WorldWideScience

Sample records for undescribed heterozygous missense

  1. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

    NARCIS (Netherlands)

    Van Houdt, Jeroen K. J.; Nowakowska, Beata Anna; Sousa, Sergio B.; van Schaik, Barbera D. C.; Seuntjens, Eve; Avonce, Nelson; Sifrim, Alejandro; Abdul-Rahman, Omar A.; van den Boogaard, Marie-Jose H.; Bottani, Armand; Castori, Marco; Cormier-Daire, Valerie; Deardorff, Matthew A.; Filges, Isabel; Fryer, Alan; Fryns, Jean-Pierre; Gana, Simone; Garavelli, Livia; Gillessen-Kaesbach, Gabriele; Hall, Bryan D.; Horn, Denise; Huylebroeck, Danny; Klapecki, Jakub; Krajewska-Walasek, Malgorzata; Kuechler, Alma; Lines, Matthew A.; Maas, Saskia; MacDermot, Kay D.; McKee, Shane; Magee, Alex; de Man, Stella A.; Moreau, Yves; Morice-Picard, Fanny; Obersztyn, Ewa; Pilch, Jacek; Rosser, Elizabeth; Shannon, Nora; Stolte-Dijkstra, Irene; Van Dijck, Patrick; Vilain, Catheline; Vogels, Annick; Wakeling, Emma; Wieczorek, Dagmar; Wilson, Louise; Zuffardi, Orsetta; van Kampen, Antoine H. C.; Devriendt, Koenraad; Hennekam, Raoul; Vermeesch, Joris Robert

    Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening

  2. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2015-01-01

    Full Text Available Background. Retinitis pigmentosa (RP is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS. Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  3. A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebellar Dysgenesis.

    Science.gov (United States)

    Olson, Heather E; Jean-Marçais, Nolwenn; Yang, Edward; Heron, Delphine; Tatton-Brown, Katrina; van der Zwaag, Paul A; Bijlsma, Emilia K; Krock, Bryan L; Backer, E; Kamsteeg, Erik-Jan; Sinnema, Margje; Reijnders, Margot R F; Bearden, David; Begtrup, Amber; Telegrafi, Aida; Lunsing, Roelineke J; Burglen, Lydie; Lesca, Gaetan; Cho, Megan T; Smith, Lacey A; Sheidley, Beth R; Moufawad El Achkar, Christelle; Pearl, Phillip L; Poduri, Annapurna; Skraban, Cara M; Tarpinian, Jennifer; Nesbitt, Addie I; Fransen van de Putte, Dietje E; Ruivenkamp, Claudia A L; Rump, Patrick; Chatron, Nicolas; Sabatier, Isabelle; De Bellescize, Julitta; Guibaud, Laurent; Sweetser, David A; Waxler, Jessica L; Wierenga, Klaas J; Donadieu, Jean; Narayanan, Vinodh; Ramsey, Keri M; Nava, Caroline; Rivière, Jean-Baptiste; Vitobello, Antonio; Tran Mau-Them, Frédéric; Philippe, Christophe; Bruel, Ange-Line; Duffourd, Yannis; Thomas, Laurel; Lelieveld, Stefan H; Schuurs-Hoeijmakers, Janneke; Brunner, Han G; Keren, Boris; Thevenon, Julien; Faivre, Laurence; Thomas, Gary; Thauvin-Robinet, Christel

    2018-05-03

    Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  4. Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants.

    Science.gov (United States)

    Kassner, Ursula; Salewsky, Bastian; Wühle-Demuth, Marion; Szijarto, Istvan Andras; Grenkowitz, Thomas; Binner, Priska; März, Winfried; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2015-09-01

    Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.

  5. Identification of rare heterozygous missense mutations in FANCA in esophageal atresia patients using next-generation sequencing.

    Science.gov (United States)

    Feng, Yu; Chen, Runsen; Da, Min; Qian, Bo; Mo, Xuming

    2018-06-30

    Esophageal atresia and tracheoesophageal fistula (EA/TEF) are relatively common malformations in newborns, but the etiology of EA/TEF remains unknown. Fanconi anemia (FA) complementation group A (FANCA) is a key component of the FA core complex and is essential for the activation of the DNA repair pathway. The middle region (amino acids 674-1208) of FANCA is required for its interaction with FAAP20. We performed targeted sequencing of this binding region of FANCA (exons 23-36) in 40 EA/TEF patients. We also investigated the effect of the p.A958V mutation on the protein-protein interaction between FANCA and FAAP20 using an in vitro binding assay and co-immunoprecipitation. Immunolocalization analysis was performed to investigate the subcellular localization of FANCA, and tissue sections and immunohistochemistry were used to explore the expression of FANCA. We identified four rare missense variants in the FANCA binding region. FANCA mutations were significantly overrepresented in EA/TEF patients compared with 4300 control subjects from the NHLBI-ESP project (Fisher's exact p = 2.17 × 10 -5 , odds ratio = 31.75). p.A958V, a novel de novo mutation in the FANCA gene, was identified in one patient with EA/TEF. We provide further evidence that the p.A958V mutation reduces the binding affinity of FANCA for FAAP20. Interestingly, the p.A958V mutation impaired the nuclear localization of the FANCA protein expressed in HeLa cells. We found that FANCA was more highly expressed in stratified squamous epithelium than in smooth muscle. In conclusion, mutations in the FANCA gene are associated with EA/TEF in humans. Copyright © 2018. Published by Elsevier B.V.

  6. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65).

    Science.gov (United States)

    Frederiksen, Anja L; Larsen, Martin J; Brusgaard, Klaus; Novack, Deborah V; Knudsen, Peter Juel Thiis; Schrøder, Henrik Daa; Qiu, Weimin; Eckhardt, Christina; McAlister, William H; Kassem, Moustapha; Mumm, Steven; Frost, Morten; Whyte, Michael P

    2016-01-01

    Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human

  7. Compound heterozygous loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in two siblings.

    Directory of Open Access Journals (Sweden)

    Jacoba J Louw

    2018-01-01

    Full Text Available Congenital or neonatal cardiomyopathies are commonly associated with a poor prognosis and have multiple etiologies. In two siblings, a male and female, we identified an undescribed type of lethal congenital restrictive cardiomyopathy affecting the right ventricle. We hypothesized a novel autosomal recessive condition. To identify the cause, we performed genetic, in vitro and in vivo studies. Genome-wide SNP typing and parametric linkage analysis was done in a recessive model to identify candidate regions. Exome sequencing analysis was done in unaffected and affected siblings. In the linkage regions, we selected candidate genes that harbor two rare variants with predicted functional effects in the patients and for which the unaffected sibling is either heterozygous or homozygous reference. We identified two compound heterozygous variants in KIF20A; a maternal missense variant (c.544C>T: p.R182W and a paternal frameshift mutation (c.1905delT: p.S635Tfs*15. Functional studies confirmed that the R182W mutation creates an ATPase defective form of KIF20A which is not able to support efficient transport of Aurora B as part of the chromosomal passenger complex. Due to this, Aurora B remains trapped on chromatin in dividing cells and fails to translocate to the spindle midzone during cytokinesis. Translational blocking of KIF20A in a zebrafish model resulted in a cardiomyopathy phenotype. We identified a novel autosomal recessive congenital restrictive cardiomyopathy, caused by a near complete loss-of-function of KIF20A. This finding further illustrates the relationship of cytokinesis and congenital cardiomyopathy.

  8. Compound-heterozygous Marfan syndrome

    NARCIS (Netherlands)

    van Dijk, F. S.; Hamel, B. C.; Hilhorst-Hofstee, Y.; Mulder, B. J. M.; Timmermans, J.; Pals, G.; Cobben, J. M.

    2009-01-01

    We report two families in which the probands have compound-heterozygous Marfan syndrome (MFS). The proband of family I has the R2726W FBN1 mutation associated with isolated skeletal features on one allele and a pathogenic FBN1 mutation on the other allele. The phenotype of the compound-heterozygous

  9. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis.

    Science.gov (United States)

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis.

  10. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    Science.gov (United States)

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  11. Limited importance of the dominant-negative effect of TP53 missense mutations

    International Nuclear Information System (INIS)

    Stoczynska-Fidelus, Ewelina; Liberski, Pawel P; Rieske, Piotr; Szybka, Malgorzata; Piaskowski, Sylwester; Bienkowski, Michal; Hulas-Bigoszewska, Krystyna; Banaszczyk, Mateusz; Zawlik, Izabela; Jesionek-Kupnicka, Dorota; Kordek, Radzislaw

    2011-01-01

    Heterozygosity of TP53 missense mutations is related to the phenomenon of the dominant-negative effect (DNE). To estimate the importance of the DNE of TP53 mutations, we analysed the percentage of cancer cases showing a single heterozygous mutation of TP53 and searched for a cell line with a single heterozygous mutation of this gene. This approach was based on the knowledge that genes with evident DNE, such as EGFR and IDH1, represent nearly 100% of single heterozygous mutations in tumour specimens and cell lines. Genetic analyses (LOH and sequencing) performed for early and late passages of several cell lines originally described as showing single heterozygous TP53 mutations (H-318, G-16, PF-382, MOLT-13, ST-486 and LS-123). Statistical analysis of IARC TP53 and SANGER databases. Genetic analyses of N-RAS, FBXW7, PTEN and STR markers to test cross-contamination and cell line identity. Cell cloning, fluorescence-activated cell sorting and SSCP performed for the PF-382 cell line. A database study revealed TP53 single heterozygous mutations in 35% of in vivo (surgical and biopsy) samples and only 10% of cultured cells (in vitro), although those numbers appeared to be overestimated. We deem that published in vivo TP53 mutation analyses are not as rigorous as studies in vitro, and we did not find any cell line showing a stable, single heterozygous mutation. G16, PF-382 and MOLT-13 cells harboured single heterozygous mutations temporarily. ST-486, H-318 and LS-123 cell lines were misclassified. Specific mutations, such as R175H, R273H, R273L or R273P, which are reported in the literature to exert a DNE, showed the lowest percentage of single heterozygous mutations in vitro (about 5%). We suggest that the currently reported percentage of TP53 single heterozygous mutations in tumour samples and cancer cell lines is overestimated. Thus, the magnitude of the DNE of TP53 mutations is questionable. This scepticism is supported by database investigations showing that retention

  12. Biological activities of undescribed North American lichen species.

    Science.gov (United States)

    Yeash, Erik A; Letwin, Lyndon; Malek, Lada; Suntres, Zacharias; Knudsen, Kerry; Christopher, Lew P

    2017-11-01

    Lichens provide a large array of compounds with the potential for pharmaceutical development. In the present study, extracts from three previously undescribed North American lichen species were examined for antioxidant, antibacterial and anticancer activities. The results from this study demonstrated the following: (i) Acarospora socialis ethanol extract exhibited significant DPPH antioxidant scavenging activities, which were concentration dependent; (ii) acetone and ethyl acetate extracts of Xanthoparmelia mexicana inhibited Gram-positive bacteria but had no effect on Gram-negative bacteria; X. mexicana acetone extract yielded a minimum inhibitory concentration (MIC) of 20.9 µg mL -1 against Staphylococcus aureus, and 41.9 µg mL -1 against Enterococcus faecalis; (iii) acetone extract of Lobothallia alphoplaca inhibited growth of cultured breast cancer MCF-7 cells with an effective concentration (EC 50 ) of 87 µg mL -1 ; the MCF-7 cell cycle appears arrested in the G2 phase, whereas the DNA synthesis cell cycle (S) may be inhibited. New lichen species that possess strong biological activities have been identified. These lichens comprise secondary metabolites that possess antioxidant, antibacterial and anticancer properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    Science.gov (United States)

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-05-01

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2. © 2017 Wiley Periodicals, Inc.

  14. FATP4 missense and nonsense mutations cause similar features in Ichthyosis Prematurity Syndrome

    Directory of Open Access Journals (Sweden)

    Dahl Niklas

    2011-03-01

    Full Text Available Abstract Background Ichthyosis Prematurity Syndrome (IPS is an autosomal recessive disorder characterized by premature birth, non-scaly ichthyosis and atopic manifestations. The disease was recently shown to be caused by mutations in the gene encoding the fatty acid transport protein 4 (FATP4 and a specific reduction in the incorporation of very long chain fatty acids (VLCFA into cellular lipids. Findings We screened probands from five families segregating IPS for mutations in the FATP4 gene. Four probands were compound heterozygous for four different mutations of which three are novel. Four patients were heterozygous and one patient homozygous for the previously reported non-sense mutation p.C168X (c.504c > a. All patients had clinical characteristics of IPS and a similar clinical course. Conclusions Missense mutations and non-sense mutations in FATP4 are associated with similar clinical features suggesting that missense mutations have a severe impact on FATP4 function. The results broaden the mutational spectrum in FATP4 associated with IPS for molecular diagnosis of and further functional analysis of FATP4.

  15. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism.

    Science.gov (United States)

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense

  16. Genetic and bioinformatics analysis of four novel GCK missense variants detected in Caucasian families with GCK-MODY phenotype.

    Science.gov (United States)

    Costantini, S; Malerba, G; Contreas, G; Corradi, M; Marin Vargas, S P; Giorgetti, A; Maffeis, C

    2015-05-01

    Heterozygous loss-of-function mutations in the glucokinase (GCK) gene cause maturity-onset diabetes of the young (MODY) subtype GCK (GCK-MODY/MODY2). GCK sequencing revealed 16 distinct mutations (13 missense, 1 nonsense, 1 splice site, and 1 frameshift-deletion) co-segregating with hyperglycaemia in 23 GCK-MODY families. Four missense substitutions (c.718A>G/p.Asn240Asp, c.757G>T/p.Val253Phe, c.872A>C/p.Lys291Thr, and c.1151C>T/p.Ala384Val) were novel and a founder effect for the nonsense mutation (c.76C>T/p.Gln26*) was supposed. We tested whether an accurate bioinformatics approach could strengthen family-genetic evidence for missense variant pathogenicity in routine diagnostics, where wet-lab functional assays are generally unviable. In silico analyses of the novel missense variants, including orthologous sequence conservation, amino acid substitution (AAS)-pathogenicity predictors, structural modeling and splicing predictors, suggested that the AASs and/or the underlying nucleotide changes are likely to be pathogenic. This study shows how a careful bioinformatics analysis could provide effective suggestions to help molecular-genetic diagnosis in absence of wet-lab validations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Sector Retinitis Pigmentosa Associated With Novel Compound Heterozygous Mutations of CDH23.

    Science.gov (United States)

    Branson, Sara V; McClintic, Jedediah I; Stamper, Tara H; Haldeman-Englert, Chad R; John, Vishak J

    2016-02-01

    Usher syndrome is an autosomal recessive condition characterized by retinitis pigmentosa (RP) and congenital hearing loss, with or without vestibular dysfunction. Allelic variants of CDH23 cause both Usher syndrome type 1D (USH1D) and a form of nonsyndromic hearing loss (DFNB12). The authors describe here a 34-year-old patient with congenital hearing loss and a new diagnosis of sector RP who was found to have two novel compound heterozygous mutations in CDH23, including one missense (c.8530C > A; p.Pro2844Thr) and one splice-site (c.5820 + 5G > A) mutation. This is the first report of sector RP associated with these types of mutations in CDH23. Copyright 2016, SLACK Incorporated.

  18. A novel COL11A1 missense mutation in siblings with non-ocular Stickler syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Tsuji, Atsumi; Morita, Kei-Ichi; Naruto, Takuya; Masuda, Kiyoshi; Kashimada, Kenichi; Enomoto, Keisuke; Morio, Tomohiro; Harada, Hiroyuki; Imoto, Issei

    2016-01-01

    Stickler syndrome (STL) is an autosomal, dominantly inherited, clinically variable and genetically heterogeneous connective tissue disorder characterized by ocular, auditory, orofacial and skeletal abnormalities. We conducted targeted resequencing using a next-generation sequencer for molecular diagnosis of a 2-year-old girl who was clinically suspected of having STL with Pierre Robin sequence. We detected a novel heterozygous missense mutation, NM_001854.3:n.4838G>A [NM_001854.3 (COL11A1_v001):c.4520G>A], in COL11A1, resulting in a Gly to Asp substitution at position 1507 [NM_001854.3(COL11A1_i001)] within one of the collagen-like domains of the triple helical region. The same mutation was detected in her 4-year-old brother with cleft palate and high-frequency sensorineural hearing loss.

  19. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  20. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome.

    Science.gov (United States)

    Chaoui, Asma; Watanabe, Yuli; Touraine, Renaud; Baral, Viviane; Goossens, Michel; Pingault, Veronique; Bondurand, Nadege

    2011-12-01

    Waardenburg syndrome (WS) is a rare disorder characterized by pigmentation defects and sensorineural deafness, classified into four clinical subtypes, WS1-S4. Whereas the absence of additional features characterizes WS2, association with Hirschsprung disease defines WS4. WS is genetically heterogeneous, with six genes already identified, including SOX10. About 50 heterozygous SOX10 mutations have been described in patients presenting with WS2 or WS4, with or without myelination defects of the peripheral and central nervous system (PCWH, Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, or PCW, PCWH without HD). The majority are truncating mutations that most often remove the main functional domains of the protein. Only three missense mutations have been thus far reported. In the present study, novel SOX10 missense mutations were found in 11 patients and were examined for effects on SOX10 characteristics and functions. The mutations were associated with various phenotypes, ranging from WS2 to PCWH. All tested mutations were found to be deleterious. Some mutants presented with partial cytoplasmic redistribution, some lost their DNA-binding and/or transactivation capabilities on various tissue-specific target genes. Intriguingly, several mutants were redistributed in nuclear foci. Whether this phenomenon is a cause or a consequence of mutation-associated pathogenicity remains to be determined, but this observation could help to identify new SOX10 modes of action. © 2011 Wiley-Liss, Inc.

  1. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene

    International Nuclear Information System (INIS)

    Romeo, G.; Hassan, H.J.; Staempfli, S.

    1987-01-01

    The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelated patients showed a variant restriction pattern after Pvu II or BamHi digestion, due to mutations in the last exon: analysis of their pedigrees, including three or seven heterozygotes, respectively, with ∼50% reduction of both enzymatic and antigen level, showed the abnormal restriction pattern in all heterozygous individuals, but not in normal relatives. Cloning of protein C gene and sequencing of the last exon allowed the authors to identify a nonsense and a missense mutation, respectively. In the first case, codon 306 (CGA, arginine) is mutated to an inframe stop codon, thus generating a new Pvu II recognition site. In the second case, a missense mutation in the BamHI palindrome (GGATCC → GCATCC) leads to substitution of a key amino acid (a tryptophan to cysteine substitution at position 402), invariantly conserved in eukaryotic serine proteases. These point mutations may explain the protein C-deficiency phenotype of heterozygotes in the two pedigrees

  2. A novel missense mutation of the DDHD1 gene associated with juvenile amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Chujun Wu

    2016-12-01

    Full Text Available Background: Juvenile amyotrophic lateral sclerosis (jALS is a rare form of ALS with an onset age of less than 25 years and is frequently thought to be genetic in origin. DDHD1 gene mutations have been reported to be associated with the SPG28 subtype of autosomal recessive HSP but have never been reported in jALS patients.Methods: Gene screens for the causative genes of ALS, HSP and CMT using next-generation sequencing (NGS technologies were performed on a jALS patient. Sanger sequencing was used to validate identified variants and perform segregation analysis.Results: We identified a novel c.1483A>G (p.Met495Val homozygous missense mutation of the DDHD1 gene in the jALS patient. All of his parents and young bother were heterozygous for this mutation. The mutation was not found in 800 Chinese control subjects or the data of dbSNP, ExAC and 1000G.Conclusion: The novel c.1483A>G (p.Met495Val missense mutation of the DDHD1 gene could be a causative mutation of autosomal recessive jALS.

  3. Fundus albipunctatus associated with compound heterozygous mutations in RPE65

    DEFF Research Database (Denmark)

    Schatz, Patrik; Preising, Markus; Lorenz, Birgit

    2011-01-01

    To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations.......To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations....

  4. Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa.

    Science.gov (United States)

    Nguyen, Thanh-Minh T; Hull, Sarah; Roepman, Ronald; van den Born, L Ingeborgh; Oud, Machteld M; de Vrieze, Erik; Hetterschijt, Lisette; Letteboer, Stef J F; van Beersum, Sylvia E C; Blokland, Ellen A; Yntema, Helger G; Cremers, Frans P M; van der Zwaag, Paul A; Arno, Gavin; van Wijk, Erwin; Webster, Andrew R; Haer-Wigman, Lonneke

    2017-09-01

    Recent findings suggesting that Abelson helper integration site 1 ( AHI1 ) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient's fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1 , with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype-phenotype correlation for AHI1 mutation associated retinal ciliopathies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.

    Science.gov (United States)

    Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos

    2016-01-01

    The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.

  6. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63.

    NARCIS (Netherlands)

    McGrath, J.A.; Duijf, P.H.; Doetsch, V.; Irvine, A.D.; Waal, R.M.W. de; Vanmolkot, K.R.; Wessagowit, V.; Kelly, A.E.; Atherton, D.J.; Griffiths, W.A.; Orlow, S.J.; Haeringen, A. van; Ausems, M.G.E.M.; Yang, A.; McKeon, F.; Bamshad, M.; Brunner, H.G.; Hamel, B.C.J.; Bokhoven, J.H.L.M. van

    2001-01-01

    Hay-Wells syndrome, also known as ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (OMIM 106260), is a rare autosomal dominant disorder characterized by congenital ectodermal dysplasia, including alopecia, scalp infections, dystrophic nails, hypodontia, ankyloblepharon and cleft lip

  7. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63

    NARCIS (Netherlands)

    McGrath, JA; Duijf, PHG; Doetsch, [No Value; Irvine, AD; de Waal, R; Vanmolkot, KRJ; Wessagowit, [No Value; Kelly, A; Atherton, DJ; Griffiths, WAD; Orlow, SJ; van Haeringen, A; Ausems, MGEM; Yang, A; McKeon, F; Bamshad, MA; Brunner, HG; Hamel, BCJ; van Bokhoven, H

    2001-01-01

    Hay-Wells syndrome, also known as ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (OMIM 106260), is a rare autosomal dominant disorder characterized by congenital ectodermal dysplasia, including alopecia, scalp infections, dystrophic nails, hypodontia, ankyloblepharon and cleft lip

  8. Pyogranulomatous Pneumonia in Goats Caused by an Undescribed Porphyromonas Species, “Porphyromonas katsikii”

    Science.gov (United States)

    Filioussis, George; Petridou, Evanthia; Karavanis, Emmanouel

    2014-01-01

    A yet-undescribed bacterial species, tentatively named “Porphyromonas katsikii,” was isolated from individuals of a small goat herd with pyogranulomatous pneumonia during an outbreak of acute respiratory disease. The isolated bacteria grew in the form of black-pigmented colonies after 14 days of incubation under anaerobic conditions at 37°C on a tryptic soy blood agar medium. The bacteria were identified as a yet-undescribed Porphyromonas species by determination of the nucleotide sequence of the rrs 16S rRNA gene, and this species was tentatively named Porphyromonas katsikii. PCR amplification with specific primers for this yet-undescribed species revealed the presence of P. katsikii in the lung tissue of all affected animals, while no PCR signals were evidenced from the lungs of healthy goats or from goats with pasteurellosis caused by Mannheimia haemolytica. These data indicate P. katsikii as the causative agent of acute respiratory distress. P. katsikii is phylogenetically related to Porphyromonas somerae and Porphyromonas levii, which cause pathologies in humans and animals, respectively. P. katsikii was not detected by PCR from samples of the gingival pockets or of the faces of healthy goats. PMID:25540395

  9. Pyogranulomatous pneumonia in goats caused by an undescribed Porphyromonas species, "Porphyromonas katsikii".

    Science.gov (United States)

    Filioussis, George; Petridou, Evanthia; Karavanis, Emmanouel; Frey, Joachim

    2015-03-01

    A yet-undescribed bacterial species, tentatively named "Porphyromonas katsikii," was isolated from individuals of a small goat herd with pyogranulomatous pneumonia during an outbreak of acute respiratory disease. The isolated bacteria grew in the form of black-pigmented colonies after 14 days of incubation under anaerobic conditions at 37°C on a tryptic soy blood agar medium. The bacteria were identified as a yet-undescribed Porphyromonas species by determination of the nucleotide sequence of the rrs 16S rRNA gene, and this species was tentatively named Porphyromonas katsikii. PCR amplification with specific primers for this yet-undescribed species revealed the presence of P. katsikii in the lung tissue of all affected animals, while no PCR signals were evidenced from the lungs of healthy goats or from goats with pasteurellosis caused by Mannheimia haemolytica. These data indicate P. katsikii as the causative agent of acute respiratory distress. P. katsikii is phylogenetically related to Porphyromonas somerae and Porphyromonas levii, which cause pathologies in humans and animals, respectively. P. katsikii was not detected by PCR from samples of the gingival pockets or of the faces of healthy goats. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Chemotaxonomic study of undescribed species ofMyrmica ant from Idaho.

    Science.gov (United States)

    Jackson, B D; Keegans, S J; Morgan, E D; Clark, W H; Blom, P E

    1991-02-01

    An undescribed species ofMyrmica collected in Idaho has been shown to have the same substances in its mandibular glands (3-octanol and 3-octanone and related 3-alkanols and 3-alkanones) and in its Dufour gland (linear alkanes, alkenes, and farnesene isomers and homologs) as previously examined European species ofMyrmica. The poison gland contains the trail pheromone 3-ethyl-2,5-dimethylpyrazine, common to allMyrmica species studied so far. The Dufour gland contains large amounts of bishomofarnesene, which easily distinguishes it from some 13 otherMyrmica already known.

  11. Orthology Guided Assembly in highly heterozygous crops

    DEFF Research Database (Denmark)

    Ruttink, Tom; Sterck, Lieven; Rohde, Antje

    2013-01-01

    to outbreeding crop species hamper De Bruijn Graph-based de novo assembly algorithms, causing transcript fragmentation and the redundant assembly of allelic contigs. If multiple genotypes are sequenced to study genetic diversity, primary de novo assembly is best performed per genotype to limit the level......Despite current advances in next-generation sequencing data analysis procedures, de novo assembly of a reference sequence required for SNP discovery and expression analysis is still a major challenge in genetically uncharacterized, highly heterozygous species. High levels of polymorphism inherent...... of polymorphism and avoid transcript fragmentation. Here, we propose an Orthology Guided Assembly procedure that first uses sequence similarity (tBLASTn) to proteins of a model species to select allelic and fragmented contigs from all genotypes and then performs CAP3 clustering on a gene-by-gene basis. Thus, we...

  12. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    Science.gov (United States)

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction.

    Science.gov (United States)

    LaConte, Leslie E W; Chavan, Vrushali; Elias, Abdallah F; Hudson, Cynthia; Schwanke, Corbin; Styren, Katie; Shoof, Jonathan; Kok, Fernando; Srivastava, Sarika; Mukherjee, Konark

    2018-03-01

    Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASK M519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASK G659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASK W919R ) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.

  14. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    Science.gov (United States)

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  15. Absence of a primary role for TTN missense variants in arrhythmogenic cardiomyopathy: From a clinical and pathological perspective.

    Science.gov (United States)

    Chen, Kai; Song, Jiangping; Wang, Zhen; Rao, Man; Chen, Liang; Hu, Shengshou

    2018-05-01

    Arrhythmogenic cardiomyopathy (ACM) is an inheritable heart disease characterized by fibro-fatty replacement of the myocardium. TTN missense variants were previously reported as a pathogenic factor for ACM. TTN missense variants are commonly identified in ACM, but have limited effect on the phenotype of ACM. We sequenced 15 ACM-related genes in 35 patients who had a heart transplantation and quantified myocardium, and fibrous and adipose tissue in blocks of the explanted heart. Clinical and pathological characteristics were compared between patients with TTN variants and others. Pedigree analysis was performed in 3 families with TTN variants. TTN variants were detected in 11 patients (all missense, 9 heterozygous and 2 oligogenic form). The TTN truncating variant was absent in the cohort. Patients with TTN variants had late onset age of the disease (31 ±13 years vs 17 ±3 years, P = 0.049) and age of heart transplantation (41 ±14 years vs 24 ±9 years, P = 0.027), larger left ventricle end-diastolic diameter (62 ±10 mm vs 45 ±10 mm, P = 0.019), smaller right ventricular outflow tract (34 ±14 mm vs 50 ±15 mm, P = 0.046), more myocardium (40.8% ±29.4% vs 13.8% ±11.0%, P = 0.017), and less adipose tissue (43.0% ±30.9% vs 66.9% ±18.5%, P = 0.036) in right ventricle than those with desmosomal variants. There was few difference between patients with TTN variants and those without variants. Pedigrees showed none of the family members with TTN missense variants had a disease phenotype, indicating a very low penetrance. TTN missense variants was commonly identified in ACM patients in this cohort, but hardly played a primary role in ACM as causative variants. © 2018 Wiley Periodicals, Inc.

  16. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Huang Lijia

    2012-09-01

    Full Text Available Abstract Background Congenital nonprogressive spinocerebellar ataxia is characterized by early gross motor delay, hypotonia, gait ataxia, mild dysarthria and dysmetria. The clinical presentation remains fairly stable and may be associated with cerebellar atrophy. To date, only a few families with autosomal dominant congenital nonprogressive spinocerebellar ataxia have been reported. Linkage to 3pter was demonstrated in one large Australian family and this locus was designated spinocerebellar ataxia type 29. The objective of this study is to describe an unreported Canadian family with autosomal dominant congenital nonprogressive spinocerebellar ataxia and to identify the underlying genetic causes in this family and the original Australian family. Methods and Results Exome sequencing was performed for the Australian family, resulting in the identification of a heterozygous mutation in the ITPR1 gene. For the Canadian family, genotyping with microsatellite markers and Sanger sequencing of ITPR1 gene were performed; a heterozygous missense mutation in ITPR1 was identified. Conclusions ITPR1 encodes inositol 1,4,5-trisphosphate receptor, type 1, a ligand-gated ion channel that mediates calcium release from the endoplasmic reticulum. Deletions of ITPR1 are known to cause spinocerebellar ataxia type 15, a distinct and very slowly progressive form of cerebellar ataxia with onset in adulthood. Our study demonstrates for the first time that, in addition to spinocerebellar ataxia type 15, alteration of ITPR1 function can cause a distinct congenital nonprogressive ataxia; highlighting important clinical heterogeneity associated with the ITPR1 gene and a significant role of the ITPR1-related pathway in the development and maintenance of the normal functions of the cerebellum.

  17. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1.

    Science.gov (United States)

    Hazan, Filiz; Ozturk, A Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45(th) residue of helix 3. We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity.

  18. In Silico Analysis of FMR1 Gene Missense SNPs.

    Science.gov (United States)

    Tekcan, Akin

    2016-06-01

    The FMR1 gene, a member of the fragile X-related gene family, is responsible for fragile X syndrome (FXS). Missense single-nucleotide polymorphisms (SNPs) are responsible for many complex diseases. The effect of FMR1 gene missense SNPs is unknown. The aim of this study, using in silico techniques, was to analyze all known missense mutations that can affect the functionality of the FMR1 gene, leading to mental retardation (MR) and FXS. Data on the human FMR1 gene were collected from the Ensembl database (release 81), National Centre for Biological Information dbSNP Short Genetic Variations database, 1000 Genomes Browser, and NHLBI Exome Sequencing Project Exome Variant Server. In silico analysis was then performed. One hundred-twenty different missense SNPs of the FMR1 gene were determined. Of these, 11.66 % of the FMR1 gene missense SNPs were in highly conserved domains, and 83.33 % were in domains with high variety. The results of the in silico prediction analysis showed that 31.66 % of the FMR1 gene SNPs were disease related and that 50 % of SNPs had a pathogenic effect. The results of the structural and functional analysis revealed that although the R138Q mutation did not seem to have a damaging effect on the protein, the G266E and I304N SNPs appeared to disturb the interaction between the domains and affect the function of the protein. This is the first study to analyze all missense SNPs of the FMR1 gene. The results indicate the applicability of a bioinformatics approach to FXS and other FMR1-related diseases. I think that the analysis of FMR1 gene missense SNPs using bioinformatics methods would help diagnosis of FXS and other FMR1-related diseases.

  19. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2 gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome.

    Directory of Open Access Journals (Sweden)

    Michael F Wangler

    2014-03-01

    Full Text Available Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.

  20. [Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].

    Science.gov (United States)

    Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi

    2010-02-01

    The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.

  1. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica.

    Science.gov (United States)

    Yamamoto, E; Zeng, L; Baird, W V

    1998-02-01

    Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass.

  2. Familial Mediterranean fever, Inflammation and Nephrotic Syndrome: Fibrillary Glomerulopathy and the M680I Missense Mutation

    Directory of Open Access Journals (Sweden)

    Semerdjian Ronald J

    2003-08-01

    Full Text Available Abstract Background Familial Mediterranean fever (FMF is an autosomal recessive disease characterized by inflammatory serositis (fever, peritonitis, synovitis and pleuritis. The gene locus responsible for FMF was identified in 1992 and localized to the short arm of chromosome 16. In 1997, a specific FMF gene locus, MEFV, was discovered to encode for a protein, pyrin that mediates inflammation. To date, more than forty missense mutations are known to exist. The diversity of mutations identified has provided insight into the variability of clinical presentation and disease progression. Case Report We report an individual heterozygous for the M680I gene mutation with a clinical diagnosis of FMF using the Tel-Hashomer criteria. Subsequently, the patient developed nephrotic syndrome with biopsy-confirmed fibrillary glomerulonephritis (FGN. Further diagnostic studies were unremarkable with clinical workup negative for amyloidosis or other secondary causes of nephrotic syndrome. Discussion Individuals with FMF are at greater risk for developing nephrotic syndrome. The most serious etiology is amyloidosis (AA variant with renal involvement, ultimately progressing to end-stage renal disease. Other known renal diseases in the FMF population include IgA nephropathy, IgM nephropathy, Henoch-Schönlein purpura as well as polyarteritis nodosa. Conclusion To our knowledge, this is the first association between FMF and the M680I mutation later complicated by nephrotic syndrome and fibrillary glomerulonephritis.

  3. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta.

    Science.gov (United States)

    Kim, Youn Jung; Kang, Jenny; Seymen, Figen; Koruyucu, Mine; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Zang Hee; Hu, Jan C-C; Simmer, James P; Kim, Jung-Wook

    2017-01-01

    Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19) and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln) was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180 * and c.389C>T, p.Thr130Ile) were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  4. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Jung-Wook Kim

    2017-04-01

    Full Text Available Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19 and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180* and c.389C>T, p.Thr130Ile were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  5. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    Science.gov (United States)

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  6. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    Directory of Open Access Journals (Sweden)

    Xue Gao

    Full Text Available Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP, and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1. Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162 with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R and a novel nonsense mutation c.462C>A (p.C154X. The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  7. Compound heterozygosity for two GHR missense mutations in a patient affected by Laron Syndrome: a case report.

    Science.gov (United States)

    Moia, Stefania; Tessaris, Daniele; Einaudi, Silvia; de Sanctis, Luisa; Bona, Gianni; Bellone, Simonetta; Prodam, Flavia

    2017-10-12

    Mutations localized in the Growth Hormone Receptor (GHR) gene are often associated with the pathogenesis of Laron Syndrome, an autosomal recessive hereditary disorder characterized by severe growth retardation. Biochemically, patients present normal to high circulating GH levels, in presence of very low or undetectable IGF-I levels, which do not rise after rhGH treatment. We describe the case of a 3.8 years old girl with symmetrical short stature (-3.76 SDS), low IGF-1 and IGFBP-3, in presence of normal GH levels. Parents were not relatives and there was no family history of short stature. During the second day of birth, she developed severe hypoglycaemia that required glucose infusion. She presented frontal bossing and depressed nasal bridge. IGF-1 generation test showed no response, suggesting a GH resistance evidence. In the hypothesis of Laron Syndrome, we decided to perform a molecular analysis of Growth Hormone Receptor (GHR) gene. This analysis demonstrated that the patient was compound heterozygote for two missense mutations. GHR gene mutations are a well demonstrated cause of GH insensitivity. In heterozygous patients, probably the normal stature may be achieved by a compensatory mechanism of GH secretion or signalling. On the contrary, in homozygous or compound heterozygous patients these compensatory mechanisms are inadequate, and short stature may be the consequence.

  8. Atypical Clinical Presentation of Xeroderma Pigmentosum in a Patient Harboring a Novel Missense Mutation in the XPC Gene: The Importance of Clinical Suspicion.

    Science.gov (United States)

    Meneses, Marina; Chavez-Bourgeois, Marion; Badenas, Celia; Villablanca, Salvador; Aguilera, Paula; Bennàssar, Antoni; Alos, Llucia; Puig, Susana; Malvehy, Josep; Carrera, Cristina

    2015-01-01

    Xeroderma pigmentosum (XP) is a genodermatosis caused by abnormal DNA repair. XP complementation group C (XPC) is the most frequent type in Mediterranean countries. We describe a case with a novel mutation in the XPC gene. A healthy Caucasian male patient was diagnosed with multiple primary melanomas. Digital follow-up and molecular studies were carried out. During digital follow-up 8 more additional melanomas were diagnosed. Molecular studies did not identify mutations in CDKN2A, CDK4 or MITF genes. Two heterozygous mutations in the XPC gene were detected: c.2287delC (p.Leu763Cysfs*4) frameshift and c.2212A>G (p.Thr738Ala) missense mutations. The p.Thr738Ala missense mutation has not been previously described. Missense mutations in the XPC gene may allow partial functionality that could explain this unusual late onset XP. Atypical clinical presentation of XPC could be misdiagnosed when genetic aberrations allow partial DNA repair capacity. © 2015 S. Karger AG, Basel.

  9. Premature cardiovascular disease in young women with heterozygous familial hypercholesterolemia

    NARCIS (Netherlands)

    van der Graaf, Anouk; Hutten, Barbara A.; Kastelein, John J. P.; Vissers, Maud N.

    2006-01-01

    Heterozygous familial hypercholesterolemia is associated with elevated low-density lipoprotein cholesterol levels and the development of premature cardiovascular disease. Despite this general statement, data regarding the incidence of cardiovascular disease in young women with familial

  10. A preliminary molecular phylogeny of shield-bearer moths (Lepidoptera: Adeloidea: Heliozelidae) highlights rich undescribed diversity.

    Science.gov (United States)

    Milla, Liz; van Nieukerken, Erik J; Vijverberg, Ruben; Doorenweerd, Camiel; Wilcox, Stephen A; Halsey, Mike; Young, David A; Jones, Therésa M; Kallies, Axel; Hilton, Douglas J

    2018-03-01

    Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Molecular systematics and undescribed diversity of Madagascan scolecophidian snakes (Squamata: Serpentes).

    Science.gov (United States)

    Nagy, Zoltán T; Marion, Angela B; Glaw, Frank; Miralles, Aurélien; Nopper, Joachim; Vences, Miguel; Hedges, S Blair

    2015-11-10

    We provide an updated molecular phylogenetic analysis of global diversity of typhlopid and xenotyphlopid blindsnakes, adding a set of Madagascan samples and sequences of an additional mitochondrial gene to an existing supermatrix of nuclear and mitochondrial gene segments. Our data suggest monophyly of Madagascan typhlopids, exclusive of introduced Indotyphlops braminus. The Madagascar-endemic typhlopid clade includes two species previously assigned to the genus Lemuriatyphlops (in the subfamily Asiatyphlopinae), which were not each others closest relatives. This contradicts a previous study that described Lemuriatyphlops based on a sequence of the cytochrome oxidase subunit 1 gene from a single species and found this species not forming a clade with the other Malagasy species included. Based on our novel phylogenetic assessment we include all species in this endemic typhlopid clade in the genus Madatyphlops and in the subfamily Madatyphlopinae and consider Lemuriatyphlops as junior synonym. Within Madatyphlops, we identify several candidate species. For some of these (those in the M. arenarius complex), our preliminary data suggest sympatric occurrence and morphological differentiation, thus the existence of undescribed species. We also comment on the genus-level classification of several non-Madagascan typhlopids. We suggest that African species included in Madatyphlops (Afrotyphlops calabresii, A. cuneirostris, A. platyrhynchus, and Rhinotyphlops leucocephalus) should not be included in this genus. We furthermore argue that recent claims of Sundatyphlops, Antillotyphlops, and Cubatyphlops being "undiagnosable" or "not monophyletic" were based on errors in tree reconstruction and failure to notice diagnostic characters, and thus regard these three genera as valid.

  12. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome?

    Science.gov (United States)

    Tekin, M; Bodurtha, J N; Nance, W E; Pandya, A

    2001-10-01

    Klein-Waardenburg syndrome or Waardenburg syndrome type 3 (WS-III; MIM 148820) is characterized by the presence of musculoskeletal abnormalities in association with clinical features of Waardenburg syndrome type 1 (WS-I). Since the description of the first patient in 1947 (D. Klein, Arch Klaus Stift Vererb Forsch 1947: 22: 336-342), a few cases have been reported. Only occasional families have demonstrated autosomal-dominant inheritance of WS-III. In a previous report, a missense mutation in the paired domain of the PAX3 gene has been described in a family with dominant segregation of WS-III. In this report, we present a second family (mother and son) with typical clinical findings of WS-III segregating with a heterozygous 13-bp deletion in the paired domain of the PAX3 gene. Although homozygosity or compound heterozygosity has also been documented in patients with severe limb involvement, a consistent genotype-phenotype correlation for limb abnormalities associated with heterozygous PAX3 mutations has not previously been apparent. Heterozygous mutations could either reflect a unique dominant-negative effect or possibly the contribution of other unlinked genetic modifiers in determining the phenotype.

  13. Two novel missense mutations in bovine ATGL gene and their ...

    African Journals Online (AJOL)

    Adipose triglyceride lipase (ATGL) as a triglyceride-specific lipase, plays a key role in the triglyceride liposis mobilization of fat tissue. In this study, based on the pyrosequencing technology, two novel missense mutations were identified, which were 3289 G>C in exon 6 bringing E277Q and 3514 A>T in exon 7 bringing ...

  14. Dominant missense mutations in ABCC9 cause Cantu syndrome

    NARCIS (Netherlands)

    Harakalova, M.; van Harssel, J.J.; Terhal, P.A.; van Lieshout, S.; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; van der Heyden, M.A.; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.; van der Smagt, J.J.; Nijman, I.J.; Kloosterman, W.P.; van Haelst, M.M.; van Haaften, G.; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  15. Dominant missense mutations in ABCC9 cause Cantu syndrome.

    NARCIS (Netherlands)

    Harakalova, M.; Harssel, J.J. van; Terhal, P.A.; Lieshout, S. van; Duran, K.; Renkens, I.; Amor, D.J.; Wilson, L.C.; Kirk, E.P.; Turner, C.L.; Shears, D.; Garcia-Minaur, S.; Lees, M.M.; Ross, A.; Venselaar, H.; Vriend, G.; Takanari, H.; Rook, M.B.; Heyden, M.A. van der; Asselbergs, F.W.; Breur, H.M.; Swinkels, M.E.; Scurr, I.J.; Smithson, S.F.; Knoers, N.V.A.M.; Smagt, J.J. van der; Nijman, IJ; Kloosterman, W.P.; Haelst, M.M. van; Haaften, G. van; Cuppen, E.

    2012-01-01

    Cantu syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the

  16. Dictyosphaeric acids A and B: new decalactones from an undescribed Penicillium sp. obtained from the alga Dictyosphaeria versluyii.

    Science.gov (United States)

    Bugni, Tim S; Janso, Jeffrey E; Williamson, R Thomas; Feng, Xidong; Bernan, Valerie S; Greenstein, Michael; Carter, Guy T; Maiese, William M; Ireland, Chris M

    2004-08-01

    Fungal isolate F01V25 was obtained from the alga Dictyosphaeria versluyii collected near Dravuni, Fiji, in 2001 and represented a previously undescribed Penicillium sp. Fermentation of isolate F01V25 resulted in the production of two new polyketides, dictyosphaeric acids A and B, along with the known anthraquinone carviolin. The relative stereochemistry of dictyosphaeric acids A and B was determined using the J-based configuration analysis method in conjunction with ROE and NOE correlations.

  17. Penetrance of eye defects in mice heterozygous for mutation of Gli3 is enhanced by heterozygous mutation of Pax6

    Directory of Open Access Journals (Sweden)

    Price David J

    2006-10-01

    Full Text Available Abstract Background Knowledge of the consequences of heterozygous mutations of developmentally important genes is important for understanding human genetic disorders. The Gli3 gene encodes a zinc finger transcription factor and homozygous loss-of-function mutations of Gli3 are lethal. Humans heterozygous for mutations in this gene suffer Greig cephalopolysyndactyly or Pallister-Hall syndromes, in which limb defects are prominent, and mice heterozygous for similar mutations have extra digits. Here we examined whether eye development, which is abnormal in mice lacking functional Gli3, is defective in Gli3+/- mice. Results We showed that Gli3 is expressed in the developing eye but that Gli3+/- mice have only very subtle eye defects. We then generated mice compound heterozygous for mutations in both Gli3 and Pax6, which encodes another developmentally important transcription factor known to be crucial for eye development. Pax6+/-; Gli3+/- eyes were compared to the eyes of wild-type, Pax6+/- or Gli3+/- siblings. They exhibited a range of abnormalities of the retina, iris, lens and cornea that was more extensive than in single Gli3+/- or Pax6+/- mutants or than would be predicted by addition of their phenotypes. Conclusion These findings indicate that heterozygous mutations of Gli3 can impact on eye development. The importance of a normal Gli3 gene dosage becomes greater in the absence of a normal Pax6 gene dosage, suggesting that the two genes co-operate during eye morphogenesis.

  18. Hirschsprung disease as a yet undescribed phenotype in a patient with ARID1B mutation.

    Science.gov (United States)

    Takenouchi, Toshiki; Yoshihashi, Hiroshi; Sakaguchi, Yuri; Uehara, Tomoko; Honda, Masataka; Takahashi, Takao; Kosaki, Kenjiro; Miyama, Sahoko

    2016-12-01

    Mutations in the BAF complex (mammalian SWI/SNF complex) are responsible for Coffin-Siris syndrome, which is characterized by developmental delay, distinctive facial features, hirsutism, and hypoplasia/aplasia of the fifth finger/fingernails. Hirschsprung disease is characterized by defective stem cells in the enteric neural system, and the involvement of multiple signaling cascades has been implicated. So far, the roles of the BAF complex in the genesis of Hirschsprung disease have remained unknown. Here, we document a patient with coarse facial features, postnatal growth failure, developmental delay, epilepsy, and hypoplasia of the corpus callosum and cerebellum but without a hypoplastic fifth finger/fingernail. In addition, he had Hirschsprung disease. Exome sequencing with a gene set representing a total of 4,813 genes with known relationships to human diseases revealed a heterozygous frameshift mutation in ARID1B (c.5789delC p.Pro1930Leufs*44). The presence of a congenital cataract and Hirschsprung disease in the presently reported patient further expands the phenotypic spectrum of patients with ARID1B mutations and may suggest the potential role of the BAF complex in the pathogenesis of the enteric neural system. The present observation is in agreement with a recent study of Drosophila neuroblasts showing that the dysregulated BAF complex leads to an abnormal lineage progression of neural stem cell lineages and that Hirschsprung disease is caused by abnormal stem cell lineages in the peripheral neural tissues. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation.

    Science.gov (United States)

    Fishbein, Ianai; Kuo, Yien-Ming; Giasson, Benoit I; Nussbaum, Robert L

    2014-12-01

    The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson's disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson's disease; and (ii) Lewy bodies in sporadic Parkinson's disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson's disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson's disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson's disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain

  20. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism.

    Science.gov (United States)

    Frazier, T W; Embacher, R; Tilot, A K; Koenig, K; Mester, J; Eng, C

    2015-09-01

    PTEN is a tumor suppressor associated with an inherited cancer syndrome and an important regulator of ongoing neural connectivity and plasticity. The present study examined molecular and phenotypic characteristics of individuals with germline heterozygous PTEN mutations and autism spectrum disorder (ASD) (PTEN-ASD), with the aim of identifying pathophysiologic markers that specifically associate with PTEN-ASD and that may serve as targets for future treatment trials. PTEN-ASD patients (n=17) were compared with idiopathic (non-PTEN) ASD patients with (macro-ASD, n=16) and without macrocephaly (normo-ASD, n=38) and healthy controls (n=14). Group differences were evaluated for PTEN pathway protein expression levels, global and regional structural brain volumes and cortical thickness measures, neurocognition and adaptive behavior. RNA expression patterns and brain characteristics of a murine model of Pten mislocalization were used to further evaluate abnormalities observed in human PTEN-ASD patients. PTEN-ASD had a high proportion of missense mutations and showed reduced PTEN protein levels. Compared with the other groups, prominent white-matter and cognitive abnormalities were specifically associated with PTEN-ASD patients, with strong reductions in processing speed and working memory. White-matter abnormalities mediated the relationship between PTEN protein reductions and reduced cognitive ability. The Pten(m3m4) murine model had differential expression of genes related to myelination and increased corpus callosum. Processing speed and working memory deficits and white-matter abnormalities may serve as useful features that signal clinicians that PTEN is etiologic and prompting referral to genetic professionals for gene testing, genetic counseling and cancer risk management; and could reveal treatment targets in trials of treatments for PTEN-ASD.

  1. Risk of asthma in heterozygous carriers for cystic fibrosis

    DEFF Research Database (Denmark)

    Nielsen, Anne Orholm; Qayum, Sadaf; Bouchelouche, Pierre Nourdine

    2016-01-01

    Background Patients with cystic fibrosis (CF) have a higher prevalence of asthma than the background population, however, it is unclear whether heterozygous CF carriers are susceptible to asthma. Given this, a meta-analysis is necessary to determine the veracity of the association of CF...

  2. A Novel Missense Mutation in SLC5A5 Gene in a Sudanese Family with Congenital Hypothyroidism.

    Science.gov (United States)

    Watanabe, Yui; Ebrhim, Reham Shareef; Abdullah, Mohamed A; Weiss, Roy E

    2018-05-15

    Thyroid hormone synthesis requires the presence of iodide. The sodium iodide symporter (NIS) is a glycoprotein which mediates the active uptake of iodide from the blood stream into the thyroid grand. NIS defects due to SLC5A5 gene mutations are known to cause congenital hypothyroidism (CH). The proposita is a 28-year-old female whose origin is the North Sudan where neonatal screening for CH is not available. She presented with severe constipation and a goiter at the age of 40 days. Laboratory testing confirmed CH and she was started on levothyroxine (L-T4). Presumably due to the delayed treatment the patient developed mental retardation. Her younger sister presented with a goiter, tongue protrusion and umbilical hernia and the youngest brother was also diagnosed with CH based on the TSH >100 µIU/mL at the age of 22 days and 8 days, respectively. Two siblings were treated with L-T4 and had normal development. Their consanguineous parents had no history of thyroid disorders. We performed whole exome sequencing (WES) on the proposita. WES identified a novel homozygous missense mutation in the SLC5A5 gene: c.1042T>G, p.Tyr348Asp, which was subsequently confirmed by Sanger sequencing. All affected children were homozygous for the same mutation and their unaffected mother was heterozygous. The NIS protein is composed of 13 transmembrane segments (TMS), an extracellular amino-terminus and an intracellular carboxyl terminus. The mutation is located in the TMS IX which has the most β-OH group-containing amino acids (serine and threonine) which is implicated in Na+ binding and translocation. In conclusion, a novel homozygous missense mutation in the SLC5A5 gene was identified in the Sudanese family with CH. The mutation is located in the TMS IX of the NIS protein which is essential for NIS function. Low iodine intake in Sudan is considered to affect severity of hypothyroidism in the patients.

  3. Heterozygous effects of irradiated chromosomes on viability in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Simmons, M.J.

