ-d plane. We studied the diffusion, the amplitude of the main peak of the intralayer static structure factor and the peak positions of the intralayer pair correlation function with the aim of defining equivalent signatures of freezing and constructing the resulting phase diagram. It is found that for Γ greater than 75, crystalline structures exist for a certain range of interlayer separations, while liquid phases are favoured at smaller and larger d. It is seen that there is good agreement between our phase diagram and previously published ones

  18. Phase diagram of classical electronic bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S [Department of Physics, Royal Military College of Canada, Kingston, Ontario K7K 7B4 (Canada); Johnson, R E [Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario K7K 7B4 (Canada)

    2006-04-28

    Extensive molecular dynamics calculations have been performed on classical, symmetric electronic bilayers at various values of the coupling strength {gamma} and interlayer separation d to delineate its phase diagram in the {gamma}-d plane. We studied the diffusion, the amplitude of the main peak of the intralayer static structure factor and the peak positions of the intralayer pair correlation function with the aim of defining equivalent signatures of freezing and constructing the resulting phase diagram. It is found that for {gamma} greater than 75, crystalline structures exist for a certain range of interlayer separations, while liquid phases are favoured at smaller and larger d. It is seen that there is good agreement between our phase diagram and previously published ones.

  19. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44unique system for studying topological phases in three and two dimensions simultaneously.

  20. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44unique system for studying topological phases in three and two dimensions simultaneously.

  1. Modeling cancer registration processes with an enhanced activity diagram.

    Science.gov (United States)

    Lyalin, D; Williams, W

    2005-01-01

    Adequate instruments are needed to reflect the complexity of routine cancer registry operations properly in a business model. The activity diagram is a key instrument of the Unified Modeling Language (UML) for the modeling of business processes. The authors aim to improve descriptions of processes in cancer registration, as well as in other public health domains, through the enhancements of an activity diagram notation within the standard semantics of UML. The authors introduced the practical approach to enhance a conventional UML activity diagram, complementing it with the following business process concepts: timeline, duration for individual activities, responsibilities for individual activities within swimlanes, and descriptive text. The authors used an enhanced activity diagram for modeling surveillance processes in the cancer registration domain. Specific example illustrates the use of an enhanced activity diagram to visualize a process of linking cancer registry records with external mortality files. Enhanced activity diagram allows for the addition of more business concepts to a single diagram and can improve descriptions of processes in cancer registration, as well as in other domains. Additional features of an enhanced activity diagram allow to advance the visualization of cancer registration processes. That, in turn, promotes the clarification of issues related to the process timeline, responsibilities for particular operations, and collaborations among process participants. Our first experiences in a cancer registry best practices development workshop setting support the usefulness of such an approach.

  2. Glass and liquid phase diagram of a polyamorphic monatomic system

    Science.gov (United States)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  3. Transport safety research abstracts. No. 1

    International Nuclear Information System (INIS)

    1991-07-01

    The Transport Safety Research Abstracts is a collection of reports from Member States of the International Atomic Energy Agency, and other international organizations on research in progress or just completed in the area of safe transport of radioactive material. The main aim of TSRA is to draw attention to work that is about to be published, thus enabling interested parties to obtain further information through direct correspondence with the investigators. Information contained in this issue covers work being undertaken in 6 Member States and contracted by 1 international organization; it is hoped with succeeding issues that TSRA will be able to widen this base. TSRA is modelled after other IAEA publications describing work in progress in other programme areas, namely Health Physics Research Abstracts (No. 14 was published in 1989), Waste Management Research Abstracts (No. 20 was published in 1990), and Nuclear Safety Research Abstracts (No. 2 was published in 1990)

  4. A Brief Introduction to Chinese Biological Abstracts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts (CBA), a state-level indexing and abstracting journal published monthly, is jointly sponsored by the Library of the Chinese Academy of Sciences, the Shanghai Institutes for Biological Sciences as well as the Biological Information Network of the Chinese Academy of Sciences, published and distributed by the Shanghai Institutes for Biological Sciences, and approved by the State Scientific and Technological Commission.

  5. Fishbone Diagrams: Organize Reading Content with a "Bare Bones" Strategy

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    Fishbone diagrams, also known as Ishikawa diagrams or cause-and-effect diagrams, are one of the many problem-solving tools created by Dr. Kaoru Ishikawa, a University of Tokyo professor. Part of the brilliance of Ishikawa's idea resides in the simplicity and practicality of the diagram's basic model--a fish's skeleton. This article describes how…

  6. Zeros and uniqueness of Q-difference polynomials of meromorphic ...

    Indian Academy of Sciences (India)

    Meromorphic functions; Nevanlinna theory; logarithmic order; uniqueness problem; difference-differential polynomial. Abstract. In this paper, we investigate the value distribution of -difference polynomials of meromorphic function of finite logarithmic order, and study the zero distribution of difference-differential polynomials ...

  7. Impulse-Momentum Diagrams

    Science.gov (United States)

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…

  8. Precipitation diagram of calcium carbonate polymorphs: its construction and significance

    International Nuclear Information System (INIS)

    Kawano, Jun; Shimobayashi, Norimasa; Miyake, Akira; Kitamura, Masao

    2009-01-01

    In order to interpret the formation mechanism of calcium carbonate polymorphs, we propose and construct a new 'precipitation diagram', which has two variables: the driving force for nucleation and temperature. The precipitation experiments were carried out by mixing calcium chloride and sodium carbonate aqueous solutions. As a result, a calcite-vaterite co-precipitation zone, a vaterite precipitation zone, a vaterite-aragonite co-precipitation zone and an aragonite precipitation zone can be defined. Theoretical considerations suggest that the steady state nucleation theory can explain well the appearance of these four zones, and the first-order importance of the temperature dependency of surface free energy in the nucleation of aragonite. Furthermore, the addition of an impurity will likely result in the change of these energies, and this precipitation diagram gives a new basis for interpreting the nature of the polymorphs precipitated in both inorganic and biological environments.

  9. How design guides learning from matrix diagrams

    NARCIS (Netherlands)

    van der Meij, Jan; Amelsvoort, Marije; Anjewierden, Anjo

    2017-01-01

    Compared to text, diagrams are superior in their ability to structure and summarize information and to show relations between concepts and ideas. Perceptual cues, like arrows, are expected to improve the retention of diagrams by guiding the learner towards important elements or showing a preferred

  10. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  11. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    Science.gov (United States)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady state, nearly sinusoidal behavior of the components in a Free Piston Stirling Engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F=ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB by taking user input data, passing it to Sage, a 1-D thermodynamic modeling program used to model the Stirling convertor, running Sage and then automatically plotting the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot end temperature, cold end temperature, operating frequency, and displacer spring constant. By using these phasor diagrams, better insight can be gained as to why the convertor operates the way that it does.

  12. Updating the Nomographical Diagrams for Dimensioning the Beams

    OpenAIRE

    Pop Maria T.

    2015-01-01

    In order to reduce the time period needed for structures design it is strongly recommended to use nomographical diagrams. The base for formation and updating the nomographical diagrams, stands on the charts presented by different technical publications. The updated charts use the same algorithm and calculation elements as the former diagrams in accordance to the latest prescriptions and European standards. The result consists in a chart, having the same properties, similar with the nomogragra...

  13. The classification of diagrams in perturbation theory

    International Nuclear Information System (INIS)

    Phillips, D.R.; Afnan, I.R.

    1995-01-01

    The derivation of scattering equations connecting the amplitudes obtained from diagrammatic expansions is of interest in many branches of physics. One method for deriving such equations is the classification-of-diagrams technique of Taylor. However, as we shall explain in this paper, there are certain points of Taylor's method which require clarification. First, it is not clear whether Taylor's original method is equivlant to the simpler classification-of-diagrams scheme used by Thomas, Rinat, Afnan, and Blankleider (TRAB). Second, when the Taylor method is applied to certain problems in a time-dependent perturbation theory it leads to the over-counting of some diagrams. This paper first restates Taylor's method, in the process uncovering reasons why certain diagrams might be double-counted in the Taylor method. In then explores how far Taylor's method is equivalent to the simpler TRAB method. Finally, it examines precisely why the double-counting occurs in Taylor's method and derives corrections which compensate for this double-counting. copyright 1995 Academic Press, Inc

  14. Influence diagram in evaluating the subjective judgment

    International Nuclear Information System (INIS)

    Hong, Y.

    1997-01-01

    The author developed the idea of the subjective influence diagrams to evaluate subjective judgment. The subjective judgment of a stake holder is a primary decision making proposition. It involves a basic decision process an the individual attitude of the stake holder for his decision purpose. The subjective judgment dominates the some final decisions. A complex decision process may include the subjective judgment. An influence diagram framework is a simplest tool for analyzing subjective judgment process. In the framework, the characters of influence diagrams generate the describing the analyzing, and the evaluating of the subjective judgment. The relationship between the information and the decision, such as independent character between them, is the main issue. Then utility function is the calculating tool to evaluation, the stake holder can make optimal decision. Through the analysis about the decision process and relationship, the building process of the influence diagram identically describes the subjective judgment. Some examples are given to explain the property of subjective judgment and the analysis process

  15. Photochemical hydrogen abstractions as radiationless transitions

    International Nuclear Information System (INIS)

    Burrows, H.D.; Formosinho, S.J.

    1977-01-01

    The tunnel-effect theory of radiationless transitions is applied to the quenching of the uranyl ion excited state by aliphatic compounds. The most important mechanism kinetically is suggested to involve chemical quenching via hydrogen abstraction, and rates for these reactions are analysed theoretically. Good agreement between theory and experiment is observed for a number of alcohols and ethers, and the reactions are suggested to possess considerable charge-transfer character. With t-butanol it is suggested that abstraction occurs preferentially from the hydroxylic hydrogen. Theoretical analysis of the rates of hydrogen abstraction from carboxylic acids suggests that the reaction geometry in this case may be different from the reaction with alcohols or ethers. The possibility that excited uranyl ion can abstract a hydrogen atom from water is examined, and theoretical evidence is presented to suggest that this is the main route for deactivation of uranyl ion lowest excited state in water at room temperature. (author)

  16. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  17. Lattice and Phase Diagram in QCD

    International Nuclear Information System (INIS)

    Lombardo, Maria Paola

    2008-01-01

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  18. Ferroelectric Phase Diagram of PVDF:PMMA

    OpenAIRE

    Li, Mengyuan; Stingelin, Natalie; Michels, Jasper J.; Spijkman, Mark-Jan; Asadi, Kamal; Feldman, Kirill; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of alpha- and beta-phase PVDF was identified. Ferroelectric beta-PVDF:PMMA blend films were made by melting, ice quenching, and subsequent annealing above the glass transition temperature of PMMA, close to the melting temperature of PVDF. Addition of PMMA suppresses the crystallizatio...

  19. Gluing Ladder Feynman Diagrams into Fishnets

    International Nuclear Information System (INIS)

    Basso, Benjamin; Dixon, Lance J.; Stanford University, CA; University of California, Santa Barbara, CA

    2017-01-01

    We use integrability at weak coupling to compute fishnet diagrams for four-point correlation functions in planar Φ "4 theory. Our results are always multilinear combinations of ladder integrals, which are in turn built out of classical polylogarithms. The Steinmann relations provide a powerful constraint on such linear combinations, which leads to a natural conjecture for any fishnet diagram as the determinant of a matrix of ladder integrals.

  20. Pitfalls and feedback when constructing topological pressure-temperature phase diagrams

    Science.gov (United States)

    Ceolin, R.; Toscani, S.; Rietveld, Ivo B.; Barrio, M.; Tamarit, J. Ll.

    2017-04-01

    The stability hierarchy between different phases of a chemical compound can be accurately reproduced in a topological phase diagram. This type of phase diagrams may appear to be the result of simple extrapolations, however, experimental complications quickly increase in the case of crystalline trimorphism (and higher order polymorphism). To ensure the accurate positioning of stable phase domains, a topological phase diagram needs to be consistent. This paper gives an example of how thermodynamic feedback can be used in the topological construction of phase diagrams to ensure overall consistency in a phase diagram based on the case of piracetam crystalline trimorphism.

  1. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  2. Completeness of Lyapunov Abstraction

    Directory of Open Access Journals (Sweden)

    Rafael Wisniewski

    2013-08-01

    Full Text Available In this work, we continue our study on discrete abstractions of dynamical systems. To this end, we use a family of partitioning functions to generate an abstraction. The intersection of sub-level sets of the partitioning functions defines cells, which are regarded as discrete objects. The union of cells makes up the state space of the dynamical systems. Our construction gives rise to a combinatorial object - a timed automaton. We examine sound and complete abstractions. An abstraction is said to be sound when the flow of the time automata covers the flow lines of the dynamical systems. If the dynamics of the dynamical system and the time automaton are equivalent, the abstraction is complete. The commonly accepted paradigm for partitioning functions is that they ought to be transversal to the studied vector field. We show that there is no complete partitioning with transversal functions, even for particular dynamical systems whose critical sets are isolated critical points. Therefore, we allow the directional derivative along the vector field to be non-positive in this work. This considerably complicates the abstraction technique. For understanding dynamical systems, it is vital to study stable and unstable manifolds and their intersections. These objects appear naturally in this work. Indeed, we show that for an abstraction to be complete, the set of critical points of an abstraction function shall contain either the stable or unstable manifold of the dynamical system.

  3. Simple method for evaluating Goldstone diagrams in an angular momentum coupled representation

    International Nuclear Information System (INIS)

    Kuo, T.T.S.; Shurpin, J.; Tam, K.C.; Osnes, E.; Ellis, P.J.

    1981-01-01

    A simple and convenient method is derived for evaluating linked Goldstone diagrams in an angular momentum coupled representation. Our method is general, and can be used to evaluate any effective interaction and/or effective operator diagrams for both closed-shell nuclei (vacuum to vacuum linked diagrams) and open-shell nuclei (valence linked diagrams). The techniques of decomposing diagrams into ladder diagrams, cutting open internal lines and cutting off one-body insertions are introduced. These enable us to determine angular momentum factors associated with diagrams in the coupled representation directly, without the need for carrying out complicated angular momentum algebra. A summary of diagram rules is given

  4. Groundstate fidelity phase diagram of the fully anisotropic two-leg spin-½ XXZ ladder

    Science.gov (United States)

    Li, Sheng-Hao; Shi, Qian-Qian; Batchelor, Murray T.; Zhou, Huan-Qiang

    2017-11-01

    The fully anisotropic two-leg spin-\\tfrac{1}{2} XXZ ladder model is studied in terms of an algorithm based on the tensor network (TN) representation of quantum many-body states as an adaptation of projected entangled pair states to the geometry of translationally invariant infinite-size quantum spin ladders. The TN algorithm provides an effective method to generate the groundstate wave function, which allows computation of the groundstate fidelity per lattice site, a universal marker to detect phase transitions in quantum many-body systems. The groundstate fidelity is used in conjunction with local order and string order parameters to systematically map out the groundstate phase diagram of the ladder model. The phase diagram exhibits a rich diversity of quantum phases. These are the ferromagnetic, stripe ferromagnetic, rung singlet, rung triplet, Néel, stripe Néel and Haldane phases, along with the two XY phases XY1 and XY2.

  5. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  6. Academic Training Lecture | Beyond Feynman Diagrams (1/3) | 24 April

    CERN Multimedia

    2013-01-01

    by Prof. Lance Dixon (SLAC National Accelerator Laboratory (US)). Wednesday 24 April 2013, from 11 a.m. to 12 p.m. at CERN (222-R-001 - Filtration Plant) Description: The search for new physics at the LHC, and accurate measurements of Standard Model processes, all benefit from precise theoretical predictions of collider event rates, which in turn rely on higher order computations in QCD, the theory of the strong interactions. Key ingredients for such computations are scattering amplitudes, the quantum-mechanical transition amplitudes between the incoming quarks and gluons and the outgoing produced particles. To go beyond leading order, we need both classical tree amplitudes and quantum loop amplitudes. For decades the central theoretical tool for computing scattering amplitudes has been the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to be able to go beyond the leading order in QCD, for complicated events with many jets of hadrons in the final state. Such events ...