    1976-01-01

    Two large experiments were conducted in order to evaluate the heterozygous effects of irradiated chromosomes on viability. Mutations were accumulated on several hundred second chromosomes by delivering doses of 2,500R over either two or four generations for total x-ray exposures of 5,000R or 10,000R. Chromosomes treated with 5,000R were screened for lethals after the first treatment, and surviving nonlethals were used to generate families of fully treated chromosomes. The members of these families shared the effects of the first irradiation, but differed with respect to those of the second. The chromosomes treated with 10,000R were not grouped into families since mutations were accumulated independently on each chromosome in that experiment. Heterozygous effects on viability of the irradiated chromosomes were tested in both isogenic (homozygous) and nonisogenic (heterozygous) genetic backgrounds. In conjunction with these tests, homozygous viabilities were determined by the marked-inversion technique. This permitted a separation of the irradiated chromosomes into those which were drastic when made homozygous and those which were not. The results indicate that drastic chromosomes have deleterious effects in heterozygous condition, since viability was reduced by 2 to 4 percent in tests performed with the 10,000R chromosomes, and by 1 percent in those involving the 5,000R material. Within a series of tests, the effects were more pronounced when the genetic background was homozygous. These results suggest that the mutants induced by high doses of x-rays are principally drastic ones which show deleterious effects on viability in heterozygous condition

  4. Andermann syndrome can be a phenocopy of hereditary motor and sensory neuropathy--report of a discordant sibship with a compound heterozygous mutation of the KCC3 gene.

    Science.gov (United States)

    Rudnik-Schöneborn, S; Hehr, U; von Kalle, T; Bornemann, A; Winkler, J; Zerres, K

    2009-06-01

    Andermann syndrome is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum (ACC), progressive motor-sensory neuropathy, mental retardation and facial features. We report on two siblings with the clinical picture of a demyelinating hereditary motor and sensory neuropathy (HMSN), where only the presence of ACC in the younger brother pointed to the diagnosis of Andermann syndrome. Mutation analysis of the KCC3 (SLC12A6) gene showed a compound heterozygous mutation; a maternal missense mutation c.1616G>A (p.G539D) and a paternal splice mutation c.1118+1G>A in both siblings. We hypothesize that mutations of the KCC3 gene may result in non-syndromic childhood onset HMSN.

  5. A Missense Mutation of G257A at Exon 3 in PEX7 CDS Was Responsible for the Incidence of Rhizomelic Chondrodysplasia Punctata Type 1

    Directory of Open Access Journals (Sweden)

    Marziyeh Alamatsaz

    2018-02-01

    Full Text Available Background Rhizomelic chondrodysplasia punctata (RCDP type 1 is among of the rare autosomal recessive peroxisome biogenesis disorders caused by mutations in the PEX7 gene. RCDP patients with the classic form of RCDP1 do not live more than 10- year. Materials and Methods In the present study, a two-year-old girl with skeletal abnormalities and dysmorphic facial appearance is reported to be suffered from RCDP. The patient's parents were second cousins and healthy and there was no similar case in the parents’ family. PEX7 gene was sequenced in the patient and her parents. Results A homozygous mutation, G257A, was identified PEX7 in the genome of patient while the parents were compound heterozygous. Conclusion Taken together, clinical presentation and peroxisome profile of the patient suggested a missense mutation led to formation of a pathogenic PEX7, responsible for incidence of RCDP.

  6. Allele frequencies of hemojuvelin gene (HJV I222N and G320V missense mutations in white and African American subjects from the general Alabama population

    Directory of Open Access Journals (Sweden)

    Bohannon Sean B

    2004-12-01

    Full Text Available Abstract Background Homozygosity or compound heterozygosity for coding region mutations of the hemojuvelin gene (HJV in whites is a cause of early age-of-onset iron overload (juvenile hemochromatosis, and of hemochromatosis phenotypes in some young or middle-aged adults. HJV coding region mutations have also been identified recently in African American primary iron overload and control subjects. Primary iron overload unexplained by typical hemochromatosis-associated HFE genotypes is common in white and black adults in Alabama, and HJV I222N and G320V were detected in a white Alabama juvenile hemochromatosis index patient. Thus, we estimated the frequency of the HJV missense mutations I222N and G320V in adult whites and African Americans from Alabama general population convenience samples. Methods We evaluated the genomic DNA of 241 Alabama white and 124 African American adults who reported no history of hemochromatosis or iron overload to detect HJV missense mutations I222N and G320V using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP technique. Analysis for HJV I222N was performed in 240 whites and 124 African Americans. Analysis for HJV G320V was performed in 241 whites and 118 African Americans. Results One of 240 white control subjects was heterozygous for HJV I222N; she was also heterozygous for HFE C282Y, but had normal serum iron measures and bone marrow iron stores. HJV I222N was not detected in 124 African American subjects. HJV G320V was not detected in 241 white or 118 African American subjects. Conclusions HJV I222N and G320V are probably uncommon causes or modifiers of primary iron overload in adult whites and African Americans in Alabama. Double heterozygosity for HJV I222N and HFE C282Y may not promote increased iron absorption.

  7. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Science.gov (United States)

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  8. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Directory of Open Access Journals (Sweden)

    Fumiaki Yokoi

    Full Text Available DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A, which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE. Dyt1 ΔGAG heterozygous knock-in (KI mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs and normal theta-burst-induced long-term potentiation (LTP in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  9. Familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are different manifestations of the same disease: novel missense mutations in GALNT3

    International Nuclear Information System (INIS)

    Joseph, Leo; Joseph, Selvanayagam; Hing, Sandra N.; Idowu, Bernadine D.; Delaney, David; Presneau, Nadege; O'Donnell, Paul; Diss, Tim; Flanagan, Adrienne Margaret

    2010-01-01

    To report on the biochemistry and clinical and genetic findings of two siblings, the younger sister presenting with recurrent bone pain of the radius and ulna, and medullary sclerosis, and the older brother with soft tissue calcific deposits (tumoral calcinosis) but who later developed bone pain. Both were found to be hyperphosphaturic. The index family comprised four individuals (father, mother, brother, sister). The affected siblings were the offspring of a non-consanguineous Indian family of Tamil origin. Bidirectional sequencing was performed on the DNA from the index family and on 160 alleles from a population of 80 unrelated unaffected control individuals of Tamil extraction and 72 alleles from individuals of non-Tamil origin. Two symptomatic siblings were found to harbour previously unreported compound heterozygous missense UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-transferase; GALNT3) mutations in exon 4 c.842A>G and exon 5 c.1097T>G. This sequence variation was not detected in the control DNA. This is the first report of siblings exhibiting stigmata of familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome with documented evidence of autosomal recessive missense GALNT3 mutations. The findings from this family add further evidence to the literature that familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are manifestations of the same disease and highlight the importance of appropriate metabolic and genetic investigations. (orig.)

  10. Clinical and genetic investigation of a Japanese family with cardiac fabry disease. Identification of a novel α-galactosidase A missense mutation (G195V).

    Science.gov (United States)

    Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2011-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.

  11. Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function.

    Science.gov (United States)

    Biswas, Arijit; Ivaskevicius, Vytautas; Thomas, Anne; Varvenne, Michael; Brand, Brigitte; Rott, Hannelore; Haussels, Iris; Ruehl, Heiko; Scholz, Ute; Klamroth, Robert; Oldenburg, Johannes

    2014-10-01

    Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

  12. Familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are different manifestations of the same disease: novel missense mutations in GALNT3

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Leo; Joseph, Selvanayagam [Vinodhagan Memorial Hospital and Dr. Joseph' s Ortho Clinic, Department of Orthopaedic Surgery, Thanjavur (India); Hing, Sandra N.; Idowu, Bernadine D.; Delaney, David [Royal National Orthopaedic Hospital NHS Trust, Department of Histopathology, Stanmore, Middlesex (United Kingdom); Presneau, Nadege [University College London (UCL), Cancer Institute, London (United Kingdom); O' Donnell, Paul [Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, Stanmore, Middlesex (United Kingdom); University College London (UCL), Institute of Orthopaedics and Musculoskeletal Science, Stanmore (United Kingdom); University College London (UCL), The Institute of Orthopaedics and Musculoskeletal Science, London (United Kingdom); Diss, Tim [University College London Hospital (UCLH) NHS Trust, Rockefeller Building, Department of Histopathology, London (United Kingdom); Flanagan, Adrienne Margaret [Royal National Orthopaedic Hospital NHS Trust, Department of Histopathology, Stanmore, Middlesex (United Kingdom); University College London (UCL), Cancer Institute, London (United Kingdom); University College London Hospital (UCLH) NHS Trust, Rockefeller Building, Department of Histopathology, London (United Kingdom); University College London (UCL), Institute of Orthopaedics and Musculoskeletal Science, Stanmore (United Kingdom); Institute of Orthopaedics and Musculoskeletal Science, Stanmore, Middlesex (United Kingdom)

    2010-01-15

    To report on the biochemistry and clinical and genetic findings of two siblings, the younger sister presenting with recurrent bone pain of the radius and ulna, and medullary sclerosis, and the older brother with soft tissue calcific deposits (tumoral calcinosis) but who later developed bone pain. Both were found to be hyperphosphaturic. The index family comprised four individuals (father, mother, brother, sister). The affected siblings were the offspring of a non-consanguineous Indian family of Tamil origin. Bidirectional sequencing was performed on the DNA from the index family and on 160 alleles from a population of 80 unrelated unaffected control individuals of Tamil extraction and 72 alleles from individuals of non-Tamil origin. Two symptomatic siblings were found to harbour previously unreported compound heterozygous missense UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-transferase; GALNT3) mutations in exon 4 c.842A>G and exon 5 c.1097T>G. This sequence variation was not detected in the control DNA. This is the first report of siblings exhibiting stigmata of familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome with documented evidence of autosomal recessive missense GALNT3 mutations. The findings from this family add further evidence to the literature that familial tumoral calcinosis and hyperostosis-hyperphosphataemia syndrome are manifestations of the same disease and highlight the importance of appropriate metabolic and genetic investigations. (orig.)

  13. Filaggrin compound heterozygous patients carry mutations in trans position

    DEFF Research Database (Denmark)

    Carlsen, Berit C; Meldgaard, Michael; Johansen, Jeanne D

    2013-01-01

    by means of allele-specific PCR amplification and analysis of PCR products by agarose gel electrophoresis. All R501X/2282del4 compound heterozygous samples collected over a 4-year period of routine FLG mutation testing were investigated. In total, 37 samples were tested. All thirty-seven R501X/2282del4......More than 40 null mutations in the filaggrin (FLG) gene are described. It is therefore possible to find two different null mutations in one individual (compound heterozygosity). It has been generally perceived that homozygous and compound heterozygous individuals were genotypically comparable......; however, this has not been scientifically investigated. Two different FLG null mutations in the same individual may be in trans position, meaning that each mutation locates to a different allele functionally equivalent to homozygosity, or may be in cis position, meaning that both mutations locate...

  14. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    Science.gov (United States)

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.

  15. Selected missense mutations impair frataxin processing in Friedreich ataxia.

    Science.gov (United States)

    Clark, Elisia; Butler, Jill S; Isaacs, Charles J; Napierala, Marek; Lynch, David R

    2017-08-01

    Frataxin (FXN) is a highly conserved mitochondrial protein. Reduced FXN levels cause Friedreich ataxia, a recessive neurodegenerative disease. Typical patients carry GAA repeat expansions on both alleles, while a subgroup of patients carry a missense mutation on one allele and a GAA repeat expansion on the other. Here, we report that selected disease-related FXN missense mutations impair FXN localization, interaction with mitochondria processing peptidase, and processing. Immunocytochemical studies and subcellular fractionation were performed to study FXN import into the mitochondria and examine the mechanism by which mutations impair FXN processing. Coimmunoprecipitation was performed to study the interaction between FXN and mitochondrial processing peptidase. A proteasome inhibitor was used to model traditional therapeutic strategies. In addition, clinical profiles of subjects with and without point mutations were compared in a large natural history study. FXN I 154F and FXN G 130V missense mutations decrease FXN 81-210 levels compared with FXN WT , FXN R 165C , and FXN W 155R , but do not block its association with mitochondria. FXN I 154F and FXN G 130V also impair FXN maturation and enhance the binding between FXN 42-210 and mitochondria processing peptidase. Furthermore, blocking proteosomal degradation does not increase FXN 81-210 levels. Additionally, impaired FXN processing also occurs in fibroblasts from patients with FXN G 130V . Finally, clinical data from patients with FXN G 130V and FXN I 154F mutations demonstrates a lower severity compared with other individuals with Friedreich ataxia. These data suggest that the effects on processing associated with FXN G 130V and FXN I 154F mutations lead to higher levels of partially processed FXN, which may contribute to the milder clinical phenotypes in these patients.

  16. A complex microcephaly syndrome in a Pakistani family associated with a novel missense mutation in RBBP8 and a heterozygous deletion in NRXN1

    NARCIS (Netherlands)

    Agha, Z.; Iqbal, Z.; Azam, M.; Siddique, M.; Willemsen, M.H.; Kleefstra, T.; Zweier, C.; Leeuw, N. de; Qamar, R.; Bokhoven, H. van

    2014-01-01

    We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy

  17. Characterization of cancer-associated missense mutations in MDM2

    OpenAIRE

    Chauhan, Krishna M.; Ramakrishnan, Gopalakrishnan; Kollareddy, Madhusudhan; Martinez, Luis A.

    2015-01-01

    MDM2 is an E3 ubiquitin ligase that binds the N-terminus of p53 and promotes its ubiquitin-dependent degradation. Elevated levels of MDM2 due to overexpression or gene amplification can contribute to tumor development by suppressing p53 activity. Since MDM2 is an oncogene, we explored the possibility that other genetic lesions, namely missense mutations, might alter its activities. We selected mutations in MDM2 that reside in one of the 4 key regions of the protein: p53 binding domain, acidic...

  18. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  19. Whole-Exome Sequencing Identified a Novel Compound Heterozygous Mutation of LRRC6 in a Chinese Primary Ciliary Dyskinesia Patient

    Directory of Open Access Journals (Sweden)

    Lv Liu

    2018-01-01

    Full Text Available Primary ciliary dyskinesia (PCD is a clinical rare peculiar disorder, mainly featured by respiratory infection, tympanitis, nasosinusitis, and male infertility. Previous study demonstrated it is an autosomal recessive disease and by 2017 almost 40 pathologic genes have been identified. Among them are the leucine-rich repeat- (LRR- containing 6 (LRRC6 codes for a 463-amino-acid cytoplasmic protein, expressed distinctively in motile cilia cells, including the testis cells and the respiratory epithelial cells. In this study, we applied whole-exome sequencing combined with PCD-known genes filtering to explore the genetic lesion of a PCD patient. A novel compound heterozygous mutation in LRRC6 (c.183T>G/p.N61K; c.179-1G>A was identified and coseparated in this family. The missense mutation (c.183T>G/p.N61K may lead to a substitution of asparagine by lysine at position 61 in exon 3 of LRRC6. The splice site mutation (c.179-1G>A may cause a premature stop codon in exon 4 and decrease the mRNA levels of LRRC6. Both mutations were not present in our 200 local controls, dbSNP, and 1000 genomes. Three bioinformatics programs also predicted that both mutations are deleterious. Our study not only further supported the importance of LRRC6 in PCD, but also expanded the spectrum of LRRC6 mutations and will contribute to the genetic diagnosis and counseling of PCD patients.

  20. [A young boy with elevated aminotransferases in physical examination--Two novel missense mutations associated with Wilson's disease were found].

    Science.gov (United States)

    Zhu, Yu; Deng, Si-Yan; Wan, Chao-Min

    2015-07-01

    A 3-year-old boy had abnormal liver function, which was found in physical examination, for 5 months before admission. He had no symptoms such as anorexia, poor appetite, and jaundice, had normal growth and development, and showed no hepatosplenomegaly. Laboratory examination revealed significantly reduced ceruloplasmin (35 mg/L), as well as negative hepatotropic virus, cytomegalovirus, and Epstein-Barr virus. There were normal muscle enzymes, blood glucose, and blood ammonia and negative liver-specific autoantibodies. The boy had negative K-F ring and normal 24-hour urine copper (0.56 μmol/L). The ATP7B gene testing for the boy, his sister, and their parents detected two novel missense mutations in the boy and his sister, i.e., compound heterozygous mutations in exon 7 (c.2075T>C, p.L692P) and exon 13 (c.3044T>C, p.L1015P), which were inherited from their father and mother, respectively. Wilson's disease was confirmed by genetic diagnosis in the boy and his sister. The boy and his sister were given a low-copper diet. The boy was administered with penicillamine for decoppering and zinc supplement against copper uptake. His sister received zinc supplement alone because no clinical symptoms were observed. The boy showed normal liver function in the reexamination after 3 months of treatment.

  1. A novel common large genomic deletion and two new missense mutations identified in the Romanian phenylketonuria population.

    Science.gov (United States)

    Gemperle-Britschgi, Corinne; Iorgulescu, Daniela; Mager, Monica Alina; Anton-Paduraru, Dana; Vulturar, Romana; Thöny, Beat

    2016-01-15

    The mutation spectrum for the phenylalanine hydroxylase (PAH) gene was investigated in a cohort of 84 hyperphenylalaninemia (HPA) patients from Romania identified through newborn screening or neurometabolic investigations. Differential diagnosis identified 81 patients with classic PAH deficiency while 3 had tetrahydropterin-cofactor deficiency and/or remained uncertain due to insufficient specimen. PAH-genetic analysis included a combination of Sanger sequencing of exons and exon–intron boundaries, MLPA and NGS with genomic DNA, and cDNA analysis from immortalized lymphoblasts. A diagnostic efficiency of 99.4% was achieved, as for one allele (out of a total of 162 alleles) no mutation could be identified. The most prevalent mutation was p.Arg408Trp which was found in ~ 38% of all PKU alleles. Three novel mutations were identified, including the two missense mutations p.Gln226Lys and p.Tyr268Cys that were both disease causing by prediction algorithms, and the large genomic deletion EX6del7831 (c.509 + 4140_706 + 510del7831) that resulted in skipping of exon 6 based on PAH-cDNA analysis in immortalized lymphocytes. The genomic deletion was present in a heterozygous state in 12 patients, i.e. in ~ 8% of all the analyzed PKU alleles, and might have originated from a Romanian founder.

  2. Classical phenotype of Laron syndrome in a girl with a heterozygous mutation and heterozygous polymorphism of the growth hormone receptor gene.

    Science.gov (United States)

    Shevah, Orit; Galli-Tsinopoulou, Assimina; Rubinstein, Menachem; Nousia-Arvanitakis, Sanda; Laron, Zvi

    2004-03-01

    We describe here a 19 month-old girl with classical Laron syndrome (LS). Molecular analysis of the GH receptor gene in the patient and her parents was performed. The patient was found to be heterozygous for a mutation in exon 4 (R43X) and heterozygous for a polymorphism in exon 6 (Gly168Gly). Her mother was also heterozygous for R43X but homozygous for the polymorphism. In the father, a heterozygous polymorphism was found. Contrary to previous assumptions that only homozygous patients express the typical phenotype, this patient shows all the classical features of LS, despite being a heterozygote for a pathological defect.

  3. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series

    Directory of Open Access Journals (Sweden)

    Rashid Ban Mousa

    2013-01-01

    Full Text Available Abstract Introduction Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case presentation Case 1 is the 12-year-old daughter (index patient of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1, whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG located in exon 15 (c.1225C>T of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T. Case 2 is the 16-year-old son (brother of the index patient of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride

  4. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    Science.gov (United States)

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense

  5. Personalized Stem Cell Therapy to Correct Corneal Defects Due to a Unique Homozygous-Heterozygous Mosaicism of Ectrodactyly-Ectodermal Dysplasia-Clefting Syndrome.

    Science.gov (United States)

    Barbaro, Vanessa; Nasti, Annamaria Assunta; Raffa, Paolo; Migliorati, Angelo; Nespeca, Patrizia; Ferrari, Stefano; Palumbo, Elisa; Bertolin, Marina; Breda, Claudia; Miceli, Francesco; Russo, Antonella; Caenazzo, Luciana; Ponzin, Diego; Palù, Giorgio; Parolin, Cristina; Di Iorio, Enzo

    2016-08-01

    : Ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome is a rare autosomal dominant disease caused by mutations in the p63 gene. To date, approximately 40 different p63 mutations have been identified, all heterozygous. No definitive treatments are available to counteract and resolve the progressive corneal degeneration due to a premature aging of limbal epithelial stem cells. Here, we describe a unique case of a young female patient, aged 18 years, with EEC and corneal dysfunction, who was, surprisingly, homozygous for a novel and de novo R311K missense mutation in the p63 gene. A detailed analysis of the degree of somatic mosaicism in leukocytes from peripheral blood and oral mucosal epithelial stem cells (OMESCs) from biopsies of buccal mucosa showed that approximately 80% were homozygous mutant cells and 20% were heterozygous. Cytogenetic and molecular analyses excluded genomic alterations, thus suggesting a de novo mutation followed by an allelic gene conversion of the wild-type allele by de novo mutant allele as a possible mechanism to explain the homozygous condition. R311K-p63 OMESCs were expanded in vitro and heterozygous holoclones selected following clonal analysis. These R311K-p63 OMESCs were able to generate well-organized and stratified epithelia in vitro, resembling the features of healthy tissues. This study supports the rationale for the development of cultured autologous oral mucosal epithelial stem cell sheets obtained by selected heterozygous R311K-p63 stem cells, as an effective and personalized therapy for reconstructing the ocular surface of this unique case of EEC syndrome, thus bypassing gene therapy approaches. This case demonstrates that in a somatic mosaicism context, a novel homozygous mutation in the p63 gene can arise as a consequence of an allelic gene conversion event, subsequent to a de novo mutation. The heterozygous mutant R311K-p63 stem cells can be isolated by means of clonal analysis and given their good regenerative

  6. A novel heterozygous RIT1 mutation in a patient with Noonan syndrome, leukopenia, and transient myeloproliferation-a review of the literature.

    Science.gov (United States)

    Nemcikova, Michaela; Vejvalkova, Sarka; Fencl, Filip; Sukova, Martina; Krepelova, Anna

    2016-04-01

    Noonan syndrome (NS) is a genetic condition presenting with typical facies, cardiac defects, short stature, variable developmental deficit, cryptorchidism, skeletal, and other abnormalities. Germline mutations in genes involved in the RAS/MAPK signaling have been discovered to underlie NS. Recently, missense mutations in RIT1 have been reported as causative for individuals with clinical signs of NS. We report on a 2.5-year-old boy with NS phenotype with a novel heterozygous change in the RIT1 gene. The patient was born prematurely from pregnancy monitored for polyhydramnios. At 7 months of age, non-immune neutropenia and splenomegaly have been observed. During the severe pneumonia at 10 months, significant progression of hepatosplenomegaly, leukopenia with monocytosis (15-29 %), and thrombocytopenia occurred. Bone marrow evaluation showed myeloid hyperplasia and monocytosis, suggestive of myeloproliferative syndrome. Clinical phenotype (facial dysmorphism, soft hair, short neck, broad chest, widely spaced nipples, mild pectus carinatum, deep palmar creases, unilateral cryptorchidism), and moderate pulmonary valve stenosis with mild psychomotor delay were indicative of NS. DNA analysis identified a de novo heterozygous variant c.69A >T, p.(Lys23Asn) in exon 2 of the RIT1 gene, presumed to be causative. We present a patient with a clinical suspicion of NS carrying a novel substitution in RIT1 and hematologic findings not being observed in RIT1 positive patients to date. Thus, the case broadens variability of hematologic symptoms in RIT1 positive NS individuals. • Noonan syndrome is a common genetically heterogeneous disorder of autosomal dominant inheritance characterized by craniofacial dysmorphism, short stature, congenital heart defects, variable cognitive deficit, and other anomalies. What is new: • We report on a 2.5-year-old male patient with clinical signs of NS and hematologic abnormalities, in whom a novel heterozygous substitution in RIT1 with probable

  7. A new mesophotic goby, Palatogobius incendius (Teleostei: Gobiidae, and the first record of invasive lionfish preying on undescribed biodiversity.

    Directory of Open Access Journals (Sweden)

    Luke Tornabene

    Full Text Available A new species of deep-reef fish in the goby genus Palatogobius is described from recent submersible collections off Curaçao and Dominica. Video footage of schools of this species reveal predation by the invasive Indo-Pacific lionfish (Pterois spp., the first record of undescribed fauna potentially being eaten by lionfish outside of its native range. We present molecular phylogenetic data for all valid species of Palatogobius and related genera, as well as a taxonomic key to the species of Palatogobius and a generic key to Palatogobius and related genera in the western Atlantic. Lastly, we discuss ecological and behavioral aspects of some deep-reef fishes in light of potential threats from invasive lionfish.

  8. A new mesophotic goby, Palatogobius incendius (Teleostei: Gobiidae), and the first record of invasive lionfish preying on undescribed biodiversity.

    Science.gov (United States)

    Tornabene, Luke; Baldwin, Carole C

    2017-01-01

    A new species of deep-reef fish in the goby genus Palatogobius is described from recent submersible collections off Curaçao and Dominica. Video footage of schools of this species reveal predation by the invasive Indo-Pacific lionfish (Pterois spp.), the first record of undescribed fauna potentially being eaten by lionfish outside of its native range. We present molecular phylogenetic data for all valid species of Palatogobius and related genera, as well as a taxonomic key to the species of Palatogobius and a generic key to Palatogobius and related genera in the western Atlantic. Lastly, we discuss ecological and behavioral aspects of some deep-reef fishes in light of potential threats from invasive lionfish.

  9. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer

    NARCIS (Netherlands)

    Shimelis, Hermela; Mesman, Romy L. S.; Von Nicolai, Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calléja, Fabienne M. G. R.; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M.; Aittomäki, Kristiina; Andrulis, Irene; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Benitez, Javier; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Broeks, Annegien; Brouwers, Barbara; Brüning, Thomas; Burwinkel, Barbara; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Cheng, Ching-Yu; Choi, Ji-Yeob; Collée, J. Margriet; Cox, Angela; Cross, Simon S.; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dunning, Alison M.; Fasching, Peter A.; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G.; Glendon, Gord; Guénel, Pascal; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Hartman, Mikael; Hogervorst, Frans B.; Hollestelle, Antoinette; Hopper, John L.; Ito, Hidemi; Jakubowska, Anna; Kang, Daehee; Kosma, Veli-Matti; Kristensen, Vessela; Lai, Kah-Nyin; Lambrechts, Diether; Marchand, Loic Le; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Machackova, Eva; Mannermaa, Arto; Margolin, Sara; Marme, Frederik; Matsuo, Keitaro; Miao, Hui; Michailidou, Kyriaki; Milne, Roger L.; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Olson, Janet E.; Olswold, Curtis; Oosterwijk, Jan J. C.; Osorio, Ana; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D. P.; Pylkäs, Katri; Radice, Paolo; Rashid, Muhammad Usman; Rhenius, Valerie; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Marjanka K.; Schoemaker, Minouk J.; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shrubsole, Martha; Shu, Xiao-Ou; Slager, Susan; Southey, Melissa C.; Stram, Daniel O.; Swerdlow, Anthony; teo, Soo H.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; van Asperen, Christi J.; van der Kolk, Lizet E.; Wang, Qin; Winqvist, Robert; Wu, Anna H.; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Leary, Jennifer; Walker, Logan; Foretova, Lenka; Fostira, Florentia; Claes, Kathleen B. M.; Varesco, Liliana; Moghadasi, Setareh; Easton, Douglas F.; Spurdle, Amanda; Devilee, Peter; Vrieling, Harry; Monteiro, Alvaro N. A.; Goldgar, David E.; Carreira, Aura; Vreeswijk, Maaike P. G.; Couch, Fergus J.

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk

  10. Heterozygous defects in PAX6 gene and congenital hypopituitarism.

    Science.gov (United States)

    Takagi, Masaki; Nagasaki, Keisuke; Fujiwara, Ikuma; Ishii, Tomohiro; Amano, Naoko; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2015-01-01

    The prevalence of congenital hypopituitarism (CH) attributable to known transcription factor mutations appears to be rare and other causative genes for CH remain to be identified. Due to the sporadic occurrence of CH, de novo chromosomal rearrangements could be one of the molecular mechanisms participating in its etiology, especially in syndromic cases. To identify the role of copy number variations (CNVs) in the etiology of CH and to identify novel genes implicated in CH. We enrolled 88 (syndromic: 30; non-syndromic: 58) Japanese CH patients. We performed an array comparative genomic hybridization screening in the 30 syndromic CH patients. For all the 88 patients, we analyzed PAX6 by PCR-based sequencing. We identified one heterozygous 310-kb deletion of the PAX6 enhancer region in one patient showing isolated GH deficiency (IGHD), cleft palate, and optic disc cupping. We also identified one heterozygous 6.5-Mb deletion encompassing OTX2 in a patient with bilateral anophthalmia and multiple pituitary hormone deficiency. We identified a novel PAX6 mutation, namely p.N116S in one non-syndromic CH patient showing IGHD. The p.N116S PAX6 was associated with an impairment of the transactivation capacities of the PAX6-binding elements. This study showed that heterozygous PAX6 mutations are associated with CH patients. PAX6 mutations may be associated with diverse clinical features ranging from severely impaired ocular and pituitary development to apparently normal phenotype. Overall, this study identified causative CNVs with a possible role in the etiology of CH in <10% of syndromic CH patients. © 2015 European Society of Endocrinology.

  11. Primary microcephaly caused by novel compound heterozygous mutations in ASPM.

    Science.gov (United States)

    Okamoto, Nobuhiko; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Imoto, Issei

    2018-01-01

    Autosomal recessive primary microcephaly (microcephaly primary hereditary, MCPH) is a genetically heterogeneous rare developmental disorder that is characterized by prenatal onset of abnormal brain growth, which leads to intellectual disability of variable severity. We report a 5-year-old male who presented with a severe form of primary microcephaly. Targeted panel sequencing revealed compound heterozygous truncating mutations of the abnormal spindle-like microcephaly-associated ( ASPM ) gene, which confirmed the MCPH5 diagnosis. A novel NM_018136.4: c.9742_9745del (p.Lys3248Serfs*13) deletion mutation was identified.

  12. Vibratory Urticaria Associated with a Missense Variant in ADGRE2.

    Science.gov (United States)

    Boyden, Steven E; Desai, Avanti; Cruse, Glenn; Young, Michael L; Bolan, Hyejeong C; Scott, Linda M; Eisch, A Robin; Long, R Daniel; Lee, Chyi-Chia R; Satorius, Colleen L; Pakstis, Andrew J; Olivera, Ana; Mullikin, James C; Chouery, Eliane; Mégarbané, André; Medlej-Hashim, Myrna; Kidd, Kenneth K; Kastner, Daniel L; Metcalfe, Dean D; Komarow, Hirsh D

    2016-02-18

    Patients with autosomal dominant vibratory urticaria have localized hives and systemic manifestations in response to dermal vibration, with coincident degranulation of mast cells and increased histamine levels in serum. We identified a previously unknown missense substitution in ADGRE2 (also known as EMR2), which was predicted to result in the replacement of cysteine with tyrosine at amino acid position 492 (p.C492Y), as the only nonsynonymous variant cosegregating with vibratory urticaria in two large kindreds. The ADGRE2 receptor undergoes autocatalytic cleavage, producing an extracellular subunit that noncovalently binds a transmembrane subunit. We showed that the variant probably destabilizes an autoinhibitory subunit interaction, sensitizing mast cells to IgE-independent vibration-induced degranulation. (Funded by the National Institutes of Health.).

  13. A novel MKRN3 missense mutation causing familial precocious puberty.

    Science.gov (United States)

    de Vries, L; Gat-Yablonski, G; Dror, N; Singer, A; Phillip, M

    2014-12-01

    Central precocious puberty may be familial in about a quarter of the idiopathic cases. However, little is known about the genetic causes responsible for the disorder. In this report we describe a family with central precocious puberty associated with a mutation in the makorin RING-finger protein 3 (MKRN3) gene. A novel missense mutation (p.H420Q) in the imprinted MKRN3 gene was identified in the four affected siblings, in their unaffected father and in his affected mother. An in silico mutant MKRN3 model predicts that the mutation p.H420Q leads to reduced zinc binding and, subsequently, impaired RNA binding. These findings support the fundamental role of the MKRN3 protein in determining pubertal timing. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. [Molecular characterization of heterozygous beta-thalassemia in Lanzarote, Spain].

    Science.gov (United States)

    Calvo-Villas, José Manuel; de la Iglesia Iñigo, Silvia; Ropero Gradilla, Paloma; Zapata Ramos, María Francisca; Cuesta Tovar, Jorge; Sicilia Guillén, Francisco

    2008-04-05

    The aim of this study was to determine the molecular defects of heterozygous beta thalassaemia and to ascertain their distribution in Lanzarote. Molecular characterization was achieved by real time polymerase chain reaction (RT-PCR LightCycler, Roche), PCR-ARMS (PCR-amplification reaction mutations system) and DNA sequencing on an automated DNA sequencer. Two hundred forty-three heterozygous beta thalassaemia carriers were included between July 1991 and February 2007. RT-PCR detected the molecular defect in 81% of the beta thalassaemia chromosomes analyzed [113 codon CD 39 (C --> T); 41 IVS-1-nt-110 (G --> A), 25 IVS 1-nt-1 (G --> A) and 19 IVS 1-nt-6 (T --> C)]. The remaining 12 molecular defects included the deletion 619 bp (7.8%) and the mutations -28 (A --> G), IVS1-nt-2 (T --> G), CD 41/42 (-TTCT), CD 8/9 (+G), CD 51 (-C), CD 22 (G --> T) and CD 24 (T --> A), CD 67 (-TG) and the novel mutation CD 20/21-TGGA. The distribution of the mutations is similar to that found in the Mediterranean area. The increasing migratory flow received in the Canary Islands may explain the emergence of new mutations not reported before in our area.

  15. Missense Mutations in CRYAB Are Liable for Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    Full Text Available This study was initiated to identify causal mutations responsible for autosomal recessive congenital cataracts in consanguineous familial cases.Affected individuals underwent a detailed ophthalmological and clinical examination, and slit-lamp photographs were ascertained for affected individuals who have not yet been operated for the removal of the cataractous lens. Blood samples were obtained, and genomic DNA was extracted from white blood cells. A genome-wide scan was completed with short tandem repeat (STR markers, and the logarithm of odds (LOD scores were calculated. Protein coding exons of CRYAB were sequenced, bi-directionally. Evolutionary conservation was investigated by aligning CRYAB orthologues, and the expression of Cryab in embryonic and postnatal mice lens was investigated with TaqMan probe.The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis suggested a potential region on chromosome 11q23 harboring CRYAB. DNA sequencing identified a missense variation: c.34C>T (p.R12C in CRYAB that segregated with the disease phenotype in the family. Subsequent interrogation of our entire cohort of familial cases identified a second familial case localized to chromosome 11q23 harboring a c.31C>T (p.R11C mutation. In silico analyses suggested that the mutations identified in familial cases, p.R11C and p.R12C will not be tolerated by the three-dimensional structure of CRYAB. Real-time PCR analysis identified the expression of Cryab in mouse lens as early as embryonic day 15 (E15 that increased significantly until postnatal day 6 (P6 with steady level of expression thereafter.Here, we report two novel missense mutations, p.R11C and p.R12C, in CRYAB associated with autosomal recessive congenital nuclear cataracts.

  16. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    Directory of Open Access Journals (Sweden)

    Eva Müller

    Full Text Available Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X] were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  17. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    Science.gov (United States)

    Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  18. Compound heterozygous ASPM mutations in Pakistani MCPH families

    DEFF Research Database (Denmark)

    Muhammad, Farooq; Mahmood Baig, Shahid; Hansen, Lars

    2009-01-01

    Autosomal recessive primary microcephaly (MCPH) is characterized by reduced head circumference (50% of all reported families. In spite of the high frequency of MCPH in Pakistan only one case of compound heterozygosity for mutations in ASPM has been reported yet. In this large MCPH study we...... confirmed compound heterozygosity in two and homozygous mutations in 20 families, respectively, showing that up to 10% of families with MCPH caused by ASPM are compound heterozygous. In total we identified 16 different nonsense or frameshift mutations of which 12 were novel thereby increasing the number...... of mutations in ASPM significantly from 35 to 47. We found no correlation between the severity of the condition and the site of truncation. We suggest that the high frequency of compound heterozygosity observed in this study is taken into consideration as part of future genetic testing and counseling...

  19. RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes.

    Science.gov (United States)

    Reijnders, Margot R F; Ansor, Nurhuda M; Kousi, Maria; Yue, Wyatt W; Tan, Perciliz L; Clarkson, Katie; Clayton-Smith, Jill; Corning, Ken; Jones, Julie R; Lam, Wayne W K; Mancini, Grazia M S; Marcelis, Carlo; Mohammed, Shehla; Pfundt, Rolph; Roifman, Maian; Cohn, Ronald; Chitayat, David; Millard, Tom H; Katsanis, Nicholas; Brunner, Han G; Banka, Siddharth

    2017-09-07

    RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity.

    Science.gov (United States)

    Tartaglione, Luciana; Gambuti, Angelita; De Cicco, Paola; Ercolano, Giuseppe; Ianaro, Angela; Taglialatela-Scafati, Orazio; Moio, Luigi; Forino, Martino

    2018-03-01

    Vitis vinifera cv Falanghina is an ancient grape variety of Southern Italy. A thorough phytochemical analysis of the Falanghina leaves was conducted to investigate its specialised metabolite content. Along with already known molecules, such as caftaric acid, quercetin-3-O-β-d-glucopyranoside, quercetin-3-O-β-d-glucuronide, kaempferol-3-O-β-d-glucopyranoside and kaempferol-3-O-β-d-glucuronide, a previously undescribed biflavonoid was identified. For this last compound, a moderate bioactivity against metastatic melanoma cells proliferation was discovered. This datum can be of some interest to researchers studying human melanoma. The high content in antioxidant glycosylated flavonoids supports the exploitation of grape vine leaves as an inexpensive source of natural products for the food industry and for both pharmaceutical and nutraceutical companies. Additionally, this study offers important insights into the plant physiology, thus prompting possible technological researches of genetic selection based on the vine adaptation to specific pedo-climatic environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Identification of a previously undescribed divergent virus from the Flaviviridae family in an outbreak of equine serum hepatitis.

    Science.gov (United States)

    Chandriani, Sanjay; Skewes-Cox, Peter; Zhong, Weidong; Ganem, Donald E; Divers, Thomas J; Van Blaricum, Anita J; Tennant, Bud C; Kistler, Amy L

    2013-04-09

    Theiler's disease is an acute hepatitis in horses that is associated with the administration of equine blood products; its etiologic agent has remained unknown for nearly a century. Here, we used massively parallel sequencing to explore samples from a recent Theiler's disease outbreak. Metatranscriptomic analysis of the short sequence reads identified a 10.5-kb sequence from a previously undescribed virus of the Flaviviridae family, which we designate "Theiler's disease-associated virus" (TDAV). Phylogenetic analysis clusters TDAV with GB viruses of the recently proposed Pegivirus genus, although it shares only 35.3% amino acid identity with its closest relative, GB virus D. An epidemiological survey of additional horses from three separate locations supports an association between TDAV infection and acute serum hepatitis. Experimental inoculation of horses with TDAV-positive plasma provides evidence that several weeks of viremia preceded liver injury and that liver disease may not be directly related to the level of viremia. Like hepatitis C virus, the best characterized Flaviviridae species known to cause hepatitis, we find TDAV is capable of efficient parenteral transmission, engendering acute and chronic infections associated with a diversity of clinical presentations ranging from subclinical infection to clinical hepatitis.

  2. Homozygous missense mutation in the LMAN2L gene segregates with intellectual disability in a large consanguineous Pakistani family.

    Science.gov (United States)

    Rafiullah, Rafiullah; Aslamkhan, Muhammad; Paramasivam, Nagarajan; Thiel, Christian; Mustafa, Ghulam; Wiemann, Stefan; Schlesner, Matthias; Wade, Rebecca C; Rappold, Gudrun A; Berkel, Simone

    2016-02-01

    Intellectual disability (ID) is a neurodevelopmental disorder affecting 1%-3% of the population worldwide. It is characterised by high phenotypic and genetic heterogeneity and in most cases the underlying cause of the disorder is unknown. In our study we investigated a large consanguineous family from Baluchistan, Pakistan, comprising seven affected individuals with a severe form of autosomal recessive ID (ARID) and epilepsy, to elucidate a putative genetic cause. Whole exome sequencing (WES) of a trio, including a child with ID and epilepsy and its healthy parents that were part of this large family, revealed a homozygous missense variant p.R53Q in the lectin mannose-binding 2-like (LMAN2L) gene. This homozygous variant was co-segregating in the family with the phenotype of severe ID and infantile epilepsy; unaffected family members were heterozygous variant carriers. The variant was predicted to be pathogenic by five different in silico programmes and further three-dimensional structure modelling of the protein suggests that variant p.R53Q may impair protein-protein interaction. LMAN2L (OMIM: 609552) encodes for the lectin, mannose-binding 2-like protein which is a cargo receptor in the endoplasmic reticulum important for glycoprotein transport. Genome-wide association studies have identified an association of LMAN2L to different neuropsychiatric disorders. This is the first report linking LMAN2L to a phenotype of severe ARID and seizures, indicating that the deleterious homozygous p.R53Q variant very likely causes the disorder. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Genotype-Phenotype Correlations Emerging from the Identification of Missense Mutations in MBTPS2

    NARCIS (Netherlands)

    Bornholdt, D.; Atkinson, T.P.; Bouadjar, B.; Catteau, B.; Cox, H.; Silva, D. De; Fischer, J.; Gunasekera, C.N.; Hadj-Rabia, S.; Happle, R.; Holder-Espinasse, M.; Kaminski, E.; Konig, A.; Megarbane, A.; Megarbane, H.; Neidel, U.; Oeffner, F.; Oji, V.; Theos, A.; Traupe, H.; Vahlquist, A.; Bon, B.W. van; Virtanen, M.; Grzeschik, K.H.

    2013-01-01

    Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) have been associated with Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) syndrome with or without BRESHECK syndrome, with keratosis follicularis spinulosa decalvans, and Olmsted syndrome. This

  4. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  5. NDST1 missense mutations in autosomal recessive intellectual disability.

    Science.gov (United States)

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  6. Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions

    Science.gov (United States)

    Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.

    2015-01-01

    Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387

  7. Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa.

    Science.gov (United States)

    Nguyen, Nhu H; Vellinga, Else C; Bruns, Thomas D; Kennedy, Peter G

    The genus Suillus represents one of the most recognizable groups of mushrooms in conifer forests throughout the Northern Hemisphere. Although for decades the genus has been relatively well defined morphologically, previous molecular phylogenetic assessments have provided important yet preliminary insights into its evolutionary history. We present the first large-scale phylogenetic study of the boundaries of each species in the genus Suillus based on the most current internal transcribed spacer (ITS) barcode sequences available inPUBLIC databases, as well as sequencing of 224 vouchered specimens and cultures, 15 of which were type specimens from North America. We found that species boundaries delimited by morphological data are broadly congruent with those based on ITS sequences. However, some species appear to have been described several times under different names, several species groups cannot be resolved by ITS sequences alone, and undescribed taxa are apparent, especially in Asia. Therefore, we elevated S. tomentosus var. discolor to S. discolor; proposed synonymies of S. neoalbidipes with S. glandulosipes, S. borealis with S. brunnescens, Boletus serotinus and B. solidipes with Suillus elbensis, S. lactifluus with S. granulatus, S. himalayensis with S. americanus; and proposed usage of the names S. clintonianus in the place of the North American S. grevillei, S. weaverae for North American S. granulatus, S. ampliporus in the place of the North American S. cavipes, and S. elbensis in place of the North American S. viscidus. We showed that the majority of Suillus species have strong affinities for particular host genera. Although deep node support was low, geographic differentiation was apparent, with species from North America, Eurasia, and Asia often forming their own clades. Collectively, this comprehensive genus-level phylogenetic integration of currently available Suillus ITS molecular data and metadata will aid future taxonomic and ecological work on an

  8. USING TAXONOMIC REVISION DATA TO ESTIMATE THE GLOBAL SPECIES RICHNESS AND CHARACTERISTICS OF UNDESCRIBED SPECIES OF DIVING BEETLES (COLEOPTERA: DYTISCIDAE

    Directory of Open Access Journals (Sweden)

    Viktor Nilsson-Örtman

    2010-06-01

    Full Text Available Many methods used for estimating species richness are either difficult to use on poorly known taxa or require input data that are laborious and expensive to collect. In this paper we apply a method which takes advantage of the carefully conducted tests of how the described diversity compares to real species richness that are inherent in taxonomic revisions. We analyze the quantitative outcome from such revisions with respect to body size, zoogeographical region and phylogenetic relationship. The best fitting model is used to predict the diversity of unrevised groups if these would have been subject to as rigorous species level hypothesis-testing as the revised groups. The sensitivity of the predictive model to single observations is estimated by bootstrapping over resampled subsets of the original data. The Dytiscidae is with its 4080 described species (end of May 2009 the most diverse group of aquatic beetles and have a world-wide distribution. Extensive taxonomic work has been carried out on the family but still the number of described species increases exponentially in most zoogeographical regions making many commonly used methods of estimation difficult to apply. We provide independent species richness estimates of subsamples for which species richness estimates can be reached through extrapolation and compare these to the species richness estimates obtained through the method using revision data. We estimate there to be 5405 species of dytiscids, a 1.32-fold increase over the present number of described species. The undescribed diversity is likely to be biased towards species with small body size from tropical regions outside of Africa.

  9. Germline Missense Changes in the APC Gene and Their Relationship to Disease.

    Science.gov (United States)

    Scott, Rodney J; Crooks, Renee; Rose, Lindy; Attia, John; Thakkinstian, Ammarin; Thomas, Lesley; Spigelman, Allan D; Meldrum, Cliff J

    2004-05-15

    Familial adenomatous polyposis (FAP) is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC) gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K) and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT) or the In Vitro Synthetic Protein assay (IVSP).In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study.The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  10. Germline Missense Changes in the APC Gene and Their Relationship to Disease

    Directory of Open Access Journals (Sweden)

    Scott Rodney J

    2004-05-01

    Full Text Available Abstract Familial adenomatous polyposis (FAP is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT or the In Vitro Synthetic Protein assay (IVSP. In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study. The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  11. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications.

    Science.gov (United States)

    Tavtigian, Sean V; Byrnes, Graham B; Goldgar, David E; Thomas, Alun

    2008-11-01

    Many individually rare missense substitutions are encountered during deep resequencing of candidate susceptibility genes and clinical mutation screening of known susceptibility genes. BRCA1 and BRCA2 are among the most resequenced of all genes, and clinical mutation screening of these genes provides an extensive data set for analysis of rare missense substitutions. Align-GVGD is a mathematically simple missense substitution analysis algorithm, based on the Grantham difference, which has already contributed to classification of missense substitutions in BRCA1, BRCA2, and CHEK2. However, the distribution of genetic risk as a function of Align-GVGD's output variables Grantham variation (GV) and Grantham deviation (GD) has not been well characterized. Here, we used data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests plus two risk estimates, one approximating the odds ratio and the other reflecting strength of selection, to display the distribution of risk in the GV-GD plane as a series of surfaces. We abstracted contours from the surfaces and used the contours to define a sequence of missense substitution grades ordered from greatest risk to least risk. The grades were validated internally using a third, personal and family history-based, measure of risk. The Align-GVGD grades defined here are applicable to both the genetic epidemiology problem of classifying rare missense substitutions observed in known susceptibility genes and the molecular epidemiology problem of analyzing rare missense substitutions observed during case-control mutation screening studies of candidate susceptibility genes. (c) 2008 Wiley-Liss, Inc.

  12. Induced mutations in highly heterozygous vegetatively propagated grasses

    International Nuclear Information System (INIS)

    Powell, J.B.

    1976-01-01

    Experience with mutation induction of turf and forage grasses indicates that much progress can be achieved by this method. More than 300 mutations have been produced in our laboratory in the cultivars Tifgreen and Tifdwarf bermudagrass (Cynodon sp.). In the Tifway and Tifcote bermudagrasses we have demonstrated similar mutation responses. The first three clones are triploids and Tifcote is a probable tetraploid. No seeds are set on these clones. Two clones of bermudagrass, Coastal and Coastcross-1, occupy millions of hectares in the USA. Both are mutable and are known to be hybrids with 36 chromosomes. Biotypes of dallisgrass (Paspalum dilatatum Poir.) exist with 40 and 50 chromosomes and reproduce as sexual and obligate apomictic forms. Gamma-ray and thermal-neutron treatment of seed of these biotypes produced mutants that maintained the maternal characteristics in subsequent generations. Bahiagrass (Paspalum notatum Fluegge) also has sexual and apomictic biotypes. Some success was indicated for increased seed set by mutagen treatment. Kentucky bluegrass (Poa pratensis L.) is a facultative apomict with varying numbers of chromosomes in different cultivars. Gamma-ray mutagen treatment of rhizomes produced numerous mutations for plant type and disease reaction. Most mutations perpetuate themselves through the seed. The characteristic in common with all these grasses is their heterozygosity, which is maintained by the vegetative propagation or apomictic mode of reproduction. The experience in using ionizing radiation to induce heritable changes in these vegetatively propagated grasses is one of considerable success. Mutation rates in some of these irradiated grasses exceeded 65% and aberrant plants with characteristics previously never observed were found. Numerous hemizygous and heterozygous loci seem to be a sensitive target for mutagens. (author)

  13. Development and pathology of two undescribed species of microsporidia infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot.

    Science.gov (United States)

    Bjøornson, S; Keddie, B A

    2000-11-01

    Two undescribed species of microsporidia were found in mass-reared Phytoseiulus persimilis Athias-Henriot from two commercial sources during a routine examination of these predators for pathogens. Both microsporidian species were described from specimens that had been prepared for transmission electron microscopy; live specimens were unavailable for examination. One microsporidium, identified as Species A, was described from two specimens obtained from a commercial insectary in North America. All observed stages of this microsporidium were uninucleate. Rounded-to-ovoid schizonts appeared to develop in direct contact with the cytoplasm of lyrate organ cells (ovarian tissue). Mature spores of Species A were elongate-ovoid and measured 2.88 x 1.21 microm. A polar filament coiled 7 to 10 times in the posterior half of the spore. Sporoblasts and spores were observed in the cytoplasm of cells of numerous tissues and in developing eggs within gravid females. A second species, identified as Species B, was described from five specimens obtained from a commercial source in Israel. All observed stages of this microsporidium were uninucleate. Schizonts of Species B were observed within the cytoplasm of cecal wall cells and within the nuclei of lyrate organ cells. Mature spores were ovoid and measured 2.65 x 1.21 microm. A polar filament coiled 3 to 4 times in the posterior half of the spore. Densely packed ribosomes often concealed the polar filament and other internal spore characteristics. Spores were observed in the cytoplasm of cells of numerous tissues and occasionally within the nuclei of lyrate organ cells. Numerous spores and presporal stages were observed within the ovary and developing eggs. The development and pathology of Species A and B were compared to those of Microsporidium phytoseiuli Bjøornson, Steiner and Keddie, a microsporidium previously described from P. persimilis obtained from a commercial source in Europe. The occurrence of three species of

  14. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales.

    Directory of Open Access Journals (Sweden)

    Martin Vohník

    Full Text Available Ericaceae (the heath family are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed 'sheathed ericoid mycorrhiza', discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet

  15. A novel missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria and cleft palate.

    Science.gov (United States)

    Kato, Koji; Miya, Fuyuki; Hori, Ikumi; Ieda, Daisuke; Ohashi, Kei; Negishi, Yutaka; Hattori, Ayako; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Saitoh, Shinji

    2017-09-01

    We identified a novel de novo heterozygous missense mutation in the NEDD4L gene (NM_015277: c.2617G>A; p.Glu873Lys) through whole-exome sequencing in a 3-year-old girl showing severe global developmental delay, infantile spasms, cleft palate, periventricular nodular heterotopia and polymicrogyria. Mutations in the HECT domain of NEDD4L have been reported in patients with a neurodevelopmental disorder along with similar brain malformations. All patients reported with NEDD4L HECT domain mutations showed periventricular nodular heterotopia, and most had seizures, cortex anomalies, cleft palate and syndactyly. The unique constellation of clinical features in patients with NEDD4L mutations might help clinically distinguish them from patients with other genetic mutations including FLNA, which is a well-known causative gene of periventricular nodular heterotopia. Although mutations in the HECT domain of NEDD4L that lead to AKT-mTOR pathway deregulation in forced expression system were reported, our western blot analysis did not show an increased level of AKT-mTOR activity in lymphoblastoid cell lines (LCLs) derived from the patient. In contrast to the forced overexpression system, AKT-mTOR pathway deregulation in LCLs derived from our patient seems to be subtle.

  16. Arterial intima-media thickness in children heterozygous for familial hypercholesterolaemia

    NARCIS (Netherlands)

    Wiegman, Albert; de Groot, Eric; Hutten, Barbara A.; Rodenburg, Jessica; Gort, Johan; Bakker, Henk D.; Sijbrands, Eric J. G.; Kastelein, John J. P.

    2004-01-01

    Patients with familial hypercholesterolaemia have severe coronary-artery disease early in adult life. Whether lipid-lowering treatment should be started in childhood remains to be established. We therefore assessed 201 children heterozygous for familial hypercholesterolaemia and 80 unaffected

  17. Missense Variants in ATM in 26,101 Breast Cancer Cases and 29,842 Controls

    DEFF Research Database (Denmark)

    Fletcher, O.; Johnson, N.; Silva, Andreá Lema Da

    2010-01-01

    Background: Truncating mutations in ATM have been shown to increase the risk of breast cancer but the effect of missense variants remains contentious. Methods: We have genotyped five polymorphic (minor allele frequency, 0.9-2.6%) missense single nucleotide polymorphisms (SNP) in ATM (S49C, S707P, F...... for any of the SNPs with an overall trend OR of 1.06 (P-trend = 0.04). The trend OR among bilateral and familial cases was 1.12 (95% confidence interval, 1.02-1.23; P-trend = 0.02). Conclusions: In this large combined analysis, these five missense ATM SNPs were associated with a small increased risk...

  18. The detection of heterozygous familial hypercholesterolemia in Ireland.

    LENUS (Irish Health Repository)

    O'Kane, Maurice J

    2012-05-01

    Heterozygous familial hypercholesterolemia (HeFH) is an autosomal dominant condition with a population prevalence of 1 in 500, and is associated with significant cardiovascular morbidity and mortality. It may be caused by mutations in the low-density lipoprotein (LDL) receptor, apolipoprotein B100 (Apo B100), or proprotein convertase subtilisin\\/kexin type 9 (PCSK9) genes, with over 1,000 causative mutations described. Statin therapy in HeFH is considered effective and safe. Audit data suggest that approximately 80% of the putative HeFH population remains unidentified and, therefore, there is a need to develop a strategy for the identification of affected individuals so that early lipid-lowering treatment may be offered. There is good evidence showing the effectiveness and acceptability of HeFH screening programs in Europe. The authors describe a protocol for an all island approach to HeFH detection in the Republic of Ireland\\/Northern Ireland. Index cases will be identified by opportunistic screening using the Simon Broome, or Make Early Diagnosis to Prevent Early Death (MedPed) and World Health Organization (WHO) criteria. Patients identified as "definite," "probable," or "possible" HeFH criteria will be offered genetic testing. The authors expect causative mutations to be identified in approximately 80% of patients with "definite" HeFH but in only approximately 20% of patients with "possible" HeFH. Cascade screening will be undertaken in first-degree relatives of the index case using genetic testing (where a causative mutation has been identified), or otherwise using LDL cholesterol concentration. The establishment of a HeFH screening program on an all-island basis will require: expansion of the existing molecular genetics diagnostic services, the establishment of a cohort of nurses\\/genetic counselors, a HeFH database to support cascade testing, the development of a network of lipid clinics (in a primary or secondary care setting), and an educational

  19. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder

    OpenAIRE

    Fuchs, Claudia; Gennaccaro, Laura; Trazzi, Stefania; Bastianini, Stefano; Bettini, Simone; Martire, Viviana Lo; Ren, Elisa; Medici, Giorgio; Zoccoli, Giovanna; Rimondini, Roberto; Ciani, Elisabetta

    2018-01-01

    CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five) gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/−) mouse, has been little characterized. The lack of...

  20. BRCA1/2 missense mutations and the value of in-silico analyses.

    Science.gov (United States)

    Sadowski, Carolin E; Kohlstedt, Daniela; Meisel, Cornelia; Keller, Katja; Becker, Kerstin; Mackenroth, Luisa; Rump, Andreas; Schröck, Evelin; Wimberger, Pauline; Kast, Karin

    2017-11-01

    The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. [Haplotype Analysis of Coagulation Factor VII Gene in a Patient with Congenital Coagulation Factor VII Deficiency with Heterozygous p.Arg337Cys Mutation and o.Aro413Gin Polymorphism..

    Science.gov (United States)

    Suzuki, Keijiro; Yoshioka, Tomoko; Obara, Takehiro; Suwabe, Akira

    2016-05-01

    Congenital coagulation factor VII (FVII) deficiency is a rare hemorrhagic disease with an autosomal reces- sive inheritance pattern. We analyzed coagulation factor VII gene (F7) of a patient with FVII deficiency and used expression studies to investigate the effect of a missense mutation on FVII secretion. The proband, a 69-year-old Japanese woman, had a history of postpartum bleeding and excessive bleeding after dental extrac- tion. She was found to have mildly increased PT-INR (1.17) before an ophthalmic operation. FVII activity and antigen were reduced (29.0% and 32.8%). Suspecting that the proband was FVII deficient, we analyzed F7 of the patient. Sequence analysis revealed that the patient was heterozygous for a point mutation (p.Arg337Cys) in the catalytic domain and polymorphisms: the decanucleotide insertion at the promoter re- gion, dimorphism (c.525C >T) in exon 5, and p.Arg413Gln in exon 8. Haplotype analysis clarified that p.Arg337Cys was located on the p.Arg413 allele (Ml allele). The other allele had the p.Arg413Gln polymor- phism(M2 allele) which is known to produce less FVII. Expression studies revealed that p.Arg337Cys causes impairment of FVII secretion. Insufficient secretion of FVII arising from both the p.Arg337Cys/M1 allele and the p.Arg337/M2 allele might lower the FVII level of this patient(<50%). The FVII level in a heterozygous FVII deficient patient might be influenced by F7 polymorphisms on the normal allele. There- fore, genetic analyses are important for the diagnosis of heterozygous FVII deficiency.

  2. BRCA2 hypomorphic missense variants confer moderate risks of breast cancer

    OpenAIRE

    Shimelis, Hermela; Mesman, Romy L.s.; Von Nicolai, Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calleja, Fabienne Mgr; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M; Aittomaki, Kristiina; Andrulis, Irene L.

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case–control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ances...

  3. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer.

    OpenAIRE

    Shimelis, Hermela; Mesman, Romy LS; Von, Nicolai Catharina; Ehlen, Asa; Guidugli, Lucia; Martin, Charlotte; Calléja, Fabienne MGR; Meeks, Huong; Hallberg, Emily; Hinton, Jamie; Lilyquist, Jenna; Hu, Chunling; Aalfs, Cora M; Aittomäki, Kristiina; Andrulis, Irene

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the $\\textit{BRCA1}$ and $\\textit{BRCA2}$ genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine ...

  4. HbA1c levels in individuals heterozygous for hemoglobin variants.

    Science.gov (United States)

    Tavares, Ricardo Silva; Souza, Fábio Oliveira de; Francescantonio, Isabel Cristina Carvalho Medeiros; Soares, Weslley Carvalho; Mesquita, Mauro Meira

    2017-04-01

    To evaluate the levels of glycated hemoglobin (HbA1c) in patients heterozygous for hemoglobin variants and compare the results of this test with those of a control group. This was an experimental study based on the comparison of HbA1c tests in two different populations, with a test group represented by individuals heterozygous for hemoglobin variants (AS and AC) and a control group consisting of people with electrophoretic profile AA. The two populations were required to meet the following inclusion criteria: Normal levels of fasting glucose, hemoglobin, urea and triglycerides, bilirubin > 20 mg/dL and non-use of acetylsalicylic acid. 50 heterozygous subjects and 50 controls were evaluated between August 2013 and May 2014. The comparison of HbA1c levels between heterozygous individuals and control subjects was performed based on standard deviation, mean and G-Test. The study assessed a test group and a control group, both with 39 adults and 11 children. The mean among heterozygous adults for HbA1c was 5.0%, while the control group showed a rate of 5.74%. Heterozygous children presented mean HbA1c at 5.11%, while the controls were at 5.78%. G-Test yielded p=0.93 for children and p=0.89 for adults. Our study evaluated HbA1c using ion exchange chromatography resins, and the patients heterozygous for hemoglobin variants showed no significant difference from the control group.

  5. A novel familial case of diffuse leukodystrophy related to NDUFV1 compound heterozygous mutations

    NARCIS (Netherlands)

    Ortega-Recalde, Oscar; Fonseca, Dora Janeth; Patiño, Liliana Catherine; Atuesta, Juan Jaime; Rivera-Nieto, Carolina; Restrepo, Carlos Martín; Mateus, Heidi Eliana; van der Knaap, Marjo S.; Laissue, Paul

    2013-01-01

    NDUFV1 mutations have been related to encephalopathic phenotypes due to mitochondrial energy metabolism disturbances. In this study, we report two siblings affected by a diffuse leukodystrophy, who carry the NDUFV1 c.1156C>T (p.Arg386Cys) missense mutation and a novel 42-bp deletion. Bioinformatic

  6. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders

    NARCIS (Netherlands)

    Iqbal, Z.; Vandeweyer, G.; Voet, M. van der; Waryah, A.M.; Zahoor, M.Y.; Besseling, J.A.; Roca, L.T.; Silfhout, A.T. van; Nijhof, B.; Kramer, J.M.; Aa, N. van der; Ansar, M.; Peeters, H.; Helsmoortel, C.; Gilissen, C.F.H.A.; Vissers, L.E.L.M.; Veltman, J.A.; Brouwer, A.P.M. de; Kooy, R. van; Riazuddin, S.; Schenck, A.; Bokhoven, H. van; Rooms, L.

    2013-01-01

    AnkyrinG, encoded by the ANK3 gene, is involved in neuronal development and signaling. It has previously been implicated in bipolar disorder and schizophrenia by association studies. Most recently, de novo missense mutations in this gene were identified in autistic patients. However, the causative

  7. Abnormal fibrinogen Zlín (.gamma.Thr21Ile) with missense mutation causing hypofibrinogenemia

    Czech Academy of Sciences Publication Activity Database

    Riedelová-Reicheltová, Z.; Riedel, Tomáš; Májek, P.; Kotlín, R.; Geierová, V.; Suttnar, J.; Dyr, J. E.

    2014-01-01

    Roč. 132, č. 2 (2014), s. 140-143 ISSN 0001-5792 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:61389013 Keywords : fibrinogen * missense mutation * hypofibrinogenemia Subject RIV: BO - Biophysics Impact factor: 1.116, year: 2014

  8. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis

    DEFF Research Database (Denmark)

    Tommiska, Johanna; Känsäkoski, Johanna; Skibsbye, Lasse

    2017-01-01

    unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β...

  9. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    DEFF Research Database (Denmark)

    Nielsen, Sofie V,; Stein, Amelie; Dinitzen, Alexander B.

    2017-01-01

    selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than...... and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases....

  10. A novel missense Norrie disease mutation associated with a severe ocular phenotype.

    Science.gov (United States)

    Khan, Arif O; Shamsi, Farrukh A; Al-Saif, Amr; Kambouris, Marios

    2004-01-01

    Clinical findings and pedigree analysis led to the diagnosis of severe Norrie disease in two brothers. DNA sequencing demonstrated a novel missense mutation (703G>T) that significantly alters predicted protein structure. Less severe retinal developmental disease may be associated with milder mutations in the Norrie disease gene.

  11. A novel missense mutation in collagenous domain of EDA gene in a ...

    Indian Academy of Sciences (India)

    Supplementary data: A novel missense mutation in collagenous domain of EDA gene in a. Chinese family with X-linked hypohidrotic ectodermal dysplasia. Daxu Li, Ran Xu, Fumeng Huang, Biyuan Wang, Yu Tao, Zijian Jiang, Hairui Li, Jianfeng Yao,. Peng Xu, Xiaokang Wu, Le Ren, Rui Zhang, John R. Kelsoe and Jie Ma.

  12. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder

    Directory of Open Access Journals (Sweden)

    Claudia Fuchs

    2018-01-01

    Full Text Available CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/− mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/− mice. We found that Cdkl5 +/− mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/− mice show age-related alterations in protein kinase B (AKT and extracellular signal-regulated kinase (ERK signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/− mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder.

  13. Characterization of Heterozygous HTRA1 Mutations in Taiwanese Patients With Cerebral Small Vessel Disease.

    Science.gov (United States)

    Lee, Yi-Chung; Chung, Chih-Ping; Chao, Nai-Chen; Fuh, Jong-Ling; Chang, Feng-Chi; Soong, Bing-Wing; Liao, Yi-Chu

    2018-07-01

    Homozygous and compound heterozygous mutations in the high temperature requirement serine peptidase A1 gene ( HTRA1 ) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. However, heterozygous HTRA1 mutations were recently identified to be associated with autosomal dominant cerebral small vessel disease (SVD). The present study aims at investigating the clinical features, frequency, and spectrum of HTRA1 mutations in a Taiwanese cohort with SVD. Mutational analyses of HTRA1 were performed by Sanger sequencing in 222 subjects, selected from a cohort of 337 unrelated patients with SVD after excluding those harboring a NOTCH3 mutation. The influence of these mutations on HTRA1 protease activities was characterized. Seven novel heterozygous mutations in HTRA1 were identified, including p.Gly120Asp, p.Ile179Asn, p.Ala182Profs*33, p.Ile256Thr, p.Gly276Ala, p.Gln289Ter, and p.Asn324Thr, and each was identified in 1 single index patient. All mutations significantly compromise the HTRA1 protease activities. For the 7 index cases and another 2 affected siblings carrying a heterozygous HTRA1 mutation, the common clinical presentations include lacunar infarction, intracerebral hemorrhage, cognitive decline, and spondylosis at the fifth to sixth decade of life. Among the 9 patients, 4 have psychiatric symptoms as delusion, depression, and compulsive behavior, 3 have leukoencephalopathy in anterior temporal poles, and 2 patients have alopecia. Heterozygous HTRA1 mutations account for 2.08% (7 of 337) of SVD in Taiwan. The clinical and neuroradiological features of HTRA1 -related SVD and sporadic SVD are similar. These findings broaden the mutational spectrum of HTRA1 and highlight the pathogenic role of heterozygous HTRA1 mutations in SVD. © 2018 American Heart Association, Inc.

  14. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity

    Science.gov (United States)

    Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038

  15. A Novel Double Heterozygous Hb D-Punjab/Hb J-Meerut Hemoglobinopathy.

    Science.gov (United States)

    Chandra, Dinesh; Tyagi, Seema; Deka, Roopam; Chauhan, Richa; Seth, Tulika; Saxena, Renu; Pati, H P

    2017-12-01

    A comprehensive laboratory diagnosis of hemoglobinopathies forms an integral part in workup of disorders of globin chain synthesis. Clinical findings, complete blood counts, peripheral smear examination along with hemoglobin (Hb) electrophoresis and/or cation exchange high performance liquid chromatography findings and parental study helps to clinch a final diagnosis. Compound heterozygous hemoglobinopathy presents with variable clinical findings and some of them are picked up on screening tests done as part of routine antenatal workup. Here we report a rare double heterozygous hemoglobinopathy of Hb D-Punjab and Hb J-Meerut in a 35 year antenatal female.

  16. Functional characterization of rare missense mutations in MLH1 and MSH2 identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Kariola, Reetta; Korhonen, Mari K

    2009-01-01

    Recently, we have performed a population based study to analyse the frequency of colorectal cancer related MLH1 and MSH2 missense mutations in the Danish population. Half of the analyzed mutations were rare and most likely only present in the families where they were identified originally. Some...... of the missense mutations were located in conserved regions in the MLH1 and MSH2 proteins indicating a relation to disease development. In the present study, we functionally characterized 10 rare missense mutations in MLH1 and MSH2 identified in 13 Danish CRC families. To elucidate the pathogenicity...

  17. Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: Detailed phenotyping of 10 new cases.

    Science.gov (United States)

    Symonds, Joseph D; Joss, Shelagh; Metcalfe, Kay A; Somarathi, Suresh; Cruden, Jamie; Devlin, Anita M; Donaldson, Alan; DiDonato, Nataliya; Fitzpatrick, David; Kaiser, Frank J; Lampe, Anne K; Lees, Melissa M; McLellan, Ailsa; Montgomery, Tara; Mundada, Vivek; Nairn, Lesley; Sarkar, Ajoy; Schallner, Jens; Pozojevic, Jelena; Parenti, Ilaria; Tan, Jeen; Turnpenny, Peter; Whitehouse, William P; Zuberi, Sameer M

    2017-04-01

    The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  18. A novel missense KIT mutation causing piebaldism in one Chinese family associated with café-au-lait macules and intertriginous freckling

    Directory of Open Access Journals (Sweden)

    Jia WX

    2015-04-01

    Full Text Available Wei-Xue Jia,1,2 Xue-Min Xiao,1,2 Jian-Bing Wu,1,2 Yi-Ping Ma,1,2 Yi-Ping Ge,1,2 Qi Li,1,2 Qiu-Xia Mao,1,2 Cheng-Rang Li1,2 1Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; 2Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China Abstract: Piebaldism is a rare autosomal dominant genodermatosis, manifesting as congenital and stable depigmentation of the skin and white forelock. It has been found to be associated with mutations in the KIT or SLUG genes. We report a Chinese piebaldism family including a 28-year-old woman and her 3-year-old son with characteristics of white patches and forelock associated with numerous brown macules and patches. Genomic DNA samples of the proband and her son were extracted from their peripheral blood. One hundred unrelated healthy individuals were used as controls. All coding regions of KIT, SLUG, and NF1 genes were amplified by polymerase chain reaction using exon flanking intronic primers and Sanger sequencings were performed. DNA sequencing revealed heterozygous missense c.2431T>G mutation in exon 17 of the KIT gene in the proband and the affected son. No potentially pathogenic variant was identified in SLUG or NF1 genes. The nucleotide substitution was not found in 100 unrelated control individuals. This study reveals a novel KIT mutation in piebaldism, and it further supports that café-au-lait macules and intertriginous freckling of piebaldism are parts of pigmented anomaly in piebaldism, which does not necessarily represent coexistence of neurofibromatosis type 1 (NF1. Keywords: novel mutation, KIT gene, neurofibromatosis type 1 

  19. Dyskeratosis congenita--two siblings with a new missense mutation in the DKC1 gene.

    Science.gov (United States)

    Coelho, Joana Dias; Lestre, Sara; Kay, Teresa; Lopes, Maria João Paiva; Fiadeiro, Teresa; Apetato, Margarida

    2011-01-01

    Dyskeratosis congenital is reported in two siblings. They presented with the classic triad of mucocutaneous features: leukoplakia of the tongue, dystrophic nails, and a widespread reticulate pigmentation on the neck and upper chest. A genetic analysis was performed and a new missense mutation S356P, hemizygous, was identified in the DKC1 gene in both patients. Acitretin was started at a low-dose in both patients, resulting in clinical improvement and important, positive psychosocial effects. © 2011 Wiley Periodicals, Inc.

  20. Protein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1

    OpenAIRE

    Suri, Mohnish; Evers, Jochem M. G.; Laskowski, Roman A.; O'Brien, Sinead; Baker, Kate; Clayton‐Smith, Jill; Dabir, Tabib; Josifova, Dragana; Joss, Shelagh; Kerr, Bronwyn; Kraus, Alison; McEntagart, Meriel; Morton, Jenny; Smith, Audrey; Splitt, Miranda

    2017-01-01

    Abstract Background Syntaxin‐binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss‐of‐function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype–phenotype correlations. Methods We report 11...

  1. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Science.gov (United States)

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  2. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype

    NARCIS (Netherlands)

    Toubiana, Julie; Okada, Satoshi; Hiller, Julia; Oleastro, Matias; Lagos Gomez, Macarena; Aldave Becerra, Juan Carlos; Ouachée-Chardin, Marie; Fouyssac, Fanny; Girisha, Katta Mohan; Etzioni, Amos; van Montfrans, Joris M.; Camcioglu, Yildiz; Kerns, Leigh Ann; Belohradsky, Bernd; Blanche, Stéphane; Bousfiha, Aziz; Rodriguez-Gallego, Carlos; Meyts, Isabelle; Kisand, Kai; Reichenbach, Janine; Renner, Ellen D; Rosenzweig, Sergio; Grimbacher, Bodo; van de Veerdonk, Frank L; Traidl-Hoffmann, Claudia; Picard, Capucine; Marodi, Laszlo; Morio, Tomohiro; Kobayashi, Masao; Lilic, Desa; Milner, Joshua D; Holland, Steven; Casanova, Jean-Laurent; Puel, Anne

    2016-01-01

    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274

  3. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    Science.gov (United States)

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  4. A structural systems biology approach for quantifying the systemic consequences of missense mutations in proteins.

    Directory of Open Access Journals (Sweden)

    Tammy M K Cheng

    Full Text Available Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs is an important topic in the pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level eventually affects a cell's behavior. This is because complex information at both the protein and pathway level has to be integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by formulating mathematical models and comparing them with experimental data to study missense mutations. We present two case studies: (1 interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to mitosis transition for yeast; (2 phenotypic classification of neuron-related human diseases associated with mutations within the mitogen-activated protein kinase (MAPK pathway. We show that the application of simplified mathematical models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and pathway perturbation.

  5. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    Science.gov (United States)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  6. A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria.

    Science.gov (United States)

    Grasko, Jonathan M; Hooper, Amanda J; Brown, Jeffrey W; McKnight, C James; Burnett, John R

    2009-05-01

    Alkaptonuria is a rare recessive disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) caused by mutations in the HGD gene. We report the case of a 38 year-old male with known alkaptonuria who was referred to an adult metabolic clinic after initially presenting to an emergency department with renal colic and subsequently passing black ureteric calculi. He complained of severe debilitating lower back pain, worsening over the last few years. A CT scan revealed marked degenerative changes and severe narrowing of the disc spaces along the entire lumbar spine. Sequencing of the HGD gene revealed that he was a compound heterozygote for a previously described missense mutation in exon 13 (G360R) and a novel missense mutation in exon 3 (K57N). Lys(57) is conserved among species and mutation of this residue is predicted to affect HGD protein function by interfering with substrate traffic at the active site. In summary, we describe an alkaptonuric patient and report a novel missense HGD mutation, K57N.

  7. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer

    DEFF Research Database (Denmark)

    Shimelis, Hermela; Mesman, Romy L S; Von Nicolai, Catharina

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk ......, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR....... were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA...... of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant...

  8. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I.

    Science.gov (United States)

    Walus, Mariusz; Kida, Elizabeth; Golabek, Adam A

    2010-06-01

    There are 35 missense mutations among 68 different mutations in the TPP1 gene, which encodes tripeptidyl peptidase I (TPPI), a lysosomal aminopeptidase associated with classic late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). To elucidate the molecular mechanisms underlying TPPI deficiency in patients carrying missense mutations and to test the amenability of mutant proteins to chemical chaperones and permissive temperature treatment, we introduced individually 14 disease-associated missense mutations into human TPP1 cDNA and analyzed the cell biology of these TPPI variants expressed in Chinese hamster ovary cells. Most TPPI variants displayed obstructed transport to the lysosomes, prolonged half-life of the proenzyme, and residual or no enzymatic activity, indicating folding abnormalities. Protein misfolding was produced by mutations located in both the prosegment (p.Gly77Arg) and throughout the length of the mature enzyme. However, the routes of removal of misfolded proteins by the cells varied, ranging from their efficient degradation by the ubiquitin/proteasome system to abundant secretion. Two TPPI variants demonstrated enhanced processing in response to folding improvement treatment, and the activity of one of them, p.Arg447His, showed a fivefold increase under permissive temperature conditions, which suggests that folding improvement strategies may ameliorate the function of some misfolding TPPI mutant proteins.

  9. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  10. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    Science.gov (United States)

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  11. A novel heterozygous SOX2 mutation causing congenital bilateral anophthalmia, hypogonadotropic hypogonadism and growth hormone deficiency.

    Science.gov (United States)

    Macchiaroli, Annamaria; Kelberman, Daniel; Auriemma, Renata Simona; Drury, Suzanne; Islam, Lily; Giangiobbe, Sara; Ironi, Gabriele; Lench, Nicholas; Sowden, Jane C; Colao, Annamaria; Pivonello, Rosario; Cavallo, Luciano; Gasperi, Maurizio; Faienza, Maria Felicia

    2014-01-25

    Heterozygous de novo mutations in SOX2 have been reported in approximately 10-20% of patients with unilateral or bilateral anophthalmia or microphthalmia. An additional phenotype of hypopituitarism, with anterior pituitary hypoplasia and hypogonadotropic hypogonadism, has been reported in patients carrying SOX2 alterations. We report a novel heterozygous mutation in the SOX2 gene in a male affected with congenital bilateral anophthalmia, hypogonadotrophic hypogonadism and growth hormone deficiency. The mutation we describe is a cytosine deletion in position 905 (c905delC) which causes frameshift and an aberrant C-terminal domain. Our report highlights the fact that subjects affected with eye anomalies and harboring SOX2 mutations are at high risk for gonadotropin deficiency, which has important implications for their clinical management. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Whole Genome Sequence of the Heterozygous Clinical Isolate Candida krusei 81-B-5

    Directory of Open Access Journals (Sweden)

    Christina A. Cuomo

    2017-09-01

    Full Text Available Candida krusei is a diploid, heterozygous yeast that is an opportunistic fungal pathogen in immunocompromised patients. This species also is utilized for fermenting cocoa beans during chocolate production. One major concern in the clinical setting is the innate resistance of this species to the most commonly used antifungal drug fluconazole. Here, we report a high-quality genome sequence and assembly for the first clinical isolate of C. krusei, strain 81-B-5, into 11 scaffolds generated with PacBio sequencing technology. Gene annotation and comparative analysis revealed a unique profile of transporters that could play a role in drug resistance or adaptation to different environments. In addition, we show that, while 82% of the genome is highly heterozygous, a 2.0 Mb region of the largest scaffold has undergone loss of heterozygosity. This genome will serve as a reference for further genetic studies of this pathogen.

  13. X-linked adrenoleukodystrophy in heterozygous female patients: women are not just carriers

    Directory of Open Access Journals (Sweden)

    Charles Marques Lourenço

    2012-07-01

    Full Text Available X-linked adrenoleukodystrophy (X-ALD is a recessive X-linked disorder associated with marked phenotypic variability. Female carriers are commonly thought to be normal or only mildly affected, but their disease still needs to be better described and systematized. OBJECTIVES: To review and systematize the clinical features of heterozygous women followed in a Neurogenetics Clinic. METHODS: We reviewed the clinical, biochemical, and neuroradiological data of all women known to have X-ADL. RESULTS: The nine women identified were classified into three groups: with severe and aggressive diseases; with slowly progressive, spastic paraplegia; and with mildly decreased vibratory sensation, brisk reflexes, and no complaints. Many of these women did not have a known family history of X-ALD. CONCLUSIONS: Heterozygous women with X-ADL have a wide spectrum of clinical manifestations, ranging from mild to severe phenotypes.

  14. A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases: Novel Opportunity for Genetic Biomarker and Novel Therapeutic Mitochondrial Target

    Science.gov (United States)

    2017-10-01

    goal of this application is to identify targets for the treatment of androgen receptor null castration-resistant prostate cancer in in vitro and pre...AWARD NUMBER: W81XWH-16-1-0584 TITLE : A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases: Novel Opportunity for Genetic...Missense Mutation in 77% of Prostate Cancer Bone Metastases: 5a. CONTRACT NUMBER A Single Missense Mutation in 77% of Prostate Cancer Bone Metastases

  15. Novel compound heterozygous mutations in SERPINH1 cause rare autosomal recessive osteogenesis imperfecta type X.

    Science.gov (United States)

    Song, Y; Zhao, D; Xu, X; Lv, F; Li, L; Jiang, Y; Wang, O; Xia, W; Xing, X; Li, M

    2018-03-09

    We identified novel compound heterozygous mutations in SERPINH1 in a Chinese boy suffering from recurrent fractures, femoral deformities, and growth retardation, which resulted in extremely rare autosomal recessive OI type X. Long-term treatment of BPs was effective in increasing BMD Z-score, reducing fracture incidence and reshaping vertebrae compression. Osteogenesis imperfecta (OI) is a heritable bone disorder characterized by low bone mineral density, recurrent fractures, and progressive bone deformities. Mutation in serpin peptidase inhibitor clade H, member 1 (SERPINH1), which encodes heat shock protein 47 (HSP47), leads to rare autosomal recessive OI type X. We aimed to detect the phenotype and the pathogenic mutation of OI type X in a boy from a non-consanguineous Chinese family. We investigated the pathogenic mutations and analyzed their relationship with the phenotype in the patient using next-generation sequencing (NGS) and Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment in this patient was evaluated. The patient suffered from multiple fractures, low bone mass, and bone deformities in the femur, without dentinogenesis imperfecta or hearing loss. Compound heterozygous variants were found in SERPINH1 as follows: c.149 T>G in exon 2 and c.1214G>A in exon 5. His parents were heterozygous carriers of each of these mutations, respectively. Bisphosphonates could be helpful in increasing BMD Z-score, reducing bone fracture risk and reshaping the compressed vertebral bodies of this patient. We reported novel compound heterozygous mutations in SERPINH1 in a Chinese OI patient for the first time, which expanded the spectrum of phenotype and genotype of extremely rare OI type X.

  16. Chronic Toxoplasma gondii in Nurr1-Null Heterozygous Mice Exacerbates Elevated Open Field Activity

    OpenAIRE

    Eells, Jeffrey B.; Varela-Stokes, Andrea; Guo-Ross, Shirley X.; Kummari, Evangel; Smith, Holly M.; Cox, Erin; Lindsay, David S.

    2015-01-01

    Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open fie...

  17. Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

    OpenAIRE

    Lang, Susan M.; Kazi, Abid A.; Hong-Brown, Ly; Lang, Charles H.

    2012-01-01

    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated ...

  18. E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer.

    Directory of Open Access Journals (Sweden)

    Joana Simões-Correia

    Full Text Available E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R, of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated. Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo.

  19. Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice

    Directory of Open Access Journals (Sweden)

    Luis F. González

    2017-10-01

    Full Text Available Abstract Background Obsessive–compulsive disorder (OCD is a severe neuropsychiatric condition affecting 1–3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze and compulsivity (marble burying, as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus—brain areas that are relevant to OCD. Results Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Conclusions Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.

  20. Quantitating PrP Polymorphisms Present in Prions from Heterozygous Scrapie-Infected Sheep.

    Science.gov (United States)

    Silva, Christopher J; Erickson-Beltran, Melissa L; Hui, Colleen; Badiola, Juan José; Nicholson, Eric M; Requena, Jesús R; Bolea, Rosa

    2017-01-03

    Scrapie is a prion (PrP Sc ) disease of sheep. The incubation period of sheep scrapie is strongly influenced by polymorphisms at positions 136, 154, and 171 of a sheep's normal cellular prion protein (PrP C ). Chymotrypsin was used to digest sheep recombinant PrP to identify a set of characteristic peptides [M 132 LGSXMSRPL 141 (X = A or V), Y 153 XENMY 158 (X,= H or R), and Y 166 RPVDXY 172 (X = H, K, Q, or R)] that could be used to detect and quantitate polymorphisms at positions 136, 154, and 171 of sheep PrP C or PrP Sc . These peptides were used to develop a multiple reaction monitoring method (MRM) to detect the amounts of a particular polymorphism in a sample of PrP Sc isolated from sheep heterozygous for their PrP C proteins. The limit of detection for these peptides was less than 50 attomole. Spinal cord tissue from heterozygous (ARQ/VRQ or ARH/ARQ) scrapie-infected Rasa Aragonesa sheep was analyzed using this MRM method. Both sets of heterozygotes show the presence of both polymorphisms in PrP Sc . This was true for samples containing both proteinase K (PK)-sensitive and PK-resistant PrP Sc and samples containing only the PK-resistant PrP Sc . These results show that heterozygous animals contain PrP Sc that is composed of significant amounts of both PrP polymorphisms.

  1. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    Science.gov (United States)

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Heterozygous CAV1 frameshift mutations (MIM 601047 in patients with atypical partial lipodystrophy and hypertriglyceridemia

    Directory of Open Access Journals (Sweden)

    Alston Lindsay

    2008-01-01

    Full Text Available Abstract Background Mice with a deleted Cav1 gene encoding caveolin-1 develop adipocyte abnormalities and insulin resistance. From genomic DNA of patients with atypical lipodystrophy and hypertriglyceridemia who had no mutations in any known lipodystrophy gene, we used DNA sequence analysis to screen the coding regions of human CAV1 (MIM 601047. Results We found a heterozygous frameshift mutation in CAV1, designated I134fsdelA-X137, in a female patient who had atypical partial lipodystrophy, with subcutaneous fat loss affecting the upper part of her body and face, but sparing her legs, gluteal region and visceral fat stores. She had severe type 5 hyperlipoproteinemia, with recurrent pancreatitis. In addition, she had some atypical features, including congenital cataracts and neurological findings. Her father was also heterozygous for this mutation, and had a similar pattern of fat redistribution, hypertriglyceridemia and congenital cataracts, with milder neurological involvement. An unrelated patient had a different heterozygous frameshift mutation in the CAV1 gene, designated -88delC. He also had a partial lipodystrophy phenotype, with subcutaneous fat loss affecting the arms, legs and gluteal region, but sparing his face, neck and visceral fat stores. He also had severe type 5 hyperlipoproteinemia, with recurrent pancreatitis; however he had no clinically apparent neurological manifestations. The mutations were absent from the genomes of 1063 healthy individuals. Conclusion Thus, very rare CAV1 frameshift mutations appear to be associated with atypical lipodystrophy and hypertriglyceridemia.

  3. Cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans.

    Directory of Open Access Journals (Sweden)

    Dania eVecchia

    2015-02-01

    Full Text Available Familial hemiplegic migraine type 1 (FHM1 is caused by gain-of-function mutations in CaV2.1 (P/Q-type Ca2+ channels. Knockin (KI mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the EPSC were all similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  4. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2015-01-01

    Familial hemiplegic migraine type 1 (FHM1) is caused by gain-of-function mutations in CaV2.1 (P/Q-type) Ca2+ channels. Knockin (KI) mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD) in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the excitatory postsynaptic current were similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  5. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans.

    Science.gov (United States)

    Zhuang, P L; Yu, L X; Tao, Y; Zhou, Y; Zhi, Q H; Lin, H C

    2016-04-11

    Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (K m ). However, the catalytic rate constant (k cat ) and catalytic efficiency (k cat /K m ) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the k cat and k cat /K m values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity.

  6. Missense Mutation in the USH2A Gene: Association with Recessive Retinitis Pigmentosa without Hearing Loss

    OpenAIRE

    Rivolta, Carlo; Sweklo, Elizabeth A.; Berson, Eliot L.; Dryja, Thaddeus P.

    2000-01-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an...

  7. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients - disease - causing or innocent bystanders?

    DEFF Research Database (Denmark)

    Christensen, A.H.; Benn, M.; Tybjaerg-Hansen, A.

    2009-01-01

    Objectives: Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported...... missense mutations may not be pathogenic. Methods: We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Results: Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non...

  8. Making Sense of Missense in the Lynch Syndrome: The Clinical Perspective

    Science.gov (United States)

    Lynch, Henry T.; Jascur, Thomas; Lanspa, Stephen; Boland, C. Richard

    2010-01-01

    The DNA mismatch repair system provides critical genetic housekeeping, and its failure is associated with tumorigenesis. Through distinct domains on the DNA mismatch repair proteins, the system recognizes and repairs errors occurring during DNA synthesis, but signals apoptosis when the DNA damage cannot be repaired. Certain missense mutations in the mismatch repair genes can selectively alter just one of these functions. This impacts the clinical features of tumors associated with defective DNA mismatch repair activity. New work reported by Xie et al. in this issue of the journal (beginning on page XXX) adds to the understanding of DNA mismatch repair. PMID:20978117

  9. Missense mutations in IHH impair Indian Hedgehog signaling in C3H10T1/2 cells: Implications for brachydactyly type A1, and new targets for Hedgehog signaling.

    Science.gov (United States)

    Guo, Shengzhen; Zhou, Jian; Gao, Bo; Hu, Jianxin; Wang, Hongsheng; Meng, Junwei; Zhao, Xinzhi; Ma, Gang; Lin, Chuwen; Xiao, Yue; Tang, Wei; Zhu, Xuming; Cheah, Kathryn S E; Feng, Guoying; Chan, Danny; He, Lin

    2010-01-01

    Heterozygous missense mutations in IHH result in Brachydactyly type A1 (BDA1; OMIM 112500), a condition characterized by the shortening of digits due to hypoplasia/aplasia of the middle phalanx. Indian Hedgehog signaling regulates the proliferation and differentiation of chondrocytes and is essential for endochondral bone formation. Analyses of activated IHH signaling in C3H10T1/2 cells showed that three BDA1-associated mutations (p.E95K, p.D100E and p.E131K) severely impaired the induction of targets such as Ptch1 and Gli1. However, this was not a complete loss of function, suggesting that these mutations may affect the interaction with the receptor PTCH1 or its partners, with an impact on the induction potency. From comparative microarray expression analyses and quantitative real-time PCR, we identified three additional targets, Sostdc1, Penk1 and Igfbp5, which were also severely affected. Penk1 and Igfbp5 were confirmed to be regulated by GLI1, while the induction of Sostdc1 by IHH is independent of GLI1. SOSTDC1 is a BMP antagonist, and altered BMP signaling is known to affect digit formation. The role of Penk1 and Igfbp5 in skeletogenesis is not known. However, we have shown that both Penk1 and Igfbp5 are expressed in the interzone region of the developing joint of mouse digits, providing another link for a role for IHH signaling in the formation of the distal digits.

  10. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    Science.gov (United States)

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup

    2010-01-01

    Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.

  11. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family.

    Science.gov (United States)

    Jiang, Chen; Gai, Nan; Zou, Yongyi; Zheng, Yu; Ma, Ruiyu; Wei, Xianda; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Galloway-Mowat syndrome (GMS) is a very rare autosomal-recessive disorder characterized by nephrotic syndrome associated with microcephaly, and various central nervous system abnormalities, mostly cerebral hypoplasia or cerebellar atrophy, intellectual disability and neural-migration defects. WDR73 is the only gene known to cause GMS, and has never been implicated in other disease. Here we present a Chinese consanguineous family with infantile onset intellectual disability and cerebellar hypoplasia but no microcephaly. Whole exome sequencing identified a WDR73 p.W371G missense mutation. The mutation is confirmed to be segregated in this family by Sanger sequencing according to a recessive inheritance pattern. It is predicted to be deleterious by multiple algorithms and affect highly conserved site. Structural modeling revealed conformational differences between the wild type protein and the p.W371G protein. Real-time PCR and Western blotting revealed altered mRNA and protein levels in mutated samples. Our study indicates the novel WDR73 p.W371G missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in recessive mode of inheritance. Our findings imply that microcephaly is a variable phenotype in WDR73-related disease, suggest WDR73 to be a candidate gene of severe intellectual disability and cerebellar hypoplasia, and expand the molecular spectrum of WDR73-related disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    Science.gov (United States)

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  13. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    2016-07-01

    Full Text Available Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.

  14. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by appl...... of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8.......Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of h......CG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls...

  15. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data.

    Science.gov (United States)

    Gray, Vanessa E; Hause, Ronald J; Luebeck, Jens; Shendure, Jay; Fowler, Douglas M

    2018-01-24

    Large datasets describing the quantitative effects of mutations on protein function are becoming increasingly available. Here, we leverage these datasets to develop Envision, which predicts the magnitude of a missense variant's molecular effect. Envision combines 21,026 variant effect measurements from nine large-scale experimental mutagenesis datasets, a hitherto untapped training resource, with a supervised, stochastic gradient boosting learning algorithm. Envision outperforms other missense variant effect predictors both on large-scale mutagenesis data and on an independent test dataset comprising 2,312 TP53 variants whose effects were measured using a low-throughput approach. This dataset was never used for hyperparameter tuning or model training and thus serves as an independent validation set. Envision prediction accuracy is also more consistent across amino acids than other predictors. Finally, we demonstrate that Envision's performance improves as more large-scale mutagenesis data are incorporated. We precompute Envision predictions for every possible single amino acid variant in human, mouse, frog, zebrafish, fruit fly, worm, and yeast proteomes (https://envision.gs.washington.edu/). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr in human poliovirus receptor gene

    Directory of Open Access Journals (Sweden)

    Shyam Sundar Nandi

    2016-01-01

    Results: A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150 of DNA samples tested by both SNP detection assay and sequencing. Interpretation & conclusions: The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  17. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  18. Who's for dinner? High-throughput sequencing reveals bat dietary differentiation in a biodiversity hotspot where prey taxonomy is largely undescribed.

    Science.gov (United States)

    Burgar, Joanna M; Murray, Daithi C; Craig, Michael D; Haile, James; Houston, Jayne; Stokes, Vicki; Bunce, Michael

    2014-08-01

    Effective management and conservation of biodiversity requires understanding of predator-prey relationships to ensure the continued existence of both predator and prey populations. Gathering dietary data from predatory species, such as insectivorous bats, often presents logistical challenges, further exacerbated in biodiversity hot spots because prey items are highly speciose, yet their taxonomy is largely undescribed. We used high-throughput sequencing (HTS) and bioinformatic analyses to phylogenetically group DNA sequences into molecular operational taxonomic units (MOTUs) to examine predator-prey dynamics of three sympatric insectivorous bat species in the biodiversity hotspot of south-western Australia. We could only assign between 4% and 20% of MOTUs to known genera or species, depending on the method used, underscoring the importance of examining dietary diversity irrespective of taxonomic knowledge in areas lacking a comprehensive genetic reference database. MOTU analysis confirmed that resource partitioning occurred, with dietary divergence positively related to the ecomorphological divergence of the three bat species. We predicted that bat species' diets would converge during times of high energetic requirements, that is, the maternity season for females and the mating season for males. There was an interactive effect of season on female, but not male, bat species' diets, although small sample sizes may have limited our findings. Contrary to our predictions, females of two ecomorphologically similar species showed dietary convergence during the mating season rather than the maternity season. HTS-based approaches can help elucidate complex predator-prey relationships in highly speciose regions, which should facilitate the conservation of biodiversity in genetically uncharacterized areas, such as biodiversity hotspots. © 2013 John Wiley & Sons Ltd.

  19. Modulation of repetitive genes in the parent forms of heterozygous corn hybrids

    International Nuclear Information System (INIS)

    Gilyazetdinov, S.Ya.; Zimnitskii, A.N.; Yakhin, I.A.; Bikbaeva, E.S.

    1987-01-01

    The number of copies of the genes of high-molecular-weight rRNA, 5 S r RNA, and certain other families of repetitive sequences of DNA in the genome of different forms of corn is not coordinated but is stably inherited in the same strains. The authors present the results of their investigations into the repetition of the genes of tRNA, 5 S rRNA, histones, and the controlling element Ds of corn for the highly heterozygous hybrid Slava (VIR 44 x VIR 38), the medium-heterozygous hybrid Svetoch (VIR 40 x VIR 43), the low heterozygous hybrid Iskra (VIR 26 x VIR 27), and their parent strains. The relative content of these sequences was studied by the molecular hybridization of DNA immobilized on nitrocellulose filters with [ 125 I]tRNA labeled in vitro, 5 S rRNA, histone DNA of Drosophila, and the Ds-element of corn. The DNA preparations were isolated from the zones of the meristem (1.5-2mm), elongation (4-5mm), differentiation of the roots (3 cm), of 3-4 day seedlings, and from isolated embryos of 4 h and 24 h seedlings. The DNA of the embryos immobilized on the filters was preliminarily incubated with unlabeled high-molecular-weight rRNA in the experiments with tRNA and 5 S rRNA, while when histone DNA and the Ds element of corn were used in the hybridization reaction, it was preliminary incubated with plasmid DNA

  20. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.

    Science.gov (United States)

    Patel, Kashyap A; Kettunen, Jarno; Laakso, Markku; Stančáková, Alena; Laver, Thomas W; Colclough, Kevin; Johnson, Matthew B; Abramowicz, Marc; Groop, Leif; Miettinen, Päivi J; Shepherd, Maggie H; Flanagan, Sarah E; Ellard, Sian; Inagaki, Nobuya; Hattersley, Andrew T; Tuomi, Tiinamaija; Cnop, Miriam; Weedon, Michael N

    2017-10-12

    Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10 -4 ). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10 -5 ) and Finnish (n = 80, odds ratio = 22, P = 1 × 10 -6 ) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.Maturity-onset diabetes of the young (MODY) is the most common subtype of familial diabetes. Here, Patel et al. use targeted DNA sequencing of MODY patients and large-scale publically available data to show that RFX6 heterozygous protein truncating variants cause reduced penetrance MODY.

  1. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    Science.gov (United States)

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms.

    Science.gov (United States)

    Marsh, Judith C W; Gutierrez-Rodrigues, Fernanda; Cooper, James; Jiang, Jie; Gandhi, Shreyans; Kajigaya, Sachiko; Feng, Xingmin; Ibanez, Maria Del Pilar F; Donaires, Flávia S; Lopes da Silva, João P; Li, Zejuan; Das, Soma; Ibanez, Maria; Smith, Alexander E; Lea, Nicholas; Best, Steven; Ireland, Robin; Kulasekararaj, Austin G; McLornan, Donal P; Pagliuca, Anthony; Callebaut, Isabelle; Young, Neal S; Calado, Rodrigo T; Townsley, Danielle M; Mufti, Ghulam J

    2018-01-09

    Biallelic germline mutations in RTEL1 (regulator of telomere elongation helicase 1) result in pathologic telomere erosion and cause dyskeratosis congenita. However, the role of RTEL1 mutations in other bone marrow failure (BMF) syndromes and myeloid neoplasms, and the contribution of monoallelic RTEL1 mutations to disease development are not well defined. We screened 516 patients for germline mutations in telomere-associated genes by next-generation sequencing in 2 independent cohorts; one constituting unselected patients with idiopathic BMF, unexplained cytopenia, or myeloid neoplasms (n = 457) and a second cohort comprising selected patients on the basis of the suspicion of constitutional/familial BMF (n = 59). Twenty-three RTEL1 variants were identified in 27 unrelated patients from both cohorts: 7 variants were likely pathogenic, 13 were of uncertain significance, and 3 were likely benign. Likely pathogenic RTEL1 variants were identified in 9 unrelated patients (7 heterozygous and 2 biallelic). Most patients were suspected to have constitutional BMF, which included aplastic anemia (AA), unexplained cytopenia, hypoplastic myelodysplastic syndrome, and macrocytosis with hypocellular bone marrow. In the other 18 patients, RTEL1 variants were likely benign or of uncertain significance. Telomeres were short in 21 patients (78%), and 3' telomeric overhangs were significantly eroded in 4. In summary, heterozygous RTEL1 variants were associated with marrow failure, and telomere length measurement alone may not identify patients with telomere dysfunction carrying RTEL1 variants. Pathogenicity assessment of heterozygous RTEL1 variants relied on a combination of clinical, computational, and functional data required to avoid misinterpretation of common variants.

  3. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  4. Homozygous and compound heterozygous mutations in the FBN1 gene: unexpected findings in molecular diagnosis of Marfan syndrome.

    Science.gov (United States)

    Arnaud, Pauline; Hanna, Nadine; Aubart, Mélodie; Leheup, Bruno; Dupuis-Girod, Sophie; Naudion, Sophie; Lacombe, Didier; Milleron, Olivier; Odent, Sylvie; Faivre, Laurence; Bal, Laurence; Edouard, Thomas; Collod-Beroud, Gwenaëlle; Langeois, Maud; Spentchian, Myrtille; Gouya, Laurent; Jondeau, Guillaume; Boileau, Catherine

    2017-02-01

    Marfan syndrome (MFS) is an autosomal-dominant connective tissue disorder usually associated with heterozygous mutations in the gene encoding fibrillin-1 (FBN1). Homozygous and compound heterozygous cases are rare events and have been associated with a clinical severe presentation. Report unexpected findings of homozygosity and compound heterozygosity in the course of molecular diagnosis of heterozygous MFS and compare the findings with published cases. In the context of molecular diagnosis of heterozygous MFS, systematic sequencing of the FBN1 gene was performed in 2500 probands referred nationwide. 1400 probands carried a heterozygous mutation in this gene. Unexpectedly, among them four homozygous cases (0.29%) and five compound heterozygous cases (0.36%) were identified (total: 0.64%). Interestingly, none of these cases carried two premature termination codon mutations in the FBN1 gene. Clinical features for these carriers and their families were gathered and compared. There was a large spectrum of severity of the disease in probands carrying two mutated FBN1 alleles, but none of them presented extremely severe manifestations of MFS in any system compared with carriers of only one mutated FBN1 allele. This observation is not in line with the severe clinical features reported in the literature for four homozygous and three compound heterozygous probands. Homozygotes and compound heterozygotes were unexpectedly identified in the course of molecular diagnosis of MFS. Contrary to previous reports, the presence of two mutated alleles was not associated with severe forms of MFS. Although homozygosity and compound heterozygosity are rarely found in molecular diagnosis, they should not be overlooked, especially among consanguineous families. However, no predictive evaluation of severity should be provided. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain.

    Science.gov (United States)

    Laskowski, Roman A; Tyagi, Nidhi; Johnson, Diana; Joss, Shelagh; Kinning, Esther; McWilliam, Catherine; Splitt, Miranda; Thornton, Janet M; Firth, Helen V; Wright, Caroline F

    2016-03-01

    We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems. Amino acids affected by likely pathogenic missense mutations are either crucial for the stability of the fold, forming part of a highly conserved symmetrically repeating hydrogen-bonded tetrad, or located at the top face of the β-propeller, where 'hotspot' residues affect the binding of β-catenin to the TBLR1 protein. In contrast, those altered by population variation are significantly less likely to be spatially clustered towards the top face or to be at buried or highly conserved residues. This result is useful not only for interpreting benign and pathogenic missense variants in this gene, but also in other WD40 domains, many of which are associated with disease. © The Author 2016. Published by Oxford University Press.

  6. A novel homozygous missense variant in NECTIN4 (PVRL4) causing ectodermal dysplasia cutaneous syndactyly syndrome.

    Science.gov (United States)

    Ahmad, Farooq; Nasir, Abdul; Thiele, Holger; Umair, Muhammad; Borck, Guntram; Ahmad, Wasim

    2018-02-12

    Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4-related clinical characterization. © 2018 John Wiley & Sons Ltd/University College London.

  7. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y

    2015-01-01

    by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c......Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently...... needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined...

  8. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss.

    Science.gov (United States)

    Rivolta, C; Sweklo, E A; Berson, E L; Dryja, T P

    2000-06-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an amino-acid residue within the fifth laminin-epidermal growth factor-like domain of the USH2A gene and that is associated with recessive RP without hearing loss. This single mutation was found in 4.5% of 224 patients with recessive RP, suggesting that USH2A could cause more cases of nonsyndromic recessive RP than does any other gene identified to date.

  9. Brittle Cornea Syndrome Associated with a Missense Mutation in the Zinc-Finger 469 Gene

    DEFF Research Database (Denmark)

    Christensen, Anne Elisabeth; Knappskog, Per Morten; Midtbø, Marit

    2010-01-01

    Purpose: To investigate the diverse clinical manifestations, identify the causative mutation and explain the association with red hair in a family with brittle cornea syndrome (BCS). Methods: Eight family members in three generations underwent ophthalmic, dental, and general medical examination...... mapping with SNP markers, DNA sequencing, and MC1R genotyping. Results: At 42 and 48 years of age, respectively, both affected individuals were blind due to retinal detachment and secondary glaucoma. They had extremely thin and bulging corneas, velvety skin, chestnut colored hair, scoliosis, reduced BMD......, dental anomalies, hearing loss and minor cardiac defects. The morphologies of the skin biopsies were normal except that in some areas slightly thinner collagen fibrils were seen in one of the affected individuals. Molecular genetic analysis revealed a novel missense mutation of ZNF469, c.10016G...

  10. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle

    DEFF Research Database (Denmark)

    Agerholm, Jørgen Steen; McEvoy, Fintan; Heegaard, Steffen

    2017-01-01

    was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Results Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial...... chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member...... of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events...

  11. Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet.

    Directory of Open Access Journals (Sweden)

    Daniel Beiroa

    Full Text Available Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism.