  7. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    Science.gov (United States)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  8. How Design Guides Learning from Matrix Diagrams

    Science.gov (United States)

    van der Meij, Jan; van Amelsvoort, Marije; Anjewierden, Anjo

    2017-01-01

    Compared to text, diagrams are superior in their ability to structure and summarize information and to show relations between concepts and ideas. Perceptual cues, like arrows, are expected to improve the retention of diagrams by guiding the learner towards important elements or showing a preferred reading sequence. In our experiment, we analyzed…

  9. A Hierarchy of Compatibility and Comeasurability Levels in Quantum Logics with Unique Conditional Probabilities

    International Nuclear Information System (INIS)

    Niestegge, Gerd

    2010-01-01

    In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases. (general)

  10. Revealing Tripartite Quantum Discord with Tripartite Information Diagram

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lee

    2017-11-01

    Full Text Available A new measure based on the tripartite information diagram is proposed for identifying quantum discord in tripartite systems. The proposed measure generalizes the mutual information underlying discord from bipartite to tripartite systems, and utilizes both one-particle and two-particle projective measurements to reveal the characteristics of the tripartite quantum discord. The feasibility of the proposed measure is demonstrated by evaluating the tripartite quantum discord for systems with states close to Greenberger–Horne–Zeilinger, W, and biseparable states. In addition, the connections between tripartite quantum discord and two other quantum correlations—namely genuine tripartite entanglement and genuine tripartite Einstein–Podolsky–Rosen steering—are briefly discussed. The present study considers the case of quantum discord in tripartite systems. However, the proposed framework can be readily extended to general N-partite systems.

  11. Peircean diagrams of time

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter

    2011-01-01

    Some very good arguments can be given in favor of the Augustinean wisdom, according to which it is impossible to provide a satisfactory definition of the concept of time. However, even in the absence of a proper definition, it is possible to deal with conceptual problems regarding time. It can...... be done in terms of analogies and metaphors. In particular, it is attractive to make use of Peirce's diagrams by means of which various kinds of conceptual experimentation can be carried out. This paper investigates how Peircean diagrams can be used within the study of time. In particular, we discuss 1......) the topological properties of time, 2) the implicative structure in tense logic, 3) the notions of open future and branching time models, and finally 4) tenselogical alternatives to branching time models....

  12. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams

    Directory of Open Access Journals (Sweden)

    de Vlieg Jacob

    2008-10-01

    Full Text Available Abstract Background In many genomics projects, numerous lists containing biological identifiers are produced. Often it is useful to see the overlap between different lists, enabling researchers to quickly observe similarities and differences between the data sets they are analyzing. One of the most popular methods to visualize the overlap and differences between data sets is the Venn diagram: a diagram consisting of two or more circles in which each circle corresponds to a data set, and the overlap between the circles corresponds to the overlap between the data sets. Venn diagrams are especially useful when they are 'area-proportional' i.e. the sizes of the circles and the overlaps correspond to the sizes of the data sets. Currently there are no programs available that can create area-proportional Venn diagrams connected to a wide range of biological databases. Results We designed a web application named BioVenn to summarize the overlap between two or three lists of identifiers, using area-proportional Venn diagrams. The user only needs to input these lists of identifiers in the textboxes and push the submit button. Parameters like colors and text size can be adjusted easily through the web interface. The position of the text can be adjusted by 'drag-and-drop' principle. The output Venn diagram can be shown as an SVG or PNG image embedded in the web application, or as a standalone SVG or PNG image. The latter option is useful for batch queries. Besides the Venn diagram, BioVenn outputs lists of identifiers for each of the resulting subsets. If an identifier is recognized as belonging to one of the supported biological databases, the output is linked to that database. Finally, BioVenn can map Affymetrix and EntrezGene identifiers to Ensembl genes. Conclusion BioVenn is an easy-to-use web application to generate area-proportional Venn diagrams from lists of biological identifiers. It supports a wide range of identifiers from the most used

  13. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun

    2012-01-01

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  14. An Introduction to Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif

    1996-01-01

    This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996.......This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996....

  15. The Butterfly diagram leopard skin pattern

    Science.gov (United States)

    Ternullo, Maurizio

    2011-08-01

    A time-latitude diagram where spotgroups are given proportional relevance to their area is presented. The diagram reveals that the spotted area distribution is higly dishomogeneous, most of it being concentrated in few, small portions (``knots'') of the Butterfly Diagram; because of this structure, the BD may be properly described as a cluster of knots. The description, assuming that spots scatter around the ``spot mean latitude'' steadily drifting equatorward, is challenged. Indeed, spots cluster around at as many latitudes as knots; a knot may appear at either lower or higher latitudes than previous ones, in a seemingly random way; accordingly, the spot mean latitude abruptly drifts equatorward or even poleward at any knot activation, in spite of any smoothing procedure. Preliminary analyses suggest that the activity splits, in any hemisphere, into two or more distinct ``activity waves'', drifting equatorward at a rate higher than the spot zone as a whole.

  16. Construction of UML class diagram with Model-Driven Development

    Directory of Open Access Journals (Sweden)

    Tomasz Górski

    2016-03-01

    Full Text Available Model transformations play a key role in software development projects based on Model--Driven Development (MDD principles. Transformations allow for automation of repetitive and well-defined steps, thus shortening design time and reducing a number of errors. In the object-oriented approach, the key elements are use cases. They are described, modelled and later designed until executable application code is obtained. The aim of the paper is to present transformation of a model-to-model type, Communication-2-Class, which automates construction of Unified Modelling Language (UML class diagram in the context of the analysis/design model. An UML class diagram is created based on UML communication diagram within use case realization. As a result, a class diagram shows all of the classes involved in the use case realization and the relationships among them. The plug-in which implements Communication-2-Class transformation was implemented in the IBM Rational Software Architect. The article presents the tests results of developed plug-in, which realizes Communication-2-Class transformation, showing capabilities of shortening use case realization’s design time.[b]Keywords[/b]: Model-Driven Development, transformations, Unified Modelling Language, analysis/design model, UML class diagram, UML communication diagram

  17. Efficient computation of clipped Voronoi diagram for mesh generation

    KAUST Repository

    Yan, Dongming

    2013-04-01

    The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  18. Efficient computation of clipped Voronoi diagram for mesh generation

    KAUST Repository

    Yan, Dongming; Wang, Wen Ping; Lé vy, Bruno L.; Liu, Yang

    2013-01-01

    The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  19. Dark-matter bound states from Feynman diagrams

    NARCIS (Netherlands)

    Petraki, K.; Postma, M.; Wiechers, M.

    2015-01-01

    If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation

  20. A Community Based Systems Diagram of Obesity Causes.

    Directory of Open Access Journals (Sweden)

    Steven Allender

    Full Text Available Application of system thinking to the development, implementation and evaluation of childhood obesity prevention efforts represents the cutting edge of community-based prevention. We report on an approach to developing a system oriented community perspective on the causes of obesity.Group model building sessions were conducted in a rural Australian community to address increasing childhood obesity. Stakeholders (n = 12 built a community model that progressed from connection circles to causal loop diagrams using scripts from the system dynamics literature. Participants began this work in identifying change over time in causes and effects of childhood obesity within their community. The initial causal loop diagram was then reviewed and elaborated by 50 community leaders over a full day session.The process created a causal loop diagram representing community perceptions of determinants and causes of obesity. The causal loop diagram can be broken down into four separate domains; social influences; fast food and junk food; participation in sport; and general physical activity.This causal loop diagram can provide the basis for community led planning of a prevention response that engages with multiple levels of existing settings and systems.

  1. An approach for continuous cooling transformation (CCT) diagrams of aluminium alloys

    International Nuclear Information System (INIS)

    Herding, T.; Kessler, O.; Hoffmann, F.; Mayr, P.

    2002-01-01

    Two different kinds of time temperature transformation (TTT) diagrams are known. The first one are isothermal transformation (IT) diagrams and the second one continuous cooling transformation (CCT) diagrams. These diagrams are important for the correct heat treatment of aluminium alloys, because they provide information about the required quenching rate, which is necessary to obtain a supersaturated solid solution during age hardening. Furthermore, it is possible to determine the lowest quenching rate, which permits both a high strength and a small distortion of the component after age hardening. In the literature IT diagrams for different aluminium alloys are available. To determine these diagrams, a solution annealing followed by quenching to defined temperatures is necessary. At these temperatures the alloy is kept isothermally until a transformation has started. These diagrams are not directly portable on continuous cooling, because of the different cooling paths. (orig.)

  2. Exact criteria for uniqueness and multiplicity of an nth order chemical reaction via catastrophe theory approach. [Determines boundaries between unique and multiple steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H C; Calo, J M

    1979-01-01

    A simple, generalized technique for the exact determination of the boundaries between regions of unique and of multiple solutions to certain nonlinear equations was developed by applying catastrophe theory to the mapping of implicit and explicit functions. Its application to an nth order reaction in continuous stirred tank reactor (CSTR) yields exact, explicit expressions for the boundaries between regions of single and multiple steady states, expressed in terms of the dimensionless heat transfer coefficient and activation energy. An exact implicit expression for the boundaries between regions of uniqueness and multiplicity was also derived for an nth order reaction in a catalyst particle with an intraparticle concentration gradient and uniform temperature and is fully demonstrated for the first-order reaction. In addition, explicit criteria were developed by assuming the limits on d ln g/d ln q, where g is the effectiveness factor and q the Thiele modulus, proposed by van den Bosch and Luss.

  3. Effects of Three Diagram Instruction Methods on Transfer of Diagram Comprehension Skills: The Critical Role of Inference While Learning

    Science.gov (United States)

    Cromley, Jennifer G.; Bergey, Bradley W.; Fitzhugh, Shannon; Newcombe, Nora; Wills, Theodore W.; Shipley, Thomas F.; Tanaka, Jacqueline C.

    2013-01-01

    Can students be taught to better comprehend the diagrams in their textbooks? Can such teaching transfer to uninstructed diagrams in the same domain or even in a new domain? What methods work best for these goals? Building on previous research showing positive results compared to control groups in both laboratory studies and short-term…

  4. Magnetic phase diagram of a frustrated spin ladder

    Science.gov (United States)

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  5. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.

    Science.gov (United States)

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.

  6. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.

    Directory of Open Access Journals (Sweden)

    Luana Micallef

    Full Text Available Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.

  7. Ad Oculos. Images, Imagination and Abstract Thinking

    Directory of Open Access Journals (Sweden)

    Alessandra Cirafici

    2018-03-01

    Full Text Available The unusual edition of Elements of Euclid released for publishing in 1847 by Oliver Byrne offers the occasion to suggest a few elements for discussion on the uniqueness of the ‘representation’ of geometric-mathematical thinking—and more in general of the abstract thinking—enshrined in its ‘nature of a pure imaginative vision able to connect the intelligible with the tangible’. The purpose is, thus, a reasoning on images and communicative artefacts, that, when articulated, provide different variations of the idea of ‘transcription’ of complex theoretical structures from one language (that of abstract logic to another (that of sensory experience, with a view to facilitate, ease and make more accurate the noetic process. Images able over time to facilitate the understanding of complex and abstract theoretical principles—since able to show them in an extremely concrete way, ad oculos,—and which at some points could reveal the horizons of art interpretation to inscrutable and figurative meaningless formulas.

  8. XLOOPS - a package calculating one- and two-loop diagrams

    International Nuclear Information System (INIS)

    Bruecher, L.

    1997-01-01

    A program package for calculating massive one- and two-loop diagrams is introduced. It consists of five parts: - a graphical user interface, - routines for generating diagrams from particle input, - procedures for calculating one-loop integrals both analytically and numerically, - routines for massive two-loop integrals, - programs for numerical integration of two-loop diagrams. Here the graphical user interface and the text interface to Maple are presented. (orig.)

  9. Kosovo case: A unique arbitrariness

    Directory of Open Access Journals (Sweden)

    Nakarada Radmila

    2007-01-01

    Full Text Available The end of Cold war, contrary to expectations has brought new conflicts and forms of violence, new divisions and new relativizations of the international legal order. Taking as an example the endeavors to resolve the Kosovo conflict, the author attempts to indicate the broader implications of the international efforts to constitute an independent state on part of the territory of an existing sovereign state. The arguments used to justify the redefinition of the borders of the Serbian state without its consent, the moral, democratic, peace arguments, are reviewed. Particular attention is paid to the argument that Kosovo is a unique case and therefore unique rules should be applied. The author seeks to understand the deeper significance of these efforts, concluding that dismantling the present international legal order is not only a potential danger but a possible aim.

  10. Grotrian diagrams of highly ionized iron Fe(VIII)-Fe(XXVI)

    International Nuclear Information System (INIS)

    Mori, Kazuo; Otsuka, Masamoto; Kato, Takako.

    1977-08-01

    Energy levels and Grotrian diagrams of Fe(VIII) to Fe(XXVI) are presented. This report summarized the data published recently up to 1976, and the wavelength tables compiled were converted to the Grotrian diagrams. The diagrams showing transition from one energy level to another are called Grotrian diagrams. Typical examples of the diagrams are found in the book by Bashkin et al. In the present diagrams, all lines are drawn in parallel, and connected to the extended lines from lower levels. As the results, locally dense packing of lines and figures is avoided. The ordinate of the diagrams indicates level energy, and the J values are shown on the left side of the levels. The wavelength values in angstrom unit are written in parallel with the vertical transition lines. This vertical lines show the resonance transition having absorption oscillator strength f larger than 0.1. The present diagrams are the combination of the tables of wavelength and energy level. Accordingly, the desired wavelength and level energy are easily found. The figures of wavelength are lined up in various groups, so that the characteristics of the transition can be discriminated at a glance. Wavelength and level energy have been mostly derived from experimental spectra in laboratory or solar plasma, except a few by Fawcett's prediction. (Kato, T.)

  11. Phase diagram for the Kuramoto model with van Hemmen interactions.

    Science.gov (United States)

    Kloumann, Isabel M; Lizarraga, Ian M; Strogatz, Steven H

    2014-01-01

    We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distribution of the oscillators' natural frequencies. Depending on the size of the attractive and random coupling terms, the system displays four states: complete incoherence, partial synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary synchronization.

  12. Theory of the disordered ν =5/2 quantum thermal Hall state: Emergent symmetry and phase diagram

    Science.gov (United States)

    Lian, Biao; Wang, Juven

    2018-04-01

    Fractional quantum Hall (FQH) system at Landau level filling fraction ν =5 /2 has long been suggested to be non-Abelian, either Pfaffian (Pf) or antiPfaffian (APf) states by numerical studies, both with quantized Hall conductance σx y=5 e2/2 h . Thermal Hall conductances of the Pf and APf states are quantized at κx y=7 /2 and κx y=3 /2 , respectively, in a proper unit. However, a recent experiment shows the thermal Hall conductance of ν =5 /2 FQH state is κx y=5 /2 . It has been speculated that the system contains random Pf and APf domains driven by disorders, and the neutral chiral Majorana modes on the domain walls may undergo a percolation transition to a κx y=5 /2 phase. In this paper, we do perturbative and nonperturbative analyses on the domain walls between Pf and APf. We show the domain wall theory possesses an emergent SO(4) symmetry at energy scales below a threshold Λ1, which is lowered to an emergent U (1 )×U (1) symmetry at energy scales between Λ1 and a higher value Λ2, and is finally lowered to the composite fermion parity symmetry Z2F above Λ2. Based on the emergent symmetries, we propose a phase diagram of the disordered ν =5 /2 FQH system and show that a κx y=5 /2 phase arises at disorder energy scales Λ >Λ1 . Furthermore, we show the gapped double-semion sector of ND compact domain walls contributes nonlocal topological degeneracy 2ND-1, causing a low-temperature peak in the heat capacity. We implement a nonperturbative method to bootstrap generic topological 1 +1 D domain walls (two-surface defects) applicable to any 2 +1 D non-Abelian topological order. We also identify potentially relevant spin topological quantum field theories (TQFTs) for various ν =5 /2 FQH states in terms of fermionic version of U (1) ±8 Chern-Simons theory ×Z8 -class TQFTs.

  13. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  14. Triangular Diagrams Teach Steady and Dynamic Behaviour of Catalytic Reactions.

    Science.gov (United States)

    Klusacek, K.; And Others

    1989-01-01

    Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)

  15. Frequency format diagram and probability chart for breast cancer risk communication: a prospective, randomized trial

    Directory of Open Access Journals (Sweden)

    Wahner-Roedler Dietlind

    2008-10-01

    Full Text Available Abstract Background Breast cancer risk education enables women make informed decisions regarding their options for screening and risk reduction. We aimed to determine whether patient education regarding breast cancer risk using a bar graph, with or without a frequency format diagram, improved the accuracy of risk perception. Methods We conducted a prospective, randomized trial among women at increased risk for breast cancer. The main outcome measurement was patients' estimation of their breast cancer risk before and after education with a bar graph (BG group or bar graph plus a frequency format diagram (BG+FF group, which was assessed by previsit and postvisit questionnaires. Results Of 150 women in the study, 74 were assigned to the BG group and 76 to the BG+FF group. Overall, 72% of women overestimated their risk of breast cancer. The improvement in accuracy of risk perception from the previsit to the postvisit questionnaire (BG group, 19% to 61%; BG+FF group, 13% to 67% was not significantly different between the 2 groups (P = .10. Among women who inaccurately perceived very high risk (≥ 50% risk, inaccurate risk perception decreased significantly in the BG+FF group (22% to 3% compared with the BG group (28% to 19% (P = .004. Conclusion Breast cancer risk communication using a bar graph plus a frequency format diagram can improve the short-term accuracy of risk perception among women perceiving inaccurately high risk.