  12. A new compound heterozygous CFTR mutation in a Chinese family with cystic fibrosis.

    Science.gov (United States)

    Xie, Yingjun; Huang, Xueqiong; Liang, Yujian; Xu, Lingling; Pei, Yuxin; Cheng, Yucai; Zhang, Lidan; Tang, Wen

    2017-11-01

    Cystic fibrosis (CF) is the most common autosomal recessive disease among Caucasians but is rarer in the Chinese population, because mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To elucidate the causative role of a novel compound heterozygous mutation of CF. In this study, clinical samples were obtained from two siblings with recurrent airway infections, clubbed fingers, salt-sweat and failure to gain weight in a non-consanguineous Chinese family. Next-generation sequencing was performed on the 27 coding exons of CFTR in both children, with confirmation by Sanger sequencing. Next-generation sequencing showed the same compound heterozygous CFTR mutation (c.865A>T p.Arg289X and c.3651_3652insAAAT p.Tyr1219X) in both children. As this mutation is consistent with the clinical manifestations of CF and no other mutations were detected after scanning the gene sequence, we suggest that the CF phenotype is caused by compound heterozygosity for c.865A>T and c.3651_3652insAAAT. As c865A>T is not currently listed in the "Cystic Fibrosis Mutation Database", this information about CF in a Chinese population is of interest. © 2015 John Wiley & Sons Ltd.

  13. Duchenne muscular dystrophy in a female with compound heterozygous contiguous exon deletions.

    Science.gov (United States)

    Takeshita, Eri; Minami, Narihiro; Minami, Kumiko; Suzuki, Mikiya; Awashima, Takeya; Ishiyama, Akihiko; Komaki, Hirofumi; Nishino, Ichizo; Sasaki, Masayuki

    2017-06-01

    Females with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) mutations rarely exhibit clinical symptoms from childhood, although potential mechanisms for symptoms associated with DMD and BMD in females have been reported. We report the case of a female DMD patient with a clinical course indistinguishable from that of a male DMD patient, and who possessed compound heterozygous contiguous exon deletions in the dystrophin gene. She exhibited Gowers' sign, calf muscle hypertrophy, and a high serum creatine kinase level at 2 years. Her muscle pathology showed most of the fibers were negative for dystrophin immunohistochemical staining. She lost ambulation at 11 years. Multiplex ligation-dependent probe amplification analysis of this gene detected one copy of exons 48-53; she was found to be a BMD carrier with an in-frame deletion. Messenger RNA from her muscle demonstrated out-of-frame deletions of exons 48-50 and 51-53 occurring on separate alleles. Genomic DNA from her lymphocytes demonstrated the accurate deletion region on each allele. To our knowledge, this is the first report on a female patient possessing compound heterozygous contiguous exon deletions in the dystrophin gene, leading to DMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.

    Science.gov (United States)

    Armstrong, Laura C; Westlake, Grant; Snow, John P; Cawthon, Bryan; Armour, Eric; Bowman, Aaron B; Ess, Kevin C

    2017-12-01

    Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Unusual xanthomas in a young patient with heterozygous familial hypercholesterolemia and type III hyperlipoproteinemia

    Energy Technology Data Exchange (ETDEWEB)

    Feussner, G.; Dobmeyer, J. [Univ. of Heidelberg (Germany); Nissen, H.; Hansen, T.S. [Odense Univ. Hospital (Denmark)

    1996-10-16

    We report on a 20-year-old man with the combination of two independent familial lipoprotein disorders: heterozygous familial hypercholesterolemia (FH) and type III hyperlipoproteinemia (HLP). Familial hypercholesterolemia was diagnosed by elevated total and low density lipoprotein cholesterol levels and family history. By denaturing gradient gel electrophoresis, DNA sequencing and restriction fragment length polymorphism analysis, a G{r_arrow}A splice donor mutation in intron 3 of the proband`s low density lipoprotein receptor gene was identified as the underlying molecular defect. This mutation was described previously as a receptor-negative founder mutation in Norway (FH-Elverum) and subsequently in 6 unrelated heterozygous English patients, creating a severe phenotype of familial hypercholesterolemia. Type III HLP was confirmed by homozygosity for apolipoprotein (apo) E2 and an elevated ratio of very low density lipoprotein cholesterol to serum triglycerides (0.40; normal ratio about 0.20). The patient has unusual flat xanthomas in the interdigital webs of the hands which are normally not found in either disease. These dermatological findings might therefore be indicative of the rare combination of both disorders of lipoprotein metabolism in one individual. 29 refs., 5 figs., 1 tab.

  16. A novel double heterozygous Hb Fontainebleau/HbD Punjab hemoglobinopathy.

    Science.gov (United States)

    Rodríguez-Capote, Karina; Estey, Mathew P; Barakauskas, Vilte; Bordeleau, Pierre; Christensen, Cathie-Lou; Zuberbuhler, Peter; Higgins, Trefor N

    2015-09-01

    To report the finding of a novel double heterozygous hemoglobinopathy, the coinheritance of Hb Fontainebleau (α-chain variant) with HbD-Punjab (β-chain variant) discovered upon investigation of unexplained microcytosis in an infant. Hemoglobinopathy investigation was performed by high performance liquid chromatography (HPLC) using the β-thalassemia Short Program on the Bio-Rad Variant II(TM) followed by gel electrophoresis at alkaline and acid pH (Sebia Hydrasys 2 Electrophoresis System) and molecular diagnostic testing. This study complied with our institutional board ethics requirements. HPLC and electrophoresis suggested a complex α- and β-chain hemoglobinopathy with presumptive identification of the beta Hb variant as Hb D-Punjab. DNA sequencing analysis revealed the presence of a double heterozygous status for Hb Fontainebleau/Hb D-Punjab. In this paper we report the coinheritance of Hb Fontainebleau with Hb D-Punjab. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  17. Functional analysis of HNPCC-related missense mutations in MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Luetzen, Anne [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Wind, Niels de; Georgijevic, Dubravka [Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Nielsen, Finn Cilius [Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen (Denmark); Rasmussen, Lene Juel [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)], E-mail: ljr@ruc.dk

    2008-10-14

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.

  18. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    Science.gov (United States)

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  19. Functional analysis of HNPCC-related missense mutations in MSH2

    International Nuclear Information System (INIS)

    Luetzen, Anne; Wind, Niels de; Georgijevic, Dubravka; Nielsen, Finn Cilius; Rasmussen, Lene Juel

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions

  20. A case of recurrent encephalopathy with SCN2A missense mutation.

    Science.gov (United States)

    Fukasawa, Tatsuya; Kubota, Tetsuo; Negoro, Tamiko; Saitoh, Makiko; Mizuguchi, Masashi; Ihara, Yukiko; Ishii, Atsushi; Hirose, Shinichi

    2015-06-01

    Voltage-gated sodium channels regulate neuronal excitability, as well as survival and the patterning of neuronal connectivity during development. Mutations in SCN2A, which encodes the Na(+) channel Nav1.2, cause epilepsy syndromes and predispose children to acute encephalopathy. Here, we report the case of a young male with recurrent acute encephalopathy who carried a novel missense mutation in the SCN2A gene. He was born by normal delivery and developed repetitive apneic episodes at 2days of age. Diffusion-weighted imaging revealed high-intensity areas in diffuse subcortical white matter, bilateral thalami, and basal nuclei. His symptoms improved gradually without any specific treatment, but he exhibited a motor milestone delay after the episode. At the age of 10months, he developed acute cerebellopathy associated with a respiratory syncytial viral infection. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy and seemed to have no obvious sequelae after the episode. He then developed severe diffuse encephalopathy associated with gastroenteritis at the age of 14months. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy but was left with severe neurological sequelae. PCR-based analysis revealed a novel de novo missense mutation, c.4979T>G (p.Leu1660Trp), in the SCN2A gene. This case suggests that SCN2A mutations might predispose children to repetitive encephalopathy with variable clinical and imaging findings. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy.

    Science.gov (United States)

    Coci, Emanuele G; Codutti, Luca; Fink, Christian; Bartsch, Sophie; Grüning, Gunnar; Lücke, Thomas; Kurth, Ingo; Riedel, Joachim

    2017-04-01

    Pyridoxine dependent epilepsy (PDE) (OMIM#266100) is a neonatal form of epilepsy, caused by dysfunction of the enzyme α-aminoadipic semialdehyde dehydrogenase (ALDH7A1 or Antiquitin). This enzyme converts α-aminoadipic semialdehyde (α-AASA) into α-aminoadipate (AAA), a critical step in the lysine metabolism of the brain. ALDH7A1 dysfunction causes an accumulation of α-AASA and δ 1 -piperideine-6-carboxylic acid (P6C), which are in equilibrium with each other. P6C binds and inactivates pyridoxal 5'-phosphate (PLP), the active form of pyridoxine. Individuals affected by ALDH7A1 deficiency show pre-natal and post-natal seizures, which respond to oral pyridoxine but not to other pediatric anti-epileptic drugs. We discovered a novel missense mutation (c.566G > A, p.Gly189Glu) in homozygous state residing in the NAD+ binding domain coding region of exon 6 and affecting an highly conserved amino acid residue. The seizures stopped under post-natal pyridoxine therapy, nevertheless a longer follow-up is needed to evaluate the intellectual development of the child, who is additionally treated with oral l-arginine since the 13th month of life. Developmental delay with or without structural cortex abnormalities were reported in several patients. A brain MRI scan revealed hyperintense white matter in the right cerebellum compatible with cerebellar gliosis. Taken together, our studies enlarge the group of missense pathogenic mutations of ALDH7A1 gene and reveal a novel cerebellar finding within the PDE patients cohort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    Science.gov (United States)

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in

  3. Expression of embryonic hemoglobin genes in mice heterozygous for α-thalassemia or β-duplication traits and in mice heterozygous for both traits

    International Nuclear Information System (INIS)

    Popp, R.A.; Marsh, C.L.; Skow, L.C.

    1981-01-01

    Hemoglobins of mouse embryos at 11.5 through 16.5 days of gestation were separated by electrophoresis on cellulose acetate and quantitated by a scanning densitometer to study the effects of two radiation-induced mutations on the expression of embryonic hemoglobin genes in mice. Normal mice produce three kinds of embryonic hemoglobins. In heterozygous α-thalassemic embryos, expression of EI (x 2 y 2 ) and EII (α 2 y 2 ) is deficient because the x- and α-globin genes of one of the allelic pairs of Hba on chromosome 11 was deleted or otherwise inactivated by X irradiation. Simultaneous inactivation of the x- and α-globin genes indicates that these genes must be closely linked. Reduced x- and α-chain synthesis results in an excess of y chains that associate as homotetramers. This unique y 4 hemoglobin also appears in β-duplication embryos where excess y chains are produced by the presence of three rather than two functional alleles of y- and β-globin genes. In double heterozygotes, which have a single functional allele of x- and α-globin genes and three functional alleles of y- and β-globin genes, synthesis of α and non-α chains is severely imbalanced and half of the total hemoglobin is y 4 . Mouse y 4 has a high affinity for oxygen, P 50 of less than 10 mm Hg, but it lacks cooperativity so is inefficient for oxygen transport. The death of double heterozygotes in late fetal or neonatal life may be in large part to oxygen deprivation to the tissues

  4. The Nance-Horan syndrome: a rare X-linked ocular-dental trait with expression in heterozygous females.

    Science.gov (United States)

    Bixler, D; Higgins, M; Hartsfield, J

    1984-07-01

    This report describes two families with the Nance-Horan syndrome, an X-linked trait featuring lenticular cataracts and anomalies of tooth shape and number. Previous reports have described blindness in affected males but posterior sutural cataracts with normal vision as the primary ocular expression in heterozygous females. In one of these two families, the affected female is not only blind in one eye but reportedly had supernumerary central incisors (mesiodens) removed. This constitutes the most severe ocular and dental expression of this gene in heterozygous females yet reported.

  5. Heterozygous Mutations in TREX1 Cause Familial Chilblain Lupus and Dominant Aicardi-Goutières Syndrome

    Science.gov (United States)

    Rice, Gillian; Newman, William G.; Dean, John; Patrick, Teresa; Parmar, Rekha; Flintoff, Kim; Robins, Peter; Harvey, Scott; Hollis, Thomas; O’Hara, Ann; Herrick, Ariane L.; Bowden, Andrew P.; Perrino, Fred W.; Lindahl, Tomas; Barnes, Deborah E.; Crow, Yanick J.

    2007-01-01

    TREX1 constitutes the major 3′→5′ DNA exonuclease activity measured in mammalian cells. Recently, biallelic mutations in TREX1 have been shown to cause Aicardi-Goutières syndrome at the AGS1 locus. Interestingly, Aicardi-Goutières syndrome shows overlap with systemic lupus erythematosus at both clinical and pathological levels. Here, we report a heterozygous TREX1 mutation causing familial chilblain lupus. Additionally, we describe a de novo heterozygous mutation, affecting a critical catalytic residue in TREX1, that results in typical Aicardi-Goutières syndrome. PMID:17357087

  6. Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype

    DEFF Research Database (Denmark)

    van Nuenen, BF; Siebner, Hartwig; Weiss, MM

    2008-01-01

    inherited Parkinson disease alters the cortical control of sequential finger movements. METHODS: Nonmanifesting individuals carrying a single heterozygous Parkin (n = 13) or PINK1 (n = 9) mutation and 23 healthy controls without these mutations were studied with functional MRI (fMRI). During f...... rostral dorsal premotor cortex in mutation carriers but not in controls. Task-related activation of these premotor areas was similar in carriers of a Parkin or PINK1 mutation. CONCLUSION: Mutations in different genes linked to recessively inherited Parkinson disease are associated with an additional...... recruitment of rostral supplementary motor area and rostral dorsal premotor cortex during a simple motor sequence task. These premotor areas were recruited independently of the underlying genotype. The observed activation most likely reflects a "generic" compensatory mechanism to maintain motor function...

  7. A novel heterozygous SOX2 mutation causing anophthalmia/microphthalmia with genital anomalies.

    Science.gov (United States)

    Pedace, Lucia; Castori, Marco; Binni, Francesco; Pingi, Alberto; Grammatico, Barbara; Scommegna, Salvatore; Majore, Silvia; Grammatico, Paola

    2009-01-01

    Anophthalmia/microphthalmia is a rare developmental craniofacial defect, which recognizes a wide range of causes, including chromosomal abnormalities, single-gene mutations as well as environmental factors. Heterozygous mutations in the SOX2 gene are the most common monogenic form of anophthalmia/microphthalmia, as they are reported in up to 10-15% cases. Here, we describe a sporadic patient showing bilateral anophthalmia/microphthalmia and micropenis caused by a novel mutation (c.59_60insGG) in the SOX2 gene. Morphological and endocrinological evaluations excluded any anomaly of the hypothalamus-pituitary axis. Our finding supports the hypothesis that SOX2 is particularly prone to slipped-strand mispairing, which results in a high frequency of point deletions/insertions.

  8. Prickly pear induces upregulation of liver LDL binding in familial heterozygous hypercholesterolemia

    International Nuclear Information System (INIS)

    Palumbo, B.; Palumbo, R.; Efthimiou, Y.; Stamatopoulos, J.; Sinzinger, H.; Oguogho, A.; Budinsky, A.; Sinzinger, H.

    2003-01-01

    The hypoglycemic effect of prickly pear is well known by native local Indian population since a long time. Beside the beneficial effects on lipid metabolism, oxidation injury and platelet function has been claimed in experimental animals. We recently found an upregulation of apo-B/E receptor. We therefore examined 10 patients with isolated heterozygous familial hypercholesterolemia (FH) being enrolled in a dietary run-in phase of 6 weeks after dietary counselling and a further 6 weeks of prickly pear addition. Uptake of autologous 123 I-radiolabeled LDL was determined at entry as well as after 6 weeks of daily prickly pear ingestion. We found a significant (p 176.4 mg/dl; p 123 I-LDL binding by prickly pear in FH-patients in vivo and indicate that prickly pear exerts a significant hypolipidemic action via receptor upregulation. (author)

  9. Novel heterozygous nonsense mutation of the OPTN gene segregating in a Danish family with ALS

    DEFF Research Database (Denmark)

    Tümer, Zeynep; Bertelsen, Birgitte; Gredal, Ole

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. About 10% of ALS cases are familial (FALS) and the genetic defect is known only in approximately 20%-30% of these cases. The most common genetic cause of ALS is SOD1 (superoxide dismutase 1) mutation. Very recently......, mutations of the optineurin gene (OPTN), which is involved in open-angle glaucoma, were identified in 3 Japanese patients/families with ALS, and subsequently in a few FALS patients of European descent. We found a heterozygous nonsense mutation (c.493C>T, p.Gln165X, exon 6) in the OPTN gene in a Danish...... patient with ALS, and the mutation segregated from his affected father. The p.Gln165X mutation could not be detected in 1070 healthy Danish controls, in 1000 Danish individuals with metabolic phenotypes or in 64 sporadic ALS (SALS) cases. The p.Gln165X mutation described in this study is the first...

  10. Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia.

    Science.gov (United States)

    Nemoto, Michiko; Hattori, Hiroyoshi; Maeda, Naoko; Akita, Nobuhiro; Muramatsu, Hideki; Moritani, Suzuko; Kawasaki, Tomonori; Maejima, Masami; Ode, Hirotaka; Hachiya, Atsuko; Sugiura, Wataru; Yokomaku, Yoshiyuki; Horibe, Keizo; Iwatani, Yasumasa

    2018-05-03

    Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4 + T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.

  11. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle.

    Science.gov (United States)

    Agerholm, Jørgen S; McEvoy, Fintan J; Heegaard, Steffen; Charlier, Carole; Jagannathan, Vidhya; Drögemüller, Cord

    2017-08-02

    Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given

  12. A Novel Homozygous Missense Mutation in HOXC13 Leads to Autosomal Recessive Pure Hair and Nail Ectodermal Dysplasia.

    Science.gov (United States)

    Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander

    2017-03-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.

  13. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4).

    Science.gov (United States)

    Yatsenko, A N; Shroyer, N F; Lewis, R A; Lupski, J R

    2001-04-01

    Based on recent studies of the photoreceptor-specific ABC transporter gene ABCR (ABCA4) in Stargardt disease (STGD1) and other retinal dystrophies, we and others have developed a model in which the severity of retinal disease correlates inversely with residual ABCR activity. This model predicts that patients with late-onset STGDI may retain partial ABCR activity attributable to mild missense alleles. To test this hypothesis, we used late-onset STGDI patients (onset: > or =35 years) to provide an in vivo functional analysis of various combinations of mutant alleles. We sequenced directly the entire coding region of ABCR and detected mutations in 33/50 (66%) disease chromosomes, but surprisingly, 11/33 (33%) were truncating alleles. Importantly, all 22 missense mutations were located outside the known functional domains of ABCR (ATP-binding or transmembrane), whereas in our general cohort of STGDI subjects, alterations occurred with equal frequency across the entire protein. We suggest that these missense mutations in regions of unknown function are milder alleles and more susceptible to modifier effects. Thus, we have corroborated a prediction from the model of ABCR pathogenicity that (1) one mutant ABCR allele is always missense in late-onset STGD1 patients, and (2) the age-of-onset is correlated with the amount of ABCR activity of this allele. In addition, we report three new pseudodominant families that now comprise eight of 178 outbred STGD1 families and suggest a carrier frequency of STGD1-associated ABCR mutations of about 4.5% (approximately 1/22).

  14. Functional characterization of a CRH missense mutation identified in an ADNFLE family.

    Directory of Open Access Journals (Sweden)

    Veronica Sansoni

    Full Text Available Nocturnal frontal lobe epilepsy has been historically considered a channelopathy caused by mutations in subunits of the neuronal nicotinic acetylcholine receptor or in a recently reported potassium channel. However, these mutations account for only a minority of patients, and the existence of at least a new locus for the disease has been demonstrated. In 2005, we detected two nucleotide variations in the promoter of the CRH gene coding for the corticotropin releasing hormone in 7 patients. These variations cosegregated with the disease and were demonstrated to alter the cellular levels of this hormone. Here, we report the identification in an Italian affected family of a novel missense mutation (hpreproCRH p.Pro30Arg located in the region of the CRH coding for the protein pro-sequence. The mutation was detected in heterozygosity in the two affected individuals. In vitro assays demonstrated that this mutation results in reduced levels of protein secretion in the short time thus suggesting that mutated people could present an altered capability to respond immediately to stress agents.

  15. Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity.

    Science.gov (United States)

    Shastry, B S; Pendergast, S D; Hartzer, M K; Liu, X; Trese, M T

    1997-05-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease occurring in infants with short gestational age and low birth weight and can lead to retinal detachment (ROP stages 4 and 5). X-linked familial exudative vitreoretinopathy is phenotypically similar to ROP and has been associated with mutations in the Norrie disease (ND) gene in some cases. To determine if similar mutations in the ND gene may play a role in the development of advanced ROP. Clinical examination and molecular genetic analysis were performed on 16 children, including 2 dizygotic and 1 monozygotic twin pairs, and their parents from 13 families. Sequencing of the amplified products revealed missense mutations (R121W and L108P) in the third exon of the ND gene in 4 patients. These mutations were not present in an unaffected premature twin, 2 children with regressed stage 3 ROP, the parents, or in 50 unrelated healthy control subjects. These findings suggest that mutations in the ND gene may play a role in the development of severe ROP in premature infants.

  16. WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome.

    Science.gov (United States)

    Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas

    2009-12-01

    Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved alpha-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features.

  17. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis

    Science.gov (United States)

    Ichikawa, Shoji; Imel, Erik A.; Kreiter, Mary L.; Yu, Xijie; Mackenzie, Donald S.; Sorenson, Andrea H.; Goetz, Regina; Mohammadi, Moosa; White, Kenneth E.; Econs, Michael J.

    2007-01-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia due to inactivating mutations in FGF23 or UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). Herein we report a homozygous missense mutation (H193R) in the KLOTHO (KL) gene of a 13-year-old girl who presented with severe tumoral calcinosis with dural and carotid artery calcifications. This patient exhibited defects in mineral ion homeostasis with marked hyperphosphatemia and hypercalcemia as well as elevated serum levels of parathyroid hormone and FGF23. Mapping of H193R mutation onto the crystal structure of myrosinase, a plant homolog of KL, revealed that this histidine residue was at the base of the deep catalytic cleft and mutation of this histidine to arginine should destabilize the putative glycosidase domain (KL1) of KL, thereby attenuating production of membrane-bound and secreted KL. Indeed, compared with wild-type KL, expression and secretion of H193R KL were markedly reduced in vitro, resulting in diminished ability of FGF23 to signal via its cognate FGF receptors. Taken together, our findings provide what we believe to be the first evidence that loss-of-function mutations in human KL impair FGF23 bioactivity, underscoring the essential role of KL in FGF23-mediated phosphate and vitamin D homeostasis in humans. PMID:17710231

  18. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2018-04-01

    Full Text Available Summary: The derivation of microglia from human stem cells provides systems for understanding microglial biology and enables functional studies of disease-causing mutations. We describe a robust method for the derivation of human microglia from stem cells, which are phenotypically and functionally comparable with primary microglia. We used stem cell-derived microglia to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2, which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease. We find that mutant TREM2 accumulates in its immature form, does not undergo typical proteolysis, and is not trafficked to the plasma membrane. However, in the absence of plasma membrane TREM2, microglia differentiate normally, respond to stimulation with lipopolysaccharide, and are phagocytically competent. These data indicate that dementia-associated TREM2 mutations have subtle effects on microglia biology, consistent with the adult onset of disease in individuals with these mutations. : Brownjohn and colleagues report methods to generate microglia from induced pluripotent human stem cells, which they demonstrate are highly similar to cultured primary human microglia. Microglia differentiated from patient-derived stem cells carrying neurological disease-causing mutations in the TREM2 receptor differentiate normally and respond appropriately to pathogenic stimuli, despite the absence of functional TREM2 receptor on the plasma membrane. Keywords: dementia, microglia, TREM2, Nasu-Hakola disease, frontotemporal dementia, iPSC-microglia, neuroinflammation

  19. EnsembleGASVR: A novel ensemble method for classifying missense single nucleotide polymorphisms

    KAUST Repository

    Rapakoulia, Trisevgeni

    2014-04-26

    Motivation: Single nucleotide polymorphisms (SNPs) are considered the most frequently occurring DNA sequence variations. Several computational methods have been proposed for the classification of missense SNPs to neutral and disease associated. However, existing computational approaches fail to select relevant features by choosing them arbitrarily without sufficient documentation. Moreover, they are limited to the problem ofmissing values, imbalance between the learning datasets and most of them do not support their predictions with confidence scores. Results: To overcome these limitations, a novel ensemble computational methodology is proposed. EnsembleGASVR facilitates a twostep algorithm, which in its first step applies a novel evolutionary embedded algorithm to locate close to optimal Support Vector Regression models. In its second step, these models are combined to extract a universal predictor, which is less prone to overfitting issues, systematizes the rebalancing of the learning sets and uses an internal approach for solving the missing values problem without loss of information. Confidence scores support all the predictions and the model becomes tunable by modifying the classification thresholds. An extensive study was performed for collecting the most relevant features for the problem of classifying SNPs, and a superset of 88 features was constructed. Experimental results show that the proposed framework outperforms well-known algorithms in terms of classification performance in the examined datasets. Finally, the proposed algorithmic framework was able to uncover the significant role of certain features such as the solvent accessibility feature, and the top-scored predictions were further validated by linking them with disease phenotypes. © The Author 2014.

  20. Risk of cancer by ATM missense mutations in the general population

    DEFF Research Database (Denmark)

    Dombernowsky, Sarah Louise; Weischer, Maren; Allin, Kristine Højgaard

    2008-01-01

    PURPOSE: Truncating and missense mutations in the ATM gene, which cause insufficient DNA damage surveillance, allow damaged cells to proceed into mitosis, which eventually results in increased cancer susceptibility. We tested the hypotheses that ATM Ser49Cys and ATM Ser707Pro heterozygosity......: Multifactorially adjusted hazard ratios for ATM Ser49Cys heterozygotes versus noncarriers were 1.2 (95% CI, 0.9 to 1.5) for cancer overall, 0.8 (95% CI, 0.3 to 2.0) for breast cancer, 4.8 (95% CI, 2.2 to 11) for melanoma, 2.3 (95% CI, 1.1 to 5.0) for prostate cancer, and 3.4 (95% CI, 1.1 to 11) for cancer...... of the oral cavity/pharynx. Multifactorially adjusted hazard ratios for ATM Ser707Pro heterozygotes versus noncarriers were 0.8 (95% CI, 0.6 to 1.2) for cancer overall, 0.6 (95% CI, 0.2 to 1.6) for breast cancer, 10 (95% CI, 1.1 to 93) for thyroid/other endocrine tumors, and 2.7 (95% CI, 1.0 to 7...

  1. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    Science.gov (United States)

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  2. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration.

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-03-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.

  3. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far. PMID:26173967

  4. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  5. A Novel Missense Mutation in Oncostatin M Receptor Beta Causing Primary Localized Cutaneous Amyloidosis

    Directory of Open Access Journals (Sweden)

    Marjan Saeedi

    2014-01-01

    Full Text Available Primary localized cutaneous amyloidosis (PLCA is a chronic skin disorder, caused by amyloid material deposition in the upper dermis. Autosomal dominant PLCA has been mapped earlier to pathogenic missense mutations in the OSMR gene, which encodes the oncostatin M receptor ß subunit (OSMRß. OSMRß is interleukin-6 family cytokine receptors and possesses two ligands, oncostatin M and interleukin-31, which both have biologic roles in inflammation and keratinocyte cell proliferation, differentiation, and apoptosis. Here, we identified a new OSMR mutation in a Kurdish family for the first time. Blood samples were taken from all the affected individuals in the family. DNA extraction was performed using salting out technique. Primers were designed for intron flanking individual exons of OSMR gene which were subjected to direct sequencing after PCR amplification for each sample. Sequencing showed a C/T substitution at position 613 in the proband. This mutation results in an L613S (leucine 613 to serine amino acid change. The identified mutation was observed in all affected family members but not in 100 ethnically matched healthy controls. Elucidating the molecular basis of familial PLCA provides new insight into mechanisms of itch in human skin and may lead to new therapeutic targets for pruritus.

  6. A missense mutation in melanocortin 1 receptor is associated with the red coat colour in donkeys.

    Science.gov (United States)

    Abitbol, M; Legrand, R; Tiret, L

    2014-12-01

    The seven donkey breeds recognised by the French studbook are characterised by few coat colours: black, bay and grey. Normand bay donkeys seldom give birth to red foals, a colour more commonly seen and recognised in American miniature donkeys. Red resembles the equine chestnut colour, previously attributed to a mutation in the melanocortin 1 receptor gene (MC1R). We used a panel of 124 donkeys to identify a recessive missense c.629T>C variant in MC1R that showed a perfect association with the red coat colour. This variant leads to a methionine to threonine substitution at position 210 in the protein. We showed that methionine 210 is highly conserved among vertebrate melanocortin receptors. Previous in silico and in vitro analyses predicted this residue to lie within a functional site. Our in vivo results emphasised the pivotal role played by this residue, the alteration of which yielded a phenotype fully compatible with a loss of function of MC1R. We thus propose to name the c.629T>C allele in donkeys the e allele, which further enlarges the panel of recessive MC1R loss-of-function alleles described in animals and humans. © 2014 Stichting International Foundation for Animal Genetics.

  7. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations.

    Directory of Open Access Journals (Sweden)

    Sofie V Nielsen

    2017-04-01

    Full Text Available Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.

  8. Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2011-05-01

    Full Text Available AbstractObjective(sThe mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS system. Materials and MethodsWe searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30 FRDA patients and 35 healthy controls.ResultsWe found 3 missense mutations [m.10506A>G (T13A, m.10530G>A (V21M, and m.10653G>A (A62T] in four patients whose m.10530G>A and m.10653G>A were not reported previously. In two patients, heteroplasmic m.10530G>A mutation was detected. They showed a very early ataxia syndrome. Our results showed that the number of mutations in FRDA patients was higher than that in the control cases (P= 0.0287.ConclusionAlthough this disease is due to nuclear gene mutation, the presence of these mutations might be responsible for further mitochondrial defects and the increase of the gravity of the disease. Thus, it should be considered in patients with this disorder.

  9. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  10. Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II.

    Science.gov (United States)

    Wenzhi, He; Ruijin, Wen; Jieliang, Li; Xiaoyan, Ma; Haibo, Liu; Xiaoman, Wang; Jiajia, Xian; Shaoying, Li; Shuanglin, Li; Qing, Li

    2015-10-01

    Waardenburg syndrome (WS) is a rare disease characterized by sensorineural deafness and pigment disturbance. To date, almost 100 mutations have been reported, but few reports on cases with SOX10 gene deletion. The inheritance pattern of SOX10 gene deletion is still unclear. Our objective was to identify the genetic causes of Waardenburg syndrome type II in a two-generation Chinese family. Clinical evaluations were conducted in both of the patients. Microarray analysis and multiplex ligation-dependent probe amplification (MLPA) were performed to identify disease-related copy number variants (CNVs). DNA sequencing of the SOX10, MITF and SNAI2 genes was performed to identify the pathogenic mutation responsible for WS2. A 280kb heterozygous deletion at the 22q13.1 chromosome region (including SOX10) was detected in both of the patients. No mutation was found in the patients, unaffected family members and 30 unrelated healthy controls. This report is the first to describe SOX10 heterozygous deletions in Chinese WS2 patients. Our result conform the thesis that heterozygous deletions at SOX10 is an important pathogenicity for WS, and present as autosomal dominant inheritance. Nevertheless, heterozygous deletion of the SOX10 gene would be worth investigating to understand their functions and contributions to neurologic phenotypes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Generalized pustular psoriasis in infant with heterozygous mutation in the IL36RN gene successfully treated with infliximab

    DEFF Research Database (Denmark)

    Glerup, Mia; Herlin, Troels; Veirum, Jens Erik

    , but to our knowledge heterozygous IL36RN mutation related to severe generalized pustular psoriasis in early childhood has not been described. Case presentation: First child of non-consanguineous caucasian (Danish) parents prenatally diagnosed with tetralogy of Fallot. Array CGH revealed normal karyotype...

  12. Mutations in the gene for lipoprotein lipase. A cause for low HDL cholesterol levels in individuals heterozygous for familial hypercholesterolemia

    NARCIS (Netherlands)

    Pimstone, S. N.; Gagné, S. E.; Gagné, C.; Lupien, P. J.; Gaudet, D.; Williams, R. R.; Kotze, M.; Reymer, P. W.; Defesche, J. C.; Kastelein, J. J.

    1995-01-01

    Familial hypercholesterolemia (FH) is characterized by elevated plasma concentrations of LDL cholesterol resulting from mutations in the gene for the LDL receptor. Low HDL cholesterol levels are seen frequently in patients both heterozygous and homozygous for mutations in this gene. Suggested

  13. A novel classification system to predict the pathogenic effects of CHD7 missense variants in CHARGE syndrome

    DEFF Research Database (Denmark)

    Bergman, Jorieke E H; Janssen, Nicole; van der Sloot, Almer M

    2012-01-01

    CHARGE syndrome is characterized by the variable occurrence of multisensory impairment, congenital anomalies, and developmental delay, and is caused by heterozygous mutations in the CHD7 gene. Correct interpretation of CHD7 variants is essential for genetic counseling. This is particularly diffic...

  14. The NRG1 exon 11 missense variant is not associated with autism in the Central Valley of Costa Rica

    Directory of Open Access Journals (Sweden)

    Fallas Marietha

    2007-05-01

    Full Text Available Abstract Background We are conducting a genetic study of autism in the isolated population of the Central Valley of Costa Rica (CVCR. A novel Neuregulin 1 (NRG1 missense variant (exon 11 G>T was recently associated with psychosis and schizophrenia (SCZ in the same population isolate. Methods We genotyped the NRG1 exon 11 missense variant in 146 cases with autism, or autism spectrum disorder, with CVCR ancestry, and both parents when available (N = 267 parents from 143 independent families. Additional microsatellites were genotyped to examine haplotypes bearing the exon 11 variant. Results The NRG1 exon 11 G>T variant was found in 4/146 cases including one de novo occurrence. The frequency of the variant in case chromosomes was 0.014 and 0.045 in the parental non-transmitted chromosomes. At least 6 haplotypes extending 0.229 Mb were associated with the T allele. Three independent individuals, with no personal or family history of psychiatric disorder, shared at least a 1 megabase haplotype 5' to the T allele. Conclusion The NRG1 exon 11 missense variant is not associated with autism in the CVCR.

  15. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly.

    Science.gov (United States)

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-08-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.

  16. Missense mutation in GRN gene affecting RNA splicing and plasma progranulin level in a family affected by frontotemporal lobar degeneration.

    Science.gov (United States)

    Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina

    2017-06-01

    Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Report of a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris phenotype, and schwannomatosis.

    Science.gov (United States)

    Gossai, Nathan; Biegel, Jaclyn A; Messiaen, Ludwine; Berry, Susan A; Moertel, Christopher L

    2015-12-01

    We report a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris Syndrome (CSS), and schwannomatosis. CSS is a rare congenital syndrome with characteristic clinical findings. This thirty-three-year-old man was diagnosed early in life with the constellation of moderate intellectual disability, hypotonia, mild microcephaly, coarse facies, wide mouth with full lips, hypoplasia of the digits, and general hirsutism. At age 26, he was found to have schwannomatosis after presenting with acute spinal cord compression. Blood and tissue analysis of multiple subsequent schwannoma resections revealed a germline missense mutation of SMARCB1, acquired loss of 22q including SMARCB1 and NF2 and mutation of the remaining NF2 wild-type allele-thus completing the four-hit, three-event mechanism associated with schwannomatosis. Variations in five genes have been associated with the Coffin-Siris phenotype: ARID1A, ARID1B, SMARCA4, SMARCB1, and SMARCE1. Of these genes, SMARCB1 has a well-established association with schwannomatosis and malignancy. This is the first report of a patient with a constitutional missense mutation of SMARCB1 resulting in CSS and subsequent development of schwannomatosis. This finding demonstrates that a SMARCB1 mutation may be the initial "hit" (constitutional) for a genetic disorder with subsequent risk of developing schwannomas and other malignancies, and raises the possibility that other patients with switch/sucrose non-fermenting (SWI/SNF) mutations may be at increased risk for tumors. © 2015 Wiley Periodicals, Inc.

  18. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    Science.gov (United States)

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  19. Most of rare missense alleles in humans are deleterious:implications for evolution of complex disease and associationstudies

    Energy Technology Data Exchange (ETDEWEB)

    Kryukov, Gregory V.; Pennacchio, Len A.; Sunyaev, Shamil R.

    2006-10-24

    The accumulation of mildly deleterious missense mutations inindividual human genomes has been proposed to be a genetic basis forcomplex diseases. The plausibility of this hypothesis depends onquantitative estimates of the prevalence of mildly deleterious de novomutations and polymorphic variants in humans and on the intensity ofselective pressure against them. We combined analysis of mutationscausing human Mendelian diseases, human-chimpanzee divergence andsystematic data on human SNPs and found that about 20 percent of newmissense mutations in humans result in a loss of function, while about 27percent are effectively neutral. Thus, more than half of new missensemutations have mildly deleterious effects. These mutations give rise tomany low frequency deleterious allelic variants in the human populationas evident from a new dataset of 37 genes sequenced in over 1,500individual human chromosomes. Surprisingly, up to 70 percent of lowfrequency missense alleles are mildly deleterious and associated with aheterozygous fitness loss in the range 0.001-0.003. Thus, the low allelefrequency of an amino acid variant can by itself serve as a predictor ofits functional significance. Several recent studies have reported asignificant excess of rare missense variants in disease populationscompared to controls in candidate genes or pathways. These studies wouldbe unlikely to work if most rare variants were neutral or if rarevariants were not a significant contributor to the genetic component ofphenotypic inheritance. Our results provide a justification for thesetypes of candidate gene (pathway) association studies and imply thatmutation-selection balance may be a feasible mechanism for evolution ofsome common diseases.

  20. Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes.

    Science.gov (United States)

    Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J

    2017-09-26

    Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.

  1. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene.

    Directory of Open Access Journals (Sweden)

    Ewan R Pearson

    2007-04-01

    Full Text Available Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY genes HNF4A (encoding HNF-4alpha and HNF1A/TCF1 (encoding HNF-1alpha, and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice.We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001; 56% (30/54 of HNF4A-mutation carriers were macrosomic compared with 13% (7/54 of non-mutation family members (p < 0.001. Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003. There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic beta-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth.HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life.

  2. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-07-01

    Tuberous sclerosis complex (TSC is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1 kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors.

  3. Heterozygous Disruption of Autism susceptibility candidate 2 Causes Impaired Emotional Control and Cognitive Memory.

    Directory of Open Access Journals (Sweden)

    Kei Hori

    Full Text Available Mutations in the Autism susceptibility candidate 2 gene (AUTS2 have been associated with a broad range of psychiatric illnesses including autism spectrum disorders, intellectual disability and schizophrenia. We previously demonstrated that the cytoplasmic AUTS2 acts as an upstream factor for the Rho family small GTPase Rac1 and Cdc42 that regulate the cytoskeletal rearrangements in neural cells. Moreover, genetic ablation of the Auts2 gene in mice has resulted in defects in neuronal migration and neuritogenesis in the developing cerebral cortex caused by inactivation of Rac1-signaling pathway, suggesting that AUTS2 is required for neural development. In this study, we conducted a battery of behavioral analyses on Auts2 heterozygous mutant mice to examine the involvement of Auts2 in adult cognitive brain functions. Auts2-deficient mice displayed a decrease in exploratory behavior as well as lower anxiety-like behaviors in the absence of any motor dysfunction. Furthermore, the capability for novel object recognition and cued associative memory were impaired in Auts2 mutant mice. Social behavior and sensory motor gating functions were, however, normal in the mutant mice as assessed by the three-chamber test and prepulse inhibition test, respectively. Together, our findings indicate that AUTS2 is critical for the acquisition of neurocognitive function.

  4. Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert⁺/⁻) mice.

    Science.gov (United States)

    Kyzar, Evan J; Stewart, Adam Michael; Kalueff, Allan V

    2016-01-01

    Serotonin (5-HT) plays a crucial role in the brain, modulating mood, cognition and reward. The serotonin transporter (SERT) is responsible for the reuptake of 5-HT from the synaptic cleft and regulates serotonin signaling in the brain. In humans, SERT genetic variance is linked to the pathogenesis of various psychiatric disorders, including anxiety, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Rodent self-grooming is a complex, evolutionarily conserved patterned behavior relevant to stress, ASD and OCD. Genetic ablation of mouse Sert causes various behavioral deficits, including increased anxiety and grooming behavior. The hallucinogenic drug lysergic acid diethylamide (LSD) is a potent serotonergic agonist known to modulate human and animal behavior. Here, we examined heterozygous Sert(+/-) mouse behavior following acute administration of LSD (0.32 mg/kg). Overall, Sert(+/-) mice displayed a longer duration of self-grooming behavior regardless of LSD treatment. In contrast, LSD increased serotonin-sensitive behaviors, such as head twitching, tremors and backwards gait behaviors in both Sert(+/+) and Sert(+/-) mice. There were no significant interactions between LSD treatment and Sert gene dosage in any of the behavioral domains measured. These results suggest that Sert(+/-) mice may respond to the behavioral effects of LSD in a similar manner to wild-type mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Recombination and synaptic adjustment in oocytes of mice heterozygous for a large paracentric inversion.

    Science.gov (United States)

    Torgasheva, Anna A; Rubtsov, Nikolai B; Borodin, Pavel M

    2013-03-01

    Homologous chromosome synapsis in inversion heterozygotes results in the formation of inversion loops. These loops might be transformed into straight, non-homologously paired bivalents via synaptic adjustment. Synaptic adjustment was discovered 30 years ago; however, its relationship with recombination has remained unclear. We analysed this relationship in female mouse embryos heterozygous for large paracentric inversion In(1)1Rk using immunolocalisation of the synaptonemal complex (SYCP3) and mature recombination nodules (MLH1) proteins. The frequency of cells containing bivalents with inversion loops decreased from 69 % to 28 % during pachytene. If an MLH1 focus was present in the non-homologously paired inverted region of the straight bivalent, it was always located in the middle of the inversion. Most of the small, incompletely adjusted loops contained MLH1 foci near the points at which pairing partners were switched. This observation indicates that the degree of synaptic adjustment depended on the crossover position. Complete synaptic adjustment was only possible if a crossover (CO) was located exactly in the middle of the inversion. If a CO was located at any other site, this interrupted synaptic adjustment and resulted in inversion loops of different sizes with an MLH1 focus at or near the edge of the remaining loop.

  6. Thiamine responsive megaloblastic anemia: a novel SLC19A2 compound heterozygous mutation in two siblings.

    Science.gov (United States)

    Mozzillo, Enza; Melis, Daniela; Falco, Mariateresa; Fattorusso, Valentina; Taurisano, Roberta; Flanagan, Sarah E; Ellard, Sian; Franzese, Adriana

    2013-08-01

    Thiamine responsive megaloblastic anemia (TRMA) is an autosomal recessive disease caused by loss of function mutations in the SLC19A2 gene. TRMA is characterized by anemia, deafness, and diabetes. In some cases, optic atrophy or more rarely retinitis pigmentosa is noted. We now report two sisters, the eldest of which presented to a different hospital during childhood with sensorineural deafness, which was treated with a hearing prosthesis, insulin requiring diabetes, retinitis pigmentosa, optic atrophy, and macrocytic anemia. These features initially suggested a clinical diagnosis of Wolfram syndrome (WS). Therapy with thiamine was initiated which resulted in the resolution of the anemia. The younger sister, who was affected with sensorineural deafness, was referred to our hospital for non-autoimmune diabetes. She was found to have macrocytosis and ocular abnormalities. Because a diagnosis of TRMA was suspected, therapy with insulin and thiamine was started. Sequencing analysis of the SLC19A2 gene identified a compound heterozygous mutation p.Y81X/p.L457X (c.242insA/c.1370delT) in both sisters. Non-autoimmune diabetes associated with deafness and macrocytosis, without anemia, suggests a diagnosis of TRMA. Patients clinically diagnosed with WS with anemia and/or macrocytosis should be reevaluated for TRMA. © 2012 John Wiley & Sons A/S.

  7. Metabonomic study of the biochemical profiles of heterozygous myostatin knockout swine

    Directory of Open Access Journals (Sweden)

    Jianxiang XU,Dengke PAN,Jie ZHAO,Jianwu WANG,Xiaohong HE,Yuehui MA,Ning LI

    2015-03-01

    Full Text Available Myostatin is a transforming growth factor-β family member that normally acts to limit skeletal muscle growth. Myostatin gene (MSTN knockout (KO mice show possible effects for the prevention or treatment of metabolic disorders such as obesity and type 2 diabetes. We applied chromatography and mass spectrometry based metabonomics to assess system-wide metabolic response of heterozygous MSTN KO (MSTN+/- swine. Most of the metabolic data for MSTN+/- swine were similar to the data for wild type (WT control swine. There were, however, metabolic changes related to fatty acid metabolism, glucose utilization, lipid metabolism, as well as BCAA catabolism caused by monoallelic MSTN depletion.The statistical analyses suggested that: (1 most metabolic changes were not significant in MSTN+/- swine compared to WT swine; (2 only a few metabolic properties were significantly different between KO and WT swine, especially for lipid metabolism. Significantly, these minor changes were most evident in female KO swine and suggested differences in gender sensitivity to myostatin.

  8. Age-Related Hearing Loss in Mn-SOD Heterozygous Knockout Mice

    Directory of Open Access Journals (Sweden)

    Makoto Kinoshita

    2013-01-01

    Full Text Available Age-related hearing loss (AHL reduces the quality of life for many elderly individuals. Manganese superoxide dismutase (Mn-SOD, one of the antioxidant enzymes acting within the mitochondria, plays a crucial role in scavenging reactive oxygen species (ROS. To determine whether reduction in Mn-SOD accelerates AHL, we evaluated auditory function in Mn-SOD heterozygous knockout (HET mice and their littermate wild-type (WT C57BL/6 mice by means of auditory brainstem response (ABR. Mean ABR thresholds were significantly increased at 16 months when compared to those at 4 months in both WT and HET mice, but they did not significantly differ between them at either age. The extent of hair cell loss, spiral ganglion cell density, and thickness of the stria vascularis also did not differ between WT and HET mice at either age. At 16 months, immunoreactivity of 8-hydroxydeoxyguanosine was significantly greater in the SGC and SV in HET mice compared to WT mice, but that of 4-hydroxynonenal did not differ between them. These findings suggest that, although decrease of Mn-SOD by half may increase oxidative stress in the cochlea to some extent, it may not be sufficient to accelerate age-related cochlear damage under physiological aging process.

  9. Nature vs. nurture: can enrichment rescue the behavioural phenotype of BDNF heterozygous mice?

    Science.gov (United States)

    Chourbaji, Sabine; Brandwein, Christiane; Vogt, Miriam A; Dormann, Christof; Hellweg, Rainer; Gass, Peter

    2008-10-10

    In earlier experiments we have demonstrated that group-housing in a rather impoverished "standard" environment can be a crucial stress factor in male C57Bl/6 mice. The present study aimed at investigating the effect of combining a probable genetic vulnerability--postulated by the "Neurotrophin Hypothesis of Depression"--with the potentially modulating influence of a stressful environment such as "impoverished" standard housing conditions. For that purpose mice with a partial deletion of brain-derived neurotrophic factor (BDNF) were group-housed under standard and enriched housing conditions and analysed in a well-established test battery for emotional behaviours. Standard group-housing affected emotional behaviour in male and female BDNF heterozygous mice, causing an increase in anxiety, changes in exploration as well as nociception. Providing the animals' cages with supplementary enrichment, however, led to a rescue of emotional alterations, which emphasises the significance of external factors and their relevance for a valid investigation of genetic aspects in these mutants as well as others, which may be examined in terms of stress-responsiveness or emotionality.

  10. Nonhomologous Synapsis and Reduced Crossing over in a Heterozygous Paracentric Inversion in Saccharomyces Cerevisiae

    Science.gov (United States)

    Dresser, M. E.; Ewing, D. J.; Harwell, S. N.; Coody, D.; Conrad, M. N.

    1994-01-01

    Homologous chromosome synapsis (``homosynapsis'') and crossing over are well-conserved aspects of meiotic chromosome behavior. The long-standing assumption that these two processes are causally related has been challenged recently by observations in Saccharomyces cerevisiae of significant levels of crossing over (1) between small sequences at nonhomologous locations and (2) in mutants where synapsis is abnormal or absent. In order to avoid problems of local sequence effects and of mutation pleiotropy, we have perturbed synapsis by making a set of isogenic strains that are heterozygous and homozygous for a large chromosomal paracentric inversion covering a well marked genetic interval and then measured recombination. We find that reciprocal recombination in the marked interval in heterozygotes is reduced variably across the interval, on average to ~55% of that in the homozygotes, and that positive interference still modulates crossing over. Cytologically, stable synapsis across the interval is apparently heterologous rather than homologous, consistent with the interpretation that stable homosynapsis is required to initiate or consummate a large fraction of the crossing over observed in wild-type strains. When crossing over does occur in heterozygotes, dicentric and acentric chromosomes are formed and can be visualized and quantitated on blots though not demonstrated in viable spores. We find that there is no loss of dicentric chromosomes during the two meiotic divisions and that the acentric chromosome is recovered at only 1/3 to 1/2 of the expected level. PMID:7851761

  11. Aberrant methylation of Polo-like kinase CpG islands in Plk4 heterozygous mice

    International Nuclear Information System (INIS)

    Ward, Alejandra; Morettin, Alan; Shum, David; Hudson, John W

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most common cancers world-wide occurs twice as often in men compared to women. Predisposing conditions such as alcoholism, chronic viral hepatitis, aflatoxin B1 ingestion, and cirrhosis all contribute to the development of HCC. We used a combination of methylation specific PCR and bisulfite sequencing, qReal-Time PCR (qPCR), and Western blot analysis to examine epigenetic changes for the Polo-like kinases (Plks) during the development of hepatocellular carcinoma (HCC) in Plk4 heterozygous mice and murine embryonic fibroblasts (MEFs). Here we report that the promoter methylation of Plk4 CpG islands increases with age, was more prevalent in males and that Plk4 epigenetic modification and subsequent downregulation of expression was associated with the development of HCC in Plk4 mutant mice. Interestingly, the opposite occurs with another Plk family member, Plk1 which was typically hypermethylated in normal liver tissue but became hypomethylated and upregulated in liver tumours. Furthermore, upon alcohol exposure murine embryonic fibroblasts exhibited increased Plk4 hypermethylation and downregulation along with increased centrosome numbers and multinucleation. These results suggest that aberrant Plk methylation is correlated with the development of HCC in mice

  12. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yuki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Eguchi, Takahiro [The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639 (Japan); Kawahara, Kazuko [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Hasegawa, Nanami [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Nakamura, Kazuaki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Funakoshi-Tago, Megumi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Tanoue, Akito [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Tamura, Hiroomi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Yamauchi, Junji, E-mail: yamauchi-j@ncchd.go.jp [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510 (Japan)

    2015-07-03

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  13. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene

    Science.gov (United States)

    2011-01-01

    Background Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair, oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin (Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-κB, which is central to ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as the first rat model of HED and successfully identified the swh mutation. Results The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the Edaradd gene. This mutation was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to activate NF-κB. Conclusions These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological basis of the disease and the development of new therapies. PMID:22013926

  14. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    International Nuclear Information System (INIS)

    Miyamoto, Yuki; Eguchi, Takahiro; Kawahara, Kazuko; Hasegawa, Nanami; Nakamura, Kazuaki; Funakoshi-Tago, Megumi; Tanoue, Akito; Tamura, Hiroomi; Yamauchi, Junji

    2015-01-01

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  15. SDS, a structural disruption score for assessment of missense variant deleteriousness

    Directory of Open Access Journals (Sweden)

    Thanawadee ePreeprem

    2014-04-01

    Full Text Available We have developed a novel structure-based evaluation for missense variants that explicitly models protein structure and amino acid properties to predict the likelihood that a variant disrupts protein function. A structural disruption score (SDS is introduced as a measure to depict the likelihood that a case variant is functional. The score is constructed using characteristics that distinguish between causal and neutral variants within a group of proteins. The SDS score is correlated with standard sequence-based deleteriousness, but shows promise for improving discrimination between neutral and causal variants at less conserved sites.The prediction was performed on 3-dimentional structures of 57 gene products whose homozygous SNPs were identified as case-exclusive variants in an exome sequencing study of epilepsy disorders. We contrasted the candidate epilepsy variants with scores for likely benign variants found in the EVS database, and for positive control variants in the same genes that are suspected to promote a range of diseases. To derive a characteristic profile of damaging SNPs, we transformed continuous scores into categorical variables based on the score distribution of each measurement, collected from all possible SNPs in this protein set, where extreme measures were assumed to be deleterious. A second epilepsy dataset was used to replicate the findings. Causal variants tend to receive higher sequence-based deleterious scores, induce larger physico-chemical changes between amino acid pairs, locate in protein domains, buried sites or on conserved protein surface clusters, and cause protein destabilization, relative to negative controls. These measures were agglomerated for each variant. A list of nine high-priority putative functional variants for epilepsy was generated. Our newly developed SDS protocol facilitates SNP prioritization for experimental validation.