  16. Developing Tool Support for Problem Diagrams with CPN and VDM++

    DEFF Research Database (Denmark)

    Tjell, Simon; Lassen, Kristian Bisgaard

    2008-01-01

    In this paper, we describe ongoing work on the development of tool support for formal description of domains found in Problem Diagrams. The purpose of the tool is to handle the generation of a CPN model based on a collection of Problem Diagrams. The Problem Diagrams are used for representing the ...

  17. A Generalized Wave Diagram for Moving Sources

    Science.gov (United States)

    Alt, Robert; Wiley, Sam

    2004-12-01

    Many introductory physics texts1-5 accompany the discussion of the Doppler effect and the formation of shock waves with diagrams illustrating the effect of a source moving through an elastic medium. Typically these diagrams consist of a series of equally spaced dots, representing the location of the source at different times. These are surrounded by a series of successively smaller circles representing wave fronts (see Fig. 1). While such a diagram provides a clear illustration of the shock wave produced by a source moving at a speed greater than the wave speed, and also the resultant pattern when the source speed is less than the wave speed (the Doppler effect), the texts do not often show the details of the construction. As a result, the key connection between the relative distance traveled by the source and the distance traveled by the wave is not explicitly made. In this paper we describe an approach emphasizing this connection that we have found to be a useful classroom supplement to the usual text presentation. As shown in Fig. 2 and Fig. 3, the Doppler effect and the shock wave can be illustrated by diagrams generated by the construction that follows.

  18. Testing of multidimensional tectonomagmatic discrimination diagrams on fresh and altered rocks

    Directory of Open Access Journals (Sweden)

    Rivera-Gómez M. Abdelaly

    2016-04-01

    Full Text Available We evaluated 55 multidimensional diagrams proposed during 2004-2013 for the tectonic discrimination of ultrabasic, basic, intermediate, and acid magmas. The Miocene to Recent rock samples for testing the diagrams had not been used for constructing them. Eighteen test studies (2 from ocean island; 2 from ocean island/continental rift; 6 from continental rift; 4 from continental arc; 2 from island arc; 1 from mid-ocean ridge, and 1 from collision of relatively fresh rocks fully confirmed the satisfactory functioning of these diagrams for all tectonic fields for which they were proposed. Eight additional case studies on hydrothermally altered or moderately to highly weathered rocks were also presented to achieve further understanding of the functioning of these diagrams. For these rocks as well, the diagrams indicated the expected tectonic setting. We also show that for testing or using these diagrams the freely-available geochemistry databases should be used with caution but certainly after ascertaining the correct magma types to select the appropriate diagram sets. The results encourage us to recommend these diagrams for deciphering the tectonic setting of older terranes or areas with complex or transitional tectonic settings.

  19. Logical and Geometrical Distance in Polyhedral Aristotelian Diagrams in Knowledge Representation

    Directory of Open Access Journals (Sweden)

    Lorenz Demey

    2017-09-01

    Full Text Available Aristotelian diagrams visualize the logical relations among a finite set of objects. These diagrams originated in philosophy, but recently, they have also been used extensively in artificial intelligence, in order to study (connections between various knowledge representation formalisms. In this paper, we develop the idea that Aristotelian diagrams can be fruitfully studied as geometrical entities. In particular, we focus on four polyhedral Aristotelian diagrams for the Boolean algebra B 4 , viz. the rhombic dodecahedron, the tetrakis hexahedron, the tetraicosahedron and the nested tetrahedron. After an in-depth investigation of the geometrical properties and interrelationships of these polyhedral diagrams, we analyze the correlation (or lack thereof between logical (Hamming and geometrical (Euclidean distance in each of these diagrams. The outcome of this analysis is that the Aristotelian rhombic dodecahedron and tetrakis hexahedron exhibit the strongest degree of correlation between logical and geometrical distance; the tetraicosahedron performs worse; and the nested tetrahedron has the lowest degree of correlation. Finally, these results are used to shed new light on the relative strengths and weaknesses of these polyhedral Aristotelian diagrams, by appealing to the congruence principle from cognitive research on diagram design.

  20. Mollier-h,x diagram for moist flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Hultsch, T; Suder, M

    1984-07-01

    Diagrams and formulae are presented for calculation of enthalpy and moisture content of flue gas from brown coal, heating oil, black coal and brown coal briquet combustion. The enthalpy (in kJ/kg) and moisture (g/kg) diagrams were established by computer graphics for pressure 0.1 MPa. A further diagram is provided for enthalpy and flue gas moisture, varying the combustion air supply according to coal dust and to grate firing. These thermodynamic calculations are regarded as significant for assessing methods of flue gas cooling below the moisture dew point and for waste heat recovery. 3 references.

  1. Research principles and the construction of mnemonic diagrams

    Science.gov (United States)

    Venda, V. F.; Mitkin, A. A.

    1973-01-01

    Mnemonic diagrams are defined as a variety of information display devices, the essential element of which is conventional graphical presentation of technological or functional-operational links in a controlled system or object. Graphically displaying the operational structure of an object, the interd dependence between different parameters, and the interdependence between indicators and control organs, the mneomonic diagram reduces the load on the operator's memory and facilitates perception and reprocessing of information and decision making, while at the same time playing the role of visual support to the information activity of the operator. The types of mnemonic diagrams are listed.

  2. Automata Learning through Counterexample Guided Abstraction Refinement

    DEFF Research Database (Denmark)

    Aarts, Fides; Heidarian, Faranak; Kuppens, Harco

    2012-01-01

    to a small set of abstract events that can be handled by automata learning tools. In this article, we show how such abstractions can be constructed fully automatically for a restricted class of extended finite state machines in which one can test for equality of data parameters, but no operations on data...... are allowed. Our approach uses counterexample-guided abstraction refinement: whenever the current abstraction is too coarse and induces nondeterministic behavior, the abstraction is refined automatically. Using Tomte, a prototype tool implementing our algorithm, we have succeeded to learn – fully......Abstraction is the key when learning behavioral models of realistic systems. Hence, in most practical applications where automata learning is used to construct models of software components, researchers manually define abstractions which, depending on the history, map a large set of concrete events...

  3. Phase diagrams and switching of voltage and magnetic field in dilute magnetic semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, R. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, M.; Bonilla, L.L. [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Maths., Universidad Carlos III de Madrid, 28911 Leganes (Spain); Unidad Asociada al Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain); Platero, G. [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain)

    2010-04-15

    The response of an n-doped dc voltage biased II-VI multi-quantum well dilute magnetic semiconductor nanostructure having its first well doped with magnetic (Mn) impurities is analyzed by sweeping wide ranges of both the voltage and the Zeeman level splitting induced by an external magnetic field. The level splitting versus voltage phase diagram shows regions of stable self-sustained current oscillations immersed in a region of stable stationary states. Transitions between stationary states and self-sustained current oscillations are systematically analyzed by both voltage and level splitting abrupt switching. Sudden voltage or/and magnetic field changes may switch on current oscillations from an initial stationary state, and reciprocally, current oscillations may disappear after sudden changes of voltage or/and magnetic field changes into the stable stationary states region. The results show how to design such a device to operate as a spin injector and a spin oscillator by tuning the Zeeman splitting (through the applied external magnetic field), the applied voltage and the sample configuration parameters (doping density, barrier and well widths, etc.) to select the desired stationary or oscillatory behavior. Phase diagram of Zeeman level splitting {delta} vs. dimensionless applied voltage {phi} for N = 10 QWs. White region: stable stationary states; black: stable self-sustained current oscillations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Abstract Interpretation as a Programming Language

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    2013-01-01

    examine different programming styles and ways to represent states. Abstract interpretation is primarily a technique for derivation and specification of program analysis. As with denotational semantics we may also view abstract interpretations as programs and examine the implementation. The main focus...... in this paper is to show that results from higher-order strictness analysis may be used more generally as fixpoint operators for higher-order functions over lattices and thus provide a technique for immediate implementation of a large class of abstract interpretations. Furthermore, it may be seen...

  5. Oak Ridge K-25 Site Technology Logic Diagram

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. (ed.)

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. This Volume, Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume is divided into ten chapters. The first chapter is a brief introduction, and the second chapter details the technical approach of the TLD. These categories are the work activities necessary for successful decontamination and decommissioning, waste management, and remedial action of the K-25 Site. The categories are characterization, decontamination, dismantlement, robotics and automation, remedial action, and waste management. Materials disposition is addressed in Chap. 9. The final chapter contains regulatory compliance information concerning waste management, remedial action, and decontamination and decommissioning.

  6. Use of mass spectral method for plotting P-T and T-x pro ection of state diagram of LiF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Rykov, A.N.; Novoselova, A.V.

    1979-01-01

    T-x and P-T projections of the state diagram for the system LiF-ZrF 4 were constructed. The Knudsen effusion technique with the mass-spectral analysis of the evaporation products was employed to determine the vapor composition and pressure. LiF, LiF 2 , Li 3 F 3 , ZrF 4 , LiZrF 5 , Li 2 ZrF 6 , LiZrF 9 molecules were found in the saturated vapor of the system. Heats of evaporation of the molecules and their partial pressures depending on the melt composition were determined. Dissociation enthalpies of the complex molecules were calcuted

  7. Improvements in Logic Diagram of Computerized Procedure System of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sungkweon; Seong, Nokyu [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Computerized Procedure System (CPS) has been improved since it is installed in Shin-Kori 3 and 4 Nuclear Power Plants. It is one of operating support systems of digital Main Control Room (MCR) and provides many functions to operators in executing the procedure. CPS can effectively remove the human errors by supporting the procedure flow and logic diagram. This paper describes the logic diagram of CPS of reference power plant and shows the improved logic diagram of CPS of Shin-Kori unit 5 and 6. This paper describes the current logic diagram of CPS and suggests improved design for logic diagram. The improved logic diagram shall be validated through human factors engineering verification and validation. The improved design will help operators execute the computerized procedure fast and remove the human error.

  8. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    Science.gov (United States)

    Chigvintsev, A. Yu; Iosilevskiy, I. L.; Noginova, L. Yu

    2016-11-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z. Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval (Z 1 points at both boundary values Z = Z 1 ≈ 35.5 and Z = Z 2 ≈ 40.0. It should be stressed that critical isotherm is exactly cubic in both these pseudo-critical points. In this study we have improved our previous calculations and utilized more complicated model components equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941).

  9. Unique case of esophageal rupture after a fall from height

    NARCIS (Netherlands)

    van Heijl, Mark; Saltzherr, Teun P.; van Berge Henegouwen, Mark I.; Goslings, J. Carel

    2009-01-01

    ABSTRACT: BACKGROUND: Traumatic ruptures of the esophagus are relatively rare. This condition is associated with high morbidity and mortality. Most traumatic ruptures occur after motor vehicle accidents. Case Presentation: We describe a unique case of a 23 year old woman that presented at our trauma

  10. An Application of Mosaic Diagrams to the Visualization of Set Relationships

    OpenAIRE

    Luz, Saturnino; Masoodian, Masood

    2017-01-01

    We present an application of mosaic diagrams to the visualisation of set relations. Venn and Euler diagrams are the best known visual representations of sets and their relationships (intersections, containment or subsets, exclusion or disjointness). In recent years, alternative forms of visualisation have been proposed. Among them, linear diagrams have been shown to compare favourably to Venn and Euler diagrams, in supporting non-interactive assessment of set relationships. Recent studies tha...

  11. A "how-to" guide in preparing abstracts and poster presentations.

    Science.gov (United States)

    Boullata, Joseph I; Mancuso, Carissa E

    2007-12-01

    The preparation of an abstract or poster to share information from a project or case report with colleagues is a professional goal for many nutrition support practitioners. This paper provides an approach to help practitioners prepare an abstract for submission and subsequently a poster for presentation at a meeting. A nutrition support question that required collecting and evaluating information, or a unique patient case or case series, can serve as the focus of an abstract and subsequent poster. The professional meeting selected should be appropriate for the abstract topic, and the authors should closely adhere to the organization's abstract submission guidelines. The well-prepared abstract will then serve as the outline for the poster content; the visual aspect of the poster is also important to effectively communicate the information to colleagues at the meeting. Adequate time is required to prepare both the abstract and the poster in order to fittingly reflect the value of the information. Efforts in preparing the abstract will be worthwhile once the abstract has been accepted by reviewers for a poster session at the meeting. Likewise, the effort in preparing the poster in advance allows the presenter to enjoy the poster session and discuss the project with colleagues.

  12. Impredicative concurrent abstract predicates

    DEFF Research Database (Denmark)

    Svendsen, Kasper; Birkedal, Lars

    2014-01-01

    We present impredicative concurrent abstract predicates { iCAP { a program logic for modular reasoning about concurrent, higher- order, reentrant, imperative code. Building on earlier work, iCAP uses protocols to reason about shared mutable state. A key novel feature of iCAP is the ability to dene...

  13. Transformation of UML Behavioral Diagrams to Support Software Model Checking

    Directory of Open Access Journals (Sweden)

    Luciana Brasil Rebelo dos Santos

    2014-04-01

    Full Text Available Unified Modeling Language (UML is currently accepted as the standard for modeling (object-oriented software, and its use is increasing in the aerospace industry. Verification and Validation of complex software developed according to UML is not trivial due to complexity of the software itself, and the several different UML models/diagrams that can be used to model behavior and structure of the software. This paper presents an approach to transform up to three different UML behavioral diagrams (sequence, behavioral state machines, and activity into a single Transition System to support Model Checking of software developed in accordance with UML. In our approach, properties are formalized based on use case descriptions. The transformation is done for the NuSMV model checker, but we see the possibility in using other model checkers, such as SPIN. The main contribution of our work is the transformation of a non-formal language (UML to a formal language (language of the NuSMV model checker towards a greater adoption in practice of formal methods in software development.

  14. Plotting and Analyzing Data Trends in Ternary Diagrams Made Easy

    Science.gov (United States)

    John, Cédric M.

    2004-04-01

    Ternary plots are used in many fields of science to characterize a system based on three components. Triangular plotting is thus useful to a broad audience in the Earth sciences and beyond. Unfortunately, it is typically the most expensive commercial software packages that offer the option to plot data in ternary diagrams, and they lack features that are paramount to the geosciences, such as the ability to plot data directly into a standardized diagram and the possibility to analyze temporal and stratigraphic trends within this diagram. To address these issues, δPlot was developed with a strong emphasis on ease of use, community orientation, and availability free of charges. This ``freeware'' supports a fully graphical user interface where data can be imported as text files, or by copying and pasting. A plot is automatically generated, and any standard diagram can be selected for plotting in the background using a simple pull-down menu. Standard diagrams are stored in an external database of PDF files that currently holds some 30 diagrams that deal with different fields of the Earth sciences. Using any drawing software supporting PDF, one can easily produce new standard diagrams to be used with δPlot by simply adding them to the library folder. An independent column of values, commonly stratigraphic depths or ages, can be used to sort the data sets.

  15. Adding Value to Force Diagrams: Representing Relative Force Magnitudes

    Science.gov (United States)

    Wendel, Paul

    2011-05-01

    Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area.1-4 Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams,4-6 and over recent years a rich variety of approaches has been proposed to add value to force diagrams. Suggestions include strategies for identifying candidate forces,6,7 emphasizing the distinction between "contact" and "noncontact" forces,5,8 and the use of computer-based tutorials.9,10 Instructors have suggested a variety of conventions for constructing force diagrams, including approaches to arrow placement and orientation2,11-13 and proposed notations for locating forces or marking action-reaction force pairs.8,11,14,15

  16. Phase diagram of an extended Agassi model

    Science.gov (United States)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  17. Refined phase diagram of boron nitride

    International Nuclear Information System (INIS)

    Solozhenko, V.; Turkevich, V.Z.

    1999-01-01

    The equilibrium phase diagram of boron nitride thermodynamically calculated by Solozhenko in 1988 has been now refined on the basis of new experimental data on BN melting and extrapolation of heat capacities of BN polymorphs into high-temperature region using the adapted pseudo-Debye model. As compared with the above diagram, the hBN left-reversible cBN equilibrium line is displaced by 60 K toward higher temperatures. The hBN-cBN-L triple point has been calculated to be at 3480 ± 10 K and 5.9 ± 0.1 GPa, while the hBN-L-V triple point is at T = 3400 ± 20 K and p = 400 ± 20 Pa, which indicates that the region of thermodynamic stability of vapor in the BN phase diagram is extremely small. It has been found that the slope of the cBN melting curve is positive whereas the slope of hBN melting curve varies from positive between ambient pressure and 3.4 GPa to negative at higher pressures

  18. Phase diagrams of diluted transverse Ising nanowire

    International Nuclear Information System (INIS)

    Bouhou, S.; Essaoudi, I.; Ainane, A.; Saber, M.; Ahuja, R.; Dujardin, F.