  16. Increased missense mutation burden of Fatty Acid metabolism related genes in nunavik inuit population.

    Science.gov (United States)

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit.

  17. Heterozygous Lmna(delK32) mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity

    DEFF Research Database (Denmark)

    Cattin, M. E.; Bertrand, A. T.; Schlossarek, S.

    2013-01-01

    itself has a clear deleterious effect on engineered heart tissues force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of K32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our....... The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(K32/) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could...... be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic K32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac...

  18. Identification of Heterozygous Single- and Multi-exon Deletions in IL7R by Whole Exome Sequencing.

    OpenAIRE

    Engelhardt, Karin R; Xu, Yaobo; Grainger, Angela; Germani Batacchi, Mila G C; Swan, David J; Willet, Joseph D P; Abd Hamid, Intan J; Agyeman, Philipp; Barge, Dawn; Bibi, Shahnaz; Jenkins, Lucy; Flood, Terence J; Abinun, Mario; Slatter, Mary A; Gennery, Andrew R

    2017-01-01

    Purpose We aimed to achieve a retrospective molecular diagnosis by applying state-of-the-art genomic sequencing methods to past patients with T-B+NK+ severe combined immunodeficiency (SCID). We included identification of copy number variations (CNVs) by whole exome sequencing (WES) using the CNV calling method ExomeDepth to detect gene alterations for which routine Sanger sequencing analysis is not suitable, such as large heterozygous deletions. Methods Of a total of 12 undiagnosed patients w...

  19. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    Science.gov (United States)

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM(+/-)) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM(+/-) cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage.

  20. Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Rafael, Julianny Freitas; Cruz, Fernando Eugênio Dos Santos; Carvalho, Antônio Carlos Campos de; Gottlieb, Ilan; Cazelli, José Guilherme; Siciliano, Ana Paula; Dias, Glauber Monteiro

    2017-04-01

    Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband. Resumo A cardiomiopatia hipertrófica (CMH) é uma doença autossômica dominante causada por mutações em genes que codificam as proteínas dos sarcômeros. É a principal causa de morte súbita cardíaca em atletas jovens de alto nível. Estudos têm demonstrado um pior prognóstico associado a mutações específicas. A associação entre genótipo e fenótipo em CMH tem sido objeto de diversos estudos desde a descoberta da origem genética dessa doença. Este trabalho apresenta o efeito de uma mutação composta em MYBPC3 na expressão fenotípica da CMH. Uma família na qual um jovem tem o diagnóstico clínico de CMH foi

  1. [Hereditary heterozygous factor VII deficiency in patients undergoing surgery : Clinical relevance].

    Science.gov (United States)

    Woehrle, D; Martinez, M; Bolliger, D

    2016-10-01

    A hereditary deficiency in coagulation factor VII (FVII) may affect the international normalized ratio (INR) value. However, FVII deficiency is occasionally associated with a tendency to bleed spontaneously. We hypothesized that perioperative substitution with coagulation factor concentrates might not be indicated in most patients. In this retrospective data analysis, we included all patients with hereditary heterozygous FVII deficiency who underwent surgical procedures at the University Hospital Basel between December 2010 and November 2015. In addition, by searching the literature, we identified publications reporting patients with FVII deficiency undergoing surgical procedures without perioperative substitution. We identified 22 patients undergoing 46 surgical procedures, resulting in a prevalence of 1:1500-2000. Coagulation factor concentrates were administered during the perioperative period in 15 procedures (33 %), whereas in the other 31 procedures (66 %), FVII deficiency was not substituted. No postoperative bleeding or thromboembolic events were reported. In addition, we found no differences in pre- and postoperative hemoglobin and coagulation parameters, with the exception of an improved postoperative INR value in the substituted group. In the literature review, we identified five publications, including 125 patients with FVII deficiency, undergoing 213 surgical procedures with no perioperative substitution. Preoperative substitution using coagulation factor concentrates does not seem to be mandatory in patients with an FVII level ≥15 %. For decision-making on preoperative substitution, patient history of an increased tendency to bleed may be more important than the FVII level or increased INR value.

  2. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  3. A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance

    Directory of Open Access Journals (Sweden)

    Scalabrin Simone

    2008-06-01

    Full Text Available Abstract Background Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. Results The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32% were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. Conclusion Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and

  4. A 3-year study of atorvastatin in children and adolescents with heterozygous familial hypercholesterolemia.

    Science.gov (United States)

    Langslet, Gisle; Breazna, Andrei; Drogari, Euridiki

    2016-01-01

    The efficacy and safety of atorvastatin in children/adolescents aged 10-17 years with heterozygous familial hypercholesterolemia (HeFH) have been demonstrated in trials of up to 1 year in duration. However, the efficacy/safety of >1 year use of atorvastatin in children/adolescents with HeFH, including children from 6 years of age, has not been assessed. To characterize the efficacy and safety of atorvastatin over 3 years and to assess the impact on growth and development in children aged 6-15 years with HeFH. A total of 272 subjects aged 6-15 years with HeFH and low-density lipoprotein cholesterol (LDL-C) ≥4.0 mmol/L (154 mg/dL) were enrolled in a 3-year study (NCT00827606). Subjects were initiated on atorvastatin (5 mg or 10 mg) with doses increased to up to 80 mg based on LDL-C levels. Mean percentage reductions from baseline in LDL-C at 36 months/early termination were 43.8% for subjects at Tanner stage (TS) 1 and 39.9% for TS ≥2. There was no evidence of variations in the lipid-lowering efficacy of atorvastatin between the TS groups analyzed (1 vs ≥2) or in subjects aged Atorvastatin had a favorable safety and tolerability profile, and only 6 (2.2%) subjects discontinued because of adverse events. Atorvastatin over 3 years was efficacious, had no impact on growth/maturation, and was well tolerated in children and adolescents with HeFH aged 6-15 years. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  5. Polymorphisms of the low-density lipoprotein receptor gene in Brazilian individuals with heterozygous familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    L.A. Salazar

    2000-11-01

    Full Text Available Familial hypercholesterolemia (FH is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12, AvaII (exon 13 and PvuII (intron 15, in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII, H+H+ (HincII1773 and P1P1 (PvuII homozygous genotypes when compared to the control group (P<0.05. In addition, FH probands presented a high frequency of A+ (0.58, H+ (0.61 and P1 (0.78 alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively. The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.

  6. Non-alcoholic fatty liver disease in mice with heterozygous mutation in TMED2.

    Directory of Open Access Journals (Sweden)

    Wenyang Hou

    Full Text Available The transmembrane emp24 domain/p24 (TMED family are essential components of the vesicular transport machinery. Members of the TMED family serve as cargo receptors implicated in selection and packaging of endoplasmic reticulum (ER luminal proteins into coatomer (COP II coated vesicles for anterograde transport to the Golgi. Deletion or mutations of Tmed genes in yeast and Drosophila results in ER-stress and activation of the unfolded protein response (UPR. The UPR leads to expression of genes and proteins important for expanding the folding capacity of the ER, degrading misfolded proteins, and reducing the load of new proteins entering the ER. The UPR is activated in non-alcoholic fatty liver disease (NAFLD in human and mouse and may contribute to the development and the progression of NAFLD. Tmed2, the sole member of the vertebrate Tmed β subfamily, exhibits tissue and temporal specific patterns of expression in embryos and developing placenta but is ubiquitously expressed in all adult organs. We previously identified a single point mutation, the 99J mutation, in the signal sequence of Tmed2 in an N-ethyl-N-nitrosourea (ENU mutagenesis screen. Histological and molecular analysis of livers from heterozygous mice carrying the 99J mutation, Tmed299J/+, revealed a requirement for TMED2 in liver health. We show that Tmed299J/+ mice had decreased levels of TMED2 and TMED10, dilated endoplasmic reticulum membrane, and increased phosphorylation of eIF2α, indicating ER-stress and activation of the UPR. Increased expression of Srebp1a and 2 at the newborn stage and increased incidence of NAFLD were also found in Tmed299J/+ mice. Our data establishes Tmed299J/+ mice as a novel mouse model for NAFLD and supports a role for TMED2 in liver health.

  7. Assessment of Iron Overload in Homozygous and Heterozygous Beta Thalassemic Children below 5 Years of Age

    Directory of Open Access Journals (Sweden)

    Dhiraj J. Trivedi

    2014-07-01

    Full Text Available Background: Thalassemia is a genetic disease having 3-7% carrier rate in Indians. It is transfusion dependent anemia having high risk of iron overloading. A clinical symptom of iron overload becomes detectable in second decade causing progressive liver, heart and endocrine glands damage. There is a need to assess iron overload in thalassemics below 5 years of age to protect them from complications at later age of life. Aims and objectives: Present study was undertaken to estimate serum iron status and evaluate serum transferrin saturation in both homozygous & heterozygous form of thalassemia as an index of iron overload among children of one to five years of age. Materials and Methods: Clinically diagnosed thirty cases of β thalassemia major & thirty cases of β thalassemia minor having severe anemia, hepatospleenomegaly and between 1 year to 5 years of age were included in study group and same age matched healthy controls were included in the study. RBC indices and HbA, HbA2 and HbF were estimated along with serum iron & serum Total Iron Binding Capacity (TIBC and serum transferrin levels. Results: Significant difference was observed in hemoglobin levels between control and both beta thalassemia groups. Mean Corpuscular Volume (MCV and Mean Corpuscular Hemoglobin (MCH values were reduced. Hemoglobin electrophoresis showed the elevated levels of HbF and HbA2 in both beta thalassemia groups. Among serum iron parameters, serum iron, TIBC and transferrin saturation were elevated whereas serum transferrin levels were low in thalassemia major in children below 5 years of age. Conclusion: Although clinical symptoms of iron overload have been absent in thalassemic children below five years of age, biochemical iron overloading has started at much lower age which is of great concern.

  8. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    Science.gov (United States)

    Eells, Jeffrey B; Varela-Stokes, Andrea; Guo-Ross, Shirley X; Kummari, Evangel; Smith, Holly M; Cox, Erin; Lindsay, David S

    2015-01-01

    Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.

  9. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Eells

    Full Text Available Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%, genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/- mice and wild-type (+/+ mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.

  10. Physical mapping in highly heterozygous genomes: a physical contig map of the Pinot Noir grapevine cultivar

    Directory of Open Access Journals (Sweden)

    Jurman Irena

    2010-03-01

    Full Text Available Abstract Background Most of the grapevine (Vitis vinifera L. cultivars grown today are those selected centuries ago, even though grapevine is one of the most important fruit crops in the world. Grapevine has therefore not benefited from the advances in modern plant breeding nor more recently from those in molecular genetics and genomics: genes controlling important agronomic traits are practically unknown. A physical map is essential to positionally clone such genes and instrumental in a genome sequencing project. Results We report on the first whole genome physical map of grapevine built using high information content fingerprinting of 49,104 BAC clones from the cultivar Pinot Noir. Pinot Noir, as most grape varieties, is highly heterozygous at the sequence level. This resulted in the two allelic haplotypes sometimes assembling into separate contigs that had to be accommodated in the map framework or in local expansions of contig maps. We performed computer simulations to assess the effects of increasing levels of sequence heterozygosity on BAC fingerprint assembly and showed that the experimental assembly results are in full agreement with the theoretical expectations, given the heterozygosity levels reported for grape. The map is anchored to a dense linkage map consisting of 994 markers. 436 contigs are anchored to the genetic map, covering 342 of the 475 Mb that make up the grape haploid genome. Conclusions We have developed a resource that makes it possible to access the grapevine genome, opening the way to a new era both in grape genetics and breeding and in wine making. The effects of heterozygosity on the assembly have been analyzed and characterized by using several complementary approaches which could be easily transferred to the study of other genomes which present the same features.

  11. Long-Term Effects of Prenatal Hypoxia on Schizophrenia-Like Phenotype in Heterozygous Reeler Mice.

    Science.gov (United States)

    Howell, Kristy R; Pillai, Anilkumar

    2016-07-01

    Prenatal hypoxia (PHX) is a well-known environmental factor implicated in the pathophysiology of schizophrenia. However, the long-term effects of PHX on schizophrenia-related neuroplasticity are poorly understood. Using behavioral tasks, MRI imaging, and biochemical studies, we examined the long-term effects of PHX in heterozygous reeler mice (HRM; mice deficient for reelin, a candidate gene for schizophrenia). PHX at E17 failed to induce any significant deficits in prepulse inhibition, spatial memory, anxiety-like behavior, or blood flow in wild type (WT) and HRM at 6 months of age. However, PHX induced a significant increase in frontal cortex volume in WT whereas the higher frontal cortical volume found in HRM was significantly reduced by PHX. A significant decrease in reelin levels was observed in frontal cortex of WT and HRM and hippocampus of HRM following PHX. In addition, PHX induced significant reductions in hypoxia inducible factor-1α (HIF-1α) levels in frontal cortex and hippocampus of HRM. Although no significant effect of PHX was observed in vascular endothelial growth factor (VEGF) protein levels in frontal cortex and hippocampus of WT and HRM, serum VEGF levels were found higher in HRM following PHX. Moreover, glucocorticoid receptor (GR) protein levels were significantly lower in frontal cortex of WT and HRM and hippocampus of HRM following PHX. We found a significant reduction in serum corticosterone levels of PHX-treated WT mice. These findings suggest that future experiments addressing gene-environment interaction in schizophrenia should consider age-dependent effects of the environmental factor, in addition to the specificity of the gene of interest.

  12. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Directory of Open Access Journals (Sweden)

    Susan M Lang

    Full Text Available The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/- mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/- mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/- mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/- mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  13. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Science.gov (United States)

    Lang, Susan M; Kazi, Abid A; Hong-Brown, Ly; Lang, Charles H

    2012-01-01

    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/-) mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/-) mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/-) mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  14. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    Directory of Open Access Journals (Sweden)

    Kairong Li

    2016-07-01

    Full Text Available Neurofibromatosis type 1 (NF1 is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681* and a missense mutation (c.2542G>C; p.Gly848Arg. The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  15. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    Science.gov (United States)

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating

  16. Novel compound heterozygous mutations of ALDH1A3 contribute to anophthalmia in a non-consanguineous Chinese family

    Directory of Open Access Journals (Sweden)

    Yunqiang Liu

    2017-06-01

    Full Text Available Abstract Anophthalmia is a rare eye development anomaly resulting in absent ocular globes or tissue in the orbit since birth. Here, we investigated a newborn with bilateral anophthalmia in a Chinese family. Exome sequencing revealed that compound heterozygous mutations c.287G > A (p.(Arg96His and c.709G > A (p.(Gly237Arg of the ALDH1A3 gene were present in the affected newborn. Both mutations were absent in all of the searched databases, including 10,000 in-house Chinese exome sequences, and these mutations were confirmed as having been transmitted from the parents. Comparative amino acid sequence analysis across distantly related species revealed that the residues at positions 96 and 234 were evolutionarily highly conserved. In silico analysis predicted these changes to be damaging, and in vitro expression analysis revealed that the mutated alleles were associated with decreased protein production and impaired tetrameric protein formation. This study firstly reported that compound heterozygous mutations of the ALDH1A3 gene can result in anophthalmia in humans, thus highlighting those heterozygous mutations in ALDH1A3 should be considered for molecular screening in anophthalmia, particularly in cases from families without consanguineous relationships.

  17. Heterozygous and homozygous JAK2(V617F states modeled by induced pluripotent stem cells from myeloproliferative neoplasm patients.

    Directory of Open Access Journals (Sweden)

    Joseph Saliba

    Full Text Available JAK2(V617F is the predominant mutation in myeloproliferative neoplasms (MPN. Modeling MPN in a human context might be helpful for the screening of molecules targeting JAK2 and its intracellular signaling. We describe here the derivation of induced pluripotent stem (iPS cell lines from 2 polycythemia vera patients carrying a heterozygous and a homozygous mutated JAK2(V617F, respectively. In the patient with homozygous JAK2(V617F, additional ASXL1 mutation and chromosome 20 allowed partial delineation of the clonal architecture and assignation of the cellular origin of the derived iPS cell lines. The marked difference in the response to erythropoietin (EPO between homozygous and heterozygous cell lines correlated with the constitutive activation level of signaling pathways. Strikingly, heterozygous iPS cells showed thrombopoietin (TPO-independent formation of megakaryocytic colonies, but not EPO-independent erythroid colony formation. JAK2, PI3K and HSP90 inhibitors were able to block spontaneous and EPO-induced growth of erythroid colonies from GPA(+CD41(+ cells derived from iPS cells. Altogether, this study brings the proof of concept that iPS can be used for studying MPN pathogenesis, clonal architecture, and drug efficacy.

  18. [A clinical and hereditary analysis of novel complex heterozygous KCNJ1 mutation in a Bartter syndrome type Ⅱ patient].

    Science.gov (United States)

    Li, X Y; Jiang, Y; Xu, L J; Duan, L; Peng, X Y; Chen, L M; Xia, W B; Xing, X P

    2017-10-01

    Bartter syndrome (BS) is a hereditary condition transmitted as an autosomal recessive (Bartter type 1 to 4) or dominant trait (Bartter type 5). The disease associates hypokalemic alkalosis with varying degrees of hypercalciuria. Here we presented a case (BS type Ⅱ) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3). DNA sequencing identified compound heterozygous KCNJ 1 gene mutations, c. 931C >T (p.R311W) and c. 445-446insCCTGAACAC (p.V149Afs, 150X), with the latter a novel mutation. Her father and mother were heterozygous carriers of c. 931C >T (p.R311W) and c. 445-446insCCTGAACAC (p.V149Afs, 150X), respectively. In conclusion, this case of BS type Ⅱ is caused by a novel compound heterozygous KCNJ 1 mutation. Further studies are needed to verify the effect of celecoxib in BS patients.

  19. A COLQ missense mutation in Labrador Retrievers having congenital myasthenic syndrome.

    Directory of Open Access Journals (Sweden)

    Caitlin J Rinz

    Full Text Available Congenital myasthenic syndromes (CMSs are heterogeneous neuromuscular disorders characterized by skeletal muscle weakness caused by disruption of signal transmission across the neuromuscular junction (NMJ. CMSs are rarely encountered in veterinary medicine, and causative mutations have only been identified in Old Danish Pointing Dogs and Brahman cattle to date. Herein, we characterize a novel CMS in 2 Labrador Retriever littermates with an early onset of marked generalized muscle weakness. Because the sire and dam share 2 recent common ancestors, CMS is likely the result of recessive alleles inherited identical by descent (IBD. Genome-wide SNP profiles generated from the Illumina HD array for 9 nuclear family members were used to determine genomic inheritance patterns in chromosomal regions encompassing 18 functional candidate genes. SNP haplotypes spanning 3 genes were consistent with autosomal recessive transmission, and microsatellite data showed that only the segment encompassing COLQ was inherited IBD. COLQ encodes the collagenous tail of acetylcholinesterase, the enzyme responsible for termination of signal transduction in the NMJ. Sequences from COLQ revealed a variant in exon 14 (c.1010T>C that results in the substitution of a conserved amino acid (I337T within the C-terminal domain. Both affected puppies were homozygous for this variant, and 16 relatives were heterozygous, while 288 unrelated Labrador Retrievers and 112 dogs of other breeds were wild-type. A recent study in which 2 human CMS patients were found to be homozygous for an identical COLQ mutation (c.1010T>C; I337T provides further evidence that this mutation is pathogenic. This report describes the first COLQ mutation in canine CMS and demonstrates the utility of SNP profiles from nuclear family members for the identification of private mutations.

  20. Brugada syndrome with a novel missense mutation in SCN5A gene: A case report from Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Zahidus Sayeed

    2014-01-01

    Full Text Available Brugada syndrome is an inherited cardiac arrhythmia that follows autosomal dominant transmission and can cause sudden death. We report a case of Brugada syndrome in a 55-year-old male patient presented with recurrent palpitation, atypical chest pain and presyncope. ECG changes were consistent with type 1 Brugada. Gene analysis revealed a novel missense mutation in SCN5A gene with a genetic variation of D785N and a nucleotide change at 2353G-A. One of his children also had the same mutation. To our knowledge this is the first genetically proved case of Brugada syndrome in Bangladesh.

  1. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    DEFF Research Database (Denmark)

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne

    2010-01-01

    Objectives: Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported...... missense mutations may not be pathogenic. Methods: We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Results: Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non...

  2. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy.

    Directory of Open Access Journals (Sweden)

    Vinicius M Fava

    2016-02-01

    Full Text Available Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R. The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility.An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs. Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels.A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863 that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen.The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn's disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases.

  3. Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption

    Directory of Open Access Journals (Sweden)

    Marta A Ślimak

    2014-01-01

    Full Text Available The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3 and β4 nicotinic acetylcholine receptor (nAChR subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN tract is particularly enriched in α3β4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb in mice altered nicotine consumption. Given that β4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of β4 to nicotine receptor activity in the MHb. We screened for missense SNPs with allele frequencies > 0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that β4A90I and β4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant β4D447Y, significantly increased nicotine-evoked current amplitudes, while β4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS, showed reduced nicotine currents. We employed lentiviruses to express β4 or β4 variants in the MHb. Immunoprecipitation studies confirmed that β4 lentiviral-mediated expression leads to specific upregulation of α3β4 but not β2 nAChRs in the Mhb. Mice injected with the β4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the β4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the β4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular β4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine

  4. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Liu, Hong Yan; Huang, Jia; Wang, Rui Li; Wang, Yue; Guo, Liang Jie; Li, Tao; Wu, Dong; Wang, Hong Dan; Guo, Qian Nan; Dong, Dao Quan

    2016-11-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP) in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon-intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C) in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln), was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11) were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln) in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR. Copyright © 2016. Published by Elsevier Taiwan LLC.

  5. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Science.gov (United States)

    Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M

    2016-01-01

    SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  6. Factor VII deficiency: a novel missense variant and genotype-phenotype correlation in patients from Southern Italy.

    Science.gov (United States)

    Tiscia, Giovanni; Favuzzi, Giovanni; Chinni, Elena; Colaizzo, Donatella; Fischetti, Lucia; Intrieri, Mariano; Margaglione, Maurizio; Grandone, Elvira

    2017-01-01

    This study aimed at attempting to correlate genotype and phenotype in factor VII deficiency. Here, we present molecular and clinical findings of 10 patients with factor VII deficiency. From 2013 to 2016, 10 subjects were referred to our center because of a prolonged prothrombin time identified during routine or presurgery examinations or after a laboratory assessment of a bleeding episode. Mutation characterization was performed using the bioinformatics applications PROMO, SIFT, and Polyphen-2. Structural changes in the factor VII protein were analyzed using the SPDB viewer tool. Of the 10 variants we identified, 1 was responsible for a novel missense change (c.1199G>C, p.Cys400Ser); in 2 cases we identified the c.-54G>A and c.509G>A (p.Arg170His) polymorphic variants in the 5'-upstream region of the factor VII gene and exon 6, respectively. To our knowledge, neither of these polymorphic variants has been described previously in factor VII-deficient patients. In silico predictions showed differences in binding sites for transcription factors caused by the c.-54G>A variant and a probable damaging effect of the p.Cys400Ser missense change on factor VII active conformation, leading to breaking of the Cys400-Cys428 disulfide bridge. Our findings further suggest that, independently of factor VII levels and of variants potentially affecting factor VII levels, environmental factors, e.g., trauma, could heavily influence the clinical phenotype of factor VII-deficient patients.

  7. Missense polymorphisms in the MC1R gene of the dog, red fox, arctic fox and Chinese raccoon dog.

    Science.gov (United States)

    Nowacka-Woszuk, J; Salamon, S; Gorna, A; Switonski, M

    2013-04-01

    Coat colour variation is determined by many genes, one of which is the melanocortin receptor type 1 (MC1R) gene. In this study, we examined the whole coding sequence of this gene in four species belonging to the Canidae family (dog, red fox, arctic fox and Chinese raccoon dog). Although the comparative analysis of the obtained nucleotide sequences revealed a high conservation, which varied between 97.9 and 99.1%, we altogether identified 22 SNPs (10 in dogs, six in farmed red foxes, two in wild red foxes, three in arctic foxes and one in Chinese raccoon dog). Among them, seven appeared to be novel: one silent in the dog, three missense and one silent in the red fox, one in the 3'-flanking region in the arctic fox and one silent in the Chinese raccoon dog. In dogs and red foxes, the SNPs segregated as 10 and four haplotypes, respectively. Taking into consideration the published reports and results of this study, the highest number of missense polymorphisms was until now found in the dog (9) and red fox (7). © 2012 Blackwell Verlag GmbH.

  8. Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice.

    Directory of Open Access Journals (Sweden)

    Greer S Kirshenbaum

    Full Text Available Missense mutations in ATP1A3 encoding Na(+,K(+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC, a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+,K(+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N that affects the same position in Na(+,K(+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+,K(+-ATPase α3, including upon the K(+ pore and predicted K(+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality, directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+,K(+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.

  9. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Directory of Open Access Journals (Sweden)

    Baundauna Bose

    Full Text Available SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  10. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Hong Yan Liu

    2016-11-01

    Full Text Available Familial exudative vitreoretinopathy (FEVR is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon–intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln, was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11 were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR.

  11. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN.

    Science.gov (United States)

    Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji

    2014-09-01

    A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.

  12. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawakami

    2014-10-01

    Full Text Available A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm compared with that of an age- and site-matched control (406.6 ± 182.3 nm. We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.

  13. Heterozygous M1V variant of ELA-2 gene mutation associated with G-CSF refractory severe congenital neutropenia.

    Science.gov (United States)

    Setty, Bhuvana A; Yeager, Nicholas D; Bajwa, Rajinder P

    2011-09-01

    Severe congenital neutropenia is an autosomal recessive disorder characterized by maturation arrest at the promyelocyte/myelocyte phase in the bone marrow, absolute neutrophil count ELA-2 have been described. We report the case of a premature male infant with congenital neutropenia, associated with multiple infections, refractory to treatment with granulocyte colony stimulating factor who subsequently underwent matched sibling donor stem-cell transplant. He was found to be heterozygous for the M1V variant of the ELA-2 gene that we postulate to be causative for his severe neutropenia Copyright © 2011 Wiley-Liss, Inc.

  14. A Novel Missense Mutation of the NSD1 Gene Associated with Overgrowth in Three Generations of an Italian Family: Case Report, Differential Diagnosis, and Review of Mutations of NSD1 Gene in Familial Sotos Syndrome

    Directory of Open Access Journals (Sweden)

    Gianluigi Laccetta

    2017-11-01

    Full Text Available Sotos syndrome (SoS is characterized by overgrowth of prenatal onset, learning disability, and characteristic facial appearance; it is usually due to haploinsufficiency of NSD1 gene at chromosome 5q35. An Italian child was born at 37 weeks of gestation (weight 2,910 g, 25th–50th centiles; length 50 cm, 75th centile; head circumference 36 cm, 97th centile showing cryptorchidism on the right side, hypertelorism, dolichocephaly, broad and prominent forehead, and narrow jaw; the pregnancy was worsened by maternal preeclampsia and gestational diabetes, and his mother had a previous history of four early miscarriages. The patient showed neonatal jaundice, hypotonia, feeding difficulties, frequent vomiting, and gastroesophageal reflux. After the age of 6 months, his weight, length, and head circumference were above the 97th centile; psychomotor development was delayed. At the age of 9 years, the patient showed also joint laxity and scoliosis. DNA sequence analysis of NSD1 gene detected a novel heterozygous mutation (c.521T>A, p.Val174Asp in exon 2. The same mutant allele was also found in the mother and in the maternal grandfather of the proband; both the mother and the maternal grandfather of the proband showed isolated overgrowth with height above the 97th centile in absence of other features of SoS. At present 23 familial cases of SoS have been described (two cases with mutation in exon 2 of NSD1 gene; no familial cases of SoS with mutation of NSD1 gene and isolated overgrowth have been reported. Probably, point mutations of NSD1 gene, and particularly mutations between exon 20 and exon 23, are not likely to affect reproductive fitness. Epigenetic mechanisms and intrauterine environment may influence phenotypes, therefore genetic tests are not useful to predict the phenotype but they are indispensable for the diagnosis of SoS. This is the first Italian familial case of SoS with genetic confirmation and the third report in which a

  15. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics.

    Science.gov (United States)

    Ernst, Corinna; Hahnen, Eric; Engel, Christoph; Nothnagel, Michael; Weber, Jonas; Schmutzler, Rita K; Hauke, Jan

    2018-03-27

    The use of next-generation sequencing approaches in clinical diagnostics has led to a tremendous increase in data and a vast number of variants of uncertain significance that require interpretation. Therefore, prediction of the effects of missense mutations using in silico tools has become a frequently used approach. Aim of this study was to assess the reliability of in silico prediction as a basis for clinical decision making in the context of hereditary breast and/or ovarian cancer. We tested the performance of four prediction tools (Align-GVGD, SIFT, PolyPhen-2, MutationTaster2) using a set of 236 BRCA1/2 missense variants that had previously been classified by expert committees. However, a major pitfall in the creation of a reliable evaluation set for our purpose is the generally accepted classification of BRCA1/2 missense variants using the multifactorial likelihood model, which is partially based on Align-GVGD results. To overcome this drawback we identified 161 variants whose classification is independent of any previous in silico prediction. In addition to the performance as stand-alone tools we examined the sensitivity, specificity, accuracy and Matthews correlation coefficient (MCC) of combined approaches. PolyPhen-2 achieved the lowest sensitivity (0.67), specificity (0.67), accuracy (0.67) and MCC (0.39). Align-GVGD achieved the highest values of specificity (0.92), accuracy (0.92) and MCC (0.73), but was outperformed regarding its sensitivity (0.90) by SIFT (1.00) and MutationTaster2 (1.00). All tools suffered from poor specificities, resulting in an unacceptable proportion of false positive results in a clinical setting. This shortcoming could not be bypassed by combination of these tools. In the best case scenario, 138 families would be affected by the misclassification of neutral variants within the cohort of patients of the German Consortium for Hereditary Breast and Ovarian Cancer. We show that due to low specificities state-of-the-art in silico

  16. Two mutations in the same low-density lipoprotein receptor allele act in synergy to reduce receptor function in heterozygous familial hypercholesterolemia

    DEFF Research Database (Denmark)

    Jensen, H K; Jensen, T G; Faergeman, O

    1997-01-01

    Mutations in genes are not necessarily pathogenic. Expression of mutant genes in cells can therefore be required to demonstrate that mutations in fact disturb protein function. This applies especially to missense mutations, which cause an amino acid to be replaced by another amino acid. In the pr...

  17. Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848

    NARCIS (Netherlands)

    Koczkowska, M. (Magdalena); Chen, Y. (Yunjia); Callens, T. (Tom); Gomes, A. (Alicia); Sharp, A. (Angela); Johnson, S. (Sherrell); Hsiao, M.-C. (Meng-Chang); Chen, Z. (Zhenbin); Balasubramanian, M. (Meena); Barnett, C.P. (Christopher P.); Becker, T.A. (Troy A.); Ben-Shachar, S. (Shay); D.R. Bertola (Débora Romeo); J.O. Blakeley (Jaishri O.); Burkitt-Wright, E.M.M. (Emma M.M.); Callaway, A. (Alison); Crenshaw, M. (Melissa); Cunha, K.S. (Karin S.); Cunningham, M. (Mitch); M.D. D'Agostino (Maria Daniela); K. Dahan (Karin); De Luca, A. (Alessandro); A. Destrée (Anne); Dhamija, R. (Radhika); Eoli, M. (Marica); Evans, D.G.R. (D. Gareth R.); Galvin-Parton, P. (Patricia); George-Abraham, J.K. (Jaya K.); K.W. Gripp (Karen); Guevara-Campos, J. (Jose); Hanchard, N.A. (Neil A.); Hernández-Chico, C. (Concepcion); Immken, L. (LaDonna); S. Janssens (Sandra); K.J. Jones (Kristi); Keena, B.A. (Beth A.); Kochhar, A. (Aaina); Liebelt, J. (Jan); Martir-Negron, A. (Arelis); Mahoney, M.J. (Maurice J.); I. Maystadt (Isabelle); McDougall, C. (Carey); M. McEntagart (Meriel); N.J. Mendelsohn; Miller, D.T. (David T.); G. Mortier (Geert); J. Morton (Jenny); Pappas, J. (John); S.R. Plotkin (Scott R.); Pond, D. (Dinel); Rosenbaum, K. (Kenneth); Rubin, K. (Karol); Russell, L. (Laura); Rutledge, L.S. (Lane S.); Saletti, V. (Veronica); Schonberg, R. (Rhonda); Schreiber, A. (Allison); Seidel, M. (Meredith); Siqveland, E. (Elizabeth); D.W. Stockton (David); Trevisson, E. (Eva); N.J. Ullrich (Nicole J.); M. Upadhyaya (Meena); A.S. Thornton (Andrew); H. Verhelst (H.); M.R. Wallace (Margaret); Yap, Y.-S. (Yoon-Sim); Zackai, E. (Elaine); Zonana, J. (Jonathan); Zurcher, V. (Vickie); K. Claes (Kathleen); Martin, Y. (Yolanda); B. Korf (Bruce); E. Legius (Eric); L.M. Messiaen (Ludwine)

    2018-01-01

    textabstractNeurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations

  18. Lifetime exercise intolerance with lactic acidosis as key manifestation of novel compound heterozygous ACAD9 mutations causing complex I deficiency.

    Science.gov (United States)

    Schrank, Bertold; Schoser, Benedikt; Klopstock, Thomas; Schneiderat, Peter; Horvath, Rita; Abicht, Angela; Holinski-Feder, Elke; Augustis, Sarunas

    2017-05-01

    We report a 36-year-old female having lifetime exercise intolerance and lactic acidosis with nausea associated with novel compound heterozygous Acyl-CoA dehydrogenase 9 gene (ACAD9) mutations (p.Ala390Thr and p.Arg518Cys). ACAD9 is an assembly factor for the mitochondrial respiratory chain complex I. ACAD9 mutations are recognized as frequent causes of complex I deficiency. Our patient presented with exercise intolerance, rapid fatigue, and nausea since early childhood. Mild physical workload provoked the occurrence of nausea and vomiting repeatedly. Her neurological examination, laboratory findings and muscle biopsy demonstrated no abnormalities. A bicycle spiroergometry provoked significant lactic acidosis during and following exercise pointing towards a mitochondrial disorder. Subsequently, the analysis of respiratory chain enzyme activities in muscle revealed severe isolated complex I deficiency. Candidate gene sequencing revealed two novel heterozygous ACAD9 mutations. This patient report expands the mutational and phenotypic spectrum of diseases associated with mutations in ACAD9. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.

    Science.gov (United States)

    Yang, T; Li, X; Huang, Q; Li, L; Chai, Y; Sun, L; Wang, X; Zhu, Y; Wang, Z; Huang, Z; Li, Y; Wu, H

    2013-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentary defects of the hair, skin, and iris. Heterozygous mutations of MITF and its transactivator gene PAX3 are associated with Waardenburg syndrome type II (WS2) and type I (WS1), respectively. Most patients with MITF or PAX3 mutations, however, show variable penetrance of WS-associated phenotypes even within families segregating the same mutation, possibly mediated by genetic background or specific modifiers. In this study, we reported a rare Waardenburg syndrome simplex family in which a pair of WS parents gave birth to a child with double heterozygous mutations of MITF and PAX3. Compared to his parents who carried a single mutation in either MITF or PAX3, this child showed increased penetrance of pigmentary defects including white forelock, white eyebrows and eyelashes, and patchy facial depigmentation. This observation suggested that the expression level of MITF is closely correlated to the penetrance of WS, and variants in transcription regulator genes of MITF may modify the relevant clinical phenotypes. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  20. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP.

    Science.gov (United States)

    Muhia, Mary; Yee, Benjamin K; Feldon, Joram; Markopoulos, Foivos; Knuesel, Irene

    2010-02-01

    The brain-specific Ras/Rap-GTPase activating protein (SynGAP) is a prime candidate linking N-methyl-d-aspartate receptors to the regulation of the ERK/MAP kinase signalling cascade, suggested to be essential for experience-dependent synaptic plasticity. Here, we evaluated the behavioural phenotype of SynGAP heterozygous knockout mice (SG(+/-)), expressing roughly half the normal levels of SynGAP. In the cognitive domain, SG(+/-) mice demonstrated severe working and reference memory deficits in the radial arm maze task, a mild impairment early in the transfer test of the water maze task, and a deficiency in spontaneous alternation in an elevated T-maze. In the non-cognitive domain, SG(+/-) mice were hyperactive in the open field and appeared less anxious in the elevated plus maze test. In contrast, object recognition memory performance was not impaired in SG(+/-) mice. The reduction in SynGAP thus resulted in multiple behavioural traits suggestive of aberrant cognitive and non-cognitive processes normally mediated by the hippocampus. Immunohistochemical evaluation further revealed a significant reduction in calbindin-positive interneurons in the hippocampus and doublecortin-positive neurons in the dentate gyrus of adult SG(+/-) mice. Heterozygous constitutive deletion of SynGAP is therefore associated with notable behavioural as well as morphological phenotypes indicative of hippocampal dysfunction. Any suggestion of a possible causal link between them however remains a matter for further investigation.

  1. Role of heterozygous APC mutation in niche succession and initiation of colorectal cancer--a computational study.

    Directory of Open Access Journals (Sweden)

    Roschen Sasikumar

    Full Text Available Mutations in the adenomatous polyposis coli (APC gene are found in most colorectal cancers. They cause constitutive activation of proliferative pathways when both alleles of the gene are mutated. However studies on individuals with familial adenomatous polyposis (FAP have shown that a single mutated APC allele can also create changes in the precancerous colon crypt, like increased number of stem cells, increased crypt fission, greater variability of DNA methylation patterns, and higher somatic mutation rates. In this paper, using a computational model of colon crypt dynamics, we evolve and investigate a hypothesis on the effect of heterozygous APC mutation that explains these different observations. Based on previous reports and the results from the computational model we propose the hypothesis that heterozygous APC mutation has the effect of increasing the chances for a stem cell to divide symmetrically, producing two stem cell daughters. We incorporate this hypothesis into the model and perform simulation experiments to investigate the consequences of the hypothesis. Simulations show that this hypothesis links together the changes in FAP crypts observed in previous studies. The simulations also show that an APC(+/- stem cell gets selective advantages for dominating the crypt and progressing to cancer. This explains why most colon cancers are initiated by APC mutation. The results could have implications for preventing or retarding the onset of colon cancer in people with inherited or acquired mutation of one APC allele. Experimental validation of the hypothesis as well as investigation into the molecular mechanisms of this effect may therefore be worth undertaking.

  2. Comprehensive behavioral analysis of RNG105 (Caprin1) heterozygous mice: Reduced social interaction and attenuated response to novelty

    Science.gov (United States)

    Ohashi, Rie; Takao, Keizo; Miyakawa, Tsuyoshi; Shiina, Nobuyuki

    2016-01-01

    RNG105 (also known as Caprin1) is a major RNA-binding protein in neuronal RNA granules, and is responsible for mRNA transport to dendrites and neuronal network formation. A recent study reported that a heterozygous mutation in the Rng105 gene was found in an autism spectrum disorder (ASD) patient, but it remains unclear whether there is a causal relation between RNG105 deficiency and ASD. Here, we subjected Rng105+/− mice to a comprehensive behavioral test battery, and revealed the influence of RNG105 deficiency on mouse behavior. Rng105+/− mice exhibited a reduced sociality in a home cage and a weak preference for social novelty. Consistently, the Rng105+/− mice also showed a weak preference for novel objects and novel place patterns. Furthermore, although the Rng105+/− mice exhibited normal memory acquisition, they tended to have relative difficulty in reversal learning in the spatial reference tasks. These findings suggest that the RNG105 heterozygous knockout leads to a reduction in sociality, response to novelty and flexibility in learning, which are implicated in ASD-like behavior. PMID:26865403

  3. Molecular characterization of a genetic variant of the steroid hormone-binding globulin gene in heterozygous subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D.O.; Catterall, J.F. [Population Council, New York, NY (United States); Carino, C. [Instituto National de la Nutricion, Mexico City, MX (United States)] [and others

    1995-04-01

    Steroid hormone-binding globulin in human serum displays different isoelectric focusing (IEF) patterns among individuals, suggesting genetic variation in the gene for this extracellular steroid carrier protein. Analysis of allele frequencies and family studies suggested the existence of two codominant alleles of the gene. Subsequent determination of the molecular basis of a variant of the gene was carried out using DNA from homozygous individuals from a single Belgian family. It was of interest to characterize other variant individuals to determine whether all variants identified by IEF phenotyping were caused by the same mutation or whether other mutations occurred in the gene in different populations. Previous studies identified Mexican subjects who were heterozygous for the variant IEF phenotype. Denaturing gradient gel electrophoresis was used to localize the mutation in these subjects and to purify the variant allele for DNA sequence analysis. The results show that the mutation in this population is identical to that identified in the Belgian family, and no other mutations were detected in the gene. These data represent the first analysis of steroid hormone-binding globulin gene variation in heterozygous subjects and further support the conclusion of biallelism of the gene worldwide. 11 refs., 2 figs., 1 tab.

  4. Association of the Lipoprotein Receptor SCARB1 Common Missense Variant rs4238001 with Incident Coronary Heart Disease.

    Directory of Open Access Journals (Sweden)

    Ani Manichaikul

    Full Text Available Previous studies in mice and humans have implicated the lipoprotein receptor SCARB1 in association with atherosclerosis and lipid levels. In the current study, we sought to examine association of SCARB1 missense single nucleotide polymorphism (SNP rs4238001 with incident coronary heart disease (CHD.Genotypes for rs4238001 were imputed for 2,319 White, 1,570 African American, and 1,292 Hispanic-American MESA participants using the 1,000 Genomes reference set. Cox proportional hazards models were used to determine association of rs4238001 with incident CHD, with adjustments for age, sex, study site, principal components of ancestry, body mass index, diabetes status, serum creatinine, lipid levels, hypertension status, education and smoking exposure. Meta-analysis across race/ethnic groups within MESA showed statistically significant association of the T allele with higher risk of CHD under a consistent and formally adjudicated definition of CHD events in this contemporary cohort study (hazard ratio [HR] = 1.49, 95% CI [1.04, 2.14], P = 0.028. Analyses combining MESA with additional population-based cohorts expanded our samples in Whites (total n = 11,957 with 871 CHD events and African Americans (total n = 5,962 with 355 CHD events and confirmed an increased risk of CHD overall (HR of 1.19 with 95% CI [1.04, 1.37], P = 0.013, in African Americans (HR of 1.49 with 95% CI [1.07, 2.06], P = 0.019, in males (HR of 1.29 with 95% CI [1.08, 1.54], P = 4.91 x 10(-3 and in White males (HR of 1.24 with 95% CI [1.03, 1.51], P = 0.026.SCARB1 missense rs4238001 is statistically significantly associated with incident CHD across a large population of multiple race/ethnic groups.

  5. Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada

    KAUST Repository

    Haywood, Annika

    2012-11-15

    AimsAutosomal dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (in the group of arrhythmogenic cardiomyopathies) is a common cause of sudden cardiac death in young adults. It is both clinically and genetically heterogeneous, with 12 loci (ARVC/D1-12) and eight genes identified, the majority of which encode structural proteins of cardiac desmosomes. The most recent gene identified, TMEM43, causes disease due to a missense mutation in a non-desmosomal gene (p.S358L) in 15 extended families from Newfoundland, Canada. To determine whether mutations in TMEM43 cause ARVC/D and arrhythmogenic cardiomyopathy in other populations, we fully re-sequenced TMEM43 on 143 ARVC/D probands (families) from the UK and 55 probands (from 55 families) from Newfoundland.Methods and resultsBidirectional sequencing of TMEM43 including intron-exon boundaries revealed 33 variants, the majority located in non-coding regions of TMEM43. For the purpose of validation, families of probands with rare, potentially deleterious coding variants were subjected to clinical and molecular follow-up. Three missense variants of uncertain significance (p.R28W, p.E142K, p.R312W) were located in highly conserved regions of the TMEM43 protein. One variant (p.R312W) also co-segregated with relatives showing clinical signs of disease. Genotyping and expansion of the disease-associated haplotype in subjects with the p.R312W variant from Newfoundland, Canada, and the UK suggest common ancestry.ConclusionAlthough the p.R312W variant was found in controls (3/378), identification of an ancestral disease p R312W haplotype suggests that the p.R312W variant is a pathogenic founder mutation. © 2012 The Author.

  6. Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada

    KAUST Repository

    Haywood, Annika; Merner, Nancy D.; Hodgkinson, Kathy A.; Houston, Jim; Syrris, Petros; Booth, Valerie; Connors, Sean; Pantazis, Antonios; Quarta, Giovanni; Elliott, Perry; McKenna, William; Young, Terry Lynn

    2012-01-01

    AimsAutosomal dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (in the group of arrhythmogenic cardiomyopathies) is a common cause of sudden cardiac death in young adults. It is both clinically and genetically heterogeneous, with 12 loci (ARVC/D1-12) and eight genes identified, the majority of which encode structural proteins of cardiac desmosomes. The most recent gene identified, TMEM43, causes disease due to a missense mutation in a non-desmosomal gene (p.S358L) in 15 extended families from Newfoundland, Canada. To determine whether mutations in TMEM43 cause ARVC/D and arrhythmogenic cardiomyopathy in other populations, we fully re-sequenced TMEM43 on 143 ARVC/D probands (families) from the UK and 55 probands (from 55 families) from Newfoundland.Methods and resultsBidirectional sequencing of TMEM43 including intron-exon boundaries revealed 33 variants, the majority located in non-coding regions of TMEM43. For the purpose of validation, families of probands with rare, potentially deleterious coding variants were subjected to clinical and molecular follow-up. Three missense variants of uncertain significance (p.R28W, p.E142K, p.R312W) were located in highly conserved regions of the TMEM43 protein. One variant (p.R312W) also co-segregated with relatives showing clinical signs of disease. Genotyping and expansion of the disease-associated haplotype in subjects with the p.R312W variant from Newfoundland, Canada, and the UK suggest common ancestry.ConclusionAlthough the p.R312W variant was found in controls (3/378), identification of an ancestral disease p R312W haplotype suggests that the p.R312W variant is a pathogenic founder mutation. © 2012 The Author.

  7. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    Science.gov (United States)

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Early-Onset X-Linked Retinitis Pigmentosa in a Heterozygous Female Harboring an Intronic Donor Splice Site Mutation in the Retinitis Pigmentosa GTPase Regulator Gene.

    Science.gov (United States)

    Shifera, Amde Selassie; Kay, Christine Nichols

    2015-01-01

    To report a heterozygous female presenting with an early-onset and severe form of X-linked retinitis pigmentosa (XLRP). This is a case series presenting the clinical findings in a heterozygous female with XLRP and two of her family members. Fundus photography, fundus autofluorescence, ocular coherence tomography, and visual perimetry are presented. The proband reported here is a heterozygous female who presented at the age of 8 years with an early onset and aggressive form of XLRP. The patient belongs to a four-generation family with a total of three affected females and four affected males. The patient was initially diagnosed with retinitis pigmentosa (RP) at the age of 4 years. Genetic testing identified a heterozygous donor splice site mutation in intron 1 (IVS1 + 1G > A) of the retinitis pigmentosa GTPase regulator gene. The father of the proband was diagnosed with RP when he was a young child. The sister of the proband, evaluated at the age of 6 years, showed macular pigmentary changes. Although carriers of XLRP are usually asymptomatic or have a mild disease of late onset, the proband presented here exhibited an early-onset, aggressive form of the disease. It is not clear why some carrier females manifest a severe phenotype. A better understanding of the genetic processes involved in the penetrance and expressivity of XLRP in heterozygous females could assist in providing the appropriate counseling to affected families.

  9. Frequency of Gγ-globin promoter -158 (C>T) XmnI polymorphism in patients with homozygous/compound heterozygous beta thalassaemia.

    Science.gov (United States)

    Ali, Nadir; Ayyub, Muhammad; Khan, Saleem Ahmed; Ahmed, Suhaib; Abbas, Kazim; Malik, Hamid Saeed; Tashfeen, Sunila

    2015-03-01

    Response to hydroxyurea therapy in homozygous or compound heterozygous beta thalassaemia (BT) has been reported as more favourable in the presence of XmnI polymorphism. The prevalence of XmnI polymorphism may vary with BT phenotypes and genotypes, and differs geographically in distribution. Prevalence of XmnI polymorphism is not known in northern Pakistan. To determine the frequency of Gγ-globin promoter -158 (C>T) XmnI polymorphism (XmnI polymorphism) in patients with homozygous or compound heterozygous beta thalassaemia. Polymerase chain reaction (PCR) for common beta thalassaemia mutations and Gγ-globin promoter -158 (C>T) XmnI polymorphism was performed on 107 blood samples of transfusion dependent beta thalassaemia (BT) patients in Pakistan. One hundred samples of unrelated BT traits and 94 samples of healthy subjects as controls were also analysed for BT mutations and XmnI polymorphism. Out of 301 DNA samples, XmnI polymorphism was detected in 71(24%); in normal controls, XmnI polymorphism was detected in 34/94 (36%) subjects; while in homozygous/compound heterozygous BT, it was detected in 14/107(13%) patients (Fisher's exact test, p=.0002). In heterozygous BT group, XmnI polymorphism was detected in 23/100 subjects (Fisher's exact test, p=.03 with normal controls, and p=.049 with homozygous/compound heterozygous BT). The most common BT genotype was Frame Shift (Fr) 8-9/Fr 8-9, and none of the patients with this genotype had XmnI polymorphism. The second most common genotype was IVSI-5/IVSI-5; 4/26 (15%). Cases with this genotype had XmnI polymorphism. XmnI polymorphism in homozygous/compound heterozygous BT group is 13%. The most common genotype associated with XmnI polymorphism was IVSI-5/IVSI-5. Copyright © 2015 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  10. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene.

    Science.gov (United States)

    Middleton, Steven J; Kneller, Emily M; Chen, Shuo; Ogiwara, Ikuo; Montal, Mauricio; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-06-04

    An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.

  11. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    Science.gov (United States)

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  12. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene

    DEFF Research Database (Denmark)

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian

    2013-01-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate...... whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using...... threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated...

  13. Generalized pustular psoriasis in infant with heterozygous mutation in the IL36RN gene successfully treated with infliximab

    DEFF Research Database (Denmark)

    Glerup, Mia; Veirum, Jens Erik; Iversen, L

    2014-01-01

    started on intravenous antibiotics and topical corticosteroids. During the following week the dermal changes presented with scaly sharply demarcated psoriasiform plaques. Infection was cleared and treatment with topical betamethasone gave a partial improvement. Cardiac surgery was performed at the age...... during the cardiac procedures, but the extracorporeal membrane oxygenation (ECMO) system had been primed with methyl-prednisolone and a rebound effect of steroid was suspected. Methotrexate treatment was initiated and topical corticosteroids and parenteral antibiotics were added. On suspection for DIRA......L IL36Ra mutation along with heterozygous Q705K NLRP3 mutation, phenotypically expressed as DITRA with severe generalized pustular psoriasis. Reduction of the IL36Ra function will lead to excessive activity of cytokines belonging to the IL-1 family, furthermore the gain-of-function mutation in NLRP3...

  14. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    Science.gov (United States)

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  15. Wilson's disease: Rapid diagnosis and differentiation of heterozygous and homozygous carriers with 64CuCl2

    International Nuclear Information System (INIS)

    Wesch, H.; Przuntek, H.; Feist, D.; Wuerzburg Univ.; Heidelberg Univ.

    1980-01-01

    In the modified radiocopper test, a constant amount of copper and not of radioactivity is injected, a difference being made between males and females. The rate of incorporation of 64 Cu into caeruloplasmin and urinary excretion of nuclides is measured. It is a method with low radiation exposure, providing a definite diagnosis after 30 hours. This was demonstrated in 27 homozygous patients, 30 parents and 33 siblings, and 25 controls: a clear-cut diagnosis was made in all untreated homozygous patients. In five of eight patients treated with D-penicillamine for several years, the values were in the range of heterozygotes, so that the test makes treatment control possible. The recognition of heterozygous carriers is interfered with by contraceptives and infections. The results in control subjects were all widely outside the range for patients with Wilson's disease. (orig.) [de

  16. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen......]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  17. Novel compound heterozygous MYO7A mutations in Moroccan families with autosomal recessive non-syndromic hearing loss.