    2013-01-01

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J cs exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given

  19. Holy images on blades: unique swords from the State Hermitage Museum (preliminary publication

    Directory of Open Access Journals (Sweden)

    Vsevolod Obraztsov

    2013-12-01

    Full Text Available The focus of this article are interesting rarities from the collection of the State Hermitage Museum - swords of the 17th-18th centuries with inscriptions in Greek and Slavonic, with images of Christian saints inlaid in gold. The authors offer the general characteristics of 17 exemplars of this kind of arms which are divided into several groups according to the shape of the hilt. A brief overview of the relatively few publications on this subject includes articles by Vasilii Prokhorov (1877; data from the Index of the Medieval Department of the Imperial Hermitage published by Nikodim Kondakov (1891, a catalogue of Count Sergei Sheremetev's collection of arms compiled by Eduard Lenz (1895, and a monograph by E. Astvatsaturian on Turkish arms from the collection of the State Historical Museum (2002. The authors pay special attention to the description and analysis of two swords from the Hermit- age collection. One of them belonged to Count Michail Miloradovich, and was presented to him in 1807 from the city of Bucharest. The second sword came to the Hermitage after the Bolshevik Revolution from the Marble Palace, the residency of the Grand Dukes Konstantinovichi. Besides the traditional inscriptions and images of the Virgin with Child crowned by angels, the blade bears a unique image of Byzantine Emperor Nikephoros Phokas blessed by Jesus Christ with both hands. There are also two cartouches with quotations from Psalms in Greek. The extremely rich décor of this sword and the unique depiction of the Byzantine Emperor leave no doubt that they were made on a special order. The authors connect the sword to the Greek Project initiated by the Russian Empress Catherine the Great. The main idea of the project was a restoration of the Byzantine Empire with Constantinople-Istanbul as its capital, where Grand Duke Konstantin, Catherine the Great's grandchild, would be ascended to the throne. This article is a preliminary publication of a project in process

  20. Experimental investigation and thermodynamic calculations of the Bi–In–Ni phase diagram

    International Nuclear Information System (INIS)

    Premović, Milena; Minić, Duško; Manasijević, Dragan; Ćosović, Vladan; Živković, Dragana; Dervišević, Irma

    2015-01-01

    Highlights: • Calculated constitutive binary system based on literature data. • Experimentally determined (DTA) temperatures of phase transformations compared with analytical calculation. • Definition of several vertical sections. • Calculated horizontal section, confirmed by experimental SEM–EDS and XRD method. • Calculated liquidus surface projection and determined invariant reaction occurred in ternary Bi–In–Ni system. - Abstract: Phase diagram of the Bi–In–Ni ternary system was investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray powder diffraction (XRD) analysis. Experimentally obtained results were compared with the results of thermodynamic calculation of phase equilibria based on calculation of phase diagram (CALPHAD) method and literature data. Phase transition temperatures of alloys with overall compositions along three selected vertical sections In–Bi 0.8 Ni 0.2 , x(Bi) = 0.6 and Bi–In 0.5 Ni 0.5 were measured by DTA. Liquidus temperatures were experimentally determined and compared with the results of thermodynamic calculation. Identification of coexisting phases in samples equilibrated at 100 °C, 300 °C and 350 °C was carried out using SEM–EDS and XRD methods. The obtained results were compared with the calculated isothermal sections of the Bi–In–Ni ternary system at corresponding temperatures. Calculated liquidus projection and invariant equilibria of the Bi–In–Ni ternary system were presented

  1. Homotopy Diagrams of Algebras

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2002-01-01

    Roč. 69, - (2002), s. 161-180 ISSN 0009-725X. [Winter School "Geometry and Physics" /21./. Srní, 13.01.2001-20.01.2001] R&D Projects: GA ČR GA201/99/0675 Keywords : colored operad%cofibrant model%homotopy diagram Subject RIV: BA - General Mathematics

  2. Random Young diagrams in a Rectangular Box

    DEFF Research Database (Denmark)

    Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël

    We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....

  3. Energy level diagrams for black hole orbits

    Science.gov (United States)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  4. Energy level diagrams for black hole orbits

    International Nuclear Information System (INIS)

    Levin, Janna

    2009-01-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  5. Abstract quantum computing machines and quantum computational logics

    Science.gov (United States)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto

    2016-06-01

    Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.

  6. Formal Analysis Of Use Case Diagrams

    Directory of Open Access Journals (Sweden)

    Radosław Klimek

    2010-01-01

    Full Text Available Use case diagrams play an important role in modeling with UML. Careful modeling is crucialin obtaining a correct and efficient system architecture. The paper refers to the formalanalysis of the use case diagrams. A formal model of use cases is proposed and its constructionfor typical relationships between use cases is described. Two methods of formal analysis andverification are presented. The first one based on a states’ exploration represents a modelchecking approach. The second one refers to the symbolic reasoning using formal methodsof temporal logic. Simple but representative example of the use case scenario verification isdiscussed.

  7. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  8. Resonant count diagram and solar g mode oscillations

    International Nuclear Information System (INIS)

    Guenther, D.B.; Demarque, P.

    1984-01-01

    Evidence is provided to support the hypothesis that, because of the particular frequency separations of the solar g modes, resonant three-wave interactions stimulate only a selected few g modes. A resonant count diagram was obtained by plotting the total number of possible resonant three-wave interactions or a given beat frequency against the inverse of the beat frequency (the beat period), within a given frequency tolerance. The 1 = 1, 2, 3, 4 g modes calculated by Christensen-Dalsgaard, Gough and Morgan (1979) for a standard model of the Sun were used. The diagram has a significant peak at 160 minutes as well as other peaks at longer periods. The g modes that Delache and Scherrer (1983) tentatively identified from the Crimea-Stanford data were also plotted. These modes were found to correspond with the other peaks in the diagram. This coincidence between the observed g modes and the peaks in the resonant count diagram suggest that the observed g modes do owe their observability to resonant three-wave interactions

  9. Evaluating the phase diagram of superconductors with asymmetric spin populations

    International Nuclear Information System (INIS)

    Mannarelli, Massimo; Nardulli, Giuseppe; Ruggieri, Marco

    2006-01-01

    The phase diagram of a nonrelativistic fermionic system with imbalanced state populations interacting via a short-range S-wave attractive interaction is analyzed in the mean-field approximation. We determine the energetically favored state for different values of the mismatch between the two Fermi spheres in the weak- and strong-coupling regimes considering both homogeneous and nonhomogeneous superconductive states. We find that the homogeneous superconductive phase persists for values of the population imbalance that increase with increasing coupling strength. In the strong-coupling regime and for large population differences the energetically stable homogeneous phase is characterized by one gapless mode. We also find that the inhomogeneous superconductive phase characterized by the condensate Δ(x)∼Δ exp(iq·x) is energetically favored in a range of values of the chemical-potential mismatch that shrinks to zero in the strong-coupling regime

  10. Comparisons between observational color-magnitude diagrams and synthetic cluster diagrams for young star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Recker, S.A.; Brunish, W.M.; Mathews, G.J.

    1984-01-01

    Young star clusters ( 8 yr) in the Magellanic Clouds (MC) can be used to test the current status of the theory of stellar evolution as applied to intermediate and massive stars. The color-magnitude diagram of many young clusters in the MC shows large numbers of stars in both the main sequence and post main sequence evolutionary phases. Using a grid of stellar evolution models, synthetic cluster H-R diagrams are constructed and compared to observed color-magnitude diagrams to determine the age, age spread, and composition for any given cluster. In addition, for those cases where the data is of high quality, detailed comparisons between theory and observation can provide a diagnostic of the accuracy of the stellar evolution models. Initial indications of these comparisons suggest that the theoretical models should be altered to include: a larger value for the mixing length parameter, a larger rate of mass loss during the asymptotic giant branch phase, and possibly convective overshoot during the core burning phases. (Auth.)

  11. Revised Pourbaix diagrams for Copper at 5-150 C

    International Nuclear Information System (INIS)

    Beverskog, B.; Puigdomenech, I.

    1995-10-01

    Pourbaix diagrams have been revised. Predominance diagrams for dissolved copper species have also been calculated. Five different total concentrations for dissolved copper have been used in the calculations (from 10 -3 to 10 -9 ). The complete hydrolysis series of copper(I) and (II) have not been included in earlier published Pourbaix diagrams, and these species are covered for the first time in this work. At acidic pH, increasing temperature decreases the immunity area, and therefore, it increases the corrosion of the copper. At alkaline pH-values corrosion also increases with the temperature due to the decrease of both passivity and immunity areas. The calculated diagrams are used as a base for the discussion of the corrosion behaviour of the copper canisters in the Swedish radioactive waste management program. 62 refs, 37 figs, 3 tabs

  12. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  13. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  14. On the Impact of Diagram Layout: How Are Models Actually Read?

    DEFF Research Database (Denmark)

    Störrle, Harald; Baltsen, Nick; Christoffersen, Henrik

    2014-01-01

    This poster presents the latest results from a very large eye tracking study (n=29) that explores how modelers read UML diagrams. We find that various factors like layout quality, modeler experience, and diagram type lead to significant differences in diagram reading strategies. We derive elements...

  15. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  16. Compositional Abstraction of PEPA Models for Transient Analysis

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew

    2010-01-01

    - or interval - Markov chains allow us to aggregate states in such a way as to safely bound transient probabilities of the original Markov chain. Whilst we can apply this technique directly to a PEPA model, it requires us to obtain the CTMC of the model, whose state space may be too large to construct......Stochastic process algebras such as PEPA allow complex stochastic models to be described in a compositional way, but this leads to state space explosion problems. To combat this, there has been a great deal of work in developing techniques for abstracting Markov chains. In particular, abstract...

  17. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    Science.gov (United States)

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  18. Theoretical Studies of Aqueous Systems above 25 deg C. 1. Fundamental Concepts for Equilibrium Diagrams and some General Features of the Water System

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Derek

    1971-09-15

    The illustration of thermodynamic data on aqueous systems is discussed and diagrams are described that are useful for bringing together the large numbers of data that are relevant to technological problems such as corrosion, mass-transport and deposition. Two kinds of logarithmic equilibrium diagram are particularly useful, namely, diagrams depicting the variation with pH or pe of the concentrations of ionic species relative to that of a chosen reference ion and diagrams depicting the fields of conditions of pH and pe in which the various species in any given system predominate or are stable. Such diagrams clearly and concisely illustrate the data and greatly simplify the comparison of the states of a system at different temperatures. Estimates of the equilibrium constants for the redox and the acid-base dissociation of water up to 375 C are reported and some general features of aqueous systems at elevated temperatures are discussed

  19. Finding and Accessing Diagrams in Biomedical Publications

    OpenAIRE

    Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael

    2012-01-01

    Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar...

  20. Phase diagrams of diluted transverse Ising nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)

    2013-06-15

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.

  1. The Diagram as Story: Unfolding the Event-Structure of the Mathematical Diagram

    Science.gov (United States)

    de Freitas, Elizabeth

    2012-01-01

    This paper explores the role of narrative in decoding diagrams. I focus on two fundamental facets of narrative: (1) the recounting of causally related sequences of events, and (2) the positioning of the narrator through point-of-view and voice. In the first two sections of the paper I discuss philosophical and semiotic frameworks for making sense…

  2. Unraveling The Connectome: Visualizing and Abstracting Large-Scale Connectomics Data

    KAUST Repository

    Al-Awami, Ali K.

    2017-04-30

    We explore visualization and abstraction approaches to represent neuronal data. Neuroscientists acquire electron microscopy volumes to reconstruct a complete wiring diagram of the neurons in the brain, called the connectome. This will be crucial to understanding brains and their development. However, the resulting data is complex and large, posing a big challenge to existing visualization techniques in terms of clarity and scalability. We describe solutions to tackle the problems of scalability and cluttered presentation. We first show how a query-guided interactive approach to visual exploration can reduce the clutter and help neuroscientists explore their data dynamically. We use a knowledge-based query algebra that facilitates the interactive creation of queries. This allows neuroscientists to pose domain-specific questions related to their research. Simple queries can be combined to form complex queries to answer more sophisticated questions. We then show how visual abstractions from 3D to 2D can significantly reduce the visual clutter and add clarity to the visualization so that scientists can focus more on the analysis. We abstract the topology of 3D neurons into a multi-scale, relative distance-preserving subway map visualization that allows scientists to interactively explore the morphological and connectivity features of neuronal cells. We then focus on the process of acquisition, where neuroscientists segment electron microscopy images to reconstruct neurons. The segmentation process of such data is tedious, time-intensive, and usually performed using a diverse set of tools. We present a novel web-based visualization system for tracking the state, progress, and evolution of segmentation data in neuroscience. Our multi-user system seamlessly integrates a diverse set of tools. Our system provides support for the management, provenance, accountability, and auditing of large-scale segmentations. Finally, we present a novel architecture to render very large

  3. Review of criteria for the selection of probability distributions for wind speed data and introduction of the moment and L-moment ratio diagram methods, with a case study

    International Nuclear Information System (INIS)

    Ouarda, T.B.M.J.; Charron, C.; Chebana, F.

    2016-01-01

    Highlights: • Review of criteria used to select probability distributions to model wind speed data. • Classical and L-moment ratio diagrams are applied to wind speed data. • The diagrams allow to select the best distribution to model each wind speed sample. • The goodness-of-fit statistics are more consistent with the L-moment ratio diagram. - Abstract: This paper reviews the different criteria used in the field of wind energy to compare the goodness-of-fit of candidate probability density functions (pdfs) to wind speed records, and discusses their advantages and disadvantages. The moment ratio and L-moment ratio diagram methods are also proposed as alternative methods for the choice of the pdfs. These two methods have the advantage of allowing an easy comparison of the fit of several pdfs for several time series (stations) on a single diagram. Plotting the position of a given wind speed data set in these diagrams is instantaneous and provides more information than a goodness-of-fit criterion since it provides knowledge about such characteristics as the skewness and kurtosis of the station data set. In this paper, it is proposed to study the applicability of these two methods for the selection of pdfs for wind speed data. Both types of diagrams are used to assess the fit of the pdfs for wind speed series in the United Arab Emirates. The analysis of the moment ratio diagrams reveals that the Kappa, Log-Pearson type III and Generalized Gamma are the distributions that fit best all wind speed series. The Weibull represents the best distribution among those with only one shape parameter. Results obtained with the diagrams are compared with those obtained with goodness-of-fit statistics and a good agreement is observed especially in the case of the L-moment ratio diagram. It is concluded that these diagrams can represent a simple and efficient approach to be used as complementary method to goodness-of-fit criteria.

  4. Abstracts and Key Words

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Religion, State and Civil Religion: Assumption and Practice of Confucian Religion in the Course of Nation-state Construction CAN Chun-song Abstract: In late Qing Dynasty and the early years of the Republic of China, Kang You-wei made a proposal to set Confucian religion as state religion. After analyzing carefully Kang's related texts, however, it can be shown that Kang had unique understandings of "religion" and "state religion". Kang defined Confucianism as religion in the sense of cultivation, and emphasized that the function of Confucianism was moral education. Kang's understanding of "state religion" aims to conserve Chinese traditional cultures and customs, shape the identity of nation-state, and enhance the state's cohesion. In this sense, Kang's definition of "national religion" is similar to to Bellah's "civil religion".

  5. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    International Nuclear Information System (INIS)

    Chigvintsev, A Yu; Iosilevskiy, I L; Noginova, L Yu

    2016-01-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z . Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval ( Z 1 < Z < Z 2 ). The most remarkable is appearance of pseudo-critical points at both boundary values Z = Z 1 ≈ 35.5 and Z = Z 2 ≈ 40.0. It should be stressed that critical isotherm is exactly cubic in both these pseudo-critical points. In this study we have improved our previous calculations and utilized more complicated model components equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941). (paper)

  6. Nonclassical Problem for Ultraparabolic Equation in Abstract Spaces

    Directory of Open Access Journals (Sweden)

    Gia Avalishvili

    2016-01-01

    Full Text Available Nonclassical problem for ultraparabolic equation with nonlocal initial condition with respect to one time variable is studied in abstract Hilbert spaces. We define the space of square integrable vector-functions with values in Hilbert spaces corresponding to the variational formulation of the nonlocal problem for ultraparabolic equation and prove trace theorem, which allows one to interpret initial conditions of the nonlocal problem. We obtain suitable a priori estimates and prove the existence and uniqueness of solution of the nonclassical problem and continuous dependence upon the data of the solution to the nonlocal problem. We consider an application of the obtained abstract results to nonlocal problem for ultraparabolic partial differential equation with second-order elliptic operator and obtain well-posedness result in Sobolev spaces.