    Directory of Open Access Journals (Sweden)

    Amina Bakhchane

    Full Text Available The MYO7A gene encodes a protein belonging to the unconventional myosin super family. Mutations within MYO7A can lead to either non syndromic hearing loss or to the Usher syndrome type 1B (USH1B. Here, we report the results of genetic analyses performed on Moroccan families with autosomal recessive non syndromic hearing loss that identified two families with compound heterozygous MYO7A mutations. Five mutations (c.6025delG, c.6229T>A, c.3500T>A, c.5617C>T and c.4487C>A were identified in these families, the latter presenting two differently affected branches. Multiple bioinformatics programs and molecular modelling predicted the pathogenic effect of these mutations. In conclusion, the absence of vestibular and retinal symptom in the affected patients suggests that these families have the isolated non-syndromic hearing loss DFNB2 (nonsyndromic autosomal recessive hearing loss presentation, instead of USH1B.

  18. Clinical Features and Long-Term Outcome of Nephrotic Syndrome Associated with Heterozygous NPHS1 and NPHS2 Mutations

    Science.gov (United States)

    Caridi, Gianluca; Gigante, Maddalena; Ravani, Pietro; Trivelli, Antonella; Barbano, Giancarlo; Scolari, Francesco; Dagnino, Monica; Murer, Luisa; Murtas, Corrado; Edefonti, Alberto; Allegri, Landino; Amore, Alessandro; Coppo, Rosanna; Emma, Francesco; De Palo, Tommaso; Penza, Rosa; Gesualdo, Loreto; Ghiggeri, Gian Marco

    2009-01-01

    Background and objectives: Mutations in nephrin (NPHS1) and podocin (NPHS2) genes represent a major cause of idiopathic nephrotic syndrome (NS) in children. It is not yet clear whether the presence of a single mutation acts as a modifier of the clinical course of NS. Design, setting, participants, & measurements: We reviewed the clinical features of 40 patients with NS associated with heterozygous mutations or variants in NPHS1 (n = 7) or NPHS2 (n = 33). Long-term renal survival probabilities were compared with those of a concurrent cohort with idiopathic NS. Results: Patients with a single mutation in NPHS1 received a diagnosis before those with potentially nongenetic NS and had a good response to therapies. Renal function was normal in all cases. For NPHS2, six patients had single heterozygous mutations, six had a p.P20L variant, and 21 had a p.R229Q variant. Age at diagnosis and the response to drugs were comparable in all NS subgroups. Overall, they had similar renal survival probabilities as non-NPHS1/NPHS2 cases (log-rank χ2 0.84, P = 0.656) that decreased in presence of resistance to therapy (P < 0.001) and in cases with renal lesions of glomerulosclerosis and IgM deposition (P < 0.001). Cox regression confirmed that the only significant predictor of dialysis was resistance to therapy. Conclusions: Our data indicate that single mutation or variant in NPHS1 and NPHS2 does not modify the outcome of primary NS. These patients should be treated following consolidated schemes and have good chances for a good long-term outcome. PMID:19406966

  19. Draft Sequencing of the Heterozygous Diploid Genome of Satsuma (Citrus unshiu Marc. Using a Hybrid Assembly Approach

    Directory of Open Access Journals (Sweden)

    Tokurou Shimizu

    2017-12-01

    Full Text Available Satsuma (Citrus unshiu Marc. is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma (“Miyagawa Wase” was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.

  20. A novel missense mutation close to the charge-stabilizing system in a patient with congenital factor VII deficiency.

    Science.gov (United States)

    Jiang, Minghua; Wang, Zhaoyue; Yu, Ziqiang; Bai, Xia; Su, Jian; Cao, Lijuan; Zhang, Wei; Ruan, Changgeng

    2011-06-01

    Congenital factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder. Its clinical manifestation and mutational spectrum are highly variable. The purpose of this study was to identify and characterize the mutation causing the FVII deficiency in a Chinese patient and his family. The FVII gene was analyzed by genomic DNA sequencing, and the FVII levels in patient's plasma were measured with an enzyme-linked immunoabsorbent assay (ELISA) and one-stage prothrombin time based method. In addition, the FVII-Phe190 mutant identified in the pedigree was expressed in the HEK293 cells, and the subcellular localization experiments in the Chinese hamster ovary (CHO) cells were performed. The patient had a prolonged prothrombin time and low levels of both FVII antigen and activity, and two heterozygous mutations were identified in F7 gene (NG-009262.1): a g.15975 G>A in the splice receptor site of intron 6 and a novel g.16750 C>T in exon 8 resulting in Ser190 to Phe190 replacement. In expression experiments, the reduced antigen and activity levels of FVII-Phe190 in the culture medium were found, whereas an ELISA and Western blotting analysis of FVII revealed that mutant FVII-Phe190 was synthesized in the cells as the wild-type FVII-Ser190. And FVII-Phe190 was found in endoplasmic reticulum and Golgi apparatus. Compound heterozygous mutations in F7 gene should be responsible for the FVII deficiency in this patient. The FVII-Phe190 can normally be synthesized and transported from endoplasmic reticulum to Golgi apparatus, but degraded or inefficiently secreted.

  1. An undescribed first branchial cleft anomaly.

    Science.gov (United States)

    Rockey, Jason Gabriel; John, D Gareth; Herbetko, John

    2003-06-01

    A variant of a type 2 first branchial cleft anomaly, in which accessory ossicles were found, is described. There follows a discussion of the classification of first branchial cleft abnormalities and how this particular case falls outside the standard classification. CT scanning is mentioned as the investigation that is most useful for defining these abnormalities.

  2. Severe Clinical Course in a Patient with Congenital Amegakaryocytic Thrombocytopenia Due to a Missense Mutation of the c-MPL Gene.

    Science.gov (United States)

    Ok Bozkaya, İkbal; Yaralı, Neşe; Işık, Pamir; Ünsal Saç, Rukiye; Tavil, Betül; Tunç, Bahattin

    2015-06-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) generally begins at birth with severe thrombocytopenia and progresses to pancytopenia. It is caused by mutations in the thrombopoietin receptor gene, the myeloproliferative leukemia virus oncogene (c-MPL). The association between CAMT and c-MPL mutation type has been reported in the literature. Patients with CAMT have been categorized according to their clinical symptoms caused by different mutations. Missense mutations of c-MPL have been classified as type II and these patients have delayed onset of bone marrow failure compared to type I patients. Here we present a girl with severe clinical course of CAMT II having a missense mutation in exon 4 of the c-MPL gene who was admitted to our hospital with intracranial hemorrhage during the newborn period.

  3. BRCA1 and BRCA2 missense variants of high and low clinical significance influence lymphoblastoid cell line post-irradiation gene expression.

    Directory of Open Access Journals (Sweden)

    Nic Waddell

    2008-05-01

    Full Text Available The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases. 72 cell lines from affected women in high-risk breast ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS. BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status, with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82-94%, poor for BRCAX with an LCS (40-50%, and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71-100%. This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity.

  4. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia.

    Science.gov (United States)

    Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.

  5. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia.

    Science.gov (United States)

    Tsoi, Ho; Yu, Allen C S; Chen, Zhefan S; Ng, Nelson K N; Chan, Anne Y Y; Yuen, Liz Y P; Abrigo, Jill M; Tsang, Suk Ying; Tsui, Stephen K W; Tong, Tony M F; Lo, Ivan F M; Lam, Stephen T S; Mok, Vincent C T; Wong, Lawrence K S; Ngo, Jacky C K; Lau, Kwok-Fai; Chan, Ting-Fung; Chan, H Y Edwin

    2014-09-01

    Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Novel Homozygous Missense Mutation in RYR1 Leads to Severe Congenital Ptosis, Ophthalmoplegia, and Scoliosis in the Absence of Myopathy.

    Science.gov (United States)

    Dilaver, Nafi; Mazaheri, Neda; Maroofian, Reza; Zeighami, Jawaher; Seifi, Tahere; Zamani, Mina; Sedaghat, Alireza; Shariati, Gholam Reza; Galehdari, Hamid

    2017-12-01

    Ryanodine receptor 1 ( RYR1 ) is an intracellular calcium receptor primarily expressed in skeletal muscle with a role in excitation contraction. Both dominant and recessive mutations in the RYR1 gene cause a range of RYR1 -related myopathies and/or susceptibility to malignant hyperthermia (MH). Recently, an atypical manifestation of ptosis, variably presenting with ophthalmoplegia, facial paralysis, and scoliosis but without significant muscle weakness, has been reported in 9 cases from 4 families with bialleic variants in RYR1 . Two affected children from a consanguineous family with severe congenital ptosis, ophthalmoplegia, scoliosis, and distinctive long faces but without skeletal myopathy were studied. To identify the cause of the hereditary condition, DNA from the proband was subjected to whole exome sequencing (WES). WES revealed a novel homozygous missense variant in RYR1 (c.14066T>A; p.IIe4689Asn), which segregated within the family. Although the phenotype of the affected siblings in this study was similar to previously described cases, the clinical features were more severely expressed. Our findings contribute to the expansion of phenotypes related to RYR1 dysfunction. Additionally, it supports a new RYR1 -related clinical presentation without musculoskeletal involvement. It is important that individuals with RYR1 mutations are considered susceptible to MH, as 70% of the MH cases are caused by mutations in the RYR1 gene.

  7. Identification of a missense mutation in the tyrosinase gene in a Chinese family with oculocutaneous albinism type 1.

    Science.gov (United States)

    Lu, Qian; Yuan, Lamei; Xu, Hongbo; Huang, Xiangjun; Yang, Zhijian; Yi, Junhui; Ni, Bin; Chen, Yong; Deng, Hao

    2017-03-01

    Oculocutaneous albinism (OCA) is a group of heterogeneous and autosomal recessive disorders characterized by a reduction or complete loss of melanin biosynthesis in melanocytes. OCA type 1 (OCA1) is the most severe and common form of OCA, and is caused by mutations in the tyrosinase gene (TYR). The present study aimed to identify the genetic cause of OCA1 in a four‑generation consanguineous Chinese Han family. Complete physical examinations were performed and blood samples were collected from five members of the family and 100 unrelated healthy controls. Exome sequencing was conducted in the proband, followed by verification in other family members, using Sanger sequencing. Patients in the family presented with typical OCA1 features, including hypopigmentation of the skin and hair, and distinctive ocular changes. A homozygous missense variant, c.896G>A (p.R299H), in the TYR gene was identified in two patients, which co‑segregated with disease in the family. This variant was not present in the 100 healthy controls. These results expand the number of mutations identified to be responsible for OCA1 in the Chinese Han population, and may have implications for genetic counseling and clinical management of the disease.

  8. Whole Exome Sequencing Leading to the Diagnosis of Dysferlinopathy with a Novel Missense Mutation (c.959G>C

    Directory of Open Access Journals (Sweden)

    Abhisek Swaika

    2016-01-01

    Full Text Available Dysferlinopathy is an uncommon, progressive muscular dystrophy that has a wide phenotypic variability and primarily supportive management (Nguyen et al., 2007; Narayanaswami et al., 2014. Amyloid myopathy is a distinct, rare disorder that can present similarly to inflammatory myopathies and requires a high clinical suspicion for early intervention to prolong survival. Amyloid myopathy is typically associated with other systemic manifestations of amyloidosis, but rare cases of isolated amyloid myopathy have been described (Mandl et al., 2000; Hull et al., 2001. Positive Congo red stains on tissue biopsy remain the gold standard for diagnosis (Spuler et al., 1998; Karacostas et al., 2005. A high clinical suspicion and meticulous diagnostic workup that includes novel techniques are necessary for identifying these rare disorders. We report a middle-aged man with progressive leg muscle weakness who was initially treated as having amyloid myopathy but was later diagnosed as having dysferlinopathy by Whole Exome Sequencing (WES analysis. We also report a novel missense mutation (c.959G>C to help correlate in any patient with presumed dysferlinopathy and to add to the already known genotype of this disorder.

  9. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats.

    Science.gov (United States)

    Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin

    2016-08-25

    Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits.

  10. Screening of Missense SNPs in Coding Regions of COX-2 as a Key Enzyme Involved in Cancer

    Directory of Open Access Journals (Sweden)

    Sodabeh Jahanbakhsh-Godehkahriz

    2013-09-01

    Full Text Available Background & Objectives: Non-synonymous single nucleotide polymorphism (nsSNPs which results in disruption of protein function are used as markers in linkage and association of human proteins that might be involved in diseases and cancers .   Methods: To study the functional effect of nsSNP in cyclooxygenase-2 (COX2 amino acids, the nucleotide sequences encoding COX-2 gene in cancers were extracted from the NCBI (gi|223941909 data bank (283 cases and analyzed by SIFT, I-Mutant 2.0, SNP and GO, PANTHER and FASTSNP servers. These servers involve programs that predict the effects of amino acid substitution on protein function, stability and missense .   Results: COX-2 is an essential enzyme for the production of pro-inflammatory prostaglandins which are relevant to cancer development and progression. The substitutions in some positions such as R228H and S428A of COX-2 in most of cancers linked to reformed protein function through disruption in enzyme active site.   Conclusion: Amino acid substitutions as a consequence of COX-2 nsSNPs have important role in human disease. Substitutions which are located in catalytic domain are important for the enzymatic function of COX-2 and associated with higher expression of COX-2.

  11. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans.

    Science.gov (United States)

    Khateb, Samer; Kowalewski, Björn; Bedoni, Nicola; Damme, Markus; Pollack, Netta; Saada, Ann; Obolensky, Alexey; Ben-Yosef, Tamar; Gross, Menachem; Dierks, Thomas; Banin, Eyal; Rivolta, Carlo; Sharon, Dror

    2018-01-04

    PurposeWe aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome.MethodsWhole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells.ResultsWe identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y.ConclusionHomozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.227.

  12. Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-20

    Directory of Open Access Journals (Sweden)

    Deeti K. Shetty

    2016-03-01

    Full Text Available Ovarian carcinoma immuno-reactive antigen domain containing 1(OCIAD1 single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-20. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013.

  13. A novel heterozygous mutation in the STAT1 SH2 domain causes chronic mucocutaneous candidiasis, atypically diverse infections, autoimmunity, and impaired cytokine regulation

    NARCIS (Netherlands)

    K. Meesilpavikkai (Kornvalee); W.A. Dik (Willem); B. Schrijver (Benjamin); N.M. Nagtzaam (Nicole); A.L. Rijswijk (Angelique); G.J.A. Driessen (Gertjan); P.J. van der Spek (Peter); P.M. van Hagen (Martin); V.A.S.H. Dalm (Virgil)

    2017-01-01

    textabstractChronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency characterized by persistent or recurrent skin and mucosal surface infections with Candida species. Different gene mutations leading to CMC have been identified. These include various heterozygous gain-of-function (GOF)

  14. Intrafamiliar clinical variability of circumferential skin creases Kunze type caused by a novel heterozygous mutation of N-terminal TUBB gene.

    Science.gov (United States)

    Dentici, M L; Terracciano, A; Bellacchio, E; Capolino, R; Novelli, A; Digilio, M C; Dallapiccola, B

    2018-02-10

    Circumferential skin creases Kunze type (CSC-KT; OMIM 156610, 616734) is a rare disorder characterized by folding of excess skin, which leads to ringed creases, known as Michelin Tire Baby Syndrome (MTBS). CSC-KT patients also exhibit facial dysmorphism, growth retardation, intellectual disability (ID) and multiple congenital malformations. Recently, 2 heterozygous mutations in TUBB gene and 4 mutations (both homozygous and heterozygous) in MAPRE2 gene were identified in 3 and 4 CSC-KT patients, respectively. In the 3 TUBB gene-related CSC-KT patients, all mutations fall in the N-terminal gene domain and were de novo. Mutations in the C-terminal of TUBB gene have been associated to microcephaly and structural brain malformation, in the absence of CSC-KT features. We report a 9-year-old boy with a diagnosis of CSC-KT based on MTBS, facial dysmorphism, microcephaly, severe ID, cortical atrophy and corpus callosum hypoplasia. Sanger sequencing identified a novel heterozygous c.218T>C (p.Met73Thr) mutation in the N-terminal of TUBB gene, that was inherited from the mother affected by isolated MTBS. This is the first report of inherited TUBB gene-related CSC-KT resulting from a novel heterozygous mutation in the N-terminal domain. Present data support the role of TUBB mutations in CSC-KT and definitely includes CSC-KT syndrome within the tubulinopathies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg.

    Science.gov (United States)

    Redaelli, Veronica; Rossi, Giacomina; Maderna, Emanuela; Kovacs, Gabor G; Piccoli, Elena; Caroppo, Paola; Cacciatore, Francesca; Spinello, Sonia; Grisoli, Marina; Sozzi, Giuliano; Salmaggi, Andrea; Tagliavini, Fabrizio; Giaccone, Giorgio

    2018-01-01

    Null mutations in progranulin gene (GRN) reduce the progranulin production resulting in haploinsufficiency and are tightly associated with tau-negative frontotemporal lobar degeneration with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP). Missense mutations of GRN were also identified, but their effects are not completely clear, in particular unanswered is the question of what neuropathology they elicit, also considering that their occurrence has been reported in patients with typical clinical features of Alzheimer disease. They describe two fraternal twins carrying the missense GRN Cys139Arg mutation affected by late-onset dementia and we report the neuropathological study of one of them. Both patients were examined by neuroimaging, neuropsychological assessment and genetic analysis of GRN and other genes associated with dementia. The brain of one was obtained at autopsy and examined neuropathologically. One sister presented clinical and MRI features leading to the diagnosis of Alzheimer disease. The other underwent autopsy and the brain showed neuropathological hallmarks of Alzheimer disease with abundant Aβ-amyloid deposition and Braak stage V of neurofibrillary pathology, in the absence of the hallmark lesions of FTLD-TDP. Their findings may contribute to better clarify the role of progranulin in neurodegenerative diseases indicating that some GRN mutations, in particular missense ones, may act as strong risk factor for Alzheimer disease rather than induce FTLD-TDP. © 2016 International Society of Neuropathology.

  16. Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Yuko Numasawa-Kuroiwa

    2014-05-01

    Full Text Available Pelizaeus-Merzbacher disease (PMD is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1 gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation.

  17. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1.

    Science.gov (United States)

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui; Liu, Mugen

    2013-01-01

    To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A.

  18. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    Science.gov (United States)

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  19. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Retinitis pigmentosa (RP is a heterogeneous group of progressive retinal degenerations characterized by pigmentation and atrophy in the mid-periphery of the retina. Twenty two subjects from a four-generation Chinese family with RP and thin cornea, congenital cataract and high myopia is reported in this study. All family members underwent complete ophthalmologic examinations. Patients of the family presented with bone spicule-shaped pigment deposits in retina, retinal vascular attenuation, retinal and choroidal dystrophy, as well as punctate opacity of the lens, reduced cornea thickness and high myopia. Peripheral venous blood was obtained from all patients and their family members for genetic analysis. After mutation analysis in a few known RP candidate genes, exome sequencing was used to analyze the exomes of 3 patients III2, III4, III6 and the unaffected mother II2. A total of 34,693 variations shared by 3 patients were subjected to several filtering steps against existing variation databases. Identified variations were verified in the rest family members by PCR and Sanger sequencing. Compound heterozygous c.802-8_810del17insGC and c.1091-2A>G mutations of the CYP4V2 gene, known as genetic defects for Bietti crystalline corneoretinal dystrophy, were identified as causative mutations for RP of this family.

  20. [Identification of novel compound heterozygous mutations of USH2A gene in a family with Usher syndrome type II].

    Science.gov (United States)

    Jiang, Haiou; Ge, Chuanqin; Wang, Yiwang; Tang, Genyun; Quan, Qingli

    2015-06-01

    To identify potential mutations in a Chinese family with Usher syndrome type II. Genomic DNA was obtained from two affected and four unaffected members of the family and subjected to amplification of the entire coding sequence and splicing sites of USH2A gene. Mutation detection was conducted by direct sequencing of the PCR products. A total of 100 normal unrelated individuals were used as controls. The patients were identified to be a compound heterozygote for two mutations: c.8272G>T (p.E2758X) in exon 42 from his mother and c.12376-12378ACT>TAA(p.T4126X) in exon 63 of the USH2A gene from his father. Both mutations were not found in either of the two unaffected family members or 100 unrelated controls, and had completely co-segregated with the disease phenotype in the family. Neither mutation has been reported in the HGMD database. The novel compound heterozygous mutations c.8272G>T and c.12376-12378ACT>TAA within the USH2A gene may be responsible for the disease. This result may provide new clues for molecular diagnosis of this disease.

  1. Hearing dysfunction in heterozygous Mitf(Mi-wh) /+ mice, a model for Waardenburg syndrome type 2 and Tietz syndrome.

    Science.gov (United States)

    Ni, Christina; Zhang, Deming; Beyer, Lisa A; Halsey, Karin E; Fukui, Hideto; Raphael, Yehoash; Dolan, David F; Hornyak, Thomas J

    2013-01-01

    The human deafness-pigmentation syndromes, Waardenburg syndrome (WS) type 2a, and Tietz syndrome are characterized by profound deafness but only partial cutaneous pigmentary abnormalities. Both syndromes are caused by mutations in MITF. To illuminate differences between cutaneous and otic melanocytes in these syndromes, their development and survival in heterozygous Microphthalmia-White (Mitf(Mi-wh) /+) mice were studied and hearing function of these mice characterized. Mitf(Mi-wh) /+ mice have a profound hearing deficit, characterized by elevated auditory brainstem response thresholds, reduced distortion product otoacoustic emissions, absent endocochlear potential, loss of outer hair cells, and stria vascularis abnormalities. Mitf(Mi-wh) /+ embryos have fewer melanoblasts during embryonic development than their wild-type littermates. Although cochlear melanocytes are present at birth, they disappear from the Mitf(Mi-wh) /+ cochlea between P1 and P7. These findings may provide insight into the mechanism of melanocyte and hearing loss in human deafness-pigmentation syndromes such as WS and Tietz syndrome and illustrate differences between otic and follicular melanocytes. © 2012 John Wiley & Sons A/S.

  2. Compound heterozygous deletions in pseudoautosomal region 1 in an infant with mild manifestations of langer mesomelic dysplasia.

    Science.gov (United States)

    Tsuchiya, Takayoshi; Shibata, Minoru; Numabe, Hironao; Jinno, Tomoko; Nakabayashi, Kazuhiko; Nishimura, Gen; Nagai, Toshiro; Ogata, Tsutomu; Fukami, Maki

    2014-02-01

    Haploinsufficiency of SHOX on the short arm pseudoautosomal region (PAR1) leads to Leri-Weill dyschondrosteosis (LWD), and nullizygosity of SHOX results in Langer mesomelic dysplasia (LMD). Molecular defects of LWD/LMD include various microdeletions in PAR1 that involve exons and/or the putative upstream or downstream enhancer regions of SHOX, as well as several intragenic mutations. Here, we report on a Japanese male infant with mild manifestations of LMD and hitherto unreported microdeletions in PAR1. Clinical analysis revealed mesomelic short stature with various radiological findings indicative of LMD. Molecular analyses identified compound heterozygous deletions, that is, a maternally inherited ∼46 kb deletion involving the upstream region and exons 1-5 of SHOX, and a paternally inherited ∼500 kb deletion started from a position ∼300 kb downstream from SHOX. In silico analysis revealed that the downstream deletion did not affect the known putative enhancer regions of SHOX, although it encompassed several non-coding elements which were well conserved among various species with SHOX orthologs. These results provide the possibility of the presence of a novel enhancer for SHOX in the genomic region ∼300 to ∼800 kb downstream of the start codon. © 2013 Wiley Periodicals, Inc.

  3. Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia.

    Science.gov (United States)

    Tsai, Ellen A; Grochowski, Christopher M; Falsey, Alexandra M; Rajagopalan, Ramakrishnan; Wendel, Danielle; Devoto, Marcella; Krantz, Ian D; Loomes, Kathleen M; Spinner, Nancy B

    2015-06-01

    Biliary atresia (BA) is a pediatric cholangiopathy with unknown etiology occurring in isolated and syndromic forms. Laterality defects affecting the cardiovascular and gastrointestinal systems are the most common features present in syndromic BA. Most cases are sporadic, although reports of familial cases have led to the hypothesis of genetic susceptibility in some patients. We identified a child with BA, malrotation, and interrupted inferior vena cava whose father presented with situs inversus, polysplenia, panhypopituitarism, and mildly dysmorphic facial features. Chromosomal microarray analysis demonstrated a 277 kb heterozygous deletion on chromosome 20, which included a single gene, FOXA2, in the proband and her father. This deletion was confirmed to be de novo in the father. The proband and her father share a common diagnosis of heterotaxy, but they also each presented with a variety of other issues. Further genetic screening revealed that the proband carried an additional protein-altering polymorphism (rs1904589; p.His165Arg) in the NODAL gene that is not present in the father, and this variant has been shown to decrease expression of the gene. As FOXA2 can be a regulator of NODAL expression, we propose that haploinsufficiency for FOXA2 combined with a decreased expression of NODAL is the likely cause for syndromic BA in this proband. © 2015 WILEY PERIODICALS, INC.

  4. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    International Nuclear Information System (INIS)

    Abkowitz, J.L.; Ott, R.M.; Holly, R.D.; Adamson, J.W.

    1988-01-01

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan [2 to 4 mg/kg intravenously (IV) x 3] was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells

  5. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing.

    Science.gov (United States)

    Gallistel, C R; Tucci, Valter; Nolan, Patrick M; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-03-05

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.

  6. Poly(ADP-ribose) synthesis following DNA damage in cells heterozygous or homozygous for the xeroderma pigmentosum genotype

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Treatment of normal human cells with DNA-damaging agents such as uv light or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) stimulates the conversion of NAD to the chromosomal polymer poly(ADP-ribose) which in turn results in a rapid depletion of the cellular NAD pool. The effect of uv light or MNNG on the NAD pools of seven cell lines of human fibroblasts either homozygous or heterozygous for the xeroderma pigmentosum genotype has been studied. Xeroderma pigmentosum cells of genetic complementation groups A, C, and D are deficient in the excision repair of DNA damage caused by uv light. Following uv treatment, the NAD content of these cells was unchanged or only slightly reduced. All of the cell lines are able to excise DNA damage caused by MNNG and all of the cell lines had a greatly reduced content of NAD following MNNG treatment. The results demonstrate a close relationship between the conversion of NAD to poly(ADP-ribose) and DNA excision repair in human cells

  7. Systematic review and metaanalysis of statins for heterozygous familial hypercholesterolemia in children: evaluation of cholesterol changes and side effects.

    LENUS (Irish Health Repository)

    O'Gorman, Clodagh S

    2012-02-01

    Heterozygous familial hypercholesterolemia (heFH) affects 1 in 500 individuals. Evidence supports the low-density lipoprotein (LDL)-lowering effect of statins for adults with heFH. However, there are concerns regarding the treatment children with heFH. By performing a systematic review and metaanalysis of the published literature, this study aimed to evaluate the efficacy and safety of statins used for children with heFH. A systematic review was performed by searching multiple medical databases and citations to identify reports of randomized controlled trials of statins used to treat children with heFH. The trials were retrieved, reviewed, and subjected to metaanalysis. The search yielded 2,174 titles. Of the 63 studies retrieved and reviewed, 56 were excluded, 7 were included in the systematic review, and 4 were included in the metaanalysis. Significant heterogeneity was detected. The metaanalysis showed significant LDL lowering, high-density lipoprotein (HDL) cholesterol elevation, and increases in height and weight with statins. The metaanalysis could not be performed for many side effects of statins, but individual trials showed no significant side effects. Quality assessment showed methodologic concerns, with potential for bias. For example, six trials analyzed statin effects without intention to treat despite such a stated intention. Metaanalysis shows significant LDL lowering with statin treatment. Further studies, including epidemiologic and multicenter studies, are required.

  8. Identification of two novel compound heterozygous mutations of ADGRV1 in a Chinese family with Usher syndrome type IIC.

    Science.gov (United States)

    Zhang, Nian; Wang, Juan; Liu, Shuting; Liu, Mugen; Jiang, Fagang

    2018-06-08

    To describe the clinical and genetic findings in a Chinese family with three sibs diagnosed with Usher syndrome type IIC. Four members received ophthalmic and otologic tests to ascertain the clinical characteristics. According to the clinical phenotype, we focused attention on a total of 658 genes associated with them. We screened the possible pathogenic mutation sites, used Sanger to exclude the false positive and verified whether there were co-segregated among the family members. Typical fundus features found in the proband supported the diagnosis of retinitis pigmentosa (RP). Audiometric test indicated moderate to severe sensorineural hearing impairment while the vestibular function was normal. Whole-exome sequencing identified the presence of two novel compound heterozygous mutations in ADGRV1, a known gene responsible for Usher syndrome type IIC. Mutationc.15008delG/p.Gly5003AlafsTer13 was inherited from the mother while c.18383_18386dupACAG/p.His6130GlnfsTer84 was inherited from the father, and they were co-segregated with the disease phenotype in the family. The mutations found in our study not only broaden the mutation spectrum of ADGRV1, but also provide assistances for future genetic diagnosis and treatment for Usher syndrome patients.

  9. Utility of whole exome sequencing in the diagnosis of Usher syndrome: Report of novel compound heterozygous MYO7A mutations.

    Science.gov (United States)

    Ramzan, Khushnooda; Al-Owain, Mohammed; Huma, Rozeena; Al-Hazzaa, Selwa A F; Al-Ageel, Sarah; Imtiaz, Faiqa; Al-Sayed, Moeenaldeen

    2018-05-01

    Next generation sequencing (NGS), such as targeted panel sequencing, whole-exome sequencing and whole-genome sequencing has led to an exponential increase of elucidated genetic causes in both rare diseases, and common but heterogeneous disorders. NGS is applied in both research and clinical settings, and the clinical exome sequencing (CES), which provides not only the sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to a genetic diagnosis. Usher syndrome is a group of disorders, characterized by bilateral sensorineural hearing loss, with or without vestibular dysfunction and retinitis pigmentosa. The index patient, a 2-year-old child was initially diagnosed with nonsyndromic hearing impairment. Homozygosity mapping followed by CES was utilized as a diagnostic tool to identify the genetic basis of his hearing loss. A paternally inherited novel insertion, c.198_199insA (p.Val67Serfs*73) and a maternally inherited novel deletion, c.1219_1226del (p.Phe407Aspfs*33) in gene MYO7A were found in compound heterozygous state in the index patient. The result expands the mutational spectrum of MYO7A. In addition it helped in early diagnosis of the syndrome, for planning and adjustments for the patient, and as well as for future family planning. This study highlights the clinical effectiveness of CES for Usher syndrome diagnosis in a child presented with congenital hearing loss. Copyright © 2018. Published by Elsevier B.V.

  10. Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome.

    Science.gov (United States)

    Yoo, Da Hye; Choi, Young-Chul; Nam, Da Eun; Choi, Sun Seong; Kim, Ji Won; Choi, Byung-Ok; Chung, Ki Wha

    2017-07-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation. Copyright © 2017. Published by Elsevier B.V.

  11. The use of high resolution melting analysis to detect Fabry mutations in heterozygous females via dry bloodspots.

    Science.gov (United States)

    Tai, Chang-Long; Liu, Mei-Ying; Yu, Hsiao-Chi; Chiang, Chiang-Chuan; Chiang, Hung; Suen, Jeng-Hung; Kao, Shu-Min; Huang, Yu-Hsiu; Wu, Tina Jui-Ting; Yang, Chia-Feng; Tsai, Fang-Chih; Lin, Ching-Yuang; Chang, Jan-Gowth; Chen, Hong-Duo; Niu, Dau-Ming

    2012-02-18

    As an X-linked genetic disorder, Fabry disease was first thought to affect males only, and females were generally considered to be asymptomatic carriers. However, recent research suggests that female carriers of Fabry disease may still develop vital organ damage causing severe morbidity and mortality. In the previous newborn screening, from 299,007 newborns, we identified a total of 20 different Fabry mutations and 121 newborns with Fabry mutations. However, we found that most female carriers are not detected by enzyme assays. A streamlined method for high resolution melting (HRM) analysis was designed to screen for GLA gene mutations using a same PCR and melting program. Primer sets were designed to cover the 7 exons and the Chinese common intronic mutation, IVS4+919G>A of GLA gene. The HRM analysis was successful in identifying heterozygous and hemizygous patients with the 20 surveyed mutations. We were also successful in using this method to test dry blood spots of newborns afflicted with Fabry mutations without having to determine DNA concentration before PCR amplification. The results of this study show that HRM could be a reliable and sensitive method for use in the rapid screening of females for GLA mutations. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  13. Missense mutation in CAPN1 is associated with spinocerebellar ataxia in the Parson Russell Terrier dog breed.

    Directory of Open Access Journals (Sweden)

    Oliver P Forman

    Full Text Available Spinocerebellar ataxia (SCA in the Parson Russell Terrier (PRT dog breed is a disease of progressive incoordination of gait and loss of balance. Clinical signs usually become notable between 6 and 12 months of age with affected dogs presenting with symmetric spinocerebellar ataxia particularly evident in the pelvic limbs. The degree of truncal ataxia, pelvic limb hypermetria and impaired balance is progressive, particularly during the initial months of disease. A certain degree of stabilisation as well as intermittent worsening may occur. At the later stages of the disease ambulation often becomes difficult, with owners often electing to euthanise affected dogs on welfare grounds. Using a GWAS approach and target-enriched massively-parallel sequencing, a strongly associated non-synonymous SNP in the CAPN1 gene, encoding the calcium dependent cysteine protease calpain1 (mu-calpain, was identified. The SNP is a missense mutation causing a cysteine to tyrosine substitution at residue 115 of the CAPN1 protein. Cysteine 115 is a highly conserved residue and forms a key part of a catalytic triad of amino acids that are crucial to the enzymatic activity of cysteine proteases. The CAPN1 gene shows high levels of expression in the brain and nervous system and roles for the protein in both neuronal necrosis and maintenance have been suggested. Given the functional implications and high level of conservation observed across species, the CAPN1 variant represents a provocative candidate for the cause of SCA in the PRT and a novel potential cause of ataxia in humans.

  14. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    Science.gov (United States)

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. © 2016 WILEY PERIODICALS, INC.

  15. Missense Variant in MAPK Inactivator PTPN5 Is Associated with Decreased Severity of Post-Burn Hypertrophic Scarring.

    Directory of Open Access Journals (Sweden)

    Ravi F Sood

    Full Text Available Hypertrophic scarring (HTS is hypothesized to have a genetic mechanism, yet its genetic determinants are largely unknown. The mitogen-activated protein kinase (MAPK pathways are important mediators of inflammatory signaling, and experimental evidence implicates MAPKs in HTS formation. We hypothesized that single-nucleotide polymorphisms (SNPs in MAPK-pathway genes would be associated with severity of post-burn HTS.We analyzed data from a prospective-cohort genome-wide association study of post-burn HTS. We included subjects with deep-partial-thickness burns admitted to our center who provided blood for genotyping and had at least one Vancouver Scar Scale (VSS assessment. After adjusting for HTS risk factors and population stratification, we tested MAPK-pathway gene SNPs for association with the four VSS variables in a joint regression model. In addition to individual-SNP analysis, we performed gene-based association testing.Our study population consisted of 538 adults (median age 40 years who were predominantly White (76% males (71% admitted to our center from 2007-2014 with small-to-moderate-sized burns (median burn size 6% total body surface area. Of 2,146 SNPs tested, a rare missense variant in the PTPN5 gene (rs56234898; minor allele frequency 1.5% was significantly associated with decreased severity of post-burn HTS (P = 1.3×10-6. In gene-based analysis, PTPN5 (P = 1.2×10-5 showed a significant association and BDNF (P = 9.5×10-4 a borderline-significant association with HTS severity.We report PTPN5 as a novel genetic locus associated with HTS severity. PTPN5 is a MAPK inhibitor expressed in neurons, suggesting a potential role for neurotrophic factors and neuroinflammatory signaling in HTS pathophysiology.

  16. A Homozygous Missense Mutation in TGM5 Abolishes Epidermal Transglutaminase 5 Activity and Causes Acral Peeling Skin Syndrome

    Science.gov (United States)

    Cassidy, Andrew J.; van Steensel, Maurice A. M.; Steijlen, Peter M.; van Geel, Michel; Velden, Jaap van der; Morley, Susan M.; Terrinoni, Alessandro; Melino, Gerry; Candi, Eleonora; McLean, W. H. Irwin

    2005-01-01

    Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis. PMID:16380904

  17. The Missense Alteration A5T of the Thyroid Peroxidase Gene is Pathogenic and Associated with Mild Congenital Hypothyroidism.

    Science.gov (United States)

    Cangül, Hakan; Demir, Korcan; Babayiğit, H Ömür; Abacı, Ayhan; Böber, Ece

    2015-09-01

    Congenital hypothyroidism (CH) occurs with a prevalence of approximately 1:4000 live births. Defects of thyroid hormone synthesis account for 15-20% of these cases. Thyroid peroxidase (TPO) gene is the most common cause for dyshormonogenesis. So far, more than 60 mutations in the TPO gene have been described, resulting in a variable decrease in TPO bioactivity. We present an 8-day-old male with mild CH who was identified to have a G to A transition in the fifth codon of the TPO gene (c.13G>A; p.Ala5Thr). The unaffected family members were heterozygous carriers of the mutation, whereas 400 healthy individuals of the same ethnic background did not have the mutation. Mutation analysis of 11 known causative CH genes and 4 of our own strong candidate genes with next-generation sequencing revealed no mutations in the patient nor in any other family members. The results of in silico functional analyses indicated partial loss-of-function (LOF) in the resulting enzyme molecule due to mutation. The patient's clinical finding s were consistent with the effect of this partial LOF of the mutation. In conclusion, we strongly believe that A5T alteration in the TPO gene is actually pathogenic and suggest that it should be classified as a mutation.

  18. A novel missense mutation pattern of the GCH1 gene in dopa-responsive dystonia Novo padrão de mutação missense no gene GCH1 na distonia dopa-responsiva

    Directory of Open Access Journals (Sweden)

    Rosana H. Scola

    2007-12-01

    Full Text Available Dopa-responsive dystonia (DRD is an inherited metabolic disorder now classified as DYT5 with two different biochemical defects: autosomal dominant GTP cyclohydrolase 1 (GCH1 deficiency or autosomal recessive tyrosine hydroxylase deficiency. We report the case of a 10-years-old girl with progressive generalized dystonia and gait disorder who presented dramatic response to levodopa. The phenylalanine to tyrosine ratio was significantly higher after phenylalanine loading test. This condition had two different heterozygous mutations in the GCH1 gene: the previously reported P23L mutation and a new Q182E mutation. The characteristics of the DRD and the molecular genetic findings are discussed.Distonia dopa-responsiva (DRD, classificada como DYT5, é um erro inato do metabolismo que pode ser causado por dois diferentes tipos de defeito bioquímico: deficiência de GTP ciclo-hidrolase 1 (GCH1 (autossômica dominante ou de tirosina hidroxilase (autossômica recessiva. Descrevemos o caso de menina de 10 anos com distonia generalizada progressiva e alteração da marcha com importante melhora após uso de levodopa. A relação fenilalanina/tirosina estava aumentada após teste de sobrecarga com fenilalanina. O estudo molecular mostrou que o paciente apresenta uma combinação hererozigótica de mutação no gene GCH1: a já conhecida mutação P23L e uma nova mutação Q182E. Discutem-se as características da DRD e as alterações genéticas possíveis.

  19. Electroclinical presentation and genotype-phenotype relationships in patients with Unverricht-Lundborg disease carrying compound heterozygous CSTB point and indel mutations.

    Science.gov (United States)

    Canafoglia, Laura; Gennaro, Elena; Capovilla, Giuseppe; Gobbi, Giuseppe; Boni, Antonella; Beccaria, Francesca; Viri, Maurizio; Michelucci, Roberto; Agazzi, Pamela; Assereto, Stefania; Coviello, Domenico A; Di Stefano, Maria; Rossi Sebastiano, Davide; Franceschetti, Silvana; Zara, Federico

    2012-12-01

    Unverricht-Lundborg disease (EPM1A) is frequently due to an unstable expansion of a dodecamer repeat in the CSTB gene, whereas other types of mutations are rare. EPM1A due to homozygous expansion has a rather stereotyped presentation with prominent action myoclonus. We describe eight patients with five different compound heterozygous CSTB point or indel mutations in order to highlight their particular phenotypical presentations and evaluate their genotype-phenotype relationships. We screened CSTB mutations by means of Southern blotting and the sequencing of the genomic DNA of each proband. CSTB messenger RNA (mRNA) aberrations were characterized by sequencing the complementary DNA (cDNA) of lymphoblastoid cells, and assessing the protein concentrations in the lymphoblasts. The patient evaluations included the use of a simplified myoclonus severity rating scale, multiple neurophysiologic tests, and electroencephalography (EEG)-polygraphic recordings. To highlight the particular clinical features and disease time-course in compound heterozygous patients, we compared some of their characteristics with those observed in a series of 40 patients carrying the common homozygous expansion mutation observed at the C. Besta Foundation, Milan, Italy. The eight compound heterozygous patients belong to six EPM1A families (out of 52; 11.5%) diagnosed at the Laboratory of Genetics of the Galliera Hospitals in Genoa, Italy. They segregated five different heterozygous point or indel mutations in association with the common dodecamer expansion. Four patients from three families had previously reported CSTB mutations (c.67-1G>C and c.168+1_18del); one had a novel nonsense mutation at the first exon (c.133C>T) leading to a premature stop codon predicting a short peptide; the other three patients from two families had a complex novel indel mutation involving the donor splice site of intron 2 (c.168+2_169+21delinsAA) and leading to an aberrant transcript with a partially retained intron

  20. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females.

    Science.gov (United States)

    Peters, Anna L; Veldthuis, Martijn; van Leeuwen, Karin; Bossuyt, Patrick M M; Vlaar, Alexander P J; van Bruggen, Robin; de Korte, Dirk; Van Noorden, Cornelis J F; van Zwieten, Rob

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for detection of G6PD deficiency in females. Blood samples from females more than 3 months of age were used for spectrophotometric measurement of G6PD activity and for determination of the percentage G6PD-negative RBCs by cytofluorometry. An additional sample from females suspected to have G6PD deficiency based on the spectrophotometric G6PD activity was used for measuring chromate inhibition and sequencing of the G6PD gene. Of 165 included females, 114 were suspected to have heterozygous deficiency. From 75 females, an extra sample was obtained. In this group, mutation analysis detected 27 heterozygously deficient females. The sensitivity of spectrophotometry, cytofluorometry, and chromate inhibition was calculated to be 0.52 (confidence interval [CI]: 0.32-0.71), 0.85 (CI: 0.66-0.96), and 0.96 (CI: 0.71-1.00, respectively, and the specificity was 1.00 (CI: 0.93-1.00), 0.88 (CI: 0.75-0.95), and 0.98 (CI: 0.89-1.00), respectively. Heterozygously G6PD-deficient females with a larger percentage of G6PD-sufficient RBCs are missed by routine methods measuring total G6PD activity. However, the majority of these females can be detected with both chromate inhibition and cytofluorometry.

  1. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    Science.gov (United States)

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.

    Science.gov (United States)

    Sugimoto, H; Ikeda, K; Kawakami, K

    2017-10-23

    Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Molecular Pathogenesis of EBV Susceptibility in XLP as Revealed by Analysis of Female Carriers with Heterozygous Expression of SAP

    Science.gov (United States)

    Palendira, Umaimainthan; Low, Carol; Chan, Anna; Hislop, Andrew D.; Ho, Edwin; Phan, Tri Giang; Deenick, Elissa; Cook, Matthew C.; Riminton, D. Sean; Choo, Sharon; Loh, Richard; Alvaro, Frank; Booth, Claire; Gaspar, H. Bobby; Moretta, Alessandro; Khanna, Rajiv; Rickinson, Alan B.; Tangye, Stuart G.

    2011-01-01

    X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP+ and SAP− cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8+ T cells specific for CMV and influenza were distributed across SAP+ and SAP− populations, EBV-specific cells were exclusively SAP+. The preferential recruitment of SAP+ cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8+ T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP− clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP− CD8+ T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited. PMID:22069374

  5. Anxiety, depression, and health-related quality of life in heterozygous familial hypercholesterolemia: A systematic review and meta-analysis.

    Science.gov (United States)

    Akioyamen, Leo E; Genest, Jacques; Shan, Shubham D; Inibhunu, Happy; Chu, Anna; Tu, Jack V

    2018-06-01

    Heterozygous familial hypercholesterolemia (FH) is a common genetic disease predisposing affected individuals to a high risk of cardiovascular disease. Yet, considerable uncertainty exists regarding its impact on psychosocial wellbeing. We performed a systematic review and meta-analysis of the association between FH and symptoms of anxiety and depression, and health-related quality of life (HRQL). We searched MEDLINE, EMBASE, Global Health, the Cochrane Library, PsycINFO, and PubMed for peer-reviewed literature published in English between January 1, 1990 and January 1, 2018. Quantitative and qualitative studies were eligible if they included patients with confirmed FH and evaluated its association with symptoms of anxiety or depression, or HRQL. We performed a narrative synthesis of studies, including thematic analysis of qualitative studies, and where data permitted, random-effects meta-analysis reporting standardized mean differences (SMD) and 95% confidence intervals. We found 10 eligible studies measuring HRQL, depression and anxiety. Random-effects meta-analysis of 4 (n = 4293) and 5 studies (n = 5098), respectively, showed that patients with FH had slightly lower symptoms of anxiety (SMD: -0.29 [95% CI: -0.53, -0.04]) and mental HRQL (SMD: -0.10 [95% -0.20, -0.00]) relative to general population controls. No significant differences existed in depressive symptoms (SMD: 0.04 [95% CI: -0.12, 0.19]) or physical HRQL scores (SMD: 0.02 [95% CI: -0.09, 0.12]). Our systematic review suggests that patients with FH may report small but measurable differences in anxiety symptoms and mental HRQL. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Diagnosis of a rare double heterozygous Hb D Punjab/Hb Q India hemoglobinopathy using Sebia capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Sushama Parab

    2014-01-01

    Full Text Available In India, hemoglobinopathies constitute a major genetic disorder and hemoglobin variants such as Hb S, Hb D Punjab, and Hb E are the most common ones. Other variants include Hb Q India, Hb Lepore, Hb J Meerut, Hb D Iran, etc. These variants show heterozygous state along with beta thalassemia. However, compound heterozygosities among these variants are very rare. Ethylenediaminetetraacetic acid whole blood sample received for routine thalassemia screening was subjected to alkaline electrophoresis using automated capillary zone electrophoresis. Suspecting the presence of rare variants, further analysis was carried out using Bio-Rad D10 and Tosoh G8 high-performance liquid chromatography (HPLC systems. Capillary zone electrophoretograms showed the presence of peaks in zone Hb A, Hb D, a fused peak in Hb A2, and a small peak in Z1 zone. Bio-Rad and Tosoh chromatograms also indicated the presence of four peaks which are identified as Hb A, Hb D Punjab, Hb Q India, and hybrid of Hb D Punjab/Hb Q India. A peak in Hb D zone of capillary was due to co-migration of Hb D Punjab and Hb Q India variants. Small peak in Z1 zone indicated the presence of alpha chain variant Hb Q India. The findings were further confirmed by HPLC results and molecular genetic studies. The present study reports for the 1 st time a rare hemoglobinopathy of double heterozygosity for Hb D Punjab, Hb Q India on Capillarys 2 Flex Piercing analyzer and is forth reported case for this rare hemoglobinopathy.

  7. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP.

    Directory of Open Access Journals (Sweden)

    Umaimainthan Palendira

    2011-11-01

    Full Text Available X-linked lymphoproliferative disease (XLP is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP(+ and SAP(- cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8(+ T cells specific for CMV and influenza were distributed across SAP(+ and SAP(- populations, EBV-specific cells were exclusively SAP(+. The preferential recruitment of SAP(+ cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8(+ T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP(- clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP(- CD8(+ T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited.

  8. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender.

    Science.gov (United States)

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  9. Heterozygous Ambra1 deficiency in mice: A genetic trait with autism-like behavior restricted to the female gender

    Directory of Open Access Journals (Sweden)

    Ekrem eDere

    2014-05-01

    Full Text Available Autism spectrum disorders (ASD are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of ~4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g. through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1+/- females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1+/- mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1+/- females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  10. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  11. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study.

    Science.gov (United States)

    Howell, Kristy R; Pillai, Anilkumar

    2014-08-01

    Both genetic and environmental factors play important roles in the pathophysiology of schizophrenia. Although prenatal hypoxia is a potential environmental factor implicated in schizophrenia, very little is known about the consequences of combining models of genetic risk factor with prenatal hypoxia. Heterozygous reeler (haploinsufficient for reelin; HRM) and wild-type (WT) mice were exposed to prenatal hypoxia (9% oxygen for two hour) or normoxia at embryonic day 17 (E17). Behavioral (Prepulse inhibition, Y-maze and Open field) and functional (regional volume in frontal cortex and hippocampus as well as hippocampal blood flow) tests were performed at 3 months of age. The levels of hypoxia and stress-related molecules such as hypoxia-inducible factor-1 α (HIF-1α), vascular endothelial factor (VEGF), VEGF receptor-2 (VEGFR2/Flk1) and glucocorticoid receptor (GR) were examined in frontal cortex and hippocampus at E18, 1 month and 3 months of age. In addition, serum VEGF and corticosterone levels were also examined. Prenatal hypoxia induced anxiety-like behavior in both HRM and WT mice. A significant reduction in hippocampal blood flow, but no change in brain regional volume was observed following prenatal hypoxia. Significant age and region-dependent changes in HIF-1α, VEGF, Flk1 and GR were found following prenatal hypoxia. Serum VEGF and corticosterone levels were found decreased following prenatal hypoxia. None of the above prenatal hypoxia-induced changes were either diminished or exacerbated due to reelin deficiency. These results argue against any gene-environment interaction between hypoxia and reelin deficiency. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  12. Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine.

    Directory of Open Access Journals (Sweden)

    Agota Fodor

    Full Text Available Nowadays, genome-wide association studies (GWAS and genomic selection (GS methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9 using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.

  13. Profound, prelingual nonsyndromic deafness maps to chromosome 10q21 and is caused by a novel missense mutation in the Usher syndrome type IF gene PCDH15.

    Science.gov (United States)

    Doucette, Lance; Merner, Nancy D; Cooke, Sandra; Ives, Elizabeth; Galutira, Dante; Walsh, Vanessa; Walsh, Tom; MacLaren, Linda; Cater, Tracey; Fernandez, Bridget; Green, Jane S; Wilcox, Edward R; Shotland, Lawrence I; Shotland, Larry; Li, Xiaoyan Cindy; Li, X C; Lee, Ming; King, Mary-Claire; Young, Terry-Lynn

    2009-05-01

    We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.

  14. Structural analysis of eight novel and 112 previously reported missense mutations in the interactive FXI mutation database reveals new insight on FXI deficiency.

    Science.gov (United States)

    Saunders, Rebecca E; Shiltagh, Nuha; Gomez, Keith; Mellars, Gillian; Cooper, Carolyn; Perry, David J; Tuddenham, Edward G; Perkins, Stephen J

    2009-08-01

    Factor XI (FXI) functions in blood coagulation. FXI is composed of four apple (Ap) domains and a serine protease (SP) domain. Deficiency of FXI leads to an injury-related bleeding disorder, which is remarkable for the lack of correlation between bleeding symptoms and FXI coagulant activity (FXI:C). The number of mutations previously reported in our interactive web database (http://www.FactorXI.org) is now significantly increased to 183 through our new patient studies and from literature surveys. Eight novel missense mutations give a total of 120 throughout the FXI gene (F11). The most abundant defects in FXI are revealed to be those from low-protein plasma levels (Type I: CRM-) that originate from protein misfolding, rather than from functional defects (Type II: CRM+). A total of 70 Ap missense mutations were analysed using a consensus Ap domain structure generated from the FXI dimer crystal structure. This showed that all parts of the Ap domain were affected. The 47 SP missense mutations were also distributed throughout the SP domain structure. The periphery of the Ap beta-sheet structure is sensitive to structural perturbation caused by residue changes throughout the Ap domain, yet this beta-sheet is crucial for FXI dimer formation. Residues located at the Ap4:Ap4 interface in the dimer are much less directly involved. We conclude that the abundance of Type I defects in FXI results from the sensitivity of the Ap domain folding to residue changes within this, and discuss how structural knowledge of the mutations improves our understanding of FXI deficiencies.