  7. Random matrix models for phase diagrams

    International Nuclear Information System (INIS)

    Vanderheyden, B; Jackson, A D

    2011-01-01

    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

  8. Colour-magnitude diagram of NGC 5053

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M F; Pike, C D [California Univ., Santa Cruz (USA). Lick Observatory; McGee, J D

    1976-06-01

    The colour-magnitude diagram of NGC 5053 has been derived to V = 21.1 from photographic and electronographic observations. The electronographic observations were obtained with an experimental Spectracon image-converter, having photocathode and exit window dimensions of 20 x 30 mm, mounted at the prime-focus of the 120-in. Lick reflector. The photographic observations were obtained with the 20-in. Carnegie astrograph and the 36-in. Crossley reflector. The colour-magnitude diagram resembles that of M92, with the difference that a red horizontal branch is more pronounced than the asymptotic branch in NGC 5053. The topology of the horizontal branch is that of clusters with an intermediate metal content and is thus at variance with the mean period of the RR Lyr stars and the unreddened colour of the subgiant branch read at the magnitude level of the horizontal branch, both of which would indicate an extremely low metal content. If comparison of the colour-magnitude diagrams of NGC 5053 and M92 is valid, then the reddening of NGC 5053 is Esub(B-V) = 0.02 and the apparent distance modulus is m-M = 16.08 +- 0.08.

  9. Reactome diagram viewer: data structures and strategies to boost performance.

    Science.gov (United States)

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. For web-based pathway visualization, Reactome uses a custom pathway diagram viewer that has been evolved over the past years. Here, we present comprehensive enhancements in usability and performance based on extensive usability testing sessions and technology developments, aiming to optimize the viewer towards the needs of the community. The pathway diagram viewer version 3 achieves consistently better performance, loading and rendering of 97% of the diagrams in Reactome in less than 1 s. Combining the multi-layer html5 canvas strategy with a space partitioning data structure minimizes CPU workload, enabling the introduction of new features that further enhance user experience. Through the use of highly optimized data structures and algorithms, Reactome has boosted the performance and usability of the new pathway diagram viewer, providing a robust, scalable and easy-to-integrate solution to pathway visualization. As graph-based visualization of complex data is a frequent challenge in bioinformatics, many of the individual strategies presented here are applicable to a wide range of web-based bioinformatics resources. Reactome is available online at: https://reactome.org. The diagram viewer is part of the Reactome pathway browser (https://reactome.org/PathwayBrowser/) and also available as a stand-alone widget at: https://reactome.org/dev/diagram/. The source code is freely available at: https://github.com/reactome-pwp/diagram. fabregat@ebi.ac.uk or hhe@ebi.ac.uk. Supplementary data are available at Bioinformatics online.

  10. Abstracts of Research, July 1973 through June 1974.

    Science.gov (United States)

    Ohio State Univ., Columbus. Computer and Information Science Research Center.

    Abstracts of research papers in the fields of computer and information science are given; 72 papers are abstracted in the areas of information storage and retrieval, information processing, linguistic analysis, artificial intelligence, mathematical techniques, systems programing, and computer networks. In addition, the Ohio State University…

  11. Limits of Voronoi Diagrams

    NARCIS (Netherlands)

    Lindenbergh, R.C.

    2002-01-01

    The classic Voronoi diagram of a configuration of distinct points in the plane associates to each point that part of the plane that is closer to the point than to any other point in the configuration. In this thesis we no longer require all points to be distinct. After the introduction in

  12. Controlled high-fidelity navigation in the charge stability diagram of a double quantum dot

    International Nuclear Information System (INIS)

    Coden, Diego S Acosta; Romero, Rodolfo H; Räsänen, Esa

    2015-01-01

    We propose an efficient control protocol for charge transfer in a double quantum dot. We consider numerically a two-dimensional model system, where the quantum dots are subjected to time-dependent electric fields corresponding to experimental gate voltages. Our protocol enables navigation in the charge stability diagram from a state to another through controllable variation of the fields. We show that the well-known adiabatic Landau–Zener transition—when supplemented with a time-dependent field tailored with optimal control theory—can remarkably improve the transition speed. The results also lead to a simple control scheme obtained from the experimental charge stability diagram that requires only a single parameter. Eventually, we can achieve the ultrafast performance of the composite pulse protocol that allows the system to be driven at the quantum speed limit. (paper)

  13. The method of abstraction in the design of databases and the interoperability

    Science.gov (United States)

    Yakovlev, Nikolay

    2018-03-01

    When designing the database structure oriented to the contents of indicators presented in the documents and communications subject area. First, the method of abstraction is applied by expansion of the indices of new, artificially constructed abstract concepts. The use of abstract concepts allows to avoid registration of relations many-to-many. For this reason, when built using abstract concepts, demonstrate greater stability in the processes. The example abstract concepts to address structure - a unique house number. Second, the method of abstraction can be used in the transformation of concepts by omitting some attributes that are unnecessary for solving certain classes of problems. Data processing associated with the amended concepts is more simple without losing the possibility of solving the considered classes of problems. For example, the concept "street" loses the binding to the land. The content of the modified concept of "street" are only the relations of the houses to the declared name. For most accounting tasks and ensure communication is enough.

  14. Adaptation and extension of the framework of reducing abstraction in the case of differential equations

    Science.gov (United States)

    Raychaudhuri, Debasree

    2014-01-01

    Although there is no consensus in regard to a unique meaning for abstraction, there is a recognition of the existence of several theories of abstraction, and that the ability to abstract is imperative to learning and doing meaningful mathematics. The theory of reducing abstraction maps the abstract nature of mathematics to the nature of knowledge construction by offering three interpretations of how students reduce abstraction while learning mathematical concepts. We apply this framework to explain students' cognition processes as they construct the concept of solution to differential equations and related concepts during a semester long study. Additionally, we refine and extend the framework to elucidate various nuances of the interplay between mathematical structures and human thoughts.

  15. From Abstract Art to Abstracted Artists

    Directory of Open Access Journals (Sweden)

    Romi Mikulinsky

    2016-11-01

    Full Text Available What lineage connects early abstract films and machine-generated YouTube videos? Hans Richter’s famous piece Rhythmus 21 is considered to be the first abstract film in the experimental tradition. The Webdriver Torso YouTube channel is composed of hundreds of thousands of machine-generated test patterns designed to check frequency signals on YouTube. This article discusses geometric abstraction vis-à-vis new vision, conceptual art and algorithmic art. It argues that the Webdriver Torso is an artistic marvel indicative of a form we call mathematical abstraction, which is art performed by computers and, quite possibly, for computers.

  16. What does the brain tell us about abstract art?

    Directory of Open Access Journals (Sweden)

    Vered eAviv

    2014-02-01

    Full Text Available In this essay I focus on the question of why we are attracted to abstract art (or, perhaps more accurately, non-representational art. After elaborating on the processing of visual art in general and abstract art in particular, I discuss recent data from neuroscience and behavioral studies related to abstract art. I conclude with several speculations concerning our apparent appeal to this particular type of art. In particular, I claim that abstract art frees our brain from the dominance of reality, enabling it to flow within its inner states, create new emotional and cognitive associations, and activate brain-states that are otherwise harder to access. This process is apparently rewarding as it enables the exploration of yet undiscovered inner territories of the viewer’s brain.

  17. 2002 Conference Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    2002-01-01

    The 25th Annual (Silver Jubilee) Conference 2002 Conference Programme and Book of Abstracts gives a brief on the Nigerian Institute of Physics, the Sheda Science and Technology Complex. It carries the Conference programme and carries the abstracts of all the papers presented. The abstracts cover a wide range of subjects including topics in atmospheric physics, education, policy and planning, geophysics, instrumentation, mathematical sciences, theoretical physics, nuclear and health physics, solid state, electronic and health physics. We are grateful to the Nigerian Institute of Physics for this volume

  18. Causal diagrams in systems epidemiology.

    Science.gov (United States)

    Joffe, Michael; Gambhir, Manoj; Chadeau-Hyam, Marc; Vineis, Paolo

    2012-03-19

    Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed.The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties.The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets.Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.

  19. Towards Abstract Interpretation of Epistemic Logic

    DEFF Research Database (Denmark)

    Ajspur, Mai; Gallagher, John Patrick

    applicable to infinite models. The abstract model-checker allows model-checking with infinite-state models. When applied to the problem of whether M |= φ, it terminates and returns the set of states in M at which φ might hold. If the set is empty, then M definitely does not satisfy φ, while if the set is non...

  20. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  1. RNA secondary structure diagrams for very large molecules: RNAfdl

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Wiegels, Tim; Torda, Andrew E.

    2013-01-01

    There are many programs that can read the secondary structure of an RNA molecule and draw a diagram, but hardly any that can cope with 10 3 bases. RNAfdl is slow but capable of producing intersection-free diagrams for ribosome-sized structures, has a graphical user interface for adjustments...

  2. Automated Methodologies for the Design of Flow Diagrams for Development and Maintenance Activities

    Science.gov (United States)

    Shivanand M., Handigund; Shweta, Bhat

    The Software Requirements Specification (SRS) of the organization is a text document prepared by strategic management incorporating the requirements of the organization. These requirements of ongoing business/ project development process involve the software tools, the hardware devices, the manual procedures, the application programs and the communication commands. These components are appropriately ordered for achieving the mission of the concerned process both in the project development and the ongoing business processes, in different flow diagrams viz. activity chart, workflow diagram, activity diagram, component diagram and deployment diagram. This paper proposes two generic, automatic methodologies for the design of various flow diagrams of (i) project development activities, (ii) ongoing business process. The methodologies also resolve the ensuing deadlocks in the flow diagrams and determine the critical paths for the activity chart. Though both methodologies are independent, each complements other in authenticating its correctness and completeness.

  3. Kinetics of the (solid + solid) transformations for the piracetam trimorphic system: Incidence on the construction of the p–T equilibrium phase diagram

    International Nuclear Information System (INIS)

    Corvis, Yohann; Spasojević-de Biré, Anne; Alzina, Camille

    2016-01-01

    Highlights: • Thermal analyses and X-ray diffraction experiments are performed. • Scan-rate dependence of the transition points is highlighted. • A new phase diagram of piracetam is proposed. • The new hierarchy of polymorphs stability is now coherent with all published data. - Abstract: The three common polymorphs of piracetam have been characterized by associating thermal analysis, X-ray diffraction and densimetry. DSC experiments showed that the (solid + solid) transition temperature between Forms II and I and between Forms III and I is scan-rate dependent. The transition temperatures decrease when the DSC scan rate decreases and the thermodynamic temperatures were confirmed by isothermal X-ray diffraction. These new results in terms of temperature and enthalpy of transition allow us to propose a new equilibrium phase diagram establishing the relative thermodynamic stability of the three common polymorphs of piracetam as a function of the temperature and the pressure. The diagram suggests that Form II presents a small stability domain located just above the stability domain of Form I. As a consequence, Form I should transform into Form II, which itself can turn into Form III when placed under pressure.

  4. Quantum MHV Diagrams

    OpenAIRE

    Brandhuber, Andreas; Travaglini, Gabriele

    2006-01-01

    Over the past two years, the use of on-shell techniques has deepened our understanding of the S-matrix of gauge theories and led to the calculation of many new scattering amplitudes. In these notes we review a particular on-shell method developed recently, the quantum MHV diagrams, and discuss applications to one-loop amplitudes. Furthermore, we briefly discuss the application of D-dimensional generalised unitarity to the calculation of scattering amplitudes in non-supersymmetric Yang-Mills.

  5. Diagram of the Saturn V Launch Vehicle in Metric

    Science.gov (United States)

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear metric detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering, 111 meter, Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  6. Heuristic Diagrams as a Tool to Teach History of Science

    Science.gov (United States)

    Chamizo, José A.

    2012-05-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The left side originally related in Gowin's Vee with philosophies, theories, models, laws or regularities now agrees with Toulmin's concepts (language, models as representation techniques and application procedures). Mexican science teachers without experience in science education research used the heuristic diagram to learn about the history of chemistry considering also in the left side two different historical times: past and present. Through a semantic differential scale teachers' attitude to the heuristic diagram was evaluated and its usefulness was demonstrated.

  7. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...

  8. INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2007-09-01

    Full Text Available We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX, the two micron sky survey (2MASS, and the IRAS point source catalog (PSC. We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.

  9. Examining competing hypotheses for the effects of diagrams on recall for text.

    Science.gov (United States)

    Ortegren, Francesca R; Serra, Michael J; England, Benjamin D

    2015-01-01

    Supplementing text-based learning materials with diagrams typically increases students' free recall and cued recall of the presented information. In the present experiments, we examined competing hypotheses for why this occurs. More specifically, although diagrams are visual, they also serve to repeat information from the text they accompany. Both visual presentation and repetition are known to aid students' recall of information. To examine to what extent diagrams aid recall because they are visual or repetitive (or both), we had college students in two experiments (n = 320) read a science text about how lightning storms develop before completing free-recall and cued-recall tests over the presented information. Between groups, we manipulated the format and repetition of target pieces of information in the study materials using a 2 (visual presentation of target information: diagrams present vs. diagrams absent) × 2 (repetition of target information: present vs. absent) between-participants factorial design. Repetition increased both the free recall and cued recall of target information, and this occurred regardless of whether that repetition was in the form of text or a diagram. In contrast, the visual presentation of information never aided free recall. Furthermore, visual presentation alone did not significantly aid cued recall when participants studied the materials once before the test (Experiment 1) but did when they studied the materials twice (Experiment 2). Taken together, the results of the present experiments demonstrate the important role of repetition (i.e., that diagrams repeat information from the text) over the visual nature of diagrams in producing the benefits of diagrams for recall.

  10. On Hardy's paradox, weak measurements, and multitasking diagrams

    International Nuclear Information System (INIS)

    Meglicki, Zdzislaw

    2011-01-01

    We discuss Hardy's paradox and weak measurements by using multitasking diagrams, which are introduced to illustrate the progress of quantum probabilities through the double interferometer system. We explain how Hardy's paradox is avoided and elaborate on the outcome of weak measurements in this context. -- Highlights: → Hardy's paradox explained and eliminated. → Weak measurements: what is really measured? → Multitasking diagrams: introduced and used to discuss quantum mechanical processes.

  11. On the phase diagram of non-spherical nanoparticles

    CERN Document Server

    Wautelet, M; Hecq, M

    2003-01-01

    The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.

  12. Bifurcation diagram features of a dc-dc converter under current-mode control

    International Nuclear Information System (INIS)

    Ruzbehani, Mohsen; Zhou Luowei; Wang Mingyu

    2006-01-01

    A common tool for analysis of the systems dynamics when the system has chaotic behaviour is the bifurcation diagram. In this paper, the bifurcation diagram of an ideal model of a dc-dc converter under current-mode control is analysed. Algebraic relations that give the critical points locations and describe the pattern of the bifurcation diagram are derived. It is shown that these simple algebraic and geometrical relations are responsible for the complex pattern of the bifurcation diagrams in such circuits. More explanation about the previously observed properties and introduction of some new ones are exposited. In addition, a new three-dimensional bifurcation diagram that can give better imagination of the parameters role is introduced

  13. An Improved Abstract State Machine Based Choreography Specification and Execution Algorithm for Semantic Web Services

    Directory of Open Access Journals (Sweden)

    Shahin Mehdipour Ataee

    2018-01-01

    Full Text Available We identify significant weaknesses in the original Abstract State Machine (ASM based choreography algorithm of Web Service Modeling Ontology (WSMO, which make it impractical for use in semantic web service choreography engines. We present an improved algorithm which rectifies the weaknesses of the original algorithm, as well as a practical, fully functional choreography engine implementation in Flora-2 based on the improved algorithm. Our improvements to the choreography algorithm include (i the linking of the initial state of the ASM to the precondition of the goal, (ii the introduction of the concept of a final state in the execution of the ASM and its linking to the postcondition of the goal, and (iii modification to the execution of the ASM so that it stops when the final state condition is satisfied by the current configuration of the machine. Our choreography engine takes as input semantic web service specifications written in the Flora-2 dialect of F-logic. Furthermore, we prove the equivalence of ASMs (evolving algebras and evolving ontologies in the sense that one can simulate the other, a first in literature. Finally, we present a visual editor which facilitates the design and deployment of our F-logic based web service and goal specifications.