  15. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  16. The Coexpression of Reelin and Neuronal Nitric Oxide Synthase in a Subpopulation of Dentate Gyrus Neurons Is Downregulated in Heterozygous Reeler Mice

    Directory of Open Access Journals (Sweden)

    Raquel Romay-Tallón

    2010-01-01

    Full Text Available Reelin is an extracellular matrix protein expressed in several interneuron subtypes in the hippocampus and dentate gyrus. Neuronal nitric oxide synthase (nNOS is also expressed by interneurons in these areas. We investigated whether reelin and nNOS are co-localized in the same population of hippocampal interneurons, and whether this colocalization is altered in the heterozygous reeler mouse. We found colocalization of nNOS in reelin-positive cells in the CA1 stratum radiatum and lacunosum moleculare, the CA3 stratum radiatum, and the dentate gyrus subgranular zone, molecular layer, and hilus. In heterozygous reeler mice, the colocalization of nNOS in reelin-positive cells was significantly decreased only in the subgranular zone and molecular layer. The coexpression of reelin and nNOS in several hippocampal regions suggests that reelin and nNOS may work synergistically to promote glutamatergic function, and the loss of this coexpression in heterozygous reeler mice may underlie some of the behavioral deficits observed in these animals.

  17. High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations.

    Science.gov (United States)

    Out, Astrid A; van Minderhout, Ivonne J H M; van der Stoep, Nienke; van Bommel, Lysette S R; Kluijt, Irma; Aalfs, Cora; Voorendt, Marsha; Vossen, Rolf H A M; Nielsen, Maartje; Vasen, Hans F A; Morreau, Hans; Devilee, Peter; Tops, Carli M J; Hes, Frederik J

    2015-06-01

    Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colorectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6% for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6%) of the patients and pathogenic mosaic variants in 2 (1%). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leukocyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7% of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.

  18. Detection of compound heterozygous of hb constant spring and hb q-Thailand by capillary electrophoresis and high performance liquid chromatography.

    Science.gov (United States)

    Pornprasert, Sakorn; Punyamung, Manoo

    2015-06-01

    A capillary electrophoresis (CE) has proven to be superior to a high performance liquid chromatography (HPLC) in the detection of hemoglobin Constant Spring (Hb CS). Thus the aim of this study was to analyze the efficacy of CE and HPLC for the detection of Hb CS in samples with compound heterozygous of Hb CS and Hb Q-Thailand. Hemoglobin analysis was performed in blood samples of 2 patients with compound heterozygous of Hb CS and Hb Q-Thailand by using HPLC and CE. The HPLC chromatogram and CE electrophoregram of the two techniques were compared. Hb CS was not found on HPLC chromatogram while Hb QA2 (α2 (QT)δ2), a derivative of Hb Q-Thailand, was presented at the retention time of 4.70-4.80 min and it was close to the retention time of Hb CS. On CE electrophoregram, Hb CS was presented at zone 2 (Z2) and it was distinctly separated from Hb QA2 which was presented at Z1. Therefore, CE was more efficient to the HPLC for diagnosis of compound heterozygous of Hb CS and Hb Q-Thailand.

  19. Diagnosis of Compound Heterozygous Hb Tak/β-Thalassemia and HbD-Punjab/β-Thalassemia by HbA2 Levels on Capillary Electrophoresis.

    Science.gov (United States)

    Panyasai, Sitthichai; Sakkhachornphop, Supachai; Pornprasert, Sakorn

    2018-01-01

    A misdiagnosis of β-thalassemia carrier in samples with Hb Tak and HbD-Punjab, the β-variants, can be a cause of inappropriate genetic counseling thus having a new case of β-thalassemia major. A capillary electrophoresis (CE) is very efficient in separating and quantifying HbA 2 . In this study, HbA 2 levels of samples which were doubted for compound heterozygous Hb Tak/β-thalassemia or heterozygous HbD-Punjab/β-thalassemia were measured and compared between CE and high performance liquid chromatography (HPLC). The molecular confirmation for Hb Tak, HbD-Punjab and β-thalassemia codons 17 (A > T), 41/42 (-TCTT), 71/72 (+A) and IVSI-nt1 (G > T) mutations and 3.4 kb deletion were also performed. Based on DNA analysis, 3 cases were diagnosed as compound heterozygous Hb Tak/β-thalassemia and one for HbD-Punjab/β-thalassemia. The elevated HbA 2 levels were found in all 4 samples with rages of 4.6-7.3% on CE while those were not found on HPLC. Thus, the elevated HbA 2 measured by CE can be used as a screening parameter for differentiating the homozygote of Hb Tak and HbD-Punjab from the compound heterozygote of these hemoglobinopathies and β-thalassemia.

  20. A Missense Mutation in SLC45A2 Is Associated with Albinism in Several Small Long Haired Dog Breeds.

    Science.gov (United States)

    Wijesena, Hiruni R; Schmutz, Sheila M

    2015-01-01

    Homozygosity for a large deletion in the solute carrier family 45, member 2 (SLC45A2) gene causes oculocutaneous albinism (OCA) in the Doberman Pinscher breed. An albino Lhasa Apso did not have this g.27141_31223del (CanFam2) deletion in her SLC45A2 sequence. Therefore, SLC45A2 was investigated in this female Lhasa Apso to search for other possible variants that caused her albinism. The albino Lhasa Apso was homozygous for a nonsynonymous substitution in the seventh exon, a c.1478G>A base change that resulted in a glycine to aspartic acid substitution (p.G493D). This mutation was not found in a wolf, a coyote, or any of the 15 other Lhasa Apso dogs or 32 other dogs of breeds related to the Lhasa Apso. However, an albino Pekingese, 2 albino Pomeranians, and an albino mixed breed dog that was small and long haired were also homozygous for the 493D allele. The colored puppies of the albino Lhasa Apso and the colored dam of the 2 albino Pomeranians were heterozygous for this allele. However, an albino Pug was homozygous for the 493G allele and therefore although we suggest the 493D allele causes albinism when homozygous in several small, long haired dog breeds, it does not explain all albinism in dogs. A variant effect prediction for the albino Lhasa Apso confirms that p.G493D is a deleterious substitution, and a topology prediction for SLC45A2 suggests that the 11th transmembrane domain where the 493rd amino acid was located, has an altered structure. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Estimated carrier frequency of creatine transporter deficiency in females in the general population using functional characterization of novel missense variants in the SLC6A8 gene.

    Science.gov (United States)

    DesRoches, Caro-Lyne; Patel, Jaina; Wang, Peixiang; Minassian, Berge; Salomons, Gajja S; Marshall, Christian R; Mercimek-Mahmutoglu, Saadet

    2015-07-10

    Creatine transporter deficiency (CRTR-D) is an X-linked inherited disorder of creatine transport. All males and about 50% of females have intellectual disability or cognitive dysfunction. Creatine deficiency on brain proton magnetic resonance spectroscopy and elevated urinary creatine to creatinine ratio are important biomarkers. Mutations in the SLC6A8 gene occur de novo in 30% of males. Despite reports of high prevalence of CRTR-D in males with intellectual disability, there are no true prevalence studies in the general population. To determine carrier frequency of CRTR-D in the general population we studied the variants in the SLC6A8 gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We also analyzed synonymous and intronic variants for their predicted pathogenicity using in silico analysis tools. Nine missense variants were functionally analyzed using transient transfection by site-directed mutagenesis with In-Fusion HD Cloning in HeLa cells. Creatine uptake was measured by liquid chromatography tandem mass spectrometry for creatine measurement. The c.1654G>T (p.Val552Leu) variant showed low residual creatine uptake activity of 35% of wild type transfected HeLa cells and was classified as pathogenic. Three variants (c.808G>A; p.Val270Met, c.942C>G; p.Phe314Leu and c.952G>A; p.Ala318Thr) were predicted to be pathogenic based on in silico analysis, but proved to be non-pathogenic by our functional analysis. The estimated carrier frequency of CRTR-D was 0.024% in females in the general population. We recommend functional studies for all novel missense variants by transient transfection followed by creatine uptake measurement by liquid chromatography tandem mass spectrometry as fast and cost effective method for the functional analysis of missense variants in the SLC6A8 gene. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Arañas sociales de la Amazonía ecuatoriana, con notas sobre seis especies sociales no descritas previamente Social spiders of the Ecuadorian Amazonia, with notes on six previously undescribed social species

    Directory of Open Access Journals (Sweden)

    LETICIA AVILÉS

    2001-09-01

    , including six species ­Cyclosa sp., Plesiometa sp., Tapinillus sp. 2, Achaearanea cf. mundula, a pholcid, and a sparassid­ whose sociality has not been previously described. In the introduction we review the characteristics of spider sociality, noting several significant differences with insect social systems. In particular, we note that social spiders have not developed reproductive castes and that in the species with the most complex social behaviors the social groups are also relatively isolated population lineages. We discuss how the Ecuadorian social spiders, in particular those recently discovered, may help test existing hypotheses for the evolution of sociality in spiders. We also outline some of the evolutionary and ecological problems that social spiders may help clarify, such as the evolution of female-biased sex ratios in subdivided populations, the levels of selection, and the patterns of extinction and dispersal of local populations in a metapopulation. An electronic Appendix with English descriptions of the six previously undescribed social species can be found at http://www.scielo.cl/

  3. Novel splice-site and missense mutations in the ALDH1A3 gene underlying autosomal recessive anophthalmia/microphthalmia.

    Science.gov (United States)

    Semerci, C Nur; Kalay, Ersan; Yıldırım, Cem; Dinçer, Tuba; Olmez, Akgün; Toraman, Bayram; Koçyiğit, Ali; Bulgu, Yunus; Okur, Volkan; Satıroğlu-Tufan, Lale; Akarsu, Nurten A

    2014-06-01

    This study aimed to identify the underlying genetic defect responsible for anophthalmia/microphthalmia. In total, two Turkish families with a total of nine affected individuals were included in the study. Affymetrix 250 K single nucleotide polymorphism genotyping and homozygosity mapping were used to identify the localisation of the genetic defect in question. Coding region of the ALDH1A3 gene was screened via direct sequencing. cDNA samples were generated from primary fibroblast cell cultures for expression analysis. Reverse transcriptase PCR (RT-PCR) analysis was performed using direct sequencing of the obtained fragments. The causative genetic defect was mapped to chromosome 15q26.3. A homozygous G>A substitution (c.666G>A) at the last nucleotide of exon 6 in the ALDH1A3 gene was identified in the first family. Further cDNA sequencing of ALDH1A3 showed that the c.666G>A mutation caused skipping of exon 6, which predicted in-frame loss of 43 amino acids (p.Trp180_Glu222del). A novel missense c.1398C>A mutation in exon 12 of ALDH1A3 that causes the substitution of a conserved asparagine by lysine at amino acid position 466 (p.Asn466Lys) was observed in the second family. No extraocular findings-except for nevus flammeus in one affected individual and a variant of Dandy-Walker malformation in another affected individual-were observed. Autistic-like behaviour and mental retardation were observed in three cases. In conclusion, novel ALDH1A3 mutations identified in the present study confirm the pivotal role of ALDH1A3 in human eye development. Autistic features, previously reported as an associated finding, were considered to be the result of social deprivation and inadequate parenting during early infancy in the presented families. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Unique spectrum of SPAST variants in Estonian HSP patients: presence of benign missense changes but lack of exonic rearrangements

    Directory of Open Access Journals (Sweden)

    Gross-Paju Katrin

    2010-03-01

    Full Text Available Abstract Background Hereditary spastic paraplegia (HSP is a clinically and genetically heterogeneous disorder that can be an autosomal-dominant, autosomal-recessive, or X-linked disease. The most common autosomal-dominant form of the disease derives from mutations in the SPAST gene. Methods The aim of this study was to analyze 49 patients diagnosed with HSP from the Estonian population for sequence variants of the SPAST gene and to describe the associated phenotypes. Healthy control individuals (n = 100 with no family history of HSP were also analyzed. All patient samples were screened using denaturing high performance liquid chromatography (DHPLC and multiplex ligation-dependent probe amplification (MLPA assay. Samples with abnormal DHPLC and MLPA profiles were sequenced, with the same regions sequenced in control samples. Results Sequence variants of SPAST were identified in 19/49 HSP patients (38.8%, twelve among them had pathogenic mutations. Within the latter group there was one sporadic case. Eight patients had pure, and four - complex HSP. The twelve variants were identified: seven pathogenic (c.1174-1G>C, c.1185delA, c.1276C>T, c.1352_1356delGAGAA, c.1378C>A, c.1518_1519insTC, c.1841_1842insA and five non-pathogenic (c.131C>T, c.484G>A, c.685A>G, c.1245+202delG, c.1245+215G>C. Only 2 of these mutations had previously been described (c.131C>T, c.1245+202delG. Three mutations, c.1174-1G>C, c.1276 C>T, c.1378C>A, showed intrafamilial segregation. Conclusion This study identified new variants of the SPAST gene which included benign missense variants and short insertions/deletions. No large rearrangements were found. Based on these data, 7 new pathogenic variants of HSP are associated with clinical phenotypes.

  5. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred.

    Science.gov (United States)

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-03-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein.

  6. A novel RUNX2 missense mutation predicted to disrupt DNA binding causes cleidocranial dysplasia in a large Chinese family with hyperplastic nails

    Directory of Open Access Journals (Sweden)

    Wang Xiaoqin

    2007-12-01

    Full Text Available Abstract Background Cleidocranial dysplasia (CCD is a dominantly inherited disease characterized by hypoplastic or absent clavicles, large fontanels, dental dysplasia, and delayed skeletal development. The purpose of this study is to investigate the genetic basis of Chinese family with CCD. Methods Here, a large Chinese family with CCD and hyperplastic nails was recruited. The clinical features displayed a significant intrafamilial variation. We sequenced the coding region of the RUNX2 gene for the mutation and phenotype analysis. Results The family carries a c.T407C (p.L136P mutation in the DNA- and CBFβ-binding Runt domain of RUNX2. Based on the crystal structure, we predict this novel missense mutation is likely to disrupt DNA binding by RUNX2, and at least locally affect the Runt domain structure. Conclusion A novel missense mutation was identified in a large Chinese family with CCD with hyperplastic nails. This report further extends the mutation spectrum and clinical features of CCD. The identification of this mutation will facilitate prenatal diagnosis and preimplantation genetic diagnosis.

  7. Orphan missense mutations in the cystic fibrosis transmembrane conductance regulator: A three-step biological approach to establishing a correlation between genotype and phenotype.

    Science.gov (United States)

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-09-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein-tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. A missense mutation in the alpha-actinin 1 gene (ACTN1 is the cause of autosomal dominant macrothrombocytopenia in a large French family.

    Directory of Open Access Journals (Sweden)

    Paul Guéguen

    Full Text Available Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis. Of the 55 subjects available for analysis, 26 were diagnosed with isolated macrothrombocytopenia. Genome-wide linkage analysis mapped a 10.9 Mb locus to chromosome 14 (14q22 with a LOD score of 7.6. Candidate gene analysis complemented by targeted next-generation sequencing identified a missense mutation (c.137GA; p.Arg46Gln in the alpha-actinin 1 gene (ACTN1 that segregated with macrothrombocytopenia in this large pedigree. The missense mutation occurred within actin-binding domain of alpha-actinin 1, a functionally critical domain that crosslinks actin filaments into bundles. The evaluation of cultured mutation-harboring megakaryocytes by electron microscopy and the immunofluorescence examination of transfected COS-7 cells suggested that the mutation causes disorganization of the cellular cytoplasm. Our study concurred with a recently published whole-exome sequence analysis of six small Japanese families with congenital macrothrombocytopenia, adding ACTN1 to the growing list of thrombocytopenia genes.

  9. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  10. Two Thai families with Norrie disease (ND): association of two novel missense mutations with severe ND phenotype, seizures, and a manifesting carrier.

    Science.gov (United States)

    Yamada, K; Limprasert, P; Ratanasukon, M; Tengtrisorn, S; Yingchareonpukdee, J; Vasiknanonte, P; Kitaoka, T; Ghadami, M; Niikawa, N; Kishino, T

    2001-04-15

    We describe two Thai families with Norrie disease (ND) in three generations, including 10 affected males and one manifesting female. All affected males in each family had severely defective eye development with complete loss of vision. In addition, three male patients (one from family 1 and two from family 2) suffered from epilepsy, and one female carrier from one family manifested blindness with phthisis bulbi in her right eye. Mutation analysis of the ND gene (NDP) revealed two different novel missense mutations (L16P and S75P) that co-segregated with ND in each family, suggesting that the newly appearing proline at codon 16 or codon 75 alters the conformation of the ND protein and contributes to the severe phenotype of ND in each family. Other studies suggest that epileptic seizures or growth retardation that is associated with ND is the consequence of loss of contiguous genes, because most such patients had deletions extending beyond the Norrie locus. Our finding that the three affected males in the two families with the missense mutations had epilepsy does not support a contiguous gene effect, but favors the pleiotropism of NDP, at least as far as the epileptic manifestation is concerned. The unilateral blindness in the female carrier may have been due to non-random X-inactivation. Copyright 2001 Wiley-Liss, Inc.

  11. Structure-Function Correlation Analysis of Connexin50 Missense Mutations Causing Congenital Cataract: Electrostatic Potential Alteration Could Determine Intracellular Trafficking Fate of Mutants

    Directory of Open Access Journals (Sweden)

    Devroop Sarkar

    2014-01-01

    Full Text Available Connexin50 (Cx50 mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.

  12. Wild-type offspring of heterozygous prolactin receptor-null female mice have maladaptive β-cell responses during pregnancy.

    Science.gov (United States)

    Huang, Carol

    2013-03-01

    Abstract  β-Cell mass increases during pregnancy in adaptation to the insulin resistance of pregnancy. This increase is accompanied by an increase in β-cell proliferation, a process that requires intact prolactin receptor (Prlr) signalling. Previously, it was found that during pregnancy, heterozygous prolactin receptor-null (Prlr(+/-)) mice had lower number of β-cells, lower serum insulin and higher blood glucose levels than wild-type (Prlr(+/+)) mice. An unexpected observation was that the glucose homeostasis of the experimental mouse depends on the genotype of her mother, such that within the Prlr(+/+) group, the Prlr(+/+) offspring derived from Prlr(+/+) mothers (Prlr(+/+(+/+))) had higher β-cell mass and lower blood glucose than those derived from Prlr(+/-) mothers (Prlr(+/+(+/-))). Pathways that are known to regulate β-cell proliferation during pregnancy include insulin receptor substrate-2, Akt, menin, the serotonin synthetic enzyme tryptophan hydroxylase-1, Forkhead box M1 and Forkhead box D3. The aim of the present study was to determine whether dysregulation in these signalling molecules in the islets could explain the maternal effect on the phenotype of the offspring. It was found that the pregnancy-induced increases in insulin receptor substrate-2 and Akt expression in the islets were attenuated in the Prlr(+/+(+/-)) mice in comparison to the Prlr(+/+(+/+)) mice. The expression of Forkhead box D3, which plays a permissive role for β-cell proliferation during pregnancy, was also lower in the Prlr(+/+(+/-)) mice. In contrast, the pregnancy-induced increases in phospho-Jak2, tryptophan hydroxylase-1 and FoxM1, as well as the pregnancy-associated reduction in menin expression, were comparable between the two groups. There was also no difference in expression levels of genes that regulate insulin synthesis and secretion (i.e. glucose transporter 2, glucokinase and pancreatic and duodenal homeobox-1) between these two groups. Taken together, these

  13. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Bishop, Matthew T; Diack, Abigail B; Ritchie, Diane L; Ironside, James W; Will, Robert G; Manson, Jean C

    2013-04-01

    Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt-Jakob disease. Three cases of variant Creutzfeldt-Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt-Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt-Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt-Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt-Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt-Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt-Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and recipient spleen

  14. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt–Jakob disease

    Science.gov (United States)

    Bishop, Matthew T.; Diack, Abigail B.; Ritchie, Diane L.; Ironside, James W.; Will, Robert G.

    2013-01-01

    Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt–Jakob disease. Three cases of variant Creutzfeldt–Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt–Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt–Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt–Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt–Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt–Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt–Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and

  15. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae

    Directory of Open Access Journals (Sweden)

    Manabu Sugiyama

    2012-08-01

    Growth hormone (GH transgenic Amago (Oncorhynchus masou ishikawae, containing the sockeye GH1 gene fused with metallothionein-B promoter from the same species, were generated and the physiological condition through lipid metabolism compared among homozygous (Tg/Tg and heterozygous GH transgenic (Tg/+ Amago and the wild type control (+/+. Previously, we have reported that the adipose tissue was generally smaller in GH transgenic fish compared to the control, and that the Δ-6 fatty acyl desaturase gene was down-regulated in the Tg/+ fish. However, fatty acid (FA compositions have not been measured previously in these fish. In this study we compared the FAs composition and content in the liver using gas chromatography. Eleven kinds of FA were detected. The composition of saturated and monounsaturated fatty acids (SFA and MUFA such as myristic acid (14:0, palmitoleic acid (16:1n-7, and cis-vaccenic acid (cis-18:1n-7 was significantly (P<0.05 decreased in GH transgenic Amago. On the other hand, the composition of polyunsaturated fatty acids (PUFAs such as linoleic acid (18:2n-6, arachidonic acid (20:4n-6, and docosapentaenoic acid (22:5n-3 was significantly (P<0.05 increased. Levels of serum glucose and triacylglycerol were significantly (P<0.05 decreased in the GH transgenics compared with +/+ fish. Furthermore, 3′-tag digital gene expression profiling was performed using liver tissues from Tg/Tg and +/+ fish, and showed that Mid1 interacting protein 1 (Mid1ip1, which is an important factor to activate Acetyl-CoA carboxylase (ACC, was down-regulated in Tg/Tg fish, while genes involved in FA catabolism were up-regulated, including long-chain-fatty-acid–CoA ligase 1 (ACSL1 and acyl-coenzyme A oxidase 3 (ACOX3. These data suggest that liver tissue from GH transgenic Amago showed starvation by alteration in glucose and lipid metabolism due to GH overexpression. The decrease of serum glucose suppressed Mid1ip1, and caused a decrease of de novo FA synthesis, resulting

  16. Generation of an ASS1 heterozygous knockout human embryonic stem cell line, WAe001-A-13, using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Fang Yuan

    2018-01-01

    Full Text Available The ASS1 gene encodes argininosuccinate synthetase-1, a cytosolic enzyme with a critical role in the urea cycle. Mutations are found in all ASS1 exons and cause the autosomal recessive disorder citrullinemia. Using CRISPR/Cas9-editing, we established the WAe001-A-13 cell line, which was heterozygous for an ASS1 mutation, from the human embryonic stem cell line H1. The WAe001-A-13 cell line maintained the pluripotent phenotype, the ability to differentiate into all three germ layers and a normal karyotype.

  17. Selection on viability of individuals heterozygous for the temperature-sensitive lethal mutation l(2)M167DTS in experimental populations of Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Kulikov, A. M.; Marec, František; Mitrofanov, V. G.

    2005-01-01

    Roč. 41, č. 6 (2005), s. 613-619 ISSN 1022-7954 Grant - others:Russian Foundation for Basic Research(RU) 02-04-50021; Program of the Presidium of the Russian Academy of Sciences "Dynamics of Gene Pools in Plants, Animals, and Humans"(RU) 10002-251/P-24/154-150/2004-04-111 Institutional research plan: CEZ:AV0Z50070508 Keywords : heterozygous Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.240, year: 2005

  18. Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach.

    Directory of Open Access Journals (Sweden)

    Sneha P

    Full Text Available Maturity-onset diabetes of the young type 3 (MODY3 is a non-ketotic form of diabetes associated with poor insulin secretion. Over the past years, several studies have reported the association of missense mutations in the Hepatocyte Nuclear Factor 1 Alpha (HNF1A with MODY3. Missense mutations in the POU homeodomain (POUH of HNF1A hinder binding to the DNA, thereby leading to a dysfunctional protein. Missense mutations of the HNF1A were retrieved from public databases and subjected to a three-step computational mutational analysis to identify the underlying mechanism. First, the pathogenicity and stability of the mutations were analyzed to determine whether they alter protein structure and function. Second, the sequence conservation and DNA-binding sites of the mutant positions were assessed; as HNF1A protein is a transcription factor. Finally, the biochemical properties of the biological system were validated using molecular dynamic simulations in Gromacs 4.6.3 package. Two arginine residues (131 and 203 in the HNF1A protein are highly conserved residues and contribute to the function of the protein. Furthermore, the R131W, R131Q, and R203C mutations were predicted to be highly deleterious by in silico tools and showed lower binding affinity with DNA when compared to the native protein using the molecular docking analysis. Triplicate runs of molecular dynamic (MD simulations (50ns revealed smaller changes in patterns of deviation, fluctuation, and compactness, in complexes containing the R131Q and R131W mutations, compared to complexes containing the R203C mutant complex. We observed reduction in the number of intermolecular hydrogen bonds, compactness, and electrostatic potential, as well as the loss of salt bridges, in the R203C mutant complex. Substitution of arginine with cysteine at position 203 decreases the affinity of the protein for DNA, thereby destabilizing the protein. Based on our current findings, the MD approach is an important

  19. Double heterozygous mutations Gln100Leu and His348Gln of the F7 gene in a patient with factor VII deficiency.

    Science.gov (United States)

    Li, Min; Zheng, Fangxiu; Jin, Yanhui; Wang, Mingshan; Zhu, Liqing; Yang, Lihong

    2013-03-01

    A 25-year-old Chinese woman who had a history of easy bruising was admitted to hospital due to uncontrolled epistaxis. She showed factor VII activity level of 2% and factor VII antigen level of 4% of the normal value. We detected a novel missense mutation g.8355 A>T (p.Gln100Leu) in the second epidermal growth factor-like (EGF) domain and a g.11482 T>G (p.His348Gln) in the catalytic domain. Although the Gln100 residue is close to the junction of EGF-2 domain with the serine protease domain, we infer that the substitution of polar negatively charged Gln residue at the position 100 with introduction of nonpolar Leu residue may be likely to perturb proper folding, resulting in decreasing factor VII activity.

  20. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations

    Directory of Open Access Journals (Sweden)

    Dongmao Wang

    2017-07-01

    Discussion: Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  1. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    DEFF Research Database (Denmark)

    Vega, H; Trainer, A H; Gordillo, M

    2010-01-01

    Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be truncating...

  2. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    NARCIS (Netherlands)

    Vega, H.; Trainer, A.H.; Gordillo, M.; Crosier, M.; Kayserili, H.; Skovby, F.; Uzielli, M.L.G.; Schnur, R.E.; Manouvrier, S.; Blair, E.; Hurst, J.A.; Forzano, F.; Meins, M.; Simola, K.O.J.; Raas-Rothschild, A; Hennekam, R.C.M.; Jabs, E.W.

    2010-01-01

    Background Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be

  3. Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8.

    Science.gov (United States)

    Kato, Hidekazu; Miyake, Fuyu; Shimbo, Hiroko; Ohya, Makoto; Sugawara, Hidenori; Aida, Noriko; Anzai, Rie; Takagi, Mariko; Okuda, Mitsuko; Takano, Kyoko; Wada, Takahito; Iai, Mizue; Yamashita, Sumimasa; Osaka, Hitoshi

    2014-08-01

    Creatine transporter deficiency (CTD) is an example of X-linked intellectual disability syndromes, caused by mutations in SLC6A8 on Xq28. Although this is the second most frequent genetic cause of intellectual disabilities in Europe or America after Fragile X syndrome, information on the morbidity of this disease is limited in Japan. Using the HPLC screening method we have established recently, we examined samples of urine of 105 patients (73 males and 32 females) with developmental disabilities at our medical center. And we have found a family with three ID boys with a novel missense mutation in SLC6A8. This is the second report of a Japanese family case of CTD. A systematic diagnostic system of this syndrome should be established in Japan to enable us to estimate its frequency and treatment. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. A novel missense NDP mutation [p.(Cys93Arg)] with a manifesting carrier in an austrian family with Norrie disease.

    Science.gov (United States)

    Parzefall, Thomas; Lucas, Trevor; Ritter, Markus; Ludwig, Martin; Ramsebner, Reinhard; Frohne, Alexandra; Schöfer, Christian; Hengstschläger, Markus; Frei, Klemens

    2014-01-01

    Norrie disease is a rare, X-linked genetic syndrome characterized by combined congenital blindness and progressive hearing impairment. Norrie disease is caused by alterations in the NDP gene encoding the growth factor norrin that plays a key role in vascular development and stabilization of the eye, inner ear and brain. We identified a family with 3 affected deafblind males and a single female carrier presenting with a serous retinal detachment but normal hearing. Genetic analysis revealed a novel c.277T>C missense mutation causing the substitution of a hydrophobic cysteine to a hydrophilic arginine [p.(Cys93Arg)] within the highly conserved cysteine knot domain of the norrin protein. These results should expand the scope for amniocentesis and genetic testing for Norrie disease which is gaining in importance due to novel postnatal therapeutic concepts to alleviate the devastating retinal symptoms of Norrie disease. © 2014 S. Karger AG, Basel.

  5. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    Directory of Open Access Journals (Sweden)

    Xiaodong Gu

    2016-01-01

    Full Text Available DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions.

  6. A novel missense mutation in the NDP gene in a child with Norrie disease and severe neurological involvement including infantile spasms.

    Science.gov (United States)

    Lev, Dorit; Weigl, Yuval; Hasan, Mariana; Gak, Eva; Davidovich, Michael; Vinkler, Chana; Leshinsky-Silver, Esther; Lerman-Sagie, Tally; Watemberg, Nathan

    2007-05-01

    Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness and in some cases, mental retardation and deafness. Other neurological complications, particularly epilepsy, are rare. We report on a novel mutation identified in a patient with ND and profound mental retardation. The patient was diagnosed at the age of 6 months due to congenital blindness. At the age of 8 months he developed infantile spasms, which were diagnosed at 11 months as his EEG demonstrated hypsarrhythmia. Mutation analysis of the ND gene (NDP) of the affected child and his mother revealed a novel missense mutation at position c.134T > A resulting in amino acid change at codon V45E. To the best of our knowledge, such severe neurological involvement has not been previously reported in ND patients. The severity of the phenotype may suggest the functional importance of this site of the NDP gene.

  7. Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing

    DEFF Research Database (Denmark)

    van Kuilenburg, André B P; Meijer, Judith; Maurer, Dirk

    2017-01-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU). Genetic variations in DPD have emerged as predictive risk factors for severe fluoropyrimidine toxicity. Here, we report novel and rare genetic variants underlying DPD deficiency...... in 9 cancer patients presenting with severe fluoropyrimidine-associated toxicity. All patients possessed a strongly reduced DPD activity, ranging from 9 to 53% of controls. Analysis of the DPD gene (DPYD) showed the presence of 21 variable sites including 4 novel and 4 very rare aberrations: 3 missense...... of exon 4 immediately upstream of the mutated splice-donor site in the process of DPD pre-mRNA splicing. A lethal toxicity in two DPD patients suggests that fluoropyrimidines combined with other therapies such as radiotherapy might be particularly toxic for DPD deficient patients. Our study advocates...

  8. Contribution of novel ATGL missense mutations to the clinical phenotype of NLSD-M: a strikingly low amount of lipase activity may preserve cardiac function.

    Science.gov (United States)

    Tavian, Daniela; Missaglia, Sara; Redaelli, Chiara; Pennisi, Elena M; Invernici, Gloria; Wessalowski, Ruediger; Maiwald, Robert; Arca, Marcello; Coleman, Rosalind A

    2012-12-15

    The lack of adipose triglyceride lipase (ATGL), a patatin-like phospholipase domain-containing enzyme that hydrolyzes fatty acids from triacylglycerol (TAG) stored in multiple tissues, causes the autosomal recessive disorder neutral lipid storage disease with myopathy (NLSD-M). In two families of Lebanese and Italian origin presenting with NLSD-M, we identified two new missense mutations in highly conserved regions of ATGL (p.Arg221Pro and p.Asn172Lys) and a novel nonsense mutation (p.Trp8X). The Lebanese patients harbor homozygous p.Arg221Pro, whereas the Italian patients are heterozygotes for p.Asn172Lys and the p.Trp8X mutation. The p.Trp8X mutation results in a complete absence of ATGL protein, while the p.Arg221Pro and p.Asn172Lys mutations result in proteins with minimal lipolytic activity. Although these mutations did not affect putative catalytic residues or the lipid droplet (LD)-binding domain of ATGL, cytosolic LDs accumulated in cultured skin fibroblasts from the patients. The missense mutations might destabilize a random coil (p.Asn172Lys) or a helix (p.Arg221Pro) structure within or proximal to the patatin domain of the lipase, thereby interfering with the enzyme activity, while leaving intact the residues required to localize the protein to LDs. Overexpressing wild-type ATGL in one patient's fibroblasts corrected the metabolic defect and effectively reduced the number and area of cellular LDs. Despite the poor lipase activity in vitro, the Lebanese siblings have a mild myopathy and not clinically evident myocardial dysfunction. The patients of Italian origin show a late-onset and slowly progressive skeletal myopathy. These findings suggest that a small amount of correctly localized lipase activity preserves cardiac function in NLSD-M.

  9. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota.

    Science.gov (United States)

    Leatham-Jensen, Mary P; Frimodt-Møller, Jakob; Adediran, Jimmy; Mokszycki, Matthew E; Banner, Megan E; Caughron, Joyce E; Krogfelt, Karen A; Conway, Tyrrell; Cohen, Paul S

    2012-05-01

    Previously, we reported that the streptomycin-treated mouse intestine selected nonmotile Escherichia coli MG1655 flhDC deletion mutants of E. coli MG1655 with improved colonizing ability that grow 15% faster in vitro in mouse cecal mucus and 15 to 30% faster on sugars present in mucus (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). Here, we report that the 10 to 20% remaining motile E. coli MG1655 are envZ missense mutants that are also better colonizers of the mouse intestine than E. coli MG1655. One of the flhDC mutants, E. coli MG1655 ΔflhD, and one of the envZ missense mutants, E. coli MG1655 mot-1, were studied further. E. coli MG1655 mot-1 is more resistant to bile salts and colicin V than E. coli MG1655 ΔflhD and grows ca. 15% slower in vitro in mouse cecal mucus and on several sugars present in mucus compared to E. coli MG1655 ΔflhD but grows 30% faster on galactose. Moreover, E. coli MG1655 mot-1 and E. coli MG1655 ΔflhD appear to colonize equally well in one intestinal niche, but E. coli MG1655 mot-1 appears to use galactose to colonize a second, smaller intestinal niche either not colonized or colonized poorly by E. coli MG1655 ΔflhD. Evidence is also presented that E. coli MG1655 is a minority member of mixed bacterial biofilms in the mucus layer of the streptomycin-treated mouse intestine. We offer a hypothesis, which we call the "Restaurant" hypothesis, that explains how nutrient acquisition in different biofilms comprised of different anaerobes can account for our results.

  10. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  11. A missense mutation in the CRBN gene that segregates with intellectual disability and self-mutilating behaviour in a consanguineous Saudi family.

    Science.gov (United States)

    Sheereen, Atia; Alaamery, Manal; Bawazeer, Shahad; Al Yafee, Yusra; Massadeh, Salam; Eyaid, Wafaa

    2017-04-01

    Autosomal-recessive non-syndromic intellectual disability (ARNS-ID) is an aetiologically heterogeneous disorder. Although little is known about the function of human cereblon (CRBN), its relationship to mild cognitive deficits suggests that it is involved in the basic processes of human memory and learning. We aim to identify the genetic cause of intellectual disability and self-mutilation in a consanguineous Saudi family with five affected members. Clinical whole-exome sequencing was performed on the proband patient, and Sanger sequencing was done to validate and confirm segregation in other family members. A missense variant (c. 1171T>C) in the CRBN gene was identified in five individuals with severe intellectual disability (ID) in a consanguineous Saudi family. The homozygous variant was co-segregating in the family with the phenotype of severe ID, seizures and self-mutilating behaviour. The missense mutation (p.C391R) reported here results in the replacement of a conserved cysteine residue by an arginine in the CULT (cereblon domain of unknown activity, binding cellular ligands and thalidomide) domain of CRBN, which contains a zinc-binding site. These findings thus contribute to a growing list of ID disorders caused by CRBN mutations, broaden the spectrum of phenotypes attributable to ARNS-ID and provide new insight into genotype-phenotype correlations between CRBN mutations and the aetiology of ARNS-ID. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair.

    Science.gov (United States)

    Gripp, Karen W; Aldinger, Kimberly A; Bennett, James T; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E; Dobyns, William B

    2016-09-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences, and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen-activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase one catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears, and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB's effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Defective nucleolar localization and dominant interfering properties of a parafibromin L95P missense mutant causing the hyperparathyroidism-jaw tumor syndrome

    Science.gov (United States)

    Panicker, Leelamma M.; Zhang, Jian-Hua; Dagur, Pradeep K.; Gastinger, Matthew J.; Simonds, William F.

    2011-01-01

    The hyperparathyroidism-jaw tumor syndrome (HPT-JT) is a familial cancer syndrome that can result from germline inactivation of HRPT2/CDC73, a putative tumor suppressor gene that encodes parafibromin, a component of the transcriptional regulatory PAF1 complex with homology to the yeast protein Cdc73p. The vast majority of HRPT2/CDC73 germline mutations identified have been truncation or frameshift mutations, and loss-of-function due to missense mutation is rare. We report here a kindred with HPT-JT due to a germline L95P missense mutation in parafibromin. The mutant parafibromin was studied in vitro to understand the basis of its presumed loss-of-function. When transfected in cultured cells the L95P mutant was expressed to a lower level than wild-type parafibromin, a difference that was not overcome by inhibition of the proteasome degradation pathway. The L95P mutant parafibromin retained the ability to assemble with endogenous PAF1 complex components as evidenced by co-immunoprecipitation. Analysis of subcellular localization showed that the L95P mutant was markedly deficient in nucleolar localization compared to the wild-type, an impairment likely resulting from disruption of a putative nucleolar localization signal immediately upstream of the L95P mutation. Transfection of the L95P parafibromin mutant, but not the wild type, enhanced cell-cycle progression and increased cell survival in NIH-3T3 and HEK 293 cells, resulting apparently from dominant interference with endogenous parafibromin action. The simultaneous loss of nucleolar localization and acquisition of a growth stimulatory phenotype with the L95P mutation raise the possibility that parafibromin must interact with targets in the nucleolus to fully execute its tumor suppressor functions. PMID:20304979

  14. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing.

    Science.gov (United States)

    Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping

    2017-11-01

    Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.

  15. A heterozygous mutation in RPGR associated with X-linked retinitis pigmentosa in a patient with Turner syndrome mosaicism (45,X/46,XX).

    Science.gov (United States)

    Zhou, Qi; Yao, Fengxia; Wang, Feng; Li, Hui; Chen, Rui; Sui, Ruifang

    2018-01-01

    Turner syndrome with retinitis pigmentosa (RP) is rare, with only three cases reported based on clinical examination alone. We summarized the 4-year follow-up and molecular findings in a 28-year-old patient with Turner syndrome and the typical features of short stature and neck webbing, who also had X-linked RP. Her main complaints were night blindness and progressive loss of vision since the age of 9 years. Ophthalmologic examination, optical coherent tomographic imaging, and visual electrophysiology tests showed classic manifestations of RP. The karyotype of peripheral blood showed mosaicism (45,X [72%]/46,XX[28%]). A novel heterozygous frameshift mutation (c.2403_2406delAGAG, p.T801fsX812) in the RP GTPase regulator (RPGR) gene was detected using next generation sequencing and validated by Sanger sequencing. We believe that this is the first report of X-linked RP in a patient with Turner syndrome associated with mosaicism, and an RPGR heterozygous mutation. We hypothesize that X-linked RP in this woman is not related to Turner syndrome, but may be a manifestation of the lack of a normal paternal X chromosome with intact but mutated RPGR. © 2017 Wiley Periodicals, Inc.

  16. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    Science.gov (United States)

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Biallelic PMS2 Mutation and Heterozygous DICER1 Mutation Presenting as Constitutional Mismatch Repair Deficiency With Corpus Callosum Agenesis: Case Report and Review of Literature.

    Science.gov (United States)

    Cheyuo, Cletus; Radwan, Walid; Ahn, Janice; Gyure, Kymberly; Qaiser, Rabia; Tomboc, Patrick

    2017-10-01

    Constitutional mismatch repair deficiency syndrome is a cancer predisposition syndrome caused by autosomal recessive biallelic (homozygous) germline mutations in the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). The clinical spectrum includes neoplastic and non-neoplastic manifestations. We present the case of a 7-year-old boy who presented with T-lymphoblastic lymphoma and glioblastoma, together with non-neoplastic manifestations including corpus callosum agenesis, arachnoid cyst, developmental venous anomaly, and hydrocephalus. Gene mutation analysis revealed pathogenic biallelic mutations of PMS2 and heterozygous DICER1 variant predicted to be pathogenic. This report is the first to allude to a possible interaction of the mismatch repair system with DICER1 to cause corpus callosum agenesis.

  18. A novel heterozygous mutation in the Indian hedgehog gene (IHH) is associated with brachydactyly type A1 in a Chinese family.

    Science.gov (United States)

    Liu, Mugen; Wang, Xu; Cai, Zhou; Tang, Zhaohui; Cao, Kangsheng; Liang, Bo; Ren, Xiang; Liu, Jing Yu; Wang, Qing K

    2006-01-01

    Brachydactyly type A1 (BDA1) is caused by mutations in the Indian hedgehog gene, IHH, on chromosome 2q35-36. In this study, a large five-generation Chinese family with BDA1 was identified and characterized. All affected family members demonstrated significant homogeneous phenotype and some unique clinical features different from those associated with the reported BDA1 mutations in IHH. Linkage analysis showed that the BDA1 gene in the family was linked to marker D2S126 close to IHH with a LOD score of 4.74 at a recombination fraction of 0. DNA sequence analysis revealed a heterozygous C to T transition at nucleotide 461 of IHH, resulting in a novel T154I substitution. The T154I mutation co-segregated with all affected individuals in the family, and was not present in normal family members or 200 normal controls. These results expand the spectrum of clinical phenotype associated with IHH mutations.

  19. Heterozygous deletion at the RLN1 locus in a family with testicular germ cell cancer identified by integrating copy number variation data with phenome and interactome information

    DEFF Research Database (Denmark)

    Edsgärd, D; Scheel, M; Hansen, N T

    2011-01-01

    -associated genes among loci targeted by CNVs. The top-ranked candidate, RLN1, encoding a Relaxin-H1 peptide, although only detected in one of the families, was selected for further investigations. Validation of the CNV at the RLN1 locus was performed as an association study using qPCR with 106 sporadic testicular...... GCT patients and 200 healthy controls. Observed CNV frequencies of 1.9% among cases and 1.5% amongst controls were not significantly different and this was further confirmed by CNV data extracted from a genome-wide analysis of 189 cases and 380 controls, where similar frequencies of 2.2% were observed....... Collectively, the findings show that a heterozygous loss at the RLN1 locus is not a genetic factor mediating high population-wide risk for testicular germ cell tumour, but do not exclude a contribution of this aberration in some cases of cancer. The preliminary expression data suggest a possible role...

  20. One year variability of peak heights, heterozygous balance and inter-locus balance for the DNA positive control of AmpFℓSTR© Identifiler© STR kit.

    Science.gov (United States)

    Debernardi, A; Suzanne, E; Formant, A; Pène, L; Dufour, A B; Lobry, J R

    2011-01-01

    Multivariate analyses of 205 positive control experiments in an AmpFℓSTR© Identifiler© STR kit were used to analyze the factors affecting peak heights at 16 loci. Peak heights were found to be highly correlated between loci and there was evidence for a difference in sensitivity of the two genetic analyzers in the blue channel. Heterozygous balance response at 10 loci was found to behave as a random variable following a beta-distribution with typical median values of 90%, without locus or genetic analyzer effect. Inter-locus balance at 16 loci was influenced by the blue channel effect and a temporal switch of unexplained origin. The implications of these results for the choice of minimum threshold values in quality control are discussed. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q10 deficiency harboring a heterozygous mutation in COQ4 gene

    Directory of Open Access Journals (Sweden)

    Damià Romero-Moya

    2017-10-01

    Full Text Available We report the generation, CRISPR/Cas9-edition and characterization of induced pluripotent stem cell (iPSC lines from a patient with coenzyme Q10 deficiency harboring the heterozygous mutation c.483G > C in the COQ4 gene. iPSCs were generated using non-integrative Sendai Viruses containing the reprogramming factors OCT4, SOX2, KLF4 and C-MYC. The iPSC lines carried the c.483G > C COQ4 mutation, silenced the OKSM expression and were mycoplasma-free. They were bona fide pluripotent cells as characterized by morphology, immunophenotype/gene expression for pluripotent-associated markers/genes, NANOG and OCT4 promoter demethylation, karyotype and teratoma formation. The COQ4 mutation was CRISPR/Cas9 edited resulting in isogenic, diploid and off-target free COQ4-corrected iPSCs.

  2. Generation of human iPSC line from a patient with laterality defects and associated congenital heart anomalies carrying a DAND5 missense alteration

    Directory of Open Access Journals (Sweden)

    Fernando Cristo

    2017-12-01

    Full Text Available A human iPSC line was generated from exfoliated renal epithelial (ERE cells of a patient affected with Congenital Heart Disease (CHD and Laterality Defects carrying tshe variant p.R152H in the DAND5 gene. The transgene-free iPSCs were generated with the human OSKM transcription factor using the Sendai-virus reprogramming system. The established iPSC line had the specific heterozygous alteration, a stable karyotype, expressed pluripotency markers and generated embryoid bodies that can differentiate towards the three germ layers in vitro. This iPSC line offers a useful resource to study the molecular mechanisms of cardiomyocyte proliferation, as well as for drug testing.

  3. R353Q polymorphism in the factor VII gene and cardiovascular risk in Heterozygous Familial Hypercholesterolemia: a case-control study.

    Science.gov (United States)

    Criado-García, Juan; Fuentes, Francisco; Cruz-Teno, Cristina; García-Rios, Antonio; Jiménez-Morales, Anabel; Delgado-Lista, Javier; Mata, Pedro; Alonso, Rodrigo; López-Miranda, José; Pérez-Jiménez, Francisco

    2011-04-09

    Heterozygous Familial Hypercholesterolemia (FH) is a genetic disorder characterized by a high risk of cardiovascular disease. Certain polymorphisms of the factor VII gene have been associated with the development of coronary artery disease and there is a known association between factor VII levels and polymorphic variants in this gene. To date, no study has evaluated the association between factor VII and coronary artery disease in patients with FH. This case-control study comprised 720 patients (546 with FH and 174 controls). We determined the prevalence and allele frequencies of the R353Q polymorphism of factor VII, the plasma levels of factor VII antigen (FVII Ag) and whether they could be predictive factors for cardiovascular risk. 75% (410) of the patients with FH were RR, 23% (127) RQ and 1.6% (9) QQ; in the control group 75.3% (131) were RR, 21.3% (37) RQ and 3.4% (6) QQ (p = 0.32). No statistically significant associations were observed in the distribution of genotypes and allele frequencies between case (FH) and control groups. Nor did we find differences when we evaluated the relationship between the R353Q polymorphism and cardiovascular risk (including coronary disease, ischemic stroke and peripheral arterial disease), either in the univariate analysis or after adjustment for sex, age, arterial hypertension, body mass index, xanthomas, diabetes, smoking, HDLc and LDLc and lipid-lowering treatment. The FVII Ag concentrations behaved in a similar fashion, with no differences for the interaction between controls and those with FH (RR vs. RQ/QQ; p = 0.96). In the subgroup of patients with FH no association was found among cardiovascular disease, genotype and FVII Ag levels (RR vs. RQ/QQ; p = 0.97). Our study did not find a direct relationship between cardiovascular risk in patients with Heterozygous Familial Hypercholesterolemia, the R353Q polymorphism of factor VII and FVII Ag levels.

  4. R353Q polymorphism in the factor VII gene and cardiovascular risk in Heterozygous Familial Hypercholesterolemia: a case-control study

    Directory of Open Access Journals (Sweden)

    Pérez-Jiménez Francisco

    2011-04-01

    Full Text Available Abstract Background Heterozygous Familial Hypercholesterolemia (FH is a genetic disorder characterized by a high risk of cardiovascular disease. Certain polymorphisms of the factor VII gene have been associated with the development of coronary artery disease and there is a known association between factor VII levels and polymorphic variants in this gene. To date, no study has evaluated the association between factor VII and coronary artery disease in patients with FH. Results This case-control study comprised 720 patients (546 with FH and 174 controls. We determined the prevalence and allele frequencies of the R353Q polymorphism of factor VII, the plasma levels of factor VII antigen (FVII Ag and whether they could be predictive factors for cardiovascular risk. 75% (410 of the patients with FH were RR, 23% (127 RQ and 1.6% (9 QQ; in the control group 75.3% (131 were RR, 21.3% (37 RQ and 3.4% (6 QQ (p = 0.32. No statistically significant associations were observed in the distribution of genotypes and allele frequencies between case (FH and control groups. Nor did we find differences when we evaluated the relationship between the R353Q polymorphism and cardiovascular risk (including coronary disease, ischemic stroke and peripheral arterial disease, either in the univariate analysis or after adjustment for sex, age, arterial hypertension, body mass index, xanthomas, diabetes, smoking, HDLc and LDLc and lipid-lowering treatment. The FVII Ag concentrations behaved in a similar fashion, with no differences for the interaction between controls and those with FH (RR vs. RQ/QQ; p = 0.96. In the subgroup of patients with FH no association was found among cardiovascular disease, genotype and FVII Ag levels (RR vs. RQ/QQ; p = 0.97. Conclusions Our study did not find a direct relationship between cardiovascular risk in patients with Heterozygous Familial Hypercholesterolemia, the R353Q polymorphism of factor VII and FVII Ag levels.

  5. Heterozygous Null Bone Morphogenetic Protein Receptor Type 2 Mutations Promote SRC Kinase-dependent Caveolar Trafficking Defects and Endothelial Dysfunction in Pulmonary Arterial Hypertension*

    Science.gov (United States)

    Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.

    2015-01-01

    Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245

  6. A lower dose threshold for the in vivo protective adaptive response to radiation. Tumorigenesis in chronically exposed normal and Trp53 heterozygous C57BL/6 mice

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Burchart, P.; Wyatt, H.

    2008-01-01

    Low doses of ionizing radiation to cells and animals may induce adaptive responses that reduce the risk of cancer. However, there are upper dose thresholds above which these protective adaptive responses do not occur. We have now tested the hypothesis that there are similar lower dose thresholds that must be exceeded in order to induce protective effects in vivo. We examined the effects of low dose/low dose rate fractionated exposures on cancer formation in Trp53 normal or cancer-prone Trp53 heterozygous female C57BL/6 mice. Beginning at 6 weeks of age, mice were exposed 5 days/week to single daily doses (0.33 mGy, 0.7 mGy/h) totaling 48, 97 or 146 mGy over 30, 60 or 90 weeks. The exposures for shorter times (up to 60 weeks) appeared to be below the level necessary to induce overall protective adaptive responses in Trp53 normal mice, and detrimental effects (shortened lifespan, increased frequency) evident for only specific tumor types (B- and T-cell lymphomas), were produced. Only when the exposures were continued for 90 weeks did the dose become sufficient to induce protective adaptive responses, balancing the detrimental effects for these specific cancers, and reducing the risk level back to that of the unexposed animals. Detrimental effects were not seen for other tumor types, and a protective effect was seen for sarcomas after 60 weeks of exposure, which was then lost when the exposure continued for 90 weeks. As previously shown for the upper dose threshold for protection by low doses, the lower dose boundary between protection and harm was influenced by Trp53 functionality. Neither protection nor harm was observed in exposed Trp53 heterozygous mice, indicating that reduced Trp53 function raises the lower dose/dose rate threshold for both detrimental and protective tumorigenic effects. (author)

  7. Normal X-inactivation mosaicism in corneas of heterozygous FlnaDilp2/+ female mice--a model of human Filamin A (FLNA diseases

    Directory of Open Access Journals (Sweden)

    Douvaras Panagiotis

    2012-02-01

    Full Text Available Abstract Background Some abnormalities of mouse corneal epithelial maintenance can be identified by the atypical mosaic patterns they produce in X-chromosome inactivation mosaics and chimeras. Human FLNA/+ females, heterozygous for X-linked, filamin A gene (FLNA mutations, display a range of disorders and X-inactivation mosaicism is sometimes quantitatively unbalanced. FlnaDilp2/+ mice, heterozygous for an X-linked filamin A (Flna nonsense mutation have variable eye, skeletal and other abnormalities, but X-inactivation mosaicism has not been investigated. The aim of this study was to determine whether X-inactivation mosaicism in the corneal epithelia of FlnaDilp2/+ mice was affected in any way that might predict abnormal corneal epithelial maintenance. Results X-chromosome inactivation mosaicism was studied in the corneal epithelium and a control tissue (liver of FlnaDilp2/+ and wild-type (WT female X-inactivation mosaics, hemizygous for the X-linked, LacZ reporter H253 transgene, using β-galactosidase histochemical staining. The corneal epithelia of FlnaDilp2/+ and WT X-inactivation mosaics showed similar radial, striped patterns, implying epithelial cell movement was not disrupted in FlnaDilp2/+ corneas. Corrected stripe numbers declined with age overall (but not significantly for either genotype individually, consistent with previous reports suggesting an age-related reduction in stem cell function. Corrected stripe numbers were not reduced in FlnaDilp2/+ compared with WT X-inactivation mosaics and mosaicism was not significantly more unbalanced in the corneal epithelia or livers of FlnaDilp2/+ than wild-type Flna+/+ X-inactivation mosaics. Conclusions Mosaic analysis identified no major effect of the mouse FlnaDilp2 mutation on corneal epithelial maintenance or the balance of X-inactivation mosaicism in the corneal epithelium or liver.

  8. A novel loss-of-function heterozygous BRCA2 c.8946_8947delAG mutation found in a Chinese woman with family history of breast cancer.

    Science.gov (United States)

    Ma, Jing; Yang, Jichun; Jian, Wenjing; Wang, Xianming; Xiao, Deyong; Xia, Wenjun; Xiong, Likuan; Ma, Duan

    2017-04-01

    Breast cancer is the most frequent female malignancy worldwide. Among them, some cases have hereditary susceptibility in two leading genes, BRCA1 and BRCA2. Heterozygous germ line mutations in them are related with increased risk of breast, ovarian and other cancer, following autosomal dominant inheritance mode. For purpose of early finding, early diagnosis and early treatment, mutation detecting of BRCA1/2 genes was performed in unselected 300 breast or ovarian patients and unaffected women using next-generation sequencing and then confirmed by Sanger sequencing. A non-previously reported heterozygous mutation c.8946_8947delAG (p.D2983FfsX34) of BRCA2 gene was identified in an unaffected Chinese woman with family history of breast cancer (her breast cancer mother, also carrying this mutation). The BRCA2-truncated protein resulted from the frame shift mutation was found to lose two putative nuclear localization signals and a Rad51-binding motif in the extreme C-terminal region by bioinformatic prediction. And then in vitro experiments showed that nearly all the mutant protein was unable to translocate to the nucleus to perform DNA repair activity. This novel mutant BRCA2 protein is dysfunction. We classify the mutation into disease causing and conclude that it is the risk factor for breast cancer in this family. So, conducting the same mutation test and providing genetic counseling for this family is practically meaningful and significant. Meanwhile, the identification of this new mutation enriches the Breast Cancer Information Core database, especially in China.

  9. A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations.

    Directory of Open Access Journals (Sweden)

    Marcia Manterola

    2009-08-01

    Full Text Available Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC. Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., gammaH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR. These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading

  10. A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice

    Directory of Open Access Journals (Sweden)

    Cavender Druie

    2009-05-01

    Full Text Available Abstract Background The mammalian target of rapamycin protein (mTOR is an evolutionarily conserved kinase that regulates protein synthesis, cell cycle progression and proliferation in response to various environmental cues. As a critical downstream mediator of PI3K signaling, mTOR is important for lymphocyte development and function of mature T and B-cells. Most studies of mTOR in immune responses have relied on the use of pharmacological inhibitors, such as rapamycin. Rapamycin-FKBP12 complex exerts its immunosuppressive and anti-proliferative effect by binding outside the kinase domain of mTOR, and subsequently inhibiting downstream mTOR signaling. Results To determine the requirement for mTOR kinase activity in the immune system function, we generated knock-in mice carrying a mutation (D2338 in the catalytic domain of mTOR. While homozygous mTOR kd/kd embryos died before embryonic day 6.5, heterozygous mTOR+/kd mice appeared entirely normal and are fertile. mTOR +/kd mice exhibited normal T and B cell development and unaltered proliferative responses of splenocytes to IL-2 and TCR/CD28. In addition, heterozygousity for the mTOR kinase-dead allele did not sensitize T cells to rapamycin in a CD3-mediated proliferation assay. Unexpectedly, mTOR kinase activity towards its substrate 4E-BP1 was not decreased in hearts and livers from heterozygous animals. Conclusion Altogether, our findings indicate that mTOR kinase activity is indispensable for the early development of mouse embryos. Moreover, a single wild type mTOR allele is sufficient to maintain normal postnatal growth and lymphocyte development and proliferation.

  11. A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome.

    Science.gov (United States)

    Morikawa, Shuntaro; Tajima, Toshihiro; Nakamura, Akie; Ishizu, Katsura; Ariga, Tadashi

    2017-12-01

    Wolfram syndrome (WS) is a disorder characterized by the association of insulin-dependent diabetes mellitus (DM), diabetes insipidus, deafness, and optic nerve atrophy. WS is caused by WFS1 mutations encoding WFS1 protein expressed in endoplasmic reticulum (ER). During ER protein synthesis, misfolded and unfolded proteins accumulate, known as "ER stress". This is attenuated by the unfolded protein response (UPR), which recovers and maintains ER functions. Because WFS1 is a UPR component, mutant WFS1 might cause unresolvable ER stress conditions and cell apoptosis, the major causes underlying WS symptoms. We encountered an 11-month-old Japanese female WS patient with insulin-dependent DM, congenital cataract and severe bilateral hearing loss. Analyze the WFS1 and functional consequence of the patient WFS1 in vitro. The patient WFS1 contained a heterozygous 4 amino acid in-frame deletion (p.N325_I328del). Her mutant WFS1 increased GRP78 and ATF6α promoter activities in the absence of thapsigargin, indicating constitutive ER stress and nuclear factor of activated T-cell reporter activity, reflecting elevated cytosolic Ca 2+ signals. Mutant transfection into cells reduced mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca 2+ transport ATPase 2b (SERCA2b) compared with wild type. Because SERCA2b is required for ER and cytoplasmic Ca 2+ homeostasis, decreased SERCA2b expression might affect ER Ca 2+ efflux, causing cell apoptosis. A novel heterozygous mutation of WFS1 induced constitutive ER stress through ATF6α activation and ER Ca 2+ efflux, resulting in cell apoptosis. These results provide new insights into the roles of WFS1 in UPR and mechanism of monogenic DM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. A heterozygous microdeletion of 20p12.2-3 encompassing PROKR2 and BMP2 in a patient with congenital hypopituitarism and growth hormone deficiency.

    Science.gov (United States)

    Parsons, Samuel J H; Wright, Neville B; Burkitt-Wright, Emma; Skae, Mars S; Murray, Phillip G

    2017-08-01

    Congenital growth hormone deficiency is a rare disorder with an incidence of approximately 1 in 4,000 live births. Pituitary development is under the control of a multitude of spatiotemporally regulated signaling molecules and transcription factors. Mutations in the genes encoding these molecules can result in hypopituitarism but for the majority of children with congenital hypopituitarism, the aetiology of their disease remains unknown. The proband is a 5-year-old girl who presented with neonatal hypoglycaemia and prolonged jaundice. No definitive endocrine cause of hypoglycaemia was identified in the neonatal period. She was born of normal size at 42 weeks but demonstrated growth failure with a progressive reduction in height to -3.2 SD by age 4.5 years and failed a growth hormone stimulation test with a peak growth hormone of 4.2 mcg/L. MRI of the pituitary gland demonstrated a hypoplastic anterior lobe and ectopic posterior lobe. Array CGH demonstrated an inherited 0.2 Mb gain at 1q21.1 and a de novo 4.8 Mb heterozygous deletion at 20p12.2-3. The deletion contained 17 protein coding genes including PROKR2 and BMP2, both of which are expressed during embryological development of the pituitary gland. PROKR2 mutations have been associated with hypopituitarism but a heterozygous deletion of this gene with hypopituitarism is a novel observation. In conclusion, congenital hypopituitarism can be present in individuals with a 20p12.3 deletion, observed with incomplete penetrance. Array CGH may be a useful investigation in select cases of early onset growth hormone deficiency, and patients with deletions within this region should be evaluated for pituitary hormone deficiencies. © 2017 Wiley Periodicals, Inc.

  13. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus

    Science.gov (United States)

    Li, Minghui; Sun, Yunlv; Zhao, Jiue; Shi, Hongjuan; Zeng, Sheng; Ye, Kai; Jiang, Dongneng; Zhou, Linyan; Sun, Lina; Tao, Wenjing; Nagahama, Yoshitaka; Kocher, Thomas D.; Wang, Deshou

    2015-01-01

    Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. PMID:26588702

  14. Establishment of mouse model of MYH9 disorders: heterozygous R702C mutation provokes macrothrombocytopenia with leukocyte inclusion bodies, renal glomerulosclerosis and hearing disability.

    Science.gov (United States)

    Suzuki, Nobuaki; Kunishima, Shinji; Ikejiri, Makoto; Maruyama, Shoichi; Sone, Michihiko; Takagi, Akira; Ikawa, Masahito; Okabe, Masaru; Kojima, Tetsuhito; Saito, Hidehiko; Naoe, Tomoki; Matsushita, Tadashi

    2013-01-01

    Nonmuscle myosin heavy chain IIA (NMMHCIIA) encoded by MYH9 is associated with autosomal dominantly inherited diseases called MYH9 disorders. MYH9 disorders are characterized by macrothrombocytopenia and very characteristic inclusion bodies in granulocytes. MYH9 disorders frequently cause nephritis, sensorineural hearing disability and cataracts. One of the most common and deleterious mutations causing these disorders is the R702C missense mutation. We generated knock-in mice expressing the Myh9 R702C mutation. R702C knock-in hetero mice (R702C+/- mice) showed macrothrombocytopenia. We studied megakaryopoiesis of cultured fetal liver cells of R702C+/- mice and found that proplatelet formation was impaired: the number of proplatelet tips was decreased, proplatelet size was increased, and proplatelet shafts were short and enlarged. Although granulocyte inclusion bodies were not visible by May-Grünwald Giemsa staining, immunofluorescence analysis indicated that NMMHCIIA proteins aggregated and accumulated in the granulocyte cytoplasm. In other organs, R702C+/- mice displayed albuminuria which increased with age. Renal pathology examination revealed glomerulosclerosis. Sensory hearing loss was indicated by lowered auditory brainstem response. These findings indicate that Myh9 R702C knock-in mice mirror features of human MYH9 disorders arising from the R702C mutation.

  15. Targeted Resequencing and Functional Testing Identifies Low-Frequency Missense Variants in the Gene Encoding GARP as Significant Contributors to Atopic Dermatitis Risk.

    Science.gov (United States)

    Manz, Judith; Rodríguez, Elke; ElSharawy, Abdou; Oesau, Eva-Maria; Petersen, Britt-Sabina; Baurecht, Hansjörg; Mayr, Gabriele; Weber, Susanne; Harder, Jürgen; Reischl, Eva; Schwarz, Agatha; Novak, Natalija; Franke, Andre; Weidinger, Stephan

    2016-12-01

    Gene-mapping studies have consistently identified a susceptibility locus for atopic dermatitis and other inflammatory diseases on chromosome band 11q13.5, with the strongest association observed for a common variant located in an intergenic region between the two annotated genes C11orf30 and LRRC32. Using a targeted resequencing approach we identified low-frequency and rare missense mutations within the LRRC32 gene encoding the protein GARP, a receptor on activated regulatory T cells that binds latent transforming growth factor-β. Subsequent association testing in more than 2,000 atopic dermatitis patients and 2,000 control subjects showed a significant excess of these LRRC32 variants in individuals with atopic dermatitis. Structural protein modeling and bioinformatic analysis predicted a disruption of protein transport upon these variants, and overexpression assays in CD4 + CD25 - T cells showed a significant reduction in surface expression of the mutated protein. Consistently, flow cytometric (FACS) analyses of different T-cell subtypes obtained from atopic dermatitis patients showed a significantly reduced surface expression of GARP and a reduced conversion of CD4 + CD25 - T cells into regulatory T cells, along with lower expression of latency-associated protein upon stimulation in carriers of the LRRC32 A407T variant. These results link inherited disturbances of transforming growth factor-β signaling with atopic dermatitis risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. SNP2Structure: A Public and Versatile Resource for Mapping and Three-Dimensional Modeling of Missense SNPs on Human Protein Structures

    Directory of Open Access Journals (Sweden)

    Difei Wang

    2015-01-01

    Full Text Available One of the long-standing challenges in biology is to understand how non-synonymous single nucleotide polymorphisms (nsSNPs change protein structure and further affect their function. While it is impractical to solve all the mutated protein structures experimentally, it is quite feasible to model the mutated structures in silico. Toward this goal, we built a publicly available structure database resource (SNP2Structure, https://apps.icbi.georgetown.edu/snp2structure focusing on missense mutations, msSNP. Compared with web portals with similar aims, SNP2Structure has the following major advantages. First, our portal offers direct comparison of two related 3D structures. Second, the protein models include all interacting molecules in the original PDB structures, so users are able to determine regions of potential interaction changes when a protein mutation occurs. Third, the mutated structures are available to download locally for further structural and functional analysis. Fourth, we used Jsmol package to display the protein structure that has no system compatibility issue. SNP2Structure provides reliable, high quality mapping of nsSNPs to 3D protein structures enabling researchers to explore the likely functional impact of human disease-causing mutations.

  17. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia.

    Science.gov (United States)

    Trbusek, Martin; Smardova, Jana; Malcikova, Jitka; Sebejova, Ludmila; Dobes, Petr; Svitakova, Miluse; Vranova, Vladimira; Mraz, Marek; Francova, Hana Skuhrova; Doubek, Michael; Brychtova, Yvona; Kuglik, Petr; Pospisilova, Sarka; Mayer, Jiri

    2011-07-01

    There is a distinct connection between TP53 defects and poor prognosis in chronic lymphocytic leukemia (CLL). It remains unclear whether patients harboring TP53 mutations represent a homogenous prognostic group. We evaluated the survival of patients with CLL and p53 defects identified at our institution by p53 yeast functional assay and complementary interphase fluorescence in situ hybridization analysis detecting del(17p) from 2003 to 2010. A defect of the TP53 gene was identified in 100 of 550 patients. p53 mutations were strongly associated with the deletion of 17p and the unmutated IgVH locus (both P DBMs), structurally well-defined parts of the DNA-binding domain, manifested a clearly shorter median survival (12 months) compared with patients having missense mutations outside DBMs (41 months; P = .002) or nonmissense alterations (36 months; P = .005). The difference in survival was similar in the analysis limited to patients harboring mutation accompanied by del(17p) and was also confirmed in a subgroup harboring TP53 defect at diagnosis. The patients with p53 DBMs mutation (at diagnosis) also manifested a short median time to first therapy (TTFT; 1 month). The substantially worse survival and the short TTFT suggest a strong mutated p53 gain-of-function phenotype in patients with CLL with DBMs mutations. The impact of p53 DBMs mutations on prognosis and response to therapy should be analyzed in investigative clinical trials.

  18. Intrafamilial variability of the ocular phenotype in a Polish family with a missense mutation (A63D) in the Norrie disease gene.

    Science.gov (United States)

    Zaremba, J; Feil, S; Juszko, J; Myga, W; van Duijnhoven, G; Berger, W

    1998-09-01

    To describe the phenotypic variability in a Polish Norrie disease (ND) family associated with the missense mutation A63D. A patient with spared vision from a Polish ND family underwent detailed ophthalmological examinations including slit-lamp biomicroscopy, ultrasound (USG), angiography, Goldmann kinetic visual field, and electroretinography (ERG). Mutation screening was carried out using the single-strand conformation polymorphism (SSCP) technique and subsequent DNA sequencing of the coding part of the ND gene. A mutation was detected (exon 3, A63D) in a large Polish family with 12 affected males, all but one presenting with classical ND symptoms. In one male, partially preserved vision was observed up to 40 years of age (distance acuity of the right eye 1/50 and left eye 2/50). Slit-lamp examination revealed remnants of a persistent primary vitreous and hyaloid artery. Upon angiography, the retina was vascularized within the posterior pole but not in the periphery. The ERG revealed pathological changes characteristic for chorioretinal degenerations. Within one family, individuals with identical sequence alterations in the ND gene can show remarkable phenotypic variability of the ocular symptoms. These findings indicate the involvement of additional factors (epigenetic or genetic) in ocular pathogenesis of ND.

  19. Structural Effects of Some Relevant Missense Mutations on the MECP2-DNA Binding: A MD Study Analyzed by Rescore+, a Versatile Rescoring Tool of the VEGA ZZ Program.

    Science.gov (United States)

    Pedretti, Alessandro; Granito, Cinzia; Mazzolari, Angelica; Vistoli, Giulio

    2016-09-01

    DNA methylation plays key roles in mammalian cells and is modulated by a set of proteins which recognize symmetrically methylated nucleotides. Among them, the protein MECP2 shows multifunctional roles repressing and/or activating genes by binding to both methylated and unmethylated regions of the genome. The interest for this protein markedly increased from the observation that its mutations are the primary cause of Rett syndrome, a neurodevelopmental disorder which causes mental retardation in young females. Thus, the present study is aimed to investigate the effects of some of these known pathogenic missense mutations (i.e. R106Q, R106W, R111G, R133C and R133H) on the MECP2 folding and DNA binding by molecular dynamics simulations. The effects of the simulated mutations are also parameterized by using a here proposed new tool, named Rescore+, implemented in the VEGA ZZ suite of programs, which calculates a set of scoring functions on all frames of a trajectory or on all complexes contained in a database thus allowing an easy rescoring of results coming from MD or docking simulations. The obtained results revealed that the reported loss of the MECP2 function induced by the simulated mutations can be ascribed to both stabilizing and destabilizing effect on DNA binding. The study confirms that MD simulations are particularly useful to rationalize and predict the mutation effects offering insightful information for diagnostics and drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Functional PMS2 hybrid alleles containing a pseudogene-specific missense variant trace back to a single ancient intrachromosomal recombination event.

    Science.gov (United States)

    Ganster, Christina; Wernstedt, Annekatrin; Kehrer-Sawatzki, Hildegard; Messiaen, Ludwine; Schmidt, Konrad; Rahner, Nils; Heinimann, Karl; Fonatsch, Christa; Zschocke, Johannes; Wimmer, Katharina

    2010-05-01

    Sequence exchange between PMS2 and its pseudogene PMS2CL, embedded in an inverted duplication on chromosome 7p22, has been reported to be an ongoing process that leads to functional PMS2 hybrid alleles containing PMS2- and PMS2CL-specific sequence variants at the 5'-and the 3'-end, respectively. The frequency of PMS2 hybrid alleles, their biological significance, and the mechanisms underlying their formation are largely unknown. Here we show that overall hybrid alleles account for one-third of 384 PMS2 alleles analyzed in individuals of different ethnic backgrounds. Depending on the population, 14-60% of hybrid alleles carry PMS2CL-specific sequences in exons 13-15, the remainder only in exon 15. We show that exons 13-15 hybrid alleles, named H1 hybrid alleles, constitute different haplotypes but trace back to a single ancient intrachromosomal recombination event with crossover. Taking advantage of an ancestral sequence variant specific for all H1 alleles we developed a simple gDNA-based polymerase chain reaction (PCR) assay that can be used to identify H1-allele carriers with high sensitivity and specificity (100 and 99%, respectively). Because H1 hybrid alleles harbor missense variant p.N775S of so far unknown functional significance, we assessed the H1-carrier frequency in 164 colorectal cancer patients. So far, we found no indication that the variant plays a major role with regard to cancer susceptibility. (c) 2010 Wiley-Liss, Inc.

  1. A novel homozygous Arg222Trp missense mutation in WNT7A in two sisters with severe Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.

    Science.gov (United States)

    Kantaputra, Piranit N; Mundlos, Stefan; Sripathomsawat, Warissara

    2010-11-01

    Al-Awadi/Raas-Rothschild/Schinzel phocomelia (AARRS) syndrome, a rare autosomal recessive disorder, comprises malformations of upper and lower limbs with severely hypoplastic pelvis and abnormal genitalia. Mutations in WNT7A have been reported as cause of the syndrome. We report on two sisters in a Thai family with short and malformed long bones, absent fibulae, flexion contracture of digits, and a/hypoplastic nails. Fusion between severely malformed femora and slender tibiae has never been reported in patients with WNT7A mutations. Lower limbs were more severely malformed than the upper ones and the pelvis was also severely affected. Multiple fusions of long bones and of the femoral heads to the acetabula were evident. A novel homozygous missense mutation in coding exon 4 of the WNT7A was detected in both affected daughters (c.664C > T) leading to an amino acid exchange from arginine to tryptophan (p.Arg222Trp; R222W). The phenotype is likely to result from an abnormality of all three signaling centers in the developing limb resulting in ventralization with a loss of dorsal structures (aplasia/hypoplasia of nails) a loss of anterior-posterior identity (single distal bones in lower limb without polarity) and an outgrowth defect resulting in distal truncations. © 2010 Wiley-Liss, Inc.

  2. Exome Sequencing Identifies a Missense Variant in EFEMP1 Co-Segregating in a Family with Autosomal Dominant Primary Open-Angle Glaucoma.

    Directory of Open Access Journals (Sweden)

    Donna S Mackay

    Full Text Available Primary open-angle glaucoma (POAG is a clinically important and genetically heterogeneous cause of progressive vision loss as a result of retinal ganglion cell death. Here we have utilized trio-based, whole-exome sequencing to identify the genetic defect underlying an autosomal dominant form of adult-onset POAG segregating in an African-American family. Exome sequencing identified a novel missense variant (c.418C>T, p.Arg140Trp in exon-5 of the gene coding for epidermal growth factor (EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1 that co-segregated with disease in the family. Linkage and haplotype analyses with microsatellite markers indicated that the disease interval overlapped a known POAG locus (GLC1H on chromosome 2p. The p.Arg140Trp substitution was predicted in silico to have damaging effects on protein function and transient expression studies in cultured cells revealed that the Trp140-mutant protein exhibited increased intracellular accumulation compared with wild-type EFEMP1. In situ hybridization of the mouse eye with oligonucleotide probes detected the highest levels of EFEMP1 transcripts in the ciliary body, cornea, inner nuclear layer of the retina, and the optic nerve head. The recent finding that a common variant near EFEMP1 was associated with optic nerve-head morphology supports the possibility that the EFEMP1 variant identified in this POAG family may be pathogenic.

  3. A missense mutation in the agouti signaling protein gene (ASIP) is associated with the no light points coat phenotype in donkeys.

    Science.gov (United States)

    Abitbol, Marie; Legrand, Romain; Tiret, Laurent

    2015-04-08

    Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP). We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype. Thus, we propose to name the c.[349 T > C] allele in donkeys, the a(nlp) allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.

  4. The effect of the pathological V72I, D109N and T190M missense mutations on the molecular structure of α-dystroglycan.

    Directory of Open Access Journals (Sweden)

    Sonia Covaceuszach

    Full Text Available Dystroglycan (DG is a highly glycosylated protein complex that links the cytoskeleton with the extracellular matrix, mediating fundamental physiological functions such as mechanical stability of tissues, matrix organization and cell polarity. A crucial role in the glycosylation of the DG α subunit is played by its own N-terminal region that is required by the glycosyltransferase LARGE. Alteration in this O-glycosylation deeply impairs the high affinity binding to other extracellular matrix proteins such as laminins. Recently, three missense mutations in the gene encoding DG, mapped in the α-DG N-terminal region, were found to be responsible for hypoglycosylated states, causing congenital diseases of different severity referred as primary dystroglycanopaties.To gain insight on the molecular basis of these disorders, we investigated the crystallographic and solution structures of these pathological point mutants, namely V72I, D109N and T190M. Small Angle X-ray Scattering analysis reveals that these mutations affect the structures in solution, altering the distribution between compact and more elongated conformations. These results, supported by biochemical and biophysical assays, point to an altered structural flexibility of the mutant α-DG N-terminal region that may have repercussions on its interaction with LARGE and/or other DG-modifying enzymes, eventually reducing their catalytic efficiency.

  5. Identification of A Novel Missense Mutation in The Norrie Disease Gene: The First Molecular Genetic Analysis and Prenatal Diagnosis of Norrie Disease in An Iranian Family.

    Science.gov (United States)

    Talebi, Farah; Ghanbari Mardasi, Farideh; Mohammadi Asl, Javad; Lashgari, Ali; Farhadi, Freidoon

    2018-07-01

    Norrie disease (ND) is a rare X-linked recessive disorder, which is characterized by congenital blindness and, in several cases, accompanied with mental retardation and deafness. ND is caused by mutations in NDP, located on the proximal short arm of the X chromosome (Xp11.3). The disease has been observed in many ethnic groups worldwide, however, no such case has been reported from Iran. In this study, we present the molecular analysis of two patients with ND and the subsequent prenatal diagnosis. Screening of NDP identified a hemizygous missense mutation (p.Ser133Cys) in the affected male siblings of the family. The mother was the carrier for the mutation (p.Ser133Cys). In a subsequent chorionic amniotic pregnancy, we carried out prenatal diagnosis by sequencing NDP in the chorionic villi sample at 11 weeks of gestation. The fetus was carrying the mutation and thus unaffected. This is the first mutation report and prenatal diagnosis of an Iranian family with ND, and highlights the importance of prenatal diagnostic screening of this congenital disorder and relevant genetic counseling. Copyright© by Royan Institute. All rights reserved.

  6. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  7. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    Science.gov (United States)

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  8. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data

  9. Two novel mutations in exon 3 and 4 of low density lipoprotein (LDL) receptor gene in patients with heterozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Khan, S.P.

    2011-01-01

    Objective: To determine the common mutation of low density lipoprotein receptor in hypercholesterolemia patients requiring screening for heterozygous familial hypercholesterolemia (HeFH) in Karachi. Study Design: Case-series. Place and Duration of Study: Dr. Ziauddin Hospital Laboratory and Dr. Rubina Ghani's Pathological and Molecular Laboratories, Karachi, for the PCR bench work from June 2008 to October 2009. Methodology: All the patients selected for this study were from Dr. Ziauddin Hospital and National Institute of Cardiovascular Diseases. All the patients having high total cholesterol and LDL-cholesterol were included in this study with premature coronary artery diseases or a family history of hypercholesterolemia. Exclusion criteria included Diabetes mellitus, hypertension, renal disease, hypothyroidism and steroid therapy. After lipid profile with overnight fasting, DNA was extracted from whole blood collected in EDTA (ethylenediamine tetra acetic acid) tube and multiplex PCR (polymerase chain reaction) using forward and reverse primers of exons 3, 4, 9 and 14 of base pairs 162, 431, 550 and 496 respectively. Results: Out of total of 120 hypercholesterolemia cases, 42 patients were classical cases of HeFH (heterozygous familial hypercholesterolemia) with xanthomas, xanthelasmas and LDL-C > 160 mg/dl. The total cholesterol (260 +- 57 mg/dL) and LDL-C (192 +- 39 mg/dL ) of cases was significantly high as compared to, controls having total cholesterol (184 9 +- 27 mg/dL) and LDL-C (105 +- 22 mg/dL), p > 0.001. Two novel point mutations were noted in exon 3 and exon 4. The other 78 cases were probable with raised LDL-C (low density lipoprotein cholesterol) and family history of premature coronary heart diseases. Conclusion: The frequency of HeFH was 35% classical and 65% probable cases out of total 120 hypercholesterolemia patients from two tertiary care hospitals in Karachi. The point mutation on exon 3 and exon 4 of LDLR gene was the most common. PCR is

  10. Heterozygous congenital Factor VII deficiency with the 9729del4 mutation, associated with severe spontaneous intracranial bleeding in an adolescent male.

    Science.gov (United States)

    Cramer, Thomas J; Anderson, Kristin; Navaz, Karanjia; Brown, Justin M; Mosnier, Laurent O; von Drygalski, Annette

    2016-03-01

    In congenital Factor (F) VII deficiency bleeding phenotype and intrinsic FVII activity levels don't always correlate. Patients with FVII activity levels <30% appear to have a higher bleeding propensity, but bleeding can also occur at higher FVII activity levels. Reasons for bleeding at higher FVII activity levels are unknown, and it remains challenging to manage such patients clinically. A 19year old male with spontaneous intracranial hemorrhage and FVII activity levels of 44%, requiring emergent surgical intervention and a strategy for FVII replacement. Genotyping showed the rare heterozygous FVII 9729del4 mutation. Bleed evacuation was complicated by epidural abscess requiring craniectomy, bone graft procedures, and prolonged administration of recombinant human (rh) activated FVII (FVIIa). The patient recovered without neurological deficits, and remains on prophylactic low dose treatment with rhFVIIa in relation to risky athletic activities. For clinicians, it is important to recognize that effects of rhFVIIa within these pathways are independent of its contribution to blood clot formation and cannot be assessed by clotting assays. Reduced FVII levels should therefore not be dismissed, as even a mild reduction may result in spontaneous bleeding. Treatment of mild FVII deficiency requires a careful case-by-case approach, based on the clinical scenario. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Characterization of a Case of Pigmentary Retinopathy in Sanfilippo Syndrome Type IIIA Associated with Compound Heterozygous Mutations in the SGSH Gene.

    Science.gov (United States)

    Wilkin, Justin; Kerr, Natalie C; Byrd, Kathryn W; Ward, Jewell C; Iannaccone, Alessandro

    2016-06-01

    To report longitudinal phenotypic findings in a patient with Sanfilippo syndrome type IIIA, harboring SGSH mutations, one of which is novel. Heparan-N-sulfatidase enzyme function testing in skin fibroblasts and white blood cells and SGSH gene sequencing were obtained. Clinical office examinations, examinations under anesthesia, electroretinogram, spectral domain optical coherence tomography (SD-OCT), and fundus photography were performed over a 5-year period. Fundus examination revealed a progressive breadcrumb-like pigmentary retinopathy with perifoveal pigmentary involvement. SD-OCT showed loss of normal neuroretinal lamination and cystic macular changes responsive to treatment with carbonic anhydrase inhibitors. Electroretinography exhibited complex characteristics indicative of a generalized retinal rod > cone dysfunction with significant ON > OFF postreceptoral response compromise. Sequencing revealed compound heterozygous mutations in the SGSH gene, the novel c.88G > C (p.A30P) change and a second, previously reported one (c.734G > A, p.R245H). We have identified ocular features of a patient with Sanfilippo syndrome type IIIA harboring a novel SGHS mutation that were not previously known to occur in this disease - namely, a progressive retinopathy with distinctive features, cystic macular changes responsive to carbonic anhydrase inhibitors, and complex electroretinographic abnormalities consistent with postreceptoral dysfunction. SD-OCT imaging revealed retinal lamination changes consistent with previously reported histologic studies. Both the SD-OCT and the electroretinogram changes appear attributable to intraretinal deposition of heparan sulfate.

  12. A Rare Variant in PGAP2 Causes Autosomal Recessive Hyperphosphatasia with Mental Retardation Syndrome, with a Mild Phenotype in Heterozygous Carriers

    Directory of Open Access Journals (Sweden)

    Yonatan Perez

    2017-01-01

    Full Text Available Mutations in genes involved in the biosynthesis of the glycosylphosphatidylinositol (GPI anchor cause autosomal recessive glycosylation defects, with a wide phenotypic spectrum of intellectual disability, seizures, minor facial dysmorphism, hypotonia, and elevated serum alkaline phosphatase. We now describe consanguineous Bedouin kindred presenting with an autosomal recessive syndrome of intellectual disability and elevated serum alkaline phosphatase. Genome-wide linkage analysis identified 6 possible disease-associated loci. Whole-exome sequencing followed by Sanger sequencing validation identified a single variant in PGAP2 as the disease-causing mutation (C.554G>A; p.185(R>Q, segregating as expected within the kindred and not found in 150 Bedouin controls. The mutation replaces a highly conserved arginine residue with glutamine within the Frag1 (FGF receptor activating domain of PGAP2. Interestingly, this mutation is a known dbSNP variant (rs745521288, build 147 with a very low allele frequency (0.00000824 in dbSNP, no homozygotes reported, highlighting the fact that dbSNP variants should not be automatically ruled out as disease-causing mutations. We further showed that PGAP2 is ubiquitously expressed, but in line with the disease phenotype, it is highly transcribed in human brain, skeletal muscle, and liver. Interestingly, a mild phenotype of slightly elevated serum levels of alkaline phosphatase and significant learning disabilities was observed in heterozygous carriers.

  13. A Novel Heterozygous Intronic Mutation in the FBN1 Gene Contributes to FBN1 RNA Missplicing Events in the Marfan Syndrome

    Directory of Open Access Journals (Sweden)

    Mario Torrado

    2018-01-01

    Full Text Available Marfan syndrome (MFS is an autosomal dominantly inherited connective tissue disorder, mostly caused by mutations in the fibrillin-1 (FBN1 gene. We, by using targeted next-generation sequence analysis, identified a novel intronic FBN1 mutation (the c.2678-15C>A variant in a MFS patient with aortic dilatation. The computational predictions showed that the heterozygous c.2678-15C>A intronic variant might influence the splicing process by differentially affecting canonical versus cryptic splice site utilization within intron 22 of the FBN1 gene. RT-PCR and Western blot analyses, using FBN1 minigenes transfected into HeLa and COS-7 cells, revealed that the c.2678-15C>A variant disrupts normal splicing of intron 22 leading to aberrant 13-nt intron 22 inclusion, frameshift, and premature termination codon. Collectively, the results strongly suggest that the c.2678-15C>A variant could lead to haploinsufficiency of the FBN1 functional protein and structural connective tissue fragility in MFS complicated by aorta dilation, a finding that further expands on the genetic basis of aortic pathology.

  14. Embryonal rhabdomyosarcoma in a patient with a heterozygous frameshift variant in the DICER1 gene and additional manifestations of the DICER1 syndrome.

    Science.gov (United States)

    Fremerey, Julia; Balzer, Stefan; Brozou, Triantafyllia; Schaper, Joerg; Borkhardt, Arndt; Kuhlen, Michaela

    2017-07-01

    Germline mutations in the DICER1 gene are associated with an inherited cancer predisposition syndrome also known as the DICER1-syndrome, which is implicated in a broad range of tumors including pleuropulmonary blastoma, ovarian Sertoli-Leydig cell tumors, ciliary body medulloepithelioma (CBME), pituitary blastoma, embryonal rhabdomyosarcoma (eRMS), anaplastic renal sarcoma as well as ocular, sinonasal tumors ovarian sex-cord tumors, thyroid neoplasia and cystic nephroma. This study describes a novel, heterozygous frameshift DICER1 mutation in a patient, who is affected by different tumors of the DICER1-syndrome, including eRMS, CBME and suspected pleuropulmonary blastoma type I. By whole-exome sequencing of germline material using peripheral blood-derived DNA, we identified a single base pair duplication within the DICER1 gene (c.3405 dupA) that leads to a frameshift and results in a premature stop in exon 21 (p.Gly1136Arg). The metachronous occurrence of two unrelated tumor entities (eRMS and CBME) in a very young child within a short timeframe should have raised the suspicion of an underlying cancer susceptibility syndrome and should be prompt tested for DICER1.

  15. Heterozygous deletion at the RLN1 locus in a family with testicular germ cell cancer identified by integrating copy number variation data with phenome and interactome information

    DEFF Research Database (Denmark)

    Edsgard, Stefan Daniel; Scheel, M.; Hansen, Niclas Tue

    2011-01-01

    ‐associated genes among loci targeted by CNVs. The top‐ranked candidate, RLN1, encoding a Relaxin‐H1 peptide, although only detected in one of the families, was selected for further investigations. Validation of the CNV at the RLN1 locus was performed as an association study using qPCR with 106 sporadic testicular...... GCT patients and 200 healthy controls. Observed CNV frequencies of 1.9% among cases and 1.5% amongst controls were not significantly different and this was further confirmed by CNV data extracted from a genome‐wide analysis of 189 cases and 380 controls, where similar frequencies of 2.2% were observed...... and spermatids. Collectively, the findings show that a heterozygous loss at the RLN1 locus is not a genetic factor mediating high population‐wide risk for testicular germ cell tumour, but do not exclude a contribution of this aberration in some cases of cancer. The preliminary expression data suggest a possible...

  16. Production of a mouse strain with impaired glucose tolerance by systemic heterozygous knockout of the glucokinase gene and its feasibility as a prediabetes model

    Science.gov (United States)

    SAITO, Mikako; KANEDA, Asako; SUGIYAMA, Tae; IIDA, Ryousuke; OTOKUNI, Keiko; KABURAGI, Misako; MATSUOKA, Hideaki

    2015-01-01

    Exon II of glucokinase (Gk) was deleted to produce a systemic heterozygous Gk knockout (Gk+/−) mouse. The relative expression levels of Gk in the heart, lung, liver, stomach, and pancreas in Gk+/− mice ranged from 0.41–0.68 versus that in wild (Gk+/+) mice. On the other hand, its expression levels in the brain, adipose tissue, and muscle ranged from 0.95–1.03, and its expression levels in the spleen and kidney were nearly zero. Gk knockout caused no remarkable off-target effect on the expression of 7 diabetes causing genes (Shp, Hnf1a, Hnf1b, Irs1, Irs2, Kir6.2, and Pdx1) in 10 organs. The glucose tolerance test was conducted to determine the blood glucose concentrations just after fasting for 24 h (FBG) and at 2 h after high-glucose application (GTT2h). The FBG-GTT2h plots obtained with the wild strain fed the control diet (CD), Gk+/− strain fed the CD, and Gk+/− strain fed the HFD were distributed in separate areas in the FBG-GTT2h diagram. The respective areas could be defined as the normal state, prediabetes state, and diabetes state, respectively. Based on the results, the criteria for prediabetes could be defined for the Gk+/− strain developed in this study. PMID:25765873

  17. The Properties of Red Blood Cells from Patients Heterozygous for HbS and HbC (HbSC Genotype

    Directory of Open Access Journals (Sweden)

    A. Hannemann

    2011-01-01

    Full Text Available Sickle cell disease (SCD is one of the commonest severe inherited disorders, but specific treatments are lacking and the pathophysiology remains unclear. Affected individuals account for well over 250,000 births yearly, mostly in the Tropics, the USA, and the Caribbean, also in Northern Europe as well. Incidence in the UK amounts to around 12–15,000 individuals and is increasing, with approximately 300 SCD babies born each year as well as with arrival of new immigrants. About two thirds of SCD patients are homozygous HbSS individuals. Patients heterozygous for HbS and HbC (HbSC constitute about a third of SCD cases, making this the second most common form of SCD, with approximately 80,000 births per year worldwide. Disease in these patients shows differences from that in homozygous HbSS individuals. Their red blood cells (RBCs, containing approximately equal amounts of HbS and HbC, are also likely to show differences in properties which may contribute to disease outcome. Nevertheless, little is known about the behaviour of RBCs from HbSC heterozygotes. This paper reviews what is known about SCD in HbSC individuals and will compare the properties of their RBCs with those from homozygous HbSS patients. Important areas of similarity and potential differences will be emphasised.

  18. Deep vein thrombosis, ecythyma gangrenosum and heparin-induced thrombocytopenia occurring in a man with a heterozygous Factor V Leiden mutation

    Directory of Open Access Journals (Sweden)

    Mariya Apostolova

    2012-11-01

    Full Text Available Skin necrosis and limb gangrene are occasional thrombotic manifestations of anticoagulation therapy. We report a man heterozygous for the Factor V Leiden (FVL mutation, and with a history of recurrent deep venous thrombosis, who initially presented with a necrotic skin lesion of the right flank while on warfarin therapy with a therapeutic international normalized ratio. Warfarin was discontinued and he received intravenous heparin. Thereafter he developed thrombocytopenia and pedal erythema and was diagnosed with heparin-induced thrombocytopenia (HIT. Heparin was replaced with argatroban. He ultimately underwent bilateral below-knee amputations for the thrombotic complications of the HIT. The initial necrotic lesion healed with antibiotics and wound care. Pathologic examination of multiple biopsy specimens revealed two separate lesions. One was necrotic tissue infiltrated with methicillin resistant Staphylococcus aureus having features of ecthyma gangrenosum. The second showed thrombotic changes consistent with HIT. The case illustrates the differential diagnosis of skin necrosis and limb gangrene in patients on warfarin and heparin, and also the clinical complexities that can occur in a FVL heterozygote.

  19. Whole Exome Sequencing Identified a Novel Heterozygous Mutation in HMBS Gene in a Chinese Patient With Acute Intermittent Porphyria With Rare Type of Mild Anemia

    Directory of Open Access Journals (Sweden)

    Yongjiang Zheng

    2018-04-01

    Full Text Available Acute intermittent porphyria (AIP is a rare hereditary metabolic disease with an autosomal dominant mode of inheritance. Germline mutations of HMBS gene causes AIP. Mutation of HMBS gene results into the partial deficiency of the heme biosynthetic enzyme hydroxymethylbilane synthase. AIP is clinically manifested with abdominal pain, vomiting, and neurological complaints. Additionally, an extreme phenotypic heterogeneity has been reported in AIP patients with mutations in HMBS gene. Here, we investigated a Chinese patient with AIP. The proband is a 28-year-old Chinese male manifested with severe stomach ache, constipation, nausea and depression. Proband’s father and mother is normal. Proband’s blood sample was collected and genomic DNA was extracted. Whole exome sequencing and Sanger sequencing identified a heterozygous novel single nucleotide deletion (c.809delC in exon 12 of HMBS gene in the proband. This mutation leads to frameshift followed by formation of a truncated (p.Ala270Valfs∗2 HMBS protein with 272 amino acids comparing with the wild type HMBS protein of 361 amino acids. This mutation has not been found in proband’s unaffected parents as well as in 100 healthy normal control. According to the variant interpretation guidelines of American College of Medical Genetics and Genomics (ACMG, this variant is classified as “likely pathogenic” variant. Our findings expand the mutational spectra of HMBS gene related AIP which are significant for screening and genetic diagnosis for AIP.

  20. Tropomyosin 2 heterozygous knockout in mice using CRISPR-Cas9 system displays the inhibition of injury-induced epithelial-mesenchymal transition, and lens opacity

    Science.gov (United States)

    Shibata, Teppei; Shibata, Shinsuke; Ishigaki, Yasuhito; Kiyokawa, Etsuko; Ikawa, Masahito; Singh, Dhirendra P.; Sasaki, Hiroshi; Kubo, Eri

    2018-01-01

    The process of epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs) after cataract surgery contributes to tissue fibrosis, wound healing and lens regeneration via a mechanism not yet fully understood. Here, we show that tropomyosin 2 (Tpm2) plays a critical role in wound healing and lens aging. Posterior capsular opacification (PCO) after lens extraction surgery was accompanied by elevated expression of Tpm2. Tpm2 heterozygous knockout mice, generated via the clustered regularly interspaced short palindromic repeat/ Cas9 (CRISPR/Cas9) system showed promoted progression of cataract with age. Further, injury-induced EMT of the mouse lens epithelium, as evaluated histologically and by the expression patterns of Tpm1 and Tpm2, was attenuated in the absence of Tpm2. In conclusion, Tpm2 may be important in maintaining lens physiology and morphology. However, Tpm2 is involved in the progression of EMT during the wound healing process of mouse LECs, suggesting that inhibition of Tpm2 may suppress PCO. PMID:29510160

  1. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  2. Association between Two Common Missense Substitutions, Thr6Lys and Val81Ile, in MC3R Gene and Childhood Obesity: A Meta-Analysis.

    Science.gov (United States)

    Koya, Charita; Yu, Tsung; Strong, Carol; Tsai, Meng-Che

    2018-04-24

    Two common missense variants in the melanocortin-3 receptor (MC3R) gene, Thr6Lys (T6K) and Val81Ile (V81I), are presumably correlated with pediatric obesity. This meta-analysis aimed to examine and synthesize evidence on the association between these two common MC3R polymorphisms and the development of childhood obesity. A combination of words relevant to the research question was searched on PubMed, EMBASE, Scopus, and the Cochrane database. Results were restricted to human studies, specifically child and adolescent populations. Articles were excluded based on accessibility of full online texts and availability of pertinent data. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a random effects model to determine the association of the polymorphisms with obesity. Searches on the databases using the keywords identified 65 potentially relevant reports. Among them, 32 studies were excluded due to irrelevance, and 28 studies excluded due to lack of access, insufficient data, and investigation of other variants. A final set of five studies included in this meta-analysis found that the risk of overweight/obesity increased by 46.1% per K allele and 21.7% per I allele. Only homozygous genotypes for T6K were associated with a 3.10-fold (95% CI: 1.29-7.43) increased risk of overweight/obesity in children. Data were insufficient to examine if homozygosity for both rare alleles further increases risk. Our results supported a recessive inheritance model for MC3R gene as a potential cause of childhood obesity. High clinical heterogeneity existed among studies and thus requires more research of larger participation for future integration of data.

  3. Compared effects of missense mutations in Very-Long-Chain Acyl-CoA Dehydrogenase deficiency: Combined analysis by structural, functional and pharmacological approaches.

    Science.gov (United States)

    Gobin-Limballe, Stéphanie; McAndrew, Ryan P; Djouadi, Fatima; Kim, Jung-Ja; Bastin, Jean

    2010-05-01

    Very-Long-Chain Acyl-CoA Dehydrogenase deficiency (VLCADD) is an autosomal recessive disorder considered as one of the more common ss-oxidation defects, possibly associated with neonatal cardiomyopathy, infantile hepatic coma, or adult-onset myopathy. Numerous gene missense mutations have been described in these VLCADD phenotypes, but only few of them have been structurally and functionally analyzed, and the molecular basis of disease variability is still poorly understood. To address this question, we first analyzed fourteen disease-causing amino acid changes using the recently described crystal structure of VLCAD. The predicted effects varied from the replacement of amino acid residues lining the substrate binding cavity, involved in holoenzyme-FAD interactions or in enzyme dimerisation, predicted to have severe functional consequences, up to amino acid substitutions outside key enzyme domains or lying on near enzyme surface, with predicted milder consequences. These data were combined with functional analysis of residual fatty acid oxidation (FAO) and VLCAD protein levels in patient cells harboring these mutations, before and after pharmacological stimulation by bezafibrate. Mutations identified as detrimental to the protein structure in the 3-D model were generally associated to profound FAO and VLCAD protein deficiencies in the patient cells, however, some mutations affecting FAD binding or monomer-monomer interactions allowed a partial response to bezafibrate. On the other hand, bezafibrate restored near-normal FAO rates in some mutations predicted to have milder consequences on enzyme structure. Overall, combination of structural, biochemical, and pharmacological analysis allowed assessment of the relative severity of individual mutations, with possible applications for disease management and therapeutic approach. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings.

    Science.gov (United States)

    Missaglia, Sara; Tasca, Elisabetta; Angelini, Corrado; Moro, Laura; Tavian, Daniela

    2015-01-01

    Neutral lipid storage disease with myopathy (NLSD-M) is a rare autosomal recessive disorder characterised by an abnormal accumulation of triacylglycerol into cytoplasmic lipid droplets (LDs). NLSD-M patients are mainly affected by progressive myopathy, cardiomyopathy and hepatomegaly. Mutations in the PNPLA2 gene cause variable phenotypes of NLSD-M. PNPLA2 codes for adipose triglyceride lipase (ATGL), an enzyme that hydrolyses fatty acids from triacylglycerol. This report outlines the clinical and genetic findings in a NLSD-M Italian family with three affected members. In our patients, we identified two novel PNPLA2 missense mutations (p.L56R and p.I193F). Functional data analysis demonstrated that these mutations caused the production of ATGL proteins able to bind to LDs, but with decreased lipase activity. The oldest brother, at the age of 38, had weakness and atrophy of the right upper arm and kyphosis. Now he is 61 years old and is unable to raise arms in the horizontal position. The second brother, from the age of 44, had exercise intolerance, cramps and pain in lower limbs. He is currently 50 years old and has an asymmetric distal amyotrophy. One of the two sisters, 58 years old, presents the same PNPLA2 mutations, but she is still oligo-symptomatic on neuromuscular examination with slight triceps muscle involvement. She suffered from diabetes and liver steatosis. This NLSD-M family shows a wide range of intra-familial phenotypic variability in subjects carrying the same mutations, both in terms of target-organs and in terms of rate of disease progression. Copyright © 2015. Published by Elsevier Inc.

  5. Hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia resulting from a novel missense mutation in the DNA-binding domain of the vitamin D receptor

    Science.gov (United States)

    Malloy, Peter J.; Wang, Jining; Srivastava, Tarak; Feldman, David

    2009-01-01

    The rare genetic recessive disease, hereditary vitamin D resistant rickets (HVDRR), is caused by mutations in the vitamin D receptor (VDR) that result in resistance to the active hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3 or calcitriol). In this study, we examined the VDR from a young boy with clinical features of HVDRR including severe rickets, hypocalcemia, hypophosphatemia and partial alopecia. The pattern of alopecia was very unusual with areas of total baldness, adjacent to normal hair and regions of scant hair. The child failed to improve on oral calcium and vitamin D therapy but his abnormal chemistries and his bone x-rays normalized with intravenous calcium therapy. We found that the child was homozygous for a unique missense mutation in the VDR gene that converted valine to methionine at amino acid 26 (V26M) in the VDR DNA-binding domain (DBD). The mutant VDR was studied in the patient’s cultured skin fibroblasts and found to exhibit normal [3H]1,25-(OH)2D3 binding and protein expression. However, the fibroblasts were unresponsive to treatment with high concentrations of 1,25(OH)2D3 as demonstrated by their failure to induce CYP24A1 gene expression, a marker of 1,25(OH)2D3 responsiveness. We recreated the V26M mutation in the WT VDR and showed that in transfected COS-7 cells the mutation abolished 1,25(OH)2D3-mediated transactivation. The mutant VDR exhibited normal ligand-induced binding to RXRα and to the coactivator DRIP205. However, the V26M mutation inhibited VDR binding to a consensus vitamin D response element (VDRE). In summary, we have identified a novel V26M mutation in the VDR DBD as the molecular defect in a patient with HVDRR and an unusual pattern of alopecia. PMID:19815438

  6. A pathogenic S250F missense mutation results in a mouse model of mild aromatic l-amino acid decarboxylase (AADC) deficiency.

    Science.gov (United States)

    Caine, Charlotte; Shohat, Meytal; Kim, Jeong-Ki; Nakanishi, Koki; Homma, Shunichi; Mosharov, Eugene V; Monani, Umrao R

    2017-11-15

    Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux.

    Directory of Open Access Journals (Sweden)

    Amelie T van der Ven

    Full Text Available Congenital anomalies of the kidney and urinary tract (CAKUT are the most common cause (40-50% of chronic kidney disease (CKD in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES and homozygosity mapping (HM in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys in the gene Von Willebrand factor A domain containing 2 (VWA2. With immunohistochemistry studies on kidneys of newborn (P1 mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1 co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB and derivatives of the metanephric mesenchyme (MM. By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC. FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.

  8. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage.

    Science.gov (United States)

    Quek, Hazel; Luff, John; Cheung, KaGeen; Kozlov, Sergei; Gatei, Magtouf; Lee, C Soon; Bellingham, Mark C; Noakes, Peter G; Lim, Yi Chieh; Barnett, Nigel L; Dingwall, Steven; Wolvetang, Ernst; Mashimo, Tomoji; Roberts, Tara L; Lavin, Martin F

    2017-04-01

    Mutations in the ataxia-telangiectasia (A-T)-mutated ( ATM ) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm -mutant rats ( Atm L2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm +/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of Atm L2262P/L2262P rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T. © Society for Leukocyte Biology.

  9. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA Gene.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    Full Text Available Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R gene, a central determinant of black (eumelanin vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD and Recessive Red (MC1Re. A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA, a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  10. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

    Science.gov (United States)

    Utzeri, V J; Bertolini, F; Ribani, A; Schiavo, G; Dall'Olio, S; Fontanesi, L

    2016-02-01

    A fera