  14. Phase Diagram of a Simple Model for Fractional Topological Insulator

    Science.gov (United States)

    Chen, Hua; Yang, Kun

    2012-02-01

    We study a simple model of two species of (or spin-1/2) fermions with short-range intra-species repulsion in the presence of opposite (effetive) magnetic field, each at filling factor 1/3. In the absence of inter-species interaction, the ground state is simply two copies of the 1/3 Laughlin state, with opposite chirality. Due to the overall time-reversal symmetry, this is a fractional topological insulator. We show this phase is stable against moderate inter-species interactions. However strong enough inter-species repulsion leads to phase separation, while strong enough inter-species attraction drives the system into a superfluid phase. We obtain the phase diagram through exact diagonalization caluclations. Nature of the fractional topological insluator-superfluid phase transition is discussed using an appropriate Chern-Simons-Ginsburg-Landau effective field theory.

  15. The "butterfly diagram": A gait marker for neurological and cerebellar impairment in people with multiple sclerosis.

    Science.gov (United States)

    Kalron, Alon; Frid, Lior

    2015-11-15

    People with multiple sclerosis (PwMS) frequently experience walking and balance impairments. In our previous report, we demonstrated that spatio-temporal gait parameters, collected by the Zebris FDM-T instrumented treadmill (Zebris Medical GmbH, Germany), serve as valid markers of neurological impairment in the MS population. In the current study, we focused on a unique outcome statistic of the instrumented treadmill, the "butterfly" diagram which reflects the variability of the center of pressure trajectory during walking. Therefore, the aim of the study was to examine the relationship between parameters related to the gait butterfly diagram and the level of neurological impairment in PwMS. Specifically we examined whether the gait butterfly parameters can differentiate between MS patients with normal cerebellar function and those suffering from ataxia. Demographic, neurological and gait parameters were collected from 341 PwMS, 213 women, aged 42.3 (S.D.=13.8). MS participants with ataxia demonstrated higher scores relating to the butterfly gait variability parameters compared to PwMS with normal or slightly abnormal cerebellar function. According to the results of the binary regression analysis, gait variability in the ant-post direction was found to explain 18.1% of the variance related to cerebellar function; R(2)=0.181, χ(2)(1)=67.852, P<0.001. Measurements derived from the butterfly diagram are proper estimators for important neurological functions in PwMS and should be considered in order to improve diagnosis and assessment of the MS population. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  17. DIAGRAM SOLVE THE USE OF SIMULINK BLOCK DIAGRAM TO SOLVE MATHEMA THEMATICAL CONTROL EQU MATHEMATICAL MODELS AND CONTROL EQUATIONS

    Directory of Open Access Journals (Sweden)

    N.M. Ghasem

    2003-12-01

    Full Text Available In this paper, the simulink block diagram is used to solve a model consists of a set of ordinary differential and algebraic equations to control the temperature inside a simple stirred tank heater. The flexibility of simulink block diagram gives students a better understanding of the control systems. The simulink also allows solution of mathematical models and easy visualization of the system variables. A polyethylene fluidized bed reactor is considered as an industrial example and the effect of the Proportional, Integral and Derivative control policy is presented for comparison.

  18. Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yong.zhang@outlook.com [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Milkereit, B. [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, 18051 Rostock (Germany); University of Rostock, Institute of Physics, Polymer Physics Group, 18051 Rostock (Germany); Kessler, O. [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, 18051 Rostock (Germany); Schick, C. [University of Rostock, Institute of Physics, Polymer Physics Group, 18051 Rostock (Germany); Rometsch, P.A. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-01-25

    Highlights: • The DSC method was used for developing continuous cooling precipitation diagrams. • The quench-induced particles were observed by SEM for alloys AA7150 and AA7020. • There were more quench-induced particles in alloy AA7150. • Quench sensitivity of Al alloys can be evaluated by using the CCP diagrams. -- Abstract: Two commercial 7xxx series aluminium alloys with different solute contents and different quench-induced precipitation behaviour have been investigated by using a specialised differential scanning calorimetry (DSC) technique to record exothermal heat outputs during continuous cooling. Together with hardness testing and microstructural analysis, this DSC method was used to develop continuous cooling precipitation (CCP) diagrams for alloys AA7150 and AA7020. The results show that the total precipitation heat for each alloy decreases with increasing cooling rate. However, the excess specific heat at a given cooling rate in alloy AA7150 is much higher than that in alloy AA7020. It is evident that there are atleast three different quench-induced reactions in different temperature regimes for alloy AA7150 cooled at various linear cooling rates, but only equilibrium MgZn{sub 2} (η-phase) and Al{sub 2}CuMg (S-phase) particles were observed by scanning electron microscopy (SEM). There are at least two main precipitation peaks that can be found for alloy AA7020, which correspond to Mg{sub 2}Si and MgZn{sub 2} (η-phase). Furthermore, a method is developed to evaluate the quench sensitivity of an alloy based on a determination of the critical cooling rate. The maximum hardness values are reached at cooling rates that are faster than or similar to the critical cooling rate.

  19. Handedness shapes children's abstract concepts.

    Science.gov (United States)

    Casasanto, Daniel; Henetz, Tania

    2012-03-01

    Can children's handedness influence how they represent abstract concepts like kindness and intelligence? Here we show that from an early age, right-handers associate rightward space more strongly with positive ideas and leftward space with negative ideas, but the opposite is true for left-handers. In one experiment, children indicated where on a diagram a preferred toy and a dispreferred toy should go. Right-handers tended to assign the preferred toy to a box on the right and the dispreferred toy to a box on the left. Left-handers showed the opposite pattern. In a second experiment, children judged which of two cartoon animals looked smarter (or dumber) or nicer (or meaner). Right-handers attributed more positive qualities to animals on the right, but left-handers to animals on the left. These contrasting associations between space and valence cannot be explained by exposure to language or cultural conventions, which consistently link right with good. Rather, right- and left-handers implicitly associated positive valence more strongly with the side of space on which they can act more fluently with their dominant hands. Results support the body-specificity hypothesis (Casasanto, 2009), showing that children with different kinds of bodies think differently in corresponding ways. Copyright © 2011 Cognitive Science Society, Inc.

  20. Electroweak penguin diagrams and two-body B decays

    International Nuclear Information System (INIS)

    Gronau, M.; Hernandez, O.F.; London, D.; Rosner, J.L.

    1995-01-01

    We discuss the role of electroweak penguin diagrams in B decays to two light pseudoscalar mesons. We confirm that the extraction of the weak phase α through the isospin analysis involving B→ππ decays is largely unaffected by such operators. However, the methods proposed to obtain weak and strong phases by relating B→ππ, B→πK, and B→K bar K decays through flavor SU(3) will be invalidated if eletroweak penguin diagrams are large. We show that, although the introduction of electroweak penguin contributions introduces no new amplitudes of flavor SU(3), there are a number of ways to experimentally measure the size of such effects. Finally, using SU(3) amplitude relations we present a new way of measuring the weak angle γ which holds even in the presence of electroweak penguin diagrams

  1. Anytime decision making based on unconstrained influence diagrams

    DEFF Research Database (Denmark)

    Luque, Manuel; Nielsen, Thomas Dyhre; Jensen, Finn Verner

    2016-01-01

    . This paper addresses this problem by proposing an anytime algorithm that at any time provides a qualified recommendation for the first decisions of the problem. The algorithm performs a heuristic-based search in a decision tree representation of the problem. We provide a framework for analyzing......Unconstrained influence diagrams extend the language of influence diagrams to cope with decision problems in which the order of the decisions is unspecified. Thus, when solving an unconstrained influence diagram we not only look for an optimal policy for each decision, but also for a so-called step......-policy specifying the next decision given the observations made so far. However, due to the complexity of the problem, temporal constraints can force the decision maker to act before the solution algorithm has finished, and, in particular, before an optimal policy for the first decision has been computed...

  2. A LaTeX graphics routine for drawing Feynman diagrams

    International Nuclear Information System (INIS)

    Levine, M.J.S.

    1990-01-01

    FEYNMAN is a LaTeX macropackage which allows the user to construct a versatile range of Feynman diagrams within the text of a document. Diagrams of publication quality may be drawn with relative ease and rapidity. (orig.)

  3. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    Science.gov (United States)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  4. Diagram, Gesture, Agency: Theorizing Embodiment in the Mathematics Classroom

    Science.gov (United States)

    de Freitas, Elizabeth; Sinclair, Nathalie

    2012-01-01

    In this paper, we use the work of philosopher Gilles Chatelet to rethink the gesture/diagram relationship and to explore the ways mathematical agency is constituted through it. We argue for a fundamental philosophical shift to better conceptualize the relationship between gesture and diagram, and suggest that such an approach might open up new…

  5. Small-threshold behaviour of two-loop self-energy diagrams: two-particle thresholds

    International Nuclear Information System (INIS)

    Berends, F.A.; Davydychev, A.I.; Moskovskij Gosudarstvennyj Univ., Moscow; Smirnov, V.A.; Moskovskij Gosudarstvennyj Univ., Moscow

    1996-01-01

    The behaviour of two-loop two-point diagrams at non-zero thresholds corresponding to two-particle cuts is analyzed. The masses involved in a cut and the external momentum are assumed to be small as compared to some of the other masses of the diagram. By employing general formulae of asymptotic expansions of Feynman diagrams in momenta and masses, we construct an algorithm to derive analytic approximations to the diagrams. In such a way, we calculate several first coefficients of the expansion. Since no conditions on relative values of the small masses and the external momentum are imposed, the threshold irregularities are described analytically. Numerical examples, using diagrams occurring in the standard model, illustrate the convergence of the expansion below the first large threshold. (orig.)

  6. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  7. Multiple representations and free-body diagrams: Do students benefit from using them?

    Science.gov (United States)

    Rosengrant, David R.

    2007-12-01

    Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an

  8. Oak Ridge K-25 Site Technology Logic Diagram

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. (ed.)

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  9. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Deviren, Bayram

    2007-01-01

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 0 5.06

  10. Resilience versus Resistance: Affectively Modulating Contemporary Diagrams of Social Resilience, Social Sustainability, and Social Innovation

    Directory of Open Access Journals (Sweden)

    Petra Hroch

    2013-11-01

    Full Text Available This article critically interrogates the twin notions of social sustainability and activities grouped under the term social innovation in order to argue that sustainability and innovation are schizoid modes of representing what Deleuze calls “the cliché” (the authority of the same as “the new” (difference that short-circuit any real possibility of social transformation. I argue that the kinds of solutions presented by social innovation to the problems of social sustainability in the context of a neoliberal governmentality are sustainable only in the sense that they are a model for a more collective mode of existence in an individualized realm that reciprocally supports a realm in which collective responsibility is individualized. In other words, this neo-liberal diagram catches and captures creative energies in service to the status quo. To illustrate these ideas I turn to Dutch filmmaker Bregtje van der Haak’s 2010 documentary, California Dreaming, in which she compares the popular response to the 2008 financial crisis by focusing on several families across the transatlantic transcontinental divide. She interviews Europeans who blame the state as the source of the economic problem, and thus expect the state to fix it. And she interviews Americans who, reflecting on the “American dream,” reveal their faith in meritocracy, blame themselves, and thus look to their own families and communities for solutions. Their respective stories tell us how different neo-liberal diagrams structure and modulate subjectivity and its relation to the social, as well as the emerging ways in which this relation is being framed. If, as Deleuze writes, “there is no diagram that does not also include, besides the points which it connects up, certain relatively free points, points of creativity, change and resistance,” how can analysis of these shifty subjective-social structures point us to points of resistance" (Foucault? And why is it crucial that

  11. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  12. Sheltering the self from the storm: self-construal abstractness and the stability of self-esteem.

    Science.gov (United States)

    Updegraff, John A; Emanuel, Amber S; Suh, Eunkook M; Gallagher, Kristel M

    2010-01-01

    Self-construal abstractness (SCA) refers to the degree to which people construe important bases of self-esteem in a broad, flexible, and abstract rather than a concrete and specific manner. This article hypothesized that SCA would be a unique predictor of self-esteem stability, capturing the degree to which people's most important bases of self-worth are resistant to disconfirmation. Two studies using a daily diary methodology examined relationships between SCA, daily self-esteem, and daily emotions and/or events. In Study 1, individual differences in SCA emerged as the most consistent and unique predictor of self-esteem stability. Furthermore, SCA contributed to self-esteem stability by buffering the influence of daily negative emotions on self-esteem. Study 2 manipulated SCA via a daily self-construal task and found an abstract versus concrete self-focus to buffer the influence of daily negative events on self-esteem. Implications of these findings for the study of the self and well-being are discussed.

  13. Visualizing Mortality Dynamics in the Lexis Diagram

    DEFF Research Database (Denmark)

    Rau, Roland; Bohk-Ewald, Christina; Muszynska, Magdalena M

    This book visualizes mortality dynamics in the Lexis diagram. While the standard approach of plotting death rates is also covered, the focus in this book is on the depiction of rates of mortality improvement over age and time. This rather novel approach offers a more intuitive understanding...... of the underlying dynamics, enabling readers to better understand whether period- or cohort-effects were instrumental for the development of mortality in a particular country. Besides maps for single countries, the book includes maps on the dynamics of selected causes of death in the United States...... Software to produce these types of surface maps. Readers are encouraged to use the presented tools to visualize other demographic data or any event that can be measured by age and calendar time, allowing them to adapt the methods to their respective research interests. The intended audience is anyone who...

  14. A comparison of two approaches for solving unconstrained influence diagrams

    DEFF Research Database (Denmark)

    Ahlmann-Ohlsen, Kristian S.; Jensen, Finn V.; Nielsen, Thomas Dyhre

    2009-01-01

    Influence diagrams and decision trees represent the two most common frameworks for specifying and solving decision problems. As modeling languages, both of these frameworks require that the decision analyst specifies all possible sequences of observations and decisions (in influence diagrams, thi...

  15. Spacelike penguin diagram effects in B implies PP decays

    International Nuclear Information System (INIS)

    Du, D.; Yang, M.; Zhang, D.

    1996-01-01

    The spacelike penguin diagram contributions to branching ratios and CP asymmetries in charmless decays of B to two pseudoscalar mesons are studied using the next-to-leading order low energy effective Hamiltonian. Both the gluonic penguin and the electroweak penguin diagrams are considered. We find that the effects are significant. copyright 1995 The American Physical Society

  16. Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge

    Science.gov (United States)

    Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas

    2017-11-01

    We investigate and map out the nonequilibrium phase diagram of a generalization of the well known Aubry-André-Harper (AAH) model. This generalized AAH (GAAH) model is known to have a single-particle mobility edge which also has an additional self-dual property akin to that of the critical point of the AAH model. By calculating the population imbalance, we get hints of a rich phase diagram. We also find a fascinating connection between single particle wave functions near the mobility edge of the GAAH model and the wave functions of the critical AAH model. By placing this model far from equilibrium with the aid of two baths, we investigate the open system transport via system size scaling of nonequilibrium steady state (NESS) current, calculated by fully exact nonequilibrium Green's function (NEGF) formalism. The critical point of the AAH model now generalizes to a `critical' line separating regions of ballistic and localized transport. Like the critical point of the AAH model, current scales subdiffusively with system size on the `critical' line (I ˜N-2 ±0.1 ). However, remarkably, the scaling exponent on this line is distinctly different from that obtained for the critical AAH model (where I ˜N-1.4 ±0.05 ). All these results can be understood from the above-mentioned connection between states near the mobility edge of the GAAH model and those of the critical AAH model. A very interesting high temperature nonequilibrium phase diagram of the GAAH model emerges from our calculations.

  17. The use of influence diagrams for evaluating severe accident management strategies

    International Nuclear Information System (INIS)

    Jae, M.; Apostolakis, G.E.

    1992-01-01

    In this paper, the influence diagram, a new analytical tool for developing and evaluating severe accident management strategies, is presented. Influence diagrams are much simpler than decision trees because they do not lead to the large number of branches that are generated when decision trees are used in realistic problems; furthermore, they show explicitly the dependencies between the variables of the problem. One of the accident management strategies proposed for light water reactors, flooding the reactor cavity as a means of preventing vessel breach during a short-term station blackout sequence, is presented. The influence diagram associated with this strategy is constructed. Finally, the advantages of using influence diagrams in accident management are explored

  18. Complete Abstractions of Dynamical Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2013-01-01

    This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...... to approximate the dynamical system, in a subset of admissible subdivisioning functions....

  19. The importance of design in learning from node-link diagrams

    NARCIS (Netherlands)

    Amelsvoort, Marije; van der Meij, Jan; Anjewierden, Anjo Allert; van der Meij, Hans

    2013-01-01

    Diagrams organize by location. They give spatial cues for finding and recognizing information and for making inferences. In education, diagrams are often used to help students understand and recall information. This study assessed the influence of perceptual cues on reading behavior and subsequent

  20. Re-determination of succinonitrile (SCN) camphor phase diagram

    Science.gov (United States)

    Teng, Jing; Liu, Shan

    2006-04-01

    Low-melting temperature transparent organic materials have been extensively used to study the pattern formation and microstructure evolution. It proves to be very challenging to accurately determine the phase diagram since there is no viable way to measure the composition microscopically. In this paper, we presented the detailed experimental characterization of the phase diagram of succinonitrile (SCN)-camphor binary system. Differential scanning calorimetry, a ring-heater, and the directional solidification technique have been combined to determine the details of the phase diagram by using the purified materials. The advantages and disadvantages have been discussed for the different experimental techniques. SCN and camphor constitute a simple binary eutectic system with the eutectic composition at 23.6 wt% camphor and eutectic temperature at 37.65 °C. The solidus and the solubility of the SCN base solid solution have been precisely determined for the first time in this binary system.

  1. Binary phase diagrams based on elements VIIIA and IB periods of the D.I. Mendeleev’s table and features of crystallographic parameters

    Science.gov (United States)

    Potekaev, A. I.; Klopotov, A. A.; Porobova, S. A.; Klopotov, V. D.; Markova, T. N.; Imanaliev, M. I.

    2017-01-01

    The data obtained as a result of the analysis of crystallogeometric parameters and the structure of state diagrams of binary systems from elements VIIIA and IB periods of the D.I. Mendeleev’s table are presented. It is shown that the classification of the evolution of phase diagrams of binary systems by types, proposed by T.A. Lebedev, correlates with features of concentration dependences of the deviation of atomic volumes in solid solutions from Zen law.

  2. Designing a supply chain of ready-mix concrete using Voronoi diagrams

    Science.gov (United States)

    Kozniewski, E.; Orlowski, M.; Orlowski, Z.

    2017-10-01

    Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.

  3. Uniqueness conditions for finitely dependent random fields

    International Nuclear Information System (INIS)

    Dobrushin, R.L.; Pecherski, E.A.

    1981-01-01

    The authors consider a random field for which uniqueness and some additional conditions guaranteeing that the correlations between the variables of the field decrease rapidly enough with the distance between the values of the parameter occur. The main result of the paper states that in such a case uniqueness is true for any other field with transition probabilities sufficiently close to those of the original field. Then they apply this result to some ''degenerate'' classes of random fields for which one can check this condition of correlation to decay, and thus obtain some new conditions of uniqueness. (Auth.)

  4. Algorithmic approach to diagram techniques

    International Nuclear Information System (INIS)

    Ponticopoulos, L.

    1980-10-01

    An algorithmic approach to diagram techniques of elementary particles is proposed. The definition and axiomatics of the theory of algorithms are presented, followed by the list of instructions of an algorithm formalizing the construction of graphs and the assignment of mathematical objects to them. (T.A.)

  5. Diagrams in the polaron model

    International Nuclear Information System (INIS)

    Smondyrev, M.A.

    1985-01-01

    The perturbation theory for the polaron energy is systematically treated on the diagrammatic basis. Feynman diagrams being constructed allow to calculate the polaron energy up to the third order in powers of the coupling constant. Similar calculations are performed for the average number of virtual phonons

  6. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  7. Stability conditions and phase diagrams for two-component Fermi gases with population imbalance

    International Nuclear Information System (INIS)

    Chen Qijin; He Yan; Chien, C.-C.; Levin, K.

    2006-01-01

    Superfluidity in atomic Fermi gases with population imbalance has recently become an exciting research focus. There is considerable disagreement in the literature about the appropriate stability conditions for states in the phase diagram throughout the BCS to Bose-Einstein condensation crossover. Here we discuss these stability conditions for homogeneous polarized superfluid phases, and compare with recent alternative proposals. The requirement of a positive second-order partial derivative of the thermodynamic potential with respect to the fermionic excitation gap Δ (at fixed chemical potentials) is demonstrated to be equivalent to the positive definiteness of the particle number susceptibility matrix. In addition, we show the positivity of the effective pair mass constitutes another nontrivial stability condition. These conditions determine the (local) stability of the system towards phase separation (or other ordered phases). We also study systematically the effects of finite temperature and the related pseudogap on the phase diagrams defined by our stability conditions

  8. Relation between time-temperature transformation and continuous heating transformation diagrams of metallic glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2005-01-01

    The time-temperature transformation (TTT) diagrams for the onset of devitrification of the Ge-Ni-La and Cu-Hf-Ti glassy alloys were calculated from the isothermal differential calorimetry data using an Arrhenius equation. The continuous heating transformation (CHT) diagrams for the onset of devitrification of the glassy alloys were subsequently recalculated from TTT diagrams. The recalculation method used for conversion of the TTT into CHT diagrams produces reasonable results and is not sensitive to the type of the devitrification reaction (polymorphous or primary transformation). The diagrams allow to perform a comparison of the stabilities of glassy alloys on a long-term scale. The relationship between these diagrams is discussed

  9. Top-down versus bottom-up processing of influence diagrams in probabilistic analysis

    International Nuclear Information System (INIS)

    Timmerman, R.D.; Burns, T.J.; Dodds, H.L. Jr.

    1986-01-01

    Recent work by Phillips et al and Selby et al has shown that influence diagram methodology can be a useful analytical tool in reactor safety studies. In some instances, an influence diagram can be used as a graphical representation of probabilistic dependence within a system or event sequence. Under these circumstances, Bayesian statistics is employed to transform the relationships depicted in the influence diagram into the correct expression for a desired marginal probability (e.g., the top node). In the references cited above, the authors demonstrated the usefulness of influence diagrams for assessing the reliability of operator performance during pressurized thermal shock transients. In addition, the use of influence diagrams identified the critical variables that had the greatest impact on operator reliability for a particular scenario (e.g., control room design, procedures, etc.). Top-down and bottom-up algorithms have emerged as the dominant methods for quantifying influence diagrams. The purpose of this paper is to demonstrate a potential error in employing the bottom-up algorithm when dealing with interdependencies

  10. The Butterfly Diagram Internal Structure

    International Nuclear Information System (INIS)

    Ternullo, Maurizio

    2013-01-01

    A time-latitude diagram, where the spotgroup area is taken into account, is presented for cycles 12 through 23. The results show that the spotted area is concentrated in few, small portions ( k nots ) of the Butterfly Diagram (BD). The BD may be described as a cluster of knots. Knots are distributed in the butterfly wings in a seemingly randomly way. A knot may appear at either lower or higher latitudes than previous ones, in spite of the prevalent tendency to appear at lower and lower latitudes. Accordingly, the spotted area centroid, far from continuously drifting equatorward, drifts poleward or remains stationary in any hemisphere for significant fractions (≈ 1/3) of the cycle total duration. In a relevant number of semicycles, knots seem to form two roughly parallel, oblique c hains , separated by an underspotted band. This picture suggests that two (or more) ''activity streams'' approach the equator at a rate higher than the spot zone as a whole.

  11. Application of the cause-consequence diagram method to static systems

    International Nuclear Information System (INIS)

    Andrews, J.D.; Ridley, L.M.

    2002-01-01

    In the last 30 years, various mathematical models have been used to identify the effect of component failures on the performance of a system. The most frequently used technique for system reliability assessment is Fault Tree Analysis (FTA) and a large proportion of its popularity can be attributed to the fact that it provides a very good documentation of the way that the system failure logic was developed. Exact quantification of the fault tree, however, can be problematic for very large systems and in such situations, approximations can be used. Alternatively, an exact result can be obtained via the conversion of the fault tree into a binary decision diagram (BDD). The BDD, however, loses all failure logic documentation during the conversion process. This paper outlines the use of the cause-consequence diagram method as a tool for system risk and reliability analysis. As with the FTA method, the cause-consequence diagram documents the failure logic of the system. In addition to this the cause-consequence diagram produces the exact failure probability in a very efficient calculation procedure. The cause-consequence diagram technique has been applied to a static system and shown to yield the same result as those produced by the solution of the equivalent fault tree and BDD. On the basis of this general rules have been devised for the correct construction of the cause-consequence diagram given a static system. The use of the cause-consequence method in this manner has significant implications in terms of efficiency of the reliability analysis and can be shown to have benefits for static systems

  12. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA

  13. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2

  14. Health physics research abstracts no. 11

    International Nuclear Information System (INIS)

    1984-07-01

    The present issue No. 11 of Health Physics Research Abstracts is the continuation of a series of Bulletins published by the Agency since 1967. They collect reports from Member States on Health Physics research in progress or just completed. The main aim in issuing such reports is to draw attention to work that is about to be published and to enable interested scientists to obtain further information through direct correspondence with the investigators. The attention of users of this publication is drawn to the fact that abstracts of published documents on Health Physics are published eventually in INIS Atomindex, which is one of the output products of the Agency's International Nuclear Information System. The present issue contains 235 reports received up to December 1983 from the following Member States. In parentheses the country's ISO code and number of reports are given

  15. Conformational properties of rigid-chain amphiphilic macromolecules : The phase diagram

    NARCIS (Netherlands)

    Markov, V. A.; Vasilevskaya, V. V.; Khalatur, P. G.; ten Brinke, G.; Khokhlov, A. R.

    The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial

  16. The Critical Importance of Russell's Diagram

    Science.gov (United States)

    Gingerich, O.

    2013-04-01

    The idea of dwarf and giants stars, but not the nomenclature, was first established by Eijnar Hertzsprung in 1905; his first diagrams in support appeared in 1911. In 1913 Henry Norris Russell could demonstrate the effect far more strikingly because he measured the parallaxes of many stars at Cambridge, and could plot absolute magnitude against spectral type for many points. The general concept of dwarf and giant stars was essential in the galactic structure work of Harlow Shapley, Russell's first graduate student. In order to calibrate the period-luminosity relation of Cepheid variables, he was obliged to fall back on statistical parallax using only 11 Cepheids, a very sparse sample. Here the insight provided by the Russell diagram became critical. The presence of yellow K giant stars in globular clusters credentialed his calibration of the period-luminosity relation by showing that the calibrated luminosity of the Cepheids was comparable to the luminosity of the K giants. It is well known that in 1920 Shapley did not believe in the cosmological distances of Heber Curtis' spiral nebulae. It is not so well known that in 1920 Curtis' plot of the period-luminosity relation suggests that he didn't believe it was a physical relation and also he failed to appreciate the significance of the Russell diagram for understanding the large size of the Milky Way.

  17. CMP 2009: conference of moldavian physicists. Abstracts

    International Nuclear Information System (INIS)

    2009-11-01

    This book includes 151 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems, etc.

  18. CMP 2012: conference of moldavian physicists. Abstracts

    International Nuclear Information System (INIS)

    2012-10-01

    This book includes abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems, etc.

  19. Warped penguin diagrams

    International Nuclear Information System (INIS)

    Csaki, Csaba; Grossman, Yuval; Tanedo, Philip; Tsai, Yuhsin

    2011-01-01

    We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR brane-localized Higgs. These operators are finite at one-loop order and we explicitly calculate the branching ratio for μ→eγ using the mixed position/momentum space formalism. The particular bound on the anarchic Yukawa and Kaluza-Klein (KK) scales can depend on the flavor structure of the anarchic matrices. It is possible for a generic model to either be ruled out or unaffected by these bounds without any fine-tuning. We quantify how these models realize this surprising behavior. We also review tree-level lepton flavor bounds in these models and show that these are on the verge of tension with the μ→eγ bounds from typical models with a 3 TeV Kaluza-Klein scale. Further, we illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of divergence of a five-dimensional loop diagram using both the five-dimensional and KK formalism. This power counting can be obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the dominant contribution.

  20. Three-body crystallization diagrams and the cooling of white dwarfs.

    Science.gov (United States)

    Segretain, L.

    1996-06-01

    The 3-body crystallization diagrams of C/O/Ne ionic mixtures characteristic of white dwarf interiors are examined within the framework of the density-functional theory of freezing. The crystallization process is described more accurately than in former calculations where the three-component system was treated as an effective two-component mixture (Segretain et al. 1994). The distillation process due to neon-crystallization is found to occur only for the late stages of crystallization. At the beginning, the presence of neon plays only a minor role and the phase diagram resembles a pure carbon-oxygen diagram. The final phase diagram is found to exhibit an azeotropic point with a neon concentration x_Ne_=0.22, a carbon concentration x_C_=0.78 and an oxygen concentration x_O_=0, so that during the distillation process, the fluid crystallizes into a pure neon-carbon solid. The critical temperature is T_A_=0.85T_C_, where T_C_ is the pure carbon crystallization temperature. We use this accurate phase diagram to calculate the total gravitational energy released during white dwarf crystallization and the related time delay. The final result yields {DELTA}τ=~2.6Gyr, among which about 20% are due to the neon-distillation process.

  1. Diagram-based Analysis of Causal Systems (DACS): elucidating inter-relationships between determinants of acute lower respiratory infections among children in sub-Saharan Africa.

    Science.gov (United States)

    Rehfuess, Eva A; Best, Nicky; Briggs, David J; Joffe, Mike

    2013-12-06

    Effective interventions require evidence on how individual causal pathways jointly determine disease. Based on the concept of systems epidemiology, this paper develops Diagram-based Analysis of Causal Systems (DACS) as an approach to analyze complex systems, and applies it by examining the contributions of proximal and distal determinants of childhood acute lower respiratory infections (ALRI) in sub-Saharan Africa. Diagram-based Analysis of Causal Systems combines the use of causal diagrams with multiple routinely available data sources, using a variety of statistical techniques. In a step-by-step process, the causal diagram evolves from conceptual based on a priori knowledge and assumptions, through operational informed by data availability which then undergoes empirical testing, to integrated which synthesizes information from multiple datasets. In our application, we apply different regression techniques to Demographic and Health Survey (DHS) datasets for Benin, Ethiopia, Kenya and Namibia and a pooled World Health Survey (WHS) dataset for sixteen African countries. Explicit strategies are employed to make decisions transparent about the inclusion/omission of arrows, the sign and strength of the relationships and homogeneity/heterogeneity across settings.Findings about the current state of evidence on the complex web of socio-economic, environmental, behavioral and healthcare factors influencing childhood ALRI, based on DHS and WHS data, are summarized in an integrated causal diagram. Notably, solid fuel use is structured by socio-economic factors and increases the risk of childhood ALRI mortality. Diagram-based Analysis of Causal Systems is a means of organizing the current state of knowledge about a specific area of research, and a framework for integrating statistical analyses across a whole system. This partly a priori approach is explicit about causal assumptions guiding the analysis and about researcher judgment, and wrong assumptions can be reversed

  2. SPR 2017. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-05-15

    The conference proceedings SPR 2017 include abstracts on the following issues: gastrointestinal radiography - inflammatory bowel diseases, cardiovascular CTA, general muscoskeletal radiology, muscoskeletal congenital development diseases, general pediatric radiology - chest, muscoskeletal imaging - marrow and infectious disorders, state-of-the-art body MR imaging, practical pediatric sonography, quality and professionalism, CT imaging in congenital heart diseases, radiographic courses, body MT techniques, contrast enhanced ultrasound, machine learning, forensic imaging, the radiation dos conundrum - reconciling imaging, imagining and managing, the practice of radiology, interventional radiology, neuroradiology, PET/MR.

  3. Spin glass and ferromagnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys: Multicritical points in the magnetic phase diagram

    International Nuclear Information System (INIS)

    Synoradzki, K.; Toliński, T.

    2016-01-01

    We report on the CeNi_4Mn (ferromagnet FM) - CeCu_4Mn (spin-glass SG) transformation leading to a complex magnetic phase diagram (MPD). It is verified that all the Ce(Cu_1_-_xNi_x)_4Mn alloys are isostructural and the transformation is governed only by the Cu-Ni substitution. MPD is built based on the magnetic dc/ac susceptibility measurements and reveals SG formation as well as the region of the coexistence of the FM and SG state in the middle range of the Ni concentration. The complex MPD is explained by clusters formation and a competition of interactions between various crystallographic sites of the hexagonal CaCu_5-type structure, mainly the 3g-3g and 3g-2c interactions. The predominance of the SG state is confirmed by the analysis of the frequency dependence of the ac magnetic susceptibility components and the relaxation of the remanent magnetization. Additionally, the presence of two multicritical points is observed. - Highlights: • We fully characterized the magnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys. • We show the presence of complex magnetic behaviour due to atomic-site disorder. • Magnetic phase diagram revels mixed-phase ground state. • Two multicritical points on magnetic phase diagram occurs.

  4. Effect of self-interaction on the phase diagram of a Gibbs-like measure derived by a reversible Probabilistic Cellular Automata

    International Nuclear Information System (INIS)

    Cirillo, Emilio N.M.; Louis, Pierre-Yves; Ruszel, Wioletta M.; Spitoni, Cristian

    2014-01-01

    Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains on lattice with finite single-cell states whose distinguishing feature is the parallel character of the updating rule. We study the ground states of the Hamiltonian and the low-temperature phase diagram of the related Gibbs measure naturally associated with a class of reversible PCA, called the cross PCA. In such a model the updating rule of a cell depends indeed only on the status of the five cells forming a cross centered at the original cell itself. In particular, it depends on the value of the center spin (self-interaction). The goal of the paper is that of investigating the role played by the self-interaction parameter in connection with the ground states of the Hamiltonian and the low-temperature phase diagram of the Gibbs measure associated with this particular PCA

  5. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    Science.gov (United States)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  6. Case Report: A Unique Case Of Cystic Echinococcosis in a Sahiwal ...

    African Journals Online (AJOL)

    Case Report: A Unique Case Of Cystic Echinococcosis in a Sahiwal Cow in Narok County, Kenya. JA Omega, PK Koskei. Abstract. A three and a half year old pregnant Sahiwal cow born and reared just outside the Maasai Mara National Game Reserve in Narok County, Kenya was noticed to walk slowly, cough occasionally ...

  7. The colour-magnitude diagram of NGC 5053

    International Nuclear Information System (INIS)

    Walker, M.F.; Pike, C.D.; McGee, J.D.

    1976-01-01

    The colour-magnitude diagram of NGC 5053 has been derived to V = 21.1 from photographic and electronographic observations. The electronographic observations were obtained with an experimental Spectracon image-converter, having photocathode and exit window dimensions of 20 x 30 mm, mounted at the prime-focus of the 120-in. Lick reflector. The photographic observations were obtained with the 20-in. Carnegie astrograph and the 36-in. Crossley reflector. The colour-magnitude diagram resembles that of M92, with the difference that a red horizontal branch is more pronounced than the asymptotic branch in NGC 5053. The topology of the horizontal branch is that of clusters with an intermediate metal content and is thus at variance with the mean period of the RR Lyr stars and the unreddened colour of the subgiant branch read at the magnitude level of the horizontal branch, both of which would indicate an extremely low metal content. If comparison of the colour-magnitude diagrams of NGC 5053 and M92 is valid, then the reddening of NGC 5053 is Esub(B-V) = 0.02 and the apparent distance modulus is m-M = 16.08 +- 0.08. (author)

  8. NPP life management (abstracts)

    International Nuclear Information System (INIS)

    Litvinskij, L.L.; Barbashev, S.V.

    2002-01-01

    Abstracts of the papers presented at the International conference of the Ukrainian Nuclear Society 'NPP Life Management'. The following problems are considered: modernization of the NPP; NPP life management; waste and spent nuclear fuel management; decommissioning issues; control systems (including radiation and ecological control systems); information and control systems; legal and regulatory framework. State nuclear regulatory control; PR in nuclear power; training of personnel; economics of nuclear power engineering

  9. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  10. Free energy diagram for the heterogeneous enzymatic hydrolysis of glycosidic bonds in cellulose

    DEFF Research Database (Denmark)

    Westh, Peter; Cruys-Bagger, Nicolaj; Sørensen, Trine Holst

    2015-01-01

    for all stable and activated complexes defined by the reaction scheme, and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association...... no influence on the transition state for association, but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association....

  11. Project Management Plan for the INEL technology logic diagrams

    International Nuclear Information System (INIS)

    Rudin, M.J.

    1992-10-01

    This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ''Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG ampersand G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project

  12. Decorated-box-diagram contributions to Bhabha scattering. Pt. 1

    International Nuclear Information System (INIS)

    Faeldt, G.; Osland, P.

    1994-01-01

    We evaluate, in the light-energy limit, s>>vertical stroke tvertical stroke >>m 2 >>λ 2 , the sum of amplitudes corresponding to a class of Feynman diagrams describing two-loop virtual photonic corrections to Bhabha scattering. The diagrams considered are box and crossed-box diagrams with an extra photon decorating one of the fermion lines. The mathematical method employed is that of Mellin transforms. In the eikonal approximation, this sum of two-loop amplitudes has previously been evaluated, and found to be equal to the sum of the box and crossed-box amplitudes, multiplied by the electric form factor of the electron. We obtain a similar factorization, but with the form factor replaced by another expression involving the logarithms log(λ 2 /m 2 ) and log(λ 2 /vertical stroke tvertical stroke ). (orig.)

  13. Nonplanar on-shell diagrams and leading singularities of scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyi; Cheung, Yeuk-Kwan E.; Li, Yunxuan; Xie, Ruofei; Xin, Yuan [Nanjing University, Department of Physics, Nanjing (China); Chen, Gang [Zhejiang Normal University, Department of Physics, Jinhua, Zhejiang (China); Nanjing University, Department of Physics, Nanjing (China)

    2017-02-15

    Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW) decomposable on-shell diagram process a rational top form if and only if the algebraic ideal comprised the geometrical constraints are shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top form integration contours can thus be obtained, and understood, in a straightforward way. All rational top form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW decomposable. (orig.)

  14. Top-down versus bottom-up processing of influence diagrams in probabilistic analysis

    International Nuclear Information System (INIS)

    Timmerman, R.D.; Burns, T.J.; Dodds, H.L. Jr.

    1986-01-01

    Recent work by Phillips and Selby has shown that influence diagram methodology can be a useful analytical tool in reactor safety studies. In some instances an influence diagram can be used as a graphical representation of probabilistic dependence within a system or event sequence. Under these circumstances, Bayesian statistics is employed to transform the relationships depicted in the influence diagram into the correct expression for a desired marginal probability (e.g. the top node). Top-down and bottom-up algorithms have emerged as the dominant methods for quantifying influence diagrams. The purpose of this paper is to demonstrate a potential error in employing the bottom-up algorithm when dealing with interdependencies

  15. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams

    Science.gov (United States)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-05-01

    A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.

  16. Quantitative study of FORC diagrams in thermally corrected Stoner– Wohlfarth nanoparticles systems

    International Nuclear Information System (INIS)

    De Biasi, E.; Curiale, J.; Zysler, R.D.

    2016-01-01

    The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations 'blur' the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner– Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution. - Highlights: • Quantify the degree of accuracy of the information obtained using the FORC diagrams.

  17. State diagram of U-Al-Si as a basis for analysis of the processes in nuclear fuel compositions based on U(Al, Si)3 and U3Si compounds

    International Nuclear Information System (INIS)

    Chebotarev, N.T.; Konovalov, L.N.; Zhmak, V.A.; Chebotarev, Ya.N.

    1996-01-01

    Results of studies into the Al-UAl 3 -USi 3 -Si of the U-Al-Si ternary system are presented. It is established that phase equilibrium between the intermetallic compound U(Al, Si) 3 and the aluminium-silicon alloys may be presented in form of conodes on the isothermal cross-section of the state diagram. It is shown that the U(Al, Si) 3 intermetallic compound, containing up to 6.5 at.% silicon, interacts both with liquid and solid aluminium with the U(Al, Si) 4 phase formation [ru

  18. AIF-ω: Set-Based Protocol Abstraction with Countable Families

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Bruni, Alessandro

    2016-01-01

    this limitation by abstracting state into countable families of sets. We can then formalize a problem with unbounded agents, where each agent maintains its own set of keys. Still, our method does not loose the benefits of the abstraction approach, in particular, it translates a verification problem to a set...

  19. A logical correspondence between natural semantics and abstract machines

    DEFF Research Database (Denmark)

    Simmons, Robert J.; Zerny, Ian

    2013-01-01

    We present a logical correspondence between natural semantics and abstract machines. This correspondence enables the mechanical and fully-correct construction of an abstract machine from a natural semantics. Our logical correspondence mirrors the Reynolds functional correspondence, but we...... manipulate semantic specifications encoded in a logical framework instead of manipulating functional programs. Natural semantics and abstract machines are instances of substructural operational semantics. As a byproduct, using a substructural logical framework, we bring concurrent and stateful models...

  20. Exploring the QCD phase diagram through relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Mohanty Bedangadas

    2014-03-01

    Full Text Available We present a review of the studies related to establishing the QCD phase diagram through high energy nucleus-nucleus collisions. We particularly focus on the experimental results related to the formation of a quark-gluon phase, crossover transition and search for a critical point in the QCD phase diagram.

  1. Heuristic Diagrams as a Tool to Teach History of Science

    Science.gov (United States)

    Chamizo, Jose A.

    2012-01-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The…

  2. Microsoft Visio 2013 business process diagramming and validation

    CERN Document Server

    Parker, David

    2013-01-01

    Microsoft Visio 2013 Business Process Diagramming and Validation provides a comprehensive and practical tutorial including example code and demonstrations for creating validation rules, writing ShapeSheet formulae, and much more.If you are a Microsoft Visio 2013 Professional Edition power user or developer who wants to get to grips with both the essential features of Visio 2013 and the validation rules in this edition, then this book is for you. A working knowledge of Microsoft Visio and optionally .NET for the add-on code is required, though previous knowledge of business process diagramming

  3. Students’ understanding of forces: Force diagrams on horizontal and inclined plane

    Science.gov (United States)

    Sirait, J.; Hamdani; Mursyid, S.

    2018-03-01

    This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.

  4. Diagrams: A Visual Survey of Graphs, Maps, Charts and Diagrams for the Graphic Designer.

    Science.gov (United States)

    Lockwood, Arthur

    Since the ultimate success of any diagram rests in its clarity, it is important that the designer select a method of presentation which will achieve this aim. He should be aware of the various ways in which statistics can be shown diagrammatically, how information can be incorporated in maps, and how events can be plotted in chart or graph form.…

  5. Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model

    Science.gov (United States)

    Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira

    2018-02-01

    We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.

  6. Interactive Cost Configuration Over Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Hadzic, Tarik; Pisinger, David

    2010-01-01

    interaction online. In particular,binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show...... that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We...... then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme...

  7. TEP process flow diagram

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  8. Matrix model approximations of fuzzy scalar field theories and their phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)

    2015-12-29

    We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.

  9. Application of the Mudge diagram and QFD using the hierarchization of the requirements for a flying car as an example

    Directory of Open Access Journals (Sweden)

    Cristiano Henrique Schuster

    2015-03-01

    Full Text Available In this paper, whose theme is the application of the Mudge diagram and QFD using the hierarchization of the requirements for a flying car as an example, an analysis of the state of the art of flying cars will be conducted, seeking to highlight important characteristics for the development of this concept. The main objective is to show an example of the application of the Mudge Diagram and the Quality Function Development (QFD tools to define requirements for the success of a flying car. The methods used are: literature review, use of value-focused brainstorming to obtain desirable characteristics and subsequent application of the QFD and Mudge diagram tools for the comparison of desirable feature in such equipment. The results obtained show the importance of these last two tools in the product development, assisting in the decision-making and focus of the project. The Mudge diagram allowed the hierarchization of the requirements used as example, and a comparison between these requirements through the QFD tool. Therefore, it can be concluded that the objectives were achieved, so this work is of great value to the academic field.

  10. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    Science.gov (United States)

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  11. Ionic effects on the temperature-force phase diagram of DNA.

    Science.gov (United States)

    Amnuanpol, Sitichoke

    2017-12-01

    Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature-force phase diagram the critical force F c (T) increases logarithmically with the Na + concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of F c (T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.

  12. Top-down versus bottom-up processing of influence diagrams in probabilistic analysis

    International Nuclear Information System (INIS)

    Timmerman, R.D.; Burns, T.J.; Dodds, H.L. Jr.

    1984-01-01

    Recent work by Phillips et al., and Selby et al., has shown that influence diagram methodology can be a useful analytical tool in reactor safety studies. An influence diagram is a graphical representation of probabilistic dependence within a system or event sequence. Bayesian statistics are employed to transform the relationships depicted in the influence diagram into the correct expression for a desired marginal probability (e.g. the top event). As with fault trees, top-down and bottom-up algorithms have emerged as the dominant methods for quantifying influence diagrams. Purpose of this paper is to demonstrate a potential error in employing the bottom-up algorithm when dealing with interdependencies. In addition, the computing efficiency of both methods is discussed

  13. Profile of High School Students’ Propositional Network Representation when Interpreting Convention Diagrams

    Science.gov (United States)

    Fatiha, M.; Rahmat, A.; Solihat, R.

    2017-09-01

    The delivery of concepts in studying Biology often represented through a diagram to easily makes student understand about Biology material. One way to knowing the students’ understanding about diagram can be seen from causal relationship that is constructed by student in the propositional network representation form. This research reveal the trend of students’ propositional network representation patterns when confronted with convention diagram. This descriptive research involved 32 students at one of senior high school in Bandung. The research data was acquired by worksheet that was filled by diagram and it was developed according on information processing standards. The result of this research revealed three propositional network representation patterns are linear relationship, simple reciprocal relationship, and complex reciprocal relationship. The dominating pattern is linear form that is simply connect some information components in diagram by 59,4% students, the reciprocal relationship form with medium level by 28,1% students while the complex reciprocal relationship by only 3,1% and the rest was students who failed to connect information components by 9,4%. Based on results, most of student only able to connect information components on the picture in linear form and a few student constructing reciprocal relationship between information components on convention diagram.

  14. Diagrams of ion stability in radio-frequency mass spectrometry

    International Nuclear Information System (INIS)

    Sudakov, M.Yu.

    1994-01-01

    For solving radio-frequency mass spectrometry problems and dynamic ion containment are studied and systematized different ways for constructing the ion stability diagrams. A new universal set of parameters is proposed for diagram construction-angular variables, which are the phase raid of ion oscillational motion during positive and negative values of the supplying voltage. An effective analytical method is proposed for optimization of the parameters of the pulsed supplying voltage, in particular its repetition rate

  15. Existence of non-unique steady state solutions to the RMF current drive equations

    Energy Technology Data Exchange (ETDEWEB)

    Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences

    1985-05-04

    It is shown that the value of the d.c. current driven in a plasma cylinder by means of a rotating magnetic field (RMF) is not unique for R/delta >= 6 and eBsub(..omega..)/..nu..sub(ei)m approx.R/delta, where R is the radius of the plasma cylinder, delta is the classical skin depth, ..nu..sub(ei) is the electron-ion momentum transfer collision frequency, Bsub(..omega..) is the magnitude of the rotating magnetic field, e is the electron charge and m is the electron mass. This effect is predicted using three distinct approaches: (i) a steady state anaysis which ignores the second and higher harmonics of the fields and currents; (ii) a qualitative model which utilizes the analogy between the RMF current drive technique and the operation of the induction motor; (iii) a solution of the initial boundary value equations describing the RMF current drive in cylindrical plasmas.

  16. Large momentum expansion of two-loop self-energy diagrams with arbitrary masses

    International Nuclear Information System (INIS)

    Davydychev, A.I.; Smirnov, V.A.; Tausk, J.B.

    1993-01-01

    For two-loop two-point diagrams with arbitrary masses, an algorithm to derive the asymptotic expansion at large external momentum squared is constructed. By using a general theorem on asymptotic expansions of Feynman diagrams, the coefficients of the expansion are calculated analytically. For some two-loop diagrams occurring in the Standard Model, comparison with results of numerical integration shows that our expansion works well in the region above the highest physical threshold. (orig.)

  17. Magnetic Phase Diagram of α-RuCl3

    Science.gov (United States)

    Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey

    The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.

  18. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates

  19. TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAMS FOR FUTURE WASTE COMPOSITIONS

    International Nuclear Information System (INIS)

    Billings, A.; Edwards, T.

    2010-01-01

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the waste form stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (T g ) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The T g of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP) and in SRNL-STI-2009-00025. Additional phase transformation information exists for other projected compositions, but overall these compositions did not cover composition regions estimated for future waste processing. To develop TTT diagrams for future waste types, the Savannah River National Laboratory (SRNL) fabricated two caches of glass from reagent grade oxides to simulate glass compositions which would be likely processed with and without Al dissolution. These were used for glass transition temperature measurement and TTT diagram development. The glass transition temperatures of both glasses were measured using differential scanning calorimetry (DSC) and were recorded to be 448 C and 452 C. Using the previous TTT diagrams as guidance

  20. Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Biere, Armin; Clarke, Edmund M.

    2000-01-01

    In this paper we show how to do symbolic model checking using Boolean Expression Diagrams (BEDs), a non-canonical representation for Boolean formulas, instead of Binary Decision Diagrams (BDDs), the traditionally used canonical representation. The method is based on standard fixed point algorithm